WO2017185571A1 - 一种具有高熔化率的玻璃池窑 - Google Patents

一种具有高熔化率的玻璃池窑 Download PDF

Info

Publication number
WO2017185571A1
WO2017185571A1 PCT/CN2016/096473 CN2016096473W WO2017185571A1 WO 2017185571 A1 WO2017185571 A1 WO 2017185571A1 CN 2016096473 W CN2016096473 W CN 2016096473W WO 2017185571 A1 WO2017185571 A1 WO 2017185571A1
Authority
WO
WIPO (PCT)
Prior art keywords
kiln
melting rate
glass
high melting
pure oxygen
Prior art date
Application number
PCT/CN2016/096473
Other languages
English (en)
French (fr)
Inventor
方长应
俞力锋
沈培军
赵仙良
严育仓
翁晓东
张毓强
曹国荣
Original Assignee
巨石集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 巨石集团有限公司 filed Critical 巨石集团有限公司
Priority to ES16900080T priority Critical patent/ES2871257T3/es
Priority to US16/088,701 priority patent/US20200299167A1/en
Priority to BR112018070039-8A priority patent/BR112018070039B1/pt
Priority to PL16900080T priority patent/PL3441370T3/pl
Priority to EP16900080.9A priority patent/EP3441370B1/en
Priority to JP2018551144A priority patent/JP2019509971A/ja
Publication of WO2017185571A1 publication Critical patent/WO2017185571A1/zh
Priority to US18/167,677 priority patent/US20230183118A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • C03B5/03Tank furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/193Stirring devices; Homogenisation using gas, e.g. bubblers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/2353Heating the glass by combustion with pure oxygen or oxygen-enriched air, e.g. using oxy-fuel burners or oxygen lances
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2211/00Heating processes for glass melting in glass melting furnaces
    • C03B2211/20Submerged gas heating
    • C03B2211/24Submerged gas heating by direct contact of non-combusting hot gas in the melt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Definitions

  • the present invention relates to glass kiln technology, and more particularly to a glass kiln having a high melting rate.
  • the domestic unit kiln aspect ratio is generally controlled between 3-3.3, and its melting rate (melting rate) Refers to the amount of glass melted per square meter of melting area per day of the unit kiln.
  • the glass flow rate is the actual discharge amount of the kiln.
  • the unit is ton.
  • the unit of melting rate is ton/day* square meter, which reflects the unit kiln technology.
  • An index of the level is generally below 2.4 tons / day * square meters, due to the backwardness of its equipment and combustion process, and the kiln area is too large, the bottom temperature is high, so there is a low melting rate, high investment, high energy consumption, operation Shortcomings such as low efficiency and low job yield.
  • the present invention provides a glass cell kiln having a high melting rate.
  • the ratio of the length to the width of the glass kiln having a high melting rate provided by the present invention is between 2.3 and 2.8.
  • the depth of the pool kiln is between 1 and 1.2 meters.
  • the glass cell kiln having a high melting rate is provided with a pure oxygen burner, and the bottom of the glass cell kiln having a high melting rate is provided with an electrode.
  • the pure oxygen burner is installed in one of the following manners or in a mixture of one or more of the following: the installation is in a dome, the horizontal installation is on a chest wall, and the installation is on a chest wall.
  • the number of pure oxygen burners is 5-16.
  • the glass cell kiln having a high melting rate is provided with a plurality of rows of pure oxygen burners, and the number of pure oxygen burners in the row at the intermediate position is smaller than the number of pure oxygen burners in the row at the edge position.
  • the pure oxygen burner is arranged in a plurality of rows, and the pure oxygen burners in the adjacent rows are arranged in a cross.
  • the electrodes are arranged in rows 4 to 8 at the bottom, and each row has 4 to 6 in total.
  • the bottom of the glass kiln with high melting rate is provided with kiln and bubbling, and the number of kiln is one or more, and the bubbling is arranged in front of or behind or above the kiln.
  • the invention reduces the kiln area by optimizing the kiln area, and reduces the heat loss; by designing a reasonable glass liquid pool depth, improving the kiln bottom temperature and ensuring the quality of the glass liquid; setting the pure oxygen burner and the auxiliary electric power
  • the fusion provides sufficient energy protection, improves the melting capacity and heating efficiency of the kiln, and greatly reduces the energy consumption and carbon dioxide emissions; the kiln at the bottom of the kiln increases the outlet temperature of the molten glass and reduces energy consumption.
  • the kiln bottom temperature in the electrode area is lowered, the life of the kiln bottom is prolonged, and the auxiliary electric energy ratio is improved.
  • the design of the kiln bottom bubbling improves the reflow strength of the molten glass, improves the melting capacity and the glass. Liquid quality.
  • the present invention can effectively increase the melting rate of the kiln and reduce the energy consumption.
  • Figure 1 is a plan view showing the structure of a glass kiln having a high melting rate in a first embodiment
  • Figure 2 is a cross-sectional structural view of a glass cell kiln having a high melting rate in a first embodiment
  • Figure 3 is a plan view showing the structure of a glass kiln having a high melting rate in the second embodiment
  • Figure 4 is a cross-sectional structural view of a glass kiln having a high melting rate in a third embodiment
  • Figure 5 is a cross-sectional structural view of a glass kiln having a high melting rate in a fourth embodiment
  • Figure 6 is a plan view showing the structure of a glass kiln having a high melting rate in a fifth embodiment
  • Figure 7 is a cross-sectional structural view of a glass kiln having a high melting rate in a fifth embodiment
  • Figure 8 is a cross-sectional structural view of a glass cell kiln having a high melting rate in a sixth embodiment.
  • the ratio of the length to the width of the glass kiln having a high melting rate in the present invention is between 2.3 and 2.8.
  • a large number of pool kiln aspect ratios are about 3, and the energy consumption of the kiln is substantially above 1000 kcal/kg.
  • Experimental data shows that the aspect ratio of the kiln in the present invention is between 2.3 and 2.8, which is high.
  • the melting rate of the kiln energy consumption is below 1000 kcal / kg, and even below 900K kcal / kg.
  • the arrangement of the electric fluxing electrode is optimized to optimize the arrangement, so that the current is in a better range and the required power can be achieved.
  • the power will be higher, that is, the ratio of the actual power that can be achieved to the installed power will be higher.
  • the depth of the pool kiln is between 1 and 1.2 meters. In the prior art, the depth of a large number of pool kiln is more than 1.2 meters, and the energy consumption of the kiln is more than 1100 kcal/kg. When the depth of the pool of the prior art pool kiln is less than 1 meter, the depth of the pool is too shallow. The bottom temperature is high, the proportion of electric fluxing is relatively low, and the total energy consumption ratio of electric fluxing below 1 meter is less than 17%, while in the present invention, the depth of the pool is between 1 and 1.2 meters. The total energy consumption ratio is above 20%.
  • a glass cell kiln having a high melting rate is provided with a pure oxygen burner, and a bottom of the glass cell kiln having a high melting rate is provided with electrodes.
  • a pure oxygen burner is one of the following ways or one or more of the following: the installation is in a dome, the horizontal installation is on the chest wall, and the tilting is on the chest wall.
  • the number of pure oxygen burners is 5-16.
  • the kiln is provided with a plurality of rows of pure oxygen burners, and the number of pure oxygen burners in the row at the intermediate position is smaller than the number of pure oxygen burners in the row at the edge position.
  • the pure oxygen burner is arranged in multiple rows, and the pure oxygen burners in the adjacent rows are arranged crosswise.
  • the electrodes are arranged in the bottom row of 4 to 8 rows, and each row has 4 to 6 totals.
  • the bottom of the glass kiln with high melting rate is provided with kiln and bubbling, and the number of kiln is one or more, and the bubbling is arranged in front of or behind or above the kiln.
  • the invention reduces the kiln area by optimizing the kiln area, and reduces the heat loss; by designing a reasonable glass liquid pool depth, improving the kiln bottom temperature and ensuring the quality of the glass liquid; setting the pure oxygen burner and the auxiliary electric power
  • the fusion provides sufficient energy protection, improves the melting capacity and heating efficiency of the kiln, and greatly reduces the energy consumption and carbon dioxide emissions; the kiln at the bottom of the kiln increases the outlet temperature of the molten glass and reduces energy consumption.
  • the kiln bottom temperature in the electrode area is lowered, the life of the kiln bottom is prolonged, and the auxiliary electric energy ratio is improved.
  • the design of the kiln bottom bubbling improves the reflow strength of the molten glass, improves the melting capacity and the glass. Liquid quality.
  • the present invention can effectively increase the melting rate of the kiln and reduce the energy consumption.
  • a horizontal pure oxygen burner is provided in this embodiment.
  • the high melting rate pool kiln includes a flue 1, a feeder 2, a melting portion and a main passage, wherein the flue is arranged on the back wall of the kiln, where L represents the length of the kiln and W represents the pool.
  • Kiln width, high melting rate The kiln's aspect ratio L/W is 2.32, the melting rate is 2.97 tons / day * square meter, and the feed port ear pool is arranged on both sides of the kiln.
  • the present embodiment includes a horizontal pure oxygen burner 3, a fluid hole 4, a bottom kiln 5, a bubble 6 and an electrode 7, wherein the pure oxygen burner 3 is provided with 5 pairs, and the arrangement is horizontally disposed on both sides of the chest wall.
  • the pure oxygen burner 3 is provided with 5 pairs, and the arrangement is horizontally disposed on both sides of the chest wall.
  • On the bottom there are 5 rows of electrodes 7 at the bottom of the kiln, and 5 rows are arranged in each row; the kiln 5 is arranged in front and rear of the electrode 7, and the bubbling 6 is arranged behind the kiln.
  • the serial number 8 is the glass liquid surface line
  • H is the glass liquid depth of the pool kiln. The depth of the glass kiln in the specific embodiment is 1.2 m.
  • a tilted pure oxygen burner is provided in this embodiment.
  • the aspect ratio of the high melting rate kiln is L/W is 2.36, and the melting rate is 2.76 ton / day * square meter, and the structural arrangement is the same as that of the specific embodiment 1.
  • the point is that the pure oxygen burners are tilted on both sides of the chest wall.
  • a pure oxygen burner located at the dome is referred to as a dome-type pure oxygen burner 11.
  • the structure of the high-melting-rate kiln in the present embodiment is different from the high-melting-rate kiln in the first embodiment in that it does not include a pure oxygen burner disposed on the chest wall, only Includes a pure oxygen burner placed on the dome.
  • the dome pure oxygen burner 11 is provided with three, arranged on the kiln, and the bottom of the kiln is provided with four rows of electrodes 7, and the first row is provided with four, and the second to fourth rows are arranged in each row. 6; the kiln 5 is arranged before and after the electrode 7, and the bubbling 6 is arranged on the kiln.
  • a horizontal pure oxygen burner and a slanted pure oxygen burner are provided in this embodiment.
  • the aspect ratio of the high melting rate kiln in this embodiment is L/W of 2.67 and the melting rate is 2.8 ton / day * square meter.
  • the structural arrangement is the same as that of the specific embodiment 1, except that a part of the pure oxygen burner is disposed horizontally on one side of the chest wall, and another part of the pure oxygen burner is disposed on the other side of the chest wall in an inclined manner.
  • the number of pure oxygen burners set in the horizontal direction and the number of pure oxygen burners in the inclined setting are the same.
  • a horizontal pure oxygen burner and a dome pure oxygen burner are provided in this embodiment.
  • the present embodiment includes a pure oxygen burner 3, a fluid hole 4, a bottom kiln 5, a bubble 6, an electrode 7, and a dome pure oxygen burner 11.
  • the number of dome-type pure oxygen burners 11 is eight, which are arranged on the kiln raft.
  • Two pure oxygen burners 3 are arranged horizontally on both sides of the chest wall, and there are 6 rows of electrodes at the bottom, and there are 5 rows in each row.
  • the kiln 5 is arranged in front of and behind the electrode 7, and the kiln 5 has a bubble 6 behind it.
  • the aspect ratio of the high melting rate kiln is L/W of 2.34 and the melting rate is 3.2 ton / day * square meter.
  • a horizontal pure oxygen burner a slanted pure oxygen burner, and a dome pure oxygen burner are provided.
  • the present embodiment includes a pure oxygen burner horizontally disposed on one side of the chest wall, a pure oxygen burner disposed obliquely on the other side of the chest wall, and a pure oxygen burner disposed on the dome. Also includes Fluid hole, bottom kiln, bubbling, electrode.
  • the aspect ratio of the high melting rate kiln is L/W of 2.7 and the melting rate is 3 ton / day * square meter.
  • the invention reduces the kiln area by optimizing the kiln area, reduces the heat loss, and can effectively improve the melting rate of the kiln and reduce the energy consumption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

一种具有高熔化率的玻璃池窑,此玻璃池窑的长度与宽度的比值为2.3~2.8之间。该池窑通过缩小窑炉面积,优化窑炉的长宽比,减少了热量的散失;通过设计合理的玻璃液池深,改善窑炉底部温度和保证玻璃液品质;设置纯氧燃烧器(3)和电极(7)提供足够的能量保障,提高池窑的熔化能力与加热效率,并大大的降低了能耗和二氧化碳的排放量;窑底布置的窑坎(5)提高了玻璃液的出口温度,降低了能耗,同时降低了电极区的窑底温度,延长了窑炉底部的寿命,并且为辅助电能比例的提高提供了保障;窑底鼓泡(6)的设计,提升了玻璃液的回流强度,提高了熔制能力和玻璃液质量。

Description

一种具有高熔化率的玻璃池窑
本申请要求在2016年04月27日提交中国专利局、申请号为201610272378.6、发明名称为“一种具有高熔化率的玻璃池窑”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及玻璃池窑技术,尤其涉及一种具有高熔化率的玻璃池窑。
背景技术
目前,随着能源的紧缺,玻璃池窑等高能耗的热工设备,成本也越来越高;现阶段国内的单元窑长宽比一般控制在3-3.3之间,其熔化率(熔化率指的是单元窑每天每平方米的熔化面积熔化的玻璃量,玻璃流量为窑炉的实际出料量,单位为吨,熔化率的单位为吨/天*平方米,它是反映单元窑技术水平的一个指数)普遍在2.4吨/天*平方米以下,由于其装备及燃烧工艺的落后,且窑炉面积过大、底部温度高,因此存在熔化率低,投资高,能耗高,作业效率和作业成品率低等缺点。
因此,针对以上存在的问题,亟需设计提供一种具有高熔化率的玻璃池窑,解决现有池窑熔化率低,能耗高等缺点。
发明内容
为解决上述技术问题,本发明提供了一种具有高熔化率的玻璃池窑。
本发明提供的具有高熔化率的玻璃池窑的长度与宽度的比值为2.3~2.8之间。
上述具有高熔化率的玻璃池窑还可以具有以下特点:
所述池窑的深度为1~1.2米之间。
上述具有高熔化率的玻璃池窑还可以具有以下特点:
所述具有高熔化率的玻璃池窑设置有纯氧燃烧器,并且所述具有高熔化率的玻璃池窑的底部设置有电极。
上述具有高熔化率的玻璃池窑还可以具有以下特点:
所述纯氧燃烧器以下方式中的一种安装或以下方式中一种以上混合安装:安装在于碹顶、水平安装在于胸墙上、倾斜安装在于胸墙上。
上述具有高熔化率的玻璃池窑还可以具有以下特点:
所述纯氧燃烧器数量为5~16支。
上述具有高熔化率的玻璃池窑还可以具有以下特点:
所述具有高熔化率的玻璃池窑设置有多排纯氧燃烧器,位于中间位置的排的纯氧燃烧器的个数小于位于边缘位置的排的纯氧燃烧器的个数。
上述具有高熔化率的玻璃池窑还可以具有以下特点:
所述纯氧燃烧器设置为多排,相邻排中的纯氧燃烧器交叉设置。
上述具有高熔化率的玻璃池窑还可以具有以下特点:
所述电极在所述底部设置为4~8排,每排共4~6个。
上述具有高熔化率的玻璃池窑还可以具有以下特点:
所述具有高熔化率的玻璃池窑的底部设置有窑坎和鼓泡,窑坎的数量为一个或多个,鼓泡设置在窑坎的前面或后面或上面。
本发明通过缩小窑炉面积,优化窑炉的长宽比,减少了热量的散失;通过设计合理的玻璃液池深,改善窑炉底部温度和保证玻璃液品质;设置纯氧燃烧器和辅助电熔提供足够的能量保障,提高池窑的熔化能力与加热效率,并大大的降低了能耗和二氧化碳的排放量;窑底布置的窑坎提高了玻璃液的出口温度,降低了能耗,同时降低了电极区的窑底温度,延长了窑炉底部的寿命,并且为辅助电能比例的提高提供了保障;窑底鼓泡的设计,提升了玻璃液的回流强度,提高了熔制能力和玻璃液质量。综上,本发明可以有效提高池窑的熔化率、并且降低能耗。
附图说明
并入到说明书中并且构成说明书的一部分的附图示出了本发明的实施例,并且与描述一起用于解释本发明的原理。在这些附图中,类似的附图标记用于表示类似的要素。下面描述中的附图是本发明的一些实施例,而不是全部实施例。对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,可以根据 这些附图获得其他的附图。
图1是具体实施例一中具有高熔化率的玻璃池窑的平面结构图;
图2是具体实施例一中具有高熔化率的玻璃池窑的剖面结构图;
图3是具体实施例二中具有高熔化率的玻璃池窑的平面结构图;
图4是具体实施例三中具有高熔化率的玻璃池窑的剖面结构图;
图5是具体实施例四中具有高熔化率的玻璃池窑的剖面结构图;
图6是具体实施例五中具有高熔化率的玻璃池窑的平面结构图;
图7是具体实施例五中具有高熔化率的玻璃池窑的剖面结构图;
图8是具体实施例六中具有高熔化率的玻璃池窑的剖面结构图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本发明中的具有高熔化率的玻璃池窑的长度与宽度的比值为2.3~2.8之间。现有技术中大量的池窑长宽比是3左右,窑炉能耗基本上在1000千卡/千克以上,实验数据表明,本发明中池窑长宽比是2.3~2.8之间时,高熔化率池窑能耗都在1000千卡/千克以下,甚至900K千卡/千克以下。在熔化面积一定的情况下,池窑长宽比在2.3~2.8之间时,有利于电助熔电极的布置为最优化的布置,使电流位于较优范围且能达到所需的功率,有效功率会更高,即实际能达到的功率与装机功率的比值会更高。
池窑的深度为1~1.2米之间。现有技术中大量的池窑的深度多在1.2米以上,窑炉能耗都在1100千卡/千克以上,现有技术的池窑的池深在1米以下时,由于池深过浅,底部温度高,电助熔使用比例比较低,1米以下电助熔占的总能耗比在17%以下,而本发明中深度为1~1.2米之间的池窑中电助熔占的总能耗比在20%以上。
具有高熔化率的玻璃池窑设置有纯氧燃烧器,并且具有高熔化率的玻璃池窑的底部设置有电极。纯氧燃烧器以下方式中的一种安装或以下方式中一种以上混合安装:安装在于碹顶、水平安装在于胸墙上、倾斜安装在于胸墙上。纯氧燃烧器数量为5~16支。池窑设置有多排纯氧燃烧器,位于中间位置的排的纯氧燃烧器的个数小于位于边缘位置的排的纯氧燃烧器的个数。纯氧燃烧器设置为多排,相邻排中的纯氧燃烧器交叉设置。电极在底部设置为4~8排,每排共4~6个。
具有高熔化率的玻璃池窑的底部设置有窑坎和鼓泡,窑坎的数量为一个或多个,鼓泡设置在窑坎的前面或后面或上面。
本发明通过缩小窑炉面积,优化窑炉的长宽比,减少了热量的散失;通过设计合理的玻璃液池深,改善窑炉底部温度和保证玻璃液品质;设置纯氧燃烧器和辅助电熔提供足够的能量保障,提高池窑的熔化能力与加热效率,并大大的降低了能耗和二氧化碳的排放量;窑底布置的窑坎提高了玻璃液的出口温度,降低了能耗,同时降低了电极区的窑底温度,延长了窑炉底部的寿命,并且为辅助电能比例的提高提供了保障;窑底鼓泡的设计,提升了玻璃液的回流强度,提高了熔制能力和玻璃液质量。综上,本发明可以有效提高池窑的熔化率、并且降低能耗。
下面通过具体实施例说明本发明。
具体实施例一
此具体实施例中设置有水平的纯氧燃烧器。
参见图1、图2,高熔化率池窑包括烟道1、投料机2、熔化部和主通路,其中烟道布置在池窑后脸墙上,图中L表示池窑长度,W表示池窑宽度,高熔化率池窑的长宽比即L/W是2.32,熔化率是2.97吨/天*平方米,投料口耳池布置在窑炉两侧。本具体实施例中包括水平纯氧燃烧器3、流液洞4、底部窑坎5、鼓泡6和电极7,其中,纯氧燃烧器3设置有5对,布置水平地设置在两侧胸墙上,池窑底部设置有5排电极7,每排设置有5个;电极7前后均设置有窑坎5,鼓泡6设置于窑坎后面。图中序号8为玻璃液面线,H表示池窑的玻璃液深度,本具体实施例的池窑玻璃液深度控制为1.2米。
具体实施例二
此具体实施例中设置有倾斜的纯氧燃烧器。
如图3所示,本具体实施例中高熔化率池窑的长宽比即L/W是2.36,熔化率是2.76吨/天*平方米,其结构设置其他与具体实施例一相同,不同之处在于:纯氧燃烧器均倾斜的设置于两侧胸墙上。
具体实施例三
此具体实施例中设置有位于碹顶的纯氧燃烧器称为碹顶纯氧燃烧器11。
如图4所示,本具体实施例中的高熔化率池窑的结构与具体实施例一中的高熔化率池窑的不同之处在于,不包括设置于胸墙上的纯氧燃烧器,只包括设置于碹顶上的纯氧燃烧器。具体的,碹顶纯氧燃烧器11设置有3个,布置在窑炉大碹上,池窑底部设置有4排电极7,第一排设置有4个,第二至第四排每排布置6个;电极7前后均设置有窑坎5,鼓泡6设置于窑坎上面。
具体实施例四
此具体实施例中设置有水平的纯氧燃烧器和倾斜的纯氧燃烧器。
如图5所示,本具体实施例中高熔化率池窑的长宽比即L/W是2.67,熔化率是2.8吨/天*平方米。其结构设置其他与具体实施例一相同,不同之处在于:一部分的纯氧燃烧器以水平的方式设置于一侧胸墙,另一部分纯氧燃烧器以倾斜的方式设置于另一侧胸墙上。水平设置的纯氧燃烧器和倾斜设置的纯氧燃烧器的个数相同。
具体实施例五
此具体实施例中设置有水平的纯氧燃烧器和碹顶纯氧燃烧器。
参见图6、图7,本实施例中包括纯氧燃烧器3、流液洞4、底部窑坎5、鼓泡6、电极7和碹顶纯氧燃烧器11。碹顶纯氧燃烧器11的个数为8个,均布置在窑炉大碹上,两侧胸墙上水平地设置有2支纯氧燃烧器3,底部有6排电极,每排有5个,电极7前后均布置有窑坎5,窑坎5后面有鼓泡6。本具体实施例中高熔化率池窑的长宽比即L/W是2.34,熔化率是3.2吨/天*平方米。
具体实施例六
此具体实施例中设置有水平的纯氧燃烧器、倾斜的纯氧燃烧器和碹顶纯氧燃烧器。
如图8所示,本具体实施例中包括水平设置于一侧胸墙上的纯氧燃烧器、倾斜的设置于另一侧胸墙上的纯氧燃烧器、设置于碹顶的纯氧燃烧器。还包括 流液洞、底部窑坎、鼓泡、电极。本具体实施例中高熔化率池窑的长宽比即L/W是2.7,熔化率是3吨/天*平方米。
上面描述的内容可以单独地或者以各种方式组合起来实施,而这些变型方式都在本发明的保护范围之内。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的物品或者设备中还存在另外的相同要素。
以上实施例仅用以说明本发明的技术方案而非限制,仅仅参照较佳实施例对本发明进行了详细说明。本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。
工业实用性
本发明通过缩小窑炉面积,优化窑炉的长宽比,减少了热量的散失,可以有效提高池窑的熔化率、并且降低能耗。

Claims (9)

  1. 一种具有高熔化率的玻璃池窑,其特征在于,所述高熔化率玻璃池窑的长度与宽度的比值为2.3~2.8之间。
  2. 如权利要求1所述的具有高熔化率的玻璃池窑,其特征在于,所述池窑的深度为1~1.2米之间。
  3. 如权利要求1所述的具有高熔化率的玻璃池窑,其特征在于,所述高熔化率玻璃池窑设置有纯氧燃烧器,并且所述高熔化率玻璃池窑的底部设置有电极。
  4. 如权利要求3所述的具有高熔化率的玻璃池窑,其特征在于,所述纯氧燃烧器以下方式中的一种安装或以下方式中一种以上混合安装:安装在于碹顶、水平安装在于胸墙上、倾斜安装在于胸墙上。
  5. 如权利要求3所述的具有高熔化率的玻璃池窑,其特征在于,所述纯氧燃烧器数量为5~16支。
  6. 如权利要求3所述的具有高熔化率的玻璃池窑,其特征在于,所述高熔化率玻璃池窑设置有多排纯氧燃烧器,位于中间位置的排的纯氧燃烧器的个数小于位于边缘位置的排的纯氧燃烧器的个数。
  7. 如权利要求3所述的具有高熔化率的玻璃池窑,其特征在于,所述纯氧燃烧器设置为多排,相邻排中的纯氧燃烧器交叉设置。
  8. 如权利要求3所述的具有高熔化率的玻璃池窑,其特征在于,所述电极在所述底部设置为4~8排,每排共4~6个。
  9. 如权利要求1所述的具有高熔化率的玻璃池窑,其特征在于,所述高熔化率玻璃池窑的底部设置有窑坎和鼓泡,窑坎的数量为一个或多个,鼓泡设置在窑坎的前面或后面或上面。
PCT/CN2016/096473 2016-04-27 2016-08-24 一种具有高熔化率的玻璃池窑 WO2017185571A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES16900080T ES2871257T3 (es) 2016-04-27 2016-08-24 Horno de tanque de vidrio que tiene una alta tasa de fusión
US16/088,701 US20200299167A1 (en) 2016-04-27 2016-08-24 Glass tank furnace having high melting rate
BR112018070039-8A BR112018070039B1 (pt) 2016-04-27 2016-08-24 Forno de tanque de vidro tendo uma alta taxa de fusão
PL16900080T PL3441370T3 (pl) 2016-04-27 2016-08-24 Szklarski piec wannowy o dużej szybkości wytapiania
EP16900080.9A EP3441370B1 (en) 2016-04-27 2016-08-24 Glass tank furnace having high melting rate
JP2018551144A JP2019509971A (ja) 2016-04-27 2016-08-24 高溶解度を有するガラスタンク窯
US18/167,677 US20230183118A1 (en) 2016-04-27 2023-02-10 Glass tank furnace having a high melting rate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610272378.6 2016-04-27
CN201610272378.6A CN105776819B (zh) 2016-04-27 2016-04-27 一种具有高熔化率的玻璃池窑

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/088,701 A-371-Of-International US20200299167A1 (en) 2016-04-27 2016-08-24 Glass tank furnace having high melting rate
US18/167,677 Continuation US20230183118A1 (en) 2016-04-27 2023-02-10 Glass tank furnace having a high melting rate

Publications (1)

Publication Number Publication Date
WO2017185571A1 true WO2017185571A1 (zh) 2017-11-02

Family

ID=56398872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096473 WO2017185571A1 (zh) 2016-04-27 2016-08-24 一种具有高熔化率的玻璃池窑

Country Status (10)

Country Link
US (2) US20200299167A1 (zh)
EP (1) EP3441370B1 (zh)
JP (1) JP2019509971A (zh)
CN (1) CN105776819B (zh)
BR (1) BR112018070039B1 (zh)
ES (1) ES2871257T3 (zh)
HU (1) HUE054722T2 (zh)
PL (1) PL3441370T3 (zh)
PT (1) PT3441370T (zh)
WO (1) WO2017185571A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111362563A (zh) * 2020-03-30 2020-07-03 郑州旭飞光电科技有限公司 玻璃窑炉的监测装置和方法
US11912608B2 (en) 2019-10-01 2024-02-27 Owens-Brockway Glass Container Inc. Glass manufacturing

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105776819B (zh) * 2016-04-27 2018-07-31 巨石集团有限公司 一种具有高熔化率的玻璃池窑
TWI764952B (zh) * 2016-11-08 2022-05-21 美商康寧公司 用於形成玻璃製品之設備及方法
KR102412297B1 (ko) 2016-11-08 2022-06-24 코닝 인코포레이티드 고온의 유리 용융 용기
CN106746501B (zh) * 2017-03-22 2019-11-01 东旭科技集团有限公司 玻璃窑炉
CN107365054B (zh) * 2017-07-27 2021-06-04 彩虹(合肥)液晶玻璃有限公司 一种用于玻璃熔融加热的窑炉装置
CN109516674B (zh) * 2018-12-29 2021-11-12 重庆昊晟玻璃股份有限公司 液位自动控制装置
CN112456761B (zh) * 2020-12-15 2024-08-27 巨石集团有限公司 一种提升玻璃液熔制质量的窑炉及方法
CN113636741A (zh) * 2021-08-20 2021-11-12 中国建材国际工程集团有限公司 全电玻璃熔窑

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2257822Y (zh) * 1995-11-09 1997-07-16 河北邢台晶牛玻璃股份有限公司 熔制矿渣微晶玻璃的池窑
JP2000128548A (ja) * 1998-10-28 2000-05-09 Asahi Techno Glass Corp ガラス溶融炉
CN2565819Y (zh) * 2002-07-15 2003-08-13 河南安彩集团有限责任公司 一种生产显象管玻壳用的屏锥两用炉
CN201737825U (zh) * 2009-12-31 2011-02-09 巨石集团有限公司 一种中碱玻璃纤维池窑
CN102503138A (zh) * 2011-10-18 2012-06-20 武汉理工大学 一种烧结法建筑装饰微晶玻璃的着色方法
CN105776819A (zh) * 2016-04-27 2016-07-20 巨石集团有限公司 一种具有高熔化率的玻璃池窑

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2281902A1 (fr) * 1974-08-14 1976-03-12 Saint Gobain Perfectionnement a la fabrication du verre
DE19710351C1 (de) * 1997-03-13 1998-05-20 Sorg Gmbh & Co Kg Verfahren und Glasschmelzofen zum Herstellen von hochschmelzenden Gläsern mit verdampfbaren Komponenten
FR2913971B1 (fr) * 2007-03-20 2009-04-24 Saint Gobain Dispositif de fusion du verre comprenant deux fours
DE102007027044B3 (de) * 2007-06-12 2008-09-04 Beteiligungen Sorg Gmbh & Co. Kg Glasschmelzofen und Verfahren für das Erschmelzen von Gläsern
CN101935209A (zh) * 2010-06-02 2011-01-05 河北东旭投资集团有限公司 一种用于玻璃窑炉熔化池的加热电极
CN104402194A (zh) * 2014-10-28 2015-03-11 远东光电股份有限公司 一种用于低膨胀微晶玻璃制造的全氧燃烧窑炉

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2257822Y (zh) * 1995-11-09 1997-07-16 河北邢台晶牛玻璃股份有限公司 熔制矿渣微晶玻璃的池窑
JP2000128548A (ja) * 1998-10-28 2000-05-09 Asahi Techno Glass Corp ガラス溶融炉
CN2565819Y (zh) * 2002-07-15 2003-08-13 河南安彩集团有限责任公司 一种生产显象管玻壳用的屏锥两用炉
CN201737825U (zh) * 2009-12-31 2011-02-09 巨石集团有限公司 一种中碱玻璃纤维池窑
CN102503138A (zh) * 2011-10-18 2012-06-20 武汉理工大学 一种烧结法建筑装饰微晶玻璃的着色方法
CN105776819A (zh) * 2016-04-27 2016-07-20 巨石集团有限公司 一种具有高熔化率的玻璃池窑

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11912608B2 (en) 2019-10-01 2024-02-27 Owens-Brockway Glass Container Inc. Glass manufacturing
CN111362563A (zh) * 2020-03-30 2020-07-03 郑州旭飞光电科技有限公司 玻璃窑炉的监测装置和方法
CN111362563B (zh) * 2020-03-30 2022-04-19 郑州旭飞光电科技有限公司 玻璃窑炉的监测装置和方法

Also Published As

Publication number Publication date
EP3441370A4 (en) 2020-01-15
EP3441370A1 (en) 2019-02-13
EP3441370B1 (en) 2021-04-14
ES2871257T3 (es) 2021-10-28
BR112018070039A2 (pt) 2019-02-05
US20200299167A1 (en) 2020-09-24
BR112018070039B1 (pt) 2022-04-26
HUE054722T2 (hu) 2021-09-28
JP2019509971A (ja) 2019-04-11
US20230183118A1 (en) 2023-06-15
PT3441370T (pt) 2021-05-28
CN105776819A (zh) 2016-07-20
CN105776819B (zh) 2018-07-31
PL3441370T3 (pl) 2021-10-18

Similar Documents

Publication Publication Date Title
WO2017185571A1 (zh) 一种具有高熔化率的玻璃池窑
CN102503076A (zh) 用于熔化高碱铝硅酸盐玻璃的窑炉
CN202643333U (zh) T字形水玻璃熔窑
CN203613091U (zh) 玻璃纤维池窑结构
CN202175606U (zh) 一种电极加热与全氧燃烧结合的玻璃熔化炉
CN106517736B (zh) 一种用于熔制高挥发组分玻璃的熔窑
CN206359415U (zh) 一种乳白玻璃电熔炉
US20100175427A1 (en) Glass melting furnace and method for melting glasses
CN115159812A (zh) 一种电主熔较大规模节能玻璃熔窑
CN115403247A (zh) 一种熔炉结构及玻璃生产线
CN202099178U (zh) 一种用于玻璃纤维窑炉的纯氧燃烧器新型排布结构
CN105586610A (zh) 电解槽下料系统及电解槽系统
CN101265012B (zh) 蓄热式横火焰玻璃池炉
CN202107622U (zh) 一种用于超薄电子玻璃熔窑锡槽的挡坎及玻璃熔窑
CN104402194A (zh) 一种用于低膨胀微晶玻璃制造的全氧燃烧窑炉
CN103994438B (zh) 一种反射炉烧嘴
JP6654502B2 (ja) ガラス溶融装置
CN202272812U (zh) 一种新型全氧玻璃熔窑大碹碹液导流装置
CN211078872U (zh) 一种增加工作池温度的全分隔玻璃窑炉
CN113636741A (zh) 全电玻璃熔窑
CN206188625U (zh) 马蹄形窑炉结构
CN202465479U (zh) 底插电极电熔窑
CN201343485Y (zh) 一种用于玻璃熔化操作的熔窑
CN105152520A (zh) 一种高效光学玻璃熔化池
CN201141729Y (zh) 一种罐式炭素煅烧炉炉顶结构

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018551144

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018070039

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016900080

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16900080

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016900080

Country of ref document: EP

Effective date: 20181127

ENP Entry into the national phase

Ref document number: 112018070039

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180928