WO2017186184A1 - 一种检测血凝数据的装置 - Google Patents

一种检测血凝数据的装置 Download PDF

Info

Publication number
WO2017186184A1
WO2017186184A1 PCT/CN2017/082755 CN2017082755W WO2017186184A1 WO 2017186184 A1 WO2017186184 A1 WO 2017186184A1 CN 2017082755 W CN2017082755 W CN 2017082755W WO 2017186184 A1 WO2017186184 A1 WO 2017186184A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
blood
blood coagulation
thrombus
sensor
Prior art date
Application number
PCT/CN2017/082755
Other languages
English (en)
French (fr)
Inventor
于邦仲
姜峰
Original Assignee
诺泰科生物科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201620380387.2U external-priority patent/CN205720232U/zh
Priority claimed from CN201610279824.6A external-priority patent/CN105842432B/zh
Priority claimed from CN201620477344.6U external-priority patent/CN205786644U/zh
Priority claimed from CN201610347496.9A external-priority patent/CN105911261A/zh
Priority claimed from CN201610753656.XA external-priority patent/CN106442954B/zh
Priority claimed from CN201610756273.8A external-priority patent/CN106491119B/zh
Application filed by 诺泰科生物科技(苏州)有限公司 filed Critical 诺泰科生物科技(苏州)有限公司
Publication of WO2017186184A1 publication Critical patent/WO2017186184A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers

Definitions

  • the present invention relates to the field of medical device technology, and in particular, to a device for detecting blood coagulation data.
  • a device for detecting blood clot data such as a thromboelastometer
  • a medical device for detecting whether blood can coagulate normally is a medical device for detecting whether blood can coagulate normally.
  • This type of device has been used more and more widely.
  • the blood clot data of the patient is detected by a thromboelastometer before the operation, and the blood coagulation data of the patient is judged according to the detected blood coagulation data, and the patient can be operated only when the blood can be normally coagulated. If there is an abnormality in the blood coagulation process, the patient's blood will not be able to coagulate normally during the operation, resulting in difficulty in stopping bleeding, and it is likely to endanger the patient's life.
  • Embodiments of the present invention provide a device for detecting blood coagulation data and a blood coagulation data correction method, which can reduce an error introduced in the output blood coagulation data due to the inclination of the thrombus ambulometer body.
  • the apparatus for detecting blood coagulation data includes: a thromboelast apparatus body, a tilt sensor and a data correction unit;
  • the thromboelast apparatus body is configured to detect blood to be tested, and obtain blood clot data of the blood to be tested;
  • the tilt sensor is configured to detect a position of the body of the thrombus elastic instrument during the detecting of the blood to be tested by the thromboelast apparatus body, and obtain a first tilt angle of the body of the thrombometer;
  • the data correction unit is configured to correct the blood coagulation data acquired by the thrombus elastic instrument body according to the first tilt angle acquired by the tilt sensor, obtain corrected blood clot data, and output the corrected blood coagulation data.
  • the tilt sensor detects the position of the body of the thrombus elastic instrument, and obtains the first tilt angle of the body of the thrombus elastic instrument, and the data correction unit according to the tilt sensor
  • the obtained first tilt angle corrects the blood coagulation data detected by the thrombus ambulometer body to form corrected blood clot data and outputs.
  • the corrected blood clot data is obtained by correcting the blood coagulation data according to the tilt angle of the main body of the thrombus elastic instrument, and the corrected blood clot data is output as the final detection result, and is reduced.
  • the error introduced in the output hemagglutination data due to the tilt of the thrombometer.
  • FIG. 1 is a schematic diagram of an apparatus for detecting blood coagulation data according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a gravity acceleration component of a body of a thrombus elastic instrument according to an embodiment of the present invention
  • FIG. 3 is a schematic view showing a tilting state of a rotating shaft according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an apparatus for detecting blood coagulation data including a horizontal calibration unit according to an embodiment of the present invention
  • FIG. 5 is a flowchart of a blood coagulation data correction method according to an embodiment of the present invention.
  • FIG. 6 is a flow chart of a blood coagulation data correction method according to another embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an apparatus for detecting blood coagulation data according to another embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an apparatus for detecting blood coagulation data according to still another embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an apparatus for detecting blood coagulation data according to still another embodiment of the present invention.
  • FIG. 10 is a flowchart of a blood coagulation data correction method according to still another embodiment of the present invention.
  • FIG. 11 is a flow chart of a blood coagulation data correction method according to still another embodiment of the present invention.
  • an embodiment of the present invention provides a device for detecting blood coagulation data, comprising: a thromboelast apparatus body 101, a tilt sensor 102, and a data correction unit 103;
  • the thromboelast apparatus body 101 is configured to detect blood to be tested, and obtain blood clot data of the blood to be tested;
  • the tilt sensor 102 is configured to detect the position of the thromboelast apparatus body 101 during the detection of the blood to be tested by the thromboelast apparatus body 101, and acquire the first part of the thromb apparatus An angle of inclination;
  • the data correction unit 103 is configured to correct the blood coagulation data acquired by the thromboelast apparatus body 101 according to the first tilt angle acquired by the tilt sensor, obtain corrected blood clot data, and output the corrected blood coagulation data.
  • the embodiment of the invention provides a device for detecting blood coagulation data.
  • the tilt sensor detects the position of the body of the thrombus elastic instrument, and obtains the first tilt of the body of the thrombus elastic instrument.
  • the angle correction data corrects the blood coagulation data detected by the thrombus ambulometer body according to the first tilt angle acquired by the tilt sensor to form corrected blood clot data and outputs the corrected blood clot data.
  • the corrected blood clot data is obtained by correcting the blood coagulation data according to the tilt angle of the main body of the thrombus elastic instrument, and the corrected blood clot data is output as the final detection result, and is reduced.
  • the thromboelast apparatus body includes a rotation axis and a detection module, wherein the detection module is capable of detecting the rotation of the rotation axis and outputting corresponding blood coagulation data according to the rotation condition of the rotation axis.
  • the detection module is capable of detecting the rotation of the rotation axis and outputting corresponding blood coagulation data according to the rotation condition of the rotation axis.
  • the gyroscope can be used as the tilt sensor, and when the gyroscope is used as the tilt sensor, the gyroscope and the thromboelast apparatus body can be fixedly connected. After the gyroscope is fixed on the body of the thrombus elastic instrument, the angular motion parameter of the body of the thrombus elastic instrument can be detected, and the first tilt angle of the body of the thrombus elastic instrument can be further obtained according to the angular motion parameter of the body of the thrombus elastic instrument.
  • the gyroscope Due to the high integration degree of the gyroscope and the small volume, the gyroscope is fixed on the body of the thrombus elastic instrument to detect the tilt angle of the body of the thrombus elastic instrument, and there is no need to make large-scale changes to the overall structure of the body of the thrombus elastic instrument.
  • the gyroscope can be a three-axis gyroscope.
  • the orientation of the three axes of the three-axis gyroscope will change.
  • the angular motion parameter of the body of the thrombometer can be determined, and the angle of inclination of the body of the thrombometer can be determined according to the angular motion parameter of the body of the thrombus instrument.
  • the three-axis gyroscope transmits the detected tilt angle as a first tilt angle to the data correction unit.
  • the acceleration sensor can be used as a tilt sensor.
  • the acceleration sensor is fixed on the body of the thrombus elastic instrument, and the acceleration sensor is tilted when the body of the thrombometer is tilted.
  • Presetting a three-dimensional coordinate system in the acceleration sensor wherein the x-axis, the y-axis, and the z-axis of the preset three-dimensional coordinate system are perpendicular to each other, and the x-axis and the y-axis are located when the thrombeltograph body is in a horizontal position In the water level.
  • the acceleration sensor can detect the gravity acceleration component of the thrombus elastic instrument body in the three coordinate axes in the preset three-dimensional coordinate system. According to the detected components of the gravity acceleration in the three coordinate axes, the body of the thromboeometer is calculated by the following formula 1. The angle of inclination as the first angle of inclination;
  • is the first inclination angle of the body of the thrombometer
  • a x is a gravity acceleration component of the thromboelastic body in the x-axis direction of the preset three-dimensional coordinate system
  • a y is the body of the thrombometer
  • the gravitational acceleration component in the y-axis direction in the three-dimensional coordinate system is set
  • a z is the gravitational acceleration component of the thromboelastic body in the z-axis direction in the preset three-dimensional coordinate system.
  • the x-axis and the y-axis of the preset three-dimensional coordinate system in the acceleration sensor 202 are in a horizontal plane
  • the z-axis is perpendicular to the horizontal plane
  • the x-axis, the y-axis, and the z-axis are two. Two vertical.
  • the acceleration sensor 202 and the preset three-dimensional coordinate system are inclined with the body of the thrombometer.
  • the acceleration sensor 202 detects a gravitational acceleration component thrombelastography instrument body in three directions x axis, y axis and z-axis, wherein the x-axis direction is the gravitational acceleration a x, y-axis direction in the acceleration of gravity as A y, The acceleration of gravity in the z-axis direction is a z .
  • the acceleration sensor 202 first calculates the gravity of the thromboelast apparatus body on the plane defined by the x-axis and the y-axis by the gravity acceleration in the x- axis direction being a y and the gravitational acceleration in the y-axis direction is a y .
  • Acceleration component a xy where
  • the gravitational acceleration a z of the thrombelometer body in the z-axis direction is perpendicular to the direction of the gravitational acceleration component a xy , in the calculation After the gravity acceleration component a xy , the acceleration sensor 202 calculates the tilt angle ⁇ of the body of the thrombus elastic instrument by the following formula 5, wherein
  • formula 1 can be obtained by combining formula 4 with formula 5.
  • the gravity acceleration component of the thromboelast apparatus body in the plane determined by the x-axis and the y-axis is zero, and the thromboelast apparatus body is
  • the gravitational acceleration component in the z-axis direction is equal to the gravitational acceleration g; when the thrombo-elastic body is tilted, the gravitational acceleration of the thrombo-elastic body in the plane determined by the x-axis and the y-axis is not zero, according to the inverse trigonometric function
  • the tilt angle ⁇ of the body of the thrombus elastic instrument is calculated, and the tilt angle ⁇ is the first tilt angle of the body of the thrombometer.
  • the blood coagulation data is sent to the data correction unit; and the tilt sensor detects the first tilt angle of the body of the thrombus elastic device, and then the first The tilt angle is sent to the data correction unit.
  • the data correcting unit After receiving the blood coagulation data sent by the thrombus elastic instrument body and the first tilt angle sent by the tilt sensor, the data correcting unit corrects the blood coagulation data according to the first formula according to the following formula 2 to obtain corrected blood coagulation data;
  • a 1 is the corrected blood coagulation data
  • a 0 is the blood coagulation data obtained by the thrombus elastic instrument body
  • is the first inclination angle of the thromboelast apparatus body.
  • the rotating shaft on the body of the thrombelometer is inserted into the blood to be tested 304.
  • the rotation axis of the body of the thrombometer is at the position indicated by 3011; when the inclination angle of the body of the thrombus amperometer is ⁇ ( ⁇ is not equal to zero), the rotation axis of the body of the thrombus instrument At the position shown at 3012.
  • the length of the rotating shaft 3012 that is immersed in the blood to be tested 304 is increased, and the rotational axis 3011 when the tilting of the body of the blood vessel is not inclined is greater than the driving force of the rotating shaft 3012 when the blood to be tested is rotated.
  • the driving force of the rotating shaft 3011 causes the rotation angle of the rotating shaft 3012 under the same blood to be tested to be larger than the rotation of the rotating shaft 3011.
  • the ratio of the driving force received by all the rotating shafts 3012 to the driving force received by the rotating shaft 3011 is equal to cos ⁇ , and thus the cosine value by the tilt angle ⁇ can be
  • the driving force received by the rotating shaft 3012 is corrected, and the blood coagulation data detected by the thromboelast apparatus body can be corrected by Formula 2.
  • the data correcting unit after receiving the blood coagulation data sent by the thromboelast apparatus body and the first tilt angle sent by the tilt sensor, the data correcting unit corrects the blood coagulation data according to the first tilt angle according to the following formula 3. , obtaining corrected blood coagulation data;
  • a 1 is the corrected blood coagulation data
  • a 0 is the blood coagulation data obtained by the thrombus elastic instrument body
  • is the first inclination angle of the thromboelast apparatus body.
  • the length of the blood shaft of the thrombus-elastic body that is immersed in the blood to be tested increases, and the direction of gravity of the rotating shaft does not coincide with the direction of the axis of the rotating shaft.
  • the tilting of the rotating shaft causes the rotating shaft and the bearing.
  • the frictional force changes, and the frictional force also affects the blood coagulation data detected by the thrombus ambulometer body.
  • the gravity of the rotating shaft into a component in the axial direction and a component in the direction of the vertical axis, and calculate the thromboelast apparatus body by integration according to the component of the gravity axis in the axial direction and the component in the vertical axial direction.
  • the hemorrhagic clotting data 2 is calculated considering the increase in the length of the blood to be tested, and the blood coagulation data 2 is A 0 ⁇ cos ⁇ .
  • the average value of the blood coagulation data 1 and the blood coagulation data 2 was obtained, and the average value of the blood coagulation data taken out was used as the corrected blood coagulation data.
  • the blood coagulation data detected by the body of the thrombus elastic instrument can be further corrected according to the change of the driving force and the frictional force, which can be further reduced.
  • the error introduced in the blood coagulation data due to the inclination of the thrombus ambulatory body further improves the accuracy of the blood clot data detection by the thromboelastometer.
  • the means for detecting blood clot data may further comprise a horizontal calibration unit 104.
  • the device for detecting blood clot data includes the horizontal calibration unit 104
  • the blood coagulation data of the blood to be measured is detected in the thrombelometer body 101.
  • the tilt sensor 102 detects the position of the thromboelast apparatus body 101, acquires the tilt angle and the tilt direction of the thromboelast apparatus body 101 before detecting the blood to be measured, and transmits the acquired second tilt angle and tilt direction.
  • the horizontal calibration unit 104 after receiving the second tilt angle and the tilt direction, the horizontal calibration unit 104 performs a leveling operation on the thromboelast apparatus body 101 by the lifting mechanism according to the second tilt angle and the tilt direction.
  • the tilt sensor 102 has two functions, on the one hand, for detecting the tilt angle of the thromboelast apparatus body 101 during the detection of the blood to be tested by the thromboelast apparatus body 101, and detecting the first tilt angle And sent to the data correction unit 103; on the other hand, for detecting the inclination angle and the inclination direction of the thromboelast apparatus body 101 before detecting the blood to be measured by the thromboelast apparatus body 101, and detecting the second inclination angle And the oblique direction is sent to the horizontal calibration unit 104.
  • the data correcting unit 103 corrects the blood coagulation data detected by the thromboelast apparatus body 101 according to the first tilt angle transmitted by the tilt sensor 102; the horizontal calibration unit 104 compares the second tilt angle and the tilt direction sent by the tilt sensor 102 to the thrombus
  • the elastic body 101 performs leveling operation to prevent the occurrence of errors.
  • the leveling operation of the horizontal standard unit 104 the position of the thromboelast apparatus body 101 is closer to the horizontal position, and the error introduced by the tilting of the thrombus ambulometer body in the blood coagulation data outputted by the body of the thrombus elastic instrument is fundamentally reduced.
  • the accuracy of detecting the blood coagulation data by the thrombus ambulometer body is improved.
  • an embodiment of the present invention provides a method for performing blood coagulation data correction by using any device for detecting blood coagulation data provided by an embodiment of the present invention, and the method may include the following operations:
  • Operation 501 detecting blood to be measured by the thrombus elastic instrument body, and acquiring blood coagulation data of the blood to be tested;
  • Operation 502 in the process of detecting the blood to be tested by the thromboelast apparatus body, detecting the position of the thromboelast apparatus body by the tilt sensor, and acquiring the first tilt of the thromboelast apparatus body angle;
  • Operation 503 correcting the blood coagulation data acquired by the thromboelast apparatus body by the data correction unit according to the first tilt angle acquired by the tilt sensor, and obtaining corrected blood coagulation data.
  • the blood coagulation data correction method detects the position of the body of the thrombus elastic instrument during the process of detecting the blood to be measured by the thrombus elastic instrument body, and obtains the first inclination angle of the body of the thrombus elastic instrument, according to the first The angle of inclination is corrected for the blood coagulation data detected by the body of the thrombelometer, and the corrected blood coagulation data is obtained and output. After detecting the hemorrhagic data, it is not directly output.
  • the hemagglutination data is corrected according to the tilt angle of the thrombus ambulometer body to obtain corrected blood coagulation data, and the corrected hemagglutination data is output as the final detection result, thereby reducing the output.
  • the process of detecting the first tilt angle of the thrombus ambulometer body by the tilt sensor may include:
  • the angular motion parameter of the thrombus elastic instrument body is detected by a gyroscope, and the first tilt angle of the thrombus elastic instrument body is obtained according to the angular motion parameter.
  • the process of detecting the first tilt angle of the body of the thrombus ambulometer by the tilt sensor comprises:
  • the acceleration acceleration component is used to detect the gravity acceleration component of the thrombus elastic instrument body on three coordinate axes in the preset three-dimensional coordinate system, and according to the gravity acceleration component in the three coordinate axis directions, the first inclination angle of the thromboelast apparatus body is calculated by the following formula 1;
  • is the first tilt angle of the thromboelast apparatus body
  • a x is the gravitational acceleration component of the thromboelastic apparatus body in the x-axis direction of the preset three-dimensional coordinate system
  • a y is the thromboelastic apparatus body in the preset three-dimensional coordinate system the gravitational acceleration component in the y-axis direction
  • a z thrombelastography instrument body is the gravity acceleration component in a predetermined three-dimensional coordinate system on the z-axis direction
  • the x-axis, the y-axis and the z-axis of the preset three-dimensional coordinate system are perpendicular to each other, and the x-axis and the y-axis are in a horizontal plane when the thromboelastic body is in a horizontal position.
  • the process of correcting the blood coagulation data according to the first tilt angle to obtain the corrected blood coagulation data may include:
  • the blood coagulation data is corrected by the following formula 2, and the corrected blood coagulation data is obtained;
  • a 1 is the corrected blood coagulation data
  • a 0 is the blood coagulation data obtained by the thrombus elastic instrument body
  • is the first inclination angle of the thromboelast apparatus body.
  • the process of correcting the blood coagulation data according to the first tilt angle to obtain the corrected blood coagulation data may include:
  • the A 1 is the corrected hemagglutination data
  • the A 0 is the blood coagulation data acquired by the thrombometer body
  • the ⁇ is a first tilt angle of the thrombometer body.
  • the method before the detecting of the blood to be measured by the thrombus ambulometer body, the method further comprises:
  • the body of the thrombelometer is level-adjusted by the lifting mechanism.
  • the acceleration sensor as the tilt sensor as an example to further explain the blood coagulation data correction method.
  • the method may include Do the following:
  • Operation 601 detecting a second tilting angle and a tilting direction of the thromboelast apparatus body.
  • the tilt angle and the tilt direction of the body of the thrombus elastic instrument are detected by the tilt sensor, and the detected tilt angle is used as the second tilt angle.
  • the two tilt angles and the tilt direction are sent to the horizontal calibration unit.
  • the acceleration sensor detects the gravitational acceleration component of the thrombus ambulometer body in three coordinate axes in a preset three-dimensional coordinate system, wherein the gravity acceleration components of the thrombelometer body in the x-axis, the y-axis, and the z-axis direction are respectively ⁇ x2 , ⁇ y2 and ⁇ z2, the second inclination angle calculating thrombelastography instrument body by the following equation ⁇ 2:
  • the tilting direction of the body of the thrombometer is determined;
  • the acceleration sensor transmits the second tilt angle ⁇ 2 and the tilt direction to the horizontal calibration unit after acquiring the second tilt angle ⁇ 2 and the tilt direction of the thromb apparatus.
  • Operation 602 Perform a horizontal adjustment operation on the body of the thrombus elastic instrument according to the second inclination angle and the inclination direction.
  • the horizontal calibration unit controls the lifting mechanism to perform a leveling operation on the body of the thrombus elastic instrument according to the second tilt angle and the tilt direction.
  • the base of the thrombometer body is rectangular, and a lifting mechanism is disposed at each corner of the rectangular base, and the horizontal calibration unit is connected to each lifting mechanism.
  • the horizontal calibration unit controls one or more of the four lifting mechanisms to extend or shorten the lifting mechanism, and adjust the angle between the rectangular base and the horizontal plane, thereby the thrombus elastic instrument The body is adjusted to a position close to the horizontal.
  • Operation 603 detecting blood to be measured, and obtaining blood coagulation data of the blood to be tested.
  • the blood to be measured is detected by the body of the thrombus-elastic apparatus, and the rotating shaft of the body of the thrombus-elastic apparatus is rotated by the blood to be tested, and the thrombus elasticity is
  • the instrument body obtains blood clot data of the blood to be tested according to the rotation angle of the rotation axis, and transmits the acquired blood coagulation data to the data correction unit.
  • Operation 604 Detecting a first tilt angle of the thromboelast apparatus body during the detection of the blood to be tested.
  • the tilt angle of the body of the thrombus elastic instrument is detected by the tilt sensor, and the first tilt angle of the body of the thrombus elastic instrument is obtained.
  • the first tilt angle obtained by the tilt sensor may be a real-time tilt angle of the thrombo-elastic body during the detection of the blood to be tested, or may be an average tilt angle of the thrombo-elastic body during the detection of the blood to be tested.
  • the acceleration sensor detects the gravity acceleration component of the thromboelastic apparatus body in three coordinate axes in a preset three-dimensional coordinate system in real time, wherein the thromboelast apparatus body is on the x-axis.
  • the gravitational acceleration components in the y-axis and z-axis directions are a x1 , a y1 , and a z1 , respectively, and the first inclination angle ⁇ 1 of the thromboelast apparatus body is calculated by the following formula:
  • the first tilt angle ⁇ 1 may be a set of tilt angles of the body of the thrombus elastic instrument at each time of detecting the blood to be tested, and may also detect an average value of the tilt angle of the body of the thrombus elastic instrument during the blood to be tested.
  • Operation 605 Correcting the blood coagulation data according to the first tilt angle, obtaining corrected blood coagulation data and outputting.
  • the data correcting unit after receiving the blood coagulation data sent by the thrombus elastic instrument body and the first tilt angle sent by the tilt sensor, the data correcting unit corrects the blood coagulation data according to the first tilt angle to obtain corrected blood coagulation data. And output to reduce the error introduced in the final output of the blood coagulation data due to the tilt of the thrombus instrument body.
  • the rotation angle of the rotating shaft of the thrombus elastic instrument reflects the blood coagulation data of the blood to be tested
  • the data correction unit corrects the blood coagulation data detected by the body of the thrombus elastic instrument according to the first inclination angle ⁇ 1 detected by the acceleration sensor to obtain corrected blood coagulation data;
  • a 1 is the corrected blood coagulation data
  • a 0 is the blood coagulation data obtained by the body of the thrombometer
  • ⁇ 1 is the first inclination angle of the body of the thrombometer.
  • the data correction unit may further correct the blood coagulation data detected by the body of the thrombus elastic instrument according to the first inclination angle ⁇ 1 detected by the acceleration sensor, and obtain the corrected blood coagulation data;
  • a 1 is the corrected blood coagulation data
  • a 0 is the blood coagulation data obtained by the thrombus elastic instrument body
  • is the first inclination angle of the thromboelast apparatus body.
  • an embodiment of the present invention provides a device for detecting blood coagulation data, comprising: a thromboelast apparatus body 701, at least one vibration sensor 702, and a data correction unit 703;
  • the thromboelast apparatus body 701 is configured to detect blood to be tested, and obtain blood clot data of the blood to be tested;
  • the vibration sensor 702 is configured to detect vibration of the thromboelastic body 701 during the detection of the blood to be tested by the thromboelast apparatus body 701, and obtain vibration data of the thromb apparatus body 701;
  • the data correction unit 703 is configured to correct the blood coagulation data obtained by the thromboelast apparatus body 701 according to the vibration data obtained by each of the vibration sensors 702 to form first corrected blood clot data.
  • the embodiment of the invention provides a device for detecting blood coagulation data, in the process of detecting the blood coagulation data of the blood to be tested by the thromboelast apparatus body, at least one vibration sensor detects the vibration condition of the thrombus elastic instrument body to obtain a thrombus
  • the vibration data of the elastic instrument body the data correction unit corrects the blood coagulation data detected by the thrombus elastic instrument body according to the vibration data acquired by the vibration sensor to form the first corrected blood coagulation data.
  • the first corrected hemagglutination data is the result of correcting the blood coagulation data according to the vibration state of the thrombus ambulometer body, and thus the first corrected hemagglutination data is used as the final detection.
  • the error introduced in the detection result due to the vibration of the thrombus mechanical body can be reduced.
  • the vibration sensor may be a quartz crystal resonant sensor, and the quartz crystal resonant sensor is located between the fulcrum of the body of the thrombus elastic instrument and the support platform supporting the body of the thrombus elastic instrument, and the quartz crystal resonant sensor is according to itself.
  • the vibration amplitude and vibration frequency of the thrombus elastic instrument body can be obtained by the change of the natural frequency and the pressure to be received.
  • the obtained vibration amplitude and vibration frequency are the vibration data of the thrombus elastic instrument body.
  • the quartz crystal resonant sensor has high sensitivity, it can be detected by the quartz crystal resonant sensor when the thromboelastic body is slightly vibrated, further reducing the error introduced by the vibration of the thrombus elastic instrument body in the detection result, and improving The accuracy of the blood vessel blood coagulation detected by the thrombus ambulometer body.
  • the lower end of the thrombelometer body 701 is provided with three fulcrums 801, and a lower end of each fulcrum 801 is provided with a quartz resonance sensor 802, and three quartz resonances are placed when the thrombus ammeter is placed on the support platform 803.
  • the sensor 802 is located between the three fulcrums 801 and the support platform 803.
  • the fulcrum 801 vibrates together with the thromboelast apparatus body 701, and the natural frequency of the quartz resonance sensor 802 changes with the vibration frequency of the fulcrum 801, and the quartz resonance sensor 802 according thereto
  • the natural frequency of the self determines the vibration frequency of the fulcrum 801
  • the quartz resonance sensor 802 determines the amplitude of the fulcrum 801 according to the pressure generated by the fulcrum 801, thereby obtaining the vibration data including the amplitude and the vibration frequency of the thromb apparatus body 701. .
  • the data correction unit obtains the correction coefficient according to the amplitude and the vibration frequency acquired by each vibration sensor according to the following formula 1, and further detects the body of the thrombus ammeter by the following formula 2 according to the obtained correction coefficient.
  • the blood coagulation data is corrected to obtain the first corrected blood coagulation data.
  • the specific formula 1 and formula 2 are as follows:
  • is the correction coefficient
  • L is the average value of the amplitudes detected by the respective vibration sensors
  • is the average value of the vibration frequencies detected by the respective vibration sensors
  • a 0 is the blood coagulation data acquired by the thrombus ambulometer body
  • a 1 For the first correction of blood clot data.
  • the device for detecting blood clot data includes a plurality of vibration sensors
  • the average amplitude and the average vibration frequency of the body of the thrombus ammeter are calculated according to the amplitude and the vibration frequency detected by the respective vibration sensors, and the calculated average amplitude and the average vibration frequency are calculated. Substituting the above formula 1 to obtain the correction factor.
  • the correction coefficient for correcting the blood coagulation data is acquired based on the average value vibration data detected by the plurality of vibration sensors, and the reliability of the correction result is ensured.
  • the amplitude and the vibration frequency of 701 are obtained by the formula 1 to obtain a correction coefficient for correcting the blood coagulation data detected by the thromboelast apparatus body 701.
  • the apparatus for detecting blood clot data further includes a level sensor 901;
  • the level sensor 901 is configured to detect the tilting condition of the thromboelast apparatus body 701 during the detection of the blood to be tested by the thromboelast apparatus body 701, and obtain the tilt angle of the thrombus elastic instrument body 701;
  • the data correcting unit 703 is further configured to correct the first corrected hemagglutination data according to the tilt angle acquired by the level sensor 901, and form and output the second corrected blood clot data.
  • the thrombus elastic instrument body Since the thrombus elastic instrument body has a certain inclination angle after being placed on the support platform, the inclination of the thrombus elastic instrument body changes the contact area of the rotating shaft on the body of the thrombus elastic instrument with the blood to be tested, resulting in the blood to be tested on the rotating shaft. The driving force is changed, which in turn causes the rotation angle of the rotating shaft to be affected.
  • the blood coagulation data determined according to the rotation angle of the rotating shaft may have an error due to the inclination of the thrombus elastic body.
  • further correcting the first modified blood coagulation data can reduce the error introduced in the first modified blood coagulation data due to the inclination of the thrombus elastic instrument body, and further improve the blood pressure of the thrombus elastic instrument body. The accuracy of the test.
  • the detected tilt angle is sent to the data correction unit, and the data correction unit passes the following formula 3 according to the received tilt angle.
  • the hemagglutination data is corrected for further correction to obtain the second corrected hemagglutination data, wherein the formula 3 is as follows:
  • a 1 is the first corrected blood clot data
  • a 2 is the second corrected blood clot data
  • the contact area of the rotating shaft with the blood to be tested is increased, and the angle of rotation of the rotating shaft driven by the blood to be tested is correspondingly increased, resulting in thrombus elasticity.
  • the blood coagulation data detected by the instrument body is too large, and the first modified blood coagulation data is corrected by the formula 3, and the error introduced by the tilting of the thrombus elastic instrument body in the first modified hemagglutination data is reduced, and the body of the thrombus elastic instrument is improved.
  • the level sensor can be realized by a gyroscope, the gyroscope is small in size and high in integration, and can be conveniently fixed on the body of the thrombus elastic instrument to measure the tilt angle of the body of the thrombometer; and, the gyroscope
  • the sensitivity of the instrument is high, even when the tilt angle of the body of the thrombus elastic instrument is small, the tilt angle of the main body of the thrombus elastic instrument can be detected, and the blood coagulation data detected by the body of the thrombus elastic instrument can be corrected to ensure the final blood output.
  • the accuracy of the condensed data is high, even when the tilt angle of the body of the thrombus elastic instrument is small, the tilt angle of the main body of the thrombus elastic instrument can be detected, and the blood coagulation data detected by the body of the thrombus elastic instrument can be corrected to ensure the final blood output. The accuracy of the condensed data.
  • the data correction unit may first correct the error introduced by the vibration in the blood coagulation data according to the amplitude and the vibration frequency detected by the vibration sensor, and then correct the hemi-coagulation data according to the tilt angle detected by the level sensor. Error; the data correction unit may first correct the error introduced by the tilt in the blood coagulation data according to the tilt angle detected by the level sensor, and then correct the error introduced by the vibration in the blood coagulation data according to the amplitude and the vibration frequency detected by the vibration sensor.
  • the correction sequence of the data correction unit can be flexibly selected according to the actual business realization needs.
  • an embodiment of the present invention provides a method for correcting blood coagulation data by using any apparatus for detecting blood coagulation data provided by an embodiment of the present invention, including:
  • Operation 1001 detecting blood to be measured by the body of the thrombus elastic instrument, and obtaining blood coagulation data of the blood to be tested;
  • Operation 1002 detecting vibration of the body of the thrombus elastic instrument during detection of the blood to be tested by the thrombus elastic instrument body by using each vibration sensor, and obtaining vibration data of the body of the thrombus elastic instrument;
  • Operation 1003 Correcting the blood coagulation data according to the vibration data obtained by each vibration sensor to form first corrected blood clot data.
  • the embodiment of the invention provides a method for correcting blood coagulation data, in the process of detecting the blood to be measured by the thrombus elastic instrument body, detecting the vibration state of the body of the thrombus elastic instrument, obtaining the vibration data of the body of the thrombus elastic instrument, according to the vibration data
  • the blood coagulation data detected by the body of the thrombus ammeter is corrected.
  • the error introduced by the vibration of the thrombus elastic instrument body in the detection result is reduced, and the accuracy of detecting the hemagglutination data of the blood to be measured is improved.
  • the quartz resonance type sensor when detecting the vibration condition of the body of the thrombus elasticity meter, is used as the vibration sensor, and the blood is detected in the body of the thrombus ambulometer body according to the inherentity of each quartz resonance type sensor.
  • the frequency and the pressure with which the pressure is applied, the amplitude and vibration frequency of the body of the thrombus ammeter are obtained as vibration data.
  • the correction coefficient is obtained by the following formula 1
  • the thrombus is obtained by the following formula 2
  • the blood coagulation data detected by the body of the elastic instrument is corrected to obtain the first corrected blood coagulation data, wherein
  • is the correction coefficient
  • L is the average value of the amplitudes detected by the respective vibration sensors
  • is the average value of the vibration frequencies detected by the respective vibration sensors
  • a 0 is the blood coagulation data acquired by the thrombus ambulometer body
  • a 1 For the first correction of blood clot data.
  • the method further includes: detecting a tilting condition of the body of the thrombus elastic instrument during the detecting of the blood to be measured by the thrombus elastic instrument body, and obtaining an inclination angle of the body of the thrombus elastic instrument, according to the body of the thrombus elastic instrument The angle of inclination is corrected again by the acquired first corrected blood clot data to form a second corrected blood clot data and output.
  • Correcting the first modified blood coagulation data according to the tilt angle of the body of the thrombus elastic instrument can reduce the error introduced by the thrombus elastic instrument body in the blood coagulation data detected by the body of the thrombus elastic instrument, and further improve the body of the thrombus elastic instrument Accuracy of blood coagulation testing.
  • the first modified blood clot data is corrected by the following formula 3 to obtain the second corrected blood clot data, wherein
  • is the inclination angle of the body of the thrombometer
  • a 1 is the first corrected blood clot data
  • a 2 is the second corrected blood clot data.
  • the blood coagulation data correction method provided by the embodiment of the present invention is further described in detail by taking the correction of the blood coagulation data according to the vibration data and the tilt angle of the thrombus ambulometer body.
  • the method may further include the following steps. As shown in FIG. operating:
  • Operation 1101 testing the blood to be measured by the thrombus ambulometer body.
  • the driving device drives the blood to be tested to rotate, and the blood to be tested rotates the rotating shaft of the main body of the thrombometer to start blood coagulation of the blood to be measured. Detection.
  • Operation 1102 detecting the vibration condition of the body of the thrombus elastic instrument, and acquiring vibration data of the body of the thrombus elastic instrument.
  • the vibration of the support platform for supporting the body of the thrombus elastic instrument and the impact generated when the rotation direction of the rotating shaft changes, resulting in thrombus elasticity The body of the instrument generates vibration, and the vibration of the body of the thrombus elastic instrument is detected by at least one vibration sensor, and each of the vibration sensors respectively detects the amplitude and the vibration frequency of the body of the group of thromboelastic devices.
  • three quartz crystal resonant sensors 802 are disposed between the three fulcrums 801 of the thromboelast apparatus body 701 and the support platform 803.
  • the thromboelast apparatus body 701 transmits vibration
  • the thromboelast apparatus body 701 The vibration is transmitted to the quartz crystal resonant sensor 802 through the fulcrum 801, and the quartz crystal resonant sensor 802 can change its own natural frequency according to the frequency of the received vibration, and can detect the pressure generated by the fulcrum 801, quartz crystal resonant sensor 802 determines the amplitude and frequency of vibration L i ⁇ i thrombelastography instrument body 701 according to its own natural frequency and the pressure.
  • the amplitudes detected by the three quartz crystal resonant sensors 802 are L 1 , L 2 , and L 3 , respectively, and the vibration frequencies detected by the three quartz crystal resonant sensors 802 are ⁇ 1 , ⁇ 2 , and ⁇ 3 , respectively .
  • Operation 1103 detecting the tilting condition of the body of the thrombus elastic instrument, and obtaining the tilt angle of the body of the thrombus elastic instrument.
  • the thrombus elastic instrument body in the process of detecting the blood to be measured by the thrombus elastic instrument body, has a certain inclination angle, and the tilting condition of the body of the thrombus elastic instrument is detected by the level sensor, and the thrombus elasticity is obtained.
  • the tilt angle of the instrument body in the process of detecting the blood to be measured by the thrombus elastic instrument body, the thrombus elastic instrument body has a certain inclination angle, and the tilting condition of the body of the thrombus elastic instrument is detected by the level sensor, and the thrombus elasticity is obtained. The tilt angle of the instrument body.
  • a gyroscope is fixed on the body of the thrombus elastic instrument, and in the process of detecting the blood to be measured by the thrombus elastic instrument body, the gyroscope detects the inclination degree of the body of the thrombus elastic instrument, and obtains the inclination angle ⁇ of the body of the thrombus elastic instrument. .
  • Operation 1104 Correcting the blood coagulation data according to the vibration data to obtain the first corrected blood coagulation data.
  • the data correction unit detects the blood coagulation of the thrombus ambulometer body according to the amplitude and the vibration frequency acquired by the vibration sensor in operation 1102. The data is corrected to obtain a first corrected hemagglutination data to reduce the error introduced in the hemagglutination data due to the vibration of the thrombus gauge body.
  • the thromboelast apparatus body when detecting the blood coagulation of blood, the thromboelast apparatus body outputs the rotation angle of the rotating shaft on the body of the thrombus elastic instrument as blood coagulation data, and at any time for detecting the blood to be measured by the thrombus elastic instrument body, the moment The rotation angle of the rotating shaft is A 0 ; the average value L of the amplitudes L 1 , L 2 and L 3 detected by the three quartz crystal resonant sensors at this time is calculated, and the detected by the three quartz crystal resonant sensors at that time is calculated.
  • the average value ⁇ of the vibration frequencies ⁇ 1 , ⁇ 2 and ⁇ 3 is substituted into the following formula 1 by calculating the calculated L and ⁇ , and the correction coefficient ⁇ is calculated, wherein the formula 1 is:
  • the first rotation angle A 1 is the first corrected blood coagulation data after the vibration error is corrected.
  • Operation 1105 Correcting the first corrected blood coagulation data according to the tilt angle, obtaining the second corrected blood coagulation data and outputting.
  • the data correction unit corrects the vibration error to obtain the first corrected blood coagulation data
  • the first modified blood coagulation data is further corrected according to the tilt angle acquired by the level sensor in operation 1103.
  • the second correction blood coagulation data is used to reduce the error introduced in the first corrected hemagglutination data due to the inclination of the thrombus ambulometer body, and finally the second corrected hemagglutination data is output as the detection result of the thromboelast apparatus body.
  • the thrombus elastic instrument uses the rotation angle of the rotating shaft as the blood coagulation data
  • the inclination angle of the thrombus ambulometer body remains substantially unchanged due to the process of detecting the blood to be measured in the thrombus elastic instrument body, and the gyroscope detects the thrombus elastic instrument.
  • a corresponding second rotation angle A 2 is obtained , wherein the formula 3 is:
  • the second rotation angle A 2 is the second corrected blood clot data corrected for the vibration error and the tilt error, and the finally obtained second corrected blood clot data is output.
  • the blood coagulation data corresponding to the time may be corrected according to the vibration data of the thrombus elastic instrument body at any time, or may be based on the thrombus during the whole detection process.
  • the average vibration data of the body of the elastic instrument corrects the blood coagulation data at each moment, and can be flexibly selected in the specific service realization process; accordingly, when the tilt error in the blood coagulation data is corrected in operation 1105, the thrombus can be according to any time.
  • the inclination angle of the body of the elastic instrument corrects the blood coagulation data corresponding to the time, and can also correct the blood coagulation data at each moment according to the average inclination angle of the body of the thrombus elastic instrument during the whole detection process, and can be flexible in the specific service realization process. select.
  • the blood coagulation data correction method shown in FIG. 11 is a plurality of steps split in order to more clearly describe the process of blood coagulation data correction, and there is no strict between the steps in the specific service implementation process.
  • the sequence, for example, operation 1102 can be performed concurrently with operation 1103, the operation 1105 can be performed first to correct the tilt error, and then operation 1104 can be performed to correct the vibration error.
  • the tilt sensor detects the position of the body of the thrombus elastic instrument, and obtains The first tilting angle of the body of the thrombelometer
  • the data correcting unit corrects the blood coagulation data detected by the body of the thrombus ambulometer according to the first tilt angle acquired by the tilt sensor, and forms the corrected blood coagulation data and outputs the corrected blood coagulation data.
  • the corrected blood clot data is obtained by correcting the blood coagulation data according to the tilt angle of the main body of the thrombus elastic instrument, and the corrected blood clot data is output as the final detection result, and is reduced.
  • a gyroscope can be used as the tilt sensor, and the gyroscope is fixed to the thrombus due to the high integration degree of the gyroscope and the small volume.
  • the inclination angle of the body of the thrombus ambulometer is detected on the body of the elastic instrument, and no large-scale modification of the overall structure of the body of the thrombus ammunition is required.
  • the gyroscope technology is mature, the price is low, and the gyroscope is used as the tilt sensor, which can ensure the device for detecting the blood coagulation data has a low cost.
  • an acceleration sensor can be used as the tilt sensor, and the acceleration sensor can detect the tilt of the thrombus elastic instrument body in the three-dimensional direction and improve the thrombus.
  • the tilting angle of the body of the elastic instrument is used to accurately detect the blood clot data, thereby accurately correcting the blood coagulation data, and improving the accuracy of detecting the blood coagulation data by the body of the thrombus elastic instrument.
  • the body of the thromboelastometer can be leveled, which fundamentally reduces the error introduced by the body of the thrombus ambulometer in the blood coagulation data, and further improves the blood coagulation data of the thromboelast apparatus body. accuracy.
  • At least one vibration sensor is in the process of detecting the blood coagulation data of the blood to be tested, and at least one vibration sensor is on the body of the thrombus elastic instrument
  • the vibration condition is detected, and the vibration data of the thrombus elastic instrument body is obtained.
  • the data correction unit corrects the blood coagulation data detected by the thrombus elastic instrument body according to the vibration data acquired by the vibration sensor to form the first corrected blood coagulation data.
  • the first corrected hemagglutination data is the result of correcting the blood coagulation data according to the vibration state of the thrombus ambulometer body, and thus the first corrected hemagglutination data is used as the final detection. As a result, the error introduced in the detection result due to the vibration of the thrombus mechanical body can be reduced.
  • the thromboelast apparatus may further include a level sensor, the level sensor may detect the tilt angle of the body of the thrombus elastic instrument, and the data correction unit is based on the level sensor.
  • the detected tilt angle can further correct the error introduced in the blood coagulation data due to the inclination of the thrombus ambulometer body, thereby reducing the blood coagulation data due to blood.
  • the error introduced by the tilting of the body of the elastic instrument improves the accuracy of detecting the blood of the body of the thrombus elastic instrument.
  • the gyroscope since the gyroscope has high precision and sensitive response, the gyroscope can be used as a level sensor to improve the tilt angle of the thrombus elastic instrument body.
  • the accuracy of the blood clot data can be reduced to a greater extent due to the inclination of the body of the thrombus ambulometer, which further improves the accuracy of the blood test of the thrombus ambulometer body.
  • the vibration data of the thrombus ambulometer body can be detected by a plurality of vibration sensors, and the vibration data detected by each vibration sensor is used.
  • the average value corrects the blood coagulation data, and the blood coagulation data can be corrected according to the vibration state of the entire thrombus elastic instrument body, thereby improving the reliability of the vibration error correction.
  • any of the following aspects 1-5 may be combined with any aspect 6-10, may also be combined with any aspect 11-15, may also be combined with any aspect 16-20, and may also be associated with any aspect of 21-25 Combine.
  • any of the following aspects 6-10 may be combined with any of the aspects 11-15, or may be combined with any of the aspects 16-20; any aspect 11-15 combination may be combined with any aspect 16-20, and may also be in any aspect 21 -25 combination.
  • Any of the following aspects 11-15 can be combined with any of the aspects 16-20, and can also be combined with any aspect of 21-25.
  • Any of the following aspects 16-20 can be combined with any aspect 21-25.
  • a device for detecting blood coagulation data comprising: a thromboelastometer body, a tilt sensor and a data correction unit;
  • the thromboelast apparatus body is configured to detect blood to be tested, and obtain blood clot data of the blood to be tested;
  • the tilt sensor is configured to detect a position of the body of the thrombus elastic instrument during the detecting of the blood to be tested by the thromboelast apparatus body, and obtain a first tilt angle of the body of the thrombometer;
  • the data correction unit is configured to correct the blood coagulation data acquired by the thrombus elastic instrument body according to the first tilt angle acquired by the tilt sensor, obtain corrected blood clot data, and output the corrected blood coagulation data.
  • the tilt sensor includes a gyroscope or an acceleration sensor
  • the tilt sensor is a gyroscope
  • the gyroscope is fixedly connected to the body of the thrombus elastic instrument for detecting an angular motion parameter of the body of the thrombus elastic instrument, and acquiring a first tilt angle of the body of the thrombus elastic instrument according to the angular motion parameter;
  • the tilt sensor is an acceleration sensor
  • the acceleration sensor is fixedly connected to the body of the thrombus elastic instrument for detecting a gravity acceleration component of the body of the thrombus elastic instrument in three coordinate axes in a preset three-dimensional coordinate system, according to the gravity in the direction of the three coordinate axes
  • the acceleration component is calculated by the following formula 1 to calculate a first tilt angle of the thromboelast apparatus body;
  • the ⁇ is a first inclination angle of the thromboelast apparatus body
  • the a x is a gravity acceleration component of the thromboelastic apparatus body in an x-axis direction in the preset three-dimensional coordinate system
  • the a y is a gravitational acceleration component of the thromboelast apparatus body in the y-axis direction in the preset three-dimensional coordinate system
  • the a z is a zigzag direction of the thromboelastic apparatus body in the preset three-dimensional coordinate system Gravity acceleration component
  • the x-axis, the y-axis and the z-axis of the preset three-dimensional coordinate system are perpendicular to each other, and the x-axis and the y-axis are located in a horizontal plane when the thromboelastic body is in a horizontal position.
  • the data correction unit is configured to correct the blood coagulation data according to the first tilt angle acquired by the tilt sensor by using the following formula 2 to obtain the corrected blood clot data;
  • a 1 is the corrected hemagglutination data
  • the A 0 is blood coagulation data obtained by the body of the thrombometer
  • the ⁇ is a first tilt angle of the body of the thrombometer.
  • the data correction unit is configured to correct the blood coagulation data according to the first tilt angle acquired by the tilt sensor by using the following formula 3 to obtain the corrected blood clot data;
  • a 1 is the corrected hemagglutination data
  • the A 0 is blood coagulation data obtained by the body of the thrombometer
  • the ⁇ is a first tilt angle of the body of the thrombometer.
  • the device of aspect 1 further comprising: a horizontal calibration unit;
  • the tilt sensor is further configured to detect a second tilt angle and an oblique direction of the body of the thrombus elastic instrument before detecting the blood to be tested by the thromboelast apparatus body;
  • the horizontal calibration unit is configured to perform a horizontal adjustment operation on the body of the thrombus elastic instrument by the lifting mechanism according to the second tilt angle and the tilt direction detected by the tilt sensor.
  • a method of performing hemagglutination data correction using a device for detecting blood clot data comprising:
  • the blood to be tested is detected by the body of the thrombus elastic instrument, and the blood coagulation data of the blood to be tested is obtained;
  • the tilt sensor is a gyroscope
  • the detecting, by the tilt sensor, the position of the body of the thrombus elastic instrument, and acquiring the first tilt angle of the body of the thrombus elastic instrument comprises:
  • tilt sensor is an acceleration sensor
  • the detecting, by the tilt sensor, the position of the body of the thrombus elastic instrument, and acquiring the first tilt angle of the body of the thrombus elastic instrument comprises:
  • the ⁇ is a first inclination angle of the thromboelast apparatus body
  • the a x is a gravity acceleration component of the thromboelastic apparatus body in an x-axis direction in the preset three-dimensional coordinate system
  • the a y is a gravitational acceleration component of the thromboelast apparatus body in the y-axis direction in the preset three-dimensional coordinate system
  • the a z is a zigzag direction of the thromboelastic apparatus body in the preset three-dimensional coordinate system Gravity acceleration component
  • the x-axis, the y-axis and the z-axis of the preset three-dimensional coordinate system are perpendicular to each other, and the x-axis and the y-axis are located in a horizontal plane when the thromboelastic body is in a horizontal position.
  • a 1 is the corrected blood clot data
  • the A 0 is the blood coagulation data
  • the ⁇ is a first tilt angle of the thromboelast apparatus body.
  • a 1 is the corrected blood clot data
  • the A 0 is the blood coagulation data
  • the ⁇ is a first tilt angle of the thromboelast apparatus body.
  • the detecting the blood to be measured by the thrombus ambulometer body to obtain the blood coagulation data of the blood to be tested further comprises:
  • the thromboelastic body is level-operated by the lifting mechanism.
  • a device for detecting blood coagulation data comprising: a thromboelastometer body, at least one vibration sensor, and a data correction unit;
  • the thromboelast apparatus body is configured to detect blood to be tested, and obtain blood clot data of the blood to be tested;
  • the vibration sensor is configured to detect vibration of the body of the thrombus elastic instrument in the process of detecting the blood to be tested, and obtain vibration data of the body of the thrombometer;
  • the data correction unit is configured to correct the hemagglutination data obtained by the thromboelast apparatus body according to the vibration data obtained by each of the vibration sensors to form first corrected blood coagulation data.
  • the vibration sensor includes a quartz crystal resonant sensor
  • the quartz crystal resonant sensor is located between a fulcrum of the thromboelast apparatus body and a support platform supporting the body of the thrombus elastic instrument, and is configured to obtain the thromboelastic body according to its own natural frequency and pressure Amplitude and vibration frequency.
  • the data correction unit is configured to obtain a correction coefficient according to the amplitude and the vibration frequency by the following formula 1, and correct the blood coagulation data by using the following formula 2 to obtain the first modified blood coagulation data;
  • is the correction coefficient
  • L is an average value of amplitudes detected by each of the vibration sensors
  • is an average value of vibration frequencies detected by each of the vibration sensors
  • a 1 is the first correction of the clotting data.
  • the level sensor is configured to detect a tilting condition of the body of the thrombus elastic instrument in the process of detecting the blood to be tested, and obtain an inclination angle of the body of the thrombus elastic instrument;
  • the data correction unit is further configured to correct the first modified blood coagulation data according to the tilt angle acquired by the level sensor to form second corrected blood clot data and output the second corrected blood clot data.
  • the data correction unit is configured to correct the first modified blood coagulation data according to the tilt angle of the body of the thrombus elastic instrument by using the following formula 3 to obtain the second modified blood coagulation data;
  • the ⁇ is an inclination angle of the body of the thrombometer
  • the A 1 is the first corrected blood clot data
  • the A 2 is the second corrected blood clot data.
  • a method of modifying blood clot data using a device for detecting blood clot data comprising:
  • the blood to be tested is detected by the body of the thrombus elastic instrument, and the blood coagulation data of the blood to be tested is obtained;
  • the blood coagulation data is corrected based on the vibration data obtained by each of the vibration sensors to form first corrected blood clot data.
  • the obtaining the vibration data of the body of the thrombus elastic instrument comprises:
  • the amplitude and the vibration frequency of the body of the thrombus elastic instrument are obtained according to the natural frequency and the pressure of the vibration sensor.
  • modifying the blood coagulation data according to the vibration data obtained by each of the vibration sensors, and forming the first modified blood coagulation data includes:
  • is the correction coefficient
  • L is an average value of vibration amplitudes detected by each of the vibration sensors
  • is an average value of vibration frequencies detected by each of the vibration sensors
  • the A 0 is the blood coagulation data obtained by the thrombelometer body
  • the A 1 is the first corrected hemagglutination data.
  • the first corrected blood clot data is corrected according to the tilt angle of the thrombelometer body to form second corrected blood clot data.
  • the correcting the first modified blood clot data according to the tilt angle of the body of the thrombus elastic instrument, and forming the second modified blood clot data comprises:
  • the ⁇ is an inclination angle of the body of the thrombometer
  • the A 1 is the first corrected blood clot data
  • the A 2 is the second corrected blood clot data.
  • a system for detecting blood clot data comprising a plurality of horizontally arranged devices for detecting blood clot data.
  • a work table comprising a container disposed on an upper surface thereof for containing blood, and a power device for driving the rotation of the container, the container being provided with a heating device and capable of controlling the heater to heat the blood in the container To the controller that sets the temperature;
  • test rod located directly above the container and capable of being at least partially inserted into the blood of the container, the test rod being rotatably coupled to the frame, the test rod being further provided with a vertical side Reflective surface
  • the tester fixedly connected to the frame, the tester is provided with a first through hole that accommodates the test rod passing through and vertically disposed, and is horizontally disposed and penetrates with the first through hole a second through hole, the reflective surface is located in the first through hole, and the second through hole is provided at least two, and a light emitting device and a light receiving device are respectively disposed therein, and the light emitting device can be Linear light is input on the reflective surface, and the light receiving device is capable of receiving linear light reflected by the reflective surface;
  • the processor is capable of converting the amount of linear light received by the light receiving device into parameter information reflecting blood coagulation, the parameter information being proportional to the amount of light received by the light receiving device.
  • the frame comprising a first bracket fixedly coupled to the tester and a second bracket fixedly coupled to the test rod, the first bracket including being secured to the test Two uprights disposed vertically on the instrument, and a horizontally disposed first beam connecting the two columns, the second bracket includes an opening for receiving the first beam, and the first beam a second beam disposed directly above and horizontally, an intermediate position of a lower surface of the second beam is provided with a downwardly protruding top cone, and an upper surface of the first beam is provided with a jewel bearing, and the jewel bearing is located Directly below the top cone, the top cone is in point contact with the recess of the jewel bearing.
  • a rotating shaft at least one reflective sheet, at least one light emitting module, at least one light receiving module, and a processing module;
  • the rotating shaft is fixedly connected to the at least one reflector, and the rotating shaft drives the at least one reflector to rotate under external driving;
  • Each of the light emitting modules is configured to emit light in a fixed direction to a corresponding reflective sheet
  • Each of the reflective sheets is configured to receive light emitted by the corresponding light emitting module and reflect the received light;
  • Each of the light receiving modules is configured to receive light reflected by a corresponding retroreflective sheet in a fixed direction, convert the received light into a corresponding electrical signal according to the intensity of the light, and transmit the electrical signal to the processing Module
  • the processing module is configured to determine a rotation angle of the rotating shaft according to an electrical signal converted by the at least one light receiving module.
  • the fixed platform includes a vertically disposed first through hole, at least one horizontally disposed second through hole, and at least one horizontally disposed third through hole, and the first through hole and each of the second through holes And each of the third through holes is continuous;
  • the rotating shaft passes through the first through hole, and the respective reflecting sheets are located in the first through hole;
  • Each of the light emitting modules is fixed in the second through hole, and each of the second through holes corresponds to one of the light emitting modules;
  • Each of the light receiving modules is fixed in the third through hole, and each of the third through holes corresponds to one of the light receiving modules.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种检测血凝数据的装置,该装置包括:血栓弹力仪本体(101)、倾斜传感器(102)及数据修正单元(103);血栓弹力仪本体(101),用于对待测血液进行检测,获取待测血液的血凝数据;倾斜传感器(102),用于在血栓弹力仪本体(101)对待测血液进行检测的过程中,对血栓弹力仪本体(101)的位置进行检测,获取血栓弹力仪本体(101)的第一倾斜角度;数据修正单元(103),用于根据倾斜传感器(102)获取到的第一倾斜角度,对血栓弹力仪本体(101)获取到的血凝数据进行修正,获得修正血凝数据并输出。本装置能够减小输出的血凝数据中由于血栓弹力仪本体(101)倾斜而引入的误差。

Description

一种检测血凝数据的装置 技术领域
本发明涉及医疗器械技术领域,特别涉及一种检测血凝数据的装置。
背景技术
检测血凝数据的装置,例如血栓弹力仪,是一种用于检测血液是否能够正常凝结的医疗器械。该种器械已经得到越来越广泛地应用。例如,在进行手术前利用血栓弹力仪对患者的血凝数据进行检测,根据检测出的血凝数据判断患者的血液凝结过程是否正常,只有在血液能够正常凝结的情况下才能对患者进行手术,如果血液凝结过程存在异常,手术过程中患者的血液将无法正常凝结,导致止血困难,很可能危机患者的生命。
发明内容
本发明实施例提供了一种检测血凝数据的装置及血凝数据修正方法,能够减小输出的血凝数据中由于血栓弹力仪本体倾斜而引入的误差。
对于本发明实施例提供的检测血凝数据的装置,包括:血栓弹力仪本体、倾斜传感器及数据修正单元;
所述血栓弹力仪本体用于对待测血液进行检测,获取所述待测血液的血凝数据;
所述倾斜传感器用于在所述血栓弹力仪本体对所述待测血液进行检测的过程中,对所述血栓弹力仪本体的位置进行检测,获取所述血栓弹力仪本体的第一倾斜角度;
所述数据修正单元用于根据所述倾斜传感器获取到的第一倾斜角度,对所述血栓弹力仪本体获取到的血凝数据进行修正,获得修正血凝数据并输出。
在本发明实施例中,在血栓弹力仪本体对待测血液进行检测的过程中,倾斜传感器对血栓弹力仪本体的位置进行检测,获取血栓弹力仪本体的第一倾斜角度,数据修正单元根据倾斜传感器获取到的第一倾斜角度对血栓弹力仪本体检测出的血凝数据进行修正,形成修正血凝数据后输出。相对于血栓弹力仪本体检测出的血凝数据,修正血凝数据是根据血栓弹力仪本体的倾斜角度对血凝数据进行修正后而获得的,将修正血凝数据作为最终检测结果输出,减小了输出的血凝数据中由于血栓弹力仪倾斜而引入的误差。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个实施例提供的一种检测血凝数据的装置的示意图;
图2是本发明一个实施例提供的一种血栓弹力仪本体的重力加速度分量示意图;
图3是本发明一个实施例提供的一种旋转轴倾斜状态示意图;
图4是本发明一个实施例提供的一种包括水平校准单元的检测血凝数据的装置的示意图;
图5是本发明一个实施例提供的一种血凝数据修正方法的流程图;
图6是本发明另一个实施例提供的一种血凝数据修正方法的流程图;
图7是本发明另一个实施例提供的一种检测血凝数据的装置的示意图;
图8是本发明又一个实施例提供的一种检测血凝数据的装置的示意图;
图9是本发明再一个实施例提供的一种检测血凝数据的装置的示意图;
图10是本发明又一个实施例提供的一种血凝数据修正方法的流程图;
图11是本发明再一个实施例提供的一种血凝数据修正方法的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明实施例提供了一种检测血凝数据的装置,包括:血栓弹力仪本体101、倾斜传感器102和数据修正单元103;
所述血栓弹力仪本体101用于对待测血液进行检测,获取所述待测血液的血凝数据;
所述倾斜传感器102用于在所述血栓弹力仪本体101对所述待测血液进行检测的过程中,对所述血栓弹力仪本体101的位置进行检测,获取所述血栓弹力仪本体101的第一倾斜角度;
所述数据修正单元103用于根据所述倾斜传感器获取到的第一倾斜角度,对所述血栓弹力仪本体101获取到的血凝数据进行修正,获得修正血凝数据并输出。
本发明实施例提供了一种检测血凝数据的装置,在血栓弹力仪本体对待测血液进行检测的过程中,倾斜传感器对血栓弹力仪本体的位置进行检测,获取血栓弹力仪本体的第一倾斜角度,数据修正单元根据倾斜传感器获取到的第一倾斜角度对血栓弹力仪本体检测出的血凝数据进行修正,形成修正血凝数据后输出。相对于血栓弹力仪本体检测出的血凝数据,修正血凝数据是根据血栓弹力仪本体的倾斜角度对血凝数据进行修正后而获得的,将修正血凝数据作为最终检测结果输出,减小了输出的血凝数据中由于血栓弹力仪本体倾斜而引入的误差。
在本发明实施例中,血栓弹力仪本体包括旋转轴和检测模块,其中检测模块能够检测旋转轴的转动,并根据所述旋转轴的转动情况输出对应的血凝数据。在通过血栓弹力仪本体对被测血液进行测试时,将血栓弹力仪本体上的旋转轴置于被测血液中,被测血液进行往复转动带动旋转轴往复转动,检测模块根据旋转轴的转动角度确定被测血液的血凝数据并输出。
在本发明一个实施例中,可以将陀螺仪作为倾斜传感器,将陀螺仪作为倾斜传感器时,将陀螺仪与血栓弹力仪本体固定连接。陀螺仪固定在血栓弹力仪本体上之后,可以检测血栓弹力仪本体的角运动参数,进一步根据血栓弹力仪本体的角运动参数获取血栓弹力仪本体的第一倾斜角度。由于陀螺仪的集成度较高,体积较小,将陀螺仪固定在血栓弹力仪本体上检测血栓弹力仪本体的倾斜角度,无需对血栓弹力仪本体的整体结构作大规模的改动。
详细地,陀螺仪可以为三轴陀螺仪,在血栓弹力仪本体对待测血液进行检测的过程中,如果血栓弹力仪本体存在一定的倾斜角度,三轴陀螺仪的三条轴的指向将发生变化,根据三条轴的指向可以确定出血栓弹力仪本体的角运动参数,进一步根据血栓弹力仪本体的角运动参数可以确定血栓弹力仪本体的倾斜角度。三轴陀螺仪将检测出的倾斜角度作为第一倾斜角度传输给数据修正单元。
在本发明一个实施例中,可以将加速度传感器作为倾斜传感器。以加速度传感器作为倾斜传感器时,将加速度传感器固定在血栓弹力仪本体上,当血栓弹力仪本体发生倾斜时带动加速度传感器发生倾斜。在加速度传感器内预设三维坐标系,其中预设三维坐标系的x轴、y轴及z轴两两垂直,且所述血栓弹力仪本体处于水平位置时所述x轴与所述y轴位于水平面内。加速度传感器可以检测血栓弹力仪本体在预设三维坐标系中三条坐标轴方向上的重力加速度分量,根据检测出的三条坐标轴方向上的重力加速度的分量,通过如下公式一计算血栓弹力仪本体的倾斜角度,作为第一倾斜角度;
所述公式一为:
Figure PCTCN2017082755-appb-000001
其中,α为血栓弹力仪本体的第一倾斜角度,ax为血栓弹力仪本体在所述预设三维坐标系中x轴方向上的重力加速度分量,ay为血栓弹力仪本体在所述预设三维坐标系中y轴方向上的重力加速度分量,az为血栓弹力仪本体在所述预设三维坐标系中z轴方向上的重力加速度分量。
具体地,
如图2所示,当血栓弹力仪本体没有发生倾斜,加速度传感器202内预设三维坐标系的x轴和y轴处于水平面内,z轴与水平面垂直,而且x轴、y轴及z轴两两垂直。当血栓弹力仪本体发生倾斜时,加速度传感器202及预设三维坐标系随血栓弹力仪本体发生倾斜。加速度传感器202检测血栓弹力仪本体在x轴、y轴及z轴三个方向上的重力加速度分量,其中在x轴方向的重力加速度为ax,在y轴方向上的重力加速度为ay,在z轴方向上的重力加速度为az
加速度传感器202首先根据x轴方向的重力加速度为ax和y轴方向上的重力加速度为ay,通过如下公式四计算出血栓弹力仪本体在由x轴及y轴确定出的平面上的重力加速度分量axy,其中,
所述公式四为:
Figure PCTCN2017082755-appb-000002
由于预设三维坐标系中z轴与由x轴及y轴确定出的平面相垂直,所以血栓弹力仪本体在z轴方向上的重力加速度az与重力加速度分量axy的方向垂直,在计算出重力加速度分量axy后加速度传感器202通过如下公式五计算血栓弹力仪本体的倾斜角度α,其中,
所述公式五为:
Figure PCTCN2017082755-appb-000003
可见,将公式四与公式五进行合并便可以获得公式一。
根据公式一,或者根据公式四和公式五,当血栓弹力仪本体没有发生倾斜时,血栓弹力仪本体在由x轴及y轴确定出的平面内的重力加速度分量为零,血栓弹力仪本体在z轴方向上的重力加速度分量等于重力加速度g;当血栓弹力仪本体发生倾斜时,血栓弹力仪本体在由x轴及y轴确定出的平面内的重力加速度不为零,根据反三角函数可以计算出血栓弹力仪本体的倾斜角度α,该倾斜角度α即为血栓弹力仪本体的第一倾斜角度。
在本发明一个实施例中,血栓弹力仪本体检测出待测血液的血凝数据后,将血凝数据发送给数据修正单元;倾斜传感器检测血栓弹力仪本体的第一倾斜角度后,将第一倾斜角度发送给数据修正单元。数据修正单元在接收到血栓弹力仪本体发送的血凝数据和倾斜传感器发送的第一倾斜角度后,根据第一倾斜角度,通过如下公式二对血凝数据进行修正,获得修正血凝数据;
所述公式二为:
A1=A0·cosα
其中,A1为修正血凝数据,A0为血栓弹力仪本体获取到的血凝数据,α为血栓弹力仪本体的第一倾斜角度。
具体地,
如图3所示,在通过血栓弹力仪本体对待测血液304进行测量时,将血栓弹力仪本体上的旋转轴插入待测血液304。当血栓弹力仪本体的倾斜角度为零时,血栓弹力仪本体的旋转轴处于3011所示的位置;当血栓弹力仪本体的倾斜角度为α(α不等于零)时,血栓弹力仪本体的旋转轴处于3012所示的位置。
由于血栓弹力仪本体的倾斜,导致旋转轴3012没入待测血液304中的长度增加,相对于血栓弹力仪本体没有发生倾斜时的旋转轴3011,待测血液转动时对旋转轴3012的驱动力大于对旋转轴3011的驱动力,导致在同一待测血液下旋转轴3012的转动角度大于旋转轴3011的转动,当以旋转轴的转动角度表征待测血液的血凝数据时,血栓弹力仪本体倾斜导致检测出的血凝数据偏大。由于旋转轴受到的驱动力与旋转轴没入待测血液的长度成正比,所有旋转轴3012受到的驱动力与旋转轴3011受到的驱动力的比值等于cosα,因而通过倾斜角α的余弦值可以对旋转轴3012受到的驱动力进行修正,进而通过公式二可以对血栓弹力仪本体检测出的血凝数据进行修正。
在本发明一个实施例中,数据修正单元在接收到血栓弹力仪本体发送的血凝数据和倾斜传感器发送的第一倾斜角度之后,根据第一倾斜角度,通过如下公式三对血凝数据进行修正,获得修正血凝数据;
公式三为:
Figure PCTCN2017082755-appb-000004
其中,A1为修正血凝数据,A0为血栓弹力仪本体获取到的血凝数据,α为血栓弹力仪本体的第一倾斜角度。
具体地,
当血栓弹力仪本体倾斜时,血栓弹力仪本体的旋转轴没入待测血液的长度增加,同时旋转轴的重力方向与旋转轴轴线方向不再重合,由于旋转轴的倾斜将导致旋转轴与轴承之间的摩擦力发生变化,摩擦力变化同样会对血栓弹力仪本体检测出的血凝数据造成影响。
将旋转轴的重力分解为沿轴线方向上的分量和沿垂直轴线方向上的分量,根据旋转轴的重力在轴线方向上的分量和在垂直轴向方向上的分量,通过积分计算血栓弹力仪本体倾斜时与不倾斜时摩擦力做功的比值,进而获得单纯考虑摩擦力变化时血栓弹力仪本体检测出的血凝数据1,其中血凝数据1为A0·∫(sinα+cosα)d;同时考虑旋转轴没入待测血液长度的增加,计算出血凝数据2,其中血凝数据2为A0·cosα。求取血凝数据1与血凝数据2的平均值,将求取出的血凝数据平均值作为修正血凝数据。
由于同时考虑了旋转轴受到的驱动力及摩擦力随血栓弹力仪本体倾斜而发生的变化,根据驱动力和摩擦力的变化对血栓弹力仪本体检测出的血凝数据进行修正,可以进一步减小血凝数据中由于血栓弹力仪本体倾斜而引入的误差,从而进一步提高了血栓弹力仪对血凝数据进行检测的准确性。
在本发明一个实施例中,如图4所示,检测血凝数据的装置可以进一步包括水平校准单元104。当检测血凝数据的装置包括有水平校准单元104时,在血栓弹力仪本体101对待测血液的血凝数据进行检测之 前,倾斜传感器102对血栓弹力仪本体101的位置进行检测,获取到血栓弹力仪本体101在对待测血液进行检测之前的倾斜角度和倾斜方向,并将获取到的第二倾斜角度及倾斜方向发送给水平校准单元104;水平校准单元104在接收到第二倾斜角度及倾斜方向之后,根据第二倾斜角度及倾斜方向,通过升降机构对血栓弹力仪本体101进行调水平操作。
具体地,
倾斜传感器102具有两方面的功能,一方面用于在血栓弹力仪本体101在对待测血液进行检测的过程中,对血栓弹力仪本体101的倾斜角度进行检测,并将检测到的第一倾斜角度发送给数据校修正单元103;另一方面用于在血栓弹力仪本体101对待测血液进行检测之前,对血栓弹力仪本体101的倾斜角度及倾斜方向进行检测,并将检测到的第二倾斜角度及倾斜方向发送给水平校准单元104。
数据修正单元103根据倾斜传感器102发送的第一倾斜角度,对血栓弹力仪本体101检测出的血凝数据进行修正;水平校准单元104根据倾斜传感器102发送的第二倾斜角度及倾斜方向,对血栓弹力仪本体101进行调水平操作,预防误差的出现。通过水平标准单元104的调水平操作,使血栓弹力仪本体101的位置更加接近于水平位置,从根本上减小血栓弹力仪本体输出的血凝数据中由于血栓弹力仪本体倾斜而引入的误差,提高了血栓弹力仪本体对血凝数据进行检测的准确性。
如图5所示,本发明一个实施例提供了一种利用本发明实施例提供的任意一种检测血凝数据的装置进行血凝数据修正的方法,该方法可以包括以下操作:
操作501:通过所述血栓弹力仪本体对待测血液进行检测,获取所述待测血液的血凝数据;
操作502:在所述血栓弹力仪本体对所述待测血液进行检测的过程中,通过所述倾斜传感器对所述血栓弹力仪本体的位置进行检测,获取所述血栓弹力仪本体的第一倾斜角度;
操作503:根据所述倾斜传感器获取到的第一倾斜角度,通过所述数据修正单元对所述血栓弹力仪本体获取到的血凝数据进行修正,获得修正血凝数据。
本发明实施例提供的血凝数据修正方法,在血栓弹力仪本体对待测血液进行检测的过程中,对血栓弹力仪本体的位置进行检测,获取血栓弹力仪本体的第一倾斜角度,根据第一倾斜角度对血栓弹力仪本体检测出的血凝数据进行修正,获得修正血凝数据并输出。在检测出血凝数据后并不直接输出,而是根据血栓弹力仪本体的倾斜角度对血凝数据进行修正获得修正血凝数据,将修正血凝数据作为最终检测结果输出,从而可以减小输出的血凝数据中由于血栓弹力仪本体倾斜而引入的误差。
在本发明一个实施例中,当倾斜传感器为陀螺仪时,倾斜传感器检测血栓弹力仪本体的第一倾斜角度的过程可以包括:
通过陀螺仪检测血栓弹力仪本体的角运动参数,根据角运动参数获取血栓弹力仪本体的第一倾斜角度。
在本发明一个实施例中,当倾斜传感器为加速度传感器时,倾斜传感器检测血栓弹力仪本体的第一倾斜角度的过程包括:
通过加速度传感器检测血栓弹力仪本体在预设三维坐标系中三条坐标轴上的重力加速度分量,根据三条坐标轴方向上的重力加速度分量,通过如下公式一计算血栓弹力仪本体的第一倾斜角度;
公式一为:
Figure PCTCN2017082755-appb-000005
其中,α为血栓弹力仪本体的第一倾斜角度,ax为血栓弹力仪本体在预设三维坐标系中x轴方向上的重力加速度分量,ay为血栓弹力仪本体在预设三维坐标系中y轴方向上的重力加速度分量,az为血栓弹力仪本体在预设三维坐标系中z轴方向上的重力加速度分量;
其中,预设三维坐标系的x轴、y轴及z轴两两垂直,当血栓弹力仪本体处于水平位置时x轴与y轴位于水平面内。
在本发明一个实施例中,根据第一倾斜角度对血凝数据进行修正获得修正血凝数据的过程可以包括:
根据倾斜传感器获取到的第一倾斜角度,通过如下公式二,对血凝数据进行修正,获取修正血凝数据;
公式二为:
A1=A0·cosα
其中,A1为修正血凝数据,A0为血栓弹力仪本体获取到的血凝数据,α为血栓弹力仪本体的第一倾斜角度。
在本发明一个实施例中,根据第一倾斜角度对血凝数据进行修正获得修正血凝数据的过程可以包括:
根据所述倾斜传感器获取到的第一倾斜角度,通过如下公式三,对所述血凝数据进行修正,获得所述修正血凝数据;
所述公式三为:
Figure PCTCN2017082755-appb-000006
其中,所述A1为所述修正血凝数据,所述A0为血栓弹力仪本体获取到的所述血凝数据,所述α为所述血栓弹力仪本体的第一倾斜角度。
在本发明一个实施例中,在血栓弹力仪本体对待测血液进行检测之前进一步包括:
检测血栓弹力仪本体的第二倾斜角度及倾斜方向;
根据第二倾斜角度及倾斜方向,通过升降机构对血栓弹力仪本体进行调水平操作。
为了使本发明实施例提供的检测血凝数据的装置的工作过程更加清楚,下面以加速度传感器作为倾斜传感器为例,对血凝数据修正方法作进一步说明,如图6所示,该方法可以包括如下操作:
操作601:检测血栓弹力仪本体的第二倾斜角度及倾斜方向。
在本发明一个实施例中,在通过血栓弹力仪本体对待测血液进行检测之前,通过倾斜传感器检测血栓弹力仪本体的倾斜角度及倾斜方向,以检测出的倾斜角度作为第二倾斜角度,将第二倾斜角度及倾斜方向发送给水平校准单元。
例如,加速度传感器检测血栓弹力仪本体在预设三维坐标系中三条坐标轴方向上的重力加速度分量,其中血栓弹力仪本体在x轴、y轴及z轴方向上的重力加速度分量分别为αx2、αy2及αz2,通过如下公式计算血栓弹力仪本体的第二倾斜角度α2
Figure PCTCN2017082755-appb-000007
如图2所示,根据血栓弹力仪本体的重力加速度g与x轴、y轴及z轴所成的角度,确定出血栓弹力仪本体的倾斜方向;
加速度传感器在获取到血栓弹力仪本体的第二倾斜角度α2及倾斜方向之后,将第二倾斜角度α2及倾斜方向发送给水平校准单元。
操作602:根据第二倾斜角度及倾斜方向对血栓弹力仪本体进行调水平操作。
在本发明一个实施例中,水平校准单元在接收到倾斜传感器发送的第二倾斜角度及倾斜方向之后,根据第二倾斜角度及倾斜方向,控制升降机构对血栓弹力仪本体进行调水平操作。
例如,血栓弹力仪本体的底座为矩形,在矩形底座的每个角上设置有一个升降机构,水平校准单元与各个升降机构相连。水平校准单元接收到第二倾斜角度与倾斜方向后,控制4个升降机构中的一个或多个,使升降机构伸长或缩短,调整矩形底座与水平面之间的夹角,从而将血栓弹力仪本体调整至接近于水平的位置。
操作603:对待测血液进行检测,获得待测血液的血凝数据。
在本发明一个实施例中,在对血栓弹力仪本体进行调水平操作之后,通过血栓弹力仪本体对待测血液进行检测,血栓弹力仪本体的旋转轴在待测血液的带动下发生旋转,血栓弹力仪本体根据旋转轴的转动角度获得待测血液的血凝数据,并将获取到的血凝数据发送给数据修正单元。
操作604:检测血栓弹力仪本体在对待测血液进行检测过程中的第一倾斜角度。
在本发明一个实施例中,在血栓弹力仪本体对待测血液进行检测的过程中,通过倾斜传感器对血栓弹力仪本体的倾斜角度进行检测,获取血栓弹力仪本体的第一倾斜角度。其中,倾斜传感器获取到的第一倾斜角度可以是在对待测血液进行检测过程中血栓弹力仪本体的实时倾斜角度,也可以是在对待测血液进行检测过程中血栓弹力仪本体的平均倾斜角度。
例如,在血栓弹力仪本体对待测血液进行检测的过程中,加速度传感器实时检测血栓弹力仪本体在在预设三维坐标系中三条坐标轴方向上的重力加速度分量,其中血栓弹力仪本体在x轴、y轴及z轴方向上的重力加速度分量分别为ax1、ay1及az1,通过如下公式计算血栓弹力仪本体的第一倾斜角度α1
Figure PCTCN2017082755-appb-000008
其中,第一倾斜角度α1可以是检测待测血液过程中各个时刻血栓弹力仪本体倾斜角度的集合,也可以时检测待测血液过程中血栓弹力仪本体倾斜角度的平均值。
操作605:根据第一倾斜角度对血凝数据进行修正,获得修正血凝数据并输出。
在本发明一个实施例中,数据修正单元接收到血栓弹力仪本体发送的血凝数据和倾斜传感器发送的第一倾斜角度后,根据第一倾斜角度对血凝数据进行修正,获得修正血凝数据并输出,以减小最终输出的血凝数据中由于血栓弹力仪本体倾斜而引入的误差。
由于血栓弹力仪本体旋转轴的转动角度反应了待测血液的血凝数据,在根据第一倾斜角度对血凝数据进行修正时具有两种不同的修正方法:其一,针对于对待测血液进行检测的任一时刻,通过该时刻血栓弹力仪本体的第一倾斜角度对该时刻血栓弹力仪本体检测出的血凝数据进行修正,从而对所有时刻对应的血凝数据进行修正;其二,针对于对待测血液进行检测的整个过程,通过该过程中血栓弹力仪本体第一倾斜角度的平均值对该过程中检测出的所有血凝数据进行统一修正。
例如,数据修正单元根据加速度传感器检测出的第一倾斜角度α1,通过如下公式二对血栓弹力仪本体检测出的血凝数据进行修正,获得修正血凝数据;
公式二为:
A1=A0·cosα
其中,A1为修正血凝数据,A0为血栓弹力仪本体获取到的血凝数据,α1为血栓弹力仪本体的第一倾斜角度。
另外,数据修正单元根据加速度传感器检测出的第一倾斜角度α1,还可以通过如下公式三对血栓弹力仪本体检测出的血凝数据进行修正,获得修正血凝数据;
公式三为:
Figure PCTCN2017082755-appb-000009
其中,A1为修正血凝数据,A0为血栓弹力仪本体获取到的血凝数据,α为血栓弹力仪本体的第一倾斜角度。
如图7所示,本发明实施例提供了一种检测血凝数据的装置,包括:血栓弹力仪本体701、至少一个振动传感器702及数据修正单元703;
所述血栓弹力仪本体701,用于对待测血液进行检测,获得所述待测血液的血凝数据;
所述振动传感器702,用于检测所述血栓弹力仪本体701在对所述待测血液进行检测过程中所述血栓弹力仪本体701的振动情况,获得所述血栓弹力仪本体701的振动数据;
所述数据修正单元703,用于根据各个所述振动传感器702获得的所述振动数据,对所述血栓弹力仪本体701获得的所述血凝数据进行修正,形成第一修正血凝数据。
本发明实施例提供了一种检测血凝数据的装置,血栓弹力仪本体在对待测血液的血凝数据进行检测的过程中,至少一个振动传感器对血栓弹力仪本体的振动情况进行检测,获得血栓弹力仪本体的振动数据,数据修正单元根据振动传感器获取到的振动数据,对血栓弹力仪本体检测出的血凝数据进行修正,形成第一修正血凝数据。相对于血栓弹力仪本体检测出的血凝数据,第一修正血凝数据是根据血栓弹力仪本体的振动情况对血凝数据进行修正后的结果,因此以第一修正血凝数据作为最终的检测结果可以减小检测结果中由于血栓弹力仪本体振动引入的误差。
在本发明一个实施例中,振动传感器可以是石英晶体谐振式传感器,石英晶体谐振式传感器位于血栓弹力仪本体的支点与支撑血栓弹力仪本体的支撑平台之间,石英晶体谐振式传感器根据其自身固有频率的变化及承受的压力,可以获得血栓弹力仪本体的振动振幅及振动频率,获得到的振动振幅及振动频率即为血栓弹力仪本体的振动数据。由于石英晶体谐振式传感器具有较高的灵敏度,当血栓弹力仪本体发生微小的振动时也可以被石英晶体谐振式传感器检测到,进一步减小检测结果中由于血栓弹力仪本体振动引入的误差,提高了血栓弹力仪本体对血液血凝进行检测的准确性。
如图8所示,血栓弹力仪本体701的下端设置有三个支点801,每个支点801的下端设置有一个石英谐振式传感器802,将血栓弹力仪置于支撑平台803上时,3个石英谐振式传感器802位于三个支点801与支撑平台803之间。在血栓弹力仪本体701对待测血液进行检测的过程中,支点801与血栓弹力仪本体701共同振动,石英谐振式传感器802的固有频率随支点801的振动频率发生改变,石英谐振式传感器802根据其自身的固有频率确定出支点801的振动频率,同时石英谐振式传感器802根据支点801对其产生的压力确定出支点801的振幅,从而获取到的包括血栓弹力仪本体701振幅及振动频率的振动数据。
在本发明一个实施例中,数据修正单元根据各个振动传感器获取到的振幅及振动频率,通过如下公式一获得修正系数,进一步根据获得的修正系数,通过如下公式二对血栓弹力仪本体检测出的血凝数据进行修正,获得第一修正血凝数据,具体公式一及公式二如下:
公式一为:
Figure PCTCN2017082755-appb-000010
公式二为:
A1=δ·A0
其中,δ为修正系数,L为各个振动传感器检测出的振幅的平均值,γ为各个振动传感器检测出的振动频率的平均值,A0为血栓弹力仪本体获取到的血凝数据,A1为第一修正血凝数据。
由于血栓弹力仪本体的振动,待测血液发生扰动,待测血液的液面相对于没有振动时升高,血栓弹力仪本体上的旋转轴与待测血液的接触面积增大,导致旋转轴受到的旋转驱动力增加,最终使血栓弹力仪本体检测出的血凝数据偏大,通过公式一及公式二对血栓弹力仪本体检测出的血凝数据进行修正,可以消除 部分由于血栓弹力仪本体振动引入的误差,从而提高血栓弹力仪本体对血凝数据进行检测的准确性。
当检测血凝数据的装置包括有多个振动传感器时,根据各个振动传感器检测出的振幅及振动频率,计算血栓弹力仪本体的平均振幅和平均振动频率,将计算出的平均振幅和平均振动频率代入上述公式一获得修正系数。根据多个振动传感器检测出的平均值振动数据获取对血凝数据进行修正的修正系数,保证修正结果的可靠性。例如图8所示的检测血凝数据的装置,根据3个石英谐振式传感器802检出的振幅和振动频率,分别获取3个振幅的平均值及3个振动频率的平均值作为血栓弹力仪本体701的振幅及振动频率,通过公式一获得对血栓弹力仪本体701检测出的血凝数据进行修正的修正系数。
在本发明一个实施例中,如图9所示,检测血凝数据的装置进一步还包括水平传感器901;
水平传感器901,用于检测血栓弹力仪本体701在对待测血液进行检测的过程中血栓弹力仪本体701的倾斜情况,获取血栓弹力仪本体701的倾斜角度;
数据修正单元703,进一步用于根据水平传感器901获取到的倾斜角度,对第一修正血凝数据进行修正,形成第二修正血凝数据并输出。
由于血栓弹力仪本体放置到支撑平台上之后会存在一定的倾斜角度,血栓弹力仪本体倾斜使血栓弹力仪本体上的旋转轴与待测血液的接触面积发生变化,导致待测血液对旋转轴的驱动力发生改变,进而导致旋转轴的转动角度受到影响,根据旋转轴转动角度确定出的血凝数据会由于血栓弹力仪本体发生倾斜而带有误差。根据血栓弹力仪本体的倾斜角度,对第一修正血凝数据进行进一步修正,可以减小第一修正血凝数据中由于血栓弹力仪本体倾斜而引入的误差,进一步提高了血栓弹力仪本体对血液进行检测的准确性。
在本发明一个实施例中,水平传感器检测出血栓弹力仪本体的倾斜角度后,将检测出的倾斜角度发送给数据修正单元,数据修正单元根据接收到的倾斜角度,通过如下公式三对第一修正血凝数据进行进一步修正,获得第二修正血凝数据,其中公式三如下:
A2=A1·cosα
其中,α为血栓弹力仪本体的倾斜角度,A1为第一修正血凝数据,A2为第二修正血凝数据。
由于血栓弹力仪本体上的旋转轴伴随血栓弹力仪本体发生倾斜,导致旋转轴与待测血液的接触面积增大,旋转轴在待测血液的驱动下旋转的角度相应地增大,导致血栓弹力仪本体检测出的血凝数据偏大,通过公式三对第一修正血凝数据进行修正,减小第一修正血凝数据中由于血栓弹力仪本体倾斜而引入的误差,提高血栓弹力仪本体对血液血凝数据进行检测的准确性。
在本发明一个实施例中,水平传感器可以通过陀螺仪实现,陀螺仪尺寸小、集成度较高,可以方便地固定在血栓弹力仪本体上对血栓弹力仪本体的倾斜角度进行测量;并且,陀螺仪的灵敏度较高,即使在血栓弹力仪本体的倾斜角度较小时,也可以检测出血栓弹力仪本体的倾斜角度,进而对血栓弹力仪本体检测出的血凝数据进行修正,保证最终输出的血凝数据的准确性。
需要说明的是,数据修正单元可以首先根据振动传感器检测出的振幅及振动频率修正血凝数据中由于振动引入的误差,然后再根据水平传感器检测出的倾斜角度修正血凝数据中由于倾斜引入的误差;数据修正单元还可以首先根据水平传感器检测出的倾斜角度修正血凝数据中由于倾斜引入的误差,然后再根据振动传感器检测出的振幅及振动频率修正血凝数据中由于振动引入的误差。数据修正单元的修正顺序可以根据实际业务实现需要,进行灵活选择。
如图10所示,本发明一个实施例提供了一种利用本发明实施例提供的任意一种检测血凝数据的装置对血凝数据进行修正的方法,包括:
操作1001:通过血栓弹力仪本体对待测血液进行检测,获得待测血液的血凝数据;
操作1002:利用各个振动传感器检测血栓弹力仪本体在对待测血液进行检测过程中血栓弹力仪本体的振动情况,获得血栓弹力仪本体的振动数据;
操作1003:根据各个振动传感器获得的振动数据,对血凝数据进行修正,形成第一修正血凝数据。
本发明实施例提供了一种血凝数据修正的方法,在血栓弹力仪本体对待测血液进行检测的过程中,检测血栓弹力仪本体的振动情况,获得血栓弹力仪本体的振动数据,根据振动数据对血栓弹力仪本体检测出的血凝数据进行修正。根据振动数据对血凝数据进行修正后,减小了检测结果中由于血栓弹力仪本体振动而引入的误差,提高了对待测血液血凝数据进行检测的准确性。
在本发明一个实施例中,在检测血栓弹力仪本体的振动情况时,以石英谐振式传感器作为振动传感器,在血栓弹力仪本体对待测血液进行检测的过程中,根据各个石英谐振式传感器的固有频率及承受的压力,获得血栓弹力仪本体的振幅及振动频率作为振动数据。
在本发明一个实施例中,在获取到血栓弹力仪本体的的振幅及振动频率后,根据各个振动传感器检测出的振幅及振动频率,通过如下公式一获得修正系数,并通过如下公式二对血栓弹力仪本体检测出的血凝数据进行修正,获得第一修正血凝数据,其中,
公式一为:
Figure PCTCN2017082755-appb-000011
公式二为:
A1=δ·A0
其中,δ为修正系数,L为各个振动传感器检测出的振幅的平均值,γ为各个振动传感器检测出的振动频率的平均值,A0为血栓弹力仪本体获取到的血凝数据,A1为第一修正血凝数据。
在本发明一个实施例中,还包括:在血栓弹力仪本体对待测血液进行检测的过程中,对血栓弹力仪本体的倾斜情况进行检测,获取血栓弹力仪本体的倾斜角度,根据血栓弹力仪本体的倾斜角度,对获取到的第一修正血凝数据进行再次修正,形成第二修正血凝数据并输出。根据血栓弹力仪本体的倾斜角度对第一修正血凝数据进行修正,可以减小血栓弹力仪本体检测出的血凝数据中由于血栓弹力仪本体发生倾斜而引入的误差,进一步提高血栓弹力仪本体对血液血凝进行检测的准确性。
在本发明一个实施例中,在获取到血栓弹力仪本体的倾斜角度后,通过如下所示的公式三对第一修正血凝数据进行修正,获得第二修正血凝数据,其中,
公式三为:
A2=A1·cosα
其中,α为所述血栓弹力仪本体的倾斜角度,A1为第一修正血凝数据,A2为第二修正血凝数据。
下面以依次根据血栓弹力仪本体的振动数据及倾斜角度对血凝数据进行修正为例,对本发明实施例提供的血凝数据修正方法作进一步详细描述,如图11所示,该方法可以包括以下操作:
操作1101:通过血栓弹力仪本体对待测血液进行检测。
在本发明一个实施例中,将待测血液装入血栓弹力仪本体后,驱动装置驱动待测血液转动,待测血液转动带动血栓弹力仪本体的旋转轴转动,开始对待测血液的血凝进行检测。
操作1102:对血栓弹力仪本体的振动情况进行检测,获取血栓弹力仪本体的振动数据。
在本发明一个实施例中,在血栓弹力仪本体对待测血液进行检测的过程中,由于用于支撑血栓弹力仪本体的支撑平台振动,以及旋转轴转动方向发生改变时产生的冲击,导致血栓弹力仪本体产生振动,通过至少一个振动传感器检测血栓弹力仪本体的振动情况,各个振动传感器分别检测出一组血栓弹力仪本体的振幅及振动频率。
例如,如图8所示,在血栓弹力仪本体701的三个支点801与支撑平台803之间设置有三个石英晶体谐振式传感器802,当血栓弹力仪本体701发送振动时,血栓弹力仪本体701的振动通过支点801传递给石英晶体谐振式传感器802,石英晶体谐振式传感器802能够根据接收到的振动的频率而改变其自身的固有频率,并能够检测出支点801对其产生的压力,石英晶体谐振式传感器802根据其自身的固有频率及承受的压力确定出血栓弹力仪本体701的振幅Li及振动频率γi。三个石英晶体谐振式传感器802检测出的振幅分别为L1、L2及L3,三个个石英晶体谐振式传感器802检测出的振动频率分别为γ1、γ2及γ3
操作1103:对血栓弹力仪本体的倾斜情况进行检测,获取血栓弹力仪本体的倾斜角度。
在本发明一个实施例中,在血栓弹力仪本体对待测血液进行检测的过程中,血栓弹力仪本体存在一定的倾斜角度,通过水平传感器对血栓弹力仪本体的倾斜情况进行检测,获取到血栓弹力仪本体的倾斜角度。
例如,将一个陀螺仪固定在血栓弹力仪本体上,在血栓弹力仪本体对待测血液进行检测的过程中,陀螺仪对血栓弹力仪本体的倾斜程度进行检测,获取血栓弹力仪本体的倾斜角度α。
操作1104:根据振动数据对血凝数据进行修正,获得第一修正血凝数据。
在本发明一个实施例中,血栓弹力仪本体检测出待测血液的血凝数据后,数据修正单元根据操作1102中振动传感器获取到的振幅及振动频率,对血栓弹力仪本体检测出的血凝数据进行修正,获得第一修正血凝数据,以减小血凝数据中由于血栓弹力仪本体振动而引入的误差。
例如,血栓弹力仪本体在检测血液的血凝时,以血栓弹力仪本体上的旋转轴的转动角度作为血凝数据进行输出,针对于血栓弹力仪本体对待测血液进行检测的任意时刻,该时刻旋转轴的旋转角度为A0;计算该时刻三个石英晶体谐振式传感器检测到的振幅L1、L2及L3的平均值L,并计算该时刻三个石英晶体谐振式传感器检测到的振动频率γ1、γ2及γ3的平均值γ,将计算出的L及γ代入如下公式一,计算出修正系数δ,其中公式一为:
Figure PCTCN2017082755-appb-000012
计算出修正系数δ后,将旋转轴的转动角度A0及修正系数δ代入如下公式二,计算出第一转动角度A1,其中公式二为:
A1=δ·A0
此时第一转动角度A1即为对振动误差进行修正后的第一修正血凝数据。
操作1105:根据倾斜角度对第一修正血凝数据进行修正,获得第二修正血凝数据并输出。
在本发明一个实施例中,数据修正单元对振动误差进行修正获得第一修正血凝数据后,进一步根据操作1103中水平传感器获取到的倾斜角度,对第一修正血凝数据进行再次修正,获得第二修正血凝数据,以减小第一修正血凝数据中由于血栓弹力仪本体倾斜而引入的误差,最终将第二修正血凝数据作为血栓弹力仪本体的检测结果输出。
例如,血栓弹力仪以旋转轴的转动角度作为血凝数据时,由于在血栓弹力仪本体对待测血液进行检测的过程,血栓弹力仪本体的倾斜角度基本保持不变,陀螺仪检测出血栓弹力仪本体的倾斜角度α之后,根据倾斜角度α并通过公式三对任意时刻的第一转动角度A1进行修正,获得对应的第二转动角度A2,其中公式三为:
A2=A1·cosα
此时第二转动角度A2即为对振动误差及倾斜误差进行修正后的第二修正血凝数据,将最终获得的第二修正血凝数据输出。
需要说明的是,操作1104中对血凝数据中的振动误差进行修正时,可以根据任意时刻血栓弹力仪本体的振动数据对该时刻对应的血凝数据进行修正,也可以根据整个检测过程中血栓弹力仪本体的平均振动数据对各个时刻的血凝数据进行修正,在具体业务实现过程中可以灵活选择;相应地,操作1105中对血凝数据中的倾斜误差进行修正时,可以根据任意时刻血栓弹力仪本体的倾斜角度对该时刻对应的血凝数据进行修正,也可以根据整个检测过程中血栓弹力仪本体的平均倾斜角度对各个时刻的血凝数据进行修正,在具体业务实现过程中可以灵活选择。
进一步需要说明的是,图11所示的血凝数据修正方法是为了更加清楚地描述血凝数据修正的过程而拆分成的多个步骤,在具体业务实现过程中各个步骤之间没有严格的先后顺序,比如操作1102可以与操作1103同时执行、可以先执行操作1105对倾斜误差进行修正再执行操作1104对振动误差进行修正。
本发明实施例提供的检测血凝数据的装置及血凝数据修正方法,至少具有如下有益效果:
1、在本发明实施例提供的检测血凝数据的装置及血凝数据修正方法中,在血栓弹力仪本体对待测血液进行检测的过程中,倾斜传感器对血栓弹力仪本体的位置进行检测,获取血栓弹力仪本体的第一倾斜角度,数据修正单元根据倾斜传感器获取到的第一倾斜角度对血栓弹力仪本体检测出的血凝数据进行修正,形成修正血凝数据后输出。相对于血栓弹力仪本体检测出的血凝数据,修正血凝数据是根据血栓弹力仪本体的倾斜角度对血凝数据进行修正后而获得的,将修正血凝数据作为最终检测结果输出,减小了输出的血凝数据中由于血栓弹力仪本体倾斜而引入的误差。
2、在本发明实施例提供的检测血凝数据的装置及血凝数据修正方法中,可以采用陀螺仪作为倾斜传感器,由于陀螺仪的集成度较高,体积较小,将陀螺仪固定在血栓弹力仪本体上检测血栓弹力仪本体的倾斜角度,无需对血栓弹力仪本体的整体结构作大规模的改动。另外,陀螺仪的技术成熟,价格较低,采用陀螺仪作为倾斜传感器,能够保证检测血凝数据的装置具有较低的成本。
3、在本发明实施例提供的检测血凝数据的装置及血凝数据修正方法中,可以采用加速度传感器作为倾斜传感器,加速度传感器可以检测血栓弹力仪本体在三维方向上发生的倾斜,提高对血栓弹力仪本体的倾斜角度进行放检测的准确性,进而可以准确地对血凝数据进行修正,提高血栓弹力仪本体对血凝数据进行检测的准确性。
4、在本发明实施例提供的检测血凝数据的装置及血凝数据修正方法中,除了在获取血凝数据之后根据血栓弹力仪本体的倾斜角度对血凝数据进行修正之外,在对待测血液进行检测之前还可以对血栓弹力仪本体进行调水平操作,从根本上减小血凝数据中由于血栓弹力仪本体倾斜而引入的误差,进一步提高了血栓弹力仪本体对血凝数据进行检测的准确性。
5、在本发明实施例提供的检测血凝数据的装置及血凝数据修正方法中,血栓弹力仪本体在对待测血液的血凝数据进行检测的过程中,至少一个振动传感器对血栓弹力仪本体的振动情况进行检测,获得血栓弹力仪本体的振动数据,数据修正单元根据振动传感器获取到的振动数据,对血栓弹力仪本体检测出的血凝数据进行修正,形成第一修正血凝数据。相对于血栓弹力仪本体检测出的血凝数据,第一修正血凝数据是根据血栓弹力仪本体的振动情况对血凝数据进行修正后的结果,因此以第一修正血凝数据作为最终的检测结果可以减小检测结果中由于血栓弹力仪本体振动引入的误差。
6、在本发明实施例提供的检测血凝数据的装置及血凝数据修正方法中,血栓弹力仪还可以包括水平传感器,水平传感器可以检测血栓弹力仪本体的倾斜角度,数据修正单元根据水平传感器检测出的倾斜角度可以进一步对血凝数据中由于血栓弹力仪本体倾斜而引入的误差进行修正,从而减小血凝数据中由于血 栓弹力仪本体倾斜而引入的误差,提高了血栓弹力仪本体对血液进行检测的准确性。
7、在本发明实施例提供的检测血凝数据的装置及血凝数据修正方法中,由于陀螺仪的精度高、反应灵敏,以陀螺仪作为水平传感器可以提高对血栓弹力仪本体倾斜角度进行检测的准确性,从而可以更大程度的减小血凝数据中由于血栓弹力仪本体倾斜而引入的误差,进一步提高了血栓弹力仪本体对血液进行检测的准确性。
8、在本发明实施例提供的检测血凝数据的装置及血凝数据修正方法中,可以通过多个振动传感器对血栓弹力仪本体的振动数据进行检测,根据各个振动传感器检测出的振动数据的平均值对血凝数据进行修正,可以根据整个血栓弹力仪本体的振动情况对血凝数据进行修正,提高振动误差修正的可靠性。
需要说明的是,在本文中,诸如第一和第二之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个······”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同因素。
方面:
下述被编号的各个方面进一步提供了本发明公开的内容。需注意的是,下面的任何方面1-5可以与任何方面6-10结合,也可以与任何方面11-15结合,还可以与任何方面16-20结合,还可以与任何方面的21-25结合。并且,下面的任何方面6-10可以与任何方面11-15结合,也可以与任何方面16-20结合;任何方面11-15结合可以与任何方面16-20结合,还可以与任何方面的21-25结合。下面的任何方面11-15可以与任何方面16-20结合,还可以与任何方面的21-25结合。下面任何方面16-20可以与任何方面21-25结合。
1、一种检测血凝数据的装置,包括:血栓弹力仪本体、倾斜传感器及数据修正单元;
所述血栓弹力仪本体用于对待测血液进行检测,获取所述待测血液的血凝数据;
所述倾斜传感器用于在所述血栓弹力仪本体对所述待测血液进行检测的过程中,对所述血栓弹力仪本体的位置进行检测,获取所述血栓弹力仪本体的第一倾斜角度;
所述数据修正单元用于根据所述倾斜传感器获取到的第一倾斜角度,对所述血栓弹力仪本体获取到的血凝数据进行修正,获得修正血凝数据并输出。
2、根据方面1所述的装置,
所述倾斜传感器包括陀螺仪或加速度传感器;
当所述倾斜传感器为陀螺仪时,
所述陀螺仪与所述血栓弹力仪本体固定连接,用于检测所述血栓弹力仪本体的角运动参数,根据所述角运动参数获取所述血栓弹力仪本体的第一倾斜角度;
当所述倾斜传感器为加速度传感器时,
所述加速度传感器与所述血栓弹力仪本体固定连接,用于检测所述血栓弹力仪本体在预设三维坐标系中三条坐标轴方向上的重力加速度分量,根据所述三条坐标轴方向上的重力加速度分量,通过如下公式一计算所述血栓弹力仪本体的第一倾斜角度;
所述公式一为:
Figure PCTCN2017082755-appb-000013
其中,所述α为所述血栓弹力仪本体的第一倾斜角度,所述ax为所述血栓弹力仪本体在所述预设三维坐标系中x轴方向上的重力加速度分量,所述ay为所述血栓弹力仪本体在所述预设三维坐标系中y轴方向上的重力加速度分量,所述az为所述血栓弹力仪本体在所述预设三维坐标系中z轴方向上的重力加速度分量;
其中,所述预设三维坐标系的x轴、y轴及z轴两两垂直,当所述血栓弹力仪本体处于水平位置时所述x轴与所述y轴位于水平面内。
3、根据方面1或2所述的装置,
所述数据修正单元,用于根据所述倾斜传感器获取到的第一倾斜角度,通过如下公式二,对所述血凝数据进行修正,获得所述修正血凝数据;
所述公式二为:
A1=A0·cosα
其中,所述A1为所述修正血凝数据,所述A0为所述血栓弹力仪本体获得的血凝数据,所述α为所述血栓弹力仪本体的第一倾斜角度。
4、根据方面1或2所述的装置,
所述数据修正单元,用于根据所述倾斜传感器获取到的第一倾斜角度,通过如下公式三,对所述血凝数据进行修正,获得所述修正血凝数据;
所述公式三为:
Figure PCTCN2017082755-appb-000014
其中,所述A1为所述修正血凝数据,所述A0为所述血栓弹力仪本体获得的血凝数据,所述α为所述血栓弹力仪本体的第一倾斜角度。
5、根据方面1所述的装置,进一步包括:水平校准单元;
所述倾斜传感器,进一步用于在所述血栓弹力仪本体对所述待测血液进行检测之前,检测所述血栓弹力仪本体的第二倾斜角度及倾斜方向;
所述水平校准单元,用于根据所述倾斜传感器检测出的第二倾斜角度及倾斜方向,通过升降机构对所述血栓弹力仪本体进行调水平操作。
6、一种利用方面1至5中任一所述的检测血凝数据的装置进行血凝数据修正的方法,包括:
通过所述血栓弹力仪本体对待测血液进行检测,获取所述待测血液的血凝数据;
在所述血栓弹力仪本体对所述待测血液进行检测的过程中,通过所述倾斜传感器对所述血栓弹力仪本体的位置进行检测,获取所述血栓弹力仪本体的第一倾斜角度;
根据所述倾斜传感器获取到的第一倾斜角度,通过所述数据修正单元对所述血栓弹力仪本体获取到的血凝数据进行修正,获得修正血凝数据。
7、根据方面6所述的方法,
当所述倾斜传感器为陀螺仪时,
所述通过所述倾斜传感器对所述血栓弹力仪本体的位置进行检测,获取所述血栓弹力仪本体的第一倾斜角度包括:
通过所述陀螺仪检测所述血栓弹力仪本体的角运动参数,根据所述角运动参数获取所述血栓弹力仪本体的第一倾斜角度;
或,
当所述倾斜传感器为加速度传感器时;
所述通过所述倾斜传感器对所述血栓弹力仪本体的位置进行检测,获取所述血栓弹力仪本体的第一倾斜角度的包括:
通过所述加速度传感器检测所述血栓弹力仪本体在预设三维坐标系中三条坐标轴方向上的重力加速度分量,根据所述三条坐标轴方向上的加速度分量,通过如下公式一计算所述血栓弹力仪本体的第一倾斜角度;
所述公式一为:
Figure PCTCN2017082755-appb-000015
其中,所述α为所述血栓弹力仪本体的第一倾斜角度,所述ax为所述血栓弹力仪本体在所述预设三维坐标系中x轴方向上的重力加速度分量,所述ay为所述血栓弹力仪本体在所述预设三维坐标系中y轴方向上的重力加速度分量,所述az为所述血栓弹力仪本体在所述预设三维坐标系中z轴方向上的重力加速度分量;
其中,所述预设三维坐标系的x轴、y轴及z轴两两垂直,当所述血栓弹力仪本体处于水平位置时所述x轴与所述y轴位于水平面内。
8、根据方面6或7所述的方法,
所述根据所述倾斜传感器获取到的第一倾斜角度,对所述血栓弹力仪本体获取到的血凝数据进行修正,获得修正血凝数据包括:
根据所述倾斜传感器获取到的第一倾斜角度,通过如下公式二,对所述血凝数据进行修正,获取所述修正血凝数据;
所述公式二为:
A1=A0·cosα
其中,所述A1为所述修正血凝数据,所述A0为所述血凝数据,所述α为所述血栓弹力仪本体的第一倾斜角度。
9、根据方面6或7所述的方法,
所述根据所述倾斜传感器获取到的第一倾斜角度,对所述血栓弹力仪本体获取到的血凝数据进行修正,获得修正血凝数据包括:
根据所述倾斜传感器获取到的第一倾斜角度,通过如下公式三,对所述血凝数据进行修正,获得所述修正血凝数据;
所述公式三为:
Figure PCTCN2017082755-appb-000016
其中,所述A1为所述修正血凝数据,所述A0为所述血凝数据,所述α为所述血栓弹力仪本体的第一倾斜角度。
10、根据方面6所述的方法,
在所述通过所述血栓弹力仪本体对待测血液进行检测,获取所述待测血液的血凝数据之前进一步包括:
检测所述血栓弹力仪本体的第二倾斜角度及倾斜方向;
根据所述第二倾斜角度及倾斜方向,通过升降机构对所述血栓弹力仪本体进行调水平操作。
11、一种检测血凝数据的装置,包括:血栓弹力仪本体、至少一个振动传感器及数据修正单元;
所述血栓弹力仪本体用于对待测血液进行检测,获得所述待测血液的血凝数据;
所述振动传感器用于检测所述血栓弹力仪本体在对所述待测血液进行检测的过程中所述血栓弹力仪本体的振动情况,获得所述血栓弹力仪本体的振动数据;
所述数据修正单元用于根据各个所述振动传感器获得的所述振动数据,对所述血栓弹力仪本体获得的所述血凝数据进行修正,形成第一修正血凝数据。
12、根据方面11所述的装置,
所述振动传感器包括石英晶体谐振式传感器;
所述石英晶体谐振式传感器位于所述血栓弹力仪本体的支点与支撑所述血栓弹力仪本体的支撑平台之间,用于根据其自身的固有频率及承受的压力,获得所述血栓弹力仪本体的振幅及振动频率。
13、根据方面12所述的装置,
所述数据修正单元用于根据所述振幅及所述振动频率,通过如下公式一获得修正系数,并通过如下公式二对所述血凝数据进行修正,获得所述第一修正血凝数据;
所述公式一为:
Figure PCTCN2017082755-appb-000017
所述公式二为:
A1=δ·A0
其中,所述δ为所述修正系数,所述L为各个所述振动传感器检测出的振幅的平均值,所述γ为各个所述振动传感器检测出的振动频率的平均值,所述A0为所述血栓弹力仪本体获得的血凝数据,所述A1为所述第一修正血凝数据。
14、根据方面11至13中任一所述的装置,进一步包括水平传感器;
所述水平传感器用于检测所述血栓弹力仪本体在对所述待测血液进行检测的过程中所述血栓弹力仪本体的倾斜情况,获取所述血栓弹力仪本体的倾斜角度;
所述数据修正单元进一步用于根据所述水平传感器获取到的倾斜角度,对所述第一修正血凝数据进行修正,形成第二修正血凝数据并输出。
15、根据方面14所述的装置,
所述数据修正单元,用于根据所述血栓弹力仪本体的倾斜角度,通过如下公式三对所述第一修正血凝数据进行修正,获得所述第二修正血凝数据;
所述公式三为:
A2=A1·cosα
其中,所述α为所述血栓弹力仪本体的倾斜角度,所述A1为所述第一修正血凝数据,所述A2为所述第二修正血凝数据。
16、一种利用方面11至15中任一所述检测血凝数据的装置对血凝数据进行修正的方法,包括:
通过血栓弹力仪本体对待测血液进行检测,获得所述待测血液的血凝数据;
利用各个所述振动传感器检测所述血栓弹力仪本体在对所述待测血液进行检测过程中所述血栓弹力仪本体的振动情况,获得所述血栓弹力仪本体的振动数据;
根据各个所述振动传感器获得的所述振动数据,对所述血凝数据进行修正,形成第一修正血凝数据。
17、根据方面16所述的方法,
所述获得所述血栓弹力仪本体的振动数据,包括:
在所述血栓弹力仪本体对所述待测血液进行检测的过程中,根据所述振动传感器的固有频率及承受的压力,获得所述血栓弹力仪本体的振幅及振动频率。
18、根据方面17所述的方法,
所述根据各个所述振动传感器获得的所述振动数据,对所述血凝数据进行修正,形成第一修正血凝数据包括:
根据所述振幅及所述振动频率,通过如下公式一获得修正系数,并通过如下公式二对所述血凝数据进行修正,获得所述第一修正血凝数据;
所述公式一为:
Figure PCTCN2017082755-appb-000018
所述公式二为:
A1=δ·A0
其中,所述δ为所述修正系数,所述L为各个所述振动传感器检测出的振动振幅的平均值,所述γ为各个所述振动传感器检测出的振动频率的平均值,所述A0为血栓弹力仪本体获得的所述血凝数据,所述A1为所述第一修正血凝数据。
19、根据方面16至18中任一所述的方法,进一步包括:
检测所述血栓弹力仪本体在对所述待测血液进行检测的过程中所述血栓弹力仪本体的倾斜情况,获取所述血栓弹力仪本体的倾斜角度;
根据所述血栓弹力仪本体的倾斜角度,对所述第一修正血凝数据进行修正,形成第二修正血凝数据。
20、根据方面19所述的方法,
所述根据血栓弹力仪本体的倾斜角度,对所述第一修正血凝数据进行修正,形成第二修正血凝数据包括:
根据所述血栓弹力仪本体的倾斜角度,通过如下公式三对所述第一修正血凝数据进行修正,获得所述第二修正血凝数据;
所述公式三为:
A2=A1·cosα
其中,所述α为所述血栓弹力仪本体的倾斜角度,所述A1为所述第一修正血凝数据,所述A2为所述第二修正血凝数据。
21、一种检测血凝数据的系统,由若干水平并列设置的检测血凝数据的装置组成。
22、根据方面21所述的系统,所述检测血凝数据的装置包括:
工作台,包括设置在其上表面、用于容纳血液的容器,以及驱动所述容器旋转的动力装置,所述容器内设有加热装置以及能够控制所述加热器将所述容器内的血液加热到设定温度的控制器;
机架,固定在所述工作台上;
测试棒,位于所述容器的正上方,且能够至少部分插入到所述容器的血液中,所述测试棒转动连接在所述机架上,所述测试棒的侧面上还设有竖直的反光面;
测试仪,其与所述机架固定连接,所述测试仪上设有容纳所述测试棒穿过、且竖直设置的第一通孔,以及水平设置且与所述第一通孔贯通的第二通孔,所述反光面位于所述第一通孔中,所述第二通孔至少设有两个,其内分别设置有光发射装置以及光接收装置,所述光发射装置能够向所述反光面上投入直线光,所述光接收装置能够接收到所述反光面反射出来的直线光;
处理器,能够将所述光接收装置接收到的直线光的量转化为反映血凝的参数信息,所述参数信息与所述光接收装置接收到的光的量成正比。
23、根据方面22所述的系统,所述机架包括与所述测试仪固定连接的第一支架以及与所述测试棒固定连接的第二支架,所述第一支架包括固定在所述测试仪上且竖直设置的两根立柱,以及连接两根所述立柱且水平设置的第一横梁,所述第二支架包括容纳所述第一横梁穿过的开口,以及位于所述第一横梁正上方且水平设置的第二横梁,所述第二横梁下表面的中间位置设有向下凸出的顶锥,所述第一横梁的上表面设有宝石轴承,所述宝石轴承位于所述顶锥的正下方,所述顶锥与所述宝石轴承的凹孔为点接触。
24、根据方面21所述的系统,所述检测血凝数据的装置包括:
旋转轴、至少一个反光片、至少一个光发射模块、至少一个光接收模块及处理模块;
所述旋转轴与所述至少一个反光片固定连接,所述旋转轴在外部驱动作用下带动所述至少一个反光片转动;
每一个所述光发射模块,用于以固定的方向向对应的反光片发射光;
每一个所述反光片,用于接收对应光发射模块发射的光,并对接收到的光进行反射;
每一个所述光接收模块,用于以固定的方向接收对应的反光片反射的光,根据光的强度将接收到的光转换为对应的电信号,并将所述电信号传输给所述处理模块;
所述处理模块,用于根据所述至少一个光接收模块转换成的电信号,确定所述旋转轴的转动角度。
25、根据方面24所述的系统,进一步包括:固定平台;
所述固定平台上包括有竖直设置的第一通孔、至少一个水平设置的第二通孔以及至少一个水平设置的第三通孔,所述第一通孔与各个所述第二通孔及各个所述第三通孔相贯通;
所述旋转轴穿过所述第一通孔,且所述各个反光片位于所述第一通孔内;
各个所述光发射模块固定于所述第二通孔内,每一个所述第二通孔对应一个所述光发射模块;
各个所述光接收模块固定于所述第三通孔内,每一个所述第三通孔对应一个所述光接收模块。
在不脱离本发明的精神和新颖特征的情况下,本发明可以通过其他形式来实施。本申请中公开的各个实施例应该以示例性而非限制性的方式在所有方面中进行考虑。本发明的范围是通过附加的各方面来声明的,而不是通过前述的描述来声明;在各方面的等同的意义和等同的范围之内所做的所有修改,均包含在本发明的保护范围内。

Claims (15)

  1. 一种检测血凝数据的装置,其特征在于,包括:血栓弹力仪本体、倾斜传感器及数据修正单元;
    所述血栓弹力仪本体用于对待测血液进行检测,获取所述待测血液的血凝数据;
    所述倾斜传感器用于在所述血栓弹力仪本体对所述待测血液进行检测的过程中,对所述血栓弹力仪本体的位置进行检测,获取所述血栓弹力仪本体的第一倾斜角度;
    所述数据修正单元用于根据所述倾斜传感器获取到的第一倾斜角度,对所述血栓弹力仪本体获取到的血凝数据进行修正,获得修正血凝数据并输出。
  2. 根据权利要求1所述的装置,其特征在于,
    所述倾斜传感器包括陀螺仪或加速度传感器;
    当所述倾斜传感器为陀螺仪时,
    所述陀螺仪与所述血栓弹力仪本体固定连接,用于检测所述血栓弹力仪本体的角运动参数,根据所述角运动参数获取所述血栓弹力仪本体的第一倾斜角度;
    当所述倾斜传感器为加速度传感器时,
    所述加速度传感器与所述血栓弹力仪本体固定连接,用于检测所述血栓弹力仪本体在预设三维坐标系中三条坐标轴方向上的重力加速度分量,根据所述三条坐标轴方向上的重力加速度分量,通过如下公式一计算所述血栓弹力仪本体的第一倾斜角度;
    所述公式一为:
    Figure PCTCN2017082755-appb-100001
    其中,所述α为所述血栓弹力仪本体的第一倾斜角度,所述ax为所述血栓弹力仪本体在所述预设三维坐标系中x轴方向上的重力加速度分量,所述ay为所述血栓弹力仪本体在所述预设三维坐标系中y轴方向上的重力加速度分量,所述az为所述血栓弹力仪本体在所述预设三维坐标系中z轴方向上的重力加速度分量;
    其中,所述预设三维坐标系的x轴、y轴及z轴两两垂直,当所述血栓弹力仪本体处于水平位置时所述x轴与所述y轴位于水平面内。
  3. 根据权利要求1或2所述的装置,其特征在于,
    所述数据修正单元,用于根据所述倾斜传感器获取到的第一倾斜角度,通过如下公式二,对所述血凝数据进行修正,获得所述修正血凝数据;
    所述公式二为:
    A1=A0·cosα
    其中,所述A1为所述修正血凝数据,所述A0为所述血栓弹力仪本体获得的血凝数据,所述α为所述血栓弹力仪本体的第一倾斜角度。
  4. 根据权利要求1或2所述的装置,其特征在于,
    所述数据修正单元,用于根据所述倾斜传感器获取到的第一倾斜角度,通过如下公式三,对所述血凝数据进行修正,获得所述修正血凝数据;
    所述公式三为:
    Figure PCTCN2017082755-appb-100002
    其中,所述A1为所述修正血凝数据,所述A0为所述血栓弹力仪本体获得的血凝数据,所述α为所述血栓弹力仪本体的第一倾斜角度。
  5. 根据权利要求1所述的装置,其特征在于,进一步包括:水平校准单元;
    所述倾斜传感器,进一步用于在所述血栓弹力仪本体对所述待测血液进行检测之前,检测所述血栓弹力仪本体的第二倾斜角度及倾斜方向;
    所述水平校准单元,用于根据所述倾斜传感器检测出的第二倾斜角度及倾斜方向,通过升降机构对所述血栓弹力仪本体进行调水平操作。
  6. 一种检测血凝数据的装置,其特征在于,包括:血栓弹力仪本体、至少一个振动传感器及数据修正单元;
    所述血栓弹力仪本体用于对待测血液进行检测,获得所述待测血液的血凝数据;
    所述振动传感器用于检测所述血栓弹力仪本体在对所述待测血液进行检测的过程中所述血栓弹力仪本体的振动情况,获得所述血栓弹力仪本体的振动数据;
    所述数据修正单元用于根据各个所述振动传感器获得的所述振动数据,对所述血栓弹力仪本体获得的 所述血凝数据进行修正,形成第一修正血凝数据。
  7. 根据权利要求6所述的装置,其特征在于,
    所述振动传感器包括石英晶体谐振式传感器;
    所述石英晶体谐振式传感器位于所述血栓弹力仪本体的支点与支撑所述血栓弹力仪本体的支撑平台之间,用于根据其自身的固有频率及承受的压力,获得所述血栓弹力仪本体的振幅及振动频率。
  8. 根据权利要求7所述的装置,其特征在于,
    所述数据修正单元用于根据所述振幅及所述振动频率,通过如下公式一获得修正系数,并通过如下公式二对所述血凝数据进行修正,获得所述第一修正血凝数据;
    所述公式一为:
    Figure PCTCN2017082755-appb-100003
    所述公式二为:
    A1=δ·A0
    其中,所述δ为所述修正系数,所述L为各个所述振动传感器检测出的振幅的平均值,所述γ为各个所述振动传感器检测出的振动频率的平均值,所述A0为所述血栓弹力仪本体获得的血凝数据,所述A1为所述第一修正血凝数据。
  9. 根据权利要求6至8中任一所述的装置,其特征在于,进一步包括水平传感器;
    所述水平传感器用于检测所述血栓弹力仪本体在对所述待测血液进行检测的过程中所述血栓弹力仪本体的倾斜情况,获取所述血栓弹力仪本体的倾斜角度;
    所述数据修正单元进一步用于根据所述水平传感器获取到的倾斜角度,对所述第一修正血凝数据进行修正,形成第二修正血凝数据并输出。
  10. 根据权利要求9所述的装置,其特征在于,
    所述数据修正单元,用于根据所述血栓弹力仪本体的倾斜角度,通过如下公式三对所述第一修正血凝数据进行修正,获得所述第二修正血凝数据;
    所述公式三为:
    A2=A1·cosα
    其中,所述α为所述血栓弹力仪本体的倾斜角度,所述A1为所述第一修正血凝数据,所述A2为所述第二修正血凝数据。
  11. 一种检测血凝数据的系统,其特征在于,由若干水平并列设置的检测血凝数据的装置组成。
  12. 根据权利要求11所述的系统,其特征在于,所述检测血凝数据的装置包括:
    工作台,包括设置在其上表面、用于容纳血液的容器,以及驱动所述容器旋转的动力装置,所述容器内设有加热装置以及能够控制所述加热器将所述容器内的血液加热到设定温度的控制器;
    机架,固定在所述工作台上;
    测试棒,位于所述容器的正上方,且能够至少部分插入到所述容器的血液中,所述测试棒转动连接在所述机架上,所述测试棒的侧面上还设有竖直的反光面;
    测试仪,其与所述机架固定连接,所述测试仪上设有容纳所述测试棒穿过、且竖直设置的第一通孔,以及水平设置且与所述第一通孔贯通的第二通孔,所述反光面位于所述第一通孔中,所述第二通孔至少设有两个,其内分别设置有光发射装置以及光接收装置,所述光发射装置能够向所述反光面上投入直线光,所述光接收装置能够接收到所述反光面反射出来的直线光;
    处理器,能够将所述光接收装置接收到的直线光的量转化为反映血凝的参数信息,所述参数信息与所述光接收装置接收到的光的量成正比。
  13. 根据权利要求12所述的系统,其特征在于,所述机架包括与所述测试仪固定连接的第一支架以及与所述测试棒固定连接的第二支架,所述第一支架包括固定在所述测试仪上且竖直设置的两根立柱,以及连接两根所述立柱且水平设置的第一横梁,所述第二支架包括容纳所述第一横梁穿过的开口,以及位于所述第一横梁正上方且水平设置的第二横梁,所述第二横梁下表面的中间位置设有向下凸出的顶锥,所述第一横梁的上表面设有宝石轴承,所述宝石轴承位于所述顶锥的正下方,所述顶锥与所述宝石轴承的凹孔为点接触。
  14. 根据权利要求11所述的系统,其特征在于,所述检测血凝数据的装置包括:
    旋转轴、至少一个反光片、至少一个光发射模块、至少一个光接收模块及处理模块;
    所述旋转轴与所述至少一个反光片固定连接,所述旋转轴在外部驱动作用下带动所述至少一个反光片转动;
    每一个所述光发射模块,用于以固定的方向向对应的反光片发射光;
    每一个所述反光片,用于接收对应光发射模块发射的光,并对接收到的光进行反射;
    每一个所述光接收模块,用于以固定的方向接收对应的反光片反射的光,根据光的强度将接收到的光转换为对应的电信号,并将所述电信号传输给所述处理模块;
    所述处理模块,用于根据所述至少一个光接收模块转换成的电信号,确定所述旋转轴的转动角度。
  15. 根据权利要求14所述的系统,其特征在于,进一步包括:固定平台;
    所述固定平台上包括有竖直设置的第一通孔、至少一个水平设置的第二通孔以及至少一个水平设置的第三通孔,所述第一通孔与各个所述第二通孔及各个所述第三通孔相贯通;
    所述旋转轴穿过所述第一通孔,且所述各个反光片位于所述第一通孔内;
    各个所述光发射模块固定于所述第二通孔内,每一个所述第二通孔对应一个所述光发射模块;
    各个所述光接收模块固定于所述第三通孔内,每一个所述第三通孔对应一个所述光接收模块。
PCT/CN2017/082755 2016-04-29 2017-05-02 一种检测血凝数据的装置 WO2017186184A1 (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN201610279824.6 2016-04-29
CN201620380387.2 2016-04-29
CN201620380387.2U CN205720232U (zh) 2016-04-29 2016-04-29 一种血栓弹力仪
CN201610279824.6A CN105842432B (zh) 2016-04-29 2016-04-29 一种血栓弹力仪
CN201610347496.9 2016-05-24
CN201620477344.6U CN205786644U (zh) 2016-05-24 2016-05-24 一种血栓弹力仪
CN201620477344.6 2016-05-24
CN201610347496.9A CN105911261A (zh) 2016-05-24 2016-05-24 一种血栓弹力仪
CN201610753656.XA CN106442954B (zh) 2016-08-30 2016-08-30 一种血栓弹力仪及血凝数据修正方法
CN201610756273.8A CN106491119B (zh) 2016-08-30 2016-08-30 一种血栓弹力仪及血凝数据修正方法
CN201610753656.X 2016-08-30
CN201610756273.8 2016-08-30

Publications (1)

Publication Number Publication Date
WO2017186184A1 true WO2017186184A1 (zh) 2017-11-02

Family

ID=60160728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082755 WO2017186184A1 (zh) 2016-04-29 2017-05-02 一种检测血凝数据的装置

Country Status (1)

Country Link
WO (1) WO2017186184A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111208137A (zh) * 2020-01-19 2020-05-29 安徽创孚医疗科技有限公司 一种基于光纤传感的血栓弹力测量系统

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225126B1 (en) * 1999-02-22 2001-05-01 Haemoscope Corporation Method and apparatus for measuring hemostasis
CN101322643A (zh) * 2007-06-12 2008-12-17 株式会社来易特制作所 眼屈折力测量装置
CN103398922A (zh) * 2013-07-09 2013-11-20 广东石油化工学院 一种血栓弹力测量装置及其测量方法
CN104062207A (zh) * 2014-07-15 2014-09-24 中国科学院苏州生物医学工程技术研究所 一种血液粘弹力监测装置
CN104614539A (zh) * 2013-11-05 2015-05-13 北京乐普医疗科技有限责任公司 一种血栓弹力图仪
CN105158450A (zh) * 2015-10-10 2015-12-16 嘉兴凯实生物科技有限公司 一种血栓弹力图仪
US20160091516A1 (en) * 2014-09-29 2016-03-31 C A Casyso Ag Blood Testing System and Method
CN105842432A (zh) * 2016-04-29 2016-08-10 苏州品诺维新医疗科技有限公司 一种血栓弹力仪及检测旋转轴转动角度的方法
CN105911261A (zh) * 2016-05-24 2016-08-31 苏州品诺维新医疗科技有限公司 一种血栓弹力仪
CN205720232U (zh) * 2016-04-29 2016-11-23 苏州品诺维新医疗科技有限公司 一种血栓弹力仪
CN205786644U (zh) * 2016-05-24 2016-12-07 苏州品诺维新医疗科技有限公司 一种血栓弹力仪
CN106442954A (zh) * 2016-08-30 2017-02-22 诺泰科生物科技(苏州)有限公司 一种血栓弹力仪及血凝数据修正方法
CN106442952A (zh) * 2016-08-30 2017-02-22 诺泰科生物科技(苏州)有限公司 一种血栓弹力仪及其校准方法
CN106491119A (zh) * 2016-08-30 2017-03-15 诺泰科生物科技(苏州)有限公司 一种血栓弹力仪及血凝数据修正方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225126B1 (en) * 1999-02-22 2001-05-01 Haemoscope Corporation Method and apparatus for measuring hemostasis
CN101322643A (zh) * 2007-06-12 2008-12-17 株式会社来易特制作所 眼屈折力测量装置
CN103398922A (zh) * 2013-07-09 2013-11-20 广东石油化工学院 一种血栓弹力测量装置及其测量方法
CN104614539A (zh) * 2013-11-05 2015-05-13 北京乐普医疗科技有限责任公司 一种血栓弹力图仪
CN104062207A (zh) * 2014-07-15 2014-09-24 中国科学院苏州生物医学工程技术研究所 一种血液粘弹力监测装置
US20160091516A1 (en) * 2014-09-29 2016-03-31 C A Casyso Ag Blood Testing System and Method
CN105158450A (zh) * 2015-10-10 2015-12-16 嘉兴凯实生物科技有限公司 一种血栓弹力图仪
CN105842432A (zh) * 2016-04-29 2016-08-10 苏州品诺维新医疗科技有限公司 一种血栓弹力仪及检测旋转轴转动角度的方法
CN205720232U (zh) * 2016-04-29 2016-11-23 苏州品诺维新医疗科技有限公司 一种血栓弹力仪
CN105911261A (zh) * 2016-05-24 2016-08-31 苏州品诺维新医疗科技有限公司 一种血栓弹力仪
CN205786644U (zh) * 2016-05-24 2016-12-07 苏州品诺维新医疗科技有限公司 一种血栓弹力仪
CN106442954A (zh) * 2016-08-30 2017-02-22 诺泰科生物科技(苏州)有限公司 一种血栓弹力仪及血凝数据修正方法
CN106442952A (zh) * 2016-08-30 2017-02-22 诺泰科生物科技(苏州)有限公司 一种血栓弹力仪及其校准方法
CN106491119A (zh) * 2016-08-30 2017-03-15 诺泰科生物科技(苏州)有限公司 一种血栓弹力仪及血凝数据修正方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111208137A (zh) * 2020-01-19 2020-05-29 安徽创孚医疗科技有限公司 一种基于光纤传感的血栓弹力测量系统

Similar Documents

Publication Publication Date Title
US8141263B2 (en) Apparatus for measuring an inside diameter of a hole of a workpiece
TW201022623A (en) Apparatus and method for measuring displacement of a curved surface using dual laser beams
JP2007117747A (ja) 超音波カテーテルの較正のためのターゲットおよび方法
US20160089644A1 (en) Analyzer and agitation unit
CN103968812B (zh) 一种测量设备以及用于确定该设备的特性的方法
WO2014000334A1 (zh) 平行度检测系统及其方法
WO2017186184A1 (zh) 一种检测血凝数据的装置
CN205539805U (zh) 一种液晶模块测试支架及测试系统
CN106442952A (zh) 一种血栓弹力仪及其校准方法
CN111562091A (zh) 一种偏光轴方位角度测定方法及测定装置
JP2014092489A (ja) 検査装置および検査方法
CN112964242A (zh) 一种石英音叉陀螺表头机械耦合误差测试系统及测试方法
US9016131B2 (en) Method for detecting wavelength with sound pressure sensors inserted in a liquid
CN115079737B (zh) 引力加速度调制装置及方法
WO2018223903A1 (zh) 光学测量装置及方法
CN106491119B (zh) 一种血栓弹力仪及血凝数据修正方法
CN106442954B (zh) 一种血栓弹力仪及血凝数据修正方法
KR20170119575A (ko) 펌프 설치를 위한 수평도 측정 장치 및 방법
JP2006084455A (ja) 角速度センサ検査装置
CN104075964A (zh) 一种血液粘弹力探测装置
JP5522397B2 (ja) 標識検定装置
CN209280722U (zh) 水平调节装置和具有水平调节装置的血栓弹力图仪
CN208188137U (zh) 凝血监测系统
WO2017186189A1 (zh) 一种脱盖装置及具有该装置的血栓弹力仪
US11067490B2 (en) Bracket, support system, and thrombelastography device and use method thereof

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17788836

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17788836

Country of ref document: EP

Kind code of ref document: A1