WO2017187733A1 - 電流センサ - Google Patents

電流センサ Download PDF

Info

Publication number
WO2017187733A1
WO2017187733A1 PCT/JP2017/006352 JP2017006352W WO2017187733A1 WO 2017187733 A1 WO2017187733 A1 WO 2017187733A1 JP 2017006352 W JP2017006352 W JP 2017006352W WO 2017187733 A1 WO2017187733 A1 WO 2017187733A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
current
magnetic field
pair
plate
Prior art date
Application number
PCT/JP2017/006352
Other languages
English (en)
French (fr)
Inventor
田村 学
英一郎 松山
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2017187733A1 publication Critical patent/WO2017187733A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00

Definitions

  • the present invention relates to a current sensor that detects a current based on a magnetic field, and more particularly to a current sensor that can detect a relatively large current from a shunt current based on a magnetic field of a shunt current.
  • Patent Literature 1 describes a bus bar structure in which a shunt bus bar is connected in parallel to a bus bar that is a current detection target.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a current sensor that can accurately detect a current based on a magnetic field of a shunt current.
  • the current sensor of the present invention flows through the first bus bar extending linearly between two ends where current flows, the second bus bar bent between the two ends where current flows, and the second bus bar.
  • a magnetic sensor for detecting a magnetic field due to an electric current is provided.
  • the one end of the first bus bar and the one end of the second bus bar are in contact with each other and are electrically connected, and the other end of the first bus bar and the other end of the second bus bar. And are in contact with each other.
  • the magnetic sensor detects a magnetic field in a direction parallel to the extending direction of the first bus bar.
  • the first bus bar and the second bus bar are in contact with each other at the two end portions and are conductive, at least a part of the second bus bar bent between the two end portions.
  • Current flows in a direction that is not parallel to the extending direction of the first bus bar extending linearly between the two ends.
  • the magnetic field due to the current flowing in at least a part of the second bus bar has a component parallel to the extending direction of the first bus bar, this can be detected by the magnetic sensor.
  • the magnetic field due to the current flowing through the first bus bar is perpendicular to the extending direction of the first bus bar, it is difficult to be detected by the magnetic sensor. That is, the magnetic sensor mainly detects a magnetic field due to the current flowing through the second bus bar, and the detection result is hardly affected by the magnetic field due to the current flowing through the first bus bar.
  • the current sensor includes a pair of the magnetic sensors disposed at a pair of places.
  • the pair of places is a place where the magnetic field generated by the current of the second bus bar has a magnetic field component parallel to the extending direction of the first bus bar, and the magnetic field component of each other is a current flowing through the second bus bar. It is a place with a corresponding difference.
  • the magnetic field component parallel to the extending direction of the first bus bar included in the magnetic field generated by the current of the second bus bar at the pair of locations has a difference corresponding to the current flowing through the second bus bar.
  • a magnetic field parallel to the extending direction of the first bus bar is detected, respectively. Therefore, the magnetic field detected by the pair of magnetic sensors is applied to the second bus bar.
  • the current flowing through the second bus bar can be detected based on the difference between the magnetic fields detected by the pair of magnetic sensors. Since the external magnetic field from a distant noise source becomes substantially equal at the pair of locations, it is difficult to affect the difference between the magnetic fields detected by the pair of magnetic sensors.
  • the second bus bar extends linearly in a direction inclined with respect to the extending direction of the first bus bar from the bent portion to the two end portions from the bent portion.
  • the pair of magnetic sensors are disposed in a pair of locations that are symmetrical with respect to a virtual plane that passes through the bent portion and is perpendicular to the extending direction of the first bus bar, and currents flowing through the two arm portions. Detect the magnetic field due to.
  • the magnetic field distribution due to the current flowing through the second bus bar is symmetric with respect to the virtual plane, and the magnetic fields parallel to the extending direction of the first bus bar are opposite to each other at the pair of locations. Therefore, the magnetic field detected by the pair of magnetic sensors has a difference corresponding to the current flowing through the second bus bar. Further, since the arm portion is inclined with respect to the extending direction of the first bus bar, the magnetic field due to the current flowing through the arm portion is not parallel to the extending direction of the first bus bar. Thereby, since the detection sensitivity of the magnetic field with respect to an electric current becomes low, a larger electric current can be detected.
  • the second bus bar is provided between two bent portions, between the one bent portion and the one end portion, and between the other bent portion and the other end portion. And two arm portions extending linearly in a direction perpendicular to the extending direction of the first bus bar and parallel to each other, and a base portion provided between the two bent portions.
  • the pair of magnetic sensors are disposed at a pair of locations that are plane-symmetric with respect to a virtual plane that passes through the center of the base in the extending direction of the first bus bar and is perpendicular to the extending direction. A magnetic field due to the current flowing through the arm is detected.
  • the distribution of the magnetic field due to the current flowing through the second bus bar is symmetric with respect to the virtual plane. Therefore, of the magnetic field due to the current flowing through the second bus bar, the magnetic field components parallel to the extending direction of the first bus bar are opposite to each other in the pair of locations, and the magnitudes thereof are substantially equal. Therefore, the magnetic field detected by the pair of magnetic sensors has a difference corresponding to the current flowing through the second bus bar. Further, since the arm portion is perpendicular to the extending direction of the first bus bar, the magnetic field due to the current flowing through the arm portion is parallel to the extending direction of the first bus bar. Thereby, since the detection sensitivity of the magnetic field with respect to an electric current becomes high, the detection of a smaller electric current is attained.
  • each of the first bus bars includes a plurality of plate-like conductors that extend linearly in the extending direction and are stacked in a direction perpendicular to the extending direction.
  • the currents flowing through each of the plurality of plate conductors are equal to each other, and the current flowing through one of the plate conductors is equal to the current flowing through the second bus bar.
  • the plurality of plate-like conductors have the same planar shape as viewed from the stacking direction.
  • the size of the planar shape of the first bus bar viewed from the stacking direction does not change, so the size of the device is increased by expanding the current detection range. Is suppressed.
  • the two end portions of the second bus bar are stacked on the plate-like conductor in the same direction as the stacking direction.
  • the current sensor can connect the two end portions of the second bus bar and the plurality of plate conductors with screws.
  • the two end portions of the second bus bar are respectively formed with through holes through which the screws are inserted in a direction parallel to the stacking direction.
  • a through hole through which the screw is inserted is formed in each of the two end portions of the plate-like conductor in a direction parallel to the stacking direction.
  • the current can be detected with high accuracy based on the magnetic field of the shunt current.
  • FIG. 1 It is a figure which shows an example of the current sensor which concerns on the 1st Embodiment of this invention. It is a figure which shows the state by which the bus-bar connected in parallel in the current sensor shown in FIG. 1 was decomposed
  • FIG. 7 is a diagram illustrating the direction of a magnetic field due to a current flowing in a bus bar in the current sensor shown in FIG. 6.
  • FIG. 1 is a diagram showing an example of a current sensor 1 according to the first embodiment of the present invention.
  • a current sensor 1 shown in FIG. 1 includes a first bus bar 10 and a second bus bar 20 connected in parallel, and magnetic sensors SA and SB that detect a magnetic field (magnetic flux density) due to a current flowing through the second bus bar 20. Part 50.
  • the first bus bar 10 has a shape extending linearly between two ends E11 and E12 through which current flows, thereby forming a linear current path.
  • the extending direction of the first bus bar 10 is the Y direction.
  • FIG. 2 is a diagram showing a state in which the bus bars (10, 20) connected in parallel in the current sensor 1 shown in FIG. 1 are disassembled.
  • the first bus bar 10 includes two plate-like conductors 10A and 10B.
  • the plate-like conductors 10A and 10B are smaller in size (thickness) in the Z direction than in the X direction (width), and each extend linearly in the Y direction.
  • the plate-like conductors 10A and 10B are stacked in the Z direction as shown in FIG. That is, the surface on the Z2 side of the plate-like conductor 10A and the surface on the Z1 side of the plate-like conductor 10B are in contact.
  • the two plate-like conductors 10A and 10B have the same planar shape when viewed from the Z direction (stacking direction). That is, the X-direction width and the Y-direction length of the plate-like conductors 10A and 10B are equal.
  • the width in the X direction of the plate-shaped conductor 10A is narrower in the middle portion than the two ends E11A and E12A, and the width in the X direction of the plate-shaped conductor 10B is also the two ends E11B, The middle part is narrower than E12B.
  • the second bus bar 20 has a bent shape between the two end portions E21 and E22 through which current flows, thereby forming a bent current path.
  • the second bus bar 20 has a bent portion 23 and two arm portions 21 and 22.
  • the bent portion 23 is located between the two end portions E21 and E22.
  • the two end portions E21 and E22 extend linearly from the bent portion 23 to the two end portions E21 and E22 in a direction inclined with respect to the Y direction.
  • the arm portion 21 extends linearly from the bent portion 23 to the end portion E21, and the arm portion 22 extends linearly from the bent portion 23 to the end portion E22.
  • the arm portions 21 and 22 each extend perpendicularly to the X direction and have substantially the same length in the extending direction.
  • the 2nd bus bar 20 shown in FIG. 1 has the bending part 24 between the arm part 21 and the edge part E21, and has the bending part 25 between the arm part 22 and the edge part E22. Both the end E21 and the end E22 extend linearly in the Y direction.
  • the end E11 of the first bus bar 10 and the end E21 of the second bus bar 20 are in contact with each other, and the end E12 of the first bus bar 10 and the end of the second bus bar 20 are connected. E22 contacts and conducts.
  • the two ends E21 and E22 of the second bus bar 20 are stacked on the plate conductor 10A in the same direction as the stack direction (Z direction) of the plate conductors 10A and 10B. That is, the Z2 side surface of the end portion E21 of the second bus bar 20 and the Z1 side surface of the end portion E11A of the plate conductor 10A are in contact with each other, and the Z2 side surface of the end portion E22 of the second bus bar 20 and the plate conductor 10A. The Z1 side surface of the end E12A comes into contact.
  • the second bus bar 20 is a plate-like conductor similar to the plate-like conductors 10A and 10B, and the size (thickness) in the Z direction of the end portion E21 and the end portion E22 is smaller than the size (width) in the X direction.
  • substantially equal currents flow through the plate-like conductor 10A, the plate-like conductor 10B, and the second bus bar 20. That is, these conductors have approximately the same resistance value between the two ends where current flows.
  • the width in the X direction, the thickness in the Z direction, the length of the current path, the area of the contact portion, etc. are set so that substantially equal currents flow.
  • FIG. 3 is a diagram showing an example of the attached state of the current sensor 1 shown in FIG. 1, and is a view of the X2 direction from the X1 side.
  • the current sensor 1 according to the present embodiment can connect the two ends E21 and E22 of the second bus bar 20 and the plate conductors 10A and 10B with screws (81, 83). is there.
  • a through hole through which a screw (81, 83) is inserted in the Z direction is formed at each end of the second bus bar 20, the plate conductor 10A, and the plate conductor 10B.
  • the second bus bar 20 has a through hole T21 at the end E21 and a through hole T22 at the end E22.
  • the plate-like conductor 10A has a through hole T11A formed at the end E11A and a through hole T12A formed at the end E12A.
  • the plate-like conductor 10B has a through hole T11B at the end E11B and a through hole T12B at the end E12B.
  • a screw 81 is inserted through the through holes T21, T11A, and T11B, and a screw 83 is inserted through the through holes T22, T12A, and T12B.
  • the nuts 82 and 84 are fastened to the tips of the screws 81 and 83 inserted through the through holes, whereby the two ends E21 and E22 of the second bus bar 20 and the plate-like conductors 10A and 10B are connected.
  • the screws 81 and 83 are used to connect the bus bars 101 and 102 through which the current to be detected flows and the current sensor 1.
  • the end of the bus bar 101 has a through hole through which the screw 81 is inserted in the Z direction, and is fixed between the end E11B of the plate-like conductor 10B and the nut 82.
  • the end of the bus bar 102 has a through hole through which the screw 83 is inserted in the Z direction, and is fixed between the end E12B of the plate-like conductor 10B and the nut 84.
  • the magnetic sensors SA and SB are sensors having high sensitivity to a magnetic field in a specific direction (sensitivity direction), and include a magnetoresistive effect element such as a GMR element.
  • the sensitivity directions of the magnetic sensors SA and SB are directed in the Y direction so as to detect a magnetic field in the Y direction parallel to the extending direction of the first bus bar 10.
  • a pair of magnetic sensors SA and SB (hereinafter referred to as “a pair of magnetic sensors”) is disposed at a pair of locations.
  • the pair of places are places where the magnetic field generated by the current of the second bus bar 20 has a magnetic field component in the Y direction parallel to the extending direction of the first bus bar 10, and the magnetic field components of each other are the second bus bar 20. It is a place with a difference according to the current flowing through. That is, in this pair of locations, when the current of the second bus bar 20 increases, the difference in the magnetic field component in the Y direction due to this current increases. Conversely, when the current of the second bus bar 20 is reduced, the difference in the magnetic field component in the Y direction due to this current is reduced.
  • the pair of magnetic sensors (SA and SB) are arranged at a pair of locations that are plane-symmetric with respect to the virtual plane PL.
  • the virtual plane PL is a plane that passes through the bent portion 23 and is perpendicular to the extending direction (Y direction) of the first bus bar 10. Since the first bus bar 10 and the second bus bar 20 have a symmetrical shape with respect to the virtual plane PL, the distribution of the magnetic field due to the current flowing through the first bus bar 10 and the second bus bar 20 is substantially symmetrical with respect to the virtual plane PL. It becomes.
  • the pair of magnetic sensors (SA and SB) detect magnetic fields due to currents flowing through the two arm portions 21 and 22 in a pair of locations that are plane-symmetric with respect to the virtual plane PL.
  • FIG. 4 is a diagram illustrating the direction of the magnetic field due to the current flowing through each bus bar (10, 20) in the current sensor 1 shown in FIG.
  • I1 indicates a current flowing through the first bus bar 10 (plate conductors 10A and 10B)
  • I2 indicates a current flowing through the second bus bar 20.
  • the magnetic sensor SA includes two magnetoresistive elements M1 and M2, and the magnetic sensor SB includes two magnetoresistive elements M3 and M4.
  • the arrow in FIG. 4 represents the sensitivity direction, the sensitivity direction of the magnetoresistive effect elements M1 and M3 is the Y1 direction, and the sensitivity direction of the magnetoresistive effect elements M2 and M4 is the Y2 direction.
  • the component in the Y direction is opposite to the magnetic field H22 generated by the current I2 flowing through the portion 22.
  • the magnetic field H21 has a magnetic field component in the Y1 direction
  • the magnetic field H22 has a magnetic field component in the Y2 direction.
  • the second bus bar 20 has a symmetrical shape with respect to the virtual plane PL, the magnetic field generated by the current I2 flowing through the second bus bar 20 is substantially symmetrical with respect to the virtual plane PL, and a pair of magnetic sensors
  • the magnetic field strengths in (SA and SB) are almost equal. Therefore, in the pair of locations where the pair of magnetic sensors (SA and SB) are disposed, the magnetic field components in the Y direction of the magnetic field generated by the current I2 are opposite to each other, and the magnitudes thereof are approximately equal.
  • the magnetic field H1 due to the current I1 flowing through the first bus bar 10 is perpendicular to the Y direction and has almost no magnetic field component in the Y direction. Therefore, in the magnetic sensors SA and SB (magnetoresistance effect elements M1 to M4), the magnetic field H1 due to the current I1 is hardly detected.
  • the sensor unit 50 generates a detection signal indicating the detection result of the current I2 flowing through the second bus bar 20 based on the difference between the magnetic fields detected by the pair of magnetic sensors (SA and SB).
  • the sensor unit 50 includes a bridge circuit 51 that detects changes in the resistance values of the magnetoresistive elements M1 to M4.
  • the bridge circuit 51 includes a half bridge composed of magnetoresistive elements M1 and M2 constituting the magnetic sensor SA, and a half bridge composed of magnetoresistive elements M2 and M4 constituting the magnetic sensor SB.
  • the magnetoresistive effect element M1 and the magnetoresistive effect element M2 are connected in series, and the power supply voltage VDD is applied to one end of the magnetoresistive effect element M1, and the magnetoresistive effect element One end of M2 is connected to the ground.
  • the magnetoresistive effect element M3 and the magnetoresistive effect element M4 are connected in series, and the power supply voltage VDD is applied to one end of the magnetoresistive effect element M3.
  • One end of M4 is connected to the ground.
  • the bridge circuit 51 outputs a voltage Va at the midpoint of connection between the magnetoresistive elements M1 and M2, and outputs a voltage Vb at the midpoint of connection between the magnetoresistive elements M3 and M4.
  • the resistance value of the magnetoresistive effect element decreases as the magnetic field in the sensitivity direction increases. Therefore, as shown in FIG. 4, when the current I2 flowing from the Y2 side to the Y1 side increases (or when the current I2 flowing from the Y1 side to the Y2 side decreases), the resistance values of the magnetoresistive elements M1 and M4 are relatively And the resistance values of the magnetoresistive effect elements M2 and M3 become relatively large. Therefore, the voltage Va increases and the voltage Vb decreases.
  • FIG. 5 is a diagram illustrating an example of the configuration of the sensor unit 50.
  • the sensor unit 50 shown in the example of FIG. 5 includes a coil L, a coil drive circuit 52, a differential amplifier 53, and a resistor Rs in addition to the bridge circuit 51 described above.
  • the coil L generates a magnetic field for canceling the magnetic field in the Y direction generated at each position of the magnetoresistive effect elements M1 to M4 by the current I2 of the second bus bar 20.
  • the coil L forms a current path CP1 extending in the Z direction in the vicinity of the magnetoresistive elements M1 and M2.
  • a magnetic field H51 in the Y2 direction is generated in the vicinity of the magnetoresistive elements M1 and M2.
  • the magnetic field H51 cancels the magnetic field component in the Y1 direction generated at the position of the magnetoresistive effect elements M1 and M2 by the current I2.
  • the coil L forms a current path CP2 extending in the Z direction in the vicinity of the magnetoresistive elements M3 and M4.
  • a magnetic field H52 in the Y1 direction is generated in the vicinity of the magnetoresistive elements M3 and M4. This magnetic field H52 cancels the magnetic field component in the Y2 direction generated at the position of the magnetoresistive effect elements M3 and M4 by the current I2.
  • the coil drive circuit 52 causes a current Ib corresponding to the difference between the voltages Va and Vb of the bridge circuit 51 to flow through the coil L.
  • the resistance values of the magnetoresistive elements M1 to M4 are substantially equal when the magnetic field is zero.
  • the voltages Va and Vb become substantially equal.
  • the resistance values of the magnetoresistive elements M1 to M4 change due to the magnetic field in the Y direction due to the current I2, and the voltage Va becomes higher than Vb.
  • coil drive circuit 52 outputs current Ib so that current path CP1 flows in the Z2 direction and current path CP2 flows in the Z1 direction.
  • the coil drive circuit 52 increases the current Ib as the difference between the voltages Va and Vb increases.
  • the magnetic field in the Y direction generated by the current Ib of the coil L acts so as to cancel the magnetic field component in the Y direction generated by the current I2 of the second bus bar 20. Therefore, the rise of the voltage Va with respect to the voltage Vb is suppressed.
  • the coil drive circuit 52 has a sufficiently large gain, which is a ratio between the voltage (Va ⁇ Vb) input from the bridge circuit 51 and the current Ib output to the coil L. Therefore, the voltages Va and Vb of the bridge circuit 51 become substantially equal by the feedback operation. Thereby, in the magnetic sensors SA and SB (magnetoresistance effect elements M1 to M4), the Y-direction component of the magnetic field due to the current I2 of the second bus bar 20 and the Y-direction magnetic field due to the current Ib of the coil L are substantially equal. .
  • the resistor Rs is provided on the current path of the coil L.
  • the differential amplifier 53 amplifies the voltage generated at both ends of the resistor Rs by the current Ib flowing through the coil L and outputs it as a detection signal S12.
  • the detection signal S12 is a signal proportional to the current Ib flowing through the coil L, and is substantially proportional to the magnetic field of the coil L.
  • the magnetic field of the coil L is controlled so as to cancel the Y direction component of the magnetic field acting on the magnetic sensors SA and SB (magnetoresistance effect elements M1 to M4) by the current I2 of the second bus bar 20, and is therefore almost proportional to the current I2. To do. Therefore, the detection signal S12 is a signal substantially proportional to the current I2.
  • the sensor unit 50 is formed, for example, inside a semiconductor integrated circuit, and the semiconductor integrated circuit is mounted on the substrate 60 as an electronic component.
  • the substrate 60 is fixed inside the case 70 in a posture in which the component mounting surface is perpendicular to the X direction.
  • the case 70 is an insulating member such as resin, and is fixed to the second bus bar 20 by integral molding, for example.
  • the detected current flowing from the bus bars 101 to 102 is divided into the first bus bar 10 (plate conductors 10A and 10B) and the second bus bar 20.
  • the current I2 shunted to the second bus bar 20 is detected by the sensor unit 50, and a detection signal S12 indicating the detection result is generated.
  • the ratio at which the current to be detected is divided into the first bus bar 10 and the second bus bar 20 is preset by the ratio of the resistance values of the bus bars (plate conductor 10A, plate conductor 10B, second bus bar 20).
  • the current is set to flow evenly to each bus bar. Therefore, the detected current is obtained from the detection signal S12 generated in the sensor unit 50.
  • the first bus bar 10 extending in a straight line and the bent second bus bar 20 are in contact with each other at two end portions (E11 and E12, E21 and E22). Therefore, at least a part of the second bus bar 20 bent between the two ends E21 and E22 has an extension direction (Y direction) of the first bus bar 10 extending linearly between the two ends E11 and E12. Current flows in a direction that is not parallel to). Thereby, since the magnetic field due to the current I2 flowing through at least a part of the second bus bar 20 has a component in the Y direction parallel to the extending direction of the first bus bar 10, this is detected by the magnetic sensors SA and SB. Can do.
  • the magnetic field due to the current I1 flowing through the first bus bar 10 is perpendicular to the extending direction (Y direction) of the first bus bar 10, it does not have a component in the Y direction and is hardly detected by the magnetic sensors SA and SB. . That is, the magnetic sensors SA and SB mainly detect the magnetic field due to the current I2 flowing through the second bus bar 20, and the detection result is hardly affected by the magnetic field due to the current I1 flowing through the first bus bar 10. Therefore, the current can be detected with high accuracy based on the magnetic field of the current I2 that is shunted to the second bus bar 20. In addition, since it is not necessary to provide a magnetic shield or the like in order to reduce the influence of the magnetic field due to the current I1 that is diverted to the first bus bar 10, the number of parts can be suppressed, and the size of the device can be reduced.
  • the current I2 flowing through the second bus bar 20 can be detected based on the difference between the magnetic fields detected by the pair of magnetic sensors (SA and SB).
  • the external magnetic field from a distant noise source is substantially equal at this pair of locations, it is difficult to affect the difference between the magnetic fields detected by the pair of magnetic sensors (SA and SB). That is, the detection result of the current I2 based on the difference between the magnetic fields detected by the pair of magnetic sensors (SA and SB) is hardly affected by the external magnetic field. Therefore, the current detection accuracy can be increased.
  • the magnetic field distribution due to the current I2 flowing through the second bus bar 20 is symmetric with respect to the virtual plane PL.
  • the pair of places where the pair of magnetic sensors (SA and SB) are disposed are places that are plane-symmetric with respect to the virtual plane PL. Therefore, the magnetic field components in the Y direction parallel to the extending direction of the bus bar 10 out of the magnetic field due to the current I2 flowing through the second bus bar 20 are opposite to each other in the pair of locations, and the magnitudes thereof are substantially equal. Therefore, the current I2 flowing through the second bus bar 20 can be detected based on the difference between the magnetic fields in the Y direction detected by the pair of magnetic sensors (SA and SB).
  • the arm portions 21 and 22 are inclined with respect to the extending direction (Y direction) of the first bus bar 10, the magnetic field due to the current I2 flowing through the arm portions 21 and 22 is extended in the extending direction of the first bus bar 10 ( (Y direction) is not parallel.
  • SA and SB since the detection sensitivity of the magnetic field with respect to the electric current I2 becomes low, it becomes possible to detect a larger electric current.
  • the resistance value of the first bus bar 10 can be changed by changing the number of stacked plate-like conductors 10A and 10B in the first bus bar 10, the shunt current between the first bus bar 10 and the second bus bar 20 can be changed.
  • the ratio can be easily changed.
  • the detection range of a to-be-detected electric current can be easily changed only by removal
  • the 2nd bus bar 20 to which the sensor part 50 was fixed can be used in common in the various current sensors from which the detection range of an electric current differs, it becomes possible to aim at commonization of components.
  • FIG. 6 is a diagram illustrating an example of a current sensor 1A according to the second embodiment of the present invention.
  • a current sensor 1A shown in FIG. 6 includes a first bus bar 30 and a second bus bar 40 connected in parallel, and a sensor unit 50 having magnetic sensors SA and SB for detecting a magnetic field due to a current flowing through the second bus bar 40.
  • the first bus bar 30 has a shape extending linearly between two ends E31 and E32 through which current flows, thereby forming a linear current path.
  • the extending direction of the first bus bar 30 is the Y direction.
  • FIG. 7 is a diagram showing a state in which the bus bars (30, 40) connected in parallel in the current sensor 1A shown in FIG. 6 are disassembled.
  • the first bus bar 30 includes two plate-like conductors 30A and 30B.
  • the plate-shaped conductors 30A and 30B have a smaller size (thickness) in the X direction than a size (width) in the Z direction, and each extend linearly in the Y direction.
  • the plate-like conductors 30A and 30B are stacked in the X direction as shown in FIG. That is, the surface on the X1 side of the plate-like conductor 30A and the surface on the X2 side of the plate-like conductor 30B are in contact.
  • the two plate-like conductors 30A and 30B have the same planar shape when viewed from the X direction (stacking direction). That is, the plate-shaped conductors 30A and 30B have the same width in the Z direction and the length in the Y direction.
  • the second bus bar 40 has a bent shape between the two ends E41 and E42 through which a current flows, thereby forming a bent current path.
  • the second bus bar 40 shown in FIG. 7 has two bent portions 44 and 45, two arm portions 41 and 42, and a base portion 43.
  • the base portion 43 is provided between the two bent portions 44 and 45.
  • the arm portion 41 is provided between the bent portion 44 and the end portion E41.
  • the arm portion 42 is provided between the bent portion 45 and the end portion E42.
  • the arm portions 41 and 42 extend linearly in a direction perpendicular to the extending direction (Y direction) of the first bus bar 30 and parallel to each other. In the example of FIG. 7, the arm portions 41 and 42 extend in the Z direction, and the lengths in the extending direction are substantially equal.
  • the second bus bar 40 shown in FIG. 7 has a bent portion 46 between the arm portion 41 and the end portion E41, and has a bent portion 47 between the arm portion 42 and the end portion E42. Both the end E41 and the end E42 extend linearly in the Y direction.
  • the two ends E41 and E42 of the second bus bar 40 are stacked on the plate conductor 30A in the same direction as the stack direction (X direction) of the plate conductors 30A and 30B. That is, the X1 side surface of the end portion E41 of the second bus bar 40 and the X2 side surface of the end portion E31A of the plate conductor 30A are in contact with each other, and the X1 side surface of the end portion E42 of the second bus bar 40 and the plate conductor 30A. The X2 side surface of the end E32A comes into contact.
  • the second bus bar 40 is a plate-like conductor similar to the plate-like conductors 30A and 30B, and the size (thickness) in the X direction of the end portion E41 and the end portion E42 is smaller than the size (width) in the Z direction.
  • substantially equal currents flow through the plate-like conductor 30A, the plate-like conductor 30B, and the second bus bar 40. That is, these conductors have approximately the same resistance value between the two ends where current flows.
  • the width in the Z direction, the thickness in the X direction, the length of the current path, the area of the contact portion, and the like are set so that substantially equal currents flow.
  • FIG. 8 is a diagram illustrating an example of an attached state of the current sensor 1A illustrated in FIG. 8A is a view of the X2 direction from the X1 side
  • FIG. 8B is a view of the Z1 direction from the Z2 side.
  • the current sensor 1A according to the present embodiment can connect the two ends E41 and E42 of the second bus bar 40 and the plate-like conductors 30A and 30B with screws (85, 87). is there.
  • a through hole through which a screw (85, 87) is inserted in the X direction is formed at each end of the second bus bar 40, the plate conductor 30A, and the plate conductor 30B.
  • the second bus bar 40 has a through hole T41 at the end E41 and a through hole T42 at the end E42.
  • the plate-like conductor 30A has a through hole T31A formed at the end E31A and a through hole T32A formed at the end E32A.
  • the plate-like conductor 30B has a through hole T31B formed at the end E31B and a through hole T32B formed at the end E32B.
  • Screws 85 are inserted through the through holes T41, T31A, and T31B, and screws 87 are inserted through the through holes T42, T32A, and T32B.
  • the nuts 86 and 88 are fastened to the tips of the screws 85 and 87 inserted through the through holes, whereby the two ends E41 and E42 of the second bus bar 40 are connected to the plate-like conductors 30A and 30B.
  • the screws 85 and 87 are used to connect the bus bars 103 and 104 through which the current to be detected flows and the current sensor 1A.
  • the end portion of the bus bar 103 has a through hole through which the screw 85 is inserted in the X direction, and is fixed between the end portion E41 of the second bus bar 40 and the nut 86.
  • the end portion of the bus bar 104 has a through hole through which the screw 87 is inserted in the X direction, and is fixed between the end portion E42 of the second bus bar 40 and the nut 88.
  • the magnetic sensors SA and SB and the sensor unit 50 including the same are the same components as those of the current sensor 1 (FIGS. 1 to 5) according to the first embodiment already described. Also in the present embodiment, the sensitivity directions of the magnetic sensors SA and SB are each directed in the Y direction so as to detect a magnetic field in the Y direction parallel to the extending direction of the first bus bar 30.
  • the pair of locations where the pair of magnetic sensors (SA and SB) are disposed are locations where the magnetic field generated by the current of the second bus bar 40 has a magnetic field component in the Y direction parallel to the extending direction of the first bus bar 30.
  • the magnetic field components are different from each other in accordance with the current flowing through the second bus bar 40. That is, in this pair of locations, when the current of the second bus bar 40 increases, the difference in the magnetic field component in the Y direction due to this current increases. Conversely, when the current of the second bus bar 40 is reduced, the difference in the magnetic field component in the Y direction due to this current is reduced.
  • the pair of magnetic sensors (SA and SB) are disposed at a pair of locations that are plane-symmetric with respect to the virtual plane PL.
  • the virtual plane PL in the present embodiment is a plane that passes through the center of the base 43 in the extending direction (Y direction) of the first bus bar 30 and is perpendicular to the extending direction (Y direction). Since the first bus bar 30 and the second bus bar 40 have a symmetric shape with respect to the virtual plane PL, the distribution of the magnetic field due to the current flowing through the first bus bar 30 and the second bus bar 40 is almost the same as the virtual plane PL. It becomes symmetric.
  • the pair of magnetic sensors (SA and SB) detect magnetic fields due to currents flowing through the two arm portions 41 and 42 in a pair of locations symmetrical to the virtual plane PL.
  • FIG. 9 is a diagram illustrating the direction of the magnetic field due to the current flowing through each bus bar (30, 40) in the current sensor 1A shown in FIG. “I3” in FIG. 9 indicates a current flowing through the first bus bar 30 (plate conductors 30A and 30B), and “I4” indicates a current flowing through the second bus bar 40.
  • All the magnetic fields H42 generated by the current I4 flowing through the portion 42 are parallel to the Y direction, and their directions are opposite to each other. For example, as shown in FIG. 9, when the current I4 flows from the Y2 side to the Y1 side, the magnetic field H41 faces the Y1 direction, and the magnetic field H42 faces the Y2 direction.
  • the second bus bar 40 has a symmetrical shape with respect to the virtual plane PL, the magnetic field generated by the current I4 flowing through the second bus bar 40 is substantially symmetrical with respect to the virtual plane PL, and a pair of magnetic sensors
  • the magnetic field strengths in (SA and SB) are almost equal. Therefore, in a pair of places where the pair of magnetic sensors (SA and SB) are disposed, the magnetic fields in the Y direction generated by the current I4 are opposite to each other, and the magnitudes thereof are substantially equal.
  • the magnetic field H3 caused by the current I3 flowing through the first bus bar 30 is perpendicular to the Y direction and has almost no magnetic field component in the Y direction. Therefore, in the magnetic sensors SA and SB (magnetoresistance effect elements M1 to M4), the magnetic field H3 due to the current I3 is hardly detected.
  • the output voltages Va and Vb of the bridge circuit 51 in the present embodiment change in the same manner as the bridge circuit 51 in the first embodiment already described. That is, when the current I4 flowing from the Y2 side to the Y1 side increases (or when the current I4 flowing from the Y1 side to the Y2 side decreases), the voltage Va increases and the voltage Vb decreases, and conversely, from the Y2 side to the Y1 side When the current I2 flowing to the side decreases (or the current I4 flowing from the Y1 side to the Y2 side increases), the voltage Va decreases and the voltage Vb increases. Also in the present embodiment, the feedback control is performed by the sensor unit 50 similar to that in FIG. 5, so that the current Ib of the coil L is adjusted so that the voltages Va and Vb are substantially equal, and the detection signal proportional to the current Ib. S12 is generated.
  • the semiconductor integrated circuit including the sensor unit 50 is mounted on the substrate 60A as an electronic component.
  • the board 60A is fixed inside the case 70A in a posture in which the component mounting surface is perpendicular to the X direction.
  • the case 70A is an insulating member such as a resin, and is fixed to the second bus bar 40 by, for example, integral molding.
  • the current sensor 1A according to the present embodiment having the above-described configuration, it is possible to achieve the same effect as the current sensor 1 according to the first embodiment.
  • the current sensor 1A according to the present embodiment since the arm portions 41 and 42 are perpendicular to the extending direction (Y direction) of the first bus bar 30, the magnetic field due to the current I4 flowing through the arm portions 41 and 42 is The first bus bar 30 is substantially parallel to the extending direction (Y direction).
  • SA and SB since the detection sensitivity of the magnetic field with respect to the electric current I4 becomes high, a smaller electric current can be detected.
  • the first bus bar (10, 30) includes two plate conductors (10A and 10B, 30A and 30B), but in other embodiments of the present invention, three or more plates are used. A shaped conductor may be included. Further, when the detected current is small, the first bus bar may be omitted, and the current may be detected using only the second bus bar.
  • a half bridge circuit in which two magnetoresistive elements are connected in series to each of a pair of magnetic sensors SA and SB
  • one magnetoresistive effect element is used for each of a pair of magnetic sensors arranged at a pair of locations, and the relative difference between the resistance values (the magnetic field difference at the pair of locations is calculated).
  • a detection signal corresponding to the current of the second bus bar may be generated.
  • the magnetoelectric conversion element used for the magnetic sensor is not limited to the magnetoresistive effect element, and other magnetoelectric conversion elements such as a Hall element may be used.
  • the coil current is feedback-controlled so that the magnetic field due to the current of the second bus bar is canceled by the magnetic field due to the coil current, and the detection result of the detected current is obtained from the current of the coil.
  • the detection result of the detected current may be directly obtained based on the signal of the magnetic sensor corresponding to the magnetic field generated by the current of the second bus bar.
  • magnetoresistive effect element 81, 83, 85, 87 ... screw, 82, 84, 86, 88 ... nut, 101 ⁇ 104 ... busbar, E11, E12, E21, E22, E31, E32, E41, E42 ... end, T11A, T11B, T12A, T12B, T21, T22, T31A, T31B, T32A, T32B T41, T42 ... through hole, PL ... virtual plane, L ... coil

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

電流が流れる2つの端部E11及びE12の間において直線状に延びた第1バスバー10と、電流が流れる2つの端部E21及びE22の間において屈曲した第2バスバー20と、第2バスバー20に流れる電流による磁界を検出する磁気センサSA及びSBと備える。第1バスバー10の端部E11と第2バスバー20の端部E21とが接して導通するとともに、第1バスバー10の端部E12と第2バスバー20の端部E22とが接して導通する。磁気センサSA及びSBは、第1バスバー10の延伸方向と平行なY方向の磁界をそれぞれ検出する。

Description

電流センサ
 本発明は、磁界に基づいて電流を検出する電流センサに係り、特に、分流電流の磁界に基づいて分流元の比較的大きな電流を検出可能な電流センサに関するものである。
 電流センサの検出範囲を超える大きな電流を検出する場合に、検出対象の電流から分流した電流を電流センサで検出することが一般的に行われている。下記の特許文献1には、電流検出対象となるバスバーと並列に分流バスバーが接続されたバスバー構造が記載されている。
特開平9-93711号公報
 しかしながら、特許文献1に記載されるバスバー構造では、検出対象の電流が分流する2つのバスバーがほぼ平行に配置されるため、これらのバスバーに流れる電流による磁界は、互いに平行な方向の成分を有しやすくなる。特定の感度方向を持つ磁電変換素子(GMR素子など)を用いて磁界を検出する場合、一方のバスバーの電流による磁界の向きに感度方向を合わせると、他方のバスバーの電流による磁界も検出されてしまう。すなわち、一方のバスバーに分流する電流による磁界の検出結果が、他方のバスバーに分流する電流による磁界の影響を受けてしまい、電流の検出精度が低下するという不利益がある。
 他方のバスバーに分流する電流による磁界の影響を低減するために磁気シールドを設けたり、磁界検出用のコアを設けたりすることも考えられるが、これでは部品数が多くなり、サイズが大きくなるという不利益が生じる。
 本発明はかかる事情に鑑みてなされたものであり、その目的は、分流電流の磁界に基づいて精度よく電流を検出できる電流センサを提供することにある。
 本発明の電流センサは、電流が流れる2つの端部の間において直線状に延びた第1バスバーと、電流が流れる2つの端部の間において屈曲した第2バスバーと、前記第2バスバーに流れる電流による磁界を検出する磁気センサと備える。前記第1バスバーの一方の前記端部と前記第2バスバーの一方の前記端部とが接して導通するとともに、前記第1バスバーの他方の前記端部と前記第2バスバーの他方の前記端部とが接して導通する。前記磁気センサは、前記第1バスバーの延伸方向と平行な方向の磁界を検出する。
 この構成によれば、前記第1バスバーと前記第2バスバーとが互いの2つの端部において接して導通していることから、2つの端部の間において屈曲した前記第2バスバーの少なくとも一部には、2つの端部の間において直線状に延びた前記第1バスバーの延伸方向と平行にならない方向に電流が流れる。これにより、前記第2バスバーの少なくとも一部に流れる電流による磁界は、前記第1バスバーの延伸方向に対して平行な成分を持つため、これを前記磁気センサにおいて検出することが可能となる。また、前記第1バスバーに流れる電流による磁界は、前記第1バスバーの延伸方向に対して垂直であるため、前記磁気センサにおいて検出され難い。すなわち、前記磁気センサでは主として前記第2バスバーに流れる電流による磁界が検出され、その検出結果は前記第1バスバーに流れる電流による磁界の影響を受け難い。
 好適に、上記電流センサは、一対の場所に配置された一対の前記磁気センサを備える。前記一対の場所は、前記第2バスバーの電流により生じる磁界が前記第1バスバーの延伸方向と平行な磁界成分をそれぞれ持つ場所であるとともに、互いの当該磁界成分が前記第2バスバーに流れる電流に応じた差を持つ場所である。
 この構成によれば、前記一対の場所において、前記第2バスバーの電流により生じる磁界に含まれる前記第1バスバーの延伸方向と平行な磁界成分が、前記第2バスバーに流れる電流に応じた差を持つ。この一対の場所に配置された前記一対の磁気センサでは、前記第1バスバーの延伸方向と平行な磁界がそれぞれ検出されるため、前記一対の磁気センサで検出される磁界は、前記第2バスバーに流れる電流に応じた差を持つ。従って、前記一対の磁気センサにより検出される磁界の差に基づいて、前記第2バスバーに流れる電流の検出が可能となる。遠方のノイズ源からの外来磁界は、前記一対の場所においてほぼ等しくなるため、前記一対の磁気センサにより検出される磁界の差に影響を与え難い。
 好適に、前記第2バスバーは、屈曲部と、前記屈曲部から前記2つの端部へそれぞれ前記第1バスバーの延伸方向に対して傾斜した方向へ直線状に延びており、互いの長さが等しい2つの腕部とを有する。前記一対の磁気センサは、前記屈曲部を通り前記第1バスバーの延伸方向と垂直な仮想平面に対して、互いに面対称となる一対の場所に配置されており、前記2つの腕部に流れる電流による磁界を検出する。
 この構成によれば、前記第2バスバーに流れる電流による磁界の分布が前記仮想平面に対して対称となり、前記第1バスバーの延伸方向と平行な磁界が前記一対の場所において互いに逆向きとなる。そのため、前記一対の磁気センサで検出される磁界は、前記第2バスバーに流れる電流に応じた差を持つ。また、前記腕部が前記第1バスバーの延伸方向に対して傾斜していることから、前記腕部に流れる電流による磁界は、前記第1バスバーの延伸方向に対して平行にならない。これにより、電流に対する磁界の検出感度が低くなるため、より大きな電流の検出が可能となる。
 好適に、前記第2バスバーは、2つの屈曲部と、一方の前記屈曲部と一方の前記端部との間、及び、他方の前記屈曲部と他方の前記端部との間にそれぞれ設けられており、前記第1バスバーの延伸方向と垂直な方向かつ互いに平行な方向へ直線状に延びた2つの腕部と、前記2つの屈曲部の間に設けられた基部とを有する。前記一対の磁気センサは、前記第1バスバーの延伸方向における前記基部の中央を通り当該延伸方向と垂直な仮想平面に対して、互いに面対称となる一対の場所に配置されており、前記2つの腕部に流れる電流による磁界を検出する。
 この構成によれば、前記第2バスバーに流れる電流による磁界の分布が、前記仮想平面に対して対称となる。そのため、前記第2バスバーに流れる電流による磁界のうち、前記第1バスバーの延伸方向と平行な磁界の成分は、前記一対の場所において互いに逆向きとなり、その大きさがほぼ等しくなる。従って、前記一対の磁気センサで検出される磁界は、前記第2バスバーに流れる電流に応じた差を持つ。また、前記腕部が前記第1バスバーの延伸方向に対して垂直であることから、前記腕部に流れる電流による磁界は、前記第1バスバーの延伸方向に対して平行になる。これにより、電流に対する磁界の検出感度が高くなるため、より小さな電流の検出が可能となる。
 好適に、前記第1バスバーは、それぞれ前記延伸方向へ直線状に延びており、前記延伸方向と垂直な方向に積み重ねられた複数の板状導体を含む。
 この構成によれば、前記第1バスバーにおける前記板状導体の積み重ね数を変更することで、前記第1バスバーと前記第2バスバーとの間における分流の割合を容易に変更することが可能となる。これにより、電流の検出範囲を容易に変更することが可能となる。
 好適に、前記複数の板状導体の各々に流れる電流が互いに等しく、1つの前記板状導体に流れる電流と前記第2バスバーに流れる電流とが等しい。
 この構成によれば、前記第1バスバーにおける前記板状導体の積み重ね数を変更することで、電流の検出範囲を概ね整数倍に変更することが可能となる。
 好適に、前記複数の板状導体は、前記積み重ねの方向からみた平面形状が互いに等しい。
 この構成によれば、前記板状導体の積み重ね数を増やしても、前記積み重ねの方向からみた前記第1バスバーの平面形状のサイズが変わらないため、電流の検出範囲の拡大による装置サイズの大型化が抑制される。
 好適に、前記第2バスバーの前記2つの端部は、前記積み重ねの方向と同じ方向で前記板状導体の上に積み重ねられる。
 この構成によれば、前記第1バスバーにおける前記板状導体の積み重ね数を変更しても、前記第2バスバーと前記第1バスバーとの接触が安定的に確保される。
 好適に、上記電流センサは、前記第2バスバーの前記2つの端部と前記複数の板状導体とをねじで連結可能である。前記第2バスバーの前記2つの端部には、前記積み重ねの方向と平行な方向に前記ねじが挿通される貫通孔がそれぞれ形成される。前記板状導体の2つの端部には、前記積み重ねの方向と平行な方向に前記ねじが挿通される貫通孔がそれぞれ形成される。
 この構成によれば、前記ねじによる前記第2バスバーと前記複数の板状導体との連結部分に他のバスバーを重ねて連結することが可能となるため、前記板状導体の積み重ね数が増えても連結作業が煩雑にならない。
 本発明によれば、分流電流の磁界に基づいて精度よく電流を検出できる。
本発明の第1の実施形態に係る電流センサの一例を示す図である。 図1に示す電流センサにおいて並列に接続されたバスバーが分解された状態を示す図である。 図1に示す電流センサの取り付け状態の一例を示す図である。 図1に示す電流センサにおいて、バスバーに流れる電流による磁界の向きを図解した図である。 センサ部の構成の一例を示す図である。 本発明の第2の実施形態に係る電流センサの一例を示す図である。 図6に示す電流センサにおいて並列に接続されたバスバーが分解された状態を示す図である。 図6に示す電流センサの取り付け状態の一例を示す図である。 図6に示す電流センサにおいて、バスバーに流れる電流による磁界の向きを図解した図である。
<第1の実施形態>
 図1は、本発明の第1の実施形態に係る電流センサ1の一例を示す図である。図1に示す電流センサ1は、並列に接続された第1バスバー10及び第2バスバー20と、第2バスバー20に流れる電流による磁界(磁束密度)を検出する磁気センサSA及びSBを有したセンサ部50とを備える。
 図1に示すように、本明細書では、互いに直交する3つの方向を「X」、「Y」及び「Z」とする。また、X方向に含まれる互いに逆向きの方向を「X1」及び「X2」とし、Y方向に含まれる互いに逆向きの方向を「Y1」及び「Y2」とし、Z方向に含まれる互いに逆向きの方向を「Z1」及び「Z2」とする。
 第1バスバー10は、電流が流れる2つの端部E11及びE12の間において直線状に延びた形状を持っており、これにより直線状の電流路を形成する。図1の例において、第1バスバー10の延伸方向はY方向である。
 図2は、図1に示す電流センサ1において並列に接続されたバスバー(10、20)が分解された状態を示す図である。図2に示すように、第1バスバー10は、2つの板状導体10A及び10Bを含む。板状導体10A、10Bは、Z方向のサイズ(厚み)がX方向のサイズ(幅)に比べて小さく、それぞれY方向へ直線状に延びている。板状導体10A、10Bは、図1において示すようにZ方向に積み重ねられている。すなわち、板状導体10AのZ2側の表面と板状導体10BのZ1側の表面とが接触している。
 図1、図2の例において、2つの板状導体10A、10Bは、Z方向(積み重ね方向)からみた平面形状が互いに等しい。すなわち、板状導体10A及び10BのX方向の幅とY方向の長さがそれぞれ等しい。板状導体10AのX方向の幅は、2つの端部E11A、E12Aに比べて中間部分の方が狭くなっており、板状導体10BのX方向の幅も同様に、2つの端部E11B、E12Bに比べて中間部分の方が狭くなっている。
 第2バスバー20は、電流が流れる2つの端部E21及びE22の間において屈曲した形状を持っており、これにより屈曲した電流路を形成する。図1の例において、第2バスバー20は、屈曲部23と2つの腕部21及び22とを有する。屈曲部23は、2つの端部E21及びE22の間に位置する。2つの端部E21及びE22は、屈曲部23から2つの端部E21及びE22へそれぞれY方向に対して傾斜した方向へ直線状に延びる。腕部21は屈曲部23から端部E21へ直線状に延び、腕部22は屈曲部23から端部E22へ直線状に延びる。腕部21及び22は、X方向に対してそれぞれ垂直に延びており、延伸方向の長さがほぼ等しい。
 また、図1に示す第2バスバー20は、腕部21と端部E21との間に屈曲部24を有し、腕部22と端部E22との間に屈曲部25を有する。端部E21及び端部E22は、何れもY方向へ直線状に延びている。
 図1に示す電流センサ1では、第1バスバー10の端部E11と第2バスバー20の端部E21とが接して導通するとともに、第1バスバー10の端部E12と第2バスバー20の端部E22とが接して導通する。
 第2バスバー20の2つの端部E21及びE22は、板状導体10A及び10Bの積み重ね方向(Z方向)と同じ方向で、板状導体10Aの上に積み重ねられる。すなわち、第2バスバー20の端部E21のZ2側表面と板状導体10Aの端部E11AのZ1側表面とが接触し、第2バスバー20の端部E22のZ2側表面と板状導体10Aの端部E12AのZ1側表面とが接触する。第2バスバー20は、板状導体10A及び10Bと同様な板状の導体であり、端部E21及び端部E22のZ方向のサイズ(厚み)がX方向のサイズ(幅)に比べて小さい。
 また、一例において、板状導体10Aと板状導体10Bと第2バスバー20とには、ほぼ等しい電流が流れる。すなわち、これらの導体は、電流が流れる2つの端部の間の抵抗値が概ね等しい。これらの導体は、互いにほぼ等しい電流が流れるように、X方向の幅やZ方向の厚み、電流経路の長さ、接触部分の面積などが設定される。
 図3は、図1に示す電流センサ1の取り付け状態の一例を示す図であり、X1側からX2方向をみた図である。図3の例に示すように、本実施形態に係る電流センサ1は、第2バスバー20の2つの端部E21及びE22と板状導体10A及び10Bとをねじ(81、83)で連結可能である。第2バスバー20、板状導体10A及び板状導体10Bの各端部には、Z方向にねじ(81、83)が挿通される貫通孔が形成される。第2バスバー20は、端部E21に貫通孔T21が形成され、端部E22に貫通孔T22が形成される。板状導体10Aは、端部E11Aに貫通孔T11Aが形成され、端部E12Aに貫通孔T12Aが形成される。板状導体10Bは、端部E11Bに貫通孔T11Bが形成され、端部E12Bに貫通孔T12Bが形成される。貫通孔T21、T11A及びT11Bにねじ81が挿通され、貫通孔T22、T12A及びT12Bにねじ83が挿通される。貫通孔に挿通されたねじ81、83の先端にナット82、84が締め付けられることで、第2バスバー20の2つの端部E21及びE22と板状導体10A及び10Bとが連結される。
 また図3において示すように、ねじ81、83は、検出対象の電流が流れるバスバー101、102と電流センサ1とを連結するために使用される。バスバー101の端部は、Z方向にねじ81が挿通される貫通孔を有しており、板状導体10Bの端部E11Bとナット82との間に挟まれて固定される。バスバー102の端部は、Z方向にねじ83が挿通される貫通孔を有しており、板状導体10Bの端部E12Bとナット84との間に挟まれて固定される。
 磁気センサSA及びSBは、特定の方向(感度方向)の磁界に強い感度を持つセンサであり、例えばGMR素子などの磁気抵抗効果素子を含んで構成される。磁気センサSA及びSBは、第1バスバー10の延伸方向と平行なY方向の磁界を検出するように、感度方向がそれぞれY方向に向けられている。
 磁気センサSA及びSBのペア(以下、「一対の磁気センサ」と記す。)は、一対の場所に配置される。この一対の場所は、第2バスバー20の電流により生じる磁界が第1バスバー10の延伸方向と平行なY方向の磁界成分をそれぞれ持つ場所であり、また、互いの当該磁界成分が第2バスバー20に流れる電流に応じた差を持つ場所である。すなわち、この一対の場所では、第2バスバー20の電流が大きくなると、この電流によるY方向の磁界成分の差が大きくなる。逆に、第2バスバー20の電流が小さくなると、この電流によるY方向の磁界成分の差が小さくなる。
 図3の例において、一対の磁気センサ(SA及びSB)は、仮想平面PLに対して互いに面対称となる一対の場所に配置される。仮想平面PLは、屈曲部23を通り第1バスバー10の延伸方向(Y方向)と垂直な平面である。仮想平面PLに対して、第1バスバー10及び第2バスバー20は対称な形状を有するため、第1バスバー10及び第2バスバー20に流れる電流による磁界の分布は、仮想平面PLに対してほぼ対称となる。一対の磁気センサ(SA及びSB)は、この仮想平面PLに対して面対称となる一対の場所において、2つの腕部21及び22に流れる電流による磁界を検出する。
 図4は、図1に示す電流センサ1において、各バスバー(10、20)に流れる電流による磁界の向きを図解した図である。図4における「I1」は第1バスバー10(板状導体10A及び10B)に流れる電流を示し、「I2」は第2バスバー20に流れる電流を示す。
 図4の例において、磁気センサSAは2つの磁気抵抗効果素子M1及びM2を含み、磁気センサSBは2つの磁気抵抗効果素子M3及びM4を含む。図4における矢印は感度方向を表しており、磁気抵抗効果素子M1及びM3の感度方向はY1方向、磁気抵抗効果素子M2及びM4の感度方向はY2方向である。
 磁気センサSA(磁気抵抗効果素子M1、M2)が配置される場所において腕部21に流れる電流I2により生じる磁界H21と、磁気センサSB(磁気抵抗効果素子M3、M4)が配置される場所において腕部22に流れる電流I2により生じる磁界H22とでは、Y方向の成分が逆向きになっている。例えば図4に示すようにY2側からY1側へ電流I2が流れる場合、磁界H21はY1方向の磁界成分を有し、磁界H22はY2方向の磁界成分を有する。また、仮想平面PLに対して第2バスバー20が対称な形状を有していることから、第2バスバー20に流れる電流I2による磁界は仮想平面PLに対して概ね対称であり、一対の磁気センサ(SA及びSB)における磁界の強さはほぼ等しい。従って、一対の磁気センサ(SA及びSB)が配置される一対の場所では、電流I2により生じる磁界のY方向の磁界成分が互いに逆向きであり、その大きさがほぼ等しい。
 これに対して、第1バスバー10に流れる電流I1による磁界H1は、Y方向に対して垂直であり、Y方向の磁界成分をほとんど持たない。そのため、磁気センサSA、SB(磁気抵抗効果素子M1~M4)においては、電流I1による磁界H1がほとんど検出されない。
 センサ部50は、一対の磁気センサ(SA及びSB)において検出される磁界の差に基づいて、第2バスバー20に流れる電流I2の検出結果を示す検出信号を生成する。図4の例において、センサ部50は、磁気抵抗効果素子M1~M4の抵抗値の変化を検出するブリッジ回路51を有する。このブリッジ回路51は、磁気センサSAを構成する磁気抵抗効果素子M1及びM2によるハーフブリッジと、磁気センサSBを構成する磁気抵抗効果素子M2及びM4によるハーフブリッジとを含む。一方のハーフブリッジ(磁気センサSA)では、磁気抵抗効果素子M1と磁気抵抗効果素子M2とが直列に接続されており、磁気抵抗効果素子M1の一端に電源電圧VDDが印加され、磁気抵抗効果素子M2の一端がグランドに接続される。他方のハーフブリッジ(磁気センサSB)では、磁気抵抗効果素子M3と磁気抵抗効果素子M4とが直列に接続されており、磁気抵抗効果素子M3の一端に電源電圧VDDが印加され、磁気抵抗効果素子M4の一端がグランドに接続される。ブリッジ回路51は、磁気抵抗効果素子M1及びM2の接続中点において電圧Vaを出力し、磁気抵抗効果素子M3及びM4の接続中点において電圧Vbを出力する。
 磁気抵抗効果素子は、感度方向への磁界が強くなるほど抵抗値が小さくなる。そのため、図4に示すようにY2側からY1側へ流れる電流I2が大きくなると(あるいは、Y1側からY2側へ流れる電流I2が小さくなると)、磁気抵抗効果素子M1及びM4の抵抗値が相対的に小さくなり、磁気抵抗効果素子M2及びM3の抵抗値が相対的に大きくなる。従って、電圧Vaが上昇するとともに電圧Vbが低下する。逆に、Y2側からY1側へ流れる電流I2が小さくなると(あるいは、Y1側からY2側へ流れる電流I2が大きくなると)、磁気抵抗効果素子M1及びM4の抵抗値が相対的に大きくなり、磁気抵抗効果素子M2及びM3の抵抗値が相対的に小さくなるため、電圧Vaが低下するとともに電圧Vbが上昇する。
 図5は、センサ部50の構成の一例を示す図である。図5の例に示すセンサ部50は、上述したブリッジ回路51に加えて、コイルLと、コイル駆動回路52と、差動アンプ53と、抵抗Rsとを有する。
 コイルLは、第2バスバー20の電流I2によって磁気抵抗効果素子M1~M4の各位置に生じるY方向の磁界を打ち消すための磁界を発生する。コイルLは、例えば図5に示すように、磁気抵抗効果素子M1、M2の近傍においてZ方向へ延びる電流路CP1を形成する。電流路CP1にZ2方向へ電流Ibが流れると、磁気抵抗効果素子M1、M2の近傍にはY2方向の磁界H51が生じる。この磁界H51が、電流I2によって磁気抵抗効果素子M1、M2の位置に生じるY1方向の磁界成分を打ち消す。同様に、コイルLは、磁気抵抗効果素子M3、M4の近傍においてZ方向へ延びる電流路CP2を形成する。電流路CP2にZ1方向へ電流Ibが流れると、磁気抵抗効果素子M3、M4の近傍にはY1方向の磁界H52が生じる。この磁界H52が、電流I2によって磁気抵抗効果素子M3、M4の位置に生じるY2方向の磁界成分を打ち消す。
 コイル駆動回路52は、ブリッジ回路51の電圧Va及びVbの差に応じた電流IbをコイルLに流す。
 磁界がゼロの状態において、磁気抵抗効果素子M1~M4の抵抗値がほぼ等しいものとする。この場合、第2バスバー20の電流I2がゼロになると、電圧Va及びVbはほぼ等しくなる。第2バスバー20のY2側からY1側へ電流I2が流れると、電流I2によるY方向の磁界によって磁気抵抗効果素子M1~M4の抵抗値が変化し、電圧VaがVbより高くなる。電圧VaがVbに対して高い場合、コイル駆動回路52は、電流路CP1をZ2方向へ流れるとともに電流路CP2をZ1方向へ流れるように電流Ibを出力する。コイル駆動回路52は、電圧Va及びVbの差が大きくなるほど、この電流Ibを大きくする。磁気抵抗効果素子M1~M4の近傍では、コイルLの電流Ibによって生じたY方向の磁界が、第2バスバー20の電流I2によって生じたY方向の磁界成分を打ち消すように作用する。そのため、電圧Vaの電圧Vbに対する上昇が抑制される。
 他方、第2バスバー20のY1側からY2側へ電流I2が流れる場合、上述とは逆に、電圧VaがVbより低くなる。電圧VaがVbより低い場合、コイル駆動回路52は、電流路CP1をZ1方向へ流れるとともに電流路CP2をZ2方向へ流れるように電流Ibを出力する。コイル駆動回路52は、電圧Va及びVbの差が大きくなるほど、この電流Ibを大きくする。磁気抵抗効果素子M1~M4の近傍では、コイルLの電流Ibによって生じたY方向の磁界が、第2バスバー20の電流I2によって生じたY方向の磁界成分を打ち消すように作用する。そのため、電圧Vaの電圧Vbに対する低下が抑制される。
 コイル駆動回路52は、ブリッジ回路51から入力する電圧(Va-Vb)とコイルLへ出力する電流Ibとの比であるゲインが十分に大きい。そのため、ブリッジ回路51の電圧Va及びVbは、フィードバック動作によってほぼ等しくなる。これにより、磁気センサSA及びSB(磁気抵抗効果素子M1~M4)では、第2バスバー20の電流I2による磁界のY方向の成分と、コイルLの電流IbによるY方向の磁界とがほぼ等しくなる。
 抵抗Rsは、コイルLの電流経路上に設けられている。差動アンプ53は、コイルLを流れる電流Ibによって抵抗Rsの両端に生じる電圧を増幅し、検出信号S12として出力する。検出信号S12は、コイルLに流れる電流Ibに比例した信号であり、コイルLの磁界にほぼ比例する。コイルLの磁界は、第2バスバー20の電流I2によって磁気センサSA及びSB(磁気抵抗効果素子M1~M4)に作用する磁界のY方向成分を打ち消すように制御されるため、電流I2にほぼ比例する。従って、検出信号S12は電流I2にほぼ比例した信号となる。
 センサ部50は、例えば半導体集積回路の内部に形成され、その半導体集積回路が電子部品として基板60上に実装される。図1の例において、基板60は、部品実装面がX方向に対して垂直となる姿勢でケース70の内部に固定される。ケース70は、樹脂などの絶縁部材であり、例えば一体成形によって第2バスバー20と固定される。
 本実施形態に係る電流センサ1では、バスバー101から102へ流れる被検出電流が第1バスバー10(板状導体10A及び10B)と第2バスバー20とに分流する。第2バスバー20に分流した電流I2は、センサ部50において検出され、その検出結果を示す検出信号S12が生成される。被検出電流が第1バスバー10と第2バスバー20とに分流する割合は各バスバー(板状導体10A、板状導体10B、第2バスバー20)の抵抗値の比によって予め設定されており、例えば各バスバーへ均等に電流が流れるように設定される。そのため、センサ部50において生成される検出信号S12から、被検出電流が求められる。
 本実施形態に係る電流センサ1によれば、次の効果が得られる。
(1)直線状に延びた第1バスバー10と屈曲した第2バスバー20とが互いの2つの端部(E11及びE12、E21及びE22)において接して導通している。そのため、2つの端部E21及びE22の間において屈曲した第2バスバー20の少なくとも一部には、2つの端部E11及びE12の間において直線状に延びた第1バスバー10の延伸方向(Y方向)と平行にならない方向に電流が流れる。これにより、第2バスバー20の少なくとも一部に流れる電流I2による磁界は、第1バスバー10の延伸方向に対して平行なY方向の成分を持つため、これを磁気センサSA、SBにおいて検出することができる。また、第1バスバー10に流れる電流I1による磁界は、第1バスバー10の延伸方向(Y方向)に対して垂直であるため、Y方向の成分を持たず、磁気センサSA、SBにおいてほとんど検出されない。すなわち、磁気センサSA、SBでは主として第2バスバー20に流れる電流I2による磁界が検出され、その検出結果は第1バスバー10に流れる電流I1による磁界の影響を受け難くなる。従って、第2バスバー20に分流する電流I2の磁界に基づいて、精度よく電流を検出できる。しかも、第1バスバー10に分流する電流I1による磁界の影響を低減するために磁気シールド等を設ける必要がないため、部品点数を抑えることができ、装置のサイズを小型化できる。
(2)一対の磁気センサ(SA及びSB)が配置される一対の場所において、第2バスバー20の電流I2により生じる磁界に含まれる第1バスバー10の延伸方向と平行なY方向の磁界成分が、第2バスバー20に流れる電流I2に応じた差を持つ。この一対の場所に配置された一対の磁気センサ(SA及びSB)では、第1バスバー10の延伸方向と平行なY方向の磁界がそれぞれ検出されるため、一対の磁気センサ(SA及びSB)で検出される磁界は、第2バスバー20に流れる電流I2に応じた差を持つ。従って、一対の磁気センサ(SA及びSB)により検出される磁界の差に基づいて、第2バスバー20に流れる電流I2を検出することができる。また、遠方のノイズ源からの外来磁界は、この一対の場所においてほぼ等しくなるため、一対の磁気センサ(SA及びSB)により検出される磁界の差に影響を与え難い。すなわち、一対の磁気センサ(SA及びSB)により検出される磁界の差に基づく電流I2の検出結果は、外来磁界の影響を受け難くなる。従って、電流の検出精度を高めることができる。
(3)第2バスバー20が仮想平面PLに対して対称な構造を持つため、第2バスバー20に流れる電流I2による磁界の分布は、仮想平面PLに対して対称となる。また、一対の磁気センサ(SA及びSB)が配置される一対の場所は、仮想平面PLに対して互いに面対称となる場所である。そのため、第2バスバー20に流れる電流I2による磁界のうち、バスバー10の延伸方向と平行なY方向の磁界成分は、この一対の場所において互いに逆向きになるとともに、その大きさがほぼ等しくなる。従って、一対の磁気センサ(SA及びSB)で検出されるY方向の磁界の差に基づいて、第2バスバー20に流れる電流I2を検出することができる。また、腕部21、22が第1バスバー10の延伸方向(Y方向)に対して傾斜していることから、腕部21、22に流れる電流I2による磁界は、第1バスバー10の延伸方向(Y方向)に対して平行にならない。これにより、一対の磁気センサ(SA及びSB)では、電流I2に対する磁界の検出感度が低くなるため、より大きな電流の検出が可能となる。
(4)第1バスバー10における板状導体10A、10Bの積み重ね数を変更することで、第1バスバー10の抵抗値を変更できるため、第1バスバー10と第2バスバー20との間における分流の割合を容易に変更できる。これにより、センサ部50が固定された第2バスバー20を交換することなく、第1バスバー10の板状導体の脱着のみで被検出電流の検出範囲を容易に変更できる。また、センサ部50が固定された第2バスバー20を、電流の検出範囲が異なる種々の電流センサにおいて共通に使用できるため、部品の共通化を図ることが可能となる。
(5)第1バスバー10の各板状導体(10A、10B)に流れる電流を互いに等しくするとともに、1つの板状導体に流れる電流と第2バスバー20に流れる電流とを等しくすることにより、第1バスバー10の板状導体の積み重ね数を変更するだけで電流の検出範囲を整数倍に変更できるため、利便性が向上する。
(6)積み重ねの方向(Z方向)からみた板状導体10A及び10Bの平面形状が互いに等しいため、板状導体の積み重ね数を更に増やしても、積み重ねの方向(Z方向)からみた第1バスバー10の平面形状のサイズが変わらない。これにより、電流の検出範囲の拡大による装置サイズの大型化を抑制できる。
(7)第2バスバー20の2つの端部E21及びE22が、積み重ね方向と同じZ方向で板状導体10Aの上に積み重ねられているため、第1バスバー10における板状導体の積み重ね数を変更しても、第2バスバー20と第1バスバー10との接触を安定的に確保できる。
(8)ねじ81、83による第2バスバー20と板状導体10A及び10Bとの連結部分に他のバスバー(101、102)を重ねて連結できるため、第1バスバー10における板状導体の積み重ね数が増えても連結作業が煩雑にならない。
<第2の実施形態>
 次に、本発明の第2の実施形態について説明する。図6は、本発明の第2の実施形態に係る電流センサ1Aの一例を示す図である。図6に示す電流センサ1Aは、並列に接続された第1バスバー30及び第2バスバー40と、第2バスバー40に流れる電流による磁界を検出する磁気センサSA及びSBを有したセンサ部50とを備える。
 第1バスバー30は、電流が流れる2つの端部E31及びE32の間において直線状に延びた形状を持っており、これにより直線状の電流路を形成する。図6の例において、第1バスバー30の延伸方向はY方向である。
 図7は、図6に示す電流センサ1Aにおいて並列に接続されたバスバー(30、40)が分解された状態を示す図である。図7に示すように、第1バスバー30は、2つの板状導体30A及び30Bを含む。板状導体30A、30Bは、X方向のサイズ(厚み)がZ方向のサイズ(幅)に比べて小さく、それぞれY方向へ直線状に延びている。板状導体30A、30Bは、図6において示すようにX方向に積み重ねられている。すなわち、板状導体30AのX1側の表面と板状導体30BのX2側の表面とが接触している。
 図6、図7の例において、2つの板状導体30A、30Bは、X方向(積み重ね方向)からみた平面形状が互いに等しい。すなわち、板状導体30A及び30BのZ方向の幅とY方向の長さがそれぞれ等しい。
 第2バスバー40は、電流が流れる2つの端部E41及びE42の間において屈曲した形状を持っており、これにより屈曲した電流路を形成する。図7に示す第2バスバー40は、2つの屈曲部44、45と、2つの腕部41及び42と、基部43とを有する。基部43は、2つの屈曲部44及び45の間に設けられる。腕部41は、屈曲部44と端部E41との間に設けられる。腕部42は、屈曲部45と端部E42との間に設けられる。腕部41及び42は、第1バスバー30の延伸方向(Y方向)と垂直な方向かつ互いに平行な方向へ直線状に延びている。図7の例において、腕部41及び42はそれぞれZ方向へ延びており、延伸方向の長さがほぼ等しい。
 また、図7に示す第2バスバー40は、腕部41と端部E41との間に屈曲部46を有し、腕部42と端部E42との間に屈曲部47を有する。端部E41及び端部E42は、何れもY方向へ直線状に延びている。
 図6に示す電流センサ1Aでは、第1バスバー30の端部E31と第2バスバー40の端部E41とが接して導通するとともに、第1バスバー30の端部E32と第2バスバー40の端部E42とが接して導通する。
 第2バスバー40の2つの端部E41及びE42は、板状導体30A及び30Bの積み重ね方向(X方向)と同じ方向で、板状導体30Aの上に積み重ねられる。すなわち、第2バスバー40の端部E41のX1側表面と板状導体30Aの端部E31AのX2側表面とが接触し、第2バスバー40の端部E42のX1側表面と板状導体30Aの端部E32AのX2側表面とが接触する。第2バスバー40は、板状導体30A及び30Bと同様な板状の導体であり、端部E41及び端部E42のX方向のサイズ(厚み)がZ方向のサイズ(幅)に比べて小さい。
 また、一例において、板状導体30Aと板状導体30Bと第2バスバー40とには、ほぼ等しい電流が流れる。すなわち、これらの導体は、電流が流れる2つの端部の間の抵抗値が概ね等しい。これらの導体は、互いにほぼ等しい電流が流れるように、Z方向の幅やX方向の厚み、電流経路の長さ、接触部分の面積などが設定される。
 図8は、図6に示す電流センサ1Aの取り付け状態の一例を示す図である。図8AはX1側からX2方向をみた図であり、図8BはZ2側からZ1方向をみた図である。図8の例に示すように、本実施形態に係る電流センサ1Aは、第2バスバー40の2つの端部E41及びE42と板状導体30A及び30Bとをねじ(85、87)で連結可能である。第2バスバー40、板状導体30A及び板状導体30Bの各端部には、X方向にねじ(85、87)が挿通される貫通孔が形成される。第2バスバー40は、端部E41に貫通孔T41が形成され、端部E42に貫通孔T42が形成される。板状導体30Aは、端部E31Aに貫通孔T31Aが形成され、端部E32Aに貫通孔T32Aが形成される。板状導体30Bは、端部E31Bに貫通孔T31Bが形成され、端部E32Bに貫通孔T32Bが形成される。貫通孔T41、T31A及びT31Bにねじ85が挿通され、貫通孔T42、T32A及びT32Bにねじ87が挿通される。貫通孔に挿通されたねじ85、87の先端にナット86、88が締め付けられることで、第2バスバー40の2つの端部E41及びE42と板状導体30A及び30Bとが連結される。
 また図8において示すように、ねじ85、87は、検出対象の電流が流れるバスバー103、104と電流センサ1Aとを連結するために使用される。バスバー103の端部は、X方向にねじ85が挿通される貫通孔を有しており、第2バスバー40の端部E41とナット86との間に挟まれて固定される。バスバー104の端部は、X方向にねじ87が挿通される貫通孔を有しており、第2バスバー40の端部E42とナット88との間に挟まれて固定される。
 磁気センサSA及びSBとこれを含むセンサ部50は、既に説明した第1の実施形態に係る電流センサ1(図1~図5)の同一符号の構成要素と同じものである。本実施形態においても、磁気センサSA及びSBは、第1バスバー30の延伸方向と平行なY方向の磁界を検出するように、感度方向がそれぞれY方向に向けられている。
 一対の磁気センサ(SA及びSB)が配置される一対の場所は、第2バスバー40の電流により生じる磁界が第1バスバー30の延伸方向と平行なY方向の磁界成分をそれぞれ持つ場所であり、また、互いの当該磁界成分が第2バスバー40に流れる電流に応じた差を持つ場所である。すなわち、この一対の場所では、第2バスバー40の電流が大きくなると、この電流によるY方向の磁界成分の差が大きくなる。逆に、第2バスバー40の電流が小さくなると、この電流によるY方向の磁界成分の差が小さくなる。
 図8の例において、一対の磁気センサ(SA及びSB)は、仮想平面PLに対して互いに面対称となる一対の場所に配置される。本実施形態における仮想平面PLは、第1バスバー30の延伸方向(Y方向)における基部43の中央を通り当該延伸方向(Y方向)と垂直な平面である。この仮想平面PLに対して、第1バスバー30及び第2バスバー40は対称な形状を有するため、第1バスバー30及び第2バスバー40に流れる電流による磁界の分布は、仮想平面PLに対してほぼ対称となる。一対の磁気センサ(SA及びSB)は、この仮想平面PLに対して対称な一対の場所において、2つの腕部41及び42に流れる電流による磁界を検出する。
 図9は、図6に示す電流センサ1Aにおいて、各バスバー(30、40)に流れる電流による磁界の向きを図解した図である。図9における「I3」は第1バスバー30(板状導体30A及び30B)に流れる電流を示し、「I4」は第2バスバー40に流れる電流を示す。
 磁気センサSA(磁気抵抗効果素子M1、M2)が配置される場所において腕部41に流れる電流I4により生じる磁界H41と、磁気センサSB(磁気抵抗効果素子M3、M4)が配置される場所において腕部42に流れる電流I4により生じる磁界H42は、何れもY方向と平行であり、その向きが互いに逆である。例えば図9に示すようにY2側からY1側へ電流I4が流れる場合、磁界H41はY1方向を向き、磁界H42はY2方向を向く。また、仮想平面PLに対して第2バスバー40が対称な形状を有していることから、第2バスバー40に流れる電流I4による磁界は仮想平面PLに対して概ね対称であり、一対の磁気センサ(SA及びSB)における磁界の強さはほぼ等しい。従って、一対の磁気センサ(SA及びSB)が配置される一対の場所では、電流I4により生じるY方向の磁界が互いに逆向きであり、その大きさがほぼ等しい。
 これに対して、第1バスバー30に流れる電流I3による磁界H3は、Y方向に対して垂直であり、Y方向の磁界成分をほとんど持たない。そのため、磁気センサSA、SB(磁気抵抗効果素子M1~M4)においては、電流I3による磁界H3がほとんど検出されない。
 本実施形態におけるブリッジ回路51の出力電圧Va、Vbは、既に説明した第1の実施形態におけるブリッジ回路51と同様に変化する。すなわち、Y2側からY1側へ流れる電流I4が大きくなると(あるいは、Y1側からY2側へ流れる電流I4が小さくなると)、電圧Vaが上昇するとともに電圧Vbが低下し、逆にY2側からY1側へ流れる電流I2が小さくなると(あるいは、Y1側からY2側へ流れる電流I4が大きくなると)、電圧Vaが低下するとともに電圧Vbが上昇する。本実施形態においても、図5と同様なセンサ部50によってフィードバック制御が行われることにより、電圧VaとVbがほぼ等しくなるようにコイルLの電流Ibが調節され、その電流Ibに比例した検出信号S12が生成される。
 図6の例においても、図1と同様に、センサ部50を含む半導体集積回路が電子部品として基板60A上に実装される。基板60Aは、部品実装面がX方向に対して垂直となる姿勢でケース70Aの内部に固定される。ケース70Aは、樹脂などの絶縁部材であり、例えば一体成形によって第2バスバー40と固定される。
 上述した構成を有する本実施形態に係る電流センサ1Aにおいても、第1の実施形態に係る電流センサ1と同様な効果を奏することが可能である。また、本実施形態に係る電流センサ1Aでは、腕部41、42が第1バスバー30の延伸方向(Y方向)に対して垂直であることから、腕部41、42に流れる電流I4による磁界は、第1バスバー30の延伸方向(Y方向)に対してほぼ平行になる。これにより、一対の磁気センサ(SA及びSB)では、電流I4に対する磁界の検出感度が高くなるため、より小さな電流の検出が可能となる。
 本発明の幾つかの実施形態について説明したが、本発明はこれらの実施形態に限定されるものではなく、種々のバリエーションを含んでいる。
 例えば、上述した実施形態では、第1バスバー(10、30)が2つの板状導体(10A及び10B、30A及び30B)を含んでいるが、本発明の他の実施形態では、3以上の板状導体を含んでいてもよい。また、被検出電流が小さい場合は、第1バスバーを省略し、第2バスバーのみで電流の検出を行ってもよい。
 上述した実施形態では、一対の磁気センサ(SA及びSB)にそれぞれ2つの磁気抵抗効果素子を直列接続したハーフブリッジ回路が使用されているが、本発明はこの例に限定されない。本発明の他の実施形態では、一対の場所に配置された一対の磁気センサにそれぞれ1つの磁気抵抗効果素子を使用し、それらの抵抗値の相対的な差(一対の場所における磁界の差を示す)に基づいて、第2バスバーの電流に応じた検出信号を生成してもよい。また、磁気センサに用いる磁電変換素子は磁気抵抗効果素子に限定されず、例えばホール素子などの他の磁電変換素子を用いてもよい。
 上述した実施形態では、第2バスバーの電流による磁界をコイルの電流による磁界で打ち消すようにコイルの電流をフィードバック制御し、そのコイルの電流から被検出電流の検出結果を得ているが、本発明はこの例に限定されない。本発明の他の実施形態では、第2バスバーの電流による磁界に応じた磁気センサの信号に基づいて、被検出電流の検出結果を直接得るようにしてもよい。
1,1A…電流センサ、10…第1バスバー、10A,10B…板状導体、20…第2バスバー、21,22…腕部、23~25…屈曲部、30…第1バスバー、30A,30B…板状導体、40…第2バスバー、41,42…腕部、43…基部、44~47…屈曲部、50…センサ部、51…ブリッジ回路、52…コイル駆動回路、53…差動アンプ、60,60A…基板、70,70A…ケース、SA,SB…磁気センサ、M1~M4…磁気抵抗効果素子、81,83,85,87…ねじ、82,84,86,88…ナット、101~104…バスバー、E11,E12,E21,E22,E31,E32,E41,E42…端部、T11A,T11B,T12A,T12B,T21,T22,T31A,T31B,T32A,T32B,T41,T42…貫通孔、PL…仮想平面、L…コイル
 

Claims (9)

  1.  電流が流れる2つの端部の間において直線状に延びた第1バスバーと、
     電流が流れる2つの端部の間において屈曲した第2バスバーと、
     前記第2バスバーに流れる電流による磁界を検出する磁気センサと備え、
     前記第1バスバーの一方の前記端部と前記第2バスバーの一方の前記端部とが接して導通するとともに、前記第1バスバーの他方の前記端部と前記第2バスバーの他方の前記端部とが接して導通しており、
     前記磁気センサは、前記第1バスバーの延伸方向と平行な方向の磁界を検出する、
     電流センサ。
  2.  一対の場所に配置された一対の前記磁気センサを備え、
     前記一対の場所は、前記第2バスバーの電流により生じる磁界が前記第1バスバーの延伸方向と平行な磁界成分をそれぞれ持つ場所であるとともに、互いの当該磁界成分が前記第2バスバーに流れる電流に応じた差を持つ場所である、
     請求項1に記載の電流センサ。
  3.  前記第2バスバーは、
      屈曲部と、
      前記屈曲部から前記2つの端部へそれぞれ前記第1バスバーの延伸方向に対して傾斜した方向へ直線状に延びており、互いの長さが等しい2つの腕部とを有し、
     前記一対の磁気センサは、前記屈曲部を通り前記第1バスバーの延伸方向と垂直な仮想平面に対して、互いに面対称となる一対の場所に配置されており、前記2つの腕部に流れる電流による磁界を検出する、
     請求項2に記載の電流センサ。
  4.  前記第2バスバーは、
      2つの屈曲部と、
      一方の前記屈曲部と一方の前記端部との間、及び、他方の前記屈曲部と他方の前記端部との間にそれぞれ設けられており、前記第1バスバーの延伸方向と垂直な方向かつ互いに平行な方向へ直線状に延びた2つの腕部と、
      前記2つの屈曲部の間に設けられた基部とを有し、
     前記一対の磁気センサは、前記第1バスバーの延伸方向における前記基部の中央を通り当該延伸方向と垂直な仮想平面に対して、互いに面対称となる一対の場所に配置されており、前記2つの腕部に流れる電流による磁界を検出する、
     請求項2に記載の電流センサ。
  5.  前記第1バスバーは、それぞれ前記延伸方向へ直線状に延びており、前記延伸方向と垂直な方向に積み重ねられた複数の板状導体を含む、
     請求項1乃至4の何れか一項に記載の電流センサ。
  6.  前記複数の板状導体の各々に流れる電流が互いに等しく、
     1つの前記板状導体に流れる電流と前記第2バスバーに流れる電流とが等しい、
     請求項5に記載の電流センサ。
  7.  前記複数の板状導体は、前記積み重ねの方向からみた平面形状が互いに等しい、
     請求項5又は6に記載の電流センサ。
  8.  前記第2バスバーの前記2つの端部は、前記積み重ねの方向と同じ方向で前記板状導体の上に積み重ねられる、
     請求項5乃至7の何れか一項に記載の電流センサ。
  9.  前記第2バスバーの前記2つの端部と前記複数の板状導体とをねじで連結可能であり、
     前記第2バスバーの前記2つの端部には、前記積み重ねの方向と平行な方向に前記ねじが挿通される貫通孔がそれぞれ形成され、
     前記板状導体の2つの端部には、前記積み重ねの方向と平行な方向に前記ねじが挿通される貫通孔がそれぞれ形成される、
     請求項8に記載の電流センサ。
     
PCT/JP2017/006352 2016-04-27 2017-02-21 電流センサ WO2017187733A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016089828 2016-04-27
JP2016-089828 2016-04-27

Publications (1)

Publication Number Publication Date
WO2017187733A1 true WO2017187733A1 (ja) 2017-11-02

Family

ID=60160194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006352 WO2017187733A1 (ja) 2016-04-27 2017-02-21 電流センサ

Country Status (1)

Country Link
WO (1) WO2017187733A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108318728A (zh) * 2018-03-12 2018-07-24 宁波锦澄电子科技股份有限公司 一种无屏蔽抗干扰电流传感器
JP6471826B1 (ja) * 2018-10-22 2019-02-20 Tdk株式会社 電流センサ及びこれに用いるバスバーの製造方法
JP2020067304A (ja) * 2018-10-22 2020-04-30 Tdk株式会社 電流センサ及びこれに用いるバスバーの製造方法
JP2021085711A (ja) * 2019-11-26 2021-06-03 ローム株式会社 電流検出装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432078U (ja) * 1990-07-12 1992-03-16
JPH11111355A (ja) * 1997-10-01 1999-04-23 Yazaki Corp 端子とブスバーの接続構造
JP2000502448A (ja) * 1995-12-20 2000-02-29 サンドストランド コーポレイション 電流検出装置
JP2013142604A (ja) * 2012-01-11 2013-07-22 Alps Green Devices Co Ltd 電流センサ
WO2015133621A1 (ja) * 2014-03-07 2015-09-11 日立金属株式会社 電流量検出器
US20160033557A1 (en) * 2014-08-04 2016-02-04 Hyundai Mobis Co., Ltd. Assembly of current sensor and power conductor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432078U (ja) * 1990-07-12 1992-03-16
JP2000502448A (ja) * 1995-12-20 2000-02-29 サンドストランド コーポレイション 電流検出装置
JPH11111355A (ja) * 1997-10-01 1999-04-23 Yazaki Corp 端子とブスバーの接続構造
JP2013142604A (ja) * 2012-01-11 2013-07-22 Alps Green Devices Co Ltd 電流センサ
WO2015133621A1 (ja) * 2014-03-07 2015-09-11 日立金属株式会社 電流量検出器
US20160033557A1 (en) * 2014-08-04 2016-02-04 Hyundai Mobis Co., Ltd. Assembly of current sensor and power conductor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108318728A (zh) * 2018-03-12 2018-07-24 宁波锦澄电子科技股份有限公司 一种无屏蔽抗干扰电流传感器
JP6471826B1 (ja) * 2018-10-22 2019-02-20 Tdk株式会社 電流センサ及びこれに用いるバスバーの製造方法
JP2020067305A (ja) * 2018-10-22 2020-04-30 Tdk株式会社 電流センサ及びこれに用いるバスバーの製造方法
JP2020067304A (ja) * 2018-10-22 2020-04-30 Tdk株式会社 電流センサ及びこれに用いるバスバーの製造方法
JP2021085711A (ja) * 2019-11-26 2021-06-03 ローム株式会社 電流検出装置

Similar Documents

Publication Publication Date Title
WO2017187733A1 (ja) 電流センサ
US8269492B2 (en) Magnetic balance type current sensor
EP2284554B1 (en) Magnetic sensor with bridge circuit including magnetoresistance effect elements
JP5659389B2 (ja) 電流センサ
US20050073292A1 (en) System and method for current sensing using anti-differential, error correcting current sensing
CN113376422B (zh) 用于改善功能安全性的电流传感器
US20150204916A1 (en) Electric current sensor
JP7140149B2 (ja) 電流センサ、磁気センサ及び回路
JP5234459B2 (ja) 電流センサ
JP2008298761A (ja) 電流センサ
CN110226093B (zh) 电流传感器
JP6384677B2 (ja) 電流センサ
JP2008216230A (ja) 電流センサ
JP5556468B2 (ja) 電流センサ
JP2013142623A (ja) 電流センサ
JP2009020085A (ja) 多相電流の検出装置
JP5187598B2 (ja) 電流検出回路
JP5487403B2 (ja) 電流センサ
CN116209907A (zh) 电流检测装置
JP2010204026A (ja) 電流検出装置
WO2017141763A1 (ja) 電流センサ
TWI703338B (zh) 電流感測器
JP2011043338A (ja) 電流センサ
JP2017133842A (ja) 電流センサ及び電流検出装置
JP2017532574A (ja) 導体内の電流を測定するためのセンサ

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789022

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789022

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP