WO2017190332A1 - 一种电感器及其制造方法 - Google Patents

一种电感器及其制造方法 Download PDF

Info

Publication number
WO2017190332A1
WO2017190332A1 PCT/CN2016/081203 CN2016081203W WO2017190332A1 WO 2017190332 A1 WO2017190332 A1 WO 2017190332A1 CN 2016081203 W CN2016081203 W CN 2016081203W WO 2017190332 A1 WO2017190332 A1 WO 2017190332A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductor
alloy
manufacturing
inorganic insulating
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/CN2016/081203
Other languages
English (en)
French (fr)
Inventor
李有云
陆达富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Sunlord Electronics Co Ltd
Original Assignee
Shenzhen Sunlord Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Sunlord Electronics Co Ltd filed Critical Shenzhen Sunlord Electronics Co Ltd
Priority to PCT/CN2016/081203 priority Critical patent/WO2017190332A1/zh
Priority to CN201680000397.1A priority patent/CN105940470A/zh
Publication of WO2017190332A1 publication Critical patent/WO2017190332A1/zh
Priority to US15/861,698 priority patent/US20180130588A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type
    • H01F17/04Fixed inductances of the signal type with magnetic core
    • H01F17/06Fixed inductances of the signal type with magnetic core with core substantially closed in itself, e.g. toroid
    • H01F17/062Toroidal core with turns of coil around it
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type
    • H01F17/04Fixed inductances of the signal type with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/324Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings
    • H01F41/125Other insulating structures; Insulating between coil and core, between different winding sections, around the coil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type
    • H01F17/04Fixed inductances of the signal type with magnetic core
    • H01F2017/048Fixed inductances of the signal type with magnetic core with encapsulating core, e.g. made of resin and magnetic powder

Definitions

  • the invention relates to an inductor and a method of manufacturing the same.
  • the role of the inductor is to stabilize the current in the circuit, store energy and filter out clutter.
  • One of the parameters of the inductor, DC resistance, is an important indicator of the strength of the inductor.
  • the wires of many inductors are buried in the magnetic body, and the main component of the magnetic body is an alloy powder with a binder.
  • the alloy powder coats the wires and then applies a molding pressure of 6 tons per square centimeter. Then, it is heated at a temperature not higher than 300 ° C to cure the bond, thereby obtaining an inductor.
  • the general wire material is enamelled copper wire, and the enamelled copper wire itself can withstand a relatively low temperature, it cannot be higher than 600 ° C, which limits the heat treatment temperature of the magnetic body to 600 ° C or above.
  • the magnetic permeability of the magnetic body can be increased by 20% or more from the magnetic permeability before heat treatment. This means that under the same wire structure, the inductance of the inductor after heat treatment at 600 ° C or higher will be more than 20% greater than the inductance of the inductor without heat treatment.
  • the inductance of the inductor is directly related to the number of turns of the conductor, the larger the number of turns, the larger the DC resistance, and the greater the DC resistance, which means that after the same amount of inductance, after heat treatment at 600 ° C or higher.
  • the current technology uses enamelled copper wire, which cannot be satisfied. Heat treatment requirements above 600 °C.
  • the present invention provides an inductor and a method of fabricating the same.
  • An inductor comprising a magnetic body and a conductor coil, the conductor coil further comprising an inorganic insulating layer inside the magnetic body, the inorganic insulating layer being wrapped around a surface of the conductor coil, and the inorganic insulating layer being The inside of the magnetic body.
  • the magnetic body is a ferrosilicon chromium alloy, an iron nickel alloy, a ferrosilicon alloy, an iron aluminum alloy, a ferrosilicon aluminum alloy or an amorphous alloy.
  • the inorganic insulating layer is ceramic, glass, or a mixture of ceramic and glass.
  • the conductor coil is copper, nickel, silver or gold.
  • the invention also provides a method for manufacturing an inductor, comprising the following steps:
  • the magnetic material is subjected to heat treatment, the heating temperature is above 600 ° C, and the organic binder is volatilized after heating, and the inorganic insulating layer material is wrapped on the surface of the wire.
  • the heating temperature is from 600 ° C to 1000 ° C.
  • the molding pressure is from 5 tons per square centimeter to 25 tons per square centimeter.
  • the organic binder is a resin binder.
  • the magnetic material is iron silicon chromium alloy, iron nickel alloy, iron silicon alloy, iron aluminum alloy, iron silicon aluminum alloy or amorphous alloy.
  • the inorganic insulating material is ceramic, glass, or a mixture of ceramic and glass.
  • the invention can make the wire buried inside the magnetic material can withstand heat treatment of 600 ° C or more, so that the magnetic permeability of the magnetic material after heat treatment at 600 ° C or higher is higher, and therefore, when the length of the wire is constant, Inductors with larger inductances, or shorter inductors, can make inductors with smaller DC resistance.
  • 1 is a schematic view showing the appearance of an inductor
  • Figure 2 is a plan perspective view of an inductor
  • Figure 3 is a cross-sectional view of an inductor
  • FIG. 4 is a schematic cross-sectional view of a wire in an inductor
  • a method of manufacturing an inductor of an embodiment includes the following steps:
  • the organic binder may be a resin binder, and the inorganic insulating material may be ceramic or glass. Or a mixture of ceramic and glass. In the mixture, the inorganic insulating material 5 is dispersed in the resin.
  • the material of the wire 4 may be a material having superior conductivity such as copper, nickel, silver or gold, and the inorganic insulating material is adhered to the wire 4 by an organic binder.
  • the wire 4 is wound into a coil 6 of a certain coil structure by a winding device.
  • the wound coil 6 is buried in the magnetic material 1 and a pressure of 5 tons per square centimeter to 25 tons per square centimeter is applied to increase the density of the magnet material 1.
  • a certain organic binder can be mixed in the magnetic material to aid in molding.
  • the magnetic material is subjected to heat treatment, the heating temperature is above 600 ° C, and the organic binder is volatilized after heating, and the inorganic insulating layer material is wrapped on the surface of the wire.
  • the maximum temperature of the heat treatment is from 600 ° C to 1000 ° C, and the atmosphere of the heat treatment may be air, nitrogen, hydrogen or the like.
  • the resin in the wire and the resin in the magnet material are first decomposed and volatilized.
  • the inorganic insulating material 5 on the surface of the wire can withstand the high temperature, and remains on the surface of the conductor material 4 after the heat treatment, so that the ring of the wire is separated from the ring.
  • the magnetic permeability of the present magnet material 1 after heat treatment can be effectively improved compared to the prior art using a magnet material treated at 600 ° C or lower.
  • the external electrode can be made by silver plating, electroplating or electroless plating to connect the inner coil to the external electrode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Magnetic Ceramics (AREA)

Abstract

一种电感器及其制造方法,电感器包括磁性体(1)和导体线圈(6),导体线圈在磁性体内部,还包括无机绝缘层(5),无机绝缘层包裹在导体线圈表面,且无机绝缘层在磁性体内部。该制造方法可以制作具有更大的电感量的电感器,或制作更小直流电阻的电感器。

Description

一种电感器及其制造方法 【技术领域】
本发明涉及一种电感器及其制造方法。
【背景技术】
电感器的作用是在电路中稳定电流、储存能量并滤除杂波。电感器的其中一个参数直流电阻是衡量电感优劣的一个重要指标。
现在较多的电感器的导线内埋于磁性体中,且磁性体的主要成分为具有粘合剂的合金粉,合金粉把导线包覆起来,然后再施以6吨每平方厘米的成型压力,之后在不高于300℃的温度下加热以使粘合固化,从而得到电感器。
【发明内容】
经过研究发现,由于一般的导线材料为漆包铜线,而漆包铜线本身能承受的温度比较低,无法高于600℃,这就局限了磁性体的热处理温度无法达到600℃以上。而成型后的磁性体如果经过600℃以上的热处理后,磁性体的磁导率可以由热处理前的磁导率提升20%以上。这就意味着,在同等的导线结构下,经过600℃以上的热处理后的电感器的电感量会比没有经过热处理的电感器的电感量大20%以上。由于电感器的电感量与导体从圈数有直接关系,圈数越多电感量越大直流电阻也越大,因此也就意味着,在同样电感量的情况下,经过600℃以上的热处理后的电感器所用的圈数越小,直流电阻也就越小。但现在的技术所使用的是漆包铜线,无法满足 600℃以上的热处理要求。
为了克服现有技术的不足,本发明提供了一种电感及其制造方法。
一种电感器,包括磁性体和导体线圈,所述导体线圈在所述磁性体内部,还包括无机绝缘层,所述无机绝缘层包裹在所述导体线圈表面,且所述无机绝缘层在所述磁性体内部。
优选地,
所述磁性体为铁硅铬合金、铁镍合金、铁硅合金、铁铝合金、铁硅铝合金或非晶质合金。
优选地,
所述无机绝缘层为陶瓷、玻璃、或陶瓷与玻璃的混合体。
优选地,
所述导体线圈为铜、镍、银或金。
本发明还提供了一种电感器的制造方法,包括如下步骤:
S1、将有机粘合剂和无机绝缘材料混合得到混合物;
S2、将所述混合物涂覆在导线的表面;
S3、将表面具有所述混合物的导线卷绕得到线圈;
S4、将所述线圈埋入磁性体材料内,并向所述磁性体材料施加成型压力;
S5、对所述磁性体材料进行加热处理,加热温度在600℃以上,加热后所述有机粘合剂挥发,所述无机绝缘层材料包裹在所述导线的表面。
优选地,
所述加热温度为600℃至1000℃。
优选地,
所述成型压力为5吨每平方厘米至25吨每平方厘米。
优选地,
所述有机粘合剂为树脂粘合剂。
优选地,
所述磁性体材料为铁硅铬合金、铁镍合金、铁硅合金、铁铝合金、铁硅铝合金或非晶质合金。
优选地,
所述无机绝缘材料为陶瓷、玻璃、或陶瓷与玻璃的混合体。
本发明可以使内埋在磁性体材料内部的导线可以承受600℃以上的热处理,从而使经过600℃以上热处理后磁性体材料的磁导率更高,因此,在导线长度一定的情况下看以制作具有更大的电感量的电感器,或在电感量一定的情况下,只需要更短的导线,从而可以制作更小直流电阻的电感器。
【附图说明】
图1为一种电感器的外观示意图;
图2为一种电感器的平面透视图;
图3为一种电感器的截面剖面图;
图4为一种电感器中的导线剖面示意图;
【具体实施方式】
以下对发明的较佳实施例作进一步详细说明。
如图1至4所示,一种实施例的电感器的制造方法,包括如下步骤:
S1、将有机粘合剂和无机绝缘材料混合得到混合物。
有机粘合剂可以采用树脂粘合剂,无机绝缘材料可以是陶瓷、玻璃, 或陶瓷与玻璃的混合体。在混合物中,无机绝缘材料5分散在树脂中。
S2、将所述混合物涂覆在导线的表面。
导线4的材料可以是铜、镍、银、金等电导率较优的材料,无机绝缘材料通过有机粘合剂粘附在导线4上。
S3、将表面具有所述混合物的导线卷绕得到线圈。
如图2所示,把导线4通过绕线设备绕制成一定线圈结构的线圈6。
S4、将所述线圈埋入磁性体材料内,并向所述磁性体材料施加成型压力。
将绕制的线圈6埋入磁性体材料1内,并施以5吨每平方厘米至25吨每平方厘米的压力,以使磁体材料1的密度提高。可以在磁性材料中混入一定的有机粘合剂,以辅助成型。
S5、对所述磁性体材料进行加热处理,加热温度在600℃以上,加热后所述有机粘合剂挥发,所述无机绝缘层材料包裹在所述导线的表面。
热处理的最高温度在600℃~1000℃,热处理的气氛可以是空气、氮气、氢气等。在热处理的过程中,导线中的树脂和磁体材料中的树脂先分解挥发出来。导线表面的无机绝缘材料5由于可以承受高温,在热处理后仍然保留在导体材料4表面,使导线的圈与圈之间隔离开。
相比于现有采用600℃以下处理的磁体材料,在经过热处理之后的本磁体材料1的磁导率可以得到有效提高。
S6、可以通过沾银、电镀或化学镀等方式制作外部电极,以使内部线圈与外部电极连接起来。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术 领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明由所提交的权利要求书确定的专利保护范围。

Claims (10)

  1. 一种电感器,包括磁性体和导体线圈,所述导体线圈在所述磁性体内部,其特征是,还包括无机绝缘层,所述无机绝缘层包裹在所述导体线圈表面,且所述无机绝缘层在所述磁性体内部。
  2. 如权利要求1所述的电感器,其特征是,所述磁性体为铁硅铬合金、铁镍合金、铁硅合金、铁铝合金、铁硅铝合金或非晶质合金。
  3. 如权利要求1所述的电感器,其特征是,所述无机绝缘层为陶瓷、玻璃、或陶瓷与玻璃的混合体。
  4. 如权利要求1所述的电感器,其特征是,所述导体线圈为铜、镍、银或金。
  5. 一种电感器的制造方法,其特征是,包括如下步骤:
    S1、将有机粘合剂和无机绝缘材料混合得到混合物;
    S2、将所述混合物涂覆在导线的表面;
    S3、将表面具有所述混合物的导线卷绕得到线圈;
    S4、将所述线圈埋入磁性体材料内,并向所述磁性体材料施加成型压力;
    S5、对所述磁性体材料进行加热处理,加热温度在600℃以上,加热后所述有机粘合剂挥发,所述无机绝缘层材料包裹在所述导线的表面。
  6. 如权利要求5所述的电感器的制造方法,其特征是:
    所述加热温度为600℃至1000℃。
  7. 如权利要求5所述的电感器的制造方法,其特征是:
    所述成型压力为5吨每平方厘米至25吨每平方厘米。
  8. 如权利要求5所述的电感器的制造方法,其特征是:
    所述有机粘合剂为树脂粘合剂。
  9. 如权利要求5所述的电感器的制造方法,其特征是,所述磁性体材料为铁硅铬合金、铁镍合金、铁硅合金、铁铝合金、铁硅铝合金或非晶质合金。
  10. 如权利要求5所述的电感器的制造方法,其特征是,所述无机绝缘材料为陶瓷、玻璃、或陶瓷与玻璃的混合体。
PCT/CN2016/081203 2016-05-06 2016-05-06 一种电感器及其制造方法 Ceased WO2017190332A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2016/081203 WO2017190332A1 (zh) 2016-05-06 2016-05-06 一种电感器及其制造方法
CN201680000397.1A CN105940470A (zh) 2016-05-06 2016-05-06 一种电感器及其制造方法
US15/861,698 US20180130588A1 (en) 2016-05-06 2018-01-04 Inductor and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/081203 WO2017190332A1 (zh) 2016-05-06 2016-05-06 一种电感器及其制造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/861,698 Continuation US20180130588A1 (en) 2016-05-06 2018-01-04 Inductor and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2017190332A1 true WO2017190332A1 (zh) 2017-11-09

Family

ID=56873263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081203 Ceased WO2017190332A1 (zh) 2016-05-06 2016-05-06 一种电感器及其制造方法

Country Status (3)

Country Link
US (1) US20180130588A1 (zh)
CN (1) CN105940470A (zh)
WO (1) WO2017190332A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108133801A (zh) * 2017-12-15 2018-06-08 贵阳顺络迅达电子有限公司 一种一体成型电感器及其制作方法
WO2018149422A2 (zh) * 2018-05-22 2018-08-23 深圳顺络电子股份有限公司 一体成型电感元件及其制造方法
CN114551075A (zh) * 2022-01-05 2022-05-27 深圳市信维通信股份有限公司 一种电感制作方法
CN115938718B (zh) * 2023-03-09 2023-05-30 天通控股股份有限公司 一种直插式一体成型共烧电感及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09326317A (ja) * 1996-06-05 1997-12-16 Nippon Syst Design:Kk マイクロ波インダクタコイル
CN101719414A (zh) * 2009-12-21 2010-06-02 深圳顺络电子股份有限公司 电感器及其制作方法
CN104700981A (zh) * 2013-12-09 2015-06-10 卓英社有限公司 表面贴装型电感器及其制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1151519C (zh) * 2001-01-20 2004-05-26 台达电子工业股份有限公司 形成具有单件式铁芯的电感的方法
JP4851062B2 (ja) * 2003-12-10 2012-01-11 スミダコーポレーション株式会社 インダクタンス素子の製造方法
CN1838349A (zh) * 2005-03-23 2006-09-27 胜美达集团株式会社 电感器
CN101857724B (zh) * 2009-04-07 2013-05-29 台达电子工业股份有限公司 耐高温绝缘组合物、绝缘导线及磁性元件
CN102054558A (zh) * 2009-11-09 2011-05-11 陈行诚 芯片型绕线式抗流线圈
CN103559946B (zh) * 2013-11-19 2016-07-20 山东工业陶瓷研究设计院有限公司 陶瓷绝缘电磁线及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09326317A (ja) * 1996-06-05 1997-12-16 Nippon Syst Design:Kk マイクロ波インダクタコイル
CN101719414A (zh) * 2009-12-21 2010-06-02 深圳顺络电子股份有限公司 电感器及其制作方法
CN104700981A (zh) * 2013-12-09 2015-06-10 卓英社有限公司 表面贴装型电感器及其制造方法

Also Published As

Publication number Publication date
US20180130588A1 (en) 2018-05-10
CN105940470A (zh) 2016-09-14

Similar Documents

Publication Publication Date Title
US10811188B2 (en) Metal matrix composite wire, power inductor, and preparation methods for same
TW200941515A (en) Inductor and method for making thereof
KR20130111452A (ko) 면실장 인덕터의 제조방법
WO2017190332A1 (zh) 一种电感器及其制造方法
US10867748B2 (en) Method for preparing a composite wire and a power inductor
CN106583709A (zh) 一种具备核壳结构的铁硅合金复合粉末及其制备方法
CN107119174B (zh) 一种提高铁硅铝软磁粉芯直流偏置性能的退火方法
IN2015DN01311A (zh)
CN103700460A (zh) 一种低损耗无热老化铁粉芯的制备方法
CN106601416B (zh) 一种多层核壳结构的铁硅软磁复合粉末及其制备方法
CN104036899A (zh) 一种核壳结构软磁复合材料的制备方法
TW201830417A (zh) 壓粉芯、該壓粉芯之製造方法、具備該壓粉芯之電氣電子零件及安裝有該電氣電子零件之電氣電子機器
CN109509613A (zh) 一种一体成型电感器
JP2013045928A (ja) 巻線型インダクタ及びその製造方法
JP5913246B2 (ja) 金属磁性材料、電子部品
CN113451039B (zh) 一种FeSi基水雾化铁硅铬软磁粉芯及其制备方法
JP2004319652A (ja) 磁心の製造方法およびその磁心
CN112735722A (zh) 一种具有MnO-SiO2复合绝缘层的铁硅软磁复合粉末及其制备方法
CN104465004A (zh) 碱性烤蓝工艺制备高饱和磁通密度软磁复合材料的方法
JP6427933B2 (ja) 金属磁性材料及び電子部品
JP6155463B2 (ja) 圧粉磁心の製造方法とその製造方法で作製された圧粉磁心を用いた磁性素子の製造方法
CN112735723A (zh) 一种具有MnO-SiO2复合绝缘层的铁硅磁粉芯及其制备方法
CN112700941A (zh) 一种铁基非晶软磁合金磁芯材料及其制备方法
JP2016167477A (ja) コイル封入圧粉磁芯
CN106233400B (zh) 金属磁性材料及电子部件

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16900854

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16900854

Country of ref document: EP

Kind code of ref document: A1