WO2017183340A1 - 溶接および施工条件設定システム、溶接ロボットシステム、溶接および施工条件設定方法ならびに溶接および施工条件設定プログラム - Google Patents

溶接および施工条件設定システム、溶接ロボットシステム、溶接および施工条件設定方法ならびに溶接および施工条件設定プログラム Download PDF

Info

Publication number
WO2017183340A1
WO2017183340A1 PCT/JP2017/008937 JP2017008937W WO2017183340A1 WO 2017183340 A1 WO2017183340 A1 WO 2017183340A1 JP 2017008937 W JP2017008937 W JP 2017008937W WO 2017183340 A1 WO2017183340 A1 WO 2017183340A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
condition
construction
construction condition
parameters
Prior art date
Application number
PCT/JP2017/008937
Other languages
English (en)
French (fr)
Inventor
玄昇 金
健次 定廣
敏之 泉
正俊 飛田
利彦 西村
雄幹 山崎
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201780024192.1A priority Critical patent/CN109070255B/zh
Priority to US16/094,367 priority patent/US10807182B2/en
Priority to KR1020187030041A priority patent/KR102051283B1/ko
Publication of WO2017183340A1 publication Critical patent/WO2017183340A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0953Monitoring or automatic control of welding parameters using computing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/0216Seam profiling, e.g. weaving, multilayer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/025Seam welding; Backing means; Inserts for rectilinear seams
    • B23K9/0256Seam welding; Backing means; Inserts for rectilinear seams for welding ribs on plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • B23K9/1006Power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • B23K9/1087Arc welding using remote control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/005Manipulators for mechanical processing tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/06Control stands, e.g. consoles, switchboards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45104Lasrobot, welding robot

Definitions

  • the present invention relates to a welding robot construction and construction condition setting system, a welding and construction condition setting method, a welding and construction condition setting program, and a welding robot system.
  • Patent Document 1 In order to simplify the teaching operation of the robot, in Patent Document 1, three-dimensional CAD data including various work objects and work target devices stored in advance in three-dimensional CAD, and a registered welding condition database are used.
  • this system In addition to the basic welding condition database registered in advance as basic conditions, this system has an actual welding condition database for registering welding conditions corrected based on the welding results executed based on the generated teaching program. Since both the resulting welding conditions and the welding conditions as basic conditions can be searched, the optimum welding conditions according to the actual work can be set automatically, thus reducing work time and welding tests. Achieves efficiency and resource saving through reduction.
  • the present invention uses a welding and construction condition setting system, a welding and construction condition setting method, a welding and construction condition setting program, and a program that can easily set welding and construction conditions even for those who are not familiar with welding work.
  • the present invention relates to a welding robot system.
  • the present invention is a welding and construction condition setting system for setting welding and construction conditions of a welding robot
  • the welding and construction condition setting system includes an input device, a display device, a control device, and a database.
  • the database includes master condition data stored in advance and user condition data registered at the time of actual welding, and each of the master condition data and the user condition data is a work condition related to a work condition which is a premise of welding.
  • the input device accepts a search operation for at least construction condition information input by the operator, and the control device follows the search operation of the operator , From at least one of the master condition data and the user condition data, The construction condition parameter of the construction condition information corresponding to the search operation is extracted, and the welding condition parameter of the welding condition information corresponding to the extracted construction condition parameter is extracted from at least one of the master condition data and the user condition data, And among the extracted welding condition parameters, an evaluation item that is a result of evaluating at least one of the welding amount or work efficiency is calculated, and the display device displays at least one of the welding condition parameters and the evaluation item.
  • the control device compares the welding cross-sectional area of the welded portion calculated from the extracted construction condition parameter and welding condition parameter with a predetermined threshold value, or between welding conditions in the welded portion. By comparing the finishing speeds, the evaluation items for the welding amount or the work efficiency are displayed step by step.
  • the database has welding condition information determined for each construction condition information
  • the control device displays a lamination diagram of a welded part based on the extracted construction condition parameters and welding condition parameters. Drawing is performed by a drawing function included in the control device, and the display device displays the drawn laminated diagram.
  • the control device calculates the number of search targets that is the number of search targets that satisfy a combination of two parameters among the extracted construction condition parameters and welding condition parameters, and A search target number table indicating the number of search targets is created in a matrix format with one parameter as a key, the display device displays the search target number table, and the display device is an operation received by the input device.
  • the number of search targets selected by the operator falls below a predetermined value, at least one of the welding amount or the work efficiency and the evaluation items are displayed for the search target.
  • the two parameters extracted in the first level of the search operation are the joint shape and the groove shape of the construction condition parameter
  • the two parameters extracted in the second level of the search operation Is the leg length and welding posture of the construction condition parameter
  • the two parameters extracted in the third hierarchy of the search operation are the groove depth and the groove angle of the construction condition parameter, and are extracted in the fourth hierarchy of the search operation.
  • the two parameters to be set are the root face and the welding posture of the construction condition parameter
  • at least one of the two parameters extracted in the hierarchy after the fifth hierarchy of the search operation is the welding condition parameter.
  • the welding condition is a main welding condition for welding on a weld line
  • the control device is associated with the main welding condition in advance and stored in the database. At least one of the crater condition and the termination side condition can be searched and added to the main welding condition, and the back step condition, the start side condition, the crater condition, and the termination side condition are not present.
  • the input device receives a condition input by an operator, and the control device creates a condition to be added with the received condition.
  • control device edits the stacking diagram in accordance with an operator search operation received by the input device, and displays the edited stacking diagram on the display device.
  • the welding robot system of the present invention includes the above welding and construction condition setting system and a welding robot.
  • the present invention is a welding and construction condition setting method for setting welding and construction conditions of a welding robot, wherein the database includes master condition data stored in advance and user condition data registered at the time of actual welding.
  • Each of the master condition data and the user condition data includes construction condition information relating to the construction conditions that are the premise of welding and welding condition information relating to the welding conditions associated with the construction conditions, and the construction condition information input by the operator
  • a construction condition parameter of construction condition information corresponding to the search operation is extracted from at least one of the master condition data and the user condition data, and the master condition data and Construction extracted from at least one of the user condition data Extracting the welding condition parameter of the welding condition information corresponding to the condition information, and calculating an evaluation item that is a result of evaluating at least one of the welding amount or the work efficiency among the extracted welding condition parameters;
  • One and the evaluation items are displayed.
  • a welding and construction condition setting program for causing a control device equipped with a processor to execute the above welding and construction condition setting method is also included in the present invention.
  • FIG. 1 is a schematic configuration diagram of a welding robot system including a welding and construction condition setting system according to an embodiment of the present invention.
  • FIG. 2 is a front view of the robot pendant.
  • FIG. 3 is an enlarged view of a joint and a welded portion for explaining the construction conditions.
  • (A) is an example of a Le-shaped T joint and (b) is an example of a V-shaped serpin.
  • FIG. 4 is a flowchart showing the entire procedure of the welding and construction condition setting method executed by the welding and construction condition setting system.
  • FIG. 5 is a diagram illustrating a search target number table in the first hierarchy.
  • FIG. 6 is a diagram illustrating a search target number table in the second hierarchy.
  • FIG. 7 is a diagram showing a search target list.
  • FIG. 5 is a diagram illustrating a search target number table in the first hierarchy.
  • FIG. 6 is a diagram illustrating a search target number table in the second hierarchy.
  • FIG. 7 is a diagram showing
  • FIG. 8 is a lamination diagram of multi-layer welding.
  • FIG. 9 is a conceptual diagram for explaining peripheral welding conditions.
  • 10A and 10B are diagrams illustrating a state in which a layered diagram is edited.
  • FIG. 10A is a diagram illustrating an editing screen.
  • FIG. 10B is a diagram illustrating an editing result confirmation screen.
  • the welding robot system 1 includes a welding robot 2 and a control device 4 having a robot pendant 3 used as a teaching pendant, for example.
  • the welding robot 2 is a vertical articulated 6-axis industrial robot, and a welding tool 6 composed of a welding torch or the like is attached to a flange portion provided at the tip thereof.
  • the welding robot 2 may be mounted on a slider on which the welding robot 2 itself is mounted and moved.
  • the control device 4 controls the operation of the welding robot 2 by outputting an operation instruction to the welding robot 2 in accordance with a previously taught program (teaching program).
  • the teaching program is created using the robot pendant 3 connected to the control device 4.
  • the teaching program may be created using, for example, an offline teaching system using a personal computer. In any case, the teaching program is created in advance before the welding robot 2 actually performs the welding operation, and instructs the operation of the welding robot 2 during the welding operation.
  • the robot pendant 3 is provided with a screen unit 32 (monitor unit) for displaying various types of information, and operation buttons for selecting information on the screen unit 32 and searching for welding conditions. 31 and a numeric keypad 33 are provided.
  • the operation button 31 is also used as an input button for operating the welding robot 2 or teaching the welding robot 2.
  • the control device 4 and the robot pendant 3 connected to the control device 4 include information on welding specifications such as a welding wire (diameter and standard), shielding gas used, welding power source (pulse, constant voltage), joint type, opening
  • welding specifications such as a welding wire (diameter and standard), shielding gas used, welding power source (pulse, constant voltage), joint type, opening
  • a database in which past results of welding conditions such as welding current, welding voltage, welding speed, torch attitude, and weaving are recorded is stored for weld joint groove information such as the tip shape and welding attitude.
  • the robot pendant 3 searches for welding conditions such as welding current, welding voltage, welding speed, and torch posture in accordance with welding joint information such as the joint to be constructed, groove shape, and welding posture.
  • the search result (welding conditions) can be set for the welding robot 2.
  • the database 7 in this embodiment is constructed by a storage device (such as a hard disk) installed inside the control device 4, but is constructed by a server or the like connected to the control device 4 via a network. There are no special restrictions on the location and format of the database.
  • the welding and construction condition setting system 8 includes a database 7, a control device 4, and a robot pendant 3 that functions as an input device and a display device.
  • the welding and construction condition setting system 8 is a system for setting welding and construction conditions. Conventionally, it has been common practice for a welding operation to be evaluated by an expert who sets welding and construction conditions suitable for the target welding operation based on experience and actually performs welding. Even when a computer or the like is used for setting, handling of three-dimensional CAD data is required, and specialized knowledge is required.
  • the robot pendant 3 functions as an input device that receives a predetermined search operation input by the operator using the operation buttons 31 and the numeric keypad 33, and also functions as a display device that displays predetermined information on the screen unit 32.
  • the control device 4 includes a processor and a memory for information processing, and controls the operation of the welding robot 2 by outputting an operation instruction to the welding robot 2 in accordance with a previously taught program (teaching program) as described above. Is. Further, the processor-equipped control device 4 that performs information processing extracts various information from a database 7 to be described later in accordance with the search operation of the operator input by the robot pendant 3, performs predetermined processing, Output.
  • the memory of the control device 4 stores a program for causing the control device 4 (the processor) to execute the welding and construction condition setting method as the processing.
  • the database 7 is a storage device that stores welding and construction conditions.
  • the database 7 stores master condition data and user condition data as welding and construction conditions.
  • the master condition data should be called basic condition data.
  • basic condition data For example, for typical welding methods, data including welding condition information and construction condition information stored in advance from the time of construction of the database 7, and related welding in advance. Specification information (material characteristic data) is also included and stored.
  • the user condition data is assigned new welding condition information and welding specification information saved by the individual user in the control device 4 during actual welding. Is condition data for registering (hereinafter referred to as “user registration condition information”). This user condition data has different user registration condition information for each individual user, and is condition data used uniquely by the user.
  • the master condition data includes construction condition information relating to the construction conditions, welding condition information relating to the welding conditions, and welding specification information
  • the user condition data includes construction condition information relating to the construction conditions, welding condition information relating to the welding conditions, and welding information.
  • the construction condition information is information on construction conditions determined before welding, and is mainly information on the shape of the joint.
  • the welding condition information and the welding specification information are information on welding conditions to be followed at the time of welding, and are mainly information on welding methods and conditions.
  • the user registration condition information is welding and construction condition information registered based on the construction condition information and welding conditions arbitrarily set by the user. Examples of the construction condition information, welding condition information, welding specification information, and user registration condition information include the following, but are not particularly limited to the following.
  • Construction condition information joint shape, leg length, plate thickness, groove shape, groove depth, groove shape, bead shape, welding position, other welding condition information: welding current, arc voltage, welding speed, other welding specification information : Welding wire (diameter and standard), shield gas used, welding power source (pulse, constant voltage), other user registration condition information: Created based on conditions and construction conditions saved by the user in the control device 4 during actual welding Joint shape, leg length, plate thickness, groove shape, groove depth, groove shape, bead shape, welding position, welding current, arc voltage, welding speed, etc.
  • FIG. 3 is an enlarged view of the joint and the welded portion for explaining the construction conditions.
  • FIG. 3A is an example in which the T joints F1 and F2 are welded at the lay-shaped welded portion W1, and FIG. An example in which the serpins F3 and F4 are welded at the welding portion W2 of the mold is shown.
  • construction condition information is obtained such that the joint shape is a T joint, and the groove shape is a mold.
  • construction condition information is obtained such that the joint shape is a serpin and the groove shape is a V shape.
  • FIG. 4 is a flowchart showing the entire procedure of the welding and construction condition setting method executed by the welding and construction condition setting system 8.
  • the operator inputs a search area (range) for searching for welding and construction conditions using the robot pendant 3.
  • the control device 4 sets a search area range (step S10).
  • the search area there are 1) all data (all master condition data and user condition data), 2) master condition data, and 3) user condition data in the database 7.
  • all data may be set as a default in advance as a search area, and 1) all data may be automatically set as a search area if there is no search area setting operation.
  • the control device 4 may set the search area in the order of 1) ⁇ 2) ⁇ 3).
  • the control device 4 determines the number of search targets that satisfy the combination of the construction condition parameters of the two construction condition information in the first hierarchy of the search operation.
  • the number of search objects is calculated.
  • Two parameters extracted in the first hierarchy of the search operation are predetermined as a joint shape and a groove shape which are construction condition parameters.
  • the joint shape and the groove shape are selected as the two pieces of construction condition information, and the number of search targets satisfying the combination of the construction condition parameters is calculated.
  • the construction condition parameter is a parameter that represents a specific type or numerical value for each construction condition information.
  • the construction condition information such as the joint shape includes construction condition parameters such as “T (joint)”, “corner”, and “overlap”.
  • the construction condition information such as the groove shape includes construction condition parameters such as “fillet”, “le-shaped”, and “V-shaped”.
  • control device 4 creates a search target number table indicating the number of search targets as shown in FIG. 5 in the form of a matrix using two pieces of construction condition information as keys, and the robot pendant 3 includes this search target number table.
  • a search screen is displayed and displayed on the screen unit 32 (step S20).
  • the number of search targets that satisfy the two parameters “T (joint)” and “fillet” is 235.
  • the operability is improved by displaying the two construction condition information in the form of a matrix.
  • the control device 4 calculates the number of search targets, which is the number of search targets that satisfy the combination of the construction condition parameters of the two construction condition information, in the second hierarchy of the search operation.
  • Two construction condition parameters extracted in the second hierarchy of the search operation are predetermined as a leg length and a welding posture.
  • the leg length and the welding posture are selected as the two pieces of construction condition information, and the number of search targets satisfying the combination of the construction condition parameters is calculated.
  • the construction condition information of leg length includes construction condition parameters such as “3.0 * 3.0”, “4.0 * 4.0”, “4.5 * 4.5”.
  • the construction condition information such as the welding posture includes construction condition parameters such as “downward”, “horizontal”, and “horizontal 2”.
  • control device 4 creates a search target number table indicating the number of search targets as shown in FIG. 6 in the form of a matrix using two pieces of construction condition information as keys, and the robot pendant 3 includes this search target number table.
  • a search screen is displayed and displayed on the screen unit 32 (step S40).
  • the number of search targets that satisfies the two parameters “leg length 6.0 * 6.0” and “downward” is ten.
  • the control device 4 determines whether or not the number of search targets that is a combination of the construction condition parameters selected by the operator, that is, the number of selection search targets R is equal to or less than a predetermined number (value) n. To do. For example, assume that a predetermined number is 15. In FIG. 6, when the operator selects a search target that satisfies the two parameters “leg length 6.0 * 6.0” and “downward”, the selection search target number R is 10. In this case, n ⁇ R is established. When this condition is satisfied (step S50; Yes), the control device 4 creates a search target list that individually indicates the content of the search target, not the number of search targets, and the robot pendant 3 stores the search target list. This is displayed on the screen unit 32 (step S60). FIG. 7 shows an example of a search target list.
  • the search target number table of the two construction condition parameters shown in FIG. 5 is created and displayed in the first hierarchy of the search operation (step S20), and further in the second hierarchy which is a lower hierarchy thereof.
  • a search target number table of two construction condition parameters shown in FIG. 6 is created and displayed (step S40). That is, the first layer is a combination of joint shape ⁇ groove shape, and the second layer is a combination of leg length ⁇ welding posture.
  • the search target list of FIG. 7 is displayed.
  • step S50 when the number of selected search targets R, which is the number of selected search targets in the second hierarchy, is still large and the predetermined number n ⁇ the number of selected search targets R is not satisfied (step S50; No), the process returns to step S20.
  • Search target tables in the third and subsequent layers of the search operation are created.
  • the combination of the two construction condition parameters in this case is arbitrary, and a search target number table composed of a combination of the construction condition parameter and the welding condition parameter may be created and displayed.
  • First layer Joint shape x groove shape Second layer: Leg length x Welding posture Third layer: Groove depth x Groove angle Fourth layer: Root face x Welding posture Fifth layer: Welding current x Welding speed Level: Welding speed x Welding posture 7th layer: Welding current x Welding posture 8th layer: Welding speed x Heat input
  • the two parameters extracted in the first hierarchy of the search operation are the joint shape and the groove shape of the construction condition parameter
  • the two parameters extracted in the second hierarchy of the search operation are the leg length of the construction condition parameter.
  • Welding parameters, the two parameters extracted in the third level of the search operation are the groove depth and the groove angle of the construction condition parameter
  • the two parameters extracted in the fourth level of the search operation are: It is preferable that the root face and the welding posture are the construction condition parameters.
  • the fourth level up to the fourth level is a combination of two construction condition parameters, and from the fifth level, it is a combination of two construction condition parameters.
  • the fifth and subsequent layers it is preferable that at least one of the two extracted parameters is a welding condition parameter.
  • the screen transitions from a table indicating the number of search targets (search target number table) to a list (search target list) that individually indicates the search targets.
  • search target can be prevented from being displayed on the screen, and the search can be facilitated.
  • a search target list may be displayed. That is, regardless of the magnitude relationship between n and R, when the operator operates any key on the robot pendant 3, the screen directly shifts from the search target number table of FIG. 5 or 6 to the search target list screen of FIG. May be.
  • the control device 4 further extracts the welding condition parameter of the welding condition information corresponding to the extracted construction condition parameter when creating the search target list.
  • the welding condition parameter is a parameter representing a specific type or numerical value for each welding condition information.
  • the finishing speed is one of the welding condition parameters, and specific values such as “48.0”, “46.0”, “45.0”, etc. It is represented by a numerical value.
  • the weld cross-sectional area is also one of the welding condition parameters, and is expressed by specific numerical values such as “14.77”, “15.42”, “16.71”, and the like.
  • the robot pendant 3 displays a search target list including at least one welding condition parameter for each search target and an evaluation item that is a result calculated by the control device 4. Furthermore, the welding condition parameters included in the search target list include at least one parameter related to the welding amount or work efficiency. In the example of FIG. ”, (More detailed)“ finishing speed ”parameters related to work efficiency are included. In the example of FIG. The “finishing speed (working efficiency)” in the search condition welding target parameter 1 is 48.0, the “current” is 330 to 330, and the “welding cross-sectional area (welding amount)” is 14.77. Item "is high / high.
  • the control device 4 calculates the evaluation items for the welding amount step by step by comparing the weld cross section of the welded portion calculated from the extracted construction condition parameter and the welding condition parameter with a predetermined threshold value.
  • the robot pendant 3 displays the stepwise evaluation items.
  • a lamination diagram L of the welded portion is additionally shown (not essential), and the weld cross-sectional area can be visually grasped.
  • the weld cross-sectional area A is a cross-sectional area calculated from the welding condition parameters (welding speed, welding current, wire diameter, wire feeding speed, etc.) as described above.
  • the weld cross-sectional area B is a cross-sectional area calculated from the groove shape and the joint shape, and is a predetermined threshold for the weld cross-sectional area A.
  • the weld cross-sectional area A is obtained as follows, for example.
  • the following elements are the basic conditions.
  • -Welding speed V: V (cm / min) (V ⁇ 10) / 60 (mm / sec) ⁇ Wire diameter R (mm)
  • Wire supply speed S: S (m / min) (S ⁇ 1000) / 60 (mm / sec) ⁇
  • the welding amount (volume) per unit time (mm 3 / sec) is ( ⁇ ⁇ ⁇ ⁇ R 2 ⁇ S ⁇ 1000) / 60.
  • the welding cross-sectional area A which is the total amount of welding is calculated
  • required from welding cross-sectional area A (SIGMA) (welding cross-sectional area of each pass).
  • the weld cross-sectional area B can be calculated by obtaining the area of a plane figure in which the groove shape and the joint shape are drawn by the drawing function.
  • the groove shape is a fillet that is a right triangle in plan view, and the lengths of two orthogonal sides of the right triangle are S1 and S2, the welding is the entire cross-sectional area.
  • This ratio is a comparison between the weld cross-sectional area and a predetermined threshold value, and is a measure of the quality of the weld cross-sectional area A. Therefore, 82.0% (or ⁇ 18.0%) is added to the screen of FIG. It may be displayed.
  • control device 4 compares the finishing speed of the welded portion calculated from the extracted construction condition parameter and welding condition parameter between each search target, that is, between each welding condition, thereby gradually evaluating the evaluation items for the work efficiency.
  • the robot pendant 3 displays the stepwise evaluation items.
  • the stepwise evaluation items include, for example, three-level evaluation items such as “high”> “standard”> “low”.
  • the finishing speed may be evaluated based on a comparison of welding conditions by converting a multi-pass welding speed into a one-pass welding speed.
  • D welding length
  • T total welding time of all passes
  • t welding time for each pass
  • the welding condition parameters in the search target list include, for example, the following.
  • the control device 4 is not limited to the welding cross-sectional area and the finishing speed, and can also calculate evaluation items based on these welding condition parameters.
  • the search target list in FIG. 7 shows an example in which the layered view L of the welded portion is additionally shown.
  • This lamination diagram also shows welding paths (1, 2, 3,... 15) when the welded portion W3 welded by the joints F5 and F6 as shown in FIG. 8 is multi-layer welding. It is possible to draw and display in the form. That is, the database has in advance welding condition information determined for each construction condition information in the master condition data and the user condition data. Then, the control device 4 draws the lamination diagram of the welded portion with the drawing function as shown in FIG. 7 or 8 based on the extracted construction condition parameter and welding condition parameter, and the robot pendant 3 displays the drawn lamination diagram on the screen. This is displayed on the part 32.
  • the information can also be drawn.
  • the two-dot chain line portion of FIG. 8 indicates that weaving is performed 2 mm to the left and right with respect to the weaving reference plane (torch direction) in one pass.
  • the operator who has seen the search target list described above selects one search target from the search target list of FIG. 7 and is a condition related to the main welding portion, and is the main welding condition (WM) of FIG. 9 for welding on the weld line. ) (Step S70).
  • a peripheral weld portion for reinforcing the periphery of the main weld portion is provided.
  • the operator can search for at least one peripheral welding condition for the peripheral welding portion that is associated with the main welding condition in advance and stored in the database 7 and adds it to the main welding condition. Is possible.
  • the robot pendant 3 accepts the conditions (the main welding or other peripheral welding conditions) input by the operator, and the controller 4 creates the conditions to be added with the accepted conditions. You may make it do.
  • the peripheral welding conditions include the following conditions, for example.
  • Back step condition A condition for determining the welding start position.
  • Start side condition A condition at the start of the main welding.
  • Termination side condition WE: A condition at the end of the main welding.
  • Crater condition Cr: A condition for preventing welding dents.
  • the operator can also make a predetermined edit on the selected search target (step S80).
  • the control device 4 edits the stacked diagram of FIGS. 7 and 8 according to the search operation of the operator received by the robot pendant 3, and displays the edited stacked diagram on the screen unit 32.
  • the operator edits the layered view, and the edited operation is displayed on the screen unit 32 of the robot pendant 3.
  • FIG. 10A shows an editing screen
  • FIG. 10B shows an editing result confirmation screen, which are displayed on the screen unit 32 of the robot pendant 3, respectively.
  • the operator can edit the target position of the torch (welding shift left / right / up / down) and the weaving amplitude on the editing screen of FIG. 10 (a), and on another screen, the welding current and speed can be edited. Is possible. That is, it is an edit screen for welding conditions (target position, weaving amplitude, welding current / speed, etc.). Note that the operator can select the welding conditions from the search target list screen of FIG. 7 and confirm the details such as the target position.
  • the operator confirms the editing contents for each path on the editing result confirmation screen shown in FIG. For example, it is possible to confirm the numerical value of the cross-sectional area according to the welding current / speed, the drawing, and the heat input.
  • the operator selects welding conditions from the search target list screen of FIG. 7 and confirms details such as the welding amount (welding cross-sectional area) and the heat input amount for each pass shown in FIG. 10B. be able to.
  • the operator can edit the quality of the weld by the selected search target while visually evaluating it.
  • step S90 the operator performs an evaluation on the welding target object by actual welding and saves it as a search target condition, thereby being associated with the search target condition of the storage.
  • construction condition parameter construction condition parameter
  • welding condition information welding information parameter
  • the present invention provides a welding and construction condition setting method for setting welding and construction conditions of a welding robot, and a welding and construction condition setting program for causing a computer to execute such a welding and construction condition setting method. Also provide. As described above, this program is stored in a memory or the like of the control device 4 (not shown), and executes a series of operations in cooperation with the processor of the control device 4, but the storage location, device, and the like are not particularly limited. This welding and construction condition setting program is different from the operation instruction teaching program for the welding robot 2.
  • the master condition data stored in advance in the database and the user condition data registered during actual welding are included.
  • the construction condition information and the welding condition parameters of the construction condition information and the welding condition information are extracted from these data.
  • the control device calculates an evaluation item that is a result of evaluating at least one of the welding amount or work efficiency, and the display device displays at least one of the welding condition parameters and the evaluation item. Therefore, even beginners of welding work can easily search for appropriate welding and construction conditions, and can set appropriate welding and construction conditions while referring to at least one of the welding condition parameters and evaluation items. Therefore, it is possible to realize highly accurate welding with high reproducibility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Robotics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Numerical Control (AREA)
  • Manipulator (AREA)
  • Arc Welding Control (AREA)

Abstract

溶接ロボットの溶接および施工条件を設定するための溶接および施工条件設定システムにおいて、制御装置が、操作者の検索操作にしたがって、マスタ条件データおよびユーザー条件データの少なくとも一つから、検索操作に対応した施工条件情報の施工条件パラメータを抽出し、前記マスタ条件データおよび前記ユーザー条件データの少なくとも一つから、抽出した施工条件パラメータに対応した溶接条件情報の溶接条件パラメータを抽出し、かつ、抽出した溶接条件パラメータのうち、溶着量または作業能率の少なくとも1つを評価した結果である評価項目を算出し、表示装置が、溶接条件パラメータの少なくとも1つおよび前記評価項目を表示する。

Description

溶接および施工条件設定システム、溶接ロボットシステム、溶接および施工条件設定方法ならびに溶接および施工条件設定プログラム
 本発明は、溶接ロボットの溶接および施工条件設定システム、溶接および施工条件設定方法、溶接および施工条件設定プログラムならびに溶接ロボットシステムに関する。
 現在、種々の産業分野でロボットが使用されている。このような産業用のロボットが所定の作業に適合するように動作するためには、一般的に、作業に適合した動作の教示作業を行うことが必要である。この教示作業は、ロボットを実際に動作させ、動作を観察したうえで行う必要があるため、労力を要するものである。
 とりわけ溶接作業に至っては、各施工条件に合わせ最適な溶接条件を設定しなければならず、施工条件、溶接条件の設定においては多数の要素、パラメータ、これらの組み合わせが存在し、条件の最適化のためには溶接作業の熟練者の経験に基づいて設定していくため、溶接作業の初心者にいたっては過大な労力を要している。
 このロボットの教示作業の簡略化に対し、特許文献1では、三次元CADに予め格納されている種々の作業対象物及び被作業対象機器からなる三次元CADデータならびに、登録された溶接条件データベースを用い、作業部位に関する情報と求められる溶接結果から、作業のための溶接条件の設定を行う溶接条件設定方法を提案している。本システムは、予め基本条件として登録される基本溶接条件データベース以外に、生成された教示プログラムに基づいて実行された溶接結果により修正された溶接条件を登録する実溶接条件データベースを持ち、実際の作業結果としての溶接条件と基本条件としての溶接条件の、両方のデータベースを検索することができるため、実際の作業に応じた最適な溶接条件を自動的に設定でき、そのため作業時間の短縮と溶接テスト削減による効率化、省資源化を実現している。
日本国特開2000-351070号公報
 しかしながら、特許文献の発明においては、溶接条件などの溶接および施工条件の設定に三次元CADデータを必要とし、CADに関する知識が必要となる。また、求められた溶接条件に従った現実の溶接がどのような結果をもたらすかを定性的に予測することは困難である。例えば、溶接条件に従った溶接のビード形状、溶着量や溶接効率が、定性的にどのような結果をもたらすかの予測は困難であり、溶接条件の熟練者の経験が必要となることに変わりはない。
 本発明は、溶接作業に詳しくない者であっても溶接および施工条件の設定が容易に可能な溶接および施工条件設定システム、溶接および施工条件設定方法、溶接および施工条件設定プログラムおよびこれらを用いた溶接ロボットシステムに関する。
 本発明は、溶接ロボットの溶接および施工条件を設定するための溶接および施工条件設定システムであって、当該溶接および施工条件設定システムは、入力装置と、表示装置と、制御装置と、データベースとを備え、前記データベースは、予め記憶されたマスタ条件データおよび実際の溶接時に登録されるユーザー条件データを含み、前記マスタ条件データおよび前記ユーザー条件データの各々が、溶接の前提となる施工条件に関する施工条件情報および前記施工条件に関連付けられた溶接条件に関する溶接条件情報を含み、前記入力装置が、操作者が入力する少なくとも施工条件情報の検索操作を受け付け、前記制御装置が、操作者の検索操作にしたがって、前記マスタ条件データおよび前記ユーザー条件データの少なくとも一つから、検索操作に対応した施工条件情報の施工条件パラメータを抽出し、前記マスタ条件データおよび前記ユーザー条件データの少なくとも一つから、抽出した施工条件パラメータに対応した溶接条件情報の溶接条件パラメータを抽出し、かつ、抽出した溶接条件パラメータのうち、溶着量または作業能率の少なくとも1つを評価した結果である評価項目を算出し、前記表示装置が、溶接条件パラメータの少なくとも1つおよび前記評価項目を表示する。
 本発明の一実施態様として、例えば前記制御装置は、抽出した施工条件パラメータおよび溶接条件パラメータから算出した溶接部分の溶接断面積を予め決められた閾値と比較する、または当該溶接部分における溶接条件間の仕上げ速度を比較することにより、前記溶着量または前記作業能率に対する前記評価項目を段階的に表示する。
 本発明の一実施態様として、例えば前記データベースは、施工条件情報ごとに定められた溶接条件情報を有し、前記制御装置は、抽出した施工条件パラメータおよび溶接条件パラメータに基づき溶接部分の積層図を前記制御装置に含まれる描画機能によって描画し、前記表示装置が、描画された積層図を表示する。
 本発明の一実施態様として、例えば前記制御装置は、抽出した施工条件パラメータおよび溶接条件パラメータのうち、二つのパラメータの組み合わせを満たす検索対象の各々の数である検索対象数を算出し、前記二つのパラメータをキーとしたマトリックスの形式で、検索対象数を示す検索対象数表を作成し、前記表示装置が前記検索対象数表を表示し、前記表示装置は、前記入力装置が受け付けた、操作者が選択した検索対象の検索対象数が所定の値以下になった場合に、当該検索対象について、前記溶着量または前記作業能率の少なくとも1つ、および前記評価項目を表示する。
 本発明の一実施態様として、例えば検索操作の第1階層において抽出される二つのパラメータが、施工条件パラメータの継手形状と開先形状であり、検索操作の第2階層において抽出される二つのパラメータが、施工条件パラメータの脚長と溶接姿勢であり、検索操作の第3階層において抽出される二つのパラメータが、施工条件パラメータの開先深さと開先角度であり、検索操作の第4階層において抽出される二つのパラメータが、前記施工条件パラメータのルートフェイスと溶接姿勢であり、検索操作の第5階層以降の階層において抽出される二つのパラメータのうち少なくとも一つが、溶接条件パラメータである。
 本発明の一実施態様として、例えば溶接条件が溶接線上を溶接する本溶接条件であり、前記制御装置は、前記本溶接条件に予め関連付けられ、前記データベースに記憶されたバックステップ条件、始端側条件、クレータ条件、終端側条件のうち少なくとも一つを検索し、前記本溶接条件に付加可能であり、前記バックステップ条件、前記始端側条件、前記クレータ条件、前記終端側条件のうち存在しない条件について、前記入力装置が、操作者が入力する条件を受け付け、前記制御装置が当該受け付けた条件をもって付加する条件を作成する。
 本発明の一実施態様として、例えば前記制御装置は、前記入力装置が受け付けた操作者の検索操作にしたがって、前記積層図を編集し、前記表示装置が編集された前記積層図を表示する。
 本発明の溶接ロボットシステムは、上記の溶接および施工条件設定システムと、溶接ロボットとを含む。
 また、本発明は溶接ロボットの溶接および施工条件を設定するための溶接および施工条件設定方法であって、データベースが、予め記憶されたマスタ条件データおよび実際の溶接時に登録されるユーザー条件データを含み、前記マスタ条件データおよび前記ユーザー条件データの各々が、溶接の前提となる施工条件に関する施工条件情報および前記施工条件に関連付けられた溶接条件に関する溶接条件情報を含み、操作者が入力する施工条件情報の検索操作を受け付け、操作者の検索操作にしたがって、前記マスタ条件データおよび前記ユーザー条件データの少なくとも一つから、検索操作に対応した施工条件情報の施工条件パラメータを抽出し、前記マスタ条件データおよび前記ユーザー条件データの少なくとも一つから、抽出した施工条件情報に対応した溶接条件情報の溶接条件パラメータを抽出し、抽出した溶接条件パラメータのうち、溶着量または作業能率の少なくとも1つを評価した結果である評価項目を算出し、溶接条件パラメータの少なくとも1つおよび前記評価項目を表示する。
 上記溶接および施工条件設定方法をプロセッサ搭載の制御装置に実行させるための溶接および施工条件設定プログラムも本発明に含まれる。
 本発明によれば、溶接作業の初心者であっても容易に適切な溶接および施工条件を検索・設定が可能であり、精度の高い溶接を高い再現性をもって実現することができる。
図1は、本発明の実施形態に係る溶接および施工条件設定システムを含む溶接ロボットシステムの概略構成図である。 図2は、ロボットペンダントの正面図である。 図3は、施工条件を説明するための継手と溶接部分の拡大図であり、(a)はレ型のT継手の例であり、(b)V型のサーピンの例である。 図4は、溶接および施工条件設定システムが実行する溶接および施工条件設定方法の全体の手順を示すフローチャートである。 図5は、第1階層の検索対象数表を示す図である。 図6は、第2階層の検索対象数表を示す図である。 図7は、検索対象リストを示す図である。 図8は、多層盛溶接の積層図である。 図9は、周辺溶接条件を説明する概念図である。 図10は、積層図を編集する状態を示す図であり、(a)は、編集画面を示す図であり、(b)は、編集結果確認画面を示す図である。
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。まず、本発明の溶接ロボットの溶接および施工条件を設定するための溶接および施工条件設定システムを説明する前に、本発明が適用される溶接ロボットシステムについて、述べることとする。
 図1に示すように、溶接ロボットシステム1は、溶接ロボット2と、例えば教示ペンダントとして用いられるロボットペンダント3を有する制御装置4と、を有している。
 溶接ロボット2は垂直多関節型の6軸の産業用ロボットであり、その先端に設けられたフランジ部に溶接トーチなどから構成される溶接ツール6が取り付けられている。この溶接ロボット2は、溶接ロボット2自体を搭載し移動させるスライダに搭載されていてもよい。
 制御装置4は、溶接ロボット2に対する動作指示を予め教示されたプログラム(教示プログラム)に従って出力することで溶接ロボット2の動作を制御するものである。教示プログラムは、制御装置4に接続されたロボットペンダント3を使用して作成する。尚、教示プログラムの作成は、例えばパソコンを利用したオフライン教示システムを使用してもよい。いずれの場合であっても、教示プログラムは、溶接ロボット2が実際に溶接作業を行う前に予め作成されて、溶接作業中の溶接ロボット2の動作を指示するものである。
 図2に示すように、ロボットペンダント3には、各種情報を表示するための画面部32(モニタ部)が設けられると共に、画面部32における情報を選択し、溶接条件を検索するための操作ボタン31やテンキー33が設けられている。操作ボタン31は、溶接ロボット2を操作したり、溶接ロボット2に対するティーチングを行うための入力ボタンとしても用いられる。
 このロボットペンダント3においては、溶接条件として記録されたデータベースに対して、対象となる溶接継手情報を検索可能となっている。具体的には、制御装置4やそれに繋がるロボットペンダント3には、溶接ワイヤ(径や規格)、使用するシールドガス、溶接電源(パルス、定電圧)などの溶接諸元に関する情報、継手種類、開先形状、溶接姿勢などの溶接継手開先情報に対し、溶接電流、溶接電圧、溶接速度、トーチ姿勢、ウィービングなどの溶接条件の過去実績などが記録されたデータベースが保存されている。
 このデータベースを用いて、例えば、ロボットペンダント3において、施工する継手、開先形状、溶接姿勢などの溶接継手情報に合せて、溶接電流、溶接電圧、溶接速度、トーチ姿勢などの溶接条件を検索し、検索した結果(溶接条件)を溶接ロボット2に対して設定することができるようになっている。尚、本実施形態におけるデータベース7は、制御装置4の内部に設置された記憶装置(ハードディスクなど)にて構築されているが、ネットワークを介して制御装置4に接続されたサーバーなどで構築してもよく、データベースの場所、形式などは特限定されない。
 以下、本発明の実施形態、すなわち、溶接および施工条件を設定するための溶接および施工条件設定システム8について説明する。溶接および施工条件設定システム8は、データベース7と、制御装置4と、入力装置および表示装置として機能するロボットペンダント3とを備える。
 溶接および施工条件設定システム8は、溶接および施工条件を設定するためのシステムである。従来より溶接作業は熟練者が経験により目標とする溶接作業に適合した溶接および施工条件を設定し、実際に溶接を行いながら評価することが一般的であった。たとえ設定にコンピュータ等を使用する場合であっても、三次元CADデータの取り扱いを必要とし、専門的な知識が必要であった。
 本発明のシステムを使用することにより、溶接作業に詳しくない者であっても、目標とする溶接作業に適合した溶接および施工条件を検索し、選択し、かつ選択した溶接および施工条件による溶接の評価を容易に行うことが可能となる。よって、溶接の種類が変わったり、操作者が変わっても再現性の高い溶接結果が得られることになる。
 ロボットペンダント3は、操作ボタン31やテンキー33を用いて操作者が入力する所定の検索操作を受け付ける入力装置として機能するとともに、画面部32により所定の情報を表示する表示装置として機能する。
 制御装置4は情報処理のためのプロセッサとメモリを備えており、上述した様に溶接ロボット2に対する動作指示を予め教示されたプログラム(教示プログラム)に従って出力することで溶接ロボット2の動作を制御するものである。さらに情報処理をするプロセッサ搭載の制御装置4は、ロボットペンダント3により入力された操作者の検索操作にしたがって、種々の情報を後述するデータベース7から抽出し、所定の処理を施し、ロボットペンダント3に出力する。制御装置4のメモリには、当該処理である溶接および施工条件設定方法を制御装置4(のプロセッサ)に実行させるためのプログラムが記憶されている
 データベース7は、溶接および施工条件を記憶した記憶装置である。本実施形態では、データベース7は溶接および施工条件として、マスタ条件データ、ユーザー条件データを記憶している。マスタ条件データが基本条件データと呼ぶべきもので、例えば代表的な溶接方法について、データベース7の構築時から予め記憶されている溶接条件情報および施工条件情報を含むデータであって、予め関連する溶接諸元情報(材料の特性データ)も含まれて記憶されている。一方、ユーザー条件データは、基本となる溶接条件情報および施工条件情報に加え、個別のユーザーが実際の溶接時に制御装置4に保存した溶接条件と溶接諸元情報を割り当てて、新たな施工条件情報を登録(以降、「ユーザー登録条件情報」とする)する条件データである。このユーザー条件データは個別のユーザー毎にユーザー登録条件情報が異なるものであり、当該ユーザーが固有に使用する条件データである。
 溶接および施工条件には、溶接の前提となる施工条件および当該施工条件に関連付けられた溶接条件と溶接諸元およびユーザーによって確立されたユーザー登録条件が存在する。そこで、マスタ条件データは、施工条件に関する施工条件情報および溶接条件に関する溶接条件情報と溶接諸元情報を含むみ、ユーザー条件データは、施工条件に関する施工条件情報および溶接条件に関する溶接条件情報と溶接諸元情報、ユーザー登録条件情報を含む。施工条件情報は、溶接を行う前から決まっている施工条件に関する情報であり、主として継手の形状などに関する情報である。一方、溶接条件情報と溶接諸元情報は、溶接時に従うべき溶接条件に関する情報であり、主として溶接の方法・条件に関する情報である。ユーザー登録条件情報は施工条件情報とユーザーが任意で設定した溶接条件をもとに登録した溶接および施工条件情報である。施工条件情報、溶接条件情報、溶接諸元情報、ユーザー登録条件情報には以下のようなものが挙げられるが、特に以下のものに限定されるわけではない。
施工条件情報:継手形状、脚長、板厚、開先形状、開先深さ、開先形状、ビード形状、溶接姿勢、その他
溶接条件情報:溶接電流、アーク電圧、溶接速度、その他
溶接諸元情報:溶接ワイヤ(径や規格)、使用するシールドガス、溶接電源(パルス、定電圧)、その他
ユーザー登録条件情報:ユーザーが実際の溶接時に制御装置4に保存した条件と施工条件を基に作成した継手形状、脚長、板厚、開先形状、開先深さ、開先形状、ビード形状、溶接姿勢、溶接電流、アーク電圧、溶接速度、その他
 図3は、施工条件を説明するための継手と溶接部分の拡大図であり、図3(a)はレ型の溶接部分W1でT継手F1、F2が溶接した例、図3(b)V型の溶接部分W2でサーピンF3、F4が溶接した例を示す。図3(a)の例では、継手形状がT継手、開先形状がレ型といった施工条件情報が得られる。図3(b)の例では、継手形状がサーピン、開先形状がV型といった施工条件情報が得られる。
 図4は、溶接および施工条件設定システム8が実行する溶接および施工条件設定方法の全体の手順を示すフローチャートである。まず操作者がロボットペンダント3により溶接および施工条件を検索する検索領域(範囲)を入力する。入力操作に従い、制御装置4は、検索領域範囲を設定する(ステップS10)。検索領域には、データベース7の1)全データ(マスタ条件データおよびユーザー条件データの全て)、2)マスタ条件データ、3)ユーザー条件データが存在する。例えば検索領域として1)全データを予めデフォルトとして設定しておき、検索領域の設定操作がなければ、自動的に1)全データを検索領域として設定してもよい。また、操作者の入力操作に従い、制御装置4は、1)→2)→3)の順で検索領域を設定してもよい。
 ステップS10で溶接および施工条件を検索する検索領域が決定された後、制御装置4は検索操作の第1階層において、二つの施工条件情報各々の施工条件パラメータの組み合わせを満たす検索対象の各々の数である検索対象数を算出する。検索操作の第1階層において抽出される二つのパラメータは、施工条件パラメータである継手形状および開先形状として予め定められている。
 すなわち、図5の例では、二つの施工条件情報として継手形状、開先形状が選択され、各々の施工条件パラメータの組み合わせを満たす検索対象の各々の数が算出されている。施工条件パラメータとは、各施工条件情報について具体的な種類や数値などを表すパラメータである。例えば継手形状という施工条件情報には、「T(継手)」、「角」、「重ね」などの施工条件パラメータが含まれる。また、開先形状という施工条件情報には、「隅肉」、「レ型」、「V型」などの施工条件パラメータが含まれる。
 さらに制御装置4は、二つの施工条件情報をキーとしたマトリックスの形式で、図5に示すような検索対象数を示す検索対象数表を作成し、ロボットペンダント3がこの検索対象数表を含む検索画面を表示し、画面部32に表示する(ステップS20)。図5において、「T(継手)」と「隅肉」という二つのパラメータを満たす検索対象の数は、235である。二つの施工条件情報がマトリックスの形式で表示されることにより、操作性が向上する。
 次に操作者は、本ケースでは、ロボットペンダント3を用いて図5における検索対象数表から、「T(継手)×隅肉」の二つの施工条件パラメータの組み合わせを選択したものとする(ステップS30)。この選択に対応して、制御装置4は、検索操作の第2階層において、二つの施工条件情報各々の施工条件パラメータの組み合わせを満たす検索対象の各々の数である検索対象数を算出する。検索操作の第2階層において抽出される二つの施工条件パラメータは、脚長および溶接姿勢として予め定められている。
 すなわち、図6の例では、二つの施工条件情報として脚長、溶接姿勢が選択され、各々の施工条件パラメータの組み合わせを満たす検索対象の各々の数が算出されている。脚長という施工条件情報には、「3.0*3.0」、「4.0*4.0」、「4.5*4.5」などの施工条件パラメータが含まれる。また、溶接姿勢という施工条件情報には、「下向」、「水平」、「水平2」などの施工条件パラメータが含まれる。
 さらに制御装置4は、二つの施工条件情報をキーとしたマトリックスの形式で、図6に示すような検索対象数を示す検索対象数表を作成し、ロボットペンダント3がこの検索対象数表を含む検索画面を表示し、画面部32に表示する(ステップS40)。図6において、「脚長6.0*6.0」と「下向」という二つのパラメータを満たす検索対象の数は、10である。
 ここで制御装置4は、操作者が選択した施工条件パラメータの組み合わせである検索対象の数、すなわち選択検索対象数Rがあらかじめ定められた所定の数(値)n以下になったか否かを判定する。例えばあらかじめ定められた所定の数が15とする。そして図6において、「脚長6.0*6.0」と「下向」という二つのパラメータを満たす検索対象を操作者が選択した時、選択検索対象数Rは10である。この場合、n≧Rが成立する。この条件を満たした場合(ステップS50;Yes)、制御装置4は、検索対象の数ではなく、検索対象の内容を個別に示した検索対象リストを作成し、ロボットペンダント3がこの検索対象リストを画面部32において表示する(ステップS60)。図7は、検索対象リストの例を示す。
 尚、上述の例では、検索操作の第1階層で、図5に示す二つの施工条件パラメータの検索対象数表が作成、表示され(ステップS20)、さらにその下位の階層である第2階層で、図6に示す二つの施工条件パラメータの検索対象数表が作成、表示されている(ステップS40)。すなわち、第1階層が継手形状×開先形状の組み合わせであり、第2階層が脚長×溶接姿勢の組み合わせである。本例では、第1階層、第2階層の後、所定の数n≧選択検索対象数Rが成立したため(ステップS50;Yes)、図7の検索対象リストが表示されている。しかしながら、第2階層における選択した検索対象の数である選択検索対象数Rが依然として大きく、所定の数n≧選択検索対象数Rが成立しない場合は(ステップS50;No)、ステップS20に戻り、検索操作の第3階層以降の検索対象表が作成される。この場合の二つの施工条件パラメータの組み合わせは任意であるし、施工条件パラメータと溶接条件パラメータの組み合わせからなる検索対象数表を作成して表示してもよい。一般的に、第4階層程度までは施工条件パラメータの組み合わせを確定することが好ましく、例えば以下の検索の階層構造が考えられる。
第1階層:継手形状×開先形状
第2階層:脚長×溶接姿勢
第3階層:開先深さ×開先角度
第4階層:ルートフェイス×溶接姿勢
第5階層:溶接電流×溶接速度
第6階層:溶接速度×溶接姿勢
第7階層:溶接電流×溶接姿勢
第8階層:溶接速度×入熱量 
 すなわち、検索操作の第1階層において抽出される二つのパラメータが、施工条件パラメータの継手形状と開先形状であり、検索操作の第2階層において抽出される二つのパラメータが、施工条件パラメータの脚長と溶接姿勢であり、検索操作の第3階層において抽出される二つのパラメータが、施工条件パラメータの開先深さと開先角度であり、検索操作の第4階層において抽出される二つのパラメータが、施工条件パラメータのルートフェイスと溶接姿勢であることが好ましい。
 また、上記の階層構造では、第4階層までは二つの施工条件パラメータの組み合わせであり、第5階層からは二つの施工条件パラメータの組み合わせとなっている。第5階層以降の階層では、抽出される二つのパラメータのうち少なくとも一つが、溶接条件パラメータであることが好ましい。このような階層構成することにより、種々の溶接について、適切な施工条件パラメータおよび溶接条件パラメータへの絞り込みが可能となる。ただし、各階層のパラメータの組み合わせは特に限定されない。また、各階層の順序も特に限定はされない。
 このように、所定の条件が成立した段階で、画面が検索対象の数を表す表(検索対象数表)から検索対象を個別に示したリスト(検索対象リスト)に遷移することにより、多くの検索対象が画面に表示されるのを防止し、検索を容易なものにすることができる。
 ただし、たとえ検索対象の数が多くても、操作者が個別の検索対象の内容を確認したい場合、ロボットペンダント3の所定のキーを操作して、n≧Rが成立していなくても(ステップS50;No)、検索対象リストを表示するようにしてもよい。すなわち、nとRの大小関係に関わらず、操作者がロボットペンダント3の任意のキーを操作することにより、図5や図6の検索対象数表から図7の検索対象リストの画面に直接遷移してもよい。
 制御装置4は、検索対象リストの作成にあたり、さらに抽出した施工条件パラメータに対応した溶接条件情報の溶接条件パラメータを抽出する。ここで溶接条件パラメータとは、各溶接条件情報について具体的な種類や数値などを表すパラメータである。例えば図7の例では、各検索対象No.1~4について溶接条件情報が示されているが、仕上速度(作業能率)は溶接条件パラメータの一つであり、「48.0」、「46.0」、「45.0」などの具体的な数値で表される。また、溶接断面積(溶着量)も溶接条件パラメータの一つであり、「14.77」、「15.42」、「16.71」などの具体的な数値で表される。
 ロボットペンダント3は、検索対象ごとに少なくとも1つの溶接条件パラメータと、制御装置4が算出した結果である評価項目を含んだ検索対象リストを表示する。さらに検索対象リストに含まれる溶接条件パラメータには、溶着量または作業能率に関連した少なくとも一つのパラメータが含まれており、図7の例では溶着量に関連した(さらに詳細な)「溶接断面積」、作業能率に関連した(さらに詳細な)「仕上速度」のパラメータが含まれている。図7の例では、No.1の検索対象の溶接条件パラメータにおける「仕上速度(作業能率)」が48.0、「電流」が330~330、「溶接断面積(溶着量)」が14.77になっており、「評価項目」が多/高になっている。
 本実施形態では、制御装置4は、抽出した施工条件パラメータおよび溶接条件パラメータから算出した溶接部分の溶接断面積を予め決められた閾値と比較することにより溶着量に対する評価項目を段階的に算出し、ロボットペンダント3が当該段階的な評価項目を表示する。尚、図7の検索対象リストでは溶接部分の積層図Lが付加的に示されており(必須ではない)、溶接断面積を視覚的に把握することができる。積層図Lの拡大図に示されているように、任意で入力した溶接速度、溶接電流、ワイヤ径、ワイヤ送給速度などの溶接条件パラメータから算出した溶接断面積Aと、開先形状および継手形状から算出した溶接断面積Bが、描画機能によって積層図として表示されるので、操作者は、検索対象の評価を自らの視覚情報をもあわせて行うことができる。
 溶接断面積Aは、上述したように溶接条件パラメータ(溶接速度、溶接電流、ワイヤ径、ワイヤ送給速度など)から算出した断面積である。一方、溶接断面積Bは、開先形状および継手形状から算出した断面積であって、溶接断面積Aに対して予め決められた閾値となる。溶接断面積A=溶接断面積Bが成立する場合、溶接断面積Aの溶接条件は良い条件と判断することができ、評価項目を設定することができる。
 溶接断面積Aは例えば次のように求められる。以下の要素を基本の条件とする。
・溶接速度V:V(cm/min)=(V×10)/60(mm/sec)
・ワイヤ径R(mm)
・ワイヤ供給速度S:S(m/min)=(S×1000)/60(mm/sec)
・溶着効率η:CO→0.95、Ar-CO→0.98)
 以上より、単位時間当たりの溶着量(体積)(mm/sec)は、(η×π×R×S×1000)/60となる。そして、単位時間当たりの1パスあたりの溶接断面積(mm)は、(η×π×R×S×1000)/60÷(V×10/60)=(η×π×R×S×100)/Vとなる。そして、全溶着量である溶接断面積Aは、溶接断面積A=Σ(各パスの溶接断面積)より求められる。
 一方、溶接断面積Bは、開先形状および継手形状を描画機能で描いた平面図形の面積を求めることにより算出することができる。例えば、継手形状がT継手であり、開先形状が平面視で直角三角形となる隅肉であって、直角三角形の直交する2辺の長さがS1、S2の場合、全断面積である溶接断面積Bは、溶接断面積B=(S1×S2)/2により求められる。
 例えば上述のような方法により求められた溶接断面積Aが14.77mm、溶接断面積Bが18mmの場合、両者の比は14.77/18×100=82.0%(△18.0%)となる。この比は溶接断面積と予め決められた閾値との比較であり、溶接断面積Aの質の目安となるため、図7の画面に82.0%(または△18.0%)をあわせて表示してもよい。
 また、制御装置4は、抽出した施工条件パラメータおよび溶接条件パラメータから算出した溶接部分の仕上速度を、各検索対象間、すなわち各溶接条件間で比較することにより作業能率に対する評価項目を段階的に算出し、ロボットペンダント3が当該段階的な評価項目を表示する。段階的な評価項目は、例えば「高」>「標準」>「低」のような3段階評価の項目がある。仕上速度は、複数の溶接条件同士で比較を行い、大きい数字から能率が良いと評価することができる。例えば、図7の例では、No.1(48cm/min)>No.2(46cm/min)>No.3=No.4(45cm/min)と評価したうえで評価項目を別途設定することができる。
 仕上速度は、多パスの溶接速度を1パスの溶接速度に換算し、溶接条件の速度比較に基づき評価してもよい。D:溶接長、T:全パスの溶接時間の合計、t:パス毎の溶接時間、の場合、1パスの換算溶接速度は、時間(t)=距離(D)/速度(v)より、
D/T(1パスの換算溶接速度)
=D/(t1+t2・・・+tn)
=D/(D/v1+D/v2+・・・+D/vn)
=D/D(1/v1+1/v2+・・・+1/vn)
=1/(1/v1+1/v2+・・・+1/vn)
により求められる。
 尚、検索対象リストの溶接条件パラメータには例えば以下のようなものが含まれる。制御装置4は、溶接断面積や仕上速度に限定されず、これらの溶接条件パラメータに基づいて、評価項目を算出することもできる。
1)パス数(作業能率の一種):多層盛溶接条件においてパス数を比較して選択する(パス数が少ない=溶接時間が少ない)。 
2)電流:最大・最小の電流や、パス毎の電流に基づき所望に近い条件を選択する。
3)ビード形状の外観(溶着量の一種):溶着量の一種の概念であるビード形状に対する評価項目を段階的に算出する。段階的な評価項目は、例えば開先形状の場合「多い」>「やや多い」>「標準」>「やや少ない」>「少ない」のような5段階評価の項目がある。隅肉形状の場合「大凸」>「やや凸」>「標準」>「やや凹」>「大凹」のような5段階評価の項目がある。
 上述した様に種々の溶接条件パラメータに関する評価が、段階的な評価項目の形式で表示されるため、溶接作業に詳しくない操作者であっても、評価を容易に行うことが可能となる。
 尚、図7の検索対象リストでは溶接部分の積層図Lが付加的に示された例が示されている。この積層図は、図8に示したような継手F5、F6が溶接した溶接部分W3が多層盛溶接である場合において、溶接のパス(1,2,3,・・・15)をも示した形で描画して表示することが可能である。すなわち、データベースは、マスタ条件データおよびユーザー条件データにおいて、施工条件情報ごとに定められた溶接条件情報を予め有している。そして、制御装置4が、抽出した施工条件パラメータおよび溶接条件パラメータに基づき溶接部分の積層図を図7や図8の様に描画機能で描画し、ロボットペンダント3が、描画された積層図を画面部32に表示する。
 また、図8の例ではウィービング条件が溶接条件に設定されている場合は、その情報も描画することができる。例えば、図8の二点鎖線の部分では1パスでウィービング基準面(トーチ方向)に対して左右2mmでウィービングする旨を表示している。
 上述した検索対象リストを見た操作者は、図7の検索対象リストのうち一の検索対象を選択し、主たる溶接部分に関する条件であって、溶接線上を溶接する図9の本溶接条件(WM)として使用できる(ステップS70)。尚、一般的な溶接では、主たる溶接部分に対してその周辺を補強するための周辺溶接部分が設けられる。そして、検索対象の選択に際して、操作者は、本溶接条件に予め関連付けられ、データベース7に記憶された周辺溶接部分のための周辺溶接条件を少なくとも一つ検索可能であるとともに、本溶接条件に付加可能である。また、存在しない周辺溶接条件については、ロボットペンダント3が、操作者が入力する条件(前記の本溶接又は他の周辺溶接条件)を受け付け、制御装置4が当該受け付けた条件をもって付加する条件を作成するようにしてもよい。このような周辺溶接条件の付加により溶接線における本溶接条件を含む全ての溶接条件を簡単にロボットの教示プログラムに設定することができ、操作者の溶接条件の作成作業負荷を軽減することができる。図9に示すように、周辺溶接条件は例えば以下のような条件を含む。
・バックステップ条件(BS):溶接の開始位置を決定する際の条件である。
・始端側条件(WS):本溶接の始端における条件である。
・終端側条件(WE):本溶接の終端における条件である。
・クレータ条件(Cr):溶接の凹みを防止する際の条件である。
 また、操作者が、図7の検索対象リストのうち一の検索対象を選択すると(ステップS70)、選択した検索対象について、操作者は所定の編集をすることもできる(ステップS80)。制御装置4が、ロボットペンダント3が受け付けた操作者の検索操作にしたがって図7や図8の積層図を編集し、ロボットペンダント3が編集された積層図を画面部32に表示する。例えば、図10に示すように、操作者が積層図を編集し、ロボットペンダント3の画面部32には、編集し操作が表示される。図10(a)は、編集画面、図10(b)は、編集結果確認画面を示す図であり、それぞれロボットペンダント3の画面部32に表示される。
 操作者は図10(a)の編集画面で、トーチの狙い位置(溶接シフト左右・上下)やウィービング振幅を編集可能であり、また、別の画面になるが、溶接電流と速度を編集することが可能である。つまり、溶接条件(狙い位置、ウィービング振幅、溶接電流・速度など)の編集画面である。尚、操作者は、図7の検索対象リストの画面から、溶接条件を選択して、上記の狙い位置などの詳細を確認することができる。
 次に操作者は、図10(b)の編集結果確認画面で、編集内容を各パス毎に確認する。例えば、溶接電流・速度による断面積の数値と描画と入熱量を確認することができる。尚、操作者は、図7の検索対象リストの画面から、溶接条件を選択して図10(b)に示した各パス毎の溶着量(溶接断面積)や入熱量などの詳細を確認することができる。
 溶接部分の積層図が表示されることにより、操作者は選択した検索対象による溶接の品質について、視覚的に評価しつつ編集することが可能となる。
 最後に、ステップS80の編集操作の後、操作者が、溶接対象物に対して実際溶接で評価を実施し、検索対象の条件として保存することにより、前記保存の検索対象の条件に関連付けられ、新たに作成されたまたは編集した施工条件情報(施工条件パラメータ)、溶接条件情報(溶接情報パラメータ)を、データベース7にユーザー条件データとして登録する(ステップS90)。
 本発明は、溶接ロボットの溶接および施工条件を設定するための溶接および施工条件設定方法を提供するとともに、このような溶接および施工条件設定方法をコンピュータに実行させるための溶接および施工条件設定プログラムをも提供する。上述した様にこのプログラムは、図示せぬ制御装置4のメモリなどに記憶され、制御装置4のプロセッサと協調して一連の動作を実行するが、記憶の場所、装置などは特に限定されない。尚、この溶接および施工条件設定プログラムは、溶接ロボット2に対する動作指示の教示プログラムとは異なるものである。
 本発明によれば、データベースに予め記憶されたマスタ条件データおよび実際の溶接時に登録されるユーザー条件データが含まれている。操作者の検索操作にしたがって、これらのデータから、施工条件情報および溶接条件情報の施工条件パラメータおよび溶接条件パラメータが抽出される。制御装置が溶着量または作業能率の少なくとも1つを評価した結果である評価項目を算出し、表示装置が、溶接条件パラメータの少なくとも1つおよび評価項目を表示する。よって溶接作業の初心者であっても、容易に適切な溶接および施工条件を検索することができ、かつ溶接条件パラメータの少なくとも1つおよび評価項目を参照しながら、適切な溶接および施工条件を設定可能であり、精度の高い溶接を高い再現性をもって実現することができる。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態には限定されない。本発明の精神及び範囲から逸脱することなく様々に変更したり代替態様を採用したりすることが可能なことは、当業者に明らかである。
 本出願は、2016年4月18日出願の日本特許出願、特願2016-083049に基づくものであり、その内容はここに参照として取り込まれる。
1  溶接ロボットシステム
2  溶接ロボット
3  ロボットペンダント(入力装置、表示装置)
4  制御装置
7  データベース
8  溶接および施工条件設定システム

Claims (10)

  1.  溶接ロボットの溶接および施工条件を設定するための溶接および施工条件設定システムであって、
     当該溶接および施工条件設定システムは、入力装置と、表示装置と、制御装置と、データベースとを備え、
     前記データベースは、予め記憶されたマスタ条件データおよび実際の溶接時に登録されるユーザー条件データを含み、前記マスタ条件データおよび前記ユーザー条件データの各々が、溶接の前提となる施工条件に関する施工条件情報および前記施工条件に関連付けられた溶接条件に関する溶接条件情報を含み、
     前記入力装置が、操作者が入力する少なくとも施工条件情報の検索操作を受け付け、
     前記制御装置が、
     操作者の検索操作にしたがって、前記マスタ条件データおよび前記ユーザー条件データの少なくとも一つから、検索操作に対応した施工条件情報の施工条件パラメータを抽出し、
     前記マスタ条件データおよび前記ユーザー条件データの少なくとも一つから、抽出した施工条件パラメータに対応した溶接条件情報の溶接条件パラメータを抽出し、かつ、
     抽出した溶接条件パラメータのうち、溶着量または作業能率の少なくとも1つを評価した結果である評価項目を算出し、
     前記表示装置が、溶接条件パラメータの少なくとも1つおよび前記評価項目を表示する、
     溶接および施工条件設定システム。
  2.  請求項1に記載の溶接および施工条件設定システムであって、
     前記制御装置は、抽出した施工条件パラメータおよび溶接条件パラメータから算出した溶接部分の溶接断面積を予め決められた閾値と比較する、または当該溶接部分における溶接条件間の仕上げ速度を比較することにより、前記溶着量または前記作業能率に対する前記評価項目を段階的に表示する、
     溶接および施工条件設定システム。
  3.  請求項1に記載の溶接および施工条件設定システムであって、
     前記データベースは、施工条件情報ごとに定められた溶接条件情報を有し、
     前記制御装置は、抽出した施工条件パラメータおよび溶接条件パラメータに基づき溶接分の積層図を前記制御装置に含まれる描画機能によって描画し、
     前記表示装置が、描画された積層図を表示する、
     溶接および施工条件設定システム。
  4.  請求項1に記載の溶接および施工条件設定システムであって、
     前記制御装置は、抽出した施工条件パラメータおよび溶接条件パラメータのうち、二つのパラメータの組み合わせを満たす検索対象の各々の数である検索対象数を算出し、
     前記二つのパラメータをキーとしたマトリックスの形式で、検索対象数を示す検索対象数表を作成し、
     前記表示装置が前記検索対象数表を表示し、
     前記表示装置は、前記入力装置が受け付けた、操作者が選択した検索対象の検索対象数が所定の値以下になった場合に、当該検索対象について、前記溶着量または前記作業能率の少なくとも1つ、および前記評価項目を表示する、
     溶接および施工条件設定システム。
  5.  請求項4に記載の溶接および施工条件設定システムであって、
     検索操作の第1階層において抽出される二つのパラメータが、施工条件パラメータの継手形状と開先形状であり、
     検索操作の第2階層において抽出される二つのパラメータが、施工条件パラメータの脚長と溶接姿勢であり、
     検索操作の第3階層において抽出される二つのパラメータが、施工条件パラメータの開先深さと開先角度であり、
     検索操作の第4階層において抽出される二つのパラメータが、前記施工条件パラメータのルートフェイスと溶接姿勢であり、
     検索操作の第5階層以降の階層において抽出される二つのパラメータのうち少なくとも一つが、溶接条件パラメータである、
     溶接および施工条件設定システム。
  6.  請求項1に記載の溶接および施工条件設定システムであって、
     溶接条件が溶接線上を溶接する本溶接条件であり、
     前記制御装置は、前記本溶接条件に予め関連付けられ、前記データベースに記憶されたバックステップ条件、始端側条件、クレータ条件、終端側条件のうち少なくとも一つを検索し、前記本溶接条件に付加可能であり、
     前記バックステップ条件、前記始端側条件、前記クレータ条件、前記終端側条件のうち存在しない条件について、前記入力装置が、操作者が入力する条件を受け付け、前記制御装置が当該受け付けた条件をもって付加する条件を作成する、
     溶接および施工条件設定システム。
  7.  請求項3に記載の溶接および施工条件設定システムであって、
     前記制御装置は、前記入力装置が受け付けた操作者の検索操作にしたがって、前記積層図を編集し、
     前記表示装置が編集された前記積層図を表示する、
     溶接および施工条件設定システム。
  8.  請求項1から7のいずれか1項に記載の溶接および施工条件設定システムと、溶接ロボットとを含む、溶接ロボットシステム。
  9.  溶接ロボットの溶接および施工条件を設定するための溶接および施工条件設定方法であって、
     データベースが、予め記憶されたマスタ条件データおよび実際の溶接時に登録されるユーザー条件データを含み、前記マスタ条件データおよび前記ユーザー条件データの各々が、溶接の前提となる施工条件に関する施工条件情報および前記施工条件に関連付けられた溶接条件に関する溶接条件情報を含み、
     操作者が入力する施工条件情報の検索操作を受け付け、
     操作者の検索操作にしたがって、前記マスタ条件データおよび前記ユーザー条件データの少なくとも一つから、検索操作に対応した施工条件情報の施工条件パラメータを抽出し、
     前記マスタ条件データおよび前記ユーザー条件データの少なくとも一つから、抽出した施工条件情報に対応した溶接条件情報の溶接条件パラメータを抽出し、
     抽出した溶接条件パラメータのうち、溶着量または作業能率の少なくとも1つを評価した結果である評価項目を算出し、
     溶接条件パラメータの少なくとも1つおよび前記評価項目を表示する、
     溶接および施工条件設定方法。
  10.  請求項9に記載の溶接および施工条件設定方法をプロセッサ搭載の制御装置に実行させるための溶接および施工条件設定プログラム。
PCT/JP2017/008937 2016-04-18 2017-03-07 溶接および施工条件設定システム、溶接ロボットシステム、溶接および施工条件設定方法ならびに溶接および施工条件設定プログラム WO2017183340A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780024192.1A CN109070255B (zh) 2016-04-18 2017-03-07 焊接和施工条件设定系统、方法、程序以及焊接机器人系统
US16/094,367 US10807182B2 (en) 2016-04-18 2017-03-07 Welding and construction condition setting system, welding robot system, welding and construction condition setting method, and welding and construction condition setting program
KR1020187030041A KR102051283B1 (ko) 2016-04-18 2017-03-07 용접 및 시공 조건 설정 시스템, 용접 로봇 시스템, 용접 및 시공 조건 설정 방법 및 용접 및 시공 조건 설정 프로그램

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016083049A JP6619288B2 (ja) 2016-04-18 2016-04-18 溶接および施工条件設定システム、溶接ロボットシステム、溶接および施工条件設定方法ならびに溶接および施工条件設定プログラム
JP2016-083049 2016-04-18

Publications (1)

Publication Number Publication Date
WO2017183340A1 true WO2017183340A1 (ja) 2017-10-26

Family

ID=60115854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008937 WO2017183340A1 (ja) 2016-04-18 2017-03-07 溶接および施工条件設定システム、溶接ロボットシステム、溶接および施工条件設定方法ならびに溶接および施工条件設定プログラム

Country Status (5)

Country Link
US (1) US10807182B2 (ja)
JP (1) JP6619288B2 (ja)
KR (1) KR102051283B1 (ja)
CN (1) CN109070255B (ja)
WO (1) WO2017183340A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11311958B1 (en) * 2019-05-13 2022-04-26 Airgas, Inc. Digital welding and cutting efficiency analysis, process evaluation and response feedback system for process optimization
JP7160758B2 (ja) * 2019-05-20 2022-10-25 日立Geニュークリア・エナジー株式会社 溶接制御システム、および、溶接記録生成方法
WO2023140008A1 (ja) * 2022-01-24 2023-07-27 パナソニックIpマネジメント株式会社 溶接機用電源装置、溶接条件生成方法および溶接条件生成支援システム
WO2023219048A1 (ja) * 2022-05-11 2023-11-16 三菱電機株式会社 溶接条件決定システム、学習システム、溶接条件決定方法、およびプログラム
KR20240038243A (ko) 2022-09-16 2024-03-25 정아정밀(주) 용접조건 설정방법
CN115781082B (zh) * 2022-12-07 2023-10-17 张家港市申联建设机械有限公司 一种标准节自动焊接方法、系统、装置和存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3787401B2 (ja) * 1997-01-30 2006-06-21 株式会社日立製作所 多層盛溶接の制御方法及び多層盛溶接装置
JP2015229169A (ja) * 2014-06-04 2015-12-21 株式会社神戸製鋼所 溶接条件導出装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2678190B1 (fr) * 1991-06-28 1995-07-07 Commissariat Energie Atomique Procede et systeme de soudage assistee par ordinateur, bases sur la vision de la scene de soudage.
JP3497206B2 (ja) 1993-08-06 2004-02-16 月島機械株式会社 濾過機における洗浄方法
EP0865858B1 (en) 1995-09-19 2004-02-18 Kabushiki Kaisha Yaskawa Denki Automatic welding condition setting device
US5772814A (en) * 1996-01-26 1998-06-30 Branson Ultrasonic Corporation Welding system and method of setting welding machine parameters
JP4243384B2 (ja) 1999-06-14 2009-03-25 パナソニック株式会社 溶接条件設定方法及びシステム
US6649870B1 (en) * 2001-08-31 2003-11-18 Lincoln Global, Inc. System and method facilitating fillet weld performance
US6639182B2 (en) * 2001-09-19 2003-10-28 Illinois Tool Works Inc. Pendant control for a welding-type system
US9442481B2 (en) * 2008-01-09 2016-09-13 Illinois Tool Works Inc. Automatic weld arc monitoring system
JP5268495B2 (ja) * 2008-08-21 2013-08-21 株式会社神戸製鋼所 オフライン教示データの作成方法及びロボットシステム
US8592722B2 (en) * 2008-11-03 2013-11-26 Illinois Tool Works Inc. Weld parameter interface
JP5190023B2 (ja) * 2009-05-20 2013-04-24 株式会社神戸製鋼所 溶接設定装置、溶接ロボットシステムおよび溶接設定プログラム
US8569646B2 (en) * 2009-11-13 2013-10-29 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US9855622B2 (en) * 2010-05-26 2018-01-02 Illinois Tool Works Inc. Automatic and semi-automatic welding systems and methods
EP2617508B1 (en) * 2010-09-17 2017-07-05 Panasonic Intellectual Property Management Co., Ltd. Welding condition determining method, and welding device
US9862051B2 (en) * 2011-09-27 2018-01-09 Illinois Tool Works Inc. Welding system and method utilizing cloud computing and data storage
US10328514B2 (en) * 2011-11-07 2019-06-25 Lincoln Global, Inc. Use of mobile communications devices as user interface for welding equipment and systems
US9704140B2 (en) * 2013-07-03 2017-07-11 Illinois Tool Works Inc. Welding system parameter comparison system and method
JP5968294B2 (ja) * 2013-11-29 2016-08-10 株式会社神戸製鋼所 溶接条件の検索支援システム
JP6052918B2 (ja) * 2015-02-27 2016-12-27 株式会社神戸製鋼所 設定支援装置、設定支援方法及びプログラム
JP6126174B2 (ja) * 2015-07-31 2017-05-10 ファナック株式会社 機械学習装置、アーク溶接制御装置、アーク溶接ロボットシステムおよび溶接システム
JP6568766B2 (ja) * 2015-10-21 2019-08-28 株式会社神戸製鋼所 設定支援装置、設定支援方法及びプログラム
JP2017170472A (ja) * 2016-03-23 2017-09-28 株式会社神戸製鋼所 多層盛溶接における溶接条件設定支援装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3787401B2 (ja) * 1997-01-30 2006-06-21 株式会社日立製作所 多層盛溶接の制御方法及び多層盛溶接装置
JP2015229169A (ja) * 2014-06-04 2015-12-21 株式会社神戸製鋼所 溶接条件導出装置

Also Published As

Publication number Publication date
US20190126379A1 (en) 2019-05-02
JP2017192948A (ja) 2017-10-26
KR20180125536A (ko) 2018-11-23
US10807182B2 (en) 2020-10-20
KR102051283B1 (ko) 2019-12-03
CN109070255B (zh) 2021-02-19
CN109070255A (zh) 2018-12-21
JP6619288B2 (ja) 2019-12-11

Similar Documents

Publication Publication Date Title
JP6619288B2 (ja) 溶接および施工条件設定システム、溶接ロボットシステム、溶接および施工条件設定方法ならびに溶接および施工条件設定プログラム
KR100626411B1 (ko) 로봇 제어장치
US6912447B2 (en) System and method for determining weld procedures
JP5965859B2 (ja) 溶接線情報設定装置、プログラム、自動教示システム、および溶接線情報設定方法
JP6022393B2 (ja) 溶接線情報設定装置、プログラム、自動教示システム、および溶接線情報設定方法
JP7388837B2 (ja) 機械的構造を表す3dモデル化オブジェクトの設計
US20220134464A1 (en) Weld line data generation device, welding system, weld line data generation method, and computer readable medium
Babkin et al. Identification of welding parameters for quality welds in GMAW
KR20110068236A (ko) 해양구조 설계 및 통합 방법과 그 방법에 대한 컴퓨터 프로그램을 저장한 기록매체
JPH11291039A (ja) 溶接線の設定する機能を有するcadシステム及びシミュレーションシステム
JPH0476606A (ja) 曲線抽出装置およびncプログラミングシステム
JP6022394B2 (ja) 作業経路情報設定装置、プログラム、および作業経路情報設定方法
KR20190082118A (ko) 철골구조 건축자재의 천공 가공 설계 방법
JP6696666B2 (ja) 溶接条件設定支援装置及び溶接条件設定支援方法
US10744583B2 (en) Welding condition generating method in flat position welding
KR20120021809A (ko) 선박의 부재 마진 설계 자동화 방법
JPH01316804A (ja) 輪郭形状定義方法
WO2018003206A1 (ja) 図形選択装置、図形選択方法および図形選択プログラム
JPH02172652A (ja) 数値制御情報作成装置における加工方法の決定方式
JP4423172B2 (ja) Cadシステムの干渉チェック方法
JP2002108427A (ja) 物品の製造用データ作成システム
US20200230730A1 (en) Program creation device, welding system, and program creation method
JPH10240790A (ja) フィレット面の作成指示方法
JP2000351070A (ja) 溶接条件設定方法及びシステム
JP6346875B2 (ja) 設計支援装置および設計支援方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187030041

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785683

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785683

Country of ref document: EP

Kind code of ref document: A1