WO2017183643A1 - レドックスフロー電池の運搬構造、レドックスフロー電池の運搬方法、およびレドックスフロー電池 - Google Patents

レドックスフロー電池の運搬構造、レドックスフロー電池の運搬方法、およびレドックスフロー電池 Download PDF

Info

Publication number
WO2017183643A1
WO2017183643A1 PCT/JP2017/015633 JP2017015633W WO2017183643A1 WO 2017183643 A1 WO2017183643 A1 WO 2017183643A1 JP 2017015633 W JP2017015633 W JP 2017015633W WO 2017183643 A1 WO2017183643 A1 WO 2017183643A1
Authority
WO
WIPO (PCT)
Prior art keywords
redox flow
flow battery
cell stack
container
absorbing member
Prior art date
Application number
PCT/JP2017/015633
Other languages
English (en)
French (fr)
Inventor
健太 森上
淳夫 池内
俊寿 足立
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201780024661.XA priority Critical patent/CN109071107A/zh
Priority to AU2017253304A priority patent/AU2017253304A1/en
Priority to KR1020187030146A priority patent/KR20180137493A/ko
Priority to EP17785981.6A priority patent/EP3447835A4/en
Priority to US16/094,928 priority patent/US20190097251A1/en
Priority to JP2018513190A priority patent/JPWO2017183643A1/ja
Publication of WO2017183643A1 publication Critical patent/WO2017183643A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/12Supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2455Grouping of fuel cells, e.g. stacking of fuel cells with liquid, solid or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2459Comprising electrode layers with interposed electrolyte compartment with possible electrolyte supply or circulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/248Means for compression of the fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a transport structure for a redox flow battery, a transport method for a redox flow battery, and a redox flow battery.
  • a redox flow battery is a battery that charges and discharges using a difference in oxidation-reduction potential between ions contained in a positive electrode electrolyte and ions contained in a negative electrode electrolyte (see, for example, Patent Document 1).
  • the transport structure of the redox flow battery of the present disclosure is as follows.
  • a cell stack formed by stacking a plurality of redox flow battery cells;
  • the transport method of the redox flow battery of the present disclosure is as follows.
  • a transport method for a redox flow battery in which a cell stack formed by stacking a plurality of battery cells of a redox flow battery is accommodated in a container in a state of being supported from below by a vibration absorbing member, and the container is transported.
  • the redox flow battery of the present disclosure is A cell stack formed by stacking a plurality of redox flow battery cells; A vibration absorbing member that supports the cell stack from vertically below; Is provided.
  • FIG. 2 is a schematic partial cross-sectional view of a transport structure for a redox flow battery according to Embodiment 1.
  • FIG. FIG. 4 is a schematic partial cross-sectional view of a transport structure for a redox flow battery as viewed from the left side in FIG. 3.
  • 6 is a schematic partial cross-sectional view of a transport structure for a redox flow battery according to Embodiment 2.
  • FIG. 4 is a schematic partial cross-sectional view of a transport structure for a redox flow battery according to Embodiment 1.
  • An object of the present disclosure is to provide a transport structure for a redox flow battery, a transport method for a redox flow battery, and a redox flow battery capable of suppressing damage to the redox flow battery during transport even under severe transport conditions. .
  • the transport structure of the redox flow battery it is possible to suppress damage to the cell stack provided in the redox flow battery due to vibration during transport.
  • the cell stack of the redox flow battery can be transported while suppressing damage to the cell stack provided in the redox flow battery.
  • the present inventors have obtained the knowledge that it is necessary to apply a damping structure to a cell stack formed by stacking relatively low strength diaphragms and electrodes. Based on the knowledge, the transport structure of the redox flow battery according to the embodiment is defined below.
  • the transport structure of the redox flow battery according to the embodiment is as follows: A cell stack formed by stacking a plurality of redox flow battery cells; A container for storing the cell stack therein; A vibration absorbing member that supports the cell stack from below vertically in the container; Is provided.
  • the vibration absorbing member may be in the form of a vibration damping rubber.
  • Damping rubber is preferable as a vibration-absorbing member during transportation because it can maintain vibration-absorbing ability over a long period of time.
  • vibration during transportation can be reliably absorbed over a long period of time by the damping rubber.
  • the vibration absorbing member may be in the form of an air spring.
  • the air spring is preferable as a vibration absorbing member during transportation because it can greatly attenuate large vibrations and hardly resonates. Further, the air spring has an advantage that the support height of the cell stack can be easily adjusted by adjusting the amount of air enclosed in the air spring.
  • the cell stack includes a pair of end plates that sandwich and clamp a stacked structure in which a plurality of the battery cells are stacked from both sides,
  • the said end plate can mention the form provided with the attaching part to which the said vibration absorption member is attached to the part of the perpendicular downward side.
  • the pair of end plates are for tightening the laminated structure formed by stacking battery cells from both sides to maintain the laminated state of the laminated structure, and have high strength and high rigidity. Therefore, the end plate is suitable as a member that provides a mounting portion for a vibration absorbing member that supports a heavy cell stack and absorbs vibration.
  • the transport method of the redox flow battery according to the embodiment is as follows: A cell stack formed by stacking a plurality of redox flow battery cells is housed in a container while being supported from below by a vibration absorbing member, and the container is transported.
  • the cell stack By supporting the cell stack with the vibration absorbing member from below vertically, it is possible to suppress a large inertial force from acting on the cell stack of the redox flow battery even if the container vibrates or an impact acts on the container. As a result, the cell stack can be prevented from being damaged during transportation, and the redox flow battery after transportation can be installed and operated smoothly.
  • the redox flow battery according to the embodiment is A cell stack formed by stacking a plurality of redox flow battery cells; A vibration absorbing member that supports the cell stack from vertically below; Is provided.
  • Supporting the cell stack with the vibration absorbing member from below vertically can suppress damage to the cell stack of the redox flow battery due to vibration during transportation of the redox flow battery.
  • the RF battery ⁇ includes a battery cell 100 that is separated into a positive electrode cell 102 and a negative electrode cell 103 by a diaphragm 101 that allows hydrogen ions to pass therethrough.
  • a positive electrode 104 is built in the positive electrode cell 102, and a positive electrode electrolyte solution tank 106 for storing a positive electrode electrolyte is connected via conduits 108 and 110.
  • the conduit 108 is provided with a pump 112, and these members 106, 108, 110, 112 constitute a positive electrode circulation mechanism 100P that circulates the positive electrode electrolyte.
  • a negative electrode electrode 105 is built in the negative electrode cell 103, and a negative electrode electrolyte solution tank 107 that stores a negative electrode electrolyte is connected via conduits 109 and 111.
  • the conduit 109 is provided with a pump 113, and these members 107, 109, 111, 113 constitute a negative electrode circulation mechanism 100N for circulating the negative electrode electrolyte.
  • the electrolyte stored in the tanks 106 and 107 is circulated in the cells 102 and 103 by the pumps 112 and 113 during charging and discharging. When charging / discharging is not performed, the pumps 112 and 113 are stopped and the electrolytic solution is not circulated.
  • the battery cell 100 is usually formed inside a structure called a cell stack 200 as shown in FIG.
  • the cell stack 200 is configured by sandwiching a laminated structure called a sub-stack 200 s from both sides with two end plates 210 and 220 and tightening with a tightening mechanism 230 (in the illustrated configuration, a plurality of sub-stacks are arranged). 200 s is used).
  • the sub-stack 200s is formed by stacking cell units including the cell frame 120, the positive electrode 104, the diaphragm 101, the negative electrode 105, and the cell frame 120, and supplying and discharging the stacked body. It has a configuration sandwiched between plates 190 and 190 (see the lower diagram of FIG.
  • the cell frame 120 provided in the cell unit includes a frame 122 having a through window and a bipolar plate 121 that closes the through window, and is arranged so that the positive electrode 104 is in contact with one surface side of the bipolar plate 121.
  • the negative electrode 105 is disposed on the other surface side of the bipolar plate 121 so as to be in contact therewith. In this configuration, one battery cell 100 is formed between the bipolar plates 121 of the adjacent cell frames 120.
  • Distribution of the electrolyte solution to the battery cell 100 through the supply / discharge plates 190 and 190 is performed by the supply manifolds 123 and 124 formed in the frame body 122 and the discharge manifolds 125 and 126.
  • the positive electrode electrolyte is supplied from the liquid supply manifold 123 to the positive electrode 104 through an inlet slit formed on one side (the front side of the paper) of the frame 122, and the outlet slit formed at the top of the frame 122 Then, the liquid is discharged to the drainage manifold 125.
  • the negative electrode electrolyte is supplied from the liquid supply manifold 124 to the negative electrode 105 through an inlet slit (shown by a dotted line) formed on the other surface side (back side of the paper surface) of the frame body 122. Is discharged to the drainage manifold 126 through an outlet slit (shown by a dotted line) formed in the upper portion of the liquid.
  • An annular sealing member 127 such as an O-ring or a flat packing is disposed between the cell frames 120, and leakage of the electrolyte from the sub stack 200s is suppressed.
  • the RF battery transport structure 1 includes a cell stack 2, a container 3, and a vibration absorbing member 4.
  • the container 3 which accommodates the cell stack 2 is carried.
  • each structure of the conveyance structure 1 of RF battery is demonstrated in detail.
  • FIGS. 3 and 4 The basic configuration of the cell stack 2 shown in FIGS. 3 and 4 is the same as that of the conventional cell stack 200 described with reference to FIG.
  • the members having the same functions as the constituent members of the cell stack 200 are denoted by the same reference numerals as those of the constituent members of the cell stack 200, and detailed description thereof is omitted.
  • the cell stack 2 is formed by further stacking a plurality of sub-stacks 200s in which a plurality of battery cells are stacked and sandwiched between supply / discharge plates 190, as shown in FIG.
  • the plurality of sub-stacks 200s are sandwiched between a pair of end plates 210 and 220 and tightened.
  • the end plate 210 (220; see FIG. 4) of the present example has a pair of mounting portions 21 (22; FIG. 4) projecting in the width direction (left and right direction in FIG. 3) of the end plate 210 (220) on the vertical lower end side. See). That is, a total of four attachment portions 21 and 22 are formed in the cell stack 2. A vibration absorbing member 4 to be described later is attached to these attachment portions 21 and 22.
  • the mounting portion 21 includes two triangular plate portions 21A and 21B having a right triangular shape (see FIG. 3) that are separated in the thickness direction of the end plate 210, and the two triangular plates. And a rectangular plate portion 21C that connects the lower ends of the portions 21A and 21B.
  • the triangular plate portion 21A is connected to one surface of the end plate 210 (the surface on the right side of the paper) without a step
  • the triangular plate portion 21B is connected to the other surface of the end plate 210 (the surface on the left side of the paper) without a step.
  • the rectangular plate portion 21 ⁇ / b> C is formed with a bolt hole through which a bolt for fixing a vibration absorbing member 4 described later is passed.
  • the attachment portion 22 has the same configuration as the attachment portion 21.
  • the container 3 can be an existing standard (for example, a 40-foot container for transportation).
  • the cell stack 2 is housed among the constituent members of the redox flow battery.
  • the cell stack 2 may be placed directly on the container bottom surface 30 of the container 3 or may be placed on some kind of table.
  • the container 3 may contain a set of redox flow battery components. Specifically, in addition to the cell stack 2, the circulation mechanisms 100 ⁇ / b> P and 100 ⁇ / b> N described with reference to FIG. 1, a control mechanism for controlling the circulation of the electrolyte, and the like are housed in the container 3. Can be mentioned. It is preferable that the electrolytic solution is transported separately without being placed in the tanks 106 and 107.
  • the vibration absorbing member 4 is a member that absorbs vibration of the container 3 when the container 3 vibrates or an impact is applied to the container 3.
  • One vibration absorbing member 4 is provided on each of the attachment portions 21 and 22 provided on the end plates 210 and 220.
  • an air spring is used as the vibration absorbing member 4. Since the air spring 4 can significantly attenuate large vibrations and hardly resonate, the cell stack 2 can be effectively prevented from vibrating during transportation.
  • the air spring 4 has an advantage that the support height of the cell stack 2 can be easily adjusted by adjusting the amount of air enclosed in the air spring 4. Examples of the air spring 4 include Sumimount (trade name) manufactured by Sumitomo Electric Industries, Ltd. An oil damper or the like can be used instead of the air spring 4.
  • the air spring 4 includes an upper piece 40, a lower piece 41, and an elastic portion 42 as shown in the encircled enlarged views of FIGS.
  • the upper piece portion 40 is a highly rigid member fixed to the attachment portion 21 (22).
  • the lower piece 41 is a member serving as a pedestal in contact with a placement surface (in this example, the container bottom surface 30) on which the cell stack 2 is placed.
  • the elastic portion 42 is a member made of an elastic body such as rubber disposed between the upper piece portion 40 and the lower piece portion 41, and air is sealed therein.
  • the elastic part 42 may be stacked in a plurality of stages.
  • the cell stack 2 can be prevented from vibrating by the vibration absorbing member 4 that supports the cell stack 2 from vertically below. Therefore, for example, even if the container 3 vibrates or an impact acts on the container 3, it is possible to suppress a large inertial force from acting on the cell stack 2. As a result, the cell stack 2 can be prevented from being damaged during transportation, and the redox flow battery after transportation can be installed and operated smoothly.
  • the cell stack 2 is fixed to the installation surface via an insulator such as epoxy. Therefore, the air spring 4 attached to the attachment portions 21 and 22 during transportation is replaced with an insulator.
  • the air spring 4 since the air spring 4 is provided with the insulating elastic part 42, when the elastic part 42 has predetermined insulation performance, the air spring 4 may be used instead of the insulator. In this case, the trouble of replacing the air spring 4 with an insulator can be reduced.
  • damping rubbers 4 are provided on the end plate 210 and another end plate 220 (see FIG. 2) hidden behind the paper surface. Yes. It is preferable that the damping rubber 4 is provided with a similar interval in the left-right direction on the paper surface.
  • the number of damping rubbers 4 is not particularly limited.
  • the damping rubber 4 may be natural rubber or synthetic rubber. As the synthetic rubber, chloroprene rubber, ethylene propylene rubber or the like can be suitably used.
  • the damping rubber 4 is preferable as a vibration absorbing member during transportation because it can maintain the vibration absorbing ability over a long period of time.
  • the vibration-damping rubber 4 can reliably absorb vibration during transportation over a long period of time.
  • Redox flow battery transport structure (RF battery transport structure) 2 Cell stack 21, 22 Mounting portion 21 A, 21 B Triangular plate portion 21 C Rectangular plate portion 3 Container 30 Container bottom surface 4 Vibration absorbing member (air spring or damping rubber) 40 Upper piece portion 41 Lower piece portion 42 Elastic portion ⁇ Redox flow battery (RF battery) DESCRIPTION OF SYMBOLS 100 Battery cell 101 Diaphragm 102 Positive electrode cell 103 Negative electrode cell 100P Positive electrode circulation mechanism 100N Negative electrode circulation mechanism 104 Positive electrode 105 Negative electrode 106 Positive electrode electrolyte tank 107 Negative electrode electrolyte tank 108,109,110,111 Conduit 112,113 Pump 120 Cell frame 121 Bipolar plate 122 Frame 123, 124 Liquid supply manifold 125, 126 Drain manifold 127 Seal member 190 Supply / discharge plate 210, 220 End plate 200 Cell stack 200 s Substack 230 Tightening mechanism

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)

Abstract

レドックスフロー電池の電池セルを複数積層してなるセルスタックと、前記セルスタックを内部に収納するコンテナと、前記コンテナ内で前記セルスタックを鉛直下方から支える振動吸収部材と、を備えるレドックスフロー電池の運搬構造。

Description

レドックスフロー電池の運搬構造、レドックスフロー電池の運搬方法、およびレドックスフロー電池
 本発明は、レドックスフロー電池の運搬構造、レドックスフロー電池の運搬方法、およびレドックスフロー電池に関するものである。
 本出願は、2016年4月20日付の日本国出願の特願2016-084541に基づく優先権を主張し、前記日本国出願に記載された全ての記載内容を援用するものである。
 太陽光発電や風力発電といった新エネルギーを蓄電する大容量の蓄電池の一つに電解液循環型電池、代表的にはレドックスフロー電池がある。レドックスフロー電池は、正極用電解液に含まれるイオンと負極用電解液に含まれるイオンの酸化還元電位の差を利用して充放電を行う電池である(例えば、特許文献1参照)。
特開2015-79738号公報
 本開示のレドックスフロー電池の運搬構造は、
 レドックスフロー電池の電池セルを複数積層してなるセルスタックと、
 前記セルスタックを内部に収納するコンテナと、
 前記コンテナ内で前記セルスタックを鉛直下方から支える振動吸収部材と、
 を備えるレドックスフロー電池の運搬構造。
 本開示のレドックスフロー電池の運搬方法は、
 レドックスフロー電池の電池セルを複数積層してなるセルスタックを、コンテナ内に振動吸収部材で鉛直下方から支持した状態に収納して、そのコンテナを運搬するレドックスフロー電池の運搬方法。
 本開示のレドックスフロー電池は、
 レドックスフロー電池の電池セルを複数積層してなるセルスタックと、
 前記セルスタックを鉛直下方から支える振動吸収部材と、
 を備える。
レドックスフロー電池の動作原理図である。 セルスタックの概略構成図である。 実施形態1に係るレドックスフロー電池の運搬構造の概略部分断面図である。 図3を左側面から見たレドックスフロー電池の運搬構造の概略部分断面図である。 実施形態2に係るレドックスフロー電池の運搬構造の概略部分断面図である。
[本開示が解決しようとする課題]
 近年、新エネルギーの蓄電手段としてレドックスフロー電池の需要の増加が期待されている。例えば、砂漠などの広大な非居住地などに太陽光発電所を建設し、そこにレドックスフロー電池を併設することが検討されている。ここで、レドックスフロー電池の構成部材を海上輸送することや未舗装地を陸送することなどが想定され、このような過酷な運搬条件では運搬時に上記構成部材に損傷が生じることが懸念される。しかし、過酷な運搬条件下における最適なレドックスフロー電池の運搬構造は現在のところ検討されていない。
 本開示では、過酷な運搬条件下であっても運搬時にレドックスフロー電池に損傷が生じることを抑制できるレドックスフロー電池の運搬構造、レドックスフロー電池の運搬方法、およびレドックスフロー電池を提供することにある。
[本開示の効果]
 上記レドックスフロー電池の運搬構造によれば、運搬時の振動によってレドックスフロー電池に備わるセルスタックに損傷が生じることを抑制できる。
 上記レドックスフロー電池の運搬方法によれば、レドックスフロー電池に備わるセルスタックに損傷が生じることを抑制しつつ、レドックスフロー電池のセルスタックを運搬できる。
 上記レドックスフロー電池によれば、運搬時の振動によってセルスタックに損傷が生じることを抑制できる。
[本願発明の実施形態の説明]
 最初に本願発明の実施形態の内容を列記して説明する。
 レドックスフロー電池の構成部材をコンテナに収納して運搬する場合、コンテナの下部に制振構造を取り付ける対応が挙げられる。しかし、この対応ではコンテナの積み替えなどを行なう場合、コンテナの内部にあるレドックスフロー電池の構成部材に作用する応力を緩和することができない。かといって、構成部材の全てに制振構造を取り付けることは手間とコストの点で現実的ではない。そこで、本発明者らは、レドックスフロー電池をコンテナに収納して運搬する際、レドックスフロー電池のどの構成部材に特に制振構造を適用するべきかを検討した。その結果、本発明者らは、比較的強度の低い隔膜や電極などが積層されてなるセルスタックに対して制振構造を適用する必要があるとの知見を得た。その知見に基づいて、実施形態に係るレドックスフロー電池の運搬構造を以下に規定する。
<1>実施形態に係るレドックスフロー電池の運搬構造は、
 レドックスフロー電池の電池セルを複数積層してなるセルスタックと、
 前記セルスタックを内部に収納するコンテナと、
 前記コンテナ内で前記セルスタックを鉛直下方から支える振動吸収部材と、
 を備える。
 セルスタックを鉛直下方から支える部材を振動吸収部材とすることで、コンテナが振動したり、コンテナに衝撃が作用したりしても、レドックスフロー電池のセルスタックに大きな慣性力が作用することを抑制できる。その結果、運搬時にセルスタックに損傷が生じることを抑制でき、運搬後のレドックスフロー電池の設置・運用を円滑に行なうことができる。
<2>実施形態に係るレドックスフロー電池の運搬構造の一形態として、
 前記振動吸収部材は、制振ゴムである形態を挙げることができる。
 制振ゴムは、長期にわたって振動吸収能を維持することができるため、運搬時の振動吸収部材として好ましい。特に、海上輸送と長距離の陸送を行なう場合、制振ゴムによって長期にわたり確実に運搬時の振動を吸収することができる。
<3>実施形態に係るレドックスフロー電池の運搬構造の一形態として、
 前記振動吸収部材は、空気バネである形態を挙げることができる。
 空気バネは、大きな振動を大幅に減衰できる上、共振し難いため、運搬時の振動吸収部材として好ましい。また、空気バネは、空気バネに封入される空気量を調整することで、セルスタックの支持高さを容易に調整できるという利点を有する。
<4>実施形態に係るレドックスフロー電池の運搬構造の一形態として、
 前記セルスタックは、前記電池セルを複数積層した積層構造物をその両側から挟み込んで締め付ける一対のエンドプレートを備え、
 前記エンドプレートは、その鉛直下方側の部分に前記振動吸収部材が取り付けられる取付部を備える形態を挙げることができる。
 一対のエンドプレートは、電池セルを積層してなる積層構造体をその両側から締め付けて、積層構造体の積層状態を保持するためのものであり、高強度・高剛性である。そのため、エンドプレートは、高重量のセルスタックを支持し、かつ振動を吸収する振動吸収部材の取付部を設ける部材として好適である。
<5>実施形態に係るレドックスフロー電池の運搬方法は、
 レドックスフロー電池の電池セルを複数積層してなるセルスタックを振動吸収部材によって鉛直下方から支持した状態でコンテナ内に収納して、そのコンテナを運搬する。
 セルスタックを鉛直下方から振動吸収部材で支持することで、コンテナが振動したり、コンテナに衝撃が作用したりしても、レドックスフロー電池のセルスタックに大きな慣性力が作用することを抑制できる。その結果、運搬時にセルスタックに損傷が生じることを抑制でき、運搬後のレドックスフロー電池の設置・運用を円滑に行なうことができる。
<6>実施形態に係るレドックスフロー電池は、
 レドックスフロー電池の電池セルを複数積層してなるセルスタックと、
 前記セルスタックを鉛直下方から支える振動吸収部材と、
 を備える。
 セルスタックを鉛直下方から振動吸収部材で支持することで、レドックスフロー電池の運搬時の振動によってレドックスフロー電池のセルスタックに損傷が生じることを抑制できる。
[本願発明の実施形態の詳細]
 以下、実施形態に係るレドックスフロー電池(RF電池)の運搬構造、および運搬方法の実施形態を説明する。なお、本発明は実施形態に示される構成に限定されるわけではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内の全ての変更が含まれることを意図する。
<実施形態1>
 実施形態に係るRF電池の運搬構造1と運搬方法の説明に先立ち、RF電池αの基本構成を図1,2に基づいて説明する。
 図1のRF電池αの動作原理図に示すように、RF電池αは、水素イオンを透過させる隔膜101で正極セル102と負極セル103とに分離された電池セル100を備える。正極セル102には正極電極104が内蔵され、かつ正極用電解液を貯留する正極電解液用タンク106が導管108,110を介して接続されている。導管108にはポンプ112が設けられており、これら部材106,108,110,112によって正極用電解液を循環させる正極用循環機構100Pが構成されている。同様に、負極セル103には負極電極105が内蔵され、かつ負極用電解液を貯留する負極電解液用タンク107が導管109,111を介して接続されている。導管109にはポンプ113が設けられており、これらの部材107,109,111,113によって負極用電解液を循環させる負極用循環機構100Nが構成されている。各タンク106,107に貯留される電解液は、充放電の際にポンプ112,113によりセル102,103内に循環される。充放電を行なわない場合、ポンプ112,113は停止され、電解液は循環されない。
 上記電池セル100は通常、図2に示すような、セルスタック200と呼ばれる構造体の内部に形成される。セルスタック200は、サブスタック200sと呼ばれる積層構造物をその両側から二枚のエンドプレート210,220で挟み込み、締付機構230で締め付けることで構成されている(図示する構成では、複数のサブスタック200sを用いている)。サブスタック200sは、図2の上図に示すように、セルフレーム120、正極電極104、隔膜101、負極電極105、およびセルフレーム120で構成されるセルユニットを積層し、その積層体を給排板190,190(図2の下図参照)で挟み込んだ構成を備える。セルユニットに備わるセルフレーム120は、貫通窓を有する枠体122と貫通窓を塞ぐ双極板121とを有しており、双極板121の一面側には正極電極104が接触するように配置され、双極板121の他面側には負極電極105が接触するように配置される。この構成では、隣接する各セルフレーム120の双極板121の間に一つの電池セル100が形成されることになる。
 給排板190,190を介した電池セル100への電解液の流通は、枠体122に形成される給液用マニホールド123,124と、排液用マニホールド125,126により行われる。正極用電解液は、給液用マニホールド123から枠体122の一面側(紙面表側)に形成される入口スリットを介して正極電極104に供給され、枠体122の上部に形成される出口スリットを介して排液用マニホールド125に排出される。同様に、負極用電解液は、給液用マニホールド124から枠体122の他面側(紙面裏側)に形成される入口スリット(点線で示す)を介して負極電極105に供給され、枠体122の上部に形成される出口スリット(点線で示す)を介して排液用マニホールド126に排出される。各セルフレーム120間には、Oリングや平パッキンなどの環状のシール部材127が配置され、サブスタック200sからの電解液の漏れが抑制されている。
 次に、実施形態に係るRF電池の運搬構造1を図3,4に基づいて説明する。RF電池の運搬構造1は、セルスタック2と、コンテナ3と、振動吸収部材4と、を備える。RF電池のセルスタック2を運搬する場合、セルスタック2を収納するコンテナ3を運搬する。以下、RF電池の運搬構造1の各構成を詳細に説明する。
 ≪セルスタック≫
 図3,4に示すセルスタック2の基本的な構成は、図2を参照して説明した従来のセルスタック200と同様である。セルスタック200の構成部材と同一の機能を有する部材については、セルスタック200の構成部材と同一の符号を付して詳しい説明を省略する。
 既に説明したように、セルスタック2は、図2に示すように、複数の電池セルを積層して給排板190で挟み込んだサブスタック200sをさらに複数積層して形成されている。複数のサブスタック200sは、一対のエンドプレート210,220で挟み込まれ、締め付けられている。
 本例のエンドプレート210(220;図4参照)は、その鉛直下端側に、エンドプレート210(220)の幅方向(図3の左右方向)に張り出す一対の取付部21(22;図4参照)を備える。つまり、セルスタック2に、合計四つの取付部21,22が形成されている。これら取付部21,22には、後述する振動吸収部材4が取り付けられる。
 取付部21は、図4の丸囲み拡大図に示すように、エンドプレート210の厚み方向に離隔する直角三角形状(図3参照)の二枚の三角板部21A,21Bと、その二枚の三角板部21A,21Bの下端を繋ぐ矩形板部21Cと、で構成される。三角板部21Aはエンドプレート210の一面(紙面右側の面)に段差無く繋がり、三角板部21Bはエンドプレート210の他面(紙面左側の面)に段差無く繋がっている。また、矩形板部21Cには、後述する振動吸収部材4を固定するボルトを貫通させるボルト孔が形成されている。なお、取付部22も、取付部21と同様の構成を備えている。
 ≪コンテナ≫
 コンテナ3は、既存の規格のもの(例えば、運搬用の40フィートコンテナ)を利用することができる。コンテナ3の内部には、レドックスフロー電池の構成部材のうち、少なくともセルスタック2が収納される。セルスタック2は、図示するように、コンテナ3のコンテナ底面30に直置きされていても良いし、何らかの台上に載置されていても良い。
 コンテナ3の内部には、レドックスフロー電池の構成部材一式が収納されていても構わない。具体的には、上記セルスタック2の他に、図1を参照して説明した循環機構100P,100Nや、電解液の循環などを制御する制御機構などがコンテナ3の内部に収納される形態を挙げることができる。なお、電解液はタンク106,107に入れずに、別途運搬することが好適である。
 ≪振動吸収部材≫
 振動吸収部材4は、コンテナ3が振動したり、コンテナ3に衝撃が作用したりしたときに、コンテナ3の振動を吸収する部材である。振動吸収部材4は、エンドプレート210,220に設けられる各取付部21,22に一つずつ設けられる。
 振動吸収部材4として、本例では空気バネを採用している。空気バネ4は、大きな振動を大幅に減衰できる上、共振し難いため、運搬時にセルスタック2が振動することを効果的に抑制することができる。また、空気バネ4は、空気バネ4に封入される空気量を調整することで、セルスタック2の支持高さを容易に調整できるという利点を有する。空気バネ4としては、例えば、住友電気工業株式会社のスミマウント(商品名)などを挙げることができる。空気バネ4の代わりにオイルダンパなどを用いることもできる。
 空気バネ4は、図3,4の丸囲み拡大図に示すように、上片部40と下片部41と弾性部42とを備える。上片部40は、取付部21(22)に固定される高剛性の部材である。下片部41は、セルスタック2を載置する載置面(本例ではコンテナ底面30)に接する台座となる部材である。弾性部42は、上片部40と下片部41との間に配置されるゴムなどの弾性体で構成される部材であり、その内部に空気が封入されている。弾性部42は複数段積み重ねられていても構わない。
 ≪効果≫
 上記構成を備えるRF電池の運搬構造1では、セルスタック2を鉛直下方から支える振動吸収部材4によって、セルスタック2が振動することを抑制することができる。そのため、例えばコンテナ3が振動したり、コンテナ3に衝撃が作用したりしても、セルスタック2に大きな慣性力が作用することが抑制される。その結果、運搬時にセルスタック2に損傷が生じることを抑制でき、運搬後のレドックスフロー電池の設置・運用を円滑に行なうことができる。
 ≪その他≫
 RF電池の設置場所では、セルスタック2はエポキシなどの絶縁碍子を介して設置面に固定される。そのため、運搬時に取付部21,22に取り付けられていた空気バネ4は絶縁碍子に取り換えられる。ここで、空気バネ4は絶縁性の弾性部42を備えているので、弾性部42が所定の絶縁性能を有する場合、空気バネ4を絶縁碍子の代わりに利用できる可能性がある。この場合、空気バネ4を絶縁碍子に取り換える手間を低減できる。
 ≪試験例≫
 試験例では、図3,4に示すエンドプレート210の上端中央部に加速度センサを取り付けて、コンテナ3の積み下ろしに伴ってセルスタック2に作用する鉛直方向の慣性力を測定した。その結果、セルスタック2にかかる慣性力は3G以下であった。一方、図3,4のセルスタック2の空気バネ4をリジッドな支持台に取り替えて、上記鉛直方向の慣性力を測定したところ、当該慣性力は10Gほどもあった。これらの結果から、空気バネによって運搬時にセルスタック2に作用する慣性力を大幅に低減できることが明らかになった。
<実施形態2>
 実施形態2では、振動吸収部材4として、制振ゴムを用いた例を図5に基づいて説明する。
 図5に示す本例のRF電池の運搬構造1では、エンドプレート210と、紙面奥側に隠れるもう一つのエンドプレート220(図2参照)とにそれぞれ、四つの制振ゴム4が設けられている。制振ゴム4は、紙面左右方向に同程度の間隔を空けて設けることが好ましい。制振ゴム4の数は特に限定されない。また、制振ゴム4は天然ゴムでも良いし合成ゴムでも良い。合成ゴムとしては、クロロプレンゴム(polychloroprene)やエチレンプロピレンゴム(ethylene propylene rubber)などを好適に利用することができる。
 制振ゴム4は、長期にわたって振動吸収能を維持することができるため、運搬時の振動吸収部材として好ましい。特に、海上輸送と長距離の陸送を行なう場合、制振ゴム4によって長期にわたり確実に運搬時の振動を吸収することができる。
1 レドックスフロー電池の運搬構造(RF電池の運搬構造)
 2 セルスタック
  21,22 取付部 21A,21B 三角板部 21C 矩形板部
 3 コンテナ
  30 コンテナ底面
 4 振動吸収部材(空気バネまたは制振ゴム)
  40 上片部 41 下片部 42 弾性部
α レドックスフロー電池(RF電池)
100 電池セル 101 隔膜 102 正極セル 103 負極セル
 100P 正極用循環機構 100N 負極用循環機構
 104 正極電極 105 負極電極 106 正極電解液用タンク
 107 負極電解液用タンク 108,109,110,111 導管
 112,113 ポンプ
 120 セルフレーム 121 双極板 122 枠体
 123,124 給液用マニホールド
 125,126 排液用マニホールド
 127 シール部材
 190 給排板 210,220 エンドプレート
200 セルスタック 200s サブスタック
 230 締付機構

Claims (6)

  1.  レドックスフロー電池の電池セルを複数積層してなるセルスタックと、
     前記セルスタックを内部に収納するコンテナと、
     前記コンテナ内で前記セルスタックを鉛直下方から支える振動吸収部材と、
     を備えるレドックスフロー電池の運搬構造。
  2.  前記振動吸収部材は、制振ゴムである請求項1に記載のレドックスフロー電池の運搬構造。
  3.  前記振動吸収部材は、空気バネである請求項1に記載のレドックスフロー電池の運搬構造。
  4.  前記セルスタックは、前記電池セルを複数積層した積層構造物をその両側から挟み込んで締め付ける一対のエンドプレートを備え、
     前記エンドプレートは、その鉛直下方側の部分に前記振動吸収部材が取り付けられる取付部を備える請求項1から請求項3のいずれか1項に記載のレドックスフロー電池の運搬構造。
  5.  レドックスフロー電池の電池セルを複数積層してなるセルスタックを振動吸収部材によって鉛直下方から支持した状態でコンテナ内に収納して、そのコンテナを運搬するレドックスフロー電池の運搬方法。
  6.  レドックスフロー電池の電池セルを複数積層してなるセルスタックと、
     前記セルスタックを鉛直下方から支える振動吸収部材と、
     を備えるレドックスフロー電池。
PCT/JP2017/015633 2016-04-20 2017-04-18 レドックスフロー電池の運搬構造、レドックスフロー電池の運搬方法、およびレドックスフロー電池 WO2017183643A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780024661.XA CN109071107A (zh) 2016-04-20 2017-04-18 氧化还原液流电池的运输结构、氧化还原液流电池的运输方法和氧化还原液流电池
AU2017253304A AU2017253304A1 (en) 2016-04-20 2017-04-18 Redox flow battery transport structure, redox flow battery transport method, and redox flow battery
KR1020187030146A KR20180137493A (ko) 2016-04-20 2017-04-18 레독스 플로우 전지의 운반 구조, 레독스 플로우 전지의 운반 방법, 및 레독스 플로우 전지
EP17785981.6A EP3447835A4 (en) 2016-04-20 2017-04-18 TRANSPORT STRUCTURE OF A REDOX FLUX BATTERY, METHOD FOR TRANSPORTING A REDOX FLUX BATTERY AND REDOX FLUX BATTERY
US16/094,928 US20190097251A1 (en) 2016-04-20 2017-04-18 Redox flow battery transport structure, redox flow battery transport method, and redox flow battery
JP2018513190A JPWO2017183643A1 (ja) 2016-04-20 2017-04-18 レドックスフロー電池の運搬構造、レドックスフロー電池の運搬方法、およびレドックスフロー電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-084541 2016-04-20
JP2016084541 2016-04-20

Publications (1)

Publication Number Publication Date
WO2017183643A1 true WO2017183643A1 (ja) 2017-10-26

Family

ID=60116826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015633 WO2017183643A1 (ja) 2016-04-20 2017-04-18 レドックスフロー電池の運搬構造、レドックスフロー電池の運搬方法、およびレドックスフロー電池

Country Status (7)

Country Link
US (1) US20190097251A1 (ja)
EP (1) EP3447835A4 (ja)
JP (1) JPWO2017183643A1 (ja)
KR (1) KR20180137493A (ja)
CN (1) CN109071107A (ja)
AU (1) AU2017253304A1 (ja)
WO (1) WO2017183643A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108550748A (zh) * 2018-06-05 2018-09-18 安徽艾伊德动力科技有限公司 一种新型动力电池梯次利用前堆放结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02231214A (ja) * 1989-03-03 1990-09-13 Bridgestone Corp 輸送用自動除振装置
JPH092278A (ja) * 1995-06-19 1997-01-07 Kobayashi Hansou Kiki:Kk 搬送物支持装置
JP2000067899A (ja) * 1998-08-20 2000-03-03 Sumitomo Electric Ind Ltd レドックスフロー型2次電池セルスタック
JP2007188773A (ja) * 2006-01-13 2007-07-26 Honda Motor Co Ltd 燃料電池スタック
JP2014505976A (ja) * 2011-01-07 2014-03-06 エナボールト コーポレーション 複数の独立スタックを有するレドックスフロー電池システム
JP2014232664A (ja) * 2013-05-29 2014-12-11 トヨタ自動車株式会社 燃料電池スタック

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4877136A (en) * 1987-04-17 1989-10-31 Bridgestone Corporation Vibration free container for transportation
JP3682244B2 (ja) * 2001-06-12 2005-08-10 住友電気工業株式会社 レドックスフロー電池用セルフレーム及びレドックスフロー電池
CN102148412A (zh) * 2010-02-09 2011-08-10 中大工业集团公司 电动客车电池组自动控制冷却装置
CN202827264U (zh) * 2012-08-22 2013-03-27 国网电力科学研究院武汉南瑞有限责任公司 一种基于钒电池的电力储能专用车
JP6098998B2 (ja) * 2013-09-12 2017-03-22 住友電気工業株式会社 電池用セルスタック、およびレドックスフロー電池
JP6066887B2 (ja) * 2013-11-13 2017-01-25 三菱日立パワーシステムズ株式会社 燃料電池輸送装置
CN103779586B (zh) * 2014-01-13 2016-01-20 江苏绿遥燃料电池系统制造有限公司 一种燃料电池端板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02231214A (ja) * 1989-03-03 1990-09-13 Bridgestone Corp 輸送用自動除振装置
JPH092278A (ja) * 1995-06-19 1997-01-07 Kobayashi Hansou Kiki:Kk 搬送物支持装置
JP2000067899A (ja) * 1998-08-20 2000-03-03 Sumitomo Electric Ind Ltd レドックスフロー型2次電池セルスタック
JP2007188773A (ja) * 2006-01-13 2007-07-26 Honda Motor Co Ltd 燃料電池スタック
JP2014505976A (ja) * 2011-01-07 2014-03-06 エナボールト コーポレーション 複数の独立スタックを有するレドックスフロー電池システム
JP2014232664A (ja) * 2013-05-29 2014-12-11 トヨタ自動車株式会社 燃料電池スタック

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3447835A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108550748A (zh) * 2018-06-05 2018-09-18 安徽艾伊德动力科技有限公司 一种新型动力电池梯次利用前堆放结构

Also Published As

Publication number Publication date
EP3447835A1 (en) 2019-02-27
KR20180137493A (ko) 2018-12-27
JPWO2017183643A1 (ja) 2019-02-28
CN109071107A (zh) 2018-12-21
EP3447835A4 (en) 2019-05-08
AU2017253304A1 (en) 2018-10-25
US20190097251A1 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
US9371009B2 (en) Mount structure for fuel cell stack
US10033062B2 (en) Fuel cell stack and mount structure therefor
CN103493247B (zh) 具有高的结构稳定性的电池组
US9711819B2 (en) Mount structure for fuel cell stack
EP2827428B1 (en) Fuel cell stack system and vehicle with fuel cell stack system
US20170237104A1 (en) Battery cell and redox flow battery
US10283789B2 (en) Fuel cell stack
JP6208050B2 (ja) 燃料電池スタックのマウント構造
KR101209935B1 (ko) 배터리팩 고정장치
US20190229359A1 (en) Exhaust apparatus
WO2017183643A1 (ja) レドックスフロー電池の運搬構造、レドックスフロー電池の運搬方法、およびレドックスフロー電池
JP6731168B2 (ja) 枠体、セルフレーム、セルスタック、およびレドックスフロー電池
US11502324B2 (en) Fuel cell module and method of mounting the fuel cell module
KR102088975B1 (ko) 전력 저장 장치
WO2018105091A1 (ja) レドックスフロー電池
JP6950870B2 (ja) レドックスフロー電池
US9236628B2 (en) Fuel cell system
CN109997269B (zh) 氧化还原液流电池
US20100129706A1 (en) Device with at least one accumulator cell
JP2006049200A (ja) 燃料電池システム
JP6677045B2 (ja) レドックスフロー電池用枠体、レドックスフロー電池、及びセルスタック
JP2015061398A (ja) 燃料電池車両
JP2007022329A (ja) 電源装置の支持構造
US11296345B2 (en) Air cleaner
CN220155577U (zh) 一种氢燃料电池系统电堆封装箱结构

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018513190

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187030146

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017253304

Country of ref document: AU

Date of ref document: 20170418

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017785981

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017785981

Country of ref document: EP

Effective date: 20181120

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785981

Country of ref document: EP

Kind code of ref document: A1