WO2017186190A1 - 支架、支撑系统、血栓弹力仪及其使用方法 - Google Patents

支架、支撑系统、血栓弹力仪及其使用方法 Download PDF

Info

Publication number
WO2017186190A1
WO2017186190A1 PCT/CN2017/082786 CN2017082786W WO2017186190A1 WO 2017186190 A1 WO2017186190 A1 WO 2017186190A1 CN 2017082786 W CN2017082786 W CN 2017082786W WO 2017186190 A1 WO2017186190 A1 WO 2017186190A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
connecting portion
light
rotating shaft
support portion
Prior art date
Application number
PCT/CN2017/082786
Other languages
English (en)
French (fr)
Inventor
姜峰
肖健
刘龚
陈艾骎
于邦仲
Original Assignee
诺泰科生物科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201620380387.2U external-priority patent/CN205720232U/zh
Priority claimed from CN201610279824.6A external-priority patent/CN105842432B/zh
Priority claimed from CN201620383166.0U external-priority patent/CN205749523U/zh
Priority claimed from CN201610278393.1A external-priority patent/CN105807039B/zh
Application filed by 诺泰科生物科技(苏州)有限公司 filed Critical 诺泰科生物科技(苏州)有限公司
Priority to JP2019507986A priority Critical patent/JP6964656B2/ja
Priority to US16/097,016 priority patent/US11067490B2/en
Publication of WO2017186190A1 publication Critical patent/WO2017186190A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/14Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by using rotary bodies, e.g. vane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/14Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by using rotary bodies, e.g. vane
    • G01N2011/147Magnetic coupling

Definitions

  • the invention relates to the field of detection technology, in particular to a stent, a support system, a thromboelastometer and a method of using the same.
  • the thromboelastometer is a device for detecting blood clot parameters in vitro, and includes a rotatable rotating shaft.
  • the rotating shaft When detecting blood, the rotating shaft is inserted into the blood, and the rotating shaft is rotated by the rotation of the blood.
  • the elastic force of the blood is calculated according to the angular displacement of the rotating shaft, thereby providing objective guidance for the clinical diagnosis of diseases such as cardiovascular and cerebrovascular diseases.
  • the rotating shaft on the thromboelastometer is connected to the bracket, and the rotating shaft is rotated by the blood by the support of the bracket.
  • Embodiments of the present invention provide a stent, a support system, a thromboelastometer, and a method of using the same, which can easily adjust an angular offset to improve measurement accuracy.
  • a bracket comprising: a first support portion, a second support portion, and a connecting portion, wherein:
  • the first supporting portion supports the second supporting portion through the connecting portion, so that the second supporting portion can rotate relative to the first supporting portion under a first force
  • the first support portion includes: a rotatable structure, a support base and a stop mechanism, wherein:
  • the stop mechanism is for providing a blocking effect on the rotation of the rotatable structure
  • the rotatable structure is supported on the support base and is rotatable relative to the support base under a second force in the event that the blocking action of the stop mechanism is eliminated;
  • the rotatable structure supports the second support portion through the connecting portion such that the rotatable structure is rotatable relative to the second support portion when rotated relative to the support seat.
  • a thromboelastometer comprising a bracket as described above and a rotating shaft, wherein a lower end of the second supporting portion is coupled to one end of the rotating shaft to support the rotating shaft,
  • the rotating shaft is enabled to rotate under external driving.
  • a support system comprising the bracket and the supported object as described above, wherein a lower end of the second support portion is connected to one end of the supported object
  • the support is supported to enable the support to rotate under external driving.
  • a thromboelastometer as described above, comprising:
  • the blood coagulation data of the blood to be measured is calculated based on the measured rotation angle of the rotation axis.
  • connection portion of the bracket connecting the first support portion and the second support portion is such that the two are relatively rotatable, and the first support portion carries the connection portion
  • the bridge structure is located on the rotatable first support member, and the first support member is rotated by applying a suitable external force to the first support member in the case of eliminating the blocking action of the stop mechanism on the rotation of the movable structure.
  • the bridge structure is rotated relative to the second support portion, so that the bridge structure can be conveniently adjusted to be at a predetermined angle with the second support portion to eliminate various portions of the thrombelometer (eg, the first support portion and the second support portion)
  • the angular offset between them improves the measurement accuracy.
  • FIG. 1 is a schematic block diagram of a bracket in accordance with one embodiment of the present invention.
  • FIGS. 2A-B are schematic structural views of a stent according to an embodiment of the present invention.
  • 3A-C are schematic structural views of a first support portion of a stent according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a second support portion of a bracket according to an embodiment of the present invention.
  • Figure 5 is a schematic view showing the structural composition of a thromboelastometer including a stent according to an embodiment of the present invention
  • Figure 6 is a schematic view showing the composition of a connecting portion according to an embodiment of the present invention.
  • Figure 7 is a schematic view of a joint of a jewel bearing fixedly coupled to a first support portion in accordance with one embodiment of the present invention
  • Figure 8 is a schematic view showing a connecting portion of a jewel bearing fixedly coupled to a second support portion according to an embodiment of the present invention
  • Figure 9 is a schematic view of a connecting portion including a magnet according to an embodiment of the present invention.
  • Figure 10 is a schematic diagram showing the composition of a thromboelastometer including a measuring device according to an embodiment of the present invention
  • FIG. 11 is a schematic diagram showing the composition of a thromboelastometer including a light emitting diode and a photocell according to an embodiment of the present invention
  • Figure 12 is a flow chart of a method of using a thromboelastometer in accordance with one embodiment of the present invention.
  • Figure 13 is a schematic block diagram of a support system in accordance with one embodiment of the present invention.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include one or more of the described features, either explicitly or implicitly.
  • the meaning of “plurality” is two or more unless specifically and specifically defined.
  • an embodiment of the present invention provides a bracket including: a first support portion 1001, a second support portion 1003, and a connecting portion 1002, wherein:
  • the first supporting portion 1001 supports the second supporting portion 1003 through the connecting portion 1002 such that the second supporting portion 1003 can rotate relative to the first supporting portion 1001 under a first force;
  • the first support portion 1001 includes a rotatable structure 1004, a support base 1013, and a stop mechanism 1024, wherein:
  • the stopping mechanism 1024 is configured to block rotation of the rotatable structure
  • the rotatable structure 1004 is supported on the support base 1013, and is rotatable relative to the support base 1013 under a second force in a case where the stopping action of the stopping mechanism 1024 to the rotation is eliminated; as well as
  • the rotatable structure 1004 supports the second support portion 1003 through the connecting portion 1002 such that the rotatable structure 1004 is rotatable relative to the second support portion 1003 when rotated relative to the support base 1013.
  • the rotatable structure 1004 includes a first support 1012 and a bridge structure 1011, wherein:
  • the first support member 1012 is supported on the support base 1013 and is capable of being opposite to the support base 1013 under the second force under the condition that the stopping action of the stopping mechanism 1024 to the rotation is eliminated.
  • the bridge structure 1011 is supported on the first support 1012 and is fixedly coupled to the first support 1012 such that the bridge structure 1011 can follow when the first support 1012 rotates Rotate together;
  • the bridge structure 1011 supports the second support portion 1003 through the connecting portion 1002 such that the bridge structure 1011 can rotate relative to the second support portion 1003 when the first support member 1012 rotates.
  • the rotatable structure consisting of the first support member and the bridge structure is only an example, it being understood that the rotatable structure may have other structures.
  • the stop mechanism 1024 can be implemented by various means, for example, the stop mechanism 1024 It can be selected from one of the following or any combination of them:
  • a fixing member for fixing the rotatable structure 1004 with respect to the support base 1013 such as a screw, a latch structure, a rope, or the like.
  • the fastener can be released when needed to eliminate the blocking effect on the rotation of the rotatable structure 1004.
  • the blocking action of the rotation of the rotatable structure 1004 can be provided by appropriate friction between the rotatable structure 1004 and the contact surface of the support base 1013.
  • the predetermined roughness may provide a frictional force between the contact surfaces to provide the blocking effect.
  • the contact surfaces of both can be machined to have a certain roughness to provide adequate friction.
  • a surface having a predetermined roughness includes a material or structure that is attached, adhered, or machined to a contact surface for providing or increasing friction. When necessary, the frictional force can be cancelled by applying an opposite external force, thereby eliminating the blocking effect on the rotation of the rotatable structure 1004.
  • a material that provides a viscous viscous force between the rotatable structure 1004 and the contact surface of the support base 1013 may be provided between the rotatable structure 1004 and the contact surface of the support base 1013, the viscous force provided by these materials being offset by external forces, when the external force disappears The viscous force continues to prevent rotation of the rotatable structure 1004.
  • stop mechanism 1024 are not exhaustive. Other various means of implementation that enable the functionality of the stop mechanism 1024 described herein can be foreseen by those skilled in the art.
  • FIG. 2A is a schematic view showing the structural composition of a stent according to an embodiment
  • FIG. 2B is a cross-sectional view of FIG. 2A
  • 3A-3C are schematic diagrams showing the composition of the first support portion of the stent of FIG. 2, wherein FIG. 3A is a schematic view of the support base, FIG. 3B is a schematic view of the first support member, and FIG. 3C is a schematic view of the bridge structure.
  • 4 is a schematic view showing the composition of a second support portion of the stent of FIG. 2.
  • the bracket is constituted by a first support portion and a second support portion 1003 that are connected by a connecting portion 1002.
  • the first support portion includes a support base 1013, a first support member 1012 positioned thereon and rotatably coupled thereto, and a bridge structure 1013 supported by the first support member 1012.
  • the first support portion is connected to the connecting portion 1002 through the bridge structure 1013 to support the second support portion 1003 that is also connected to the connecting portion 1002.
  • the connecting portion 1002 is configured such that the second supporting portion 1003 can be at the first force (for example, when the bracket is used for the thromboelastometer, the first force can be the rotation of the rotating shaft caused by the rotation of the blood to be measured.
  • the first support portion is rotated such that the second support portion 1003 can be rotated when the supported object fixedly coupled to the lower end of the second support portion 1003 is driven by an external force to rotate.
  • stop mechanism 1024 of FIG. 1 is not explicitly shown in FIGS. 2-4 for clarity of the graphics. It will be appreciated that the stop mechanism 1024 can be any of the above mentioned implementations in the examples of Figures 2-4.
  • the first support 1012 includes a support surface 1012a and a cylindrical extension 1012b positioned below and coupled to the support surface 1012a, wherein the top surface dimension of the cylindrical extension 1012b is less than the size of the support surface 1012a, ie The support surface 1012a extends beyond the upper surface of the cylindrical extension 1012b such that the support surface 1012a protrudes beyond the side surface of the cylindrical extension 1012b.
  • the center of the first support 1012 has a first through hole 1015, and the bridge structure 1011 is fixed to the first support 1012 across the first through hole 1015.
  • the bridge structure 1011 can be secured to the first support 1012 by a variety of means with or without the aid of various connectors. For example, at least one card slot may be provided on the support surface 1012a of the first support member 1012, and at least one end of the bridge structure 1011 may be placed in the at least one card slot.
  • the bridge structure 1011 can also be secured to the first support 1012 using screws. Or use the combination of the above two methods.
  • the bridge structure 1011 can also be secured by welding, bonding, or by means of other connectors and/or fasteners.
  • the support surface 1012a of the first support member 1012 has two card slots 1017, and the two ends of the bridge structure 1011 are respectively disposed in the two card slots 1017.
  • the ends of the bridge structure 1011 are also secured to the first support 1012 using screws in this example.
  • the bridge structure 1011 is shown as a sunken bridge structure in which the upper surface of the bridge structure 1011 is substantially flush with the support surface 1012a of the first support 1012, with the upper surface below
  • the sinking portion is provided with an opening 1018 extending to the sinking portion for fixing the connecting portion 1002.
  • the bridge structure 1011 can also employ other structures, such as a floating structure, wherein the lower surface of the bridge structure 1011 is substantially flush with the support surface 1012a of the first support 1012, the lower surface There is an upper floating portion, and an upper surface is provided with an opening extending to the upper floating portion for fixing the connection connecting portion 1002.
  • the support base 1013 has a top surface 1021 having a groove or second through hole 1014 that matches the cylindrical extension 1012b of the first support 1012 such that the cylindrical extension 1012b It can be accommodated in the groove or the second through hole 1014.
  • the rotatably connected first support 1012 to the support base 1013 can be achieved using a variety of attachment means. For example, a rotary bearing or a plain bearing can be used.
  • FIGS. 2-4 after assembly, the first support 1012 is in direct contact with the support base 1013, and the cylindrical extension 1012b of the first support 1012 is received in the second through hole 1014 at the center of the support base 1013.
  • the support surface 1012a of the first support member 1012 is supported on the top surface 1021 of the support base 1013. Wherein, after the blocking action of the stopping mechanism on the rotation of the first support member 1012 is eliminated, the first support member 1012 is rotatable relative to the support base 1013 when a suitable external force for rotating the first support member 1012 is applied.
  • the support surface 1012a of the first support 1012 is shown extending beyond the upper surface of the cylindrical extension 1012b in the example of FIGS. 2-4 to contact the top surface 1021 of the support base 1013 after assembly with the support base 1013 and Supported by it.
  • the first support member 1012 can take other forms.
  • the size of the support surface 1012a can be equal to the size of the upper surface of the columnar extension 1012b.
  • the groove or the second pass The bottom surface of the aperture 1014 contacts the bottom surface of the cylindrical extension 1012b and provides support.
  • the first support member is cylindrical and the recess or through hole of the support seat has at least a portion of the bottom surface to provide support for the first support member.
  • the support surface 1012a of the first support member 1012 is circular, the cylindrical extension portion 1012b is cylindrical, and the support base 1013 is also cylindrical.
  • the support surface 1012a of the first support member 1012 can be any shape, and the cylindrical extension 1012b and the support base 1013 can be other suitable shapes as long as the first support member 1012 and the support base can be realized.
  • the 1013's rotatable connection is sufficient.
  • the support base 1013 and the center of the first support member 1012 each have a through hole, and the first through hole 1015 and the second through hole 1014 at least partially coincide with each other for the second support portion.
  • 1003 at least partially passes through the first through hole 1015 and the second through hole 1014 (see FIGS. 2A-B). It can be understood that, in the case that the second support portion 1003 does not need to pass through the first support portion 1001, the support base 1013 and the first support member 1012 may not have a through hole.
  • the center of the second support portion 1003 also has a through hole, that is, a third through hole 1016.
  • a notch 1022 is provided on a side wall of the third through hole 1016 near the upper end of the second support portion 1003 for connection with the connecting portion 1002.
  • the third through hole 1016 is illustrated as a square shape in FIG. 4, it being understood that it may be any other suitable shape.
  • the second support portion 1003 passes through the first through hole 1015 of the first support member 1012 and the second through hole 1014 of the support base 1013 when being supported by the first support portion 1001, The lower end of the second support portion 1003 passes through the support base 1013.
  • the bridge structure 1011 passes through the third through hole 1016 of the second support portion 1003 to support the second support portion 1003 through the connection portion 1002.
  • the apertures 1018 on the bridge structure 1011 are aligned with the notches 1022 on the second support portion 1003 and are respectively connected to the connection portion 1002.
  • the connecting portion 1002 is located in the third through hole 1016 of the second supporting portion 1003.
  • bracket structure and assembly manner are only an example. It can be understood that the second support portion may not pass through the first and second through holes, but the second support portion and the third through hole thereof are large enough to be The entire first support portion is passed through the third through hole, that is, the four frames of the third through hole are located outside the first support portion.
  • connection portion 1002 can include a first connection portion 1019 and a second connection portion 1020, wherein the first connection portion 1019 is fixedly coupled to the bridge structure 1011 (eg, through the aperture 1018 on the bridge structure 1011)
  • the second connecting portion 1020 is fixedly coupled to the second supporting portion 1003 (for example, through the notch 1022 on the second supporting portion 1003).
  • the first connecting portion 1019 and the second connecting portion 1020 are connected in point contact such that the first connecting portion 1019 and the second connecting portion 1020 can be relatively rotated, so that the second supporting portion 1003 can be opposite to the bridge structure 1011. Turn.
  • the first supporting portion supports the second supporting portion and the object to be supported by the connecting portion, and the first connecting portion 1019 and the second connecting portion 1020 of the connecting portion are connected by point contact.
  • the supported object is fixedly coupled to the second support portion and drives the second support portion 1003 to rotate around a contact point between the first connecting portion 1019 and the second connecting portion 1020 after being driven by an external force. Since the first connecting portion 1019 and the second connecting portion 1020 are connected by point contact, only one contact point generates a frictional force to hinder the second supporting portion when the first supporting portion 1001 and the second supporting portion 1003 are relatively rotated.
  • the rotation of 1003 can reduce the friction generated on the bracket, thereby reducing the rotational resistance that is received when the support is rotated.
  • the point contact may be in a manner that the two contact members are not in full contact and the contact area is less than a predetermined value.
  • the contact area is less than 1 square millimeter.
  • Fig. 6 shows a schematic view of the connection portion of the jewel bearing 3031 and the top cone 3032 of the first connecting portion and the second connecting portion.
  • the jewel bearing 3031 is provided with a tapered groove 2011, the top cone 3032 is a tapered structure, the tip end of the top cone 3032 is located in the tapered groove 2011 on the jewel bearing 3031, and the top cone 3032 is engaged with the jewel bearing 3031 in point contact form. .
  • the jewel bearing 3031 has a disk-shaped structure, and a tapered groove 2011 is provided on one plane of the jewel bearing 3031, and the top cone 3032 has a tapered structure.
  • Top cone 3032 The tip is located in the recess 2011, and only the tip end of the top cone 3032 is in contact with the bottom of the recess 2011, so that the jewel bearing 3031 and the top cone 3032 are connected by point contact.
  • the tip end of the tip cone 3032 has an area of 0.8 square millimeters through which the tip end of the area of 0.8 square millimeters is in point contact with the tapered groove 2011 of the jewel bearing 3031.
  • the first connecting portion in the connecting portion is a jewel bearing
  • the second connecting portion is a top cone
  • the first connecting portion is a top cone and the second connecting portion is a jewel bearing.
  • the jewel bearing 3031 is fixedly connected to the first supporting portion 1001 as a first connecting portion
  • the top cone 3032 is fixedly connected to the second supporting portion 1003 as a second connecting portion
  • the tip end of the top cone 3032 is located in the gemstone.
  • the tip end of the top cone 3032 is in point contact with the bottom of the groove of the jewel bearing 3031.
  • the first support portion 1001 supports the fixedly connected top cone 3032 and the second support portion 1003 via the jewel bearing 3031.
  • the top cone 3032 is fixedly connected to the first supporting portion 1001 as a first connecting portion
  • the jewel bearing 3031 is fixedly connected to the second supporting portion 1003 as a second connecting portion
  • the tip end of the top cone 3032 is The bottom of the jewel bearing 3031 is point contact.
  • the first support portion 1001 supports the fixedly connected jewel bearing 3031 and the second support portion 1003 via the top cone 3032.
  • the bracket further comprises: at least one pair of magnets
  • a first magnet of the pair of magnets is fixed to a side of the first support portion adjacent to the second support portion, and a second magnet of the pair of magnets is fixed to the second support portion near the first support portion One side;
  • the first magnet and the second magnet are stacked in parallel, and the two adjacent surfaces are the same magnetic poles.
  • the bracket includes two pairs of magnets, the first pair of magnets includes a magnet 5041 and a magnet 5042 , and the second pair of magnets includes a magnet 5051 and a magnet 5052 .
  • the magnet 5041 and the magnet 5051 are fixed to the first supporting portion 1001 .
  • the magnet 5042 and the magnet 5052 are fixed to the second support portion 1003.
  • the magnets 5041 of the first pair of magnets are stacked in parallel with the magnets 5042.
  • the surfaces of the magnets 5041 and 5042 that are close to each other have magnetic poles of the same polarity.
  • the N pole of the magnet 5041 is directed to the second support portion 1003, and the N pole of the magnet 5042.
  • the magnet 5051 of the second pair of magnets is stacked in parallel with the magnet 5052, and the faces of the magnet 5051 and the magnet 5052 are close to each other with magnetic poles of the same polarity.
  • the S pole of the magnet 5051 points to the second support portion. 1003.
  • the S pole of the magnet 5052 is directed to the first support portion 1001.
  • the bracket further includes a fixed upright 1023 for supporting the first support portion 1001 and the second support portion 1003, wherein the support base 1013 is fixedly coupled to the fixed upright 1023.
  • the second support portion can be applied to the first Rotating relative to the first support portion (for example, the bridge structure of the first support portion) under a force, so that when the lower end of the second support portion is connected with the support, the rotation of the support can drive the second support portion to be relatively Rotating at the first support portion.
  • the first support portion remains stationary, whereby the rotation angle of the supported object can be measured by measuring the rotation angle of the second support portion.
  • the blocking action of the stop mechanism on the rotation can be eliminated (for example, loosening the fixing member and canceling the frictional force) And/or viscous force, etc.), after which the rotatable structure is rotatable relative to the second support portion under a second force applied thereto (eg, the first support member can be driven under a second force applied thereto)
  • the bridge structure is rotated relative to the second support portion such that the first support portion (eg, the bridge structure) and the second support portion are in a predetermined positional relationship by manually rotating the rotatable structure (eg, the first support member) To ensure the accuracy of the measurement.
  • the first support portion and the second support portion are arranged such that the longitudinal direction axis of the bridge structure is perpendicular to the plane of the second support portion.
  • the bracket including the rotatable bridge structure according to the present invention it is possible to apply an appropriate external force to the first support member to be fixedly connected thereto after eliminating the blocking action of the stopper mechanism against the rotation.
  • the bridge structure is rotated at an angle relative to the second support such that the axis of the bridge structure thereon becomes perpendicular to the second support.
  • bridge structure refers to a structure in which the structure spans the surface supporting it, and it should be noted that the surface supporting it may have a slot, an opening or a through hole for the bridge structure to span, but these Grooves, openings, through holes or the like are not required.
  • FIG. 5 illustrates an embodiment of a thromboelastometer comprising the stent described above.
  • the thromboelastometer includes a bracket and a rotating shaft 7 as a supported object supported by the bracket.
  • the lower end of the second support portion 1003 is coupled to one end of the rotating shaft 7 to support the rotating shaft 7, so that the rotating shaft 7 can be rotated by external driving.
  • the other end (lower end) of the rotary shaft 7 projects into the blood to be measured accommodated in the container, and the blood is driven to rotate by the driving means, thereby causing the rotary shaft 7 to also rotate.
  • the thromboelastometer can calculate the blood coagulation parameter data of the blood to be measured by measuring the rotation angle of the rotating shaft 7.
  • the thromboelast apparatus further includes a measuring device, wherein the measuring device is configured to measure a rotation angle of the rotating shaft, and form a corresponding to the Blood pressure thrombus map.
  • the measuring device includes: at least one light reflecting sheet 51, at least one light emitting module 52, at least one light receiving module 53 and a processing module 54;
  • the rotating shaft 7 is fixedly connected to the at least one reflector 51, and the rotating shaft 7 drives the at least one reflector 51 to rotate under external driving;
  • Each of the light emitting modules 52 is configured to emit light to the corresponding retroreflective sheet 51 in a fixed direction;
  • Each of the retroreflective sheetings 51 is configured to receive light emitted by the corresponding light emitting module 52 and reflect the received light;
  • Each light receiving module 53 is configured to receive the light reflected by the corresponding reflector 51 in a fixed direction, convert the received light into a corresponding electrical signal according to the intensity of the light, and transmit the electrical signal to the processing module 54;
  • the processing module 54 is configured to process the electrical signals converted by the at least one light receiving module 53 to determine the rotation angle of the rotating shaft 7.
  • the light reflecting sheet reflects the light emitted by the light emitting module to the light receiving module, and when the reflecting sheet rotates under the rotation of the rotating shaft, the light emitting module emits light in a fixed direction, and the reflecting sheet
  • the amount of received light changes, and the optical path of the reflected light of the retroreflective sheet changes due to the rotation of the retroreflective sheeting, resulting in a change in the intensity of the light received by the light receiving module that receives the light in a fixed direction, and the light receiving module is based on the light.
  • the intensity of the received light is converted into a corresponding electrical signal, and the processing module determines the angle of rotation of the rotating shaft based on the electrical signal.
  • the light is used as the signal for detecting the rotation angle of the rotating shaft, and since the intensity of the light does not change with the change of external factors such as temperature, the rotation angle of the rotating shaft can be detected by the light, and the rotation angle of the rotating shaft can be improved. accuracy.
  • the light emitting module 52 includes a light emitting diode 6031 and a light guiding column 6032 , wherein the light emitting diode 6031 emits light to the light reflecting sheet 51 through the light guiding column 6032;
  • the light receiving module 53 includes a photocell 6041 and a light guiding column 6042.
  • the photocell 6041 receives the light emitted by the retroreflective sheeting 51 through the light guiding column 6042.
  • the inner surface of the fourth through hole 6062 in which the light emitting module 52 is located is a machined surface, there is a certain roughness. If the light is directly emitted to the light reflecting sheet 51 through the light emitting diode 6031, the light emitting diode 6031 The emitted light is diffusely reflected in the fourth through hole 6062, which causes loss of light energy on the one hand, and causes the direction and amount of light emitted from the fourth through hole 6062 to be difficult to control on the other hand.
  • the light emitted by the light-emitting diode 6031 is directed to the retroreflective sheet 51 through the light guide column 6032, and the light emitted by the light-emitting diode 6031 is conducted inside the light guide column 6032.
  • Light does not cause diffuse reflection, thereby improving the utilization of light energy, and ensuring that the light emitted from the fourth through hole 6062 has a specific direction and a specific amount, thereby ensuring the accuracy of detecting the rotation angle of the rotating shaft 7. .
  • each of the light receiving modules includes a photovoltaic cell and a light guiding column, and the photocell and the light guiding column are both fixed in the fifth through hole, wherein the light guiding column is located on a side close to the reflective sheet.
  • the light guide column receives the light reflected by the corresponding reflector in a fixed direction, and transmits the received light to the photocell, and the photocell converts the received light into a corresponding electrical signal according to the intensity of the light.
  • the inner surface of the fifth through hole 6063 has a certain roughness, and if the light reflected by the retroreflective sheet 51 directly enters the fifth through hole 6063.
  • the photocell 6041 When the photocell 6041 is reached, the light is diffusely reflected on the inner wall of the fifth through hole 6063, causing the loss of light energy, and finally the energy of the light reaching the photocell 6041 is smaller than the energy of the light of the retroreflective sheet entering the fifth through hole 6063.
  • the light reflected by the retroreflective sheeting 51 is received by the light guiding column 6042, and the light is transmitted inside the light guiding column 6042.
  • the light does not diffusely reflect during the transmission, and the energy of the light received by the photocell 6041 and the reflective sheet 51 are reflected to the light guiding column 6042.
  • the energy of the light is equal, so that the accuracy of detecting the angle of rotation of the rotating shaft 7 can be ensured.
  • the thromboelast apparatus further includes at least one light blocking sheet, the number of the light blocking sheets being equal to the number of the light guiding columns, and each of the light blocking sheets corresponding to one of the light guiding columns.
  • the light blocking plate is provided with a fixed shape and a fixed size light passing hole.
  • the light blocking piece is disposed between the reflective sheet and the light guiding column, so that the light reflected by the reflective sheet can only be emitted to the light guiding rod through the light passing hole on the light blocking sheet.
  • Figure 12 shows a flow chart of a method of using the thromboelastometer described above, in accordance with one embodiment of the present invention. As shown in FIG. 12, the method includes:
  • Step S121 canceling the blocking action of the stopping mechanism in response to the first supporting portion being offset from the second supporting portion by a predetermined position
  • Step S122 rotating the first support member by applying a second force to the first support member, so that the bridge structure is rotated relative to the second support portion to be opposite to the second support portion. a position at a predetermined angle;
  • Step S123 inserting the lower end of the rotating shaft into the blood to be tested
  • Step S124 rotating the blood to be measured to drive the rotating shaft to rotate;
  • Step S125 Calculate blood clot data of the blood to be measured based on the measured rotation angle of the rotation axis.
  • FIG. 13 shows a block diagram of the composition of such a support system.
  • the support system includes a bracket 1301 and a supported object 1302, wherein a lower end of the second support portion of the bracket 1301 is coupled to one end of the supported object 1302 to support the supported object 1302, so that the supported object 1302 can be supported. Rotate under the action of external drive.
  • the second support portion is rotatable relative to the first support portion under a first force applied thereto, such that when the lower end of the second support portion is connected with the support, the support is The rotation can drive the second support portion to rotate together with respect to the first support portion.
  • the first support portion remains stationary, whereby the rotation angle of the supported object can be measured by measuring the rotation angle of the second support portion.
  • the blocking action of the stop mechanism on the rotation can be eliminated (for example, loosening the fixing member and canceling the frictional force) And/or viscous force, etc.), after which the rotatable structure is rotatable relative to the second support portion under a second force applied thereto, thereby enabling manual rotation of the rotatable structure (eg, the first support member)
  • the first support portion (for example, the bridge structure) and the second support portion are in a predetermined positional relationship to ensure the accuracy of the measurement.
  • the first supporting portion supports the second supporting portion and the supported object through the connecting portion, and the first connecting portion and the second connecting portion of the connecting portion are connected by point contact, and are supported After the object is forced, the second support portion is driven to rotate around a contact point between the first connecting portion and the second connecting portion. Since the first connecting portion and the second connecting portion are connected by point contact, only one contact point generates a frictional force to hinder the rotation of the second supporting portion when the second supporting portion and the first supporting portion rotate relative to each other. The friction generated on the bracket is reduced, thereby reducing the rotational resistance that is received when the support is rotated.
  • the connecting portion includes two connecting portions which may be a jewel bearing and a top cone, and the tip end of the top cone is located in the tapered groove of the jewel bearing, the tip end of the top cone and the bottom of the tapered groove
  • the friction generated by the jewel bearing and the top cone is relatively high. It is small, so that the rotation resistance from the stent when the support is rotated can be reduced, and the sensitivity and measurement accuracy of the thrombometer can be improved when the stent is applied to the thromboelastometer.
  • the bracket may include at least one pair of magnets, one of each pair of magnets is fixed on the first support portion, and the other magnet is fixed on the second support portion, and the pair of magnets are stacked in parallel And the same magnetic poles are opposite, such that, according to the principle of homosexual repelling, the magnet on the first supporting portion gives an upward magnetic force to the magnet on the second supporting portion, and the magnetic force can reduce the point contact between the first connecting portion and the second connecting portion.
  • the pressure between the points reduces the pressure between the point contacts to further reduce the friction generated by the point contact, thereby further reducing the rotational resistance experienced when the support is rotated.
  • the reflector reflects the light emitted by the light emitting module to the light receiving module.
  • the light emitting module emits light in a fixed direction
  • the reflective sheet receives The amount of light that is changed changes, and at the same time, the optical path of the light reflected by the retroreflective sheet changes due to the rotation of the retroreflective sheeting, so that the intensity of the light received by the light receiving module receiving the light in a fixed direction changes, and the light receiving module is based on the light.
  • the intensity converts the received light into a corresponding electrical signal
  • the processing module determines the angle of rotation of the rotating shaft based on the electrical signal.
  • the light is used as the signal for detecting the rotation angle of the rotating shaft, and since the intensity of the light does not change with the change of external factors such as temperature, the rotation angle of the rotating shaft can be detected by the light, and the rotation angle of the rotating shaft can be improved. accuracy.
  • the light emitting diode emits light through the light guiding column
  • the photocell receives light through the light guiding column
  • the light guiding column acts as a channel of light to enhance light uniformity and prevent light from occurring in the through hole of the fixed light emitting diode or the photovoltaic cell. Diffuse reflection, which affects the intensity of the light, so as to ensure the accuracy of detecting the rotation angle of the rotating shaft.
  • processor capable of executing appropriate program instructions, arithmetic operations, data processing, and the like. / or appropriate means of controlling operations, etc., which may be software, hardware, firmware or a combination thereof such as, for example, a computer, a central processing unit, or the like. They may be composed of a single component or a case where their functions are dispersed over a plurality of components. It can be a centralized processing system or a distributed processing system.
  • a bracket comprising: a first support portion, a second support portion and a connection portion, wherein:
  • the first supporting portion supports the second supporting portion through the connecting portion, so that the second supporting portion can rotate relative to the first supporting portion under a first force
  • the first support portion includes: a rotatable structure, a support base and a stop mechanism, wherein:
  • the stop mechanism is for providing a blocking effect on the rotation of the rotatable structure
  • the rotatable structure is supported on the support base and is rotatable relative to the support base under a second force in the event that the blocking action of the stop mechanism is eliminated;
  • the rotatable structure supports the second support portion through the connecting portion such that the rotatable structure is rotatable relative to the second support portion when rotated relative to the support seat.
  • the rotatable structure comprises a first support member and a bridge structure, wherein:
  • the first support member is supported on the support base and is rotatable relative to the support base under the second force when the blocking action of the stop mechanism is eliminated;
  • the bridge structure is supported on the first support and fixedly coupled to the first support such that the bridge structure can rotate together as the first support rotates;
  • the bridge structure supports the second support portion through the connecting portion such that the bridge structure is rotatable relative to the second support portion when the first support member rotates.
  • a fixing member for fixing the rotatable structure relative to the support base
  • a material that provides a releasable viscous force between the rotatable structure and the contact surface of the support is
  • the center of the first support member has a first through hole, and the bridge structure is fixed to the first support member across the first through hole;
  • the center of the support base has a second through hole that at least partially coincides with the first through hole
  • a center of the second support portion has a third through hole
  • the second support portion passes through the first through hole and the support when being supported by the first support portion
  • the second through hole is described, and the bridge structure supports the second support portion through the connection portion located in the third through hole through the third through hole.
  • the connecting portion includes a first connecting portion and a second connecting portion
  • the first connecting portion is fixedly connected to the bridge structure, and the second connecting portion is fixedly connected to the second supporting portion;
  • the first connecting portion and the second connecting portion are connected in a point contact manner such that the first connecting portion and the second connecting portion are relatively rotatable, so that the second supporting portion and the second connecting portion
  • the bridge structure can be rotated relative to each other.
  • the first support member includes a support surface and a cylindrical extension located below and fixedly coupled to the support surface;
  • a top surface of the support seat that is in contact with the first support member has a groove that matches the cylindrical extension portion such that the cylindrical extension portion can be received in the groove by the groove Supported and able to rotate in the groove.
  • the first support member includes a support surface and a cylindrical extension located below and fixedly coupled to the support surface, wherein the support surface extends beyond an upper surface of the cylindrical extension such that the support surface is from the columnar shape
  • the side surface of the extension protrudes
  • a top surface of the support seat that is in contact with the first support member has a groove matching the cylindrical extension portion such that the cylindrical extension portion can be received in the groove to receive the support surface
  • the top surface is supported and enables the cylindrical extension to rotate in the groove.
  • the first connecting portion is a jewel bearing, and the second connecting portion is a top cone;
  • the first connecting portion is a top cone, and the second connecting portion is a jewel bearing;
  • the jewel bearing is provided with a tapered groove
  • the top cone is a tapered structure
  • the tip end of the top cone is located in a tapered groove on the jewel bearing
  • the top cone and the jewel bearing Connected in the form of point contacts.
  • bracket of aspect 1 further comprising: at least one pair of magnets, wherein:
  • a first magnet of the pair of magnets is fixed to a side of the first support portion adjacent to the second support portion, and a second magnet of the pair of magnets is fixed to the second support portion a side on the first support portion;
  • the first magnet and the second magnet are stacked in parallel, and the two adjacent surfaces are isotropic magnetic poles.
  • a stent of any one of aspects 1-9 wherein the lower end of the second support portion is coupled to one end of the rotating shaft to support the rotating shaft,
  • the rotating shaft is enabled to rotate under the action of an external driving force.
  • the thromboelastometer according to aspect 10 further comprising a measuring device, wherein the measuring device is configured to measure a rotation angle of the rotating shaft, and form a blood corresponding to the blood to be measured according to a rotation angle of the rotating shaft The thrombus stretch map.
  • the measuring device comprises: a reflective sheet, a light emitting module, a light receiving module and a processing module;
  • the rotating shaft is fixedly connected to the reflector, and the rotating shaft drives the reflector to rotate under the action of an external driving force;
  • the light emitting module is configured to emit light from a fixed direction to the reflective sheet
  • the reflective sheet is configured to receive light emitted by the light emitting module and reflect the received light
  • the light receiving module is configured to receive light reflected by the retroreflective sheet from a fixed direction, convert the received light into a corresponding electrical signal according to the intensity of the light, and transmit the electrical signal to the processing module;
  • the processing module is configured to process an electrical signal converted by the light receiving module to determine a rotation angle of the rotating shaft.
  • the light emitting module includes a light emitting diode and a light guiding column, wherein the light emitting diode emits light to the reflective sheet through the light guiding column;
  • the light receiving module includes a photocell and a light guiding column, wherein the photocell receives light emitted by the reflective sheet through the light guiding column.
  • a support system comprising the bracket and the supported object according to any one of aspects 1-9, wherein a lower end of the second support portion is coupled to one end of the supported object to support the The support enables the supported object to rotate under external driving.
  • the blood coagulation data of the blood to be measured is calculated based on the measured rotation angle of the rotation axis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Ecology (AREA)
  • Prostheses (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Rolling Contact Bearings (AREA)
  • Pivots And Pivotal Connections (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种支架、支撑系统、血栓弹力仪及其使用方法,该支架包括:第一支撑部(1001)、第二支撑部(1003)和连接部(1002),其中:第一支撑部(1001)通过连接部(1002)支撑第二支撑部(1003),使得第二支撑部(1003)能够在第一作用力下相对于第一支撑部(1001)转动;第一支撑部(1001)包括:可转动结构(1004)、支撑座(1013)和止动机构(1024),其中:止动机构(1024)用于提供对可转动结构(1004)的转动的阻止作用;可转动结构(1004)被支撑在支撑座(1013)上,并且在止动机构(1024)的阻止作用被消除的情况下能够在第二作用力下相对于支撑座(1013)转动;以及可转动结构(1004)通过连接部(1002)支撑第二支撑部(1003),使得可转动结构(1004)在相对于支撑座(1013)转动时能够相对于第二支撑部(1003)转动。可以调整血栓弹力仪各检测部分之间的角度偏移,从而提高测量精度。

Description

支架、支撑系统、血栓弹力仪及其使用方法 技术领域
本发明涉及检测技术领域,特别涉及支架、支撑系统、血栓弹力仪及其使用方法。
背景技术
血栓弹力仪是一种体外检测血液的血凝参数的装置,包括有可以转动的旋转轴,在对血液进行检测时,将旋转轴插入血液中,通过血液的旋转带动旋转轴转动,在设定的检测时间内,根据旋转轴的角位移计算出血液的弹力,从而对心脑血管等疾病的临床诊断提供客观的指导。
目前,血栓弹力仪上的旋转轴与支架相连,通过支架的支撑,在血液的带动下旋转轴发生旋转。
发明内容
本发明的实施例提供了一种支架、支撑系统、血栓弹力仪及其使用方法,能够简便地调节角度偏移,从而提高测量的准确性。
根据本发明的一方面,提供一种支架,包括:第一支撑部、第二支撑部和连接部,其中:
所述第一支撑部通过所述连接部支撑所述第二支撑部,使得所述第二支撑部能够在第一作用力下相对于所述第一支撑部转动;
所述第一支撑部包括:可转动结构、支撑座和止动机构,其中:
所述止动机构用于提供对所述可转动结构的转动的阻止作用;
所述可转动结构被支撑在所述支撑座上,并且在所述止动机构的所述阻止作用被消除的情况下能够在第二作用力下相对于所述支撑座转动;以及
所述可转动结构通过所述连接部支撑所述第二支撑部,使得所述可转动结构在相对于所述支撑座转动时能够相对于所述第二支撑部转动。
根据本发明的另一方面,提供一种血栓弹力仪,包括如上所述的支架以及旋转轴,其中所述第二支撑部的下端与所述旋转轴的一端相连接以支撑所述旋转轴,使得所述旋转轴能够在外部驱动作用下转动。
根据本发明的又一方面,提供一种支撑系统,包括如上所述的支架以及被支撑物,其中所述第二支撑部的下端与所述被支撑物的一端相连 接以支撑所述被支撑物,使得所述被支撑物能够在外部驱动作用下转动。
根据本发明的又一方面,提供一种使用如上所述的血栓弹力仪的方法,包括:
响应于所述第一支撑部相对于所述第二支撑部偏离预定位置,消除所述止动机构的阻止作用;
通过对所述第一支撑件施加所述第二作用力来使所述第一支撑件转动,从而使得所述桥式结构相对于所述第二支撑部转动至与所述第二支撑部形成预定角度的位置;
使所述旋转轴的下端插入被测血液中;
使所述被测血液旋转以带动所述旋转轴转动;以及
基于所测量的所述旋转轴的转动角度来计算被测血液的血凝数据。
通过上述支架、支撑系统、血栓弹力仪及其使用方法的各实施例,支架的连接第一支撑部与第二支撑部的连接部使得二者可相对转动,并且第一支撑部承载连接部的桥式结构位于可转动的第一支撑件上,在消除止动机构对可动结构的转动的阻止作用的情况下通过对第一支撑件施加适当的外力以使得第一支撑件转动,可以带动桥式结构相对于第二支撑部转动,从而可以方便地将桥式结构调整为与第二支撑部成预定角度,以消除血栓弹力仪的各部分(例如第一支撑部和第二支撑部)之间的角度偏移,提高测量精度。
上述概述仅仅是为了说明的目的,并不意图以任何方式进行限制。除上述描述的示意性的方面、实施方式和特征之外,通过参考附图和以下的详细描述,本发明进一步的方面、实施方式和特征将会是容易明白的。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中,除非另外规定,否则贯穿多个附图相同的附图标记表示相同或相似的部件或元素。这些附图不一定是按照比例绘制的。应该理解,这些附图仅描绘了根据本发明公开的一些实施方式,而不应将其视为是对本发明范围的限制。
图1是根据本发明一个实施例的支架的示意框图;
图2A-B是根据本发明一个实施例的支架的结构示意图;
图3A-C是根据本发明一个实施例的支架的第一支撑部的结构组成示意图;
图4是根据本发明一个实施例的支架的第二支撑部的结构组成示意图;
图5是根据本发明一个实施例的包括支架的血栓弹力仪的结构组成示意图;
图6是根据本发明一个实施例的连接部的组成示意图;
图7是根据本发明一个实施例的宝石轴承与第一支撑部固定连接的连接部的示意图;
图8是根据本发明一个实施例的宝石轴承与第二支撑部固定连接的连接部示意图;
图9是根据本发明一个实施例的包括磁铁的连接部示意图;
图10是根据本发明一个实施例的包括测量装置的血栓弹力仪的组成示意图;
图11是根据本发明一个实施例的包括发光二极管及光电池的血栓弹力仪的组成示意图;
图12是根据本发明一个实施例的血栓弹力仪的使用方法的流程图;
图13是根据本发明一个实施例的支撑系统的示意框图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本发明的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。
在本发明的描述中,需要理解的是,术语"中心"、"纵向"、"横向"、"长度"、"上"、"下"、"前"、"后"、"左"、"右"、"坚直"、"水平"、"顶"、"底"、"内"、"外"、"顺时针"、"逆时针"等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构 造和操作,因此不能理解为对本发明的限制。此外,术语"第一"、"第二"仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有"第一"、"第二"的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,"多个"的含义是两个或两个以上,除非另有明确具体的限定。
如图1所示,本发明一个实施例提供了一种支架,该支架包括:第一支撑部1001、第二支撑部1003和连接部1002,其中:
所述第一支撑部1001通过所述连接部1002支撑所述第二支撑部1003,使得所述第二支撑部1003能够在第一作用力下相对于所述第一支撑部1001转动;
所述第一支撑部1001包括:可转动结构1004、支撑座1013和止动机构1024,其中:
所述止动机构1024用于阻止所述可转动结构的转动;
所述可转动结构1004被支撑在所述支撑座1013上,并且在所述止动机构1024对转动的阻止作用被消除的情况下能够在第二作用力下相对于所述支撑座1013转动;以及
所述可转动结构1004通过所述连接部1002支撑所述第二支撑部1003,使得所述可转动结构1004在相对于所述支撑座1013转动时能够相对于所述第二支撑部1003转动。
在图1所示的示例中,可转动结构1004包括第一支撑件1012和桥式结构1011,其中:
所述第一支撑件1012被支撑在所述支撑座1013上并且在所述止动机构1024对转动的阻止作用被消除的情况下能够在所述第二作用力下相对于所述支撑座1013转动;
所述桥式结构1011被支撑在所述第一支撑件1012上,并且与所述第一支撑件1012固定连接,使得当所述第一支撑件1012转动时所述桥式结构1011能够随着一起转动;以及
所述桥式结构1011通过所述连接部1002支撑所述第二支撑部1003,使得当所述第一支撑件1012转动时所述桥式结构1011能够相对于所述第二支撑部1003转动。
由第一支撑件和桥式结构组成的可转动结构只是一个示例,可以理解的是,可转动结构可以具有其他结构。
可以通过多种手段来实现止动机构1024,例如:所述止动机构1024 可以选自以下各项中的一个或者是它们的任意组合:
(1)用于将所述可转动结构1004相对于所述支撑座1013固定的固定件,例如螺丝、闩锁结构、绳等。所述固定件在需要时可被释放,以消除对可转动结构1004的转动的阻止作用。
(2)可转动结构1004与支撑座1013两者相互接触的具有预定粗糙度的表面。可以通过可转动结构1004与支撑座1013的接触表面之间的适当摩擦力来提供对可转动结构1004的转动的阻止作用。所述预定粗糙度可以提供接触表面之间的摩擦力以提供所述阻止作用。例如,可以将两者的接触表面加工成具有一定的粗糙度以提供适当的摩擦力。这里所述的“具有预定粗糙度的表面”包括被连接、粘附或加工到接触表面的用于提供或增大摩擦力的材料或结构。在需要时,该摩擦力可通过施加相反的外力而被抵消,从而消除对可转动结构1004的转动的阻止作用。
(3)在所述可转动结构1004与所述支撑座1013的接触表面之间提供可消除的粘滞力的材料。例如,可以在可转动结构1004与支撑座1013的接触表面之间提供可重复使用的粘稠材料或粘附材料,这些材料所提供的粘滞力在外力的作用下可被抵消,当外力消失时粘滞力继续阻止可转动结构1004的转动。
以上仅为止动机构1024的几个示例,并非是穷举性的。本领域技术人员可以预见能够实现本文所述的止动机构1024的功能的其他各种实现手段。
下面结合图2-4详细说明根据本发明的支架的各实施例。
图2A示出了根据一个实施例的支架的结构组成示意图,图2B为图2A的截面图。图3A-3C为图2的支架的第一支撑部的组成示意图,其中,图3A为支撑座的示意图,图3B为第一支撑件的示意图,图3C为桥式结构的示意图。图4为图2的支架的第二支撑部的组成示意图。
在图2-4的实施例中,支架由通过连接部1002连接起来的第一支撑部和第二支撑部1003构成。第一支撑部包括支撑座1013、位于其上且与其可转动地连接的第一支撑件1012和受第一支撑件1012支撑的桥式结构1013。第一支撑部通过桥式结构1013与连接部1002相连,以支撑也与连接部1002相连的第二支撑部1003。其中,连接部1002被构造成使得第二支撑部1003能够在第一作用力(例如,当支架用于血栓弹力仪时,第一作用力可以为被测血液的转动所引起的旋转轴的转动对第二支撑部1003所施加的力,其中旋转轴被固定连接到第二支撑部1003)下相对于 第一支撑部转动,从而使得当与第二支撑部1003的下端固定相连的被支撑物受到外力驱动而转动时能够带动第二支撑部1003转动。
需要注意的是,为图形的清楚起见,在图2-4中并未明确示出图1中的止动机构1024。可以理解的是,止动机构1024在图2-4的示例中可以为以上提到的任一种实现方式。
在图3的示例中,第一支撑件1012包括支撑表面1012a以及位于支撑表面1012a下面并与其相连接的柱状延伸部1012b,其中,柱状延伸部1012b的顶表面尺寸小于支撑表面1012a的尺寸,即,支撑表面1012a延伸超过柱状延伸部1012b的上表面使得支撑表面1012a突出在柱状延伸部1012b的侧表面之外。在该示例中,第一支撑件1012的中心具有第一通孔1015,桥式结构1011跨过第一通孔1015被固定到第一支撑件1012上。
可以通过多种方式借助于或不借助于各种连接件来将桥式结构1011固定到第一支撑件1012。例如,可以在第一支撑件1012的支撑表面1012a上设置至少一个卡槽,并将桥式结构1011的至少一端置于所述至少一个卡槽内。还可以使用螺丝将桥式结构1011固定到第一支撑件1012。或者采用以上两种方式相结合的手段。还可以通过焊接、粘结或借助于其他连接件和/或固定件来固定桥式结构1011。
在图2-4所示的示例中,第一支撑件1012的支撑表面1012a上具有两个卡槽1017,桥式结构1011的两端分别置于两个卡槽1017内。为了进一步固定,在该示例中还采用螺钉将桥式结构1011的两端固定至第一支撑件1012。
在上面的示例中,桥式结构1011被示出为是下沉式桥式结构,其中,桥式结构1011的上表面与第一支撑件1012的支撑表面1012a基本齐平,上表面之下具有下沉部,上表面上设置有延伸至下沉部的孔口1018,用于固定连接连接部1002。本领域技术人员将认识到的是,桥式结构1011也可以采用其他结构,例如,上浮式结构,其中桥式结构1011的下表面与第一支撑件1012的支撑表面1012a基本齐平,下表面之上具有上浮部,上表面上设置有延伸至上浮部的孔口,用于固定连接连接部1002。
如图3A所示,在该示例中,支撑座1013具有顶表面1021,其上具有与第一支撑件1012的柱状延伸部1012b相匹配的凹槽或第二通孔1014,使得柱状延伸部1012b能够被容纳在该凹槽或第二通孔1014中。 可以使用多种连接手段来实现第一支撑件1012与支撑座1013的可转动连接。例如,可使用转动轴承或滑动轴承。在图2-4的示例中,在组装后,第一支撑件1012与支撑座1013直接接触,第一支撑件1012的柱状延伸部1012b被容纳在位于支撑座1013的中心的第二通孔1014中,第一支撑件1012的支撑表面1012a支撑在支撑座1013的顶表面1021上。其中,在消除了止动机构对第一支撑件1012的转动的阻止作用之后,在对第一支撑件1012施加使其旋转的适当外力时第一支撑件1012可相对于支撑座1013转动。
在图2-4的示例中将第一支撑件1012的支撑表面1012a示出为延伸超过柱状延伸部1012b的上表面,以在与支撑座1013组装后与支撑座1013的顶表面1021相接触并受到其支撑。但可以理解的是,第一支撑件1012也可以采取其他的形式,例如,支撑表面1012a的大小可以等于柱状延伸部1012b的上表面大小,在与支撑座1013组装后,凹槽或第二通孔1014的底表面接触柱状延伸部1012b的底表面并提供支撑。在这种形式中,第一支撑件为圆柱形,支撑座的凹槽或通孔具有至少部分底表面以提供对第一支撑件的支撑。
在上面的各示例中,第一支撑件1012的支撑表面1012a为圆形,柱状延伸部1012b为圆柱形,且支撑座1013也为圆柱形。本领域技术人员将理解的是,第一支撑件1012的支撑表面1012a可以为任意形状,并且柱状延伸部1012b和支撑座1013可以为其他适当的形状,只要能够实现第一支撑件1012与支撑座1013的可转动连接即可。
在图2-4所示的示例中,支撑座1013与第一支撑件1012的中心均具有通孔,并且第一通孔1015与第二通孔1014至少部分相重合,以供第二支撑部1003至少部分地穿过第一通孔1015与第二通孔1014(参见图2A-B)。可以理解的是,在第二支撑部1003无需穿过第一支撑部1001的情况下,支撑座1013与第一支撑件1012也可以不具有通孔。
在图4所示的示例中,第二支撑部1003的中心也具有通孔,即第三通孔1016。在第三通孔1016的靠近第二支撑部1003的上端的侧壁上设置有凹口1022,用于与连接部1002相连接。在图4中将第三通孔1016示出为四方形形状,可以理解的是,其可以为其他任何适当的形状。
由组装后的支架的示意图2A和2B可见,第二支撑部1003在被第一支撑部1001支撑时穿过第一支撑件1012的第一通孔1015和支撑座1013的第二通孔1014,其中第二支撑部1003的下端穿出支撑座1013。并且, 桥式结构1011穿过第二支撑部1003的第三通孔1016通过连接部1002支撑第二支撑部1003。其中,桥式结构1011上的孔口1018与第二支撑部1003上的凹口1022对准,并分别与连接部1002相连接。在组装后的支架中,连接部1002位于第二支撑部1003的第三通孔1016中。
上述支架结构和组装方式只是一种示例,可以理解的是,第二支撑部也可以不穿过第一和第二通孔,而是使得第二支撑部及其第三通孔足够大到可以使整个第一支撑部穿过第三通孔,即第三通孔的四边框均位于第一支撑部之外。
由图5的示例可见,连接部1002可以包括第一连接部1019和第二连接部1020,其中第一连接部1019与桥式结构1011固定连接(例如通过桥式结构1011上的孔口1018),第二连接部1020与第二支撑部1003固定连接(例如通过第二支撑部1003上的凹口1022)。第一连接部1019与第二连接部1020以点接触的方式连接在一起,使得第一连接部1019与第二连接部1020能够相对转动,从而使得第二支撑部1003与桥式结构1011能够相对转动。
在图5所示的示例中,第一支撑部通过连接部支撑第二支撑部与被支撑物,连接部中的第一连接部1019与第二连接部1020通过点接触的方式连接在一起,被支撑物与第二支撑部固定相连并在受到外力驱动后驱动第二支撑部1003绕第一连接部1019与第二连接部1020之间的接触点转动。由于第一连接部1019与第二连接部1020通过点接触的方式连接在一起,在第一支撑部1001与第二支撑部1003发生相对转动时仅有一个接触点产生摩擦力阻碍第二支撑部1003的转动,可以减小支架上产生的摩擦力,从而减小被支撑物旋转时受到的旋转阻力。
在本发明的实施例中,点接触的方式可以是:两个接触部件之间不是完全接触,且接触面积小于预定值。比如,上述第一连接部1019与第二连接部1020通过点接触的方式连接在一起时,接触面积小于1平方毫米。
图6示出了第一连接部和第二连接部为宝石轴承3031和顶锥3032的连接部示意图。宝石轴承3031设置有锥形凹槽2011,顶锥3032为锥状结构,顶锥3032的尖端位于宝石轴承3031上的锥形凹槽2011内,顶锥3032与宝石轴承3031以点接触形式相接合。
如图6所示,宝石轴承3031为圆饼状结构,在宝石轴承3031的一个平面上设置有一个锥形凹槽2011,顶锥3032为锥状结构。顶锥3032的 尖端位于凹槽2011内,仅顶锥3032的尖端与凹槽2011的底部相接触,实现宝石轴承3031与顶锥3032通过点接触的形式进行连接。比如,顶锥3032的尖端具有0.8平方毫米的面积,通过该0.8平方毫米面积的尖端与宝石轴承3031的锥形凹槽2011点接触。
在本发明一个实施例中,连接部中的第一连接部为宝石轴承,第二连接部为顶锥。在另一实施例中,第一连接部为顶锥而第二连接部为宝石轴承。
在图7所示的示例中,宝石轴承3031作为第一连接部与第一支撑部1001固定连接,顶锥3032作为第二连接部与第二支撑部1003固定连接,顶锥3032的尖端位于宝石轴承3031的凹槽内,顶锥3032的尖端与宝石轴承3031凹槽的底部为点接触。第一支撑部1001通过宝石轴承3031支撑固定连接的顶锥3032及第二支撑部1003。
在图8所示的实施例中,顶锥3032作为第一连接部与第一支撑部1001固定连接,宝石轴承3031作为第二连接部与第二支撑部1003固定连接,顶锥3032的尖端与宝石轴承3031的底部为点接触。第一支撑部1001通过顶锥3032支撑固定连接的宝石轴承3031及第二支撑部1003。
在本发明的一个实施例中,支架进一步包括:至少一对磁铁;
对于每一对磁铁,该对磁铁中的第一磁铁固定于第一支撑部上靠近第二支撑部的一侧,该对磁铁中的第二磁铁固定于第二支撑部上靠近第一支撑部的一侧;以及
第一磁铁与第二磁铁平行叠放,且相接近的两个面为同性磁极。
在图9所示的示例中,支架包括两对磁铁,第一对磁铁包括磁铁5041及磁铁5042,第二对磁铁包括磁铁5051及磁铁5052,磁铁5041及磁铁5051固定于第一支撑部1001上,磁铁5042及磁铁5052固定于第二支撑部1003上。第一对磁铁中的磁铁5041与磁铁5042平行叠放,磁铁5041与磁铁5042相互靠近的面具有相同极性的磁极,例如,磁铁5041的N极指向第二支撑部1003,磁铁5042的N极指向第一支撑部1001;第二对磁铁中的磁铁5051与磁铁5052平行叠放,磁铁5051与磁铁5052相互靠近的面具有相同极性的磁极,例如,磁铁5051的S极指向第二支撑部1003,磁铁5052的S极指向第一支撑部1001。
在图5的示例中,支架还包括用于支撑第一支撑部1001和第二支撑部1003的固定立柱1023,其中支撑座1013固定连接至固定立柱1023。
在上面所述的支架的各实施例中,第二支撑部能够在施加到其的第 一作用力下相对于第一支撑部(例如第一支撑部的桥式结构)转动,从而使得当第二支撑部下端连接有被支撑物时被支撑物的转动可带动第二支撑部一起相对于第一支撑部转动。在未消除止动机构对可动结构的转动的阻止作用的情况下,第一支撑部保持不动,由此可通过测量第二支撑部的转动角度来测量被支撑物的转动角度。在需要时(例如在需要调整第一支撑部与第二支撑部之间的角度关系以提高测量精度时),可消除止动机构对转动的阻止作用(例如,松开固定件、抵消摩擦力和/或粘滞力等),之后可转动结构能够在施加到其的第二作用力下相对于第二支撑部转动(例如,第一支撑件能够在施加到其的第二作用力下带动桥式结构相对于第二支撑部转动),从而使得可通过手动转动可转动结构(例如第一支撑件)来使第一支撑部(例如桥式结构)与第二支撑部处于预定的位置关系,以确保测量的准确性。一般地,为便于测量,需将第一支撑部和第二支撑部布置为使得桥式结构的长度方向的轴线垂直于第二支撑部的平面。当发现第一支撑部的桥式结构与第二支撑部偏离了该预定位置关系时,需要将其调整到该预定关系以保证测量准确性。在这种情况下,通过根据本发明的包括可旋转桥式结构的支架,可以在消除了止动机构对转动的阻止作用之后对第一支撑件施加适当的外力以使其及与其固定相连的桥式结构相对于第二支撑部旋转一定角度,从而使得其上的桥式结构的轴线变得垂直于第二支撑部。
本文中的术语“桥式结构”是指该结构是跨越支撑其的表面的结构,需要指出的是,支撑其的表面可以具有供桥式结构跨越的开槽、开口或通孔,但这些开槽、开口、通孔或类似结构并不是必需的。
本文所述的支架的各个实施例可用于血栓弹力仪。图5示出了包括上面所述的支架的血栓弹力仪的一个实施例。如图5所示,该血栓弹力仪包括支架以及作为受支架支撑的被支撑物的旋转轴7。第二支撑部1003的下端与旋转轴7的一端相连接以支撑旋转轴7,使得旋转轴7能够在外部驱动作用下转动。在使用时,旋转轴7的另一端(下端)伸入容纳在容器中的被测血液中,血液被驱动装置驱动得旋转,从而带动旋转轴7也转动。该血栓弹力仪通过测量旋转轴7的转动角度,可以计算出被测血液的血凝参数数据。
在本发明的一个实施例中,血栓弹力仪还包括测量装置,其中所述测量装置用于对所述旋转轴的转动角度进行测量,并根据所述旋转轴的转动角度形成对应于所述被测血液的血栓弹力图。
在图10所示的示例中,所述测量装置包括:至少一个反光片51、至少一个光发射模块52、至少一个光接收模块53及处理模块54;
旋转轴7与至少一个反光片51固定连接,旋转轴7在外部驱动作用下带动至少一个反光片51转动;
每一个光发射模块52,用于以固定的方向向对应的反光片51发射光;
每一个反光片51,用于接收对应光发射模块52发射的光,并对接收到的光进行反射;
每一个光接收模块53,用于以固定的方向接收对应的反光片51反射的光,根据光的强度将接收到的光转换为对应的电信号,并将电信号传输给处理模块54;
处理模块54,用于对至少一个光接收模块53转换成的电信号进行处理,以确定旋转轴7的转动角度。
根据该实施例的血栓弹力仪,反光片将光发射模块发射的光反射给光接收模块,当反光片在旋转轴的带动下发生转动时,由于光发射模块以固定的方向发射光,反光片接收到的光的量发生改变,同时由于反光片的转动,反光片反射光的光路发生改变,导致以固定的方向接收光的光接收模块接收到的光的强度发生改变,光接收模块根据光的强度将接收到的光转换为对应的电信号,处理模块根据电信号确定旋转轴的转动角度。这样,以光为检测旋转轴转动角度的信号,由于光的强度不会随温度等外界因素的改变而发生变化,因而通过光检测旋转轴的转动角度,可以提高对旋转轴转动角度进行检测的准确性。
在图11所示的示例中,光发射模块52包括发光二极管6031及导光柱6032,其中,发光二极管6031通过导光柱6032向反光片51发射光;
和/或:
光接收模块53包括光电池6041及导光柱6042,其中,光电池6041通过导光柱6042接收反光片51发射的光。
在本发明实施例中,由于光发射模块52所位于的第四通孔6062的内表面为机械加工表面,存在一定的粗糙度,如果通过发光二极管6031直接向反光片51发射光,发光二极管6031发出的光会在第四通孔6062内发生漫反射,一方面造成光能的散失,另一方面造成从第四通孔6062射出的光的方向及量难以控制。通过导光柱6032将发光二极管6031发出的光射向反光片51,发光二极管6031发出的光在导光柱6032内部传导, 光不会产生漫反射的现象,从而提高光能的利用率,并保证从第四通孔6062射出的光具有特定的方向和特定的量,进而保证对旋转轴7转动角度进行检测的准确性。
在本发明一个实施例中,每一个光接收模块包括有一个光电池和一个导光柱,光电池和导光柱均固定在第五通孔内,其中导光柱位于靠近反光片的一侧。导光柱以固定的方向接收对应反光片反射的光,并将接收到的光传导给光电池,光电池根据接光的强度将接收到的光转换成对应的电信号。
在图11所示的示例中,由于第五通孔6063也通过机械加工而成,因而第五通孔6063内表面存在一定的粗糙度,如果反光片51反射的光直接进入第五通孔6063而达到光电池6041,光会在第五通孔6063的内壁上发生漫反射,造成光能量的散失,最终达到光电池6041的光的能量小于反光片射入第五通孔6063的光的能量,进而造成最终检测到的旋转轴7的转动角度存在较大误差。通过导光柱6042接收反光片51反射的光,光在导光柱6042内部传输,在传输过程中光不会发生漫反射,保证光电池6041接收到的光的能量与反光片51反射给导光柱6042的光的能量相等,从而可以保证对旋转轴7的转动角度进行检测的准确性。
在本发明的一个实施例中,血栓弹力仪还包括有至少一个挡光片,挡光片的数量与导光柱的数量相等,每一个挡光片对应一个导光柱。挡光片上设置有固定形状及固定尺寸的通光孔,挡光片设置于反光片与导光柱之间,使反光片反射的光仅能够通过挡光片上的通光孔发射给导光柱。
图12示出根据本发明一个实施例的使用上述血栓弹力仪的方法的流程图。如图12所示,该方法包括:
步骤S121:响应于所述第一支撑部相对于所述第二支撑部偏离预定位置,消除所述止动机构的所述阻止作用;
步骤S122:通过对所述第一支撑件施加第二作用力来使所述第一支撑件转动,从而使得所述桥式结构相对于所述第二支撑部转动为与所述第二支撑部成预定角度的位置;
步骤S123:使所述旋转轴的下端插入被测血液中;
步骤S124:使所述被测血液旋转以带动所述旋转轴转动;以及
步骤S125:基于所测量的所述旋转轴的转动角度来计算被测血液的血凝数据。
虽然上面以支架用于血栓弹力仪为例进行了说明,但可以认识到的是,本发明各实施例的支架也可用于其他被支撑物以组成支撑系统。图13示出了这样的支撑系统的组成框图。如图13所示,该支撑系统包括支架1301和被支撑物1302,其中支架1301的第二支撑部的下端与被支撑物1302的一端相连接以支撑被支撑物1302,使得被支撑物1302能够在外部驱动作用下转动。
本发明提供的各个实施例,至少具有如下有益效果:
1、在本发明实施例中,第二支撑部能够在施加到其的第一作用力下相对于第一支撑部转动,从而使得当第二支撑部下端连接有被支撑物时被支撑物的转动可带动第二支撑部一起相对于第一支撑部转动。在未消除止动机构对可动结构的转动的阻止作用的情况下,第一支撑部保持不动,由此可通过测量第二支撑部的转动角度来测量被支撑物的转动角度。在需要时(例如在需要调整第一支撑部与第二支撑部之间的角度关系以提高测量精度时),可消除止动机构对转动的阻止作用(例如,松开固定件、抵消摩擦力和/或粘滞力等),之后可转动结构能够在施加到其的第二作用力下相对于第二支撑部转动,从而使得可通过手动转动可转动结构(例如第一支撑件)来使第一支撑部(例如桥式结构)与第二支撑部处于预定的位置关系,以确保测量的准确性。
2、在本发明实施例中,第一支撑部通过连接部支撑第二支撑部与被支撑物,连接部中的第一连接部与第二连接部通过点接触的方式连接在一起,被支撑物受力后驱动第二支撑部绕第一连接部与第二连接部之间的接触点转动。由于第一连接部与第二连接部通过点接触的方式连接在一起,在第二支撑部与第一支撑部发生相对转动时仅有一个接触点产生摩擦力阻碍第二支撑部的转动,可以减小支架上产生的摩擦力,从而减小被支撑物旋转时受到的旋转阻力。
3、在本发明实施例中,连接部包括的两个连接部可以为宝石轴承和顶锥,顶锥的尖端位于宝石轴承的锥形凹槽内,顶锥的尖端与锥形凹槽的底部为点接触,宝石轴承与顶锥发生相对转动时,产生的摩擦力较 小,从而可以减小被支撑物旋转时受到的来自支架的旋转阻力,当该支架应用于血栓弹力仪时可以提高血栓弹力仪的灵敏度及测量的准确性。
4、在本发明实施例中,支架可以包括至少一对磁铁,每一对磁铁中的一个磁铁固定于第一支撑部上,另一个磁铁固定于第二支撑部上,一对磁铁平行叠放且同性磁极相对,这样,根据同性相斥的原理,第一支撑部上的磁铁给第二支撑部上的磁铁一个向上的磁力,该磁力可以减小第一连接部与第二连接部点接触之间的压力,减小点接触之间的压力可以进一步减小点接触产生的摩擦力,从而进一步减小被支撑物旋转时受到的旋转阻力。
5、本发明实施例中,反光片将光发射模块发射的光反射给光接收模块,当反光片在旋转轴的带动下发生转动时,由于光发射模块以固定的方向发射光,反光片接收到的光的量发生改变,同时由于反光片的转动,反光片反射光的光路发生改变,导致以固定的方向接收光的光接收模块接收到的光的强度发生改变,光接收模块根据光的强度将接收到的光转换为对应的电信号,处理模块根据电信号确定旋转轴的转动角度。这样,以光为检测旋转轴转动角度的信号,由于光的强度不会随温度等外界因素的改变而发生变化,因而通过光检测旋转轴的转动角度,可以提高对旋转轴转动角度进行检测的准确性。
6、本发明实施例中,发光二极管通过导光柱发射光,光电池通过导光柱接收光,导光柱作为光的通道可以增强光的均匀性,并避免光在固定发光二极管或光电池的通孔内发生漫反射,对光光的强度造成影响的情况发生,从而保证对旋转轴转动角度进行检测的准确性。
需要注意的是,本文中出现的“处理器”、“处理单元/模块”、“控制器”、“控制单元/模块”或类似术语是指能够执行适当的程序指令、运算操作、数据处理和/或控制操作等的适当装置,它们可以为软件、硬件、固件或它们的组合,诸如例如计算机、中央处理单元等。它们可以由单个的部件构成,也可以是其功能分散在多个部件上的情况。其可以是集中式处理系统,也可以是分布式处理系统。
发明的各方面
以下被编号的各方面提供对本发明的进一步公开。
1、一种支架,包括:第一支撑部、第二支撑部和连接部,其中:
所述第一支撑部通过所述连接部支撑所述第二支撑部,使得所述第二支撑部能够在第一作用力下相对于所述第一支撑部转动;
所述第一支撑部包括:可转动结构、支撑座和止动机构,其中:
所述止动机构用于提供对所述可转动结构的转动的阻止作用;
所述可转动结构被支撑在所述支撑座上,并且在所述止动机构的所述阻止作用被消除的情况下能够在第二作用力下相对于所述支撑座转动;以及
所述可转动结构通过所述连接部支撑所述第二支撑部,使得所述可转动结构在相对于所述支撑座转动时能够相对于所述第二支撑部转动。
2、根据方面1所述的支架,其中,所述可转动结构包括第一支撑件和桥式结构,其中:
所述第一支撑件被支撑在所述支撑座上并且在所述止动机构的所述阻止作用被消除的情况下能够在所述第二作用力下相对于所述支撑座转动;
所述桥式结构被支撑在所述第一支撑件上,并且与所述第一支撑件固定连接,使得当所述第一支撑件转动时所述桥式结构能够随着一起转动;以及
所述桥式结构通过所述连接部支撑所述第二支撑部,使得当所述第一支撑件转动时所述桥式结构能够相对于所述第二支撑部转动。
3、根据方面1所述的支架,其中,所述止动机构选自以下各项中的一个或者是它们的任意组合:
用于将所述可转动结构相对于所述支撑座固定的固定件;
所述可转动结构与所述支撑座两者相互接触的具有预定粗糙度的表面;或
在所述可转动结构与所述支撑座的接触表面之间提供可消除的粘滞力的材料。
4、根据方面2所述的支架,其中:
所述第一支撑件的中心具有第一通孔,所述桥式结构跨过所述第一通孔固定到所述第一支撑件上;
所述支撑座的中心具有与第一通孔至少部分地重合的第二通孔;
所述第二支撑部的中心具有第三通孔;以及
所述第二支撑部在被所述第一支撑部支撑时穿过所述第一通孔和所 述第二通孔,并且所述桥式结构穿过所述第三通孔通过位于所述第三通孔内的所述连接部支撑所述第二支撑部。
5、根据方面2所述的支架,其中:
所述连接部包括第一连接部和第二连接部;
所述第一连接部与所述桥式结构固定连接,所述第二连接部与所述第二支撑部固定连接;以及
所述第一连接部与所述第二连接部以点接触的方式连接在一起,使得所述第一连接部与所述第二连接部能够相对转动,从而使得所述第二支撑部与所述桥式结构能够相对转动。
6、根据方面2所述的支架,其中:
所述第一支撑件包括支撑表面以及位于所述支撑表面下面并与其固定连接的柱状延伸部;以及
所述支撑座的与所述第一支撑件相接触的顶表面上具有与所述柱状延伸部匹配的凹槽,使得所述柱状延伸部能够容纳在所述凹槽中受到所述凹槽的支撑并且能够在所述凹槽中转动。
7、根据方面2所述的支架,其中:
所述第一支撑件包括支撑表面以及位于所述支撑表面下面并与其固定连接的柱状延伸部,其中所述支撑表面延伸超过所述柱状延伸部的上表面,使得所述支撑表面从所述柱状延伸部的侧表面突出出来;以及
所述支撑座的与所述第一支撑件相接触的顶表面上具有与所述柱状延伸部匹配的凹槽,使得所述柱状延伸部能够容纳在所述凹槽中使所述支撑表面受到所述顶表面的支撑,并且使得所述柱状延伸部能够在所述凹槽中转动。
8、根据方面5所述的支架,其中:
所述第一连接部为宝石轴承,所述第二连接部为顶锥;
或者:
所述第一连接部为顶锥,所述第二连接部为宝石轴承;
其中,所述宝石轴承设置有锥形凹槽,所述顶锥为锥状结构,所述顶锥的尖端位于所述宝石轴承上的锥形凹槽内,所述顶锥与所述宝石轴承以点接触形式相连接。
9、根据方面1所述的支架,还包括:至少一对磁铁,其中:
对于每一对磁铁,该对磁铁中的第一磁铁固定于所述第一支撑部上靠近所述第二支撑部的一侧,该对磁铁中的第二磁铁固定于所述第二支撑部上靠近所述第一支撑部的一侧;以及
所述第一磁铁与所述第二磁铁平行叠放,且相接近的两个面为同性磁极。
10、一种血栓弹力仪,包括如方面1-9中任一方面所述的支架以及旋转轴,其中所述第二支撑部的下端与所述旋转轴的一端连接以支撑所述旋转轴,使得所述旋转轴能够在外部驱动力的作用下转动。
11、根据方面10所述的血栓弹力仪,还包括测量装置,其中所述测量装置用于对所述旋转轴的转动角度进行测量,并根据所述旋转轴的转动角度形成对应于被测血液的血栓弹力图。
12、根据方面11所述的血栓弹力仪,其中:
所述测量装置包括:反光片、光发射模块、光接收模块及处理模块;
所述旋转轴与所述反光片固定连接,所述旋转轴在外部驱动力作用下带动所述反光片转动;
所述光发射模块用于从固定的方向向反光片发射光;
所述反光片用于接收光发射模块发射的光,并对接收到的光进行反射;
所述光接收模块,用于从固定的方向接收反光片反射的光,根据光的强度将接收到的光转换为对应的电信号,并将所述电信号传输给所述处理模块;
所述处理模块,用于对所述光接收模块转换成的电信号进行处理,确定所述旋转轴的转动角度。
13.如方面12所述的血栓弹力仪,其中:
所述光发射模块包括发光二极管及导光柱,其中,所述发光二极管通过所述导光柱向所述反光片发射光;
和/或:
所述光接收模块包括光电池及导光柱,其中,所述光电池通过所述导光柱接收所述反光片发射的光。
14、一种支撑系统,包括如方面1-9中任一方面所述的支架以及被支撑物,其中所述第二支撑部的下端与所述被支撑物的一端相连接以支撑所述被支撑物,使得所述被支撑物能够在外部驱动作用下转动。
15、一种使用如方面10-13中任一方面所述的血栓弹力仪的方法,包括:
响应于所述第一支撑部相对于所述第二支撑部偏离预定位置,消除所述止动机构的所述阻止作用;
通过对所述第一支撑件施加所述第二作用力来使所述第一支撑件转动,从而使得所述桥式结构相对于所述第二支撑部转动至与所述第二支撑部形成预定角度的位置;
使所述旋转轴的下端插入被测血液中;
使所述被测血液旋转以带动所述旋转轴转动;以及
基于所测量的所述旋转轴的转动角度来计算被测血液的血凝数据。
最后需要说明的是:以上所述仅为本发明的较佳实施例,仅用于说明本发明的技术方案,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所做的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (15)

  1. 一种支架,包括:第一支撑部、第二支撑部和连接部,其中:
    所述第一支撑部通过所述连接部支撑所述第二支撑部,使得所述第二支撑部能够在第一作用力下相对于所述第一支撑部转动;
    所述第一支撑部包括:可转动结构、支撑座和止动机构,其中:
    所述止动机构用于提供对所述可转动结构的转动的阻止作用;
    所述可转动结构被支撑在所述支撑座上,并且在所述止动机构的所述阻止作用被消除的情况下能够在第二作用力下相对于所述支撑座转动;以及
    所述可转动结构通过所述连接部支撑所述第二支撑部,使得所述可转动结构在相对于所述支撑座转动时能够相对于所述第二支撑部转动。
  2. 根据权利要求1所述的支架,其中,所述可转动结构包括第一支撑件和桥式结构,其中:
    所述第一支撑件被支撑在所述支撑座上并且在所述止动机构的所述阻止作用被消除的情况下能够在所述第二作用力下相对于所述支撑座转动;
    所述桥式结构被支撑在所述第一支撑件上,并且与所述第一支撑件固定连接,使得当所述第一支撑件转动时所述桥式结构能够随着一起转动;以及
    所述桥式结构通过所述连接部支撑所述第二支撑部,使得当所述第一支撑件转动时所述桥式结构能够相对于所述第二支撑部转动。
  3. 根据权利要求1所述的支架,其中,所述止动机构选自以下各项中的一个或者是它们的任意组合:
    用于将所述可转动结构相对于所述支撑座固定的固定件;
    所述可转动结构与所述支撑座两者相互接触的具有预定粗糙度的表面;或
    在所述可转动结构与所述支撑座的接触表面之间提供可消除的粘滞力的材料。
  4. 根据权利要求2所述的支架,其中:
    所述第一支撑件的中心具有第一通孔,所述桥式结构跨过所述第一通孔固定到所述第一支撑件上;
    所述支撑座的中心具有与第一通孔至少部分地重合的第二通孔;
    所述第二支撑部的中心具有第三通孔;以及
    所述第二支撑部在被所述第一支撑部支撑时穿过所述第一通孔和所述第二通孔,并且所述桥式结构穿过所述第三通孔通过位于所述第三通孔内的所述连接部支撑所述第二支撑部。
  5. 根据权利要求2所述的支架,其中:
    所述连接部包括第一连接部和第二连接部;
    所述第一连接部与所述桥式结构固定连接,所述第二连接部与所述第二支撑部固定连接;以及
    所述第一连接部与所述第二连接部以点接触的方式连接在一起,使得所述第一连接部与所述第二连接部能够相对转动,从而使得所述第二支撑部与所述桥式结构能够相对转动。
  6. 根据权利要求2所述的支架,其中:
    所述第一支撑件包括支撑表面以及位于所述支撑表面下面并与其固定连接的柱状延伸部;以及
    所述支撑座的与所述第一支撑件相接触的顶表面上具有与所述柱状延伸部匹配的凹槽,使得所述柱状延伸部能够容纳在所述凹槽中受到所述凹槽的支撑并且能够在所述凹槽中转动。
  7. 根据权利要求2所述的支架,其中:
    所述第一支撑件包括支撑表面以及位于所述支撑表面下面并与其固定连接的柱状延伸部,其中所述支撑表面延伸超过所述柱状延伸部的上表面,使得所述支撑表面从所述柱状延伸部的侧表面突出出来;以及
    所述支撑座的与所述第一支撑件相接触的顶表面上具有与所述柱状延伸部匹配的凹槽,使得所述柱状延伸部能够容纳在所述凹槽中使所述支撑表面受到所述顶表面的支撑,并且使得所述柱状延伸部能够在所述凹槽中转动。
  8. 根据权利要求5所述的支架,其中:
    所述第一连接部为宝石轴承,所述第二连接部为顶锥;
    或者:
    所述第一连接部为顶锥,所述第二连接部为宝石轴承;
    其中,所述宝石轴承设置有锥形凹槽,所述顶锥为锥状结构,所述顶锥的尖端位于所述宝石轴承上的锥形凹槽内,所述顶锥与所述宝石轴承以点接触形式相连接。
  9. 根据权利要求1所述的支架,还包括:至少一对磁铁,其中:
    对于每一对磁铁,该对磁铁中的第一磁铁固定于所述第一支撑部上靠近所述第二支撑部的一侧,该对磁铁中的第二磁铁固定于所述第二支 撑部上靠近所述第一支撑部的一侧;以及
    所述第一磁铁与所述第二磁铁平行叠放,且相接近的两个面为同性磁极。
  10. 一种血栓弹力仪,包括如权利要求1-9中任一项所述的支架以及旋转轴,其中所述第二支撑部的下端与所述旋转轴的一端连接以支撑所述旋转轴,使得所述旋转轴能够在外部驱动力的作用下转动。
  11. 根据权利要求10所述的血栓弹力仪,还包括测量装置,其中所述测量装置用于对所述旋转轴的转动角度进行测量,并根据所述旋转轴的转动角度形成对应于被测血液的血栓弹力图。
  12. 根据权利要求11所述的血栓弹力仪,其中:
    所述测量装置包括:反光片、光发射模块、光接收模块及处理模块;
    所述旋转轴与所述反光片固定连接,所述旋转轴在外部驱动力作用下带动所述反光片转动;
    所述光发射模块用于从固定的方向向反光片发射光;
    所述反光片用于接收光发射模块发射的光,并对接收到的光进行反射;
    所述光接收模块,用于从固定的方向接收反光片反射的光,根据光的强度将接收到的光转换为对应的电信号,并将所述电信号传输给所述处理模块;
    所述处理模块,用于对所述光接收模块转换成的电信号进行处理,确定所述旋转轴的转动角度。
  13. 如权利要求12所述的血栓弹力仪,其中:
    所述光发射模块包括发光二极管及导光柱,其中,所述发光二极管通过所述导光柱向所述反光片发射光;
    和/或:
    所述光接收模块包括光电池及导光柱,其中,所述光电池通过所述导光柱接收所述反光片发射的光。
  14. 一种支撑系统,包括如权利要求1-9中任一项所述的支架以及被支撑物,其中所述第二支撑部的下端与所述被支撑物的一端相连接以支撑所述被支撑物,使得所述被支撑物能够在外部驱动作用下转动。
  15. 一种使用如权利要求10-13中任一项所述的血栓弹力仪的方法,包括:
    响应于所述第一支撑部所述第一支撑部相对于所述第二支撑部偏离 预定位置,消除所述止动机构的阻止作用;
    通过对所述第一支撑件施加所述第二作用力来使所述第一支撑件转动,从而使得所述桥式结构相对于所述第二支撑部转动至与所述第二支撑部形成预定角度的位置;
    使所述旋转轴的下端插入被测血液中;
    使所述被测血液旋转以带动所述旋转轴转动;以及
    基于所测量的所述旋转轴的转动角度来计算被测血液的血凝数据。
PCT/CN2017/082786 2016-04-29 2017-05-02 支架、支撑系统、血栓弹力仪及其使用方法 WO2017186190A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019507986A JP6964656B2 (ja) 2016-04-29 2017-05-02 ブラケット、支持システム、トロンボエラストグラフ及びその使用方法
US16/097,016 US11067490B2 (en) 2016-04-29 2017-05-02 Bracket, support system, and thrombelastography device and use method thereof

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201620380387.2U CN205720232U (zh) 2016-04-29 2016-04-29 一种血栓弹力仪
CN201610278393.1 2016-04-29
CN201620380387.2 2016-04-29
CN201620383166.0 2016-04-29
CN201610279824.6A CN105842432B (zh) 2016-04-29 2016-04-29 一种血栓弹力仪
CN201620383166.0U CN205749523U (zh) 2016-04-29 2016-04-29 血栓弹力仪
CN201610278393.1A CN105807039B (zh) 2016-04-29 2016-04-29 血栓弹力仪
CN201610279824.6 2016-04-29

Publications (1)

Publication Number Publication Date
WO2017186190A1 true WO2017186190A1 (zh) 2017-11-02

Family

ID=60160708

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2017/082775 WO2017186186A1 (zh) 2016-04-29 2017-05-02 一种血栓弹力仪及检测旋转轴转动角度的方法
PCT/CN2017/082786 WO2017186190A1 (zh) 2016-04-29 2017-05-02 支架、支撑系统、血栓弹力仪及其使用方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082775 WO2017186186A1 (zh) 2016-04-29 2017-05-02 一种血栓弹力仪及检测旋转轴转动角度的方法

Country Status (3)

Country Link
US (1) US11067490B2 (zh)
JP (1) JP6964656B2 (zh)
WO (2) WO2017186186A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113865846B (zh) * 2021-09-26 2024-03-19 恪宁科技(上海)有限公司 一种血栓弹力图仪悬垂丝劲度系数检测装置及检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225126B1 (en) * 1999-02-22 2001-05-01 Haemoscope Corporation Method and apparatus for measuring hemostasis
US20100154520A1 (en) * 2008-12-23 2010-06-24 Axel Schubert cartridge device for a measuring system for measuring viscoelastic characteristics of a sample liquid, a corresponding measuring system, and a corresponding method
CN104062207A (zh) * 2014-07-15 2014-09-24 中国科学院苏州生物医学工程技术研究所 一种血液粘弹力监测装置
CN104181311A (zh) * 2014-08-22 2014-12-03 中国科学院苏州生物医学工程技术研究所 一种血栓弹力测试装置
CN104614539A (zh) * 2013-11-05 2015-05-13 北京乐普医疗科技有限责任公司 一种血栓弹力图仪
US20160091516A1 (en) * 2014-09-29 2016-03-31 C A Casyso Ag Blood Testing System and Method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2455273A2 (fr) * 1979-04-27 1980-11-21 Probio Dms Perfectionnements apportes aux dispositifs de thromboelastographie
CA1223458A (en) * 1984-06-08 1987-06-30 John R. Delorey Versatile pressurized consistometer/rheometer/fluid loss apparatus
FR2594950B1 (fr) * 1986-02-27 1988-05-06 Petroles Cie Francaise Consistometre d'analyse d'evolution rheologique, notamment utilisable sur un chantier
US5201214A (en) * 1991-09-12 1993-04-13 Toki Sangyo Co., Ltd. Rotary viscosimeter having pivot protection apparatus
US5301541A (en) * 1992-06-19 1994-04-12 Joseph Daniel D Drag determining apparatus
WO2010081876A1 (en) 2009-01-16 2010-07-22 C A Casyso Ag A measuring unit for measuring characteristics of a sample liquid, in particular viscoelastic characteristics of a blood sample
EP2208996B1 (en) * 2009-01-16 2010-09-01 C A Casyso AG A measuring unit for measuring characteristics of a sample liquid, in particular viscoelastic characteristics of a blood sample
CN103398922B (zh) * 2013-07-09 2015-09-30 广东石油化工学院 一种血栓弹力测量装置及其测量方法
CN104458503B (zh) * 2014-12-12 2016-11-30 广州阳普医疗科技股份有限公司 一种凝血检测仪器
CN205720232U (zh) * 2016-04-29 2016-11-23 苏州品诺维新医疗科技有限公司 一种血栓弹力仪
CN105807039B (zh) * 2016-04-29 2018-11-23 诺泰科生物科技(苏州)有限公司 血栓弹力仪
CN105842432B (zh) * 2016-04-29 2019-01-22 诺泰科生物科技(苏州)有限公司 一种血栓弹力仪
CN205749523U (zh) * 2016-04-29 2016-11-30 苏州品诺维新医疗科技有限公司 血栓弹力仪

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225126B1 (en) * 1999-02-22 2001-05-01 Haemoscope Corporation Method and apparatus for measuring hemostasis
US20100154520A1 (en) * 2008-12-23 2010-06-24 Axel Schubert cartridge device for a measuring system for measuring viscoelastic characteristics of a sample liquid, a corresponding measuring system, and a corresponding method
CN104614539A (zh) * 2013-11-05 2015-05-13 北京乐普医疗科技有限责任公司 一种血栓弹力图仪
CN104062207A (zh) * 2014-07-15 2014-09-24 中国科学院苏州生物医学工程技术研究所 一种血液粘弹力监测装置
CN104181311A (zh) * 2014-08-22 2014-12-03 中国科学院苏州生物医学工程技术研究所 一种血栓弹力测试装置
US20160091516A1 (en) * 2014-09-29 2016-03-31 C A Casyso Ag Blood Testing System and Method

Also Published As

Publication number Publication date
US20190137377A1 (en) 2019-05-09
WO2017186186A1 (zh) 2017-11-02
US11067490B2 (en) 2021-07-20
JP6964656B2 (ja) 2021-11-10
JP2019515315A (ja) 2019-06-06

Similar Documents

Publication Publication Date Title
TWI537692B (zh) 用來偵測手錶指針之位置的裝置
WO2012036075A1 (ja) 屈折率測定装置、及び屈折率測定方法
WO2017186190A1 (zh) 支架、支撑系统、血栓弹力仪及其使用方法
US7889326B2 (en) Distance measuring apparatus
WO2012119274A1 (zh) 表面张力检测装置及方法
KR102115580B1 (ko) 휴대형 각도 측정기
CN109434715A (zh) 一种定位装置及定位方法
CN111299759B (zh) 一种激光焊缝跟踪精度检测系统、检测方法和装置
CN209364450U (zh) 一种定位装置
TWI595252B (zh) 測距裝置及其測距方法
CN207816860U (zh) 用于射线检测的对焦装置
KR101499339B1 (ko) 현미경의 시편 정렬장치
US11866311B2 (en) Cap removal device and thrombelastography device having same
JP5000819B2 (ja) 回転レーザ装置
JP2000304521A (ja) 角度計及びそれを用いた旋光計
TWI569916B (zh) 旋轉軸角度輔助定位量測系統
TWI736972B (zh) 角度檢測裝置及角度檢測方法
CN106705945B (zh) 一种测量装置及天线对准系统
JP2011217864A (ja) グリップエンド高さ測定器具
WO2017186184A1 (zh) 一种检测血凝数据的装置
CN205404405U (zh) 消除bsdf测量中激光光源功率变化误差的系统
KR102678461B1 (ko) 굴곡진 표면을 탐상 가능한 위상배열 초음파 탐상용 주행장치
JP2010139477A (ja) センサの取付構造
JP2535479Y2 (ja) 磁気検出器
CN208689163U (zh) 一种近、远距离激光测距机的探测器安装结构

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019507986

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17788842

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17788842

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17788842

Country of ref document: EP

Kind code of ref document: A1