WO2017188211A1 - 保護膜形成用フィルム及び保護膜形成用複合シート - Google Patents

保護膜形成用フィルム及び保護膜形成用複合シート Download PDF

Info

Publication number
WO2017188211A1
WO2017188211A1 PCT/JP2017/016277 JP2017016277W WO2017188211A1 WO 2017188211 A1 WO2017188211 A1 WO 2017188211A1 JP 2017016277 W JP2017016277 W JP 2017016277W WO 2017188211 A1 WO2017188211 A1 WO 2017188211A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective film
forming
film
meth
sensitive adhesive
Prior art date
Application number
PCT/JP2017/016277
Other languages
English (en)
French (fr)
Japanese (ja)
Inventor
裕之 米山
洋一 稲男
力也 小橋
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to KR1020187026380A priority Critical patent/KR102332694B1/ko
Priority to JP2018514602A priority patent/JP6938477B2/ja
Priority to CN201780020935.8A priority patent/CN109005667B/zh
Publication of WO2017188211A1 publication Critical patent/WO2017188211A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors

Definitions

  • the present invention relates to a protective film-forming film and a protective film-forming composite sheet.
  • a semiconductor device using a mounting method called a so-called face-down method has been manufactured.
  • a semiconductor chip having electrodes such as bumps on a circuit surface is used, and the electrodes are bonded to a substrate. For this reason, the back surface opposite to the circuit surface of the semiconductor chip may be exposed.
  • a resin film containing an organic material is formed as a protective film on the exposed back surface of the semiconductor chip and may be taken into the semiconductor device as a semiconductor chip with a protective film.
  • the protective film is used to prevent cracks from occurring in the semiconductor chip after the dicing process or packaging.
  • a protective film-forming composite sheet comprising a protective film-forming film for forming a protective film on a support sheet is used.
  • the protective film forming film can form a protective film by curing, and the support sheet can be used as a dicing sheet, and the protective film forming film and the dicing sheet are integrated. It is possible that
  • a composite sheet for forming a protective film for example, a sheet provided with a thermosetting protective film forming film that forms a protective film by being cured by heating has been mainly used so far.
  • a protective film-forming composite sheet is pasted to the back surface (surface opposite to the electrode-forming surface) of the semiconductor wafer with a thermosetting protective film-forming film, and then the protective film-forming film is heated.
  • the semiconductor wafer is divided together with the protective film by dicing to form a semiconductor chip. Then, the semiconductor chip is picked up while being separated from the support sheet while the protective film is stuck.
  • hardening and dicing of the film for protective film formation may be performed in the reverse order.
  • thermosetting protective film-forming film since the heat curing of the thermosetting protective film-forming film usually takes a long time of about several hours, shortening of the curing time is desired.
  • a protective film-forming film that can be cured by irradiation with energy rays such as ultraviolet rays has been studied.
  • an energy ray curable protective film (see Patent Document 1) formed on a release film, and an energy ray curable chip protective film that can form a protective film having high hardness and excellent adhesion to a semiconductor chip (Patent Document) 2).
  • the semiconductor wafer is usually adjusted such that the back surface to which the protective film-forming film is attached is ground and the thickness becomes a target value.
  • the semiconductor chip has this grinding mark (grinding mark) on the back surface.
  • the protective film may be required to improve the appearance of the semiconductor chip so that the grinding marks on the back surface of the semiconductor chip cannot be visually recognized.
  • the protective film is usually printed on the surface opposite to the surface to be bonded to the semiconductor wafer or semiconductor chip (in other words, the surface facing the support sheet) by laser light irradiation (in this specification, (Sometimes referred to as “laser printing”). The protective film may be required to have excellent print visibility.
  • the protective film-forming film is energy ray curable
  • laser printing may be performed at the stage of the protective film-forming film instead of the protective film.
  • the protective film and the protective film-forming film generally contain a colorant so as to improve the appearance of the semiconductor chip and be excellent in the visibility of the print applied to itself.
  • the irradiated energy rays are affected by the colorant and the semiconductor film or semiconductor of the protective film forming film is irradiated.
  • the formed protective film has a higher degree of curing on the irradiation source side of the energy beam, that is, the region close to the surface facing the support sheet, and on the opposite side, that is, the semiconductor wafer or the semiconductor chip.
  • the degree of cure is lower in the region closer to the surface to be applied to.
  • the semiconductor chip with the protective film faces the protective film support sheet when picking up the semiconductor chip with the protective film away from the support sheet by a push-up method using a pin.
  • the traces of the pins being pushed up remain. If such push-up marks remain, the visibility of laser printing applied to the same surface may be reduced.
  • the energy ray curable protective film disclosed in Patent Document 1 and the energy ray curable chip protective film disclosed in Patent Document 2 are both of the remaining of the push-up marks by such pins. It is not intended for suppression.
  • the present invention is capable of forming a protective film on the back surface of a semiconductor wafer or semiconductor chip, and even if it contains a colorant, when a semiconductor chip with a protective film is picked up by a push-up method using a pin, the surface of the protective film
  • the purpose of the present invention is to provide an energy ray-curable protective film-forming film capable of suppressing the remaining of the push-up marks due to the pins, and a protective film-forming composite sheet comprising the film.
  • the present invention is an energy ray-curable protective film-forming film, and when the protective film-forming film is irradiated with energy rays to form a protective film, the protective film has a tensile elastic modulus of 1 ⁇ 10 8 Pa.
  • the film for forming a protective film as described above is provided.
  • the protective film may have a Shore D hardness of 55 or more.
  • the present invention comprises a support sheet, the protective film-forming film is provided on the support sheet, and when the protective film-forming film is irradiated with an energy ray to form a protective film, Provided is a composite sheet for forming a protective film, having an adhesive force between the support sheet and 50 to 1500 mN / 25 mm.
  • a protective film can be formed on the back surface of the semiconductor wafer or semiconductor chip, even if the protective film-forming film contains a colorant, When a semiconductor chip with a protective film is picked up, it is possible to suppress the presence of a push-up trace due to a pin on the surface of the protective film.
  • the protective film-forming film of the present invention is an energy ray-curable protective film-forming film, and when the protective film-forming film is irradiated with energy rays to form a protective film,
  • the tensile elastic modulus of the protective film is 1 ⁇ 10 8 Pa or more.
  • a protective film-forming composite sheet can be formed by providing the protective film-forming film on a support sheet.
  • the protective film-forming film is cured by irradiation with energy rays and becomes a protective film.
  • This protective film is for protecting the back surface (surface opposite to the electrode forming surface) of the semiconductor wafer or semiconductor chip.
  • the protective film-forming film is soft and can be easily attached to an object to be attached. Since the protective film-forming film is energy ray curable, the protective film can be formed by curing in a shorter time than a thermosetting protective film-forming film.
  • protection film forming film means a film before curing
  • protective film means a film obtained by curing a protective film forming film.
  • Examples of the protective film-forming film include those containing an energy ray-curable component (a) described later, and those containing a colorant (g) are preferred.
  • the energy ray curable component (a) is preferably uncured, preferably tacky, and more preferably uncured and tacky.
  • “energy beam” means an electromagnetic wave or charged particle beam having energy quanta, and examples thereof include ultraviolet rays, radiation, and electron beams.
  • Ultraviolet rays can be irradiated by using, for example, a high-pressure mercury lamp, a fusion H lamp, a xenon lamp, a black light, an LED lamp or the like as an ultraviolet ray source.
  • the electron beam can be emitted by an electron beam accelerator or the like.
  • “energy ray curable” means the property of being cured by irradiation with energy rays
  • “non-energy ray curable” means the property of not being cured even when irradiated with energy rays. .
  • the tensile elastic modulus (Young's modulus) of the protective film obtained by irradiating the protective film-forming film of the present invention with energy rays is 1 ⁇ 10 8 Pa or more and 1.3 ⁇ 10 8 Pa or more. Is more preferable, 1.6 ⁇ 10 8 Pa or more is more preferable, and 1.9 ⁇ 10 8 Pa or more is particularly preferable.
  • the tensile elastic modulus of the protective film is equal to or higher than the lower limit value, the effect of suppressing the remaining of the push-up marks by the pins in the protective film is enhanced.
  • the upper limit value of the tensile elastic modulus of the protective film is not particularly limited.
  • the tensile elastic modulus of the protective film may be 6 ⁇ 10 9 Pa or less, 5.7 ⁇ 10 9 Pa or less, and 5.4 ⁇ 10 9 Pa or less. These upper limit values are examples of preferable ones.
  • the tensile elastic modulus of the protective film can be measured according to JIS K7161: 1994.
  • the tensile elastic modulus of the protective film can be adjusted as appropriate by adjusting, for example, the type and amount of components contained in the protective film-forming film.
  • the type and amount of the component contained in the protective film-forming film can be adjusted by the type and amount of the component contained in the protective film-forming composition described below.
  • the tensile elasticity modulus of a protective film can be adjusted more easily by adjusting the kind and content of an energy-beam curable component (a2) among the content components of the composition for protective film formation, for example.
  • the Shore D hardness of the protective film obtained by irradiating the protective film-forming film of the present invention with energy rays is preferably 55 or more, more preferably 58 or more, and particularly preferably 62 or more. preferable.
  • the Shore D hardness of the protective film is equal to or higher than the lower limit value, the protective film is difficult to be plastically deformed.
  • a semiconductor chip with a protective film is picked up by a push-up method using a pin, the surface is pushed up by a pin on the protective film. The effect of suppressing the remaining traces is further increased.
  • the upper limit value of the Shore D hardness of the protective film is not particularly limited.
  • the Shore D hardness of the protective film is preferably 90 or less, more preferably 80 or less from the viewpoint that the effect of suppressing the brittleness of the protective film is higher and the reliability of the protective film is further improved. More preferably, it is particularly preferably 70 or less.
  • the Shore D hardness is 58 or more and the tensile elastic modulus is 1 ⁇ 10 8. It is preferably Pa or higher, more preferably a Shore D hardness of 62 or higher and a tensile elastic modulus of 5 ⁇ 10 9 Pa or higher.
  • the protective film has a higher suppression effect on the brittleness of the protective film and further improves the reliability of the protective film, so that the Shore D hardness is 90 or less and the tensile elastic modulus is 9 ⁇ . It is preferably 10 10 Pa or less, more preferably a Shore D hardness of 80 or less, and a tensile modulus of 5 ⁇ 10 10 Pa or less.
  • the Shore D hardness of the protective film is such that a plurality of protective film-forming films are laminated in these thickness directions, and the protective film-forming film laminate having a total thickness of 6 mm is cured, This is a measurement value obtained by measuring the Shore D hardness of the protective film laminate at 23 ° C. as a protective film laminate.
  • the protective film-forming film may be only one layer (single layer), or may be two or more layers. In the case of a plurality of layers, these layers may be the same or different from each other. The combination is not particularly limited. In the present specification, not only in the case of a protective film-forming film, “a plurality of layers may be the same or different from each other” means “all layers may be the same, or all layers may be the same. The layers may be different, and only some of the layers may be the same, and “a plurality of layers are different from each other” means “at least one of the constituent materials and thicknesses of each layer is mutually different. Means different.
  • the thickness of the protective film-forming film is preferably 1 to 100 ⁇ m, more preferably 5 to 75 ⁇ m, and particularly preferably 5 to 50 ⁇ m.
  • the thickness of the protective film-forming film is equal to or more than the lower limit value, a protective film having higher protective ability can be formed.
  • the thickness of the protective film-forming film is equal to or less than the upper limit, an excessive thickness is suppressed.
  • the “thickness of the protective film-forming film” means the thickness of the entire protective film-forming film.
  • the thickness of the protective film-forming film composed of a plurality of layers means the protective film-forming film. Means the total thickness of all the layers that make up.
  • the curing conditions for forming the protective film by curing the protective film-forming film are not particularly limited as long as the protective film has a degree of curing that sufficiently exhibits its function, and the type of the protective film-forming film is not limited. Accordingly, it may be appropriately selected.
  • the illuminance of the energy rays when the protective film-forming film is cured is preferably 4 to 280 mW / cm 2 .
  • the amount of energy rays during the curing is preferably 3 to 1000 mJ / cm 2 .
  • FIG. 1 is a cross-sectional view schematically showing one embodiment of a protective film-forming film of the present invention.
  • the drawings used in the following description may show the main portions in an enlarged manner for convenience, and the dimensional ratios of the respective components are the same as the actual ones. Not necessarily.
  • the protective film-forming film 13 shown here includes a first release film 151 on one surface 13a, and a second release film 152 on the other surface 13b opposite to the surface 13a.
  • a protective film-forming film 13 is suitable for storage as, for example, a roll.
  • the protective film-forming film 13 can be formed using a protective film-forming composition described later.
  • the tensile elasticity modulus of the film 13 for protective film formation after hardening (namely, protective film) is 1 * 10 ⁇ 8 > Pa or more.
  • Both the first release film 151 and the second release film 152 may be known ones.
  • the first release film 151 and the second release film 152 may be the same as each other, for example, different from each other, for example, different peeling forces are required when peeling from the protective film-forming film 13. May be.
  • either one of the first release film 151 and the second release film 152 is removed, and the back surface of the semiconductor wafer (not shown) is attached to the resulting exposed surface. And the remaining other of the 1st peeling film 151 and the 2nd peeling film 152 is removed, and the produced exposed surface turns into a sticking surface of a support sheet.
  • the protective film-forming film can be formed using a protective film-forming composition containing the constituent materials.
  • the protective film-forming film can be formed at the target site by applying the protective film-forming composition to the surface on which the protective film-forming film is to be formed and drying it as necessary.
  • the content ratio of components that do not vaporize at room temperature is usually the same as the content ratio of the components of the film for forming a protective film.
  • “normal temperature” means a temperature that is not particularly cooled or heated, that is, a normal temperature, and examples thereof include a temperature of 15 to 25 ° C.
  • Coating of the composition for forming a protective film may be performed by a known method, for example, air knife coater, blade coater, bar coater, gravure coater, roll coater, roll knife coater, curtain coater, die coater, knife coater, Examples include a method using various coaters such as a screen coater, a Meyer bar coater, and a kiss coater.
  • the drying conditions of the protective film-forming composition are not particularly limited, but when the protective film-forming composition contains a solvent to be described later, it is preferable to dry by heating.
  • the composition for forming a protective film containing a solvent is preferably dried at 70 to 130 ° C. for 10 seconds to 5 minutes, for example.
  • composition for forming protective film (IV-1) examples include a protective film forming composition (IV-1) containing the energy ray curable component (a).
  • the energy ray-curable component (a) is a component that is cured by irradiation with energy rays, and is also a component for imparting film-forming property, flexibility, and the like to the protective film-forming film.
  • Examples of the energy ray-curable component (a) include a polymer (a1) having an energy ray-curable group and a weight average molecular weight of 80000 to 2000000, and an energy ray-curable group and a molecular weight of 100 to 80000.
  • a compound (a2) is mentioned.
  • the polymer (a1) may be at least partially crosslinked by a crosslinking agent (f) described later, or may not be crosslinked.
  • the weight average molecular weight means a polystyrene equivalent value measured by a gel permeation chromatography (GPC) method unless otherwise specified.
  • Polymer (a1) having an energy ray curable group and having a weight average molecular weight of 80,000 to 2,000,000 examples include an acrylic polymer (a11) having a functional group capable of reacting with a group of another compound, An acrylic resin (a1-1) obtained by polymerizing a group that reacts with a functional group and an energy ray curable compound (a12) having an energy ray curable group such as an energy ray curable double bond. .
  • Examples of the functional group capable of reacting with a group possessed by another compound include a hydroxyl group, a carboxy group, an amino group, and a substituted amino group (one or two hydrogen atoms of the amino group are substituted with a group other than a hydrogen atom). Group), an epoxy group, and the like.
  • the functional group is preferably a group other than a carboxy group from the viewpoint of preventing corrosion of a circuit such as a semiconductor wafer or a semiconductor chip.
  • the functional group is preferably a hydroxyl group.
  • the acrylic polymer (a11) having the functional group examples include those obtained by copolymerizing an acrylic monomer having the functional group and an acrylic monomer having no functional group. In addition to monomers, monomers other than acrylic monomers (non-acrylic monomers) may be copolymerized.
  • the acrylic polymer (a11) may be a random copolymer or a block copolymer.
  • acrylic monomer having a functional group examples include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer, a substituted amino group-containing monomer, and an epoxy group-containing monomer.
  • hydroxyl group-containing monomer examples include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, (meth) Hydroxyalkyl (meth) acrylates such as 2-hydroxybutyl acrylate, 3-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate; non- (meth) acrylic non-methacrylates such as vinyl alcohol and allyl alcohol Saturated alcohol (unsaturated alcohol which does not have a (meth) acryloyl skeleton) etc. are mentioned.
  • Examples of the carboxy group-containing monomer include ethylenically unsaturated monocarboxylic acids (monocarboxylic acids having an ethylenically unsaturated bond) such as (meth) acrylic acid and crotonic acid; fumaric acid, itaconic acid, maleic acid, citracone Ethylenically unsaturated dicarboxylic acids such as acids (dicarboxylic acids having an ethylenically unsaturated bond); anhydrides of the ethylenically unsaturated dicarboxylic acids; carboxyalkyl esters of (meth) acrylic acid such as 2-carboxyethyl methacrylate, etc. It is done.
  • monocarboxylic acids having an ethylenically unsaturated bond such as (meth) acrylic acid and crotonic acid
  • fumaric acid, itaconic acid maleic acid, citracone
  • Ethylenically unsaturated dicarboxylic acids such as acids (dica
  • the acrylic monomer having a functional group is preferably a hydroxyl group-containing monomer or a carboxy group-containing monomer, more preferably a hydroxyl group-containing monomer.
  • the acrylic monomer having the functional group that constitutes the acrylic polymer (a11) may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are arbitrary. You can choose.
  • acrylic monomer having no functional group examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and (meth) acrylate n.
  • acrylic monomer having no functional group examples include alkoxy such as methoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxymethyl (meth) acrylate, and ethoxyethyl (meth) acrylate.
  • the acrylic monomer which does not have the functional group constituting the acrylic polymer (a11) may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are arbitrary. Can be selected.
  • non-acrylic monomer examples include olefins such as ethylene and norbornene; vinyl acetate; styrene.
  • the said non-acrylic monomer which comprises the said acrylic polymer (a11) may be only 1 type, may be 2 or more types, and when it is 2 or more types, those combinations and ratios can be selected arbitrarily.
  • the ratio (content) of the amount of the structural unit derived from the acrylic monomer having the functional group to the total amount of the structural unit constituting the polymer is 0.1 to 50 mass. %, More preferably 1 to 40% by mass, and particularly preferably 3 to 30% by mass.
  • the acrylic resin (a1-1) obtained by copolymerization of the acrylic polymer (a11) and the energy ray-curable compound (a12) The content of the linear curable group can be easily adjusted within a preferable range of the degree of curing of the protective film.
  • the acrylic polymer (a11) constituting the acrylic resin (a1-1) may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are arbitrary. You can choose.
  • the content of the acrylic resin (a1-1) is preferably 1 to 40% by mass, more preferably 2 to 30% by mass. A content of ⁇ 20% by weight is particularly preferred.
  • the energy ray curable compound (a12) is one or two selected from the group consisting of an isocyanate group, an epoxy group and a carboxy group as a group capable of reacting with the functional group of the acrylic polymer (a11). Those having the above are preferred, and those having an isocyanate group as the group are more preferred. For example, when the energy beam curable compound (a12) has an isocyanate group as the group, the isocyanate group easily reacts with the hydroxyl group of the acrylic polymer (a11) having a hydroxyl group as the functional group.
  • the energy ray curable compound (a12) preferably has 1 to 5 energy ray curable groups in one molecule, and more preferably 1 to 3 energy ray curable groups.
  • Examples of the energy ray-curable compound (a12) include 2-methacryloyloxyethyl isocyanate, meta-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, 1,1- (bisacryloyloxymethyl).
  • Ethyl isocyanate An acryloyl monoisocyanate compound obtained by reacting a diisocyanate compound or polyisocyanate compound with hydroxyethyl (meth) acrylate; Examples thereof include an acryloyl monoisocyanate compound obtained by a reaction of a diisocyanate compound or polyisocyanate compound, a polyol compound, and hydroxyethyl (meth) acrylate.
  • the energy beam curable compound (a12) is preferably 2-methacryloyloxyethyl isocyanate.
  • the energy ray-curable compound (a12) constituting the acrylic resin (a1-1) may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are arbitrary. Can be selected.
  • the content of the energy beam curable group derived from the energy beam curable compound (a12) with respect to the content of the functional group derived from the acrylic polymer (a11). is preferably 20 to 120 mol%, more preferably 35 to 100 mol%, and particularly preferably 50 to 100 mol%. When the ratio of the content is within such a range, the adhesive force of the protective film formed by curing is further increased.
  • the upper limit of the content ratio is 100 mol%
  • the energy ray curable compound (a12) is a polyfunctional compound (having two or more of the groups in one molecule)
  • the upper limit of the content ratio may exceed 100 mol%.
  • the weight average molecular weight (Mw) of the polymer (a1) is preferably 100,000 to 2,000,000, and more preferably 300,000 to 1500,000.
  • the polymer (a1) is described as constituting the acrylic polymer (a11).
  • a monomer that does not correspond to any of the above-described monomers and has a group that reacts with the crosslinking agent (f) is polymerized to be crosslinked at a group that reacts with the crosslinking agent (f).
  • a group that is derived from the energy ray-curable compound (a12) and reacts with the functional group may be cross-linked.
  • the polymer (a1) contained in the protective film-forming composition (IV-1) and the protective film-forming film may be only one type, two or more types, and when there are two or more types, Combinations and ratios can be arbitrarily selected.
  • Compound (a2) having an energy ray curable group and a molecular weight of 100 to 80,000 Examples of the energy ray-curable group in the compound (a2) having an energy ray-curable group and having a molecular weight of 100 to 80,000 include a group containing an energy ray-curable double bond. ) An acryloyl group, a vinyl group, etc. are mentioned.
  • the compound (a2) is not particularly limited as long as it satisfies the above conditions, but has a low molecular weight compound having an energy ray curable group, an epoxy resin having an energy ray curable group, and an energy ray curable group.
  • a phenol resin etc. are mentioned.
  • examples of the low molecular weight compound having an energy ray curable group include polyfunctional monomers or oligomers, and an acrylate compound having a (meth) acryloyl group is preferable.
  • examples of the acrylate compound include 2-hydroxy-3- (meth) acryloyloxypropyl methacrylate, polyethylene glycol di (meth) acrylate, propoxylated ethoxylated bisphenol A di (meth) acrylate, and 2,2-bis [4 -((Meth) acryloxypolyethoxy) phenyl] propane, ethoxylated bisphenol A di (meth) acrylate, 2,2-bis [4-((meth) acryloxydiethoxy) phenyl] propane, 9,9-bis [4- (2- (meth) acryloyloxyethoxy) phenyl] fluorene, 2,2-bis [4-((meth) acryloxypolypropoxy) phenyl] propane,
  • the epoxy resin having an energy ray curable group and the phenol resin having an energy ray curable group are described in, for example, paragraph 0043 of “JP 2013-194102 A”. Things can be used.
  • Such a resin corresponds to a resin constituting the thermosetting component (h) described later, but is treated as the compound (a2) in the present invention.
  • the weight average molecular weight of the compound (a2) is preferably 100 to 30000, and more preferably 300 to 10000.
  • the protective film-forming composition (IV-1) and the compound (a2) contained in the protective film-forming film may be only one kind, two kinds or more, and combinations of two or more kinds.
  • the ratio can be arbitrarily selected.
  • Polymer (b) having no energy ray curable group When the protective film forming composition (IV-1) and the protective film forming film contain the compound (a2) as the energy ray curable component (a), the polymer further does not have an energy ray curable group. It is also preferable to contain (b).
  • the polymer (b) may be at least partially crosslinked by the crosslinking agent (f) or may not be crosslinked.
  • polymer (b) having no energy ray curable group examples include acrylic polymers, phenoxy resins, urethane resins, polyesters, rubber resins, acrylic urethane resins, polyvinyl alcohol (PVA), butyral resins, and polyester urethanes. Examples thereof include resins.
  • the polymer (b) is preferably an acrylic polymer (hereinafter sometimes abbreviated as “acrylic polymer (b-1)”).
  • the acrylic polymer (b-1) may be a known one, for example, a homopolymer of one acrylic monomer or a copolymer of two or more acrylic monomers. Alternatively, it may be a copolymer of one or two or more acrylic monomers and a monomer (non-acrylic monomer) other than one or two or more acrylic monomers.
  • acrylic monomer constituting the acrylic polymer (b-1) examples include (meth) acrylic acid alkyl ester, (meth) acrylic acid ester having a cyclic skeleton, glycidyl group-containing (meth) acrylic acid ester, Examples include hydroxyl group-containing (meth) acrylic acid esters and substituted amino group-containing (meth) acrylic acid esters.
  • substituted amino group is as described above.
  • Examples of the (meth) acrylic acid alkyl ester include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and n- (meth) acrylate.
  • Examples of the (meth) acrylic acid ester having a cyclic skeleton include (meth) acrylic acid cycloalkyl esters such as isobornyl (meth) acrylate and dicyclopentanyl (meth) acrylate; (Meth) acrylic acid aralkyl esters such as (meth) acrylic acid benzyl; (Meth) acrylic acid cycloalkenyl esters such as (meth) acrylic acid dicyclopentenyl ester; Examples include (meth) acrylic acid cycloalkenyloxyalkyl esters such as (meth) acrylic acid dicyclopentenyloxyethyl ester.
  • Examples of the glycidyl group-containing (meth) acrylic ester include glycidyl (meth) acrylate.
  • Examples of the hydroxyl group-containing (meth) acrylic acid ester include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 3-hydroxy (meth) acrylate. Examples include propyl, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and the like.
  • Examples of the substituted amino group-containing (meth) acrylic acid ester include N-methylaminoethyl (meth) acrylate.
  • non-acrylic monomer constituting the acrylic polymer (b-1) examples include olefins such as ethylene and norbornene; vinyl acetate; styrene.
  • the reactive functional group in the polymer (b) is a crosslinking agent (f ).
  • the reactive functional group may be appropriately selected according to the type of the crosslinking agent (f) and the like, and is not particularly limited.
  • the crosslinking agent (f) is a polyisocyanate compound
  • examples of the reactive functional group include a hydroxyl group, a carboxy group, and an amino group. Among these, a hydroxyl group having high reactivity with an isocyanate group. Is preferred.
  • the crosslinking agent (f) is an epoxy compound
  • examples of the reactive functional group include a carboxy group, an amino group, an amide group, etc. Among them, a carboxy group having high reactivity with an epoxy group. Groups are preferred.
  • the reactive functional group is preferably a group other than a carboxy group in terms of preventing corrosion of a circuit of a semiconductor wafer or a semiconductor chip.
  • Examples of the polymer (b) having the reactive functional group and not having the energy ray-curable group include those obtained by polymerizing at least the monomer having the reactive functional group.
  • Examples of the polymer (b) having a hydroxyl group as a reactive functional group include those obtained by polymerizing a hydroxyl group-containing (meth) acrylic acid ester. Examples thereof include those obtained by polymerizing a monomer in which one or two or more hydrogen atoms are substituted with the reactive functional group in a non-acrylic monomer or a non-acrylic monomer.
  • the ratio (content) of the amount of the structural unit derived from the monomer having the reactive functional group to the total amount of the structural unit constituting the polymer (b) is 1 to 25.
  • the mass is preferably 2, and more preferably 2 to 20 mass%. When the ratio is within such a range, the degree of cross-linking becomes a more preferable range in the polymer (b).
  • the weight average molecular weight (Mw) of the polymer (b) having no energy ray-curable group is 10,000 to 2,000,000 from the viewpoint that the film-forming property of the protective film-forming composition (IV-1) becomes better. It is preferably 100000 to 1500,000.
  • the polymer (b) having no energy ray-curable group contained in the protective film-forming composition (IV-1) and the protective film-forming film may be only one kind or two or more kinds. In the case of more than species, their combination and ratio can be arbitrarily selected.
  • Examples of the protective film-forming composition (IV-1) include those containing one or both of the polymer (a1) and the compound (a2).
  • the protective film-forming composition (IV-1) contains the compound (a2), it preferably contains a polymer (b) that does not have an energy ray-curable group. It is also preferable to contain (a1). Further, the protective film-forming composition (IV-1) does not contain the compound (a2) and contains both the polymer (a1) and the polymer (b) having no energy ray-curable group. It may be.
  • the protective film-forming composition (IV-1) contains the polymer (a1), the compound (a2) and the polymer (b) having no energy ray-curable group
  • the protective film-forming composition In (IV-1) the content of the compound (a2) is 10 to 10 parts per 100 parts by mass of the total content of the polymer (a1) and the polymer (b) having no energy ray-curable group.
  • the amount is preferably 400 parts by mass, and more preferably 30 to 350 parts by mass.
  • the total content of the energy beam curable component (a) and the polymer (b) having no energy beam curable group with respect to the total content of components other than the solvent is 5 to 90% by mass. It is preferably 10 to 80% by mass, more preferably 15 to 70% by mass, and for example, it may be any one of 15 to 60% by mass and 15 to 50% by mass. When the ratio of the total content is within such a range, the energy ray curability of the protective film-forming film becomes better.
  • the protective film forming composition (IV-1) contains the energy beam curable component (a) and the polymer (b) having no energy beam curable group
  • the protective film forming composition (IV-1) ) And the protective film-forming film the content of the polymer (b) is preferably 3 to 500 parts by mass with respect to 100 parts by mass of the energy ray-curable component (a). More preferably, it is 450 parts by mass.
  • the content of the polymer (b) is in such a range, the energy ray curability of the protective film-forming film becomes better.
  • the protective film-forming composition (IV-1) comprises a photopolymerization initiator (c) depending on the purpose.
  • the protective film-forming composition (IV-1) containing the energy ray-curable component (a) and the thermosetting component (h) the protective film-forming film formed is heated.
  • Adhesive strength to the adherend is improved, and the strength of the protective film formed from this protective film-forming film is also improved.
  • the protective film-forming composition (IV-1) containing the colorant (g) the protective film finally formed is configured so that the grinding traces on the back surface of the semiconductor chip cannot be visually recognized. The appearance of the semiconductor chip can be improved. Furthermore, such a protective film is excellent in the visibility of laser printing applied to the surface facing the support sheet.
  • Photopolymerization initiator (c) examples include benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, and benzoin dimethyl ketal; acetophenone, 2 Acetophenone compounds such as -hydroxy-2-methyl-1-phenyl-propan-1-one, 2,2-dimethoxy-1,2-diphenylethane-1-one; bis (2,4,6-trimethylbenzoyl) phenyl Acylphosphine oxide compounds such as phosphine oxide and 2,4,6-trimethylbenzoyldiphenylphosphine oxide; sulfides such as benzylphenyl sulfide and tetramethylthiuram monosulfide Compound; ⁇ -ketol compound such as 1-hydroxy
  • the photopolymerization initiator (c) contained in the protective film-forming composition (IV-1) may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are arbitrary. Can be selected.
  • the content of the photopolymerization initiator (c) is 100 parts by mass of the energy ray-curable compound (a).
  • the amount is preferably 0.01 to 20 parts by mass, more preferably 0.03 to 16 parts by mass, and particularly preferably 0.05 to 14 parts by mass.
  • the protective film-forming film contains the filler (d)
  • the protective film obtained by curing the protective film-forming film can easily adjust the thermal expansion coefficient.
  • the reliability of the package obtained using the composite sheet for protective film formation improves more by optimizing this thermal expansion coefficient with respect to the formation object of a protective film.
  • the moisture absorption rate of a protective film can be reduced or heat dissipation can be improved because the film for protective film formation contains a filler (d).
  • the filler (d) include those made of a heat conductive material.
  • the filler (d) may be either an organic filler or an inorganic filler, but is preferably an inorganic filler.
  • Preferred inorganic fillers include, for example, powders of silica, alumina, talc, calcium carbonate, titanium white, bengara, silicon carbide, boron nitride, and the like; beads formed by spheroidizing these inorganic fillers; surface modification of these inorganic fillers Products; single crystal fibers of these inorganic fillers; glass fibers and the like.
  • the inorganic filler is preferably silica or alumina.
  • the average particle size of the filler (d) is not particularly limited, but is preferably 0.01 to 20 ⁇ m, more preferably 0.1 to 15 ⁇ m, and particularly preferably 0.3 to 10 ⁇ m. .
  • average particle size means the value of the particle size (D 50 ) at an integrated value of 50% in the particle size distribution curve obtained by the laser diffraction scattering method, unless otherwise specified. .
  • the protective film-forming composition (IV-1) and the filler (d) contained in the protective film-forming film may be only one type, two or more types, and combinations of two or more types.
  • the ratio can be arbitrarily selected.
  • the ratio of the content of the filler (d) to the total content of all components other than the solvent (that is, for forming the protective film) is preferably 5 to 83% by mass, more preferably 7 to 78% by mass, such as 10 to 78% by mass, 20 to 78% by mass, It may be any of 30 to 78 mass%, 40 to 78 mass%, and 50 to 78 mass%.
  • the content of the filler (d) is in such a range, the adjustment of the thermal expansion coefficient becomes easier.
  • Coupleling agent (e) By using a coupling agent (e) having a functional group capable of reacting with an inorganic compound or an organic compound, the adhesion and adhesion of the protective film-forming film to the adherend can be improved. Further, by using the coupling agent (e), the protective film obtained by curing the protective film-forming film has improved water resistance without impairing the heat resistance.
  • the coupling agent (e) is preferably a compound having a functional group capable of reacting with the functional group of the energy beam curable component (a), the polymer (b) having no energy beam curable group, and the like. More preferably, it is a silane coupling agent.
  • silane coupling agent examples include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropylmethyldiethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxymethyldiethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3- (2-aminoethylamino) propyltrimethoxysilane, 3- (2-amino Ethylamino) propylmethyldiethoxysilane, 3- (phenylamino) propyltrimethoxysilane, 3-anilinopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropi Examples include trimethoxysilane, 3-
  • the protective film-forming composition (IV-1) and the coupling agent (e) contained in the protective film-forming film may be only one type, two or more types, and when there are two or more types, Combinations and ratios can be arbitrarily selected.
  • the content of the coupling agent (e) in the composition for forming a protective film (IV-1) and the film for forming a protective film includes the energy ray curable component (a) and the energy. It is preferably 0.03 to 20 parts by mass, more preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the total content of the polymer (b) having no linear curable group, The amount is particularly preferably 0.1 to 5 parts by mass.
  • the content of the coupling agent (e) is equal to or higher than the lower limit, the dispersibility of the filler (d) in the resin is improved and the adhesion of the protective film-forming film to the adherend is improved. The effect by using a coupling agent (e) etc. is acquired more notably. Moreover, generation
  • Crosslinking agent (f) By using the crosslinking agent (f) to crosslink the above-mentioned energy ray-curable component (a) or the polymer (b) having no energy ray-curable group, the initial adhesive force and aggregation of the protective film-forming film. You can adjust the power.
  • crosslinking agent (f) examples include organic polyvalent isocyanate compounds, organic polyvalent imine compounds, metal chelate crosslinking agents (crosslinking agents having a metal chelate structure), aziridine crosslinking agents (crosslinking agents having an aziridinyl group), and the like. Is mentioned.
  • organic polyvalent isocyanate compound examples include an aromatic polyvalent isocyanate compound, an aliphatic polyvalent isocyanate compound, and an alicyclic polyvalent isocyanate compound (hereinafter, these compounds are collectively referred to as “aromatic polyvalent isocyanate compound and the like”).
  • a trimer such as the aromatic polyisocyanate compound, isocyanurate and adduct; a terminal isocyanate urethane prepolymer obtained by reacting the aromatic polyvalent isocyanate compound and the polyol compound. Etc.
  • the “adduct body” includes the aromatic polyisocyanate compound, the aliphatic polyisocyanate compound or the alicyclic polyisocyanate compound, and a low amount such as ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane or castor oil. It means a reaction product with a molecularly active hydrogen-containing compound. Examples of the adduct include a xylylene diisocyanate adduct of trimethylolpropane as described later.
  • the “terminal isocyanate urethane prepolymer” means a prepolymer having a urethane bond and an isocyanate group at the end of the molecule.
  • organic polyvalent isocyanate compound for example, 2,4-tolylene diisocyanate; 2,6-tolylene diisocyanate; 1,3-xylylene diisocyanate; 1,4-xylene diisocyanate; diphenylmethane-4 Dimethylmethane-2,4'-diisocyanate; 3-methyldiphenylmethane diisocyanate; hexamethylene diisocyanate; isophorone diisocyanate; dicyclohexylmethane-4,4'-diisocyanate; dicyclohexylmethane-2,4'-diisocyanate; trimethylol Any one of tolylene diisocyanate, hexamethylene diisocyanate and xylylene diisocyanate is added to all or some hydroxyl groups of a polyol such as propane. Or two or more compounds are added; lysine diisocyanate.
  • a polyol such as propane.
  • organic polyvalent imine compound examples include N, N′-diphenylmethane-4,4′-bis (1-aziridinecarboxamide), trimethylolpropane-tri- ⁇ -aziridinylpropionate, and tetramethylolmethane.
  • -Tri- ⁇ -aziridinylpropionate, N, N′-toluene-2,4-bis (1-aziridinecarboxamide) triethylenemelamine and the like.
  • the crosslinking agent (f) When an organic polyvalent isocyanate compound is used as the crosslinking agent (f), it is preferable to use a hydroxyl group-containing polymer as the energy ray curable component (a) or the polymer (b) having no energy ray curable group.
  • the crosslinking agent (f) has an isocyanate group, and the energy ray-curable component (a) or the polymer (b) having no energy ray-curable group has a hydroxyl group, the crosslinking agent (f) and the energy ray-curable property.
  • a cross-linked structure can be easily introduced into the protective film-forming film by reaction with the component (a) or the polymer (b) having no energy ray-curable group.
  • the crosslinking agent (f) contained in the protective film-forming composition (IV-1) and the protective film-forming film may be only one type, two or more types, or a combination of two or more types.
  • the ratio can be arbitrarily selected.
  • the content of the crosslinking agent (f) in the protective film-forming composition (IV-1) is such that the energy ray-curable component (a) and the energy ray-curable group having no energy ray-curable group are contained.
  • the total content of the combined (b) is preferably 0.01 to 20 parts by weight, more preferably 0.1 to 10 parts by weight, and 0.5 to 5 parts by weight with respect to 100 parts by weight. It is particularly preferred.
  • the content of the cross-linking agent (f) is equal to or higher than the lower limit value, the effect of using the cross-linking agent (f) is more remarkably obtained.
  • the excessive use of a crosslinking agent (f) is suppressed because the said content of a crosslinking agent (f) is below the said upper limit.
  • Colorant (g) examples include known pigments such as inorganic pigments, organic pigments, and organic dyes.
  • organic pigments and organic dyes examples include aminium dyes, cyanine dyes, merocyanine dyes, croconium dyes, squalium dyes, azurenium dyes, polymethine dyes, naphthoquinone dyes, pyrylium dyes, and phthalocyanines.
  • the inorganic pigment examples include carbon black, cobalt dye, iron dye, chromium dye, titanium dye, vanadium dye, zirconium dye, molybdenum dye, ruthenium dye, platinum dye, ITO ( Indium tin oxide) dyes, ATO (antimony tin oxide) dyes, and the like.
  • the protective film-forming composition (IV-1) and the colorant (g) contained in the protective film-forming film may be only one kind, two kinds or more, and combinations of two or more kinds.
  • the ratio can be arbitrarily selected.
  • the content of the colorant (g) in the protective film-forming film may be appropriately adjusted according to the purpose.
  • the protective film may be printed by laser irradiation, and by adjusting the content of the colorant (g) in the protective film-forming film and adjusting the light transmittance of the protective film, the print visibility is improved. Can be adjusted.
  • the ratio of the content of the colorant (g) to the total content of all components other than the solvent (that is, the colorant (g )) Is preferably 0.1 to 10% by mass, more preferably 0.4 to 7.5% by mass, and particularly preferably 0.8 to 5% by mass.
  • the effect by using a colorant (g) is acquired more notably because the content of the colorant (g) is not less than the lower limit. Moreover, the excessive use of a coloring agent (g) is suppressed because the said content of a coloring agent (g) is below the said upper limit.
  • thermosetting component (h) The thermosetting component (h) contained in the protective film-forming composition (IV-1) and the protective film-forming film may be only one kind, two kinds or more, and if two or more kinds, These combinations and ratios can be arbitrarily selected.
  • thermosetting component (h) examples include epoxy thermosetting resins, thermosetting polyimides, polyurethanes, unsaturated polyesters, and silicone resins, and epoxy thermosetting resins are preferable.
  • the epoxy thermosetting resin includes an epoxy resin (h1) and a thermosetting agent (h2).
  • the epoxy thermosetting resin contained in the protective film-forming composition (IV-1) and the protective film-forming film may be only one type, two or more types, and when there are two or more types, Combinations and ratios can be arbitrarily selected.
  • Epoxy resin (h1) examples include known ones such as polyfunctional epoxy resins, biphenyl compounds, bisphenol A diglycidyl ether and hydrogenated products thereof, orthocresol novolac epoxy resins, dicyclopentadiene type epoxy resins, Biphenyl type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, phenylene skeleton type epoxy resins, and the like, and bifunctional or higher functional epoxy compounds are listed.
  • an epoxy resin having an unsaturated hydrocarbon group may be used as the epoxy resin (h1).
  • An epoxy resin having an unsaturated hydrocarbon group is more compatible with an acrylic resin than an epoxy resin having no unsaturated hydrocarbon group. Therefore, the reliability of the package obtained using the composite sheet for forming a protective film is improved by using an epoxy resin having an unsaturated hydrocarbon group.
  • Examples of the epoxy resin having an unsaturated hydrocarbon group include compounds obtained by converting a part of the epoxy group of a polyfunctional epoxy resin into a group having an unsaturated hydrocarbon group. Such a compound can be obtained, for example, by addition reaction of (meth) acrylic acid or a derivative thereof to an epoxy group. Moreover, as an epoxy resin which has an unsaturated hydrocarbon group, the compound etc. which the group which has an unsaturated hydrocarbon group directly couple
  • the unsaturated hydrocarbon group is a polymerizable unsaturated group, and specific examples thereof include ethenyl group (vinyl group), 2-propenyl group (allyl group), (meth) acryloyl group, (meth) An acrylamide group etc. are mentioned, An acryloyl group is preferable.
  • the number average molecular weight of the epoxy resin (h1) is not particularly limited, but is preferably 300 to 30000 from the viewpoint of curability of the protective film-forming film and strength and heat resistance of the protective film, and is preferably 400 to 10,000. More preferably, it is more preferably 500 to 3000.
  • the epoxy equivalent of the epoxy resin (h1) is preferably 100 to 1000 g / eq, and more preferably 150 to 800 g / eq.
  • epoxy resin (h1) one type may be used alone, or two or more types may be used in combination, and when two or more types are used in combination, their combination and ratio can be arbitrarily selected.
  • thermosetting agent (h2) functions as a curing agent for the epoxy resin (h1).
  • a thermosetting agent (h2) the compound which has 2 or more of functional groups which can react with an epoxy group in 1 molecule is mentioned, for example.
  • the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxy group, a group in which an acid group has been anhydrideized, and the like, and a phenolic hydroxyl group, an amino group, or an acid group has been anhydrideized. It is preferably a group, more preferably a phenolic hydroxyl group or an amino group.
  • thermosetting agents (h2) examples of the phenol-based curing agent having a phenolic hydroxyl group include polyfunctional phenol resins, biphenols, novolac-type phenol resins, dicyclopentadiene-based phenol resins, and aralkyl phenol resins.
  • examples of the amine-based curing agent having an amino group include dicyandiamide (hereinafter sometimes abbreviated as “DICY”).
  • the thermosetting agent (h2) may have an unsaturated hydrocarbon group.
  • the thermosetting agent (h2) having an unsaturated hydrocarbon group for example, a compound in which a part of the hydroxyl group of the phenol resin is substituted with a group having an unsaturated hydrocarbon group, an aromatic ring of the phenol resin, Examples thereof include compounds in which a group having a saturated hydrocarbon group is directly bonded.
  • the unsaturated hydrocarbon group in the thermosetting agent (h2) is the same as the unsaturated hydrocarbon group in the epoxy resin having an unsaturated hydrocarbon group described above.
  • thermosetting agent (h2) In the case where a phenolic curing agent is used as the thermosetting agent (h2), it is preferable that the thermosetting agent (h2) has a high softening point or glass transition temperature from the viewpoint of improving the peelability of the protective film from the support sheet. .
  • thermosetting agent (h2) for example, the number average molecular weight of the resin component such as polyfunctional phenolic resin, novolac-type phenolic resin, dicyclopentadiene-based phenolic resin, aralkylphenolic resin, etc. is preferably 300 to 30000, It is more preferably 400 to 10,000, and particularly preferably 500 to 3000.
  • the molecular weight of non-resin components such as biphenol and dicyandiamide is not particularly limited, but is preferably 60 to 500, for example.
  • thermosetting agent (h2) may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
  • the content of the thermosetting agent (h2) is 100% of the epoxy resin (h1).
  • the amount is preferably 0.01 to 20 parts by mass with respect to parts by mass.
  • thermosetting component (h) when used, the content of the thermosetting component (h) (for example, the epoxy resin (h1) and the heat in the protective film-forming composition (IV-1) and the protective film-forming film)
  • the total content of the curing agent (h2) is preferably 1 to 500 parts by mass with respect to 100 parts by mass of the polymer (b) having no energy ray curable group.
  • the general-purpose additive (z) may be a known one, and can be arbitrarily selected according to the purpose, and is not particularly limited. Preferred examples include a plasticizer, an antistatic agent, an antioxidant, and a gettering agent. Is mentioned.
  • the general-purpose additive (z) contained in the protective film-forming composition (IV-1) and the protective film-forming film may be only one kind, two or more kinds, and when there are two or more kinds, Combinations and ratios can be arbitrarily selected.
  • the content of the general-purpose additive (z) in the protective film-forming composition (IV-1) and the protective film-forming film is not particularly limited and is appropriately selected according to the purpose. do it.
  • the protective film-forming composition (IV-1) preferably further contains a solvent.
  • the protective film-forming composition (IV-1) containing a solvent has good handleability.
  • the solvent is not particularly limited, but preferred examples include hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, 2-propanol, isobutyl alcohol (2-methylpropan-1-ol), and 1-butanol. Esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; amides (compounds having an amide bond) such as dimethylformamide and N-methylpyrrolidone.
  • the solvent contained in the protective film-forming composition (IV-1) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the solvent contained in the protective film-forming composition (IV-1) is methyl ethyl ketone, toluene, ethyl acetate, or the like from the viewpoint that the components contained in the protective film-forming composition (IV-1) can be mixed more uniformly. It is preferable.
  • the composition for forming a protective film such as the composition for forming a protective film (IV-1) can be obtained by blending each component for constituting the composition.
  • the order of addition at the time of blending each component is not particularly limited, and two or more components may be added simultaneously.
  • a solvent it may be used by mixing the solvent with any compounding component other than the solvent and diluting the compounding component in advance, or by diluting any compounding component other than the solvent in advance. You may use it by mixing a solvent with these compounding ingredients, without leaving.
  • the method of mixing each component at the time of compounding is not particularly limited, from a known method such as a method of mixing by rotating a stirrer or a stirring blade; a method of mixing using a mixer; a method of mixing by applying ultrasonic waves What is necessary is just to select suitably.
  • the temperature and time during the addition and mixing of each component are not particularly limited as long as each compounding component does not deteriorate, and may be adjusted as appropriate, but the temperature is preferably 15 to 30 ° C.
  • the protective sheet-forming composite sheet of the present invention Similar to the protective sheet-forming composite sheet of the present invention to be described later, it is affixed to the back surface of the semiconductor wafer or semiconductor chip opposite to the circuit surface, and is a composite having an adhesive layer on the support sheet. As the sheet, there is a dicing die bonding sheet. However, the adhesive layer provided in the dicing die bonding sheet functions as an adhesive when the semiconductor chip is picked up from the support sheet together with the semiconductor chip and then attached to the substrate, the lead frame, or another semiconductor chip.
  • the protective film-forming film in the protective film-forming composite sheet of the present invention is the same as the adhesive layer in that it is picked up from the support sheet together with the semiconductor chip, but eventually becomes a protective film by curing, It has a function of protecting the back surface of the semiconductor chip that is affixed.
  • the protective film-forming film in the present invention has a different use from the adhesive layer in the dicing die bonding sheet, and naturally the required performance is also different. And reflecting the difference of this use, the film for protective film formation has the tendency of being harder compared with the adhesive bond layer in a dicing die bonding sheet normally. It is usually difficult to divert the adhesive layer in the dicing die bonding sheet as it is as the protective film-forming film in the protective film-forming composite sheet.
  • the protective film-forming film of the present invention is obtained by coating a protective film-forming composition on a release film (preferably its release-treated surface) and drying it as necessary. Can be manufactured.
  • the film for protective film formation is normally stored in the state by which the peeling film was bonded together on both surfaces, for example.
  • a release film (preferably its release-treated surface) is further formed on the exposed surface of the protective film-forming film formed on the release film as described above (the surface opposite to the side provided with the release film). Can be pasted together.
  • the protective film-forming film of the present invention can constitute a protective film-forming composite sheet by providing it on a support sheet as described above.
  • the protective film-forming composite sheet is used by being attached to the back surface (surface opposite to the electrode forming surface) of the semiconductor wafer by the protective film-forming film. Thereafter, dicing, picking up a semiconductor chip with a protective film, and the like may be performed by the same method as in the case of a composite sheet for forming a protective film, which will be described later, to manufacture a target semiconductor device.
  • the protective film-forming film of the present invention may be provided first on the back surface of the semiconductor wafer instead of the support sheet. That is, the protective film-forming film is attached to the back surface of the semiconductor wafer. Next, the protective film-forming film is irradiated with energy rays, and the protective film-forming film is cured to form a protective film. Next, a protective film is formed in a state in which the protective film-forming film becomes a protective film by attaching a support sheet to the exposed surface of this protective film (the surface opposite to the side attached to the semiconductor wafer) Composite sheet. Thereafter, in the same manner as described above, dicing, picking up a semiconductor chip with a protective film, and the like may be performed to manufacture a target semiconductor device.
  • the protective film-forming film is cured to form a protective film and then this protective film is bonded to the support sheet has been described, but when the protective film-forming film of the present invention is used, these steps are performed.
  • the order of performing may be reversed. That is, after affixing the protective film-forming film to the back surface of the semiconductor wafer, the support sheet is adhered to the exposed surface of the protective film-forming film (the side opposite to the side that is affixed to the semiconductor wafer).
  • the protective film-forming film is an uncured protective film-forming composite sheet.
  • the protective film-forming film is irradiated with energy rays, and the protective film-forming film is cured to form a protective film. Thereafter, in the same manner as described above, dicing, picking up a semiconductor chip with a protective film, and the like may be performed to manufacture a target semiconductor device.
  • the composite sheet for forming a protective film according to the present invention includes a support sheet, and the protective film-forming film is provided on the support sheet, and the protective film-forming film is irradiated with energy rays.
  • the adhesive force between the protective film and the support sheet is 50 to 1500 mN / 25 mm.
  • the composite sheet for forming a protective film of the present invention is provided with a function as a dicing sheet in advance.
  • the protective film-forming composite sheet has a protective film-forming film having a tensile elastic modulus within the above range and an adhesive force between the protective film and the support sheet within the above range. Even if it contains a colorant, the effect of suppressing the remaining of the push-up marks by the pins on the surface of the protective film facing the support sheet is enhanced.
  • the adhesive force between the protective film and the support sheet is 50 to 1500 mN / 25 mm, preferably 50 to 1450 mN / 25 mm, and preferably 50 to 1400 mN / 25 mm. More preferably, for example, any of 50 to 1350 mN / 25 mm, 50 to 1300 mN / 25 mm, and 50 to 1250 mN / 25 mm may be used. Since the adhesive force between the protective film and the support sheet is equal to or higher than the lower limit, the protective film is stabilized in the form of a support sheet between the formation of the protective film and the pickup of the semiconductor chip with the protective film. Can be held.
  • the adhesive force between the protective film and the support sheet is not more than the above upper limit value, when picking up a semiconductor chip with a protective film by a push-up method using a pin, the protective film can be easily picked up even with a light push-up. In this case, the effect of suppressing the presence of a push-up mark by the pin is increased.
  • the adhesive force between the protective film and the support sheet can be measured by the following method. That is, a protective film-forming composite sheet having a width of 25 mm and an arbitrary length is attached to an adherend by the protective film-forming film. Next, after irradiating energy rays to cure the protective film-forming film to form a protective film, the support sheet is peeled off at a peeling speed of 300 mm / min from this protective film applied to the adherend. At this time, the support sheet is peeled in the length direction (the length direction of the composite sheet for forming the protective film) so that the surfaces of the protective film and the support sheet that are in contact with each other form an angle of 180 °. The so-called 180 ° peeling is performed. And the load (peeling force) at the time of this 180 degree
  • the length of the composite sheet for forming a protective film used for the measurement is not particularly limited as long as the adhesive force can be stably detected, but is preferably 100 to 300 mm. In the measurement, it is preferable that the protective sheet-forming composite sheet is stuck on the adherend and the sticking state of the protective film-forming composite sheet is stabilized.
  • the adhesive force between the protective film-forming film and the support sheet is not particularly limited, and may be, for example, 80 mN / 25 mm or more, but is preferably 100 mN / 25 mm or more, and 150 mN. / 25 mm or more is more preferable, and 200 mN / 25 mm or more is particularly preferable.
  • the adhesive force is 100 mN / 25 mm or more, peeling between the protective film-forming film and the support sheet is suppressed during dicing. For example, from a support sheet for a semiconductor chip having a protective film-forming film on the back surface Is prevented from scattering.
  • the upper limit value of the adhesive force between the protective film-forming film and the support sheet is not particularly limited.
  • the adhesive strength may be 4000 mN / 25 mm or less, 3500 mN / 25 mm or less, 3000 mN / 25 mm or less, or the like.
  • these upper limit values are examples of preferable ones.
  • the adhesive force between the protective film-forming film and the support sheet is between the protective film and the support sheet, except that the protective film-forming film used for measurement is not cured by irradiation with energy rays. It can be measured by the same method as adhesive strength.
  • the above-mentioned adhesive force between the protective film and the support sheet and the adhesive force between the protective film-forming film and the support sheet are, for example, the types and amounts of the components contained in the protective film-forming film, It can adjust suitably by adjusting the constituent material of the layer which provides the film for protective film formation, the surface state of this layer, etc.
  • the type and amount of the component contained in the protective film-forming film can be adjusted by the type and amount of the component contained in the protective film-forming composition.
  • the components of the composition for forming a protective film for example, the type and content of the polymer (b) having no energy ray curable group, the content of the filler (d), or the crosslinking agent (f)
  • the content of the adhesive force between the protective film or the protective film-forming film and the support sheet can be adjusted more easily.
  • the constituent material of the adhesive layer adjusts the type and amount of components contained in the adhesive layer. And can be adjusted as appropriate. And the kind and quantity of the content component of an adhesive layer can be adjusted with the kind and amount of the content component of the adhesive composition mentioned later.
  • the layer for providing the protective film-forming film in the support sheet is a base material to be described later, the adhesive force between the protective film or the protective film-forming film and the support sheet is other than the constituent material of the base material In addition, the surface condition of the substrate can be adjusted.
  • the surface state of the substrate is, for example, a surface treatment described later as improving the adhesion to other layers of the substrate, that is, a roughening treatment by sandblasting, solvent treatment, etc .; corona discharge treatment, electron beam It can be adjusted by performing any one of irradiation treatment, plasma treatment, ozone / ultraviolet radiation treatment, flame treatment, chromic acid treatment, hot air treatment, and other oxidation treatments; primer treatment.
  • the thickness of the semiconductor wafer or semiconductor chip that is the target of use of the composite sheet for forming a protective film of the present invention is not particularly limited, but is preferably 30 to 1000 ⁇ m because the effects of the present invention can be obtained more remarkably. 100 to 300 ⁇ m is more preferable.
  • the structure of the composite sheet for protective film formation is demonstrated in detail.
  • the support sheet may be composed of one layer (single layer) or may be composed of two or more layers.
  • these multiple layers may be the same or different from each other, and the combination of these multiple layers is not particularly limited as long as the effects of the present invention are not impaired.
  • Preferred support sheets include, for example, those in which the pressure-sensitive adhesive layer is directly contacted and laminated on the substrate, those in which the pressure-sensitive adhesive layer is laminated on the substrate via an intermediate layer, and only the substrate. And the like. Examples of the composite sheet for forming a protective film of the present invention will be described below with reference to the drawings for each kind of the support sheet.
  • FIG. 2 is a cross-sectional view schematically showing one embodiment of the composite sheet for forming a protective film of the present invention.
  • the same components as those shown in the already explained figures are given the same reference numerals as those in the already explained figures, and their detailed explanations are omitted.
  • the protective film-forming composite sheet 1 ⁇ / b> A shown here includes a pressure-sensitive adhesive layer 12 on a substrate 11, and a protective film-forming film 13 on the pressure-sensitive adhesive layer 12.
  • the support sheet 10 is a laminate of the base material 11 and the pressure-sensitive adhesive layer 12.
  • the protective film-forming composite sheet 1 ⁇ / b> A has a protective film-forming film 13 laminated on one surface 10 a of the support sheet 10. Have a configuration.
  • the protective film-forming composite sheet 1 ⁇ / b> A further includes a release film 15 on the protective film-forming film 13.
  • the pressure-sensitive adhesive layer 12 is laminated on one surface 11a of the base material 11, and the protective film-forming film 13 is laminated on the entire surface of the one surface 12a of the pressure-sensitive adhesive layer 12.
  • a jig adhesive layer 16 is laminated on a part of one surface 13 a of the film forming film 13, that is, in a region near the peripheral edge, and the jig adhesive among the surfaces 13 a of the protective film forming film 13.
  • the release film 15 is laminated on the region where the layer 16 is not laminated and on the surface 16 a (upper surface and side surface) of the jig adhesive layer 16.
  • the adhesive force between the cured protective film-forming film 13 (that is, the protective film) and the support sheet 10 is 50 to 1500 mN / 25 mm.
  • the adhesive layer 16 for jigs may have, for example, a single-layer structure containing an adhesive component, or a plurality of layers in which layers containing an adhesive component are laminated on both surfaces of a core sheet. It may be of a structure.
  • the composite sheet 1A for forming a protective film shown in FIG. 2 has a back surface of a semiconductor wafer (not shown) attached to the front surface 13a of the protective film forming film 13 with the release film 15 removed.
  • the upper surface of the surface 16a of the adhesive layer 16 is used by being attached to a jig such as a ring frame.
  • FIG. 3 is a cross-sectional view schematically showing another embodiment of the composite sheet for forming a protective film of the present invention.
  • the composite sheet 1B for forming a protective film shown here is the same as the composite sheet 1A for forming a protective film shown in FIG. 2 except that the adhesive sheet 16 for jig is not provided. That is, in the protective sheet-forming composite sheet 1B, the pressure-sensitive adhesive layer 12 is laminated on one surface 11a of the base material 11, and the protective film-forming film 13 is laminated on the entire surface 12a of the pressure-sensitive adhesive layer 12. A release film 15 is laminated on the entire surface 13 a of the film forming film 13.
  • the protective sheet-forming composite sheet 1B shown in FIG. 3 has a semiconductor wafer (not shown) in a partial region on the center side of the surface 13a of the protective film-forming film 13 with the release film 15 removed.
  • the back surface is affixed, and the region near the peripheral edge is affixed to a jig such as a ring frame and used.
  • FIG. 4 is a sectional view schematically showing still another embodiment of the composite sheet for forming a protective film of the present invention.
  • the protective sheet-forming composite sheet 1 ⁇ / b> C shown here is the same as the protective film-forming composite sheet 1 ⁇ / b> A shown in FIG. 2, except that the adhesive layer 12 is not provided. That is, in the protective film-forming composite sheet 1 ⁇ / b> C, the support sheet 10 is made of only the base material 11. Then, the protective film forming film 13 is laminated on one surface 11a of the substrate 11 (one surface 10a of the support sheet 10), and a part of the surface 13a of the protective film forming film 13, that is, in the vicinity of the peripheral portion.
  • the jig adhesive layer 16 is laminated in the region, and among the surface 13 a of the protective film forming film 13, the region where the jig adhesive layer 16 is not laminated and the surface 16 a of the jig adhesive layer 16.
  • a release film 15 is laminated on the upper surface and the side surface.
  • the adhesive force between the protective film-forming film 13 after curing (ie, the protective film) and the support sheet 10 is: 50-1500 mN / 25 mm.
  • the protective film forming composite sheet 1C is formed on the surface 13a of the protective film forming film 13 with the release film 15 removed.
  • the back surface of (not shown) is attached, and the upper surface of the surface 16a of the jig adhesive layer 16 is attached to a jig such as a ring frame.
  • FIG. 5 is a cross-sectional view schematically showing still another embodiment of the composite sheet for forming a protective film of the present invention.
  • the protective sheet-forming composite sheet 1D shown here is the same as the protective film-forming composite sheet 1C shown in FIG. 4 except that it does not include the jig adhesive layer 16. That is, in the protective sheet-forming composite sheet 1D, the protective film-forming film 13 is laminated on one surface 11a of the substrate 11, and the release film 15 is laminated on the entire surface 13a of the protective film-forming film 13. Yes.
  • the protective film-forming composite sheet 1D shown in FIG. 5 is the same as the protective film-forming composite sheet 1B shown in FIG. 3, with the release film 15 being removed, of the surface 13a of the protective film-forming film 13,
  • the back surface of a semiconductor wafer (not shown) is affixed to a partial area on the center side, and the area near the peripheral edge is affixed to a jig such as a ring frame for use.
  • FIG. 6 is a cross-sectional view schematically showing still another embodiment of the protective sheet-forming composite sheet of the present invention.
  • the protective film-forming composite sheet 1E shown here is the same as the protective film-forming composite sheet 1B shown in FIG. 3 except that the shape of the protective film-forming film is different. That is, the protective film-forming composite sheet 1 ⁇ / b> E includes the pressure-sensitive adhesive layer 12 on the base material 11 and the protective film-forming film 23 on the pressure-sensitive adhesive layer 12.
  • the support sheet 10 is a laminate of the base material 11 and the pressure-sensitive adhesive layer 12, and in other words, the protective film-forming composite sheet 1E is formed by laminating the protective film-forming film 23 on one surface 10a of the support sheet 10. Have a configuration.
  • the protective film-forming composite sheet 1 ⁇ / b> E further includes a release film 15 on the protective film-forming film 23.
  • the pressure-sensitive adhesive layer 12 is laminated on one surface 11a of the substrate 11, and a part of the surface 12a of the pressure-sensitive adhesive layer 12, that is, a protective film-forming film is formed in the central region. 23 are stacked. And the peeling film 15 is laminated
  • the protective film-forming film 23 When the protective film-forming composite sheet 1E is viewed from above and viewed in plan, the protective film-forming film 23 has a smaller surface area than the pressure-sensitive adhesive layer 12, and has a circular shape or the like, for example.
  • the adhesive force between the cured protective film-forming film 23 (that is, the protective film) and the support sheet 10 is 50 to 1500 mN / 25 mm.
  • the back surface of the semiconductor wafer (not shown) is pasted on the front surface 23a of the protective film-forming film 23 with the release film 15 removed.
  • stacked among the surface 12a of 12 is stuck and used for jig
  • the surface 12a of the pressure-sensitive adhesive layer 12 is formed in the region where the protective film-forming film 23 is not laminated in the same manner as that shown in FIGS.
  • An adhesive layer for jigs may be laminated (not shown).
  • the protective film-forming composite sheet 1E provided with such a jig adhesive layer has a jig frame whose surface has a ring frame or the like, similar to the protective film-forming composite sheet shown in FIGS. Affixed to the jig and used.
  • the protective sheet-forming composite sheet of the present invention may have any form of the support sheet and the protective film-forming film, or may be provided with an adhesive layer for jigs. However, usually, as shown in FIGS. 2 and 4, the protective film-forming composite sheet of the present invention having a jig adhesive layer is provided with a jig adhesive layer on the protective film-forming film. Are preferred.
  • the composite sheet for forming a protective film of the present invention is not limited to the one shown in FIGS. 2 to 6, and a part of the structure shown in FIGS. 2 to 6 is changed or deleted within a range not impairing the effect of the present invention.
  • another configuration may be added to what has been described so far.
  • an intermediate layer may be provided between the base material 11 and the protective film-forming film 13. Any intermediate layer can be selected according to the purpose.
  • an intermediate layer may be provided between the base material 11 and the pressure-sensitive adhesive layer 12. That is, in the composite sheet for forming a protective film of the present invention, the support sheet may be formed by laminating a base material, an intermediate layer, and an adhesive layer in this order.
  • the intermediate layer is the same as the intermediate layer that may be provided in the protective film-forming composite sheet shown in FIGS. In the composite sheet for forming a protective film shown in FIGS.
  • a layer other than the intermediate layer may be provided at an arbitrary position.
  • a gap may be partially formed between the release film and the layer that is in direct contact with the release film.
  • the size and shape of each layer can be arbitrarily adjusted according to the purpose.
  • a layer such as an adhesive layer that is in direct contact with the protective film-forming film of the support sheet is preferably non-energy ray curable.
  • the support sheet may be transparent, opaque, or colored depending on the purpose. Among them, in the present invention in which the protective film-forming film has energy ray curability, the support sheet is preferably capable of transmitting energy rays.
  • the transmittance of light having a wavelength of 375 nm is preferably 30% or more, more preferably 50% or more, and particularly preferably 70% or more.
  • the degree of curing of the protective film-forming film is further improved.
  • the upper limit value of the transmittance of light having a wavelength of 375 nm is not particularly limited.
  • the light transmittance may be 95% or less.
  • the transmittance of light having a wavelength of 532 nm is preferably 30% or more, more preferably 50% or more, and particularly preferably 70% or more.
  • the light transmittance is within such a range, when the protective film-forming film or the protective film is irradiated with laser light through the support sheet and printed on these, printing can be performed more clearly.
  • the upper limit value of the transmittance of light having a wavelength of 532 nm is not particularly limited.
  • the light transmittance may be 95% or less.
  • the transmittance of light having a wavelength of 1064 nm is preferably 30% or more, more preferably 50% or more, and particularly preferably 70% or more.
  • the upper limit value of the transmittance of light having a wavelength of 1064 nm is not particularly limited.
  • the light transmittance may be 95% or less.
  • the base material is in the form of a sheet or film, and examples of the constituent material include various resins.
  • the resin include polyethylenes such as low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and high density polyethylene (HDPE); other than polyethylene such as polypropylene, polybutene, polybutadiene, polymethylpentene, and norbornene resin.
  • Polyolefins such as ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer, ethylene-norbornene copolymer (ethylene as a monomer)
  • a copolymer obtained by using a vinyl chloride resin such as polyvinyl chloride and vinyl chloride copolymer (a resin obtained by using vinyl chloride as a monomer); polystyrene; polycycloolefin; polyethylene terephthalate, polyethylene Naphtha Polyesters such as polyesters, polybutylene terephthalates, polyethylene isophthalates, polyethylene-2,6-naphthalene dicarboxylates, wholly aromatic polyesters in which all the structural units have an aromatic cyclic group; Poly (meth) acrylic acid ester; Polyurethane; Polyurethane acrylate; Polyimide; Polyamide; Polycarbonate; Fluororesin
  • the polymer alloy of the polyester and the other resin is preferably one in which the amount of the resin other than the polyester is relatively small.
  • the resin include a crosslinked resin in which one or more of the resins exemplified so far are crosslinked; modification of an ionomer or the like using one or more of the resins exemplified so far. Resins can also be mentioned.
  • (meth) acrylic acid is a concept including both “acrylic acid” and “methacrylic acid”. The same applies to terms similar to (meth) acrylic acid.
  • the resin constituting the substrate may be only one kind, or two or more kinds, and in the case of two or more kinds, the combination and ratio thereof can be arbitrarily selected.
  • the substrate may be composed of one layer (single layer) or may be composed of two or more layers. When the substrate is composed of a plurality of layers, these layers may be the same or different from each other.
  • the combination of layers is not particularly limited.
  • the thickness of the substrate is preferably 50 to 300 ⁇ m, more preferably 60 to 100 ⁇ m.
  • the thickness of the substrate means the thickness of the entire substrate.
  • the thickness of the substrate composed of a plurality of layers means the total thickness of all the layers constituting the substrate. means.
  • the base material is preferably one having high thickness accuracy, that is, one in which variation in thickness is suppressed regardless of the part.
  • materials that can be used to construct such a substrate with high thickness accuracy include polyethylene, polyolefins other than polyethylene, polyethylene terephthalate, ethylene-vinyl acetate copolymer, and the like. Is mentioned.
  • the base material contains various known additives such as a filler, a colorant, an antistatic agent, an antioxidant, an organic lubricant, a catalyst, and a softener (plasticizer) in addition to the main constituent material such as the resin. May be.
  • the substrate may be transparent or opaque, may be colored according to the purpose, or other layers may be deposited.
  • the film for protective film formation has energy-beam sclerosis
  • the substrate is subjected to a roughening treatment such as sandblast treatment, solvent treatment, corona discharge treatment, electron beam irradiation treatment, plasma treatment.
  • the surface may be subjected to oxidation treatment such as ozone / ultraviolet irradiation treatment, flame treatment, chromic acid treatment, and hot air treatment.
  • the base material may have a surface subjected to primer treatment.
  • the base material prevents the base material from adhering to other sheets or the base material from adhering to the adsorption table when the antistatic coating layer and the protective film-forming composite sheet are stored in an overlapping manner. It may have a layer or the like.
  • the substrate preferably has a surface subjected to electron beam irradiation treatment from the viewpoint that generation of fragments of the substrate due to blade friction during dicing is suppressed.
  • the base material can be manufactured by a known method.
  • a base material containing a resin can be produced by molding a resin composition containing the resin.
  • the said adhesive layer is a sheet form or a film form, and contains an adhesive.
  • the adhesive include adhesive resins such as acrylic resins, urethane resins, rubber resins, silicone resins, epoxy resins, polyvinyl ethers, polycarbonates, ester resins, and acrylic resins are preferable. .
  • the “adhesive resin” is a concept including both an adhesive resin and an adhesive resin.
  • the resin itself has an adhesive property
  • resins that exhibit tackiness when used in combination with other components such as additives, and resins that exhibit adhesiveness due to the presence of a trigger such as heat or water.
  • the pressure-sensitive adhesive layer may be composed of one layer (single layer), may be composed of two or more layers, and when composed of a plurality of layers, these layers may be the same or different from each other.
  • the combination of the multiple layers is not particularly limited.
  • the thickness of the pressure-sensitive adhesive layer is preferably 1 to 100 ⁇ m, more preferably 1 to 60 ⁇ m, and particularly preferably 1 to 30 ⁇ m.
  • the “thickness of the pressure-sensitive adhesive layer” means the thickness of the whole pressure-sensitive adhesive layer.
  • the thickness of the pressure-sensitive adhesive layer composed of a plurality of layers is the total of all layers constituting the pressure-sensitive adhesive layer. Means the thickness.
  • the optical properties of the pressure-sensitive adhesive layer only need to satisfy the optical properties of the support sheet described above. That is, the pressure-sensitive adhesive layer may be transparent, opaque, or colored depending on the purpose. In the present invention in which the protective film-forming film has energy ray curability, the pressure-sensitive adhesive layer is preferably capable of transmitting energy rays.
  • the pressure-sensitive adhesive layer may be formed using an energy ray-curable pressure-sensitive adhesive, or may be formed using a non-energy ray-curable pressure-sensitive adhesive.
  • the pressure-sensitive adhesive layer formed using the energy ray-curable pressure-sensitive adhesive can easily adjust the physical properties before and after curing.
  • the pressure-sensitive adhesive layer can be formed using a pressure-sensitive adhesive composition containing a pressure-sensitive adhesive.
  • an adhesive layer can be formed in the target site
  • a more specific method for forming the pressure-sensitive adhesive layer will be described later in detail, along with methods for forming other layers.
  • the ratio of the content of components that do not vaporize at room temperature in the pressure-sensitive adhesive composition is usually the same as the ratio of the content of the components of the pressure-sensitive adhesive layer.
  • “normal temperature” is as described above.
  • the adhesive composition may be applied by a known method, for example, an air knife coater, blade coater, bar coater, gravure coater, roll coater, roll knife coater, curtain coater, die coater, knife coater, screen coater. And a method using various coaters such as a Meyer bar coater and a kiss coater.
  • drying conditions of an adhesive composition are not specifically limited, When the adhesive composition contains the solvent mentioned later, it is preferable to heat-dry.
  • the pressure-sensitive adhesive composition containing the solvent is preferably dried, for example, at 70 to 130 ° C. for 10 seconds to 5 minutes.
  • the pressure-sensitive adhesive composition containing the energy ray-curable pressure-sensitive adhesive that is, the energy ray-curable pressure-sensitive adhesive composition, for example, non-energy ray-curable pressure-sensitive adhesive
  • Energy-ray-curable adhesive resin (I-2a) in which an unsaturated group is introduced into the side chain of the linear-curable adhesive resin (I-1a) hereinafter referred to as “adhesive resin (I-2a)”
  • the pressure-sensitive adhesive composition (I-1) contains a non-energy ray-curable pressure-sensitive adhesive resin (I-1a) and an energy ray-curable compound.
  • the adhesive resin (I-1a) is preferably an acrylic resin.
  • the acrylic resin the acrylic polymer which has a structural unit derived from the (meth) acrylic-acid alkylester at least is mentioned, for example.
  • the acrylic resin may have only one type of structural unit, two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • Examples of the (meth) acrylic acid alkyl ester include those in which the alkyl group constituting the alkyl ester has 1 to 20 carbon atoms, and the alkyl group is linear or branched. Is preferred. More specifically, as (meth) acrylic acid alkyl ester, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, (meth) acrylic acid n-butyl, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, (Meth) acrylic acid 2-ethylhexyl, (meth) acrylic acid isooctyl, (meth) acrylic acid n-
  • the acrylic polymer preferably has a structural unit derived from a (meth) acrylic acid alkyl ester in which the alkyl group has 4 or more carbon atoms.
  • the alkyl group preferably has 4 to 12 carbon atoms, more preferably 4 to 8 carbon atoms.
  • the (meth) acrylic acid alkyl ester having 4 or more carbon atoms in the alkyl group is preferably an acrylic acid alkyl ester.
  • the acrylic polymer preferably has a structural unit derived from a functional group-containing monomer in addition to the structural unit derived from an alkyl (meth) acrylate.
  • the functional group-containing monomer for example, the functional group reacts with a cross-linking agent described later to become a starting point of cross-linking, or the functional group reacts with an unsaturated group in the unsaturated group-containing compound described later. And those that allow introduction of an unsaturated group into the side chain of the acrylic polymer.
  • Examples of the functional group in the functional group-containing monomer include a hydroxyl group, a carboxy group, an amino group, and an epoxy group. That is, examples of the functional group-containing monomer include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer, and an epoxy group-containing monomer.
  • hydroxyl group-containing monomer examples include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, (meth) Hydroxyalkyl (meth) acrylates such as 2-hydroxybutyl acrylate, 3-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate; non- (meth) acrylic non-methacrylates such as vinyl alcohol and allyl alcohol Saturated alcohol (unsaturated alcohol which does not have a (meth) acryloyl skeleton) etc. are mentioned.
  • Examples of the carboxy group-containing monomer include ethylenically unsaturated monocarboxylic acids (monocarboxylic acids having an ethylenically unsaturated bond) such as (meth) acrylic acid and crotonic acid; fumaric acid, itaconic acid, maleic acid, citracone Ethylenically unsaturated dicarboxylic acids such as acids (dicarboxylic acids having an ethylenically unsaturated bond); anhydrides of the ethylenically unsaturated dicarboxylic acids; carboxyalkyl esters of (meth) acrylic acid such as 2-carboxyethyl methacrylate, etc. It is done.
  • monocarboxylic acids having an ethylenically unsaturated bond such as (meth) acrylic acid and crotonic acid
  • fumaric acid, itaconic acid maleic acid, citracone
  • Ethylenically unsaturated dicarboxylic acids such as acids (dica
  • the functional group-containing monomer is preferably a hydroxyl group-containing monomer or a carboxy group-containing monomer, more preferably a hydroxyl group-containing monomer.
  • the functional group-containing monomer constituting the acrylic polymer may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the structural unit derived from the functional group-containing monomer is preferably 1 to 35% by mass, and more preferably 2 to 32% by mass with respect to the total amount of the structural unit. It is particularly preferably 3 to 30% by mass.
  • the acrylic polymer may further have a structural unit derived from another monomer.
  • the other monomer is not particularly limited as long as it is copolymerizable with (meth) acrylic acid alkyl ester or the like.
  • Examples of the other monomer include styrene, ⁇ -methylstyrene, vinyl toluene, vinyl formate, vinyl acetate, acrylonitrile, acrylamide and the like.
  • the other monomer constituting the acrylic polymer may be only one type, or two or more types, and in the case of two or more types, their combination and ratio can be arbitrarily selected.
  • the acrylic polymer can be used as the above-mentioned non-energy ray curable adhesive resin (I-1a).
  • the functional group in the acrylic polymer is reacted with an unsaturated group-containing compound having an energy ray-polymerizable unsaturated group (energy ray-polymerizable group). It can be used as the resin (I-2a).
  • the pressure-sensitive adhesive composition (I-1) contained in the pressure-sensitive adhesive composition (I-1) may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are arbitrary. You can choose.
  • the content of the pressure-sensitive resin (I-1a) is preferably 5 to 99% by mass, more preferably 10 to 95% by mass, and 15 to 90%. It is particularly preferable that the content is% by mass.
  • Examples of the energy ray-curable compound contained in the pressure-sensitive adhesive composition (I-1) include monomers or oligomers having an energy ray-polymerizable unsaturated group and curable by irradiation with energy rays.
  • examples of the monomer include trimethylolpropane tri (meth) acrylate, pentaerythritol (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and 1,4.
  • Polybutyl (meth) acrylates such as butylene glycol di (meth) acrylate and 1,6-hexanediol (meth) acrylate; urethane (meth) acrylate; polyester (meth) acrylate; polyether (meth) acrylate; epoxy ( And (meth) acrylate.
  • examples of the oligomer include an oligomer formed by polymerizing the monomers exemplified above.
  • the energy ray-curable compound is preferably a urethane (meth) acrylate or a urethane (meth) acrylate oligomer from the viewpoint that the molecular weight is relatively large and the storage elastic modulus of the pressure-sensitive adhesive layer is hardly lowered.
  • the energy ray-curable compound contained in the pressure-sensitive adhesive composition (I-1) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected. .
  • the content of the energy ray-curable compound is preferably 1 to 95% by mass, more preferably 5 to 90% by mass, and 10 to 85% by mass. % Is particularly preferred.
  • a pressure-sensitive adhesive composition ( I-1) preferably further contains a crosslinking agent.
  • the cross-linking agent reacts with the functional group to cross-link the adhesive resins (I-1a).
  • a crosslinking agent for example, tolylene diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, isocyanate-based cross-linking agents such as adducts of these diisocyanates (cross-linking agents having an isocyanate group); epoxy-based cross-linking agents such as ethylene glycol glycidyl ether ( Cross-linking agent having a glycidyl group); Aziridine-based cross-linking agent (cross-linking agent having an aziridinyl group) such as hexa [1- (2-methyl) -aziridinyl] triphosphatriazine; Metal chelate-based cross-linking agent such as aluminum chelate (metal) Cross-linking agent having a chelate structure); isocyanurate-based cross-linking agent (cross-linking agent (
  • the crosslinking agent contained in the pressure-sensitive adhesive composition (I-1) may be only one type, or two or more types, and in the case of two or more types, their combination and ratio can be arbitrarily selected.
  • the content of the crosslinking agent is preferably 0.01 to 50 parts by weight with respect to 100 parts by weight of the pressure-sensitive adhesive resin (I-1a).
  • the amount is more preferably 0.1 to 20 parts by mass, and particularly preferably 0.3 to 15 parts by mass.
  • the pressure-sensitive adhesive composition (I-1) may further contain a photopolymerization initiator.
  • the pressure-sensitive adhesive composition (I-1) containing a photopolymerization initiator sufficiently proceeds with a curing reaction even when irradiated with a relatively low energy beam such as ultraviolet rays.
  • photopolymerization initiator examples include benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, and benzoin dimethyl ketal; acetophenone, 2-hydroxy Acetophenone compounds such as -2-methyl-1-phenyl-propan-1-one and 2,2-dimethoxy-1,2-diphenylethane-1-one; bis (2,4,6-trimethylbenzoyl) phenylphosphine Acylphosphine oxide compounds such as oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide; Sulfidation of benzylphenyl sulfide, tetramethylthiuram monosulfide, etc.
  • benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethy
  • ⁇ -ketol compounds such as 1-hydroxycyclohexyl phenyl ketone; azo compounds such as azobisisobutyronitrile; titanocene compounds such as titanocene; thioxanthone compounds such as thioxanthone; peroxide compounds; diketone compounds such as diacetyl; Benzophenone; 2,4-diethylthioxanthone; 1,2-diphenylmethane; 2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone; 2-chloroanthraquinone and the like.
  • a quinone compound such as 1-chloroanthraquinone
  • a photosensitizer such as amine
  • the photopolymerization initiator contained in the pressure-sensitive adhesive composition (I-1) may be only one type, two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the photopolymerization initiator is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the energy ray curable compound.
  • the amount is more preferably 0.03 to 10 parts by mass, and particularly preferably 0.05 to 5 parts by mass.
  • the pressure-sensitive adhesive composition (I-1) may contain other additives that do not fall under any of the above-mentioned components within a range not impairing the effects of the present invention.
  • the other additives include antistatic agents, antioxidants, softeners (plasticizers), fillers (fillers), rust inhibitors, colorants (pigments, dyes), sensitizers, and tackifiers.
  • known additives such as reaction retarders and crosslinking accelerators (catalysts).
  • the reaction retarding agent means, for example, an undesired crosslinking reaction in the pressure-sensitive adhesive composition (I-1) during storage by the action of the catalyst mixed in the pressure-sensitive adhesive composition (I-1). It suppresses progress.
  • the reaction retarder include those that form a chelate complex by chelation against a catalyst, and more specifically, those having two or more carbonyl groups (—C ( ⁇ O) —) in one molecule. Can be mentioned.
  • the other additive contained in the pressure-sensitive adhesive composition (I-1) may be only one type, or two or more types, and in the case of two or more types, their combination and ratio can be arbitrarily selected.
  • the content of other additives is not particularly limited, and may be appropriately selected according to the type.
  • the pressure-sensitive adhesive composition (I-1) may contain a solvent. Since the pressure-sensitive adhesive composition (I-1) contains a solvent, the suitability for coating on the surface to be coated is improved.
  • the solvent is preferably an organic solvent.
  • organic solvent include ketones such as methyl ethyl ketone and acetone; esters such as ethyl acetate (carboxylic acid esters); ethers such as tetrahydrofuran and dioxane; cyclohexane and n-hexane and the like.
  • ketones such as methyl ethyl ketone and
  • the solvent used in the production of the adhesive resin (I-1a) may be used as it is in the adhesive composition (I-1) without being removed from the adhesive resin (I-1a).
  • the same or different type of solvent used in the production of the adhesive resin (I-1a) may be added separately during the production of the adhesive composition (I-1).
  • the solvent contained in the pressure-sensitive adhesive composition (I-1) may be only one type, two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the solvent is not particularly limited, and may be adjusted as appropriate.
  • the pressure-sensitive adhesive composition (I-2) is an energy-ray-curable pressure-sensitive adhesive resin in which an unsaturated group is introduced into the side chain of the non-energy-ray-curable pressure-sensitive adhesive resin (I-1a). (I-2a) is contained.
  • the adhesive resin (I-2a) can be obtained, for example, by reacting a functional group in the adhesive resin (I-1a) with an unsaturated group-containing compound having an energy ray polymerizable unsaturated group.
  • the unsaturated group-containing compound can be bonded to the adhesive resin (I-1a) by reacting with the functional group in the adhesive resin (I-1a) in addition to the energy ray polymerizable unsaturated group.
  • a compound having a group examples include (meth) acryloyl group, vinyl group (ethenyl group), allyl group (2-propenyl group) and the like, and (meth) acryloyl group is preferable.
  • Examples of the group capable of binding to the functional group in the adhesive resin (I-1a) include, for example, an isocyanate group and a glycidyl group that can be bonded to a hydroxyl group or an amino group, and a hydroxyl group and an amino group that can be bonded to a carboxy group or an epoxy group. Etc.
  • Examples of the unsaturated group-containing compound include (meth) acryloyloxyethyl isocyanate, (meth) acryloyl isocyanate, glycidyl (meth) acrylate, and the like.
  • the pressure-sensitive adhesive composition (I-2) contained in the pressure-sensitive adhesive composition (I-2) may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are arbitrary. You can choose.
  • the content of the pressure-sensitive resin (I-2a) is preferably 5 to 99% by mass, more preferably 10 to 95% by mass. It is particularly preferable that the content is% by mass.
  • an adhesive composition ( I-2) may further contain a crosslinking agent.
  • Examples of the crosslinking agent in the pressure-sensitive adhesive composition (I-2) include the same crosslinking agents as in the pressure-sensitive adhesive composition (I-1).
  • the crosslinking agent contained in the pressure-sensitive adhesive composition (I-2) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the crosslinking agent is preferably 0.01 to 50 parts by weight with respect to 100 parts by weight of the pressure-sensitive adhesive resin (I-2a).
  • the amount is more preferably 0.1 to 20 parts by mass, and particularly preferably 0.3 to 15 parts by mass.
  • the pressure-sensitive adhesive composition (I-2) may further contain a photopolymerization initiator.
  • the pressure-sensitive adhesive composition (I-2) containing the photopolymerization initiator sufficiently proceeds with the curing reaction even when irradiated with a relatively low energy beam such as ultraviolet rays.
  • Examples of the photopolymerization initiator in the pressure-sensitive adhesive composition (I-2) include the same photopolymerization initiator as in the pressure-sensitive adhesive composition (I-1).
  • the photopolymerization initiator contained in the pressure-sensitive adhesive composition (I-2) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the photopolymerization initiator is preferably 0.01 to 20 parts by weight with respect to 100 parts by weight of the pressure-sensitive adhesive resin (I-2a). 0.03 to 10 parts by mass is more preferable, and 0.05 to 5 parts by mass is particularly preferable.
  • the pressure-sensitive adhesive composition (I-2) may contain other additives that do not fall under any of the above-mentioned components within a range not impairing the effects of the present invention.
  • Examples of the other additive in the pressure-sensitive adhesive composition (I-2) include the same additives as those in the pressure-sensitive adhesive composition (I-1).
  • the other additive contained in the pressure-sensitive adhesive composition (I-2) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of other additives is not particularly limited, and may be appropriately selected according to the type.
  • the pressure-sensitive adhesive composition (I-2) may contain a solvent for the same purpose as that of the pressure-sensitive adhesive composition (I-1).
  • Examples of the solvent in the pressure-sensitive adhesive composition (I-2) include the same solvents as those in the pressure-sensitive adhesive composition (I-1).
  • the solvent contained in the pressure-sensitive adhesive composition (I-2) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the solvent is not particularly limited, and may be adjusted as appropriate.
  • the pressure-sensitive adhesive composition (I-3) contains the pressure-sensitive adhesive resin (I-2a) and an energy ray-curable compound.
  • the content of the pressure-sensitive resin (I-2a) is preferably 5 to 99% by mass, more preferably 10 to 95% by mass, and 15 to 90%. It is particularly preferable that the content is% by mass.
  • Examples of the energy ray-curable compound contained in the pressure-sensitive adhesive composition (I-3) include monomers and oligomers having an energy ray-polymerizable unsaturated group and curable by irradiation with energy rays. Examples thereof include the same energy ray curable compounds contained in the product (I-1).
  • the energy ray-curable compound contained in the pressure-sensitive adhesive composition (I-3) may be only one type, two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected. .
  • the content of the energy ray-curable compound is 0.01 to 300 parts by mass with respect to 100 parts by mass of the adhesive resin (I-2a). It is preferably 0.03 to 200 parts by mass, more preferably 0.05 to 100 parts by mass.
  • the pressure-sensitive adhesive composition (I-3) may further contain a photopolymerization initiator.
  • the pressure-sensitive adhesive composition (I-3) containing a photopolymerization initiator sufficiently undergoes a curing reaction even when irradiated with energy rays of relatively low energy such as ultraviolet rays.
  • Examples of the photopolymerization initiator in the pressure-sensitive adhesive composition (I-3) include the same photopolymerization initiator as in the pressure-sensitive adhesive composition (I-1).
  • the photopolymerization initiator contained in the pressure-sensitive adhesive composition (I-3) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the photopolymerization initiator is 0.01 to about 100 parts by mass of the total content of the pressure-sensitive adhesive resin (I-2a) and the energy ray curable compound.
  • the amount is preferably 20 parts by mass, more preferably 0.03 to 10 parts by mass, and particularly preferably 0.05 to 5 parts by mass.
  • the pressure-sensitive adhesive composition (I-3) may contain other additives that do not fall under any of the above-mentioned components within a range not impairing the effects of the present invention.
  • Examples of the other additive include the same additives as those in the pressure-sensitive adhesive composition (I-1).
  • the other additive contained in the pressure-sensitive adhesive composition (I-3) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of other additives is not particularly limited, and may be appropriately selected according to the type.
  • the pressure-sensitive adhesive composition (I-3) may contain a solvent for the same purpose as that of the pressure-sensitive adhesive composition (I-1).
  • Examples of the solvent in the pressure-sensitive adhesive composition (I-3) include the same solvents as those in the pressure-sensitive adhesive composition (I-1).
  • the solvent contained in the pressure-sensitive adhesive composition (I-3) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the solvent is not particularly limited, and may be adjusted as appropriate.
  • Examples of the pressure-sensitive adhesive composition other than the pressure-sensitive adhesive compositions (I-1) to (I-3) include non-energy ray-curable pressure-sensitive adhesive compositions in addition to the energy ray-curable pressure-sensitive adhesive composition.
  • Non-energy ray curable pressure-sensitive adhesive compositions include, for example, acrylic resin, urethane resin, rubber resin, silicone resin, epoxy resin, polyvinyl ether, polycarbonate, ester resin, etc.
  • An adhesive composition (I-4) containing an adhesive resin (I-1a) is preferable, and an adhesive composition containing an acrylic resin is preferred.
  • the pressure-sensitive adhesive composition other than the pressure-sensitive adhesive compositions (I-1) to (I-3) preferably contains one or more kinds of crosslinking agents, and the content thereof is the above-mentioned pressure-sensitive adhesive composition. It can be the same as in the case of (I-1).
  • Adhesive resin (I-1a) examples of the adhesive resin (I-1a) in the pressure-sensitive adhesive composition (I-4) include the same as the pressure-sensitive adhesive resin (I-1a) in the pressure-sensitive adhesive composition (I-1).
  • the adhesive resin (I-1a) contained in the adhesive composition (I-4) may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are arbitrary. You can choose.
  • the content of the pressure-sensitive resin (I-1a) is preferably 5 to 99% by mass, more preferably 10 to 95% by mass, and 15 to 90%. It is particularly preferable that the content is% by mass.
  • a pressure-sensitive adhesive composition ( I-4) preferably further contains a crosslinking agent.
  • Examples of the crosslinking agent in the pressure-sensitive adhesive composition (I-4) include the same crosslinking agents as those in the pressure-sensitive adhesive composition (I-1).
  • the crosslinking agent contained in the pressure-sensitive adhesive composition (I-4) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the crosslinking agent is preferably 0.01 to 50 parts by weight with respect to 100 parts by weight of the pressure-sensitive adhesive resin (I-1a).
  • the amount is more preferably 0.1 to 20 parts by mass, and particularly preferably 0.3 to 15 parts by mass.
  • the pressure-sensitive adhesive composition (I-4) may contain other additives that do not fall under any of the above-mentioned components within a range not impairing the effects of the present invention.
  • Examples of the other additive include the same additives as those in the pressure-sensitive adhesive composition (I-1).
  • the other additive contained in the pressure-sensitive adhesive composition (I-4) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of other additives is not particularly limited, and may be appropriately selected according to the type.
  • the pressure-sensitive adhesive composition (I-4) may contain a solvent for the same purpose as that of the pressure-sensitive adhesive composition (I-1).
  • Examples of the solvent in the pressure-sensitive adhesive composition (I-4) include the same solvents as those in the pressure-sensitive adhesive composition (I-1).
  • the solvent contained in the pressure-sensitive adhesive composition (I-4) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the solvent is not particularly limited and may be appropriately adjusted.
  • the pressure-sensitive adhesive layer is preferably non-energy ray curable. This is because when the pressure-sensitive adhesive layer is energy ray curable, it is sometimes impossible to suppress the pressure-sensitive adhesive layer from being simultaneously cured when the protective film-forming film is cured by irradiation with energy rays. If the pressure-sensitive adhesive layer is cured at the same time as the protective film-forming film, the cured protective film-forming film and the pressure-sensitive adhesive layer may stick to the interface so as not to be peeled off.
  • the pressure-sensitive adhesive compositions other than the pressure-sensitive adhesive compositions (I-1) to (I-3) such as the pressure-sensitive adhesive compositions (I-1) to (I-3) and the pressure-sensitive adhesive composition (I-4) It is obtained by blending each component for constituting the pressure-sensitive adhesive composition, such as the pressure-sensitive adhesive and components other than the pressure-sensitive adhesive, if necessary.
  • the order of addition at the time of blending each component is not particularly limited, and two or more components may be added simultaneously.
  • a solvent it may be used by mixing the solvent with any compounding component other than the solvent and diluting the compounding component in advance, or by diluting any compounding component other than the solvent in advance.
  • the method of mixing each component at the time of compounding is not particularly limited, from a known method such as a method of mixing by rotating a stirrer or a stirring blade; a method of mixing using a mixer; a method of mixing by applying ultrasonic waves What is necessary is just to select suitably.
  • the temperature and time during the addition and mixing of each component are not particularly limited as long as each compounding component does not deteriorate, and may be adjusted as appropriate, but the temperature is preferably 15 to 30 ° C.
  • the protective film-forming composite sheet of the present invention can be produced by sequentially laminating the above-mentioned layers so as to have a corresponding positional relationship.
  • the method for forming each layer is as described above.
  • the above-described pressure-sensitive adhesive composition may be applied on the substrate and dried as necessary.
  • the protective film-forming composition is applied on the adhesive layer, It is possible to form the forming film directly.
  • Layers other than the protective film-forming film can also be laminated on the pressure-sensitive adhesive layer in the same manner using the composition for forming this layer.
  • the composition is further applied onto the layer formed from the composition to newly form a layer. Can be formed.
  • the layer laminated after these two layers is formed in advance using the composition on another release film, and the side of the formed layer that is in contact with the release film is It is preferable to form a continuous two-layer laminated structure by bonding the opposite exposed surface to the exposed surfaces of the remaining layers already formed.
  • the composition is preferably applied to the release-treated surface of the release film.
  • the release film may be removed as necessary after forming the laminated structure.
  • a protective film-forming composite sheet in which a pressure-sensitive adhesive layer is laminated on a base material and a protective film-forming film is laminated on the pressure-sensitive adhesive layer (the support sheet is a laminate of the base material and the pressure-sensitive adhesive layer)
  • a pressure-sensitive adhesive composition is coated on a base material and dried as necessary, whereby a pressure-sensitive adhesive layer is laminated on the base material
  • the protective film-forming composition is coated on the release film, and dried as necessary to form the protective film-forming film on the release film.
  • the exposed surface of the protective film-forming film is bonded to the exposed surface of the adhesive layer laminated on the substrate, and the protective film-forming film is laminated on the adhesive layer, thereby forming a protective film.
  • a composite sheet is obtained.
  • the pressure-sensitive adhesive composition is applied on the release film.
  • the pressure-sensitive adhesive layer is formed on the release film by drying as necessary, and the exposed surface of this layer is bonded to one surface of the base material so that the pressure-sensitive adhesive layer is placed on the base material. You may laminate. In any method, the release film may be removed at an arbitrary timing after the target laminated structure is formed.
  • a layer that employs such a process may be appropriately selected to produce a protective sheet-forming composite sheet.
  • the composite sheet for forming a protective film is usually stored in a state in which a release film is bonded to the surface of the outermost layer (for example, a film for forming a protective film) opposite to the support sheet. Therefore, a composition for forming a layer constituting the outermost layer, such as a protective film-forming composition, is applied on this release film (preferably its release-treated surface) and dried as necessary. Then, a layer constituting the outermost layer is formed on the release film, and the remaining layers are laminated on the exposed surface of the layer opposite to the side in contact with the release film by any of the methods described above. And the composite sheet for protective film formation is obtained also by leaving it in the state bonded together, without removing a peeling film.
  • a composition for forming a layer constituting the outermost layer such as a protective film-forming composition
  • the protective film-forming composite sheet of the present invention can be used, for example, by the method described below. That is, the protective film-forming composite sheet is attached to the back surface (surface opposite to the electrode forming surface) of the semiconductor wafer with the protective film-forming film. Next, the protective film-forming film is irradiated with energy rays, and the protective film-forming film is cured to form a protective film. Next, the semiconductor wafer is divided together with the protective film by dicing to form semiconductor chips. Then, the semiconductor chip is picked up while being separated from the support sheet while the protective film is attached (that is, as a semiconductor chip with a protective film). Thereafter, the semiconductor chip of the obtained semiconductor chip with a protective film is flip-chip connected to the circuit surface of the substrate in the same manner as the conventional method, and then the semiconductor package is obtained. Then, a target semiconductor device may be manufactured using this semiconductor package.
  • the order of performing these steps is as follows: The reverse may be possible. That is, after a protective film-forming composite sheet is attached to the back surface of the semiconductor wafer, the semiconductor wafer is divided together with the protective film-forming film by dicing to form semiconductor chips. Next, the divided protective film-forming film is irradiated with energy rays, and the protective film-forming film is cured to form a protective film. Thereafter, in the same manner as described above, the semiconductor chip with the protective film may be pulled away from the support sheet and picked up to produce the target semiconductor device.
  • Energy ray curable component (a2) -1 Tricyclodecane dimethylol diacrylate (“KAYARAD R-684”, bifunctional ultraviolet curable compound, molecular weight 304, manufactured by Nippon Kayaku Co., Ltd.)
  • BA butyl acrylate
  • MA methyl acrylate
  • GMA glycidyl methacrylate
  • HOA 2-hydroxyethyl acrylate
  • Photopolymerization initiator (c) -1 2- (dimethylamino) -1- (4-morpholinophenyl) -2-benzyl-1-butanone (“Irgacure (registered trademark) 369” manufactured by BASF)
  • C) -2 Ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime) (Irgacure (registered by BASF)) Trademark) OXE02 ")
  • (Production of pressure-sensitive adhesive composition (I-4)) Contains an acrylic polymer (100 parts by mass, solid content) and a trifunctional xylylene diisocyanate-based crosslinking agent (“Takenate D110N” manufactured by Takeda Chemical Co., Ltd.) (10.7 parts by mass, solid content), and further as a solvent
  • a non-energy ray-curable pressure-sensitive adhesive composition (I-4) containing methyl ethyl ketone and having a solid content concentration of 30% by mass was prepared.
  • the acrylic polymer is obtained by copolymerizing 2-ethylhexyl acrylate (hereinafter abbreviated as “2EHA”) (36 parts by mass), BA (59 parts by mass), and HEA (5 parts by mass).
  • the weight average molecular weight is 600,000.
  • the pressure-sensitive adhesive composition (I-4) obtained above was applied to the release-treated surface of a release film (“SP-PET 381031” manufactured by Lintec Co., Ltd., thickness 38 ⁇ m) obtained by releasing one side of a polyethylene terephthalate film by silicone treatment. ) And dried by heating at 120 ° C. for 2 minutes to form a non-energy ray-curable pressure-sensitive adhesive layer having a thickness of 10 ⁇ m.
  • a support sheet provided with the pressure-sensitive adhesive layer on one surface of the base material by bonding a polypropylene film (Young's modulus 400 MPa, thickness 80 ⁇ m) as a base material to the exposed surface of the pressure-sensitive adhesive layer. (10) -1 was obtained.
  • the protective film-forming composition (IV) obtained above was applied to the release-treated surface of a release film (“SP-PET 381031” manufactured by Lintec Co., Ltd., thickness 38 ⁇ m) from which one side of a polyethylene terephthalate film was released by silicone treatment. -1) was coated with a knife coater and dried at 100 ° C. for 2 minutes to prepare an energy ray-curable protective film-forming film (13) -1 having a thickness of 25 ⁇ m.
  • SP-PET 381031 manufactured by Lintec Co., Ltd., thickness 38 ⁇ m
  • the release film is removed from the pressure-sensitive adhesive layer of the support sheet (10) -1 obtained above, and the protective film-forming film (13) -1 obtained above is exposed on the exposed surface of the pressure-sensitive adhesive layer.
  • the surfaces were bonded together to prepare a composite sheet for forming a protective film, in which a base material, an adhesive layer, a protective film-forming film (13) -1 and a release film were laminated in this order in the thickness direction.
  • Table 2 shows the structure of the obtained protective sheet-forming composite sheet.
  • the exposed surface of the protective film-forming film (13) -1 of the pre-curing test piece is attached to the double-sided adhesive tape on the support plate, The test piece before hardening was stuck on the support plate through the double-sided adhesive tape.
  • the test piece before curing is irradiated with ultraviolet rays under the conditions of an illuminance of 195 mW / cm 2 and an amount of light of 170 mJ / cm 2 .
  • Film (13) -1 was cured to obtain a test piece after curing.
  • the support sheet (10) -1 (curing)
  • a tensile test is performed to peel the laminate of the previous pressure-sensitive adhesive layer and the base material from the protective film, and the load (peeling force) at this time is measured, so that the distance between the protective film and the support sheet (10) -1 is measured. It was set as adhesive strength.
  • the measurement values of the load include the measurement values when the support sheet (10) -1 is peeled over a length of 100 mm, when the support sheet (10) -1 is peeled off by a length of 10 mm first, and finally the length of 10 mm.
  • the value obtained by excluding each measured value from the effective value when peeled by an amount was adopted. The results are shown in Table 2.
  • the protective film-forming composite sheet obtained above is attached to the # 2000 polished surface of a 6-inch silicon wafer (thickness 350 ⁇ m) with the protective film-forming film (13) -1 and this sheet is further attached to the ring frame. Fixed and allowed to stand for 30 minutes. Next, using a UV irradiation device (“RAD2000m / 8” manufactured by Lintec Corporation), the protective sheet-forming composite sheet is formed from the support sheet (10) -1 side under the conditions of an illuminance of 195 mW / cm 2 and a light amount of 170 mJ / cm 2.
  • the protective film-forming film (13) -1 was cured to form a protective film.
  • the silicon wafer was diced together with the protective film to obtain individual pieces of 5 mm ⁇ 5 mm silicon chips.
  • 20 silicon chips with protective film were picked up by pushing up one silicon wafer with protective film with one pin using a die bonder (“BESTEM-D02” manufactured by Canon Machinery Co., Ltd.).
  • Example 2 A corona discharge treatment was applied to the surface of the same base material (polypropylene film, Young's modulus 400 MPa, thickness 80 ⁇ m) used in the production of the support sheet (10) -1. Then, as shown in Table 2, the same as Example 1 except that instead of the support sheet (10) -1, the support sheet (10) -2 consisting only of the surface-treated substrate was used. By the method, a protective film-forming film and a protective film-forming composite sheet were produced and evaluated. The results are shown in Table 2. In this example, the protective film-forming film (13) -1 was provided on the corona discharge treated surface of the base material corresponding to the support sheet (10) -2.
  • the protective film-forming film (13) -1 was provided on the corona discharge treated surface of the base material corresponding to the support sheet (10) -2.
  • Example 3 ⁇ Manufacture of composite sheet for forming protective film> (Production of pressure-sensitive adhesive composition (I-4)) Contains an acrylic polymer (100 parts by mass, solid content) and a trifunctional xylylene diisocyanate-based crosslinking agent (“Takenate D110N” manufactured by Takeda Chemical Co., Ltd.) (0.5 parts by mass, solid content), and further as a solvent A non-energy ray-curable pressure-sensitive adhesive composition (I-4) containing methyl ethyl ketone and having a solid content concentration of 30% by mass was prepared.
  • the acrylic polymer has a weight average molecular weight of 800,000 obtained by copolymerizing BA (95 parts by mass) and HEA (5 parts by mass).
  • a non-energy ray-curable pressure-sensitive adhesive layer having a thickness of 10 ⁇ m is formed on the substrate in the same manner as in Example 1 except that the pressure-sensitive adhesive composition (I-4) obtained above is used.
  • a support sheet (10) -3 was produced.
  • a composite sheet for forming a protective film was produced in the same manner as in Example 1 except that the support sheet (10) -3 obtained above was used instead of the support sheet (10) -1.
  • Table 2 shows the structure of the obtained protective sheet-forming composite sheet.
  • Example 4 ⁇ Manufacture of composite sheet for forming protective film> (Production of protective film-forming composition (IV-1)) As shown in Table 1, the content (blending amount) of the polymer (b) -1 was changed to 2 parts by weight instead of 22 parts by weight, and the content (blending amount) of the filler (d) -1 was 56 parts by weight. A protective film-forming composition (IV-1) was prepared in the same manner as in Example 1, except that 76 parts by mass was used instead of parts.
  • Example 5 ⁇ Manufacture of composite sheet for forming protective film> (Production of protective film-forming composition (IV-1)) A protective film-forming composition (IV-1) was produced in the same manner as in Example 1.
  • the protective film-forming composition (IV) obtained above was applied to the release-treated surface of a release film (“SP-PET 381031” manufactured by Lintec Co., Ltd., thickness 38 ⁇ m) from which one side of a polyethylene terephthalate film was released by silicone treatment. -1) was coated with a knife coater and dried at 100 ° C. for 2 minutes to prepare an energy ray-curable protective film-forming film (13) -1 having a thickness of 25 ⁇ m.
  • SP-PET 381031 manufactured by Lintec Co., Ltd., thickness 38 ⁇ m
  • a support sheet (10) -1 was produced in the same manner as in Example 1.
  • the protective film-forming film (13) -1 is irradiated with ultraviolet rays under the conditions of an illuminance of 195 mW / cm 2 and a light amount of 170 mJ / cm 2 using an ultraviolet irradiation device (“RAD2000m / 8” manufactured by Lintec Corporation).
  • the protective film-forming film (13) -1 was cured to obtain a protective film.
  • the release film is removed from the protective film, and the pressure-sensitive adhesive layer of the support sheet (10) -1 obtained above is bonded to the exposed surface, so that the base material, the pressure-sensitive adhesive layer, the protective film, and the silicon wafer A composite sheet for forming a protective film with a silicon wafer, which was laminated in this order in the thickness direction, was produced.
  • Table 2 shows the structure of the obtained protective sheet-forming composite sheet.
  • Example 6 ⁇ Manufacture of composite sheet for forming protective film> (Production of protective film-forming composition (IV-1)) As shown in Table 1, the protective film was formed in the same manner as in Example 1 except that the content (blending amount) of the energy ray curable component (a2) -1 was changed to 10 parts by mass instead of 20 parts by mass. A forming composition (IV-1) was prepared.
  • Example 7 ⁇ Manufacture of composite sheet for forming protective film> (Production of protective film-forming composition (IV-1)) As shown in Table 1, the protective film was formed in the same manner as in Example 1 except that the content (blending amount) of the energy ray curable component (a2) -1 was changed to 5 parts by mass instead of 20 parts by mass. A forming composition (IV-1) was prepared.
  • the acrylic polymer is prepared by adding 2-methacryloyloxyethyl isocyanate (21.4 parts by mass, hydroxyl group in HEA) to a pre-copolymer obtained by copolymerizing 2EHA (80 parts by mass) and HEA (20 parts by mass). It is an energy ray-curable acrylic polymer having a weight average molecular weight of 1100000, obtained by reacting 100 mol% with an amount of an isocyanate group of 80 mol%.
  • a composite sheet for forming a protective film was produced in the same manner as in Example 1 except that the support sheet (90) -1 obtained above was used instead of the support sheet (10) -1.
  • Table 3 shows the structure of the obtained protective sheet-forming composite sheet.
  • a composite sheet for forming a protective film was produced in the same manner as in Example 1 except that the support sheet (90) -2 obtained above was used instead of the support sheet (10) -1.
  • Table 3 shows the structure of the obtained protective sheet-forming composite sheet.
  • the adhesive force between the protective film and the support sheet is 3300 to 4860 mN / 25 mm, so that the protective film is pushed up by a pin.
  • the effect of suppressing the remaining marks was low.
  • the composite sheet for forming a protective film of Comparative Example 1 by the tensile modulus of the protective film is a 9 ⁇ 10 7 Pa, the residual effect of suppressing mark thrust-up by pins in the protective film is low.
  • the protective film in Comparative Example 1 had lower Shore D hardness than the protective films in Reference Examples 1 and 2.
  • the present invention can be used for manufacturing semiconductor devices.
  • 1A, 1B, 1C, 1D, 1E Composite sheet for protective film formation, 10 ... Support sheet, 10a ... Surface of support sheet, 11 ... Base material, 11a ... Surface of base material , 12 ... adhesive layer, 12a ... surface of the adhesive layer, 13, 23 ... protective film forming film, 13a, 23a ... surface of the protective film forming film (one surface), 13b: Surface of the protective film-forming film (the other surface), 15 ... Release film, 151 ... First release film, 152 ... Second release film, 16 ... Adhesion for jig Agent layer, 16a ... surface of adhesive layer for jig

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Dicing (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
PCT/JP2017/016277 2016-04-28 2017-04-25 保護膜形成用フィルム及び保護膜形成用複合シート WO2017188211A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187026380A KR102332694B1 (ko) 2016-04-28 2017-04-25 보호막 형성용 필름 및 보호막 형성용 복합 시트
JP2018514602A JP6938477B2 (ja) 2016-04-28 2017-04-25 保護膜形成用複合シート
CN201780020935.8A CN109005667B (zh) 2016-04-28 2017-04-25 保护膜形成用膜及保护膜形成用复合片

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-092015 2016-04-28
JP2016092015 2016-04-28

Publications (1)

Publication Number Publication Date
WO2017188211A1 true WO2017188211A1 (ja) 2017-11-02

Family

ID=60160455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016277 WO2017188211A1 (ja) 2016-04-28 2017-04-25 保護膜形成用フィルム及び保護膜形成用複合シート

Country Status (5)

Country Link
JP (1) JP6938477B2 (zh)
KR (1) KR102332694B1 (zh)
CN (1) CN109005667B (zh)
TW (1) TWI770021B (zh)
WO (1) WO2017188211A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040254303A1 (en) * 2003-01-27 2004-12-16 Chang Rong Jong Moisture activated single-component ebonite composition
JP2009147277A (ja) * 2007-12-18 2009-07-02 Furukawa Electric Co Ltd:The チップ保護用フィルム
WO2014155756A1 (ja) * 2013-03-26 2014-10-02 リンテック株式会社 粘着シートおよび保護膜形成用複合シートならびに保護膜付きチップの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3113345B2 (ja) 1991-11-25 2000-11-27 三洋電機株式会社 水素吸蔵合金電極
JP2010031183A (ja) 2008-07-30 2010-02-12 Furukawa Electric Co Ltd:The エネルギー線硬化型チップ保護用フィルム
WO2014021450A1 (ja) * 2012-08-02 2014-02-06 リンテック株式会社 フィルム状接着剤、半導体接合用接着シート、および半導体装置の製造方法
JP5774799B2 (ja) * 2013-03-27 2015-09-09 リンテック株式会社 保護膜形成用複合シート
KR102215668B1 (ko) * 2013-03-28 2021-02-15 린텍 가부시키가이샤 보호막 형성용 복합 시트, 보호막이 있는 칩 및 보호막이 있는 칩의 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040254303A1 (en) * 2003-01-27 2004-12-16 Chang Rong Jong Moisture activated single-component ebonite composition
JP2009147277A (ja) * 2007-12-18 2009-07-02 Furukawa Electric Co Ltd:The チップ保護用フィルム
WO2014155756A1 (ja) * 2013-03-26 2014-10-02 リンテック株式会社 粘着シートおよび保護膜形成用複合シートならびに保護膜付きチップの製造方法

Also Published As

Publication number Publication date
JPWO2017188211A1 (ja) 2019-03-07
KR20190003464A (ko) 2019-01-09
KR102332694B1 (ko) 2021-11-29
CN109005667A (zh) 2018-12-14
TW201741348A (zh) 2017-12-01
JP6938477B2 (ja) 2021-09-22
CN109005667B (zh) 2023-08-18
TWI770021B (zh) 2022-07-11

Similar Documents

Publication Publication Date Title
WO2017188216A1 (ja) 保護膜形成用フィルムおよび保護膜形成用複合シート
JP6902530B2 (ja) 保護膜形成用複合シート及び保護膜付き半導体チップの製造方法、並びに半導体装置の製造方法
JP6854811B2 (ja) 保護膜形成用フィルム、保護膜形成用複合シート、及び半導体チップの製造方法
WO2017188199A1 (ja) 保護膜形成用フィルムおよび保護膜形成用複合シート
JP7071916B2 (ja) 保護膜付き半導体チップの製造方法及び半導体装置の製造方法
JP6956074B2 (ja) 保護膜形成用フィルム及び保護膜形成用複合シート
JPWO2019082977A1 (ja) 保護膜形成用フィルム、保護膜形成用複合シート、及び半導体チップの製造方法
WO2017188231A1 (ja) 保護膜形成用フィルム及び保護膜形成用複合シート
WO2019082974A1 (ja) 保護膜形成用フィルム、保護膜形成用複合シート、及び半導体チップの製造方法
JP7086986B2 (ja) 保護膜形成用フィルム、保護膜形成用複合シート、及び半導体チップの製造方法
JP2022089876A (ja) 保護膜形成用フィルム及び保護膜形成用複合シート
JP6438173B2 (ja) 保護膜形成用フィルム及び保護膜形成用複合シート
JP6929835B2 (ja) 保護膜形成用複合シート
JP7039460B2 (ja) 保護膜形成用複合シート
JP6837057B2 (ja) 保護膜付き半導体チップの製造方法及び半導体装置の製造方法
WO2017188201A1 (ja) 保護膜形成用フィルム及び保護膜形成用複合シート
JP6938477B2 (ja) 保護膜形成用複合シート

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018514602

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187026380

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201780020935.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789493

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789493

Country of ref document: EP

Kind code of ref document: A1