WO2017186112A1 - 一种冷弯加工性能优良的防护用钢板及其制造方法 - Google Patents

一种冷弯加工性能优良的防护用钢板及其制造方法 Download PDF

Info

Publication number
WO2017186112A1
WO2017186112A1 PCT/CN2017/081952 CN2017081952W WO2017186112A1 WO 2017186112 A1 WO2017186112 A1 WO 2017186112A1 CN 2017081952 W CN2017081952 W CN 2017081952W WO 2017186112 A1 WO2017186112 A1 WO 2017186112A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
steel
steel sheet
steel layer
protective
Prior art date
Application number
PCT/CN2017/081952
Other languages
English (en)
French (fr)
Inventor
宋凤明
胡晓萍
温东辉
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to DE112017002175.8T priority Critical patent/DE112017002175B4/de
Priority to US16/096,117 priority patent/US10894388B2/en
Priority to JP2018555895A priority patent/JP6743179B2/ja
Publication of WO2017186112A1 publication Critical patent/WO2017186112A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/42Alternating layers, e.g. ABAB(C), AABBAABB(C)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • B32B2571/02Protective equipment defensive, e.g. armour plates, anti-ballistic clothing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a steel sheet and a method of manufacturing the same, and more particularly to a steel sheet for protection and a method of manufacturing the same.
  • Protective equipment or equipment such as cash transport vehicles have put forward protective requirements for key parts. It is required that the steel plate will not crack or penetrate when subjected to high-speed impact impact within a certain distance.
  • Current protective materials include pure high-strength protective steel sheets, ceramic composite materials or high-molecular fiber materials.
  • the protective steel plate relies on high elastic deformation to absorb the impact energy of the impact material, and when the toughness is insufficient (especially the ultra high strength steel plate), it is easily broken and loses the protective function; the ceramic material has extremely high hardness, but the toughness is poor. When it is in contact with the impacting material, it is broken into smaller pieces to absorb the impact energy. It usually needs to be used together with the polymer fiber material. The latter has good toughness, and it is elastically deformed to absorb the impact load when impacting the impact. It is mostly used for protective vests. Production.
  • the publication number is CN1814845A, and the publication date is January 2, 2008.
  • the Chinese patent document entitled "A 1000MPa grade high-strength hot-rolled bulletproof steel plate and a manufacturing method thereof" discloses a 1000Mpa high-strength hot-rolled bulletproof steel plate.
  • the components are (% by weight): C 0.17 to 0.21%, Si 1.5 to 2.2%, Mn 1.5 to 2.0%, P ⁇ 0.035%, S ⁇ 0.010%, Al 0.015 to 0.060%, N ⁇ 0.0060%, Nb 0.010 ⁇ 0.050%, Ti 0.010-0.060%, Ca ⁇ 0.0050% can be added, and the rest are Fe and unavoidable impurities.
  • the composition of the bulletproof steel plate is: C: 0.08 to 0.12%, Si: 0.7 to 1.3%, Mn: 1.30 to 1.8%, Al: 0.01 to 0.06%, P ⁇ 0.02%, S ⁇ 0.004%, N ⁇ 0.004% , O ⁇ 0.015%, Gr: 0.3 to 1.0%, Ti + Nb ⁇ 0.2%, B: 0.0015 - 0.0025%, and the rest is Fe And inevitable impurities.
  • the protective steel sheets disclosed in these two technical solutions have a yield strength of 1000 MPa, which is difficult to meet the current requirements for thinning protection.
  • the publication number is CN102181795A, and the publication date is September 14, 2011.
  • the Chinese patent document entitled "An ultra-high-strength bullet-proof steel plate and its manufacturing process” discloses an ultra-high-strength bullet-proof steel plate and a manufacturing and forming process thereof.
  • the chemical composition is in terms of weight percent: C0.30-0.5, Si0.40-0.60, Mn1.50-1.80, P ⁇ 0.025, S ⁇ 0.01, Cr+Ni+Mo ⁇ 2.5, Nb+V+Ti+B ⁇ 0.20, the rest is Fe.
  • the bulletproof steel plate involved in this technical solution has a C content of between 0.30 and 0.50 and a tensile strength of about 2000 MPa. Although it does not mention any toughness index, its hardness value exceeds 600HB, so it is too high. The hardness reduces the toughness of the steel sheet and is extremely fragile when subjected to impact by impact.
  • One of the objects of the present invention is to provide a steel sheet for protection which is excellent in cold bending workability, which is rolled and composited, thereby enabling inter-atomic bonding, thereby providing a good bonding force between the layers;
  • the three-layer soft steel layer and the two-layer hard steel layer play the role of changing the direction of the impact object.
  • the soft steel layer located in the surface layer has excellent plasticity to ensure no cracking during extension deformation, and the hard steel layer is subjected to impact impact. Cracking into small pieces, consuming impact work, while the soft steel layer located in the core changes the direction of travel of the impact object, increasing the forward resistance of the impact object, thereby having a better protective effect.
  • the present invention provides a protective steel sheet excellent in cold bending workability, comprising: a three-layer soft steel layer and a two-layer hard steel layer, wherein three layers of soft steel and two layers of hard steel are spaced apart from each other.
  • the surface layer of the protective steel sheet is a soft steel layer, and the atomic bonding is achieved by rolling composite between the hard steel layer and the soft steel layer; wherein the chemical element mass percentage of the soft steel layer is:
  • the unavoidable impurities are mainly P, S, and N elements, wherein P ⁇ 0.01%, S ⁇ 0.006%, N can be controlled. ⁇ 0.005%.
  • the soft steel layer of the protective steel sheet excellent in cold bending workability according to the present invention needs to have good Absorbing kinetic energy capability and plastic deformation ability, so the soft steel layer needs extremely low yield strength.
  • the soft steel layer In order to effectively reduce the yield strength and increase the elongation, it is necessary to reduce the addition amount of alloying elements and reduce the strengthening factor, and the steel plate generally passes solid solution. Strengthening, precipitation strengthening, dislocation strengthening and grain boundary strengthening improve the yield strength.
  • the soft steel layer located at the core and the soft steel layer located on the surface layer are designed with the same composition, which reduces the production difficulty and improves the production efficiency.
  • the C content of the mild steel layer of the protective steel sheet excellent in cold bending workability according to the present invention is controlled to be between 0.001 and 0.01%.
  • the soft steel layer of the steel sheet for protection excellent in cold bending workability has a Si content of not more than 0.005%.
  • Mn is also a common strengthening element in steel, and the yield strength is improved by solid solution strengthening to lower the elongation. Therefore, the Mn content of the mild steel layer of the protective steel sheet excellent in cold bending workability according to the present invention is controlled to be between 0.05 and 0.15%.
  • Al is an essential element for deoxidation, but it also increases the strength of the steel. Therefore, the Al content in the mild steel layer of the steel sheet for protection excellent in cold bending workability according to the present invention is controlled to be 0.005% or less.
  • Ti is used to immobilize C and N atoms to reduce their hindrance to dislocation motion.
  • Ti can form TiN ⁇ Ti4C2S2 ⁇ TiS and TiC in the steel in order to eliminate free C and N atoms in the steel, thereby reducing the yield strength.
  • the coarsening of TiC and TiN particles causes the grain boundary pinning effect to be lost, the grain size is increased, and the grain boundary strengthening effect is reduced.
  • more Ti will lower the elongation of the steel sheet. Therefore, the Ti content of the mild steel layer of the protective steel sheet excellent in cold bending workability according to the present invention is controlled to be 0.01 to 0.10%.
  • the base structure of the mild steel layer of the protective steel sheet excellent in cold bending workability is equiaxed ferrite.
  • the isoaxial ferrite of the protective steel sheet excellent in cold bending workability has a crystal grain size of 30 to 120 ⁇ m.
  • the soft steel layer of the protective steel sheet excellent in cold bending workability has a yield strength of 80-180 MPa, an elongation of the mild steel layer of more than 40%, and a hardness value of less than 110 Hv.
  • the C-Si-Mn composition is extremely low, and C and N are fixed by Ti.
  • the interstitial atom eliminates the solid solution strengthening effect of the C and N atoms, and obtains a larger grain size by using the roughened TiN and TiC particles, thereby making the soft steel sheet excellent in the cold bending property.
  • the matrix structure of the steel layer is equiaxed ferrite even in the quenched state, and the equiaxed ferrite has a crystal size of 30-120 ⁇ m, and the hardness value of the mild steel layer does not exceed 110 Hv even under quenching conditions. Thereby the soft steel layer has good plasticity.
  • the protective steel sheet excellent in cold bending workability has a hardness value of less than 90 Hv in the soft steel layer of the core, and a hardness value of less than 110 Hv in the soft steel layer of the surface layer.
  • the soft steel layer located in the surface layer provides sufficient deformation due to excellent plasticity to prevent internal cracking when the steel sheet is bent, and the soft steel layer located at the core portion It has a good ability to absorb kinetic energy, so that the hard steel layer is subjected to impact deformation, cracking or even detachment, and its deformation work, crack formation and expansion work, and interlayer bonding energy and debris detached from the soft steel layer located in the core. Fully absorbed by kinetic energy, etc., consuming some of the kinetic energy of the impact.
  • the hardness of the mild steel layer located in the core is slightly lower than the hardness value of the soft steel layer located in the facing layer.
  • the chemical element mass percentage of the hard steel layer is:
  • the unavoidable impurities are mainly P, S, and N elements, wherein P ⁇ 0.015%, S ⁇ 0.005%, N can be controlled. ⁇ 0.005%.
  • the C content of the hard steel layer of the steel sheet for protection excellent in cold bending workability according to the present invention is limited to 0.40 to 0.50%.
  • the Si content is controlled at 0.1-0.3%.
  • Si has a high solid solubility in steel, which can increase the volume fraction of ferrite in the steel and refine the grains, which is beneficial to improve the toughness. However, if the content is too high, the weldability will decrease. .
  • Mn has a strong solid solution strengthening effect, while significantly reducing the phase transition temperature of steel, refining the steel Microstructure is an important strengthening and toughening element, but excessive Mn content increases the hardenability, resulting in deterioration of weldability and weld heat affected zone toughness, so the content is controlled to 1.0-1.5%.
  • Al is added as a deoxidizer during the steel making process, and a small amount of Al is also beneficial for refining the grains and improving the toughness of the steel.
  • too high Al will increase the brittleness of the ferrite in the steel and lead to a decrease in the toughness of the steel, so the content is controlled to be 0.01-0.05%.
  • Cr has a solid solution strengthening effect, but Cr is a precious alloying element. Therefore, the Cr content of the hard steel layer of the steel sheet for protection excellent in cold bending workability according to the present invention is limited to 0.1 to 0.3%.
  • Ni can not only improve the strength of the steel sheet but also improve the toughness of the steel sheet, but Ni is a precious alloying element. Therefore, the hard steel layer of the steel sheet for protection excellent in cold bending workability according to the present invention has a Ni content of 0.1 to 0.3%.
  • Ti mainly inhibits the austenite grain growth during the reheating of the slab, and inhibits the growth of ferrite grains during recrystallization and rolling, and improves the toughness of the steel.
  • the B content of the hard steel layer of the protective steel sheet excellent in cold bending workability according to the present invention is limited to 0.001 to 0.003%.
  • the hard steel layer of the steel sheet for protection excellent in cold bending workability according to the present invention has a Mo content of 0.05 to 0.5%.
  • the base structure of the hard steel layer of the protective steel sheet excellent in cold bending workability is martensite.
  • the hard steel layer of the protective steel sheet excellent in cold bending workability has a yield strength of more than 2000 MPa and a hardness of more than 600 HBW.
  • the hard steel layer of the protective steel sheet excellent in cold bending workability adopts a high C content and adds Mo and B elements which improve hardenability, and the base structure can be made after heat treatment.
  • the yield strength is greater than 2000 MPa and the hardness is greater than 600 HBW.
  • Another object of the present invention is to provide a method for manufacturing a protective steel sheet having good cold bending property, which can overcome the technical difficulty in the manufacturing process of the protective steel sheet, thereby producing excellent performance and better performance.
  • the steel plate for cold bending processing can achieve metallurgical bonding at high temperature, with higher bonding strength between layers and better protection effect.
  • the present invention also provides a protection for cold bending performance.
  • a method of manufacturing a steel sheet comprising the steps of:
  • the hard steel layer blank and the mild steel layer blank are preferably subjected to surface cleaning work before the assembly.
  • the surface cleaning method can be carried out using a wire brush or a belt, a direct pickling method, or other methods known to those skilled in the art for surface cleaning.
  • the protective steel sheet is oxidized during the heating process, in the technical solution, when the hard steel layer blank and the soft steel layer blank are subjected to interlayer welding, the welding is performed directly under the vacuum state of the vacuum chamber instead of using The method of vacuuming reduces the difficulty of production and effectively prevents oxidation.
  • the total thickness of the soft steel layer blank located in the surface layer accounts for 8-15% of the total thickness of the protective steel sheet blank, and the thickness of the soft steel layer blank located at the core of the protective steel sheet accounts for 10-25% of the total thickness of the protective steel sheet blank.
  • the total thickness of the soft steel layer blank located in the surface layer accounts for 8-15% of the total thickness of the protective steel sheet blank, and the thickness of the soft steel layer blank located at the core of the protective steel sheet accounts for 10% of the total thickness of the protective steel sheet blank. -25%, it can ensure that the soft steel layer located in the surface layer is not cracked by cold bending and the soft steel layer of the core has sufficient energy dissipation effect and the invading impact material changes direction and improves the protection effect.
  • the method for producing a protective steel sheet excellent in cold bending workability is heated in the range of 1100 to 1200 ° C for 2-3 hours, and then composite rolling is performed to control the finish rolling temperature. It is 850 to 900 °C.
  • the method for producing a protective steel sheet excellent in cold bending workability is air-cooled or water-cooled to 650-750 ° C after rolling.
  • the quenching temperature is at least 50 ° C above the Ac3 temperature of the hard steel layer, and the holding time is at least 3 mm. /min ⁇
  • the thickness of the composite steel sheet, the thickness unit is mm, and then cooled to room temperature at a rate of ⁇ 50 ° C / s.
  • the quenching temperature is controlled to be at least 50 ° C above the Ac3 temperature of the hard steel layer, the holding time is at least 3 mm / min ⁇ the thickness of the composite steel plate, the thickness is in mm, and then cooled to room temperature at a rate of ⁇ 50 ° C / s because When the temperature is above Ac3, the microstructure in the steel matrix begins to austenitize. The higher the temperature of Ac3, the higher the driving force of austenitization, the faster the austenitization speed and the shorter the holding time. Excessive heating temperature of quenching increases energy consumption and increases production costs. Therefore, the quenching temperature is limited to 50 ° C above the Ac3 temperature, and the holding time is 3 times the thickness of the steel sheet.
  • the tempering step in the step (7) is a tempering temperature of 150 to 230 ° C and a holding time of 15 to 60 minutes.
  • the steel sheet for protection excellent in cold bending workability according to the present invention is tempered in the interval of 150 to 230 ° C to reduce and eliminate the quenching stress, and to improve the toughness of the steel sheet for protection which is excellent in the cold bending property.
  • the protective steel sheet according to the present invention adopts a soft and hard steel layer cross design, wherein the soft steel layer as the surface layer has excellent plastic deformation ability, and does not crack during cold bending; the middle hard steel layer is subjected to impact When the object impacts, it is deformed, cracked or even detached, and its deformation work, crack formation and expansion work, interlayer bonding energy and debris detachment kinetic energy which are separated from the soft steel layer of the core fully absorb and consume part of the kinetic energy of the impact material, so that the impact material Loss of forward ability; while the soft steel layer of the core has good plasticity and excellent deformation ability, so that the impact material changes the advancing direction and increases the penetration thickness of the impact object, thereby further reducing the damage of the impact object.
  • the protective steel sheet according to the present invention adopts hot rolling composite rolling, and the interlayer metal realizes metallurgical bonding at a high temperature, and the interlayer bonding strength is high, and it is difficult to delamination.
  • the protective steel sheet according to the present invention adopts a soft and hard layer cross design, thereby improving the plasticity of the protective steel sheet, having better cold bending processing performance, and increasing the application range of the protective steel sheet.
  • the thickness of the soft steel layer blank located in the surface layer accounts for 8-15% of the total thickness of the protective steel sheet blank, and the thickness of the soft steel layer blank located in the core accounts for 10% of the total thickness of the protective steel sheet blank. -25%, so that the protective steel plate has good plastic deformation ability on the one hand, cold bending processing is not Cracking; on the other hand, it can ensure that the impact material changes direction when the impact material invades, reduce the damage ability and danger degree of the impact material, and improve the protection ability of the protective steel plate.
  • the manufacturing method of the present invention employs a vacuum welding process, which avoids the vacuuming process after the conventional welding, thereby having a better sealing effect.
  • the manufacturing method of the present invention adopts the same conventional rolling process as the ordinary steel slab after the slab, thereby reducing the production difficulty and improving the applicability of the manufacturing process.
  • the impact agents described herein are bullets or pellets.
  • the protective or protective capabilities described herein are bulletproof or ballistic resistant.
  • the protective steel sheet of the present invention is a bulletproof steel sheet.
  • Fig. 1 is a schematic view showing the structure of a steel sheet for protection according to the present invention.
  • CCT curve continuous cooling transition curve
  • Figure 3 is a photograph of the metallographic structure of the mild steel layer of the core of Example A1.
  • Figure 4 is a photograph of the metallographic structure of the soft steel layer of the face layer of Example A1.
  • Figure 5 is a photograph of the metallographic structure of the hard steel layer of Example A1.
  • Figure 6 is a photograph of the metallographic structure of the mild steel layer of the core of Example A2.
  • Figure 7 is a photograph of the metallographic structure of the mild steel layer of the face layer of Example A2.
  • Figure 8 is a photograph of the metallographic structure of the hard steel layer of Example A2.
  • the steel sheet for protection according to the present invention has a five-layer structure, which has three layers of mild steel and two layers of hard steel, wherein reference numerals 2 and 3 denote hard steel layers, and reference numerals 1 and 4 denote planes.
  • the layer of mild steel, reference numeral 5, represents the soft steel layer at the core.
  • Table 1 lists the mass percentages of the chemical elements in the protective steel sheets Examples A1 to A6 excellent in cold bending workability.
  • coiling temperature is 650-750 ° C
  • the quenching temperature is at least 50 ° C above the Ac3 temperature of the hard steel layer
  • the holding time is at least 3 mm / min ⁇ the thickness of the composite steel plate
  • the thickness unit is mm
  • ⁇ 50 ° C / s The temperature is cooled to room temperature, the tempering temperature is 150-230 ° C, and the temperature is maintained for 15-60 min.
  • Table 2 lists the thickness and interlayer design of the hard steel layer and the mild steel layer of the green sheets in the protective steel sheets Examples A1 to A6 excellent in cold bending workability.
  • the total thickness of the soft steel layer blanks of the surface layers of Examples A1 - A6 accounted for
  • the total thickness of the protective steel sheet blank is 8-15%
  • the thickness of the soft steel layer blank located in the core of the protective steel sheet accounts for 10-25% of the total thickness of the protective steel sheet blank.
  • the thickness of the finished steel sheet is between 2 and 20 mm. This design ensures that the soft steel layer in the surface layer is cold-deformed without cracking and the core soft steel layer has sufficient energy dissipation and intrusion impact. Change the direction of advancement, improve the protective effect, and apply it to the application of protective steel sheets of various specifications.
  • Table 3 lists the process parameters of the manufacturing method of the protective steel sheets A1-A6 excellent in cold bending workability.
  • the present invention also tests the mechanical properties of the hard steel layer and the mild steel layer of the protective steel sheets Examples A1 to A6 excellent in cold bending workability.
  • Table 4 lists the mechanical properties of the hard steel layer and the mild steel layer in Examples A1 to A6.
  • the hard steel layer of Example A1-A6 has a yield strength of more than 2000 MPa and a hardness of more than 600 HBW; and the soft steel layer located in the surface layer and the soft steel layer located at the core are extremely low carbon and The alloy design, so the hardness of the soft steel layer located in the core and the soft steel layer located in the surface layer are not more than 90Hv and 100Hv, respectively, and the elongation is above 40%, which has good plasticity and is particularly suitable for cold bending deformation.
  • FIG. 2 is a CCT curve of the soft steel layer of the steel sheet for protection of excellent cold bending property according to the present invention, and the curve can be analyzed to determine that the soft steel layer can obtain equiaxed ferrite in a quenched state.
  • FIGS. 3 and 4 respectively show the soft steel layer of the core of Example A1 and the matrix structure of the soft steel layer located in the surface layer, and it can be seen from FIGS. 3 and 4 that the matrix structure is equiaxed ferrite. .
  • Fig. 5 shows the matrix structure of the hard steel layer of Example A1, and it can be seen from Fig. 5 that the matrix structure is mainly martensite.
  • FIGS. 6 and 7 respectively show the soft steel layer of the core of Example A2 and the matrix structure of the soft steel layer located in the surface layer. It can be seen from FIGS. 6 and 7 that the matrix structure of the mild steel layer is equiaxed. Ferrite.
  • Fig. 8 shows the matrix structure of the hard steel layer of Example A2, and it can be seen from Fig. 8 that the matrix structure is mainly martensite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Laminated Bodies (AREA)

Abstract

一种冷弯加工性能优良的防护用钢板,包括:三层软钢层(1、4、5)和二层硬钢层(2、3),其中三层软钢层(1、4、5)和二层硬钢层(2、3)相互间隔设置,且防护用钢板的面层为软钢层(1、4、5),硬钢层(2、3)与软钢层(1、4、5)之间通过轧制复合实现原子结合;其中软钢层(1、4、5)的化学元素质量百分比为:C:0.001-0.01%,0<Si≤0.005%,Mn:0.05-0.15%,0<Al≤0.005%,Ti:0.01-0.10%,余量为Fe和其他不可避免的杂质。

Description

一种冷弯加工性能优良的防护用钢板及其制造方法 技术领域
本发明涉及一种钢板及其制造方法,尤其涉及一种防护用钢板及其制造方法。
背景技术
运钞车等防护器具或设备对关键部位均提出了防护要求,要求在一定距离内钢板承受高速冲击物冲击时不开裂或不贯穿。目前的防护材料包括单纯的高强度防护用钢板、陶瓷复合材料或高分子纤维材料。其中防护用钢板依靠高的弹性变形吸收冲击物的冲击功,在韧性不足时(特别是超高强度钢板)极易碎裂而失去防护功能;陶瓷材料具有极高的硬度,但韧性很差,在与冲击物接触时碎裂为更小的碎片从而吸收冲击能,通常需要与高分子纤维材料一起使用,后者韧性好,承受冲击物冲击时发生弹性变形而吸收冲击载荷,多用于防护背心的制作。
理论上,单纯使用足够厚的钢板能够满足不同条件下的防护要求,但过厚的钢板增加了重量,牺牲了机动性,同时增加能耗。目前,防护用钢板朝着更高强度、更薄厚度方向发展。
公开号为CN1814845A,公开日为2008年1月2日,名称为“一种1000MPa级高强度热轧防弹钢板及其制造方法”的中国专利文献公开了一种1000Mpa级高强度热轧防弹钢板,其成分是(重量百分比):C 0.17~0.21%、Si 1.5~2.2%、Mn 1.5~2.0%、P≤0.035%、S≤0.010%、Al 0.015~0.060%、N≤0.0060%、Nb 0.010~0.050%、可加入Ti 0.010~0.060%、Ca≤0.0050%,其余是Fe和不可避免的杂质。以及公开号为CN103993235A,公开日为2014年8月20日,名称为“一种高强度热轧防弹钢板的制造方法”的中国专利文献公开了一种高强度热轧防弹钢板的制造方法。所述防弹钢板的成分为:C:0.08~0.12%,Si:0.7~1.3%,Mn:1.30~1.8%,Al:0.01~0.06%,P≤0.02%,S≤0.004%,N≤0.004%,O≤0.015%,Gr:0.3~1.0%,Ti+Nb≤0.2%,B:0.0015-0.0025%,其余为Fe 和不可避免的杂质。这两个技术方案所公开的防护用钢板屈服强度均为1000MPa,难以满足当前的减薄防护要求。
公开号为CN102181795A,公开日为2011年9月14日,名称为“一种超高强度防弹钢板及其制造工艺”的中国专利文献公开了一种超高强度防弹钢板及其制造成形工艺,其化学成分按重量百分比计为:C0.30~0.5、Si0.40~0.60、Mn1.50~1.80、P≤0.025、S≤0.01、Cr+Ni+Mo≤2.5、Nb+V+Ti+B≤0.20,其余是Fe。这个技术方案所涉及的防弹钢板,C含量在0.30-0.50之间,具有约2000MPa的抗拉强度,虽然其并没有提及任何韧性指标,但是由于其硬度值甚至超过了600HB,因此过高的硬度使得钢板的韧性降低,在承受冲击物冲击时极易碎裂。
在确保防护用钢板的强度的前提下,为了降低钢板的厚度,并改善钢板的塑性,企业亟需获得一种冷弯加工性能优良的防护用钢板,以适应防护用钢板的推广应用。
发明内容
本发明的目的之一在于提供一种冷弯加工性能优良的防护用钢板,其通过轧制复合,因此能够实现原子间结合,从而使得各层之间具有很好的结合力;防护用钢板具有三层软钢层与两层硬钢层,起到改变冲击物前进方向的作用,位于面层的软钢层具有优良的塑性保证了延伸变形时不开裂,硬钢层在承受冲击物冲击时开裂为小的碎片,消耗冲击功,同时位于芯部的软钢层改变冲击物行进方向,增加冲击物前进阻力,从而具有更好的防护效果。
为了实现上述目的,本发明提出了一种冷弯加工性能优良的防护用钢板,包括:三层软钢层和二层硬钢层,其中三层软钢层和二层硬钢层相互间隔设置,且防护用钢板的面层为软钢层,所述硬钢层与软钢层之间通过轧制复合实现原子结合;其中,所述软钢层的化学元素质量百分比为:
C:0.001-0.01%,0<Si≤0.005%,Mn:0.05-0.15%,0<Al≤0.005%,Ti:0.01-0.10%,余量为Fe和其他不可避免的杂质。
在本发明所述的冷弯加工性能优良的防护用钢板的所述软钢层中,不可避免的杂质主要是P、S、N元素,其中可以控制P≤0.01%,S≤0.006%,N≤0.005%。
本发明所述的冷弯加工性能优良的防护用钢板的软钢层需要具有良好的 吸收动能能力及塑性变形能力,所以所述软钢层需要极低的屈服强度,为了有效降低屈服强度,提高延伸率,必须尽量降低合金元素的添加量、减少强化因素,而钢板一般通过固溶强化,析出强化,位错强化和晶界强化等手段提高屈服强度。位于芯部的软钢层与位于面层的软钢层采用同一成分设计,降低了生产难度,提高了生产效率。
本发明所述的软钢层中的各化学元素的设计原理为:
C通过固溶强化会使屈服强度升高,延伸率降低。根据实际的炼钢工艺,应尽可能降低其含量,因此,本发明所述的冷弯加工性能优良的防护用钢板的所述软钢层的C含量控制在0.001-0.01%之间。
Si为脱氧元素,也是固溶强化元素,使屈服强度升高,延伸率降低,所以要尽量降低Si的添加量。因此,本发明所述的冷弯加工性能优良的防护用钢板的所述软钢层的Si含量不超过0.005%。
Mn也是钢中常见的强化元素,通过固溶强化提高屈服强度,使延伸率降低。因此,本发明所述的冷弯加工性能优良的防护用钢板的所述软钢层的Mn含量控制在0.05-0.15%之间。
Al是脱氧必需的元素,但也会提高钢的强度。因此,本发明所述的冷弯加工性能优良的防护用钢板的所述软钢层中Al含量控制在0.005%以下。
Ti用来固定C、N原子以降低其对位错运动的阻碍作用。Ti在钢中可依次形成TiN→Ti4C2S2→TiS和TiC,消除钢中自由的C、N原子,从而降低屈服强度。同时TiC、TiN等颗粒的粗化使其失去了晶界钉扎效应,增大了晶粒尺寸,降低了晶界强化效果。但较多的Ti会降低钢板的延伸率。因此,本发明所述的冷弯加工性能优良的防护用钢板的所述软钢层的Ti含量控制在:0.01-0.10%。
进一步地,所述的冷弯加工性能优良的防护用钢板的所述软钢层的基体组织为等轴状铁素体。
更进一步地,所述的冷弯加工性能优良的防护用钢板的所述等轴状铁素体的晶粒尺寸为30-120μm。
进一步地,所述的冷弯加工性能优良的防护用钢板的所述软钢层的屈服强度为80-180MPa,所述软钢层的延伸率大于40%,硬度值小于110Hv。
在本技术方案中,由于采用极低的C-Si-Mn成分设计并通过Ti固定C、N 间隙原子,消除了C、N原子的固溶强化作用,并利用粗化的TiN、TiC颗粒获得较大的晶粒尺寸,从而使得所述的冷弯加工性能优良的防护用钢板的所述软钢层的基体组织即使在淬火状态下为等轴状铁素体,所述等轴状铁素体的晶体尺寸30-120μm,即使在淬火条件下所述软钢层的硬度值不超过110Hv。从而使得软钢层具有良好的塑性。
更进一步地,所述的冷弯加工性能优良的防护用钢板在其中位于芯部的软钢层的硬度值小于90Hv,位于面层的软钢层的硬度值小于110Hv。
在本技术方案中,防护用钢板在冷弯加工时,位于面层的软钢层由于优良的塑性提供充分的变形,起到防止钢板折弯时的内裂,而位于芯部的软钢层具有良好的吸收动能能力,使得所述硬钢层在承受冲击物冲击变形、开裂甚至脱离,其变形功、裂纹形成及扩展功、与位于芯部的软钢层脱离的层间结合能及碎片脱离动能等充分吸收,消耗了冲击物部分动能。优选地,位于芯部的软钢层的硬度略低于位于面层的软钢层的硬度值。
进一步地,在本发明所述的冷弯加工性能优良的防护用钢板中,所述硬钢层的化学元素质量百分比为:
C:0.40-0.50%,Si:0.1-0.3%,Mn:1.0-1.5%,Al:0.01-0.05%,Cr:0.1-0.3%,Ni:0.1-0.3%,Ti:0.01-0.03%,B:0.001-0.003%,Mo:0.05-0.5%,余量为Fe和其他不可避免的杂质。
在本发明所述的冷弯加工性能优良的防护用钢板的所述硬钢层中,不可避免的杂质主要是P、S、N元素,其中可以控制P≤0.015%,S≤0.005%,N≤0.005%。
上述方案中,所述的冷弯加工性能优良的防护用钢板的所述硬钢层中的各化学元素的设计原理为:
C是钢中最廉价的强化元素,但过高的C使得高温钢坯易在冷却过程中开裂,不利于钢坯的保存,增加了生产难度。因此,本发明所述的冷弯加工性能优良的防护用钢板的所述硬钢层的C含量限定为0.40-0.50%。
Si含量控制在0.1-0.3%,Si在钢中具有较高的固溶度,能够增加钢中铁素体体积分数,细化晶粒,因而有利于提高韧性,但含量过高将导致焊接性能下降.
Mn具有较强的固溶强化作用,同时显著降低钢的相变温度,细化钢的显 微组织,是重要的强韧化元素,但是Mn含量过多使淬透性增大,从而导致可焊性和焊接热影响区韧性恶化,所以将其含量控制在1.0-1.5%。
Al在炼钢过程中作为脱氧剂添加,同时微量的Al同时有利于细化晶粒,改善钢材的强韧性能。但过高的Al将使钢中铁素体脆性增加而导致钢韧性的降低,所以控制其含量0.01-0.05%。
Cr具有固溶强化效果,但是Cr是贵重合金元素。因此,本发明所述的冷弯加工性能优良的防护用钢板的所述硬钢层的Cr含量限定为0.1-0.3%。
Ni不仅可以提高钢板强度还可以改善钢板韧性,但是Ni是贵重合金元素。因此,本发明所述的冷弯加工性能优良的防护用钢板的所述硬钢层的Ni限定含量为0.1-0.3%。
添加0.01-0.03%Ti主要是抑制板坯再热过程中的奥氏体晶粒长大,同时在再结晶控轧过程中抑制铁素体晶粒长大,提高钢的韧性。
B具有良好的淬透性,从而提高钢板硬度,然而B含量过高对焊接不利。因此,本发明所述的冷弯加工性能优良的防护用钢板的所述硬钢层的B含量限定为0.001-0.003%
Mo具有良好的淬透性,可以提高钢板硬度,但Mo为贵重合金元素。因此,本发明所述的冷弯加工性能优良的防护用钢板的所述硬钢层的Mo限定含量为0.05-0.5%。
进一步地,所述的冷弯加工性能优良的防护用钢板的所述硬钢层的基体组织为马氏体。
进一步地,所述的冷弯加工性能优良的防护用钢板的硬钢层的屈服强度大于2000MPa,硬度大于600HBW。
在本技术方案中,所述的冷弯加工性能优良的防护用钢板的所述硬钢层采用较高的C含量并添加了提高淬透性的Mo、B元素,在热处理后可以使得基体组织为高强度的马氏体,屈服强度大于2000MPa,硬度大于600HBW。
本发明的另一目的还在于提供一种可以制造上述冷弯加工性能良好的防护用钢板的制造方法,该方法可以克服防护用钢板制造过程中的技术难度,从而生产出性能优良,更好的冷弯加工性能的防护用钢板,可以在高温下实现冶金结合,层间结合强度更高,防护效果更好。
为了达到上述发明目的,本发明还提出了一种冷弯加工性能良好的防护用 钢板的制造方法,其包括步骤:
(1)将硬钢层坯料和软钢层坯料组坯;
(2)真空焊接;
(3)复合轧制;
(4)轧后空冷或水冷;
(5)卷取;
(6)开卷、矫直和切板;
(7)进行淬火和回火热处理。
本技术方案中,由于硬钢层坯料和软钢层坯料的结合面上的氧化层与油污,因此硬钢层坯料和软钢层坯料在组坯前最好进行表面清理工作。表面清理方法可以采用钢丝刷或砂带进行,也可以采用直接酸洗的方法,也可以采用本领域内技术人员能够想到的其他方式进行表面清理。
由于防护用钢板在加热过程中会产生氧化,因此,在本技术方案中,硬钢层坯料和软钢层坯料周边进行层间焊接时,直接在真空室的真空状态下进行焊接,而不是采用抽真空的方法,从而降低了生产难度,有效防止了氧化。
进一步地,在所述步骤(1)中,位于面层的软钢层坯料的总厚度占防护用钢板坯料总厚度的8-15%,位于防护用钢板芯部的软钢层坯料的厚度占防护用钢板坯料总厚度的10-25%。
本技术方案中,位于面层的软钢层坯料的总厚度占防护用钢板坯料总厚度的8-15%,位于防护用钢板芯部的软钢层坯料厚度占防护用钢板坯料总厚度的10-25%,可以保证位于面层的软钢层冷弯变形不开裂及芯部软钢层具有充分的消能作用并使侵入的冲击物改变前进方向,提高防护效果。
进一步地,所述的冷弯加工性能优良的防护用钢板的制造方法在所述步骤(3)中,在1100~1200℃范围内加热,保温2-3h,然后复合轧制,控制终轧温度为850~900℃。
更进一步地,所述的冷弯加工性能优良的防护用钢板的制造方法在所述步骤(4)中,轧后空冷或水冷至650-750℃。
在本技术方案中,轧后根据成品厚度采取水冷或是空冷,一般较薄的钢板可以采取空冷。然后,水冷或空冷至650-750℃后卷取所述的复合防护用钢板进行开卷、矫直和切板。
进一步地,所述的冷弯加工性能优良的防护用钢板的制造方法在所述步骤(7)中的淬火步骤中,淬火温度为硬钢层的Ac3温度以上至少50℃,保温时间至少为3mm/min×复合钢板的厚度,厚度单位为mm,然后以≥50℃/s的速度冷却至室温。
将淬火温度温度控制为硬钢层的Ac3温度以上至少50℃,保温时间至少为3mm/min×复合钢板的厚度,厚度单位为mm,然后以≥50℃/s的速度冷却至室温,是因为:温度在Ac3以上时,钢基体中组织开始奥氏体化,超过Ac3的温度越高,奥氏体化的驱动力越高,则奥氏体化的速度越快,保温时间越短,但淬火加热温度过高增加能耗,提高生产成本。所以限定淬火温度在Ac3温度以上50℃,保温时间为钢板厚度的3倍。
更进一步地,所述的冷弯加工性能优良的防护用钢板的制造方法在所述步骤(7)中的回火步骤中,回火温度为150-230℃,保温时间15-60min。
本发明所述的冷弯加工性能优良的防护用钢板在150-230℃区间进行回火处理,以减缓、消除淬火应力,改善所述冷弯加工性能优良的防护用钢板的韧性。
本发明所述的冷弯加工性能优良的防护用钢板具有如下有益效果:
(1)本发明所述的防护用钢板采用软、硬钢层交叉设计,其中作为面层的软钢层具有优良的塑性变形能力,冷弯加工时不开裂;中间的硬钢层在承受冲击物冲击时变形、开裂甚至脱离,其变形功、裂纹形成及扩展功、与芯部的软钢层脱离的层间结合能及碎片脱离动能等充分吸收、消耗了冲击物部分动能,使冲击物失去前进能力;而芯部的软钢层塑性好,具有优良的变形能力,从而使得冲击物改变前进方向,增加冲击物的穿透厚度,从而能够进一步减轻冲击物的破坏。
(2)本发明所述的防护用钢板采用热轧复合轧制,层间金属在高温下实现冶金结合,层间结合强度高,不易分层。
(3)本发明所述的防护用钢板采用软硬层交叉设计,从而使得防护用钢板的塑性得以改善,具有更好的冷弯加工性能,增加了防护用钢板的应用范围。
(4)在本发明的优选方案中,位于面层的软钢层坯料厚度占防护用钢板坯料总厚度的8-15%,位于芯部的软钢层坯料厚度占防护用钢板坯料总厚度10-25%,从而使得该防护用钢板一方面具有良好的塑性变形能力,冷弯加工不 开裂;另一方面可以保证冲击物侵入时使冲击物改变方向,降低冲击物的破坏能力和危险程度,提高防护用钢板的防护能力。
(5)本发明所述的制造方法采用了真空焊接工艺,避免了常规焊接后的抽真空过程,从而具有更好的密封效果。
(6)本发明所述的制造方法在组坯后采用了与普通钢坯一样的常规轧制工艺,从而降低了生产难度,提高了该制造工艺的适用性。
应理解,在某些优选的实施方案中,本文所述的冲击物是子弹或弹丸。在某些实施方案中,本文所述的防护效果或防护能力为防弹效果或防弹能力。在某些优选的实施方案中,本发明的防护用钢板是防弹钢板。
附图说明
图1为本发明所述的防护用钢板的结构示意图。
图2为本发明所述的冷弯加工性能优良的防护用钢板的所述软钢层的CCT曲线(连续冷却转变曲线)。
图3为实施例A1的位于芯部的软钢层的金相组织照片。
图4为实施例A1的位于面层的软钢层的金相组织照片。
图5为实施例A1的硬钢层的金相组织照片。
图6为实施例A2的位于芯部的软钢层的金相组织照片。
图7为实施例A2的位于面层的软钢层的金相组织照片。
图8为实施例A2的硬钢层的金相组织照片。
具体实施方式
下面将结合附图说明和具体的实施例对本发明所述冷弯加工性能优良的防护用钢板及其制造方法做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。
如图1所示,本发明所述的防护用钢板为五层结构,其具有三层软钢层和两层硬钢层,其中标号2、3表示硬钢层,标号1和4表示位于面层的软钢层,标号5表示位于芯部的软钢层。
表1列出了冷弯加工性能优良的防护用钢板实施例A1-A6中的化学元素的质量百分比。
表1.(wt%,余量为Fe和除了P、S、N以外其他不可避免的杂质)
Figure PCTCN2017081952-appb-000001
上述实施例中的冷弯加工性能优良的防护用钢板采用以下步骤制得:
(1)按表1所列的成分冶炼、浇铸,制成硬钢层坯料和软钢层坯料;
(2)将硬钢层坯料和软钢层坯料组坯;
(3)在真空室真空焊接;
(4)复合轧制;在1100~1200℃范围内加热,保温2-3h,然后复合轧制,控制终轧温度为850~900℃;
(5)轧后空冷或水冷至650-750℃;
(6)卷取,卷取温度为650-750℃;
(7)开卷、矫直和切板;
(8)进行淬火和回火热处理;淬火温度为硬钢层的Ac3温度以上至少50℃,保温时间至少为3mm/min×复合钢板的厚度,厚度单位为mm,然后以≥50℃/s的速度冷却至室温,回火温度为150-230℃,保温15-60min。
表2列出了冷弯加工性能优良的防护用钢板实施例A1-A6中组坯的硬钢层和软钢层的厚度和夹层设计。
表2
Figure PCTCN2017081952-appb-000002
从表2中可以看出,实施例A1-A6的位于面层的软钢层坯料的总厚度占 防护用钢板坯料总厚度的8-15%,位于防护用钢板芯部的软钢层坯料厚度占防护用钢板坯料总厚度的10-25%。防护用钢板的成品厚度在2-20mm之间,这样的设计保证所述的位于面层的软钢层冷弯变形不开裂及芯部软钢层具有充分的消能作用并使侵入的冲击物改变前进方向,提高防护效果,并且应用于各规格的防护用钢板应用需求。
表3列出了冷弯加工性能优良的防护用钢板A1-A6制造方法的工艺参数。
表3
Figure PCTCN2017081952-appb-000003
本发明还对冷弯加工性能优良的防护用钢板实施例A1-A6的硬钢层和软钢层进行了力学性能测定。表4列出了实施例A1-A6中的硬钢层和软钢层的力学性能参数。
表4
Figure PCTCN2017081952-appb-000004
Figure PCTCN2017081952-appb-000005
从表4中可以看出,实施例A1-A6的硬钢层屈服强度在2000MPa以上,硬度超过600HBW;而位于面层的软钢层及位于芯部的软钢层由于采用了极低碳及合金设计,因此位于芯部的软钢层以及位于面层的软钢层的硬度也分别不超过90Hv和100Hv,同时延伸率在40%以上,具有良好的塑性,特别适合冷弯变形。
图2为本发明所述的冷弯加工性能优良的防护用钢板的所述软钢层的CCT曲线,通过该曲线可以分析确定软钢层在淬火状态下可获得等轴状铁素体。
图3和图4分别显示了实施例A1的位于芯部的软钢层和位于面层的软钢层的基体组织,由图3和图4可看出其基体组织为等轴状铁素体。
图5显示了实施例A1的硬钢层的基体组织,由图5可看出其基体组织主要为马氏体。
图6和图7分别显示了实施例A2的位于芯部的软钢层和位于面层的软钢层的基体组织,由图6和图7可看出软钢层的基体组织为等轴状铁素体。
图8显示了实施例A2的硬钢层的基体组织,由图8可看出其基体组织主要为马氏体。
需要注意的是,以上列举的仅为本发明的具体实施例,显然本发明不限于以上实施例,随之有着许多的类似变化。本领域的技术人员如果从本发明公开的内容直接导出或联想到的所有变形,均应属于本发明的保护范围。

Claims (14)

  1. 一种冷弯加工性能优良的防护用钢板,其特征在于,包括:三层软钢层和二层硬钢层,其中三层软钢层和二层硬钢层相互间隔设置,且防护用钢板的面层为软钢层,所述硬钢层与软钢层之间通过轧制复合实现原子结合;其中,所述软钢层的化学元素质量百分比为:
    C:0.001-0.01%,0<Si≤0.005%,Mn:0.05-0.15%,0<Al≤0.005%,Ti:0.01-0.10%,余量为Fe和其他不可避免的杂质。
  2. 如权利要求1所述的防护用钢板,其特征在于,所述软钢层的基体组织为等轴状铁素体。
  3. 如权利要求2所述的防护用钢板,其特征在于,所述等轴状铁素体的晶粒尺寸为30-120μm。
  4. 如权利要求3所述的防护用钢板,其特征在于,所述软钢层的屈服强度为80-180MPa,所述软钢层的延伸率大于40%,硬度值小于110Hv。
  5. 如权利要求4所述的防护用钢板,其特征在于,其中位于芯部的软钢层的硬度值小于90Hv,位于面层的软钢层的硬度值小于110Hv。
  6. 如权利要求1-5中任意一项所述的防护用钢板,其特征在于,所述硬钢层的化学元素质量百分比为:
    C:0.40-0.50%,Si:0.1-0.3%,Mn:1.0-1.5%,Al:0.01-0.05%,Cr:0.1-0.3%,Ni:0.1-0.3%,Ti:0.01-0.03%,B:0.001-0.003%,Mo:0.05-0.5%,余量为Fe和其他不可避免的杂质。
  7. 如权利要求6所述的防护用钢板,其特征在于,所述硬钢层的基体组织为马氏体。
  8. 如权利要求7所述的防护用钢板,其特征在于,所述硬钢层的屈服强度大于2000MPa,硬度大于600HBW。
  9. 如权利要求1-8中任意一项所述的防护用钢板的制造方法,其特征在于,包括步骤:
    (1)将硬钢层坯料和软钢层坯料组坯;
    (2)真空焊接;
    (3)复合轧制;
    (4)轧后空冷或水冷;
    (5)卷取;
    (6)开卷、矫直和切板;
    (7)进行淬火和回火热处理。
  10. 如权利要求9所述的防护用钢板的制造方法,其特征在于,在所述步骤(1)中,位于面层的软钢层坯料的总厚度占防护用钢板坯料总厚度的8-15%,位于防护用钢板芯部的软钢层坯料的厚度占防护用钢板坯料总厚度的10-25%。
  11. 如权利要求9所述的防护用钢板的制造方法,其特征在于,在所述步骤(3)中,在1100~1200℃范围内加热,保温2-3h,然后复合轧制,控制终轧温度为850~900℃。
  12. 如权利要求9所述的防护用钢板的制造方法,其特征在于,在所述步骤(4)中,轧后空冷或水冷至650-750℃。
  13. 如权利要求9所述的防护用钢板的制造方法,其特征在于,在所述步骤(7)中的淬火步骤中,淬火温度为硬钢层的Ac3温度以上至少50℃,保温时间至少为3mm/min×复合钢板的厚度,厚度单位为mm,然后以≥50℃/s的速度冷却至室温。
  14. 如权利要求9或13所述的防护用钢板的制造方法,其特征在于,在所述步骤(7)中的回火步骤中,回火温度为150-230℃,保温15-60min。
PCT/CN2017/081952 2016-04-26 2017-04-26 一种冷弯加工性能优良的防护用钢板及其制造方法 WO2017186112A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112017002175.8T DE112017002175B4 (de) 2016-04-26 2017-04-26 Schutzstahlblech mit leistungsstarken Kaltbiegeeigenschaften und dessen Fertigungsverfahren
US16/096,117 US10894388B2 (en) 2016-04-26 2017-04-26 Protective steel plate with excellent cold-bend processing performance and method for manufacturing same
JP2018555895A JP6743179B2 (ja) 2016-04-26 2017-04-26 冷間曲げ加工性能が優れた防護用鋼板及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610265666.9 2016-04-26
CN201610265666.9A CN107310219B (zh) 2016-04-26 2016-04-26 一种冷弯加工性能优良的防弹钢板及其制造方法

Publications (1)

Publication Number Publication Date
WO2017186112A1 true WO2017186112A1 (zh) 2017-11-02

Family

ID=60160759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081952 WO2017186112A1 (zh) 2016-04-26 2017-04-26 一种冷弯加工性能优良的防护用钢板及其制造方法

Country Status (5)

Country Link
US (1) US10894388B2 (zh)
JP (1) JP6743179B2 (zh)
CN (1) CN107310219B (zh)
DE (1) DE112017002175B4 (zh)
WO (1) WO2017186112A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018210574A1 (de) * 2017-05-16 2018-11-22 Thyssenkrupp Steel Europe Ag DREILAGIGER VERSCHLEIßSTAHL ODER SICHERHEITSSTAHL, VERFAHREN ZUR HERSTELLUNG EINER KOMPONENTE UND VERWENDUNG

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0366646A1 (de) * 1988-10-28 1990-05-02 VOEST-ALPINE STAHL LINZ Gesellschaft m.b.H. Verfahren zum Herstellen eines plattierten Formkörpers
US20020094406A1 (en) * 2001-01-15 2002-07-18 Michael Cohen Laminated armor
CN101486043A (zh) * 2009-01-15 2009-07-22 西安建筑科技大学 一种多层结构复合钢板的制备方法
RU2427781C1 (ru) * 2010-01-29 2011-08-27 Закрытое акционерное общество "Научно-производственное объединение специальных материалов" Броня стальная комбинированная
CN105499269A (zh) * 2015-12-14 2016-04-20 宝山钢铁股份有限公司 一种双重硬度复合钢板及其制造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3559276A (en) * 1968-12-30 1971-02-02 Texas Instruments Inc Method for making a metal laminate
US4364300A (en) * 1978-06-26 1982-12-21 The United States Of America As Represented By The Secretary Of The Army Composite cored combat vehicle armor
DE3340031C2 (de) * 1983-11-05 1985-11-21 Thyssen Stahl AG, 4100 Duisburg Panzerblech und Verfahren zu seiner Herstellung
JPH0663699A (ja) 1992-08-12 1994-03-08 Nippon Steel Corp 減衰性能の優れた鋼板の製造方法
JP2681591B2 (ja) 1993-03-08 1997-11-26 新日本製鐵株式会社 耐食性と低温靱性に優れた複合鋼板の製造法
US5853903A (en) 1996-05-07 1998-12-29 Nkk Corporation Steel sheet for excellent panel appearance and dent resistance after panel-forming
JPH1060544A (ja) 1996-08-13 1998-03-03 Kobe Steel Ltd 高密度エネルギーの照射による薄鋼板の焼入れ強化方法
JP3411217B2 (ja) 1998-05-29 2003-05-26 新日本製鐵株式会社 母材および溶接部靭性の優れた降伏比の高い低降伏点鋼
JP2002256390A (ja) 2001-02-27 2002-09-11 Sumitomo Metal Ind Ltd 高成形性鋼板およびその製造方法
JP2003239037A (ja) 2002-02-19 2003-08-27 Nippon Steel Corp 疲労強度に優れた溶接構造用複層鋼材、その製造方法及び溶接鋼構造物
CN100359034C (zh) 2005-02-06 2008-01-02 宝山钢铁股份有限公司 一种1000Mpa级高强度热轧防弹钢板及其制造方法
ES2583143T3 (es) * 2006-07-27 2016-09-19 The University Of Tokyo Acero de varias capas y procedimiento de producción de acero de varias capas
DE102007022453B4 (de) * 2007-05-10 2020-02-06 Thyssenkrupp Steel Europe Ag Mehrschichtiges Verbundteil und aus diesem hergestelltes Bauteil
RU2481417C2 (ru) 2007-08-01 2013-05-10 ЭйТиАй ПРОПЕРТИЗ, ИНК. Высокотвердые, с высокой ударной вязкостью сплавы на основе железа и способы их изготовления
CN201158183Y (zh) * 2008-01-25 2008-12-03 李光明 一种刀剑剪专用的多层不锈钢材板结构
CN101514426B (zh) * 2008-02-21 2011-05-11 宝山钢铁股份有限公司 屈服强度100MPa级建筑抗震用低屈服点钢及其生产方法
JP4960289B2 (ja) 2008-03-27 2012-06-27 国立大学法人 東京大学 複層鋼
CN102181795B (zh) 2011-05-16 2013-01-09 马鸣图 一种超高强度防弹钢板及其制造工艺
JP5610094B2 (ja) * 2011-12-27 2014-10-22 Jfeスチール株式会社 熱延鋼板およびその製造方法
CN103205634B (zh) * 2013-03-28 2016-06-01 宝山钢铁股份有限公司 一种低合金高硬度耐磨钢板及其制造方法
EP2886332B1 (de) 2013-12-20 2018-11-21 ThyssenKrupp Steel Europe AG Stahlflachprodukt, und verfahren zur herstellung eines bauteils für eine fahrzeugkarosserie und einer karosserie für ein kraftfahrzeug.
CN103993235B (zh) 2014-05-19 2016-04-27 首钢总公司 一种高强度热轧防弹钢板的制造方法
DE102014114365A1 (de) * 2014-10-02 2016-04-07 Thyssenkrupp Steel Europe Ag Mehrschichtiges Stahlflachprodukt und daraus hergestelltes Bauteil
CN105088090A (zh) * 2015-08-28 2015-11-25 宝山钢铁股份有限公司 一种抗拉强度2000MPa级的防弹钢板及其制造方法
CN105499296B (zh) 2015-12-31 2018-09-28 太原重工股份有限公司 一种挤压筒锁紧装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0366646A1 (de) * 1988-10-28 1990-05-02 VOEST-ALPINE STAHL LINZ Gesellschaft m.b.H. Verfahren zum Herstellen eines plattierten Formkörpers
US20020094406A1 (en) * 2001-01-15 2002-07-18 Michael Cohen Laminated armor
CN101486043A (zh) * 2009-01-15 2009-07-22 西安建筑科技大学 一种多层结构复合钢板的制备方法
RU2427781C1 (ru) * 2010-01-29 2011-08-27 Закрытое акционерное общество "Научно-производственное объединение специальных материалов" Броня стальная комбинированная
CN105499269A (zh) * 2015-12-14 2016-04-20 宝山钢铁股份有限公司 一种双重硬度复合钢板及其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018210574A1 (de) * 2017-05-16 2018-11-22 Thyssenkrupp Steel Europe Ag DREILAGIGER VERSCHLEIßSTAHL ODER SICHERHEITSSTAHL, VERFAHREN ZUR HERSTELLUNG EINER KOMPONENTE UND VERWENDUNG

Also Published As

Publication number Publication date
JP6743179B2 (ja) 2020-08-19
DE112017002175B4 (de) 2020-10-01
CN107310219B (zh) 2019-03-29
CN107310219A (zh) 2017-11-03
JP2019519674A (ja) 2019-07-11
US20190134947A1 (en) 2019-05-09
DE112017002175T5 (de) 2019-01-10
US10894388B2 (en) 2021-01-19

Similar Documents

Publication Publication Date Title
WO2017186113A1 (zh) 一种复合防护用钢板及其制造方法
JP4288138B2 (ja) 熱間成形加工用鋼板
CN113106338B (zh) 一种超高强度高塑性热冲压成形钢的制备方法
WO2016082669A1 (zh) 一种低合金高强高韧钢板及其制造方法
TWI399442B (zh) 加工性優異之高強度熔融鍍鋅鋼板及其製造方法
JP6597374B2 (ja) 高強度鋼板
JP5369714B2 (ja) 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
CN104388821B (zh) TiC粒子增强型复相组织高塑性耐磨钢板及制造方法
JP5369713B2 (ja) 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
CN113106339B (zh) 一种超高强高塑性抗高温氧化热冲压成形钢的制备方法
JP2017145469A (ja) 高強度鋼板の製造方法
JP2010174280A (ja) 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
JP2010174283A (ja) 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
JP6569319B2 (ja) 耐摩耗鋼板およびその製造方法
CN113846266A (zh) 一种高塑韧性屈服强度1300MPa级调质钢板的生产方法
JP2616350B2 (ja) 超高張力冷延鋼板およびその製造方法
CN109930069B (zh) 一种兼具超高强度高韧性的轻型钢板的制造方法
CN108728728A (zh) 一种具有极低屈强比的高锰钢及其制造方法
WO2017186112A1 (zh) 一种冷弯加工性能优良的防护用钢板及其制造方法
JP4317506B2 (ja) 高強度部品の製造方法
KR101518588B1 (ko) 항복강도 및 항복비가 우수한 석출강화형 강판 및 그 제조방법
CN116121644A (zh) 一种高韧性矿山圆盘锯片钢板及其制造方法
JP2006082099A (ja) 高強度部品の製造方法および高強度部品
CN115478210B (zh) 一种1500MPa级高强度自强韧防护钢板及其制造方法
JP5633426B2 (ja) 熱処理用鋼材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018555895

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17788764

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17788764

Country of ref document: EP

Kind code of ref document: A1