WO2017183176A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2017183176A1
WO2017183176A1 PCT/JP2016/062732 JP2016062732W WO2017183176A1 WO 2017183176 A1 WO2017183176 A1 WO 2017183176A1 JP 2016062732 W JP2016062732 W JP 2016062732W WO 2017183176 A1 WO2017183176 A1 WO 2017183176A1
Authority
WO
WIPO (PCT)
Prior art keywords
output shaft
sensor
electrical machine
rotating electrical
magnetic body
Prior art date
Application number
PCT/JP2016/062732
Other languages
English (en)
French (fr)
Inventor
古川 晃
昭彦 森
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP16899448.1A priority Critical patent/EP3447889B1/en
Priority to JP2018512736A priority patent/JP6556341B2/ja
Priority to CN201680084662.9A priority patent/CN109075688B/zh
Priority to PCT/JP2016/062732 priority patent/WO2017183176A1/ja
Priority to US16/071,132 priority patent/US11070113B2/en
Publication of WO2017183176A1 publication Critical patent/WO2017183176A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1732Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • This invention relates to a rotating electrical machine equipped with a rotation sensor for detecting the rotation angle of an output shaft.
  • a device in which a rotation sensor is mounted on an electric motor of an electric power steering device for a vehicle is known.
  • an apparatus in which a control unit that calculates a rotation position and a rotation angle from a rotation signal detected by a rotation sensor is integrated with a rotating electric machine.
  • the problem of noise suppression and improvement in rotation accuracy has arisen as the entire apparatus is reduced in size and weight (for example, see Patent Document 1). ).
  • Patent Document 1 describes the positioning of a ring magnet (sensor magnet) and a hall element (rotation sensor) of a rotating electrical machine.
  • a ring magnet is mounted in the vicinity of the stator coil
  • the Hall element is mounted on the cylindrical portion of the bearing.
  • the ring magnet and the Hall element are arranged to face each other with a slight gap.
  • the ring magnet and the Hall element are arranged in the vicinity of the poles, and further miniaturized by bringing them into close contact with peripheral members.
  • the structure disclosed in Patent Document 1 has a structure for detecting the magnetic flux density in the axial direction from the ring magnet to the magnetic bypass member, and detection at a plurality of positions is necessary. In that case, since the detection accuracy of the rotation angle is determined by the positional accuracy of the Hall elements, it is necessary to manage the positional accuracy of the plurality of Hall elements.
  • the present invention has been made to solve the above-described problems, and an object thereof is to obtain a rotating electrical machine in which the arrangement of a rotation sensor for detecting the rotation angle of an output shaft is optimized.
  • a rotating electrical machine includes an output shaft of a rotating electrical machine, a magnetic body fixed in a case of the rotating electrical machine surrounding the output shaft, and a rotational angle of the output shaft fixed to the output shaft.
  • a rotation sensor for outputting a signal wherein the sensor magnet is magnetized with S and N poles in a circumferential direction centered on the output shaft, and the rotation sensor has a magnetic flux density of the magnetic field.
  • the nth-order (n is an even number) angle error fn (k) expressed by the amplitude ratio k is the required rotational angle detection accuracy.
  • E It is characterized in that the location.
  • the rotating electrical machine of the present invention it is possible to suppress the difference in the fundamental wave amplitude between the radial component and the circumferential component of the magnetic flux density of the magnetic field generated by the sensor magnet and the magnetic body, and to improve the rotation angle detection accuracy of the output shaft. It becomes possible to improve.
  • FIG. 3 is a plan view of a sensor magnet of the rotating electrical machine according to the first embodiment.
  • FIG. 3 is a side sectional view showing a control unit of the rotating electrical machine according to the first embodiment.
  • FIG. 3 is a side sectional view showing a control unit of the rotating electrical machine according to the first embodiment.
  • FIG. 5A is a diagram showing the angular dependence of the magnetic flux density when the amplitude ratio of the radial component Br and the circumferential component B ⁇ of the magnetic flux density B of the magnetic field generated in the rotating electrical machine is 1.
  • FIG. 5B is a diagram illustrating the angle dependency of the signal values of the sine signal Vsin and the cosine signal Vcos.
  • FIG. 6A is a diagram showing the angle dependency of the magnetic flux density when the amplitude ratio of the radial component Br and the circumferential component B ⁇ of the magnetic flux density B of the magnetic field generated in the rotating electrical machine is 1.2.
  • FIG. 6B is a diagram showing the angle dependence of the signal values of the sine signal Vsin and the cosine signal Vcos.
  • FIG. 7A is a diagram showing the angle dependency of the magnetic flux density when the amplitude ratio of the radial component Br and the circumferential component B ⁇ of the magnetic flux density B of the magnetic field generated in the rotating electrical machine is 1.8.
  • FIG. 7B is a diagram illustrating the angle dependency of the signal values of the sine signal Vsin and the cosine signal Vcos.
  • FIG. 5 is a schematic diagram showing angle detection accuracy on the axial and radial coordinates of the rotating electrical machine. It is a sectional side view which shows the control unit of the rotary electric machine of Embodiment 2 of this invention. It is a sectional side view which shows the control unit of the rotary electric machine of Embodiment 2 of this invention. It is explanatory drawing of the rotary electric machine of Embodiment 1 and Embodiment 2 of this invention, and is a schematic diagram which shows that the magnetic field which the electric current which flows through a power part produces
  • Embodiment 1 FIG.
  • the rotating electrical machine according to Embodiment 1 of the present invention has a structure in which a motor and a control unit are integrated, and includes a rotation sensor that detects a rotation angle of an output shaft. Then, the magnetic flux density of the magnetic field generated between the sensor magnet and the magnetic body is measured by one rotation sensor, and the rotation angle of the output shaft is detected. When the rotation angle of the output shaft is detected by one rotation sensor, the rotation angle can be calculated from the relationship between the radial direction component of the magnetic flux density around the output shaft and the circumferential direction component of the magnetic flux density. .
  • FIG. 1 is a side sectional view of the rotating electrical machine 100, and shows, for example, an electric power steering apparatus.
  • the rotating electrical machine 100 has a structure in which the motor 1 and the control unit 20 are integrated. As illustrated in FIG. 1, the motor 1 is disposed on the end side (lower side of the paper) of the output shaft 7, and the control unit 20 is coaxially disposed on the output side (upper side of the paper) of the output shaft 7.
  • the motor 1 includes a yoke 2, a stator 3, a rotor 4 and the like as main components.
  • a stator 3 around which a winding coil is wound is disposed inside the yoke 2.
  • Coil ends 5 constituting end portions of the winding coil are located at both ends of the stator 3, and a winding terminal 9 is extended from the coil end 5 to the outside of the motor 1 via an annular support portion 8. Yes.
  • An output shaft 7 is disposed at the center of the stator 3, and a rotor 4 fixed to the output shaft 7 is disposed on the inner peripheral side of the stator 3.
  • the rotor 4 is provided with a permanent magnet.
  • the output shaft 7 is rotatably supported by bearings 6 provided at the upper and lower parts of the rotating electrical machine 100 in FIG.
  • the bearing 6 is configured to hold the ball by an inner ring 6 a fixed to the output shaft 7 and an outer ring 6 b fixed to the case 21.
  • the upper part of the motor 1 is covered with a frame 10.
  • the lower part from the frame 10 corresponds to the motor 1.
  • winding terminals 9 for at least three phases are inserted through holes in the frame 10 and extend upward in the drawing.
  • the control unit 20 constituting the rotating electrical machine 100 is provided on the output side of the output shaft 7, that is, on the upper part of the frame 10 of the motor 1.
  • a case 21 that surrounds the output shaft 7 and that constitutes the control unit 20 is provided to have the same diameter as the yoke 2, and a control board 22 that constitutes a circuit unit is disposed therein.
  • the control board 22 is equipped with a CPU and outputs a control signal for driving the motor 1.
  • a power unit 23 for receiving a control signal and supplying a current to the winding coil of the motor 1 is disposed below the control board 22.
  • the power unit 23 when the motor 1 is a brushless three-phase motor, a large number of switching elements are mounted in a bridge configuration. A total of two power units 23 are arranged on the left and right in FIG.
  • the power unit 23 In order to supply current to the motor 1, the power unit 23 generates heat by controlling the switching element, and the frame 10 is used as a heat sink to dissipate heat.
  • the winding terminal 9 penetrating the frame 10 (heat sink) and the terminal of the power unit 23 are connected, and the connection is made, for example, by welding. Further, a plurality of terminals are extended from the power unit 23 to the control board 22, and the above-described control signal is transmitted to the terminals.
  • An intermediate member 24 made of an insulating member is disposed between the control board 22 and the power unit 23.
  • the intermediate member 24 is inserted with a power source line (+, ⁇ ) and other conductors to the power unit 23. Further, a capacitor and other parts are arranged in the space between the intermediate member 24 and the control board 22 to effectively use the space.
  • the output shaft 7 passes through the center of the control unit 20 and extends through the case 21 to the outside.
  • the tip of the output shaft 7 is configured to be fitted with a speed reducer (not shown). It is particularly important for a brushless motor to detect the rotation state of the output shaft 7. It has been found that if the detection accuracy of the rotation angle is poor, the detection accuracy of the rotational position calculated from the rotation angle is similarly deteriorated, which affects the smoothness of the rotation of the motor 1. Therefore, the rotation sensor 26 for detecting the rotation state of the output shaft 7 is a design item in which detection accuracy is important. Furthermore, as described above, the requirements to be satisfied by the rotation sensor 26 include a miniaturization factor.
  • the control unit 20 is provided with a sensor magnet 27 that generates a magnetic field for detecting the rotation angle.
  • the sensor magnet 27 cannot be attached to the end portion of the output shaft 7 and is disposed in the intermediate portion.
  • the sensor magnet 27 cannot be disposed close to the power unit 23 through which the drive current of the motor 1 flows in order to improve the detection accuracy of the rotation angle and suppress noise. Therefore, the sensor magnet 27 is disposed on the surface of the control board 22 opposite to the power unit 23 (upper side in FIG. 1).
  • FIG. 2 shows a plan view of the sensor magnet 27.
  • the sensor magnet 27 is a plate-like member having an annular planar shape and a uniform thickness.
  • the N pole and the S pole are magnetized in the circumferential direction around the axial direction of the output shaft 7.
  • a single pole pair will be described, but the same applies to a multipole pair.
  • the rotation sensor 26 that detects the N and S magnetic fields is disposed above the sensor magnet 27.
  • the rotation sensor 26 may be arranged on the control board 22 side or on the control board 22 when viewed from the sensor magnet 27.
  • a magnetic material for realizing a magnetic field having a desired direction component is required.
  • the space for arranging the magnetic body is on the control board 22 side or on the control board 22, such a configuration can also be adopted.
  • the magnetic body 28 is not arranged on the control board 22 side when viewed from the sensor magnet 27, and the upper side of the sensor magnet 27 where the control board 22 is not provided. The case where it arrange
  • the case 21 in which the magnetic body 28 is housed is not an iron-based magnetic body but an aluminum-based non-magnetic body.
  • An annular magnetic body 28 (for example, iron) is attached to the inside of the case 21.
  • a sensor substrate 25 on which a rotation sensor 26 is mounted is disposed below the magnetic body 28 in FIG.
  • the sensor board 25 and the control board 22 are connected by an electrical wiring 29 to supply power to the rotation sensor 26 and to transmit and receive a detection signal from the sensor.
  • a part of the N pole magnetic flux of the sensor magnet 27 reaches the magnetic body 28.
  • the rotation sensor 26 is disposed at an intermediate portion between the sensor magnet 27 and the magnetic body 28.
  • FIG. 3 is a side sectional view of the control unit 20 of the rotating electrical machine 100 of FIG. 1 and shows an enlarged view near the arrangement region of the rotation sensor 26a.
  • the outer diameter of the sensor magnet 27 a is smaller than the outer diameter of the magnetic body 28.
  • the effective range 31a of the magnetic flux that enables the rotation sensor 26 to detect the rotation angle with high accuracy is indicated by a rectangle as shown in FIG. be able to.
  • the effective range 31a corresponds to an area determined according to the strength of the magnetic field for detecting the rotation angle.
  • the rotation sensor 26a is arranged in the effective range 31a, the detection error of the rotation angle of the output shaft 7 can be reduced.
  • the detection unit may be arranged so as to be within the effective range 31a, and the part other than the detection unit of the rotation sensor 26a protrudes from the effective range 31a. There is no problem even if it is placed.
  • the effective range 31a includes an arrow 30b extending from the outer diameter (maximum circumferential end) of the sensor magnet 27a to the outer periphery of the magnetic body 28, and a position on the inner periphery of the sensor magnet 27a.
  • the rotation sensor 26 a can be disposed radially outside the range where the sensor magnet 27 is projected.
  • 3 indicates the axial direction (z direction) of the output shaft, and arrow r indicates the radial direction (r direction) of the sensor magnet 27a.
  • the direction from the back to the front of the paper indicates the circumferential direction ( ⁇ direction), and the sensor magnet 27a rotates in this ⁇ direction.
  • the rotation sensor 26a and the sensor substrate 25 serving as a support substrate are displayed in virtual lines because their arrangement is determined according to the strength of the magnetic field for angle detection. It is.
  • the arrangement of the rotation sensor 26a in the z direction is related to the distance between the sensor magnet 27a and the magnetic body 28, and the magnetic field strength is proportional to the product of the magnetic pole strength and proportional to the square of the distance. Determined by Coulomb's law. Since the distance in the z direction from the sensor magnet 27a of the rotation sensor 26a is determined to be a distance that can secure the strength (magnetic flux density) of the magnetic field, this maximum distance is naturally determined. That is, the distance between the magnetic body 28 and the sensor magnet 27a is preferably in a range in which the magnetic body 28 can sufficiently absorb the magnetic flux.
  • the rotation sensor 26a is provided on the sensor substrate 25. If the distance in the z direction is determined, the height of the sensor substrate 25 is adjusted using the leg portions 25a or the like in order to arrange the sensor substrate 25 at an effective distance. Can do.
  • the magnetic field is attenuated by the square of the distance similarly to the arrow z. Can be determined in consideration of this. Therefore, the effective range 31 a is not used up to the outer peripheral end of the magnetic body 28.
  • FIG. 4 is a side sectional view of the control unit 20 of the rotating electrical machine 100 of FIG. 1, and shows an enlarged view near the arrangement region of the rotation sensor 26b.
  • the arrangement of the rotation sensor 26b will be described in detail with reference to FIG.
  • the outer diameter of the sensor magnet 27 b is larger than the outer diameter of the magnetic body 28.
  • the effective range 31b of the magnetic flux in which the rotation sensor 26b can detect the rotation angle with high accuracy is indicated by a square as shown in FIG. be able to.
  • the effective range 31b may be determined in the same manner as the effective range 31a. As shown in FIG. 4, an arrow 30d extending from the outer diameter end of the sensor magnet 27b to the outer periphery of the magnetic body 28, and the sensor magnet This corresponds to a quadrangular range surrounded by an arrow 30c extending from a position on the inner periphery of 27b to the inner peripheral end of the magnetic body 28.
  • the effective range 31b corresponds to a region determined according to the strength of the magnetic field for detecting the rotation angle.
  • the rotation sensor 26b can be disposed within a range where the sensor magnet 27 is projected. Further, in determining the arrangement of the rotation sensors 26 (26a, 26b), considering that there is an appropriate relationship between the radial direction r and the circumferential direction ⁇ of the magnetic field, the effective ranges 31a, 31b are arranged on the inner circumference side. It is necessary to determine the boundary line.
  • an example of a magnetic sensor that serves as the rotation sensor 26 is an MR element.
  • the MR element is a magnetoresistive element, and its magnetoresistance value increases almost in proportion to the magnetic flux density.
  • Two such magnetoresistive elements are connected in series, and a voltage appearing at both ends of the element whose electrical resistance is changed by a magnetic field such as a magnet is detected. If the magnetic field is applied evenly to both resistance elements, the median value (midpoint voltage) is obtained. If the magnetic field is applied so that there is a difference rather than equality, the voltage at the center changes. The rotation angle can be obtained.
  • the rotation sensor 26 has two magnetoresistive elements having different directional components that can be detected here, so that one can be detected as a sine signal Vsin and the other as a cosine signal Vcos.
  • the rotation sensor 26 having two magnetoresistive elements connected in series will be described, but it goes without saying that the same can be said for a magnetoresistive element.
  • the magnetic flux density B can be expressed as a vector having components in three directions, and the radial component Br, the circumferential component B ⁇ , and the axial component Bz are given by the following equation (1).
  • the relationship between Vcos and Vsin, Br and B ⁇ is given by the following equation (2).
  • Equation (2) when the amplitude of Br and B ⁇ are equal becomes a constant value a r1, varies if the amplitude is different.
  • an equation including the square root in the denominator is Taylor-expanded, it can be expanded as in the following equation (3), and therefore V cos and V sin are given as in the following equation (4).
  • the angle error e is given by an approximate expression such as the following expression (5). Since the odd-order signal error component appears as an even-order angle error, the larger the higher-order error component included in the signal, the greater the higher-order error that appears at the detection angle. Therefore, the sine detected by the rotation sensor 26 As both the signal Vsin and the cosine signal Vcos have less distortion, the rotation angle detection accuracy can be improved.
  • FIG. 5A shows the angular dependence of the magnetic flux density B of Br and B ⁇ when the amplitude ratio of Br and B ⁇ is 1: 1, that is, when the amplitudes are equal, and FIG. It shows the angle dependence of the signal value V of Vcos and Vsin at the time.
  • FIG. 6A shows the angular dependence of the magnetic flux density B of Br and B ⁇ when the amplitude ratio of Br and B ⁇ is 1: 1.2, and FIG. This shows the angle dependency of the signal value V of Vcos and Vsin.
  • FIG. 7A shows the angular dependence of the magnetic flux density B of Br and B ⁇ when the amplitude ratio of Br and B ⁇ is 1: 1.8, and FIG. This shows the angle dependency of the signal value V of Vcos and Vsin.
  • the required rotation angle detection accuracy may vary depending on the specifications of the apparatus, and the ratio between r and ⁇ can be determined based on the required accuracy. For example, as shown in FIGS. 5 (a), 5 (b), 6 (a), and 6 (b), when the amplitude ratio is 1 to 1.2, it is determined that the accuracy is satisfied. However, a device corresponding to this amplitude ratio can be used. Then, as shown in FIGS. 7 (a) and 7 (b), when the amplitude ratio is 1.8, it is determined that the accuracy is not satisfied, and a device corresponding to this amplitude ratio is used. Impossible. Thus, the allowable range that matches the specification is determined by the amplitude ratio of Br and B ⁇ .
  • the amplitude ratio k may be in a range that satisfies the following equation (6).
  • V cos and V sin are expressed by the following equation (7).
  • Vcos and Vsin are given by the following equation (8) when approximated and expanded using the third term of equation (3).
  • the amplitude ratio k In order to make these errors satisfy the required rotation angle detection accuracy E, it is necessary to set the amplitude ratio k within the range determined by the following equation (11).
  • the allowable range is determined for the second-order, fourth-order, and sixth-order components.
  • the amplitude ratio is large, the angular error e may be estimated in consideration of higher order components. It should be noted that, since the order component error to be considered for determining the range is the largest in the lower order, it may be considered that this component is less than the required rotation angle detection accuracy E.
  • FIG. 5 is a schematic diagram showing the rotation angle detection accuracy in the corresponding section. In each section, the accuracy level corresponding to the rotation angle detection accuracy is indicated by a number. The number increases as the rotation angle detection accuracy increases.
  • FIG. 8 exemplifies a case where the accuracy level of the rotation angle detection accuracy is shown in five stages.
  • the number 0 is displayed in a space without hatching. ing.
  • the numeral 1 is displayed in the hatched hatching space.
  • the area 42 with the lowest rotation angle detection accuracy next to the area 41 has the numeral 2 displayed in the hatching space of the lattice.
  • the numeral 3 is displayed in the hatched space with horizontal stripes.
  • the numeral 4 is displayed in the hatched space of vertical stripes.
  • the following can be said qualitatively with respect to the arrangement of the sensor magnet 27 and the rotation sensor 26.
  • the magnetic field travels directly from the sensor magnet 27 to the output shaft 7 without passing through the magnetic body 28. Therefore, the areas 32a and 32b in the vicinity of the sensor magnet 27 and the output shaft 7 shown in FIGS. 3 and 4 cannot be used for arranging the rotation sensor 26a.
  • the region between the regions 32a and 32b and the effective ranges 31a and 31b is an unusable region because the r-direction component is larger than the ⁇ -direction component and the sine signal and cosine signal are distorted due to the relationship between Br and B ⁇ .
  • the effective ranges 31a and 31b are regions (regions having a relationship of Br: B ⁇ 1: 1) with good rotation angle detection accuracy obtained in consideration of all of z, r, and ⁇ .
  • each direction component of the magnetic flux density B changes depending on the distance between the sensor magnet 27 and the magnetic body 28, so that the effective ranges 31 a and 31 b change depending on the distance between the sensor magnet 27 and the rotation sensor 26 in the z direction. Then, as the distance between the sensor magnet 27 and the rotation sensor 26 in the z direction becomes smaller, the angle between the inner diameter side line (arrow 30a) of the effective range 31a and the z axis, the outer diameter side line of the effective range 31b (arrow 30d). The angle formed by the z axis becomes smaller.
  • the arrangement of the sensor magnet 27, the rotation sensor 26, and the magnetic body 28 is determined in consideration of z, r, and ⁇ , and the rotation angle detection accuracy is improved, thereby improving the rotation accuracy of the output shaft and noise.
  • the effect of improving the resistance can be obtained.
  • the magnetic body 28 is also arranged in consideration of the effective ranges 31a and 31b, which are areas where the rotation angle detection error is reduced, so that it is not necessary to unnecessarily increase the size of the magnetic body 28 and to reduce the weight. -Miniaturization can be achieved.
  • the annular magnetic body 28 has a structure that is sandwiched between the inner surface of the case 21 and the sensor substrate 25, and a leg portion 25 a having the same height as the magnetic body 28 is fixed in the case 21.
  • the sensor substrate 25 is fixed to the portion 25a, and the magnetic body 28 is disposed therebetween.
  • the magnetic body 28 can also be used as a leg portion for fixing the sensor substrate 25. In this case, the number of parts can be reduced.
  • there is no problem in the dimension limitation in the thickness direction of the magnetic body 28 as long as the magnetic flux density B from the sensor magnet 27 is not saturated.
  • the annular magnetic body 28 has been described. However, if the magnetic circuit configured between the sensor magnet 27 and the magnetic body 28 is effective, the same effect can be obtained even in a shape having a notch. .
  • FIG. 1 shows an example in which the control unit 20 is arranged on the output side of the motor output shaft, and the sensor magnet 27 and the rotation sensor 26 are mounted therein, but the counter-output of the lower output shaft 7 in the figure. Even in the structure in which the control unit is arranged on the side, the arrangement of the rotation sensor 26 can be similarly determined.
  • FIG. 9 and FIG. 9 and 10 are side sectional views of the control unit 20 and show the vicinity of the arrangement area of the rotation sensors 26a and 26b, respectively.
  • the magnetic body 28 is not used, and instead the bearing 6 is used.
  • the outer rings 6b and 6d are used as magnetic bodies.
  • FIG. 9 shows a case where the outer diameter of the sensor magnet 27 is smaller than the outer diameter of the bearing 6, and
  • FIG. 10 shows a case where the outer diameter of the sensor magnet 27 is larger than the outer diameter of the bearing.
  • the bearing 6 is held by the case 21, and a sensor magnet 27 is disposed in the vicinity of the bearing 6. 3 and 4, in order to reduce the distance between the bearing 6 and the sensor magnet 27, the lower surface of the bearing 6 is disposed so as to have substantially the same height as the inner wall surface of the case 21. .
  • the inner ring 6c and the ball 6e of the bearing 6 rotate together with the output shaft 7, but the outer ring 6d is fixed to the case 21 side and does not rotate.
  • the outer ring 6d has an annular shape similar to that of the sensor magnet 27 and has a constant diameter.
  • the outer ring 6d is a magnetic body, and is made of, for example, iron. For this reason, the outer ring 6d is used in place of the magnetic body 28 of the first embodiment, and has a structure for undertaking the role of collecting a magnetic field.
  • the arrangement of the rotation sensors 26a and 26b is determined according to the arrangement of the outer ring 6d.
  • a broken line arrow 30c extending from the sensor magnet 27 to the outer diameter of the inner ring 6c so as to be parallel to the axial direction of the output shaft 7.
  • a region between the output shaft 7 and an arrangement prohibition region in consideration of the relationship between r and ⁇ in the first embodiment described above.
  • the region on the outer diameter side from the arrow 30b extending from the outer peripheral portion of the sensor magnet 27 to the outer diameter (outermost peripheral end) of the outer ring 6b is also an arrangement prohibited region.
  • the arrow 30a extending from the sensor magnet 27 to the inner diameter (innermost peripheral end) of the bearing 6d can be set so as to be an area having a relationship of Br: B ⁇ 1: 1 as in the first embodiment. it can.
  • rotation sensor 26a, 26b can be arrange
  • the performance of the bearing 6 is determined by the thickness of the output shaft 7 and the rotational torque of the output shaft 7, and the size of the bearing 6 is determined. Therefore, as shown in FIGS. 9 and 10, the arrow 30a on the inner circumference side of the effective ranges 31a and 31b is on the line connecting the position on the sensor magnet 27 that becomes the contact point of the broken arrow 30c and the inner diameter of the outer ring 6d. It will be in the position.
  • the outer ring 6 d is annular like the sensor magnet 27.
  • the surface shape of the outer ring 6d and the sensor magnet 27 is a smooth surface shape with no irregularities, with no corners smoothed, and the inner diameter and the outer diameter need not change depending on the z direction. There is.
  • the outer ring corners of the outer ring 6d and the sensor magnet 27 are smooth curved surfaces with the corners cut off, irregularities in the horizontal direction (radial direction) and the vertical direction in FIGS. 9 and 10 ( If there is a dimensional change), the distances z and r between the outer ring 6d and the sensor magnet 27 partially change. If the distances in the z and r directions of the rotation sensors 26a and 26b change, the detection accuracy deteriorates.
  • the outer diameter of the outer ring 6d tends to be smaller than that of the magnetic body 28 of the first embodiment, as shown in FIGS.
  • the effective ranges 31a and 31b in which the rotation sensors 26a and 26b can be arranged are narrower in the radial direction than in FIGS. 3 and 4 of the first embodiment. In order to widen the effective ranges 31a and 31b, it is effective to widen the formation range of the magnetic body itself by adding a part that functions as a magnetic body in contact with the outer ring 6d.
  • a cover made of a magnetic material is attached to the ball 6e, or the magnetic material 28 similar to that of the first embodiment is disposed in the outer diameter direction in which the outer ring 6d abuts, or another outer side of the outer ring 6d is provided.
  • the dimension in the width direction of the portion functioning as a magnetic body can be made larger than when only the outer ring 6d is used.
  • the magnetic body 28 or the outer ring 6d of the bearing 6, the rotation sensor 26, the sensor magnet 27, and the power unit 23 are arranged in this order in the axial direction of the rotating electrical machine 100.
  • the rotation sensor 26 has a region where the amplitude of the radial component Br and the circumferential component B ⁇ of the magnetic flux density B of the magnetic field is equal, and the distance from the sensor magnet 27 is the strength of the magnetic field for detecting the rotation angle.
  • the sensor magnet 27, the rotation sensor 26, the magnetic body 28, and the power unit 23 can be arranged in the axial direction in the order as long as the condition of being arranged in a region determined accordingly can be satisfied. .
  • FIG. 11 is an explanatory diagram of the rotating electrical machine 100 according to the first and second embodiments of the present invention, and is a schematic diagram showing that the magnetic field 51 generated by the current 50 flowing through the power unit 23 is shielded.
  • the magnetic field 51 generated by the current 50 flowing through the power unit 23 can be shielded by the magnetic body 28 (in the second embodiment, the outer ring 6 d of the bearing 6).
  • the rotation sensor 26 By arranging the rotation sensor 26 in a region where the influence of the magnetic field 51 is reduced by the magnetic body 28 (outer ring 6d), it is possible to reduce the influence of the magnetic field 51 on the detection value of the rotation sensor 26.
  • the magnetic body 28 (outer ring 6 d) is exemplified as being annular, in FIG.
  • the magnetic body 28 is only in the vicinity of the rotation sensor 26. This is explained using a model in which is provided.
  • the degree of influence varies depending on the strength of the magnetic field 51 and the like, the accuracy required for the rotation angle of the rotating electrical machine 100 can be achieved by adjusting the size of the magnetic body 28 (outer ring 6d).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Brushless Motors (AREA)

Abstract

 出力軸(7)、この出力軸(7)を取り囲むケース(21)内に固定された磁性体(28)、出力軸(7)に固定され、出力軸(7)の回転角度を検出するための磁界を発生させるセンサマグネット(27)、ケース(21)内に固定され、出力軸(7)の軸方向において、磁性体(28)とセンサマグネット(27)との間に配置され、回転角検出用の磁界の強度に応じて信号を出力する回転センサ(26)を備えた回転電機(100)において、センサマグネット(27)は、出力軸(7)を中心とした周方向にS極、N極が着磁され、回転センサ(26)は、磁界の磁束密度Bの、出力軸(7)を中心とした径方向成分Brと周方向成分Bθの振幅が同等となる領域に配置される。

Description

回転電機
 この発明は、出力軸の回転角を検出するための回転センサを装着した回転電機に関するものである。
 従来の回転電機として、例えば、車両用電動パワーステアリング装置の電動モータに回転センサを装着させた装置が知られている。さらに、回転センサにより検出した回転信号から回転位置、回転角を算出する制御ユニットを、回転電機に一体化させた装置も知られている。このように、回転センサおよび制御ユニットを一体化した回転電機では、装置全体を小型化、軽量化したことにともなって、ノイズ抑制、回転精度向上という課題が生じていた(例えば、特許文献1参照)。
特許第3738966号
 特許文献1には、回転電機のリング磁石(センサマグネット)とホール素子(回転センサ)の位置決めに関しての記載がある。この構造では、ステータコイルの極近傍にリング磁石が装着され、ホール素子は、軸受の筒部に装着されている。そして、リング磁石とホール素子は、わずかな隙間を介して対向配置されている。この特許文献1に示された装置の構造では、リング磁石、ホール素子は極近傍に配置され、さらに周辺の部材に密着させることによって小型化を図っていた。
 また、特許文献1に開示された構造では、リング磁石から磁気バイパス部材への軸方向の磁束密度を検出する構造となっており、複数位置での検出が必要であった。その場合には、ホール素子の位置精度によって回転角度の検出精度が決定されるため、複数のホール素子の位置精度を管理する必要があった。
 この発明は、上記のような問題点を解決するためになされたものであり、出力軸の回転角度を検出するための回転センサの配置を最適化させた回転電機を得ることを目的とする。
 この発明に係わる回転電機は、回転電機の出力軸、上記出力軸を取り囲む上記回転電機のケース内に固定された磁性体、上記出力軸に固定され、上記出力軸の回転角度を検出するための磁界を発生させるセンサマグネット、上記回転電機のケース内に固定され、上記出力軸の軸方向において、上記磁性体と上記センサマグネットとの間に配置され、回転角検出用の上記磁界の強度に応じて信号を出力する回転センサを備え、上記センサマグネットは、上記出力軸を中心とした周方向にS極、N極が着磁され、上記回転センサは、上記磁界の磁束密度の、上記出力軸を中心とした径方向成分と周方向成分の振幅比をkとしたとき、振幅比kで表現されるn次(nは偶数)の角度誤差fn(k)が、要求される回転角検出精度Eを満たす領域に配置されることを特徴とするものである。
 この発明の回転電機によれば、センサマグネットと磁性体が生成する磁界の磁束密度の径方向成分と周方向成分の基本波振幅の差異を抑制することができ、出力軸の回転角検出精度を向上させることが可能となる。
 この発明の上記以外の目的、特徴、観点および効果は、図面を参照する以下のこの発明の詳細な説明から、さらに明らかになるであろう。
本発明の実施の形態1に係る回転電機の側断面図である。 実施の形態1の回転電機のセンサマグネットの平面図である。 実施の形態1の回転電機の制御ユニットを示す側断面図である。 実施の形態1の回転電機の制御ユニットを示す側断面図である。 図5(a)は、回転電機において発生する磁界の磁束密度Bの径方向成分Brと周方向成分Bθの振幅比が1である場合の、磁束密度の角度依存性を示す図であり、図5(b)は、正弦信号Vsinと余弦信号Vcosの信号値の角度依存性を示す図である。 図6(a)は、回転電機において発生する磁界の磁束密度Bの径方向成分Brと周方向成分Bθの振幅比が1.2である場合の、磁束密度の角度依存性を示す図であり、図6(b)は、正弦信号Vsinと余弦信号Vcosの信号値の角度依存性を示す図である。 図7(a)は、回転電機において発生する磁界の磁束密度Bの径方向成分Brと周方向成分Bθの振幅比が1.8である場合の、磁束密度の角度依存性を示す図であり、図7(b)は、正弦信号Vsinと余弦信号Vcosの信号値の角度依存性を示す図である。 回転電機の軸方向と径方向の座標上における角度検出精度を示した模試図である。 本発明の実施の形態2の回転電機の制御ユニットを示す側断面図である。 本発明の実施の形態2の回転電機の制御ユニットを示す側断面図である。 本発明の実施の形態1および実施の形態2の回転電機の説明図であり、パワー部を流れる電流が生成する磁界がシールドされることを示す模式図である。
実施の形態1.
 本発明の実施の形態1の回転電機は、モータと制御ユニットが一体化された構造であり、出力軸の回転角度を検出する回転センサを備えている。そして、一つの回転センサによって、センサマグネットと磁性体との間に生じる磁界の磁束密度を計測し、出力軸の回転角度を検出する。一つの回転センサで出力軸の回転角度を検出する場合には、出力軸を中心とした磁束密度の径方向成分と、磁束密度の周方向成分との関係から、回転角を算出することができる。しかし、磁束密度の径方向成分と周方向成分の振幅比が1からずれると、そのズレに応じて回転センサの出力値に角度誤差が表れる。
 そこで、本発明の回転電機では、検出する回転角度の誤差低減のため、回転センサを、磁束密度の径方向成分と周方向成分の振幅比のずれ量を低減できる領域に配置することを提案している。
 以下、この発明の実施の形態1による回転電機について、図1ないし図8を用いて説明する。各図において、同一または相当する部分については同一符号を付して説明する。
 図1は、回転電機100の側断面図であり、例えば、電動パワーステアリング装置を示している。回転電機100は、モータ1と制御ユニット20を一体化させた構造である。そして、図1に例示するように、出力軸7の端部側(紙面下側)にモータ1が配置され、出力軸7の出力側(紙面上側)に、制御ユニット20が、同軸上に配置されている。
 モータ1は、主構成要素として、ヨーク2、ステータ3、ロータ4等を含んでいる。そして、ヨーク2の内部には、巻線コイルが巻回されたステータ3が配置されている。ステータ3の両端には、巻線コイルの端部を構成するコイルエンド5が位置し、コイルエンド5から巻線端子9が、環状の支持部8を介してモータ1の外部に延出されている。
 そして、ステータ3の中心部には、出力軸7が配置され、ステータ3の内周側には、出力軸7に固定されたロータ4が配設されている。このロータ4は、永久磁石を装着してなる。
 出力軸7は、図1中において、回転電機100の上部および下部に設けられた軸受6により回転可能に支持されている。軸受6は、出力軸7に固定された内輪6aとケース21に固定された外輪6bによってボールを保持する構成である。
 モータ1は、その上部がフレーム10によって覆われている。そして、このフレーム10から下部がモータ1に相当している。
 モータ1がブラシレス3相モータである場合、少なくとも3相分の巻線端子9がフレーム10の孔に挿通されて図中上側に延出されている。
 回転電機100を構成する制御ユニット20は、出力軸7の出力側、つまり、モータ1のフレーム10の上部に設けられている。出力軸7を取り囲み、制御ユニット20を構成するケース21は、ヨーク2と同径となるように設けられ、その内部には回路部を構成する制御基板22が配置されている。制御基板22は、CPUを搭載しており、モータ1を駆動するための制御信号を出力する。
 図1において、制御基板22の下側には、その制御信号を受けて、モータ1の巻線コイルに電流を供給するためのパワー部23が配置されている。このパワー部23には、モータ1がブラシレス3相モータである場合、多数のスイッチング素子がブリッジ構成で搭載されている。このパワー部23は、図1中の左右に1個ずつ計2個が配置されている。モータ1への電流供給のため、パワー部23ではスイッチング素子の制御により発熱があり、フレーム10をヒートシンクとして利用し、放熱する構成を採っている。フレーム10(ヒートシンク)を貫通した巻線端子9と、パワー部23の端子とは接続されており、その接続は、例えば溶接によってなされている。さらにパワー部23からは複数の端子が制御基板22へ延出され、この端子には上述の制御信号が伝達される構成となっている。
 制御基板22とパワー部23との中間には、絶縁性部材よりなる中間部材24が配設されている。この中間部材24には、パワー部23への電源ライン(+、-)他の導電体が挿通されている。また中間部材24と制御基板22との空間にはコンデンサ他の部品を配置して、空間を有効に利用している。
 出力軸7は、制御ユニット20の中央を通り、ケース21を貫通して外部に延出されている。出力軸7の先端では減速機(図示せず)と嵌合する構成となっている。その出力軸7の回転の状態を検出することは、特にブラシレスモータでは重要である。そして、この回転角の検出精度が悪いと、回転角から算出される回転位置の検出精度も同様に悪くなり、モータ1の回転のスムーズ性に影響することがわかっている。そのため、出力軸7の回転状態を検出するための回転センサ26は、検出精度が重要な設計アイテムとなっている。さらに、回転センサ26が満たすべき要件に、小型化の要素が含まれることは上述の通りである。
 制御ユニット20には、回転角検出のための磁界を発生させるセンサマグネット27が配設される。本構成の回転電機100においては、モータ1と制御ユニット20とを一体化し、小型化したため、センサマグネット27は、出力軸7の端部に装着することができず、中間部に配置される。このセンサマグネット27は、回転角の検出精度向上、ノイズ抑制のため、モータ1の駆動電流が流れているパワー部23に近接配置させることはできない。よって、センサマグネット27は、制御基板22の、パワー部23とは反対側の面(図1中上側)に配設される。
 図2に、センサマグネット27の平面図を示す。センサマグネット27は、平面形状が環状であり、一様な厚さを持つ板状部材である。そして、図2に示すように、N極、S極が、出力軸7の軸方向を中心とした円周方向に着磁されている。ここでは1極対のものについて説明するが、多極対のものであっても同様のことが言える。そして、図1に示すように、このN、Sの磁界を検出する回転センサ26は、センサマグネット27の上側に配置されている。
 ここで、出力軸7の軸方向において、回転センサ26を、センサマグネット27から見て制御基板22側に、または制御基板22上に配置することも考えられる。しかし、磁界の強さの変化を検出するためには所望の方向成分の磁界を実現するための磁性体が必要である。磁性体を配置するスペースが、制御基板22側、または制御基板22上にある場合は、そのような構成も採用できる。
 ここでは装置の小型化のため、図1に示すように、磁性体28を、センサマグネット27から見て制御基板22側には配置せず、制御基板22が設けられていないセンサマグネット27の上側に配置する場合について説明する。
 磁性体28が収納されるケース21は、鉄系の磁性体ではなく、アルミニウム系の非磁性体とする。そして、そのケース21の内側に環状の磁性体28(例えば鉄製)を装着している。さらに、この磁性体28の図1中下側には回転センサ26を搭載したセンサ基板25が配置されている。回転センサ26への電源供給、さらにはセンサからの検出信号等の送受信のため、電気配線29によりセンサ基板25と制御基板22は接続されている。
 センサマグネット27のN極の磁束の一部は、磁性体28へ到達する。回転センサ26は、センサマグネット27と磁性体28との中間部に配置されている。
 図3を用いて、磁性体28の外径よりもセンサマグネット27aの外径が小さい場合の、回転センサ26aの配置について詳細に説明する。図3は、図1の回転電機100の制御ユニット20の側断面図であり、回転センサ26aの配置領域付近の拡大図を示している。センサマグネット27aの外径は、磁性体28の外径よりも小さい。センサマグネット27aから磁性体28へ向かって生成される磁界のうち、回転センサ26によって高精度に回転角を検出することが可能となる磁束の有効範囲31aは、図3に示すように四角形で示すことができる。この有効範囲31aは、回転角検出用の磁界の強度に応じて決められた領域に相当する。
 つまり、有効範囲31aに回転センサ26aを配置すれば、出力軸7の回転角度の検出誤差を低減することができる。回転センサ26aは、その一部が検出部となっているが、その検出部が、有効範囲31aに入るように配置すればよく、回転センサ26aの検出部以外の部分が有効範囲31aからはみ出して配置されていても問題ない。
 有効範囲31aは、図3に示すように、センサマグネット27aの外径(最大円周端)から磁性体28の外周部へ延ばされた矢印30bと、センサマグネット27aの内周のある位置から磁性体28の内周端へ延ばされた矢印30aで囲まれた四角形の範囲に相当している。
 センサマグネット27の外径が、磁性体28の外径よりも小さい場合、回転センサ26aは、センサマグネット27を投影した範囲よりも径方向外側に配置することができる。
 次に、この有効範囲31aの決定方法について説明する。
 図3中の矢印zは出力軸の軸方向(z方向)を示し、矢印rはセンサマグネット27aの径方向(r方向)を示す。紙面奥から手前に向けての方向が周方向(θ方向)を示し、このθ方向に、センサマグネット27aは回転する。
 なお、図3中において、回転センサ26aおよび支持基板となるセンサ基板25は、それらの配置が、角度検出用の磁界の強度に応じて決められることから、仮想線にて表示を行っているものである。
 まず、回転センサ26aのz方向における配置は、センサマグネット27aと磁性体28との距離に関係し、磁界の強さは、磁極の強さの積に比例し、距離の2乗に比例するというクーロンの法則によって決定される。
 回転センサ26aのセンサマグネット27aからのz方向の距離は、磁界の強さ(磁束密度)を確保できる距離に決められるため、この最大距離は自ずと決定される。つまり、磁性体28とセンサマグネット27aの距離は、磁性体28が十分に磁束を吸い寄せることができる範囲とするとよい。回転センサ26aは、センサ基板25上に設けるが、z方向の距離が決まれば、センサ基板25を有効距離に配置するために、脚部25a等を用いてセンサ基板25の高さ調整を行うことができる。
 次に、矢印30bで表されるセンサマグネット27a(磁極)の最外周端と磁性体28の外周側との間を結ぶ境界線は、矢印zと同様に、磁界が距離の2乗で減衰することを考慮して決定することができる。そのため、有効範囲31aは、磁性体28の外周端までは使用していないものである。
 同様に、磁性体28の外径よりもセンサマグネット27bの外径が大きい場合の、回転センサ26bの配置について詳細に説明する。図4は、図1の回転電機100の制御ユニット20の側断面図であり、回転センサ26bの配置領域付近の拡大図を示している。図4を用いて回転センサ26bの配置について詳細に説明する。センサマグネット27bの外径は磁性体28の外径よりも大きい。センサマグネット27bから磁性体28へ向かって生成される磁界のうち、回転センサ26bによって高精度に回転角を検出することが可能となる磁束の有効範囲31bは、図4に示すように四角形で示すことができる。
 つまり、有効範囲31bに回転センサ26bを配置すれば、回転角度の検出誤差を低減することができる。この有効範囲31bは、有効範囲31aと同様に決定すればよく、図4に示すように、センサマグネット27bの外径端部から磁性体28の外周部へ延ばされた矢印30dと、センサマグネット27bの内周のある位置から磁性体28の内周端へ延ばされた矢印30cで囲まれた四角形の範囲に相当している。有効範囲31bは、回転角検出用の磁界の強度に応じて決められた領域に相当する。
 センサマグネット27の外径が、磁性体28の外径より大きい場合、回転センサ26bは、センサマグネット27を投影した範囲内に配置することができる。
 また、回転センサ26(26a、26b)の配置を決定する上で、磁界の径方向r、周方向θについては適切な関係があることを考慮して、有効範囲31a、31bの内周側の境界線を決定する必要がある。
 ここで、回転センサ26となる磁気センサとしては、例えばMR素子がある。MR素子は磁気抵抗素子であり、磁束密度にほぼ比例してその磁気抵抗値が増加する。このような磁気抵抗素子を直列に2個接続し、磁石などの磁界によって電気抵抗が変化する素子の両端に現れる電圧を検出する。磁界が両抵抗素子に均等にかかれば中央値(中点電圧)となり、均等ではなく差異があるように磁界がかかれば、その中心の電圧が変化することから、検出した電圧から出力軸7の回転角を求めることができる。回転センサ26は、ここで検出できる方向成分の異なる磁気抵抗素子を2つ有することによって、一方を正弦信号Vsin、他方を余弦信号Vcosとして検出することができる。ここでは直列に2個接続した磁気抵抗素子を持つ回転センサ26を用いて説明するが、磁気抵抗素子であれば同様のことが言えることはいうまでもない。
 磁束密度Bは3方向の成分を持つベクトルとして表現でき、径方向成分Br、周方向成分Bθ、軸方向成分Bzは、次の式(1)で与えられる。
Figure JPOXMLDOC01-appb-M000001
 VcosおよびVsin、BrおよびBθの関係は、次の式(2)で与えられる。
Figure JPOXMLDOC01-appb-M000002
 BrとBθの振幅が等しい場合には式(2)の分母は一定値ar1となるが、振幅が異なる場合には変動する。分母に平方根を含む式をテイラー展開した場合には、次の式(3)のように展開できるので、VcosおよびVsinは次の式(4)のように与えられる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 つまり、BrとBθの振幅比が1とは異なる場合には、VcosおよびVsinには奇数次の誤差成分が重畳される。
 このとき角度誤差eは、次の式(5)のような近似式で与えられる。
Figure JPOXMLDOC01-appb-M000005
 奇数次の信号誤差成分は偶数次の角度誤差として表れるため、信号に含まれる高次の誤差成分が大きいほど検出角度に出てくる高次の誤差も大きくなるため、回転センサ26が検出する正弦信号Vsinおよび余弦信号Vcosが共に歪みの少ない波形であるほど、回転角検出精度を向上させることができる。
 図5、図6、図7に、BrとBθの振幅比(1.0、1.2、1.8)に応じたBrおよびBθの波形と、Vcos、Vsinの波形を示す。
 図5(a)は、BrとBθの振幅比が1:1、つまり振幅が等しい場合のBrとBθの磁束密度Bの角度依存性を示したものであり、図5(b)は、そのときのVcos、Vsinの信号値Vの角度依存性を示すものである。
 図6(a)は、BrとBθの振幅比が1:1.2の場合のBrとBθの磁束密度Bの角度依存性を示したものであり、図6(b)は、そのときのVcos、Vsinの信号値Vの角度依存性を示すものである。
 図7(a)は、BrとBθの振幅比が1:1.8の場合のBrとBθの磁束密度Bの角度依存性を示したものであり、図7(b)は、そのときのVcos、Vsinの信号値Vの角度依存性を示すものである。
 図5、図6、図7から明らかなように、BrとBθの振幅比が1で、基本は振幅が同等となる場合には、正弦信号Vsinおよび余弦信号Vcosの歪みがなく、BrとBθの振幅比が1と異なる場合に、正弦信号および余弦信号の歪みが見られることが分かる。これは、式(4)の高周波成分、特に奇数次3次、5次、7次成分が大きくなるためであり、その結果、BrとBθの振幅が同等でなくなると、角度誤差が発生する。
 なお、装置の仕様によって要求される回転角検出精度が異なる場合があり、要求される精度を基にrとθとの比率を決定することができる。例えば、図5(a)、図5(b)、図6(a)、図6(b)に示すように、振幅の比率が1~1.2となる場合は精度を満たしたものと判断し、この振幅比に該当する装置は使用可とする。そして、図7(a)、図7(b)に示すように、振幅の比率が1.8となる場合は精度を満たしていないものと判断し、この振幅比に該当するような装置は使用不可とする。このように、BrとBθの振幅比によって仕様に合致する許容範囲を決定する。
 Vcos、Vsin、角度誤差の次数成分は振幅比kによる関数となっているため、n次(nは偶数)の角度誤差成分をfn(k)、要求される回転角検出精度をEと表現すると、振幅比kは、次の式(6)を満たす範囲にすればよい。
Figure JPOXMLDOC01-appb-M000006
 例えば、振幅比kが1.2程度の場合について説明する。このとき、VcosおよびVsinは、次の式(7)のようになる。
Figure JPOXMLDOC01-appb-M000007
 ここでは簡単のため式(3)の第3項までを用いて近似して展開すると、VcosおよびVsinは、次の式(8)で与えられる。
Figure JPOXMLDOC01-appb-M000008
 このとき角度誤差eは、次の式(9)で与えられる。
Figure JPOXMLDOC01-appb-M000009
 つまり、角度誤差の次数成分fn(k)は、次の式(10)で表すことができる。
Figure JPOXMLDOC01-appb-M000010
 これらの誤差を、要求される回転角検出精度Eを満たす値とするためには、次の式(11)で決定する範囲内に振幅比kを設定する必要がある。
Figure JPOXMLDOC01-appb-M000011
 ここでは、2次、4次および6次の成分で許容範囲を決定したが、低次成分は公知の補正方法により低減する場合であれば、補正対象では無い次数成分のみを対象とすればよい。また、振幅比が大きい場合にはさらに高次の成分まで考慮して角度誤差eを見積もるとよい。なお、範囲を決定するために考慮すべき次数成分誤差のうち低次のものが最も大きいため、この成分が要求される回転角検出精度E以下となるように考えてもよい。
 さらに、図8は、原点を出力軸の軸方向のセンサマグネット27の上面(磁性体28側の面)の高さに設定し、軸方向zおよび径方向rの両距離座標に、同じ大きさの区画を割り振り、該当する区画における回転角検出精度を示した模試図である。各区画には回転角検出精度に応じた精度レベルが数字で示されている。その数字は、回転角検出精度が高い程大きい数となっている。
 図8では、回転角検出精度の精度レベルが5段階に示された場合を例示しており、回転角検出精度が低い(誤差が大きい)領域40は、ハッチング無しのスペースに数字0が表示されている。領域40の次に回転角検出精度が低い領域41は、斜め線のハッチングスペースに数字1が表示されている。領域41の次に回転角検出精度が低い領域42は、格子のハッチングスペースに数字2が表示されている。領域42の次に回転角検出精度が低い領域43は、横縞のハッチングスペースに数字3が表示されている。回転角検出精度が最も高い(誤差がほとんどない)領域44は、縦縞のハッチングスペースに数字の4が表示されている。
 そして、図8のデータを参照し、回転電機100の要求する精度から、回転センサ26の配置のために領域43、44のみが使用可能なのか、あるいは領域42でも使用可能なのかを判定する。そして、定められた有効範囲に回転センサ26を配置することで、回転センサ26の回転角検出誤差を低減させることが可能となる。
 以上の結果から、定性的にセンサマグネット27と回転センサ26の配置に関して説明すると次のことが言える。
 出力軸7近傍では、磁界は磁性体28を経由せずにセンサマグネット27から出力軸7へ直接進む。そのため、図3および図4において示したセンサマグネット27と出力軸7の近傍の領域32a、32bは、回転センサ26aを配置するために使用することができない。領域32a、32bと有効範囲31a、31bの間の領域は、上記BrとBθの関係からr方向成分がθ方向成分より大きく、正弦信号および余弦信号が歪むため使用不可領域である。有効範囲31a、31bが、z、r、θの全部を考慮して得られた回転角度検出精度が良好な領域(Br:Bθ≒1:1の関係を有する領域)となる。
 なお、図3、図4においては、ここでは有効範囲31a、31bの境界線(矢印30a、30b、30c、30d)を斜めに書いたが、これに限定するものでは無い。例えば、センサマグネット27と磁性体28との距離によって磁束密度Bの各方向成分は変化するため、センサマグネット27と回転センサ26のz方向の距離によって、有効範囲31a、31bは変化する。そして、センサマグネット27と回転センサ26のz方向の距離が小さくなるほど、有効範囲31aの内径側の線(矢印30a)とz軸のなす角、有効範囲31bの外径側の線(矢印30d)とz軸のなす角は小さくなる。
 つまり、図3に示すように、回転センサ26aをセンサマグネット27の外径より外側に置き、有効範囲31aを使用する場合には、z方向の距離が小さくなるほど回転センサ26aを内径側に配置した方が、BrとBθの振幅比を1に近づけることができ、回転角検出誤差を低減させることができる。
 一方、図4に示すように、回転センサ26bをセンサマグネット27の外径より内側に置き、有効範囲31bを使用する場合には、z方向の距離が小さくなるほど回転センサ26bを外径側に配置した方が、BrとBθの振幅比を1に近づけることができ、回転角検出誤差を低減させることができる。
 以上のように、センサマグネット27、回転センサ26、磁性体28の配置を、z、r、θを考慮して決定し、回転角検出精度を向上させることにより、出力軸の回転精度向上およびノイズ耐量向上という効果を得ることができる。また磁性体28においても、回転角検出誤差が低減される領域である有効範囲31a、31bを考慮して配置することで、磁性体28自体の大きさを無駄に大きくする必要がなく、軽量化・小型化を図ることが可能となる。
 なお、環状の磁性体28は、ケース21の内面とセンサ基板25との間に挟持される構造であり、磁性体28と同じの高さの脚部25aをケース21内に固定し、この脚部25aにセンサ基板25を固定させて、両者間に磁性体28を配設している。なお、この脚部25aを磁性体28と同じ厚みに形成することで、磁性体28を、センサ基板25を固定する脚部として兼用することもでき、この場合、部品削減が可能となる。
 また磁性体28の厚み方向の寸法制限は、センサマグネット27からの磁束密度Bが飽和しない程度の厚みであれば問題ない。ここでは、環状の磁性体28として説明したが、センサマグネット27と磁性体28の間で構成される磁気回路が有効であれば、切り欠き部を持つ形状であっても同様の効果を得られる。
 本実施の形態1では、より顕著に効果が出るMR素子を回転センサ26(26a、26b)として用いる例を示したが、ホール素子など他の素子を用いてもBrとBθの振幅比が良好となる範囲に回転センサ26を配置させる構成とすることで、出力軸7の回転角検出誤差を小さく抑制することが可能となる。
 また、図1ではモータ出力軸の出力側に制御ユニット20を配置し、その中にセンサマグネット27、回転センサ26を装着させた例を示したが、図中下側の出力軸7の反出力側に制御ユニットを配置した構造であっても同様に回転センサ26の配置は決定することができる。
実施の形態2.
 次に実施の形態2について図9および図10を用いて説明する。図9および図10は、制御ユニット20の側断面図であり、回転センサ26a、26bの配置領域付近をそれぞれ示している。
 上述の実施の形態1では、磁性体28を配設した例を示していたが、この実施の形態2では、図9、図10に示すように、磁性体28は用いず、代わりに軸受6の外輪6b、6dを磁性体として用いる例を示している。図9は、センサマグネット27の外径が軸受6の外径よりも小さい場合を示し、図10は、センサマグネット27の外径が軸受の外径よりも大きい場合を示している。
 図9、10に示すように、軸受6は、ケース21によって保持され、軸受6の近傍にセンサマグネット27が配置されている。そして、図3、4の場合と比較して、軸受6とセンサマグネット27との距離を縮めるため、軸受6の下面がケース21の内壁面とほぼ同一の高さとなるように配設されている。軸受6の内輪6cとボール6eは、出力軸7と一緒に回転するが、外輪6dはケース21側に固定されており、回転はしない。
 また、この外輪6dはセンサマグネット27と同様の環状であり、一定の径を有した構造である。さらに、この外輪6dは磁性体であり、例えば鉄製である。そのため、この外輪6dを、実施の形態1の磁性体28の代わりに利用し、磁界を集める役目を請け負わせる構造となっている。
 この実施の形態2では、外輪6dの配置に応じて、回転センサ26a、26bの配置を決定する。
 まず、回転センサ26a、26bを配置できない領域として、図9、図10に示すように、出力軸7の軸方向に平行となるように、センサマグネット27から内輪6cの外径へ伸びる破線矢印30cと、出力軸7との間の領域があり、上述した実施の形態1のr、θとの関係を考慮した配置禁止領域となる。同様にセンサマグネット27の外周部から外輪6bの外径(最外周端)へ伸びる矢印30bより外径側の領域も配置禁止領域となる。
 センサマグネット27から軸受け6dの内径(最内周端)へ伸びる矢印30aは、上述の実施の形態1と同様に、Br:Bθ≒1:1の関係を有する領域となるように設定することができる。そして、矢印30a、30b、センサマグネット27、外輪6dで囲まれた四角形の有効範囲31bの領域上に回転センサ26a、26bを配置することができる。
 なお、出力軸7の太さ、出力軸7の回転トルクにより、軸受6の性能が決定され、軸受6の大きさが決まる。そのため、図9、図10に示したように、有効範囲31a、31bの内周側の矢印30aは、破線矢印30cの接点となるセンサマグネット27上の位置と外輪6dの内径を結んだ線上に位置した状態となる。
 ここで、外輪6dは、センサマグネット27と同様に環状である。そして、外輪6dとセンサマグネット27の表面形状は、角部のスムージングなどがされていない、凹凸のない滑らかな表面形状であり、z方向に依存して内径および外径が変化しない形状とする必要がある。
 外輪6dおよびセンサマグネット27の外表面角部が、角が削られた滑らかな曲面となっている場合には、図9、図10中の、紙面左右方向(径方向)及び上下方向に凹凸(寸法変化)があると、部分的に外輪6dとセンサマグネット27の距離z、rに変化が生じることになる。回転センサ26a、26bのz、r方向の距離が変化すれば、検出精度悪化となる。
 このように、外輪6dを磁性体として使用する本構成においては、外輪6dの外径が実施の形態1の磁性体28よりも小さく形成される傾向にあり、図9、図10に示したように、回転センサ26a、26bを配置することが可能となる有効範囲31a、31bは、径方向の幅が実施の形態1の図3、図4と比較して狭くなる。
 有効範囲31a、31bを広げるためには、外輪6dに接して磁性体として機能する部品を追加するなどして、磁性体自体の形成範囲を広げることが有効である。そのためには、例えばボール6eに磁性体よりなるカバーを取り付ける、または、外輪6dの当接する外径方向に実施の形態1と同様な磁性体28を配置する、あるいは、外輪6dの外側に別の外輪を装着させるなどすることで、磁性体として機能する部分の幅方向の寸法を、外輪6dのみを用いた場合よりも大きくすることが可能となる。
 上述の実施の形態1、およびこの実施の形態2においては、回転電機100の軸方向に、磁性体28または軸受6の外輪6d、回転センサ26、センサマグネット27、パワー部23を順に配置した例を示した。しかし、回転センサ26は、磁界の磁束密度Bの、径方向成分Brと周方向成分Bθの振幅が同等となる領域、かつ、センサマグネット27からの距離が、回転角度検出用の磁界の強度に応じて決められた領域内に配置されるという条件を満たすことができれば、センサマグネット27、回転センサ26、磁性体28、パワー部23という順に軸方向に配置させることも可能であることは言うまでもない。
 図11は、本発明の実施の形態1および実施の形態2の回転電機100の説明図であり、パワー部23を流れる電流50が生成する磁界51をシールドすることを示す模式図である。図11に示すように、パワー部23を流れる電流50が生成する磁界51は、磁性体28(実施の形態2においては、軸受6の外輪6d。)によってシールドすることが可能である。磁性体28(外輪6d)によって磁界51の影響を低減した領域に回転センサ26を配置することで、回転センサ26の検出値への磁界51の影響を低減させることが可能である。
 なお、磁性体28(外輪6d)は環状であることを例示していたが、図11では、磁性体28の配置による磁界51の変化を説明するため、回転センサ26の近傍にのみ磁性体28を配設したモデルを用いて説明している。
 パワー部23を流れる電流の大きさ、回転センサ26と磁性体28(外輪6d)の距離、磁性体28(外輪6d)とパワー部23の距離、センサマグネット27が回転センサ26の位置で生成する磁界51の強度などによって影響度は異なるが、磁性体28(外輪6d)の大きさを調整することによって回転電機100の回転角に要求される精度に収めることが可能となる。
 また、実施の形態1、実施の形態2においては、一つの回転電機100に、回転センサ26を一つ配設する場合について説明をした。しかし、回転電機100のケース21内に十分なスペースがある場合においては、この回転センサ26を複数個配置させることも可能であり、一つの回転センサ26に異常が見られる場合に、他の回転センサ26に回路を切り替える構成とすることができる。
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。 

Claims (13)

  1.  回転電機の出力軸、
     上記出力軸を取り囲む上記回転電機のケース内に固定された磁性体、
     上記出力軸に固定され、上記出力軸の回転角度を検出するための磁界を発生させるセンサマグネット、
     上記回転電機のケース内に固定され、上記出力軸の軸方向において、上記磁性体と上記センサマグネットとの間に配置され、回転角検出用の上記磁界の強度に応じて信号を出力する回転センサを備え、
     上記センサマグネットは、上記出力軸を中心とした周方向にS極、N極が着磁され、
     上記回転センサは、上記磁界の磁束密度の、上記出力軸を中心とした径方向成分と周方向成分の振幅比をkとしたとき、振幅比kで表現されるn次(nは偶数)の角度誤差fn(k)が、要求される回転角検出精度Eを満たす領域に配置されることを特徴とする回転電機。
  2.  上記回転センサは、上記出力軸の軸方向において、上記センサマグネットからの距離が、回転角検出用の上記磁界の強度に応じて決められた領域内に配置されることを特徴とする請求項1記載の回転電機。
  3.  上記磁性体は、平面形状が環状であり、上記出力軸と同軸に、上記出力軸の外周から離間して配置されたことを特徴とする請求項1または請求項2記載の回転電機。
  4.  上記センサマグネットは、平面形状が環状であり、上記出力軸の外周に内接し、径方向に広がって配置され、
     上記回転センサは、上記センサマグネットを軸方向に投影した範囲内に配置されることを特徴とする請求項1から3のいずれか一項記載の回転電機。
  5.  上記センサマグネットは、平面形状が環状であり、上記出力軸の外周に内接し、径方向に広がって配置され、
     上記回転センサは、上記センサマグネットを軸方向に投影した範囲よりも外側に配置されることを特徴とする請求項1から3のいずれか一項記載の回転電機。
  6.  上記出力軸は軸受によって保持され、上記軸受は上記出力軸と一体となり回転する内輪と、回転しない外輪とを備え、上記外輪を上記磁性体として用いたことを特徴とする請求項1から5のいずれか一項記載の回転電機。
  7.  上記出力軸は軸受によって保持され、
     上記磁性体は上記軸受と上記回転センサとの間に配置され、上記磁性体の外径は、上記軸受の外径よりも大きいことを特徴とする請求項1から5のいずれか一項記載の回転電機。
  8.  上記回転センサは、上記磁性体の外径よりも内側に配置されたことを特徴とする請求項1から7のいずれか一項記載の回転電機。
  9.  上記磁性体は、上記回転センサを装着するセンサ基板と上記ケースの内壁面に当接することを特徴とする請求項1から8のいずれか一項記載の回転電機。
  10.  上記出力軸の軸上に、上記回転電機のモータを構成するステータおよびロータを覆うためのフレームを備え、上記出力軸の軸方向において、上記センサマグネットと上記フレームとの間に上記回転電機を制御する制御基板が配置されたことを特徴とする請求項1から9のいずれか一項記載の回転電機。
  11.  上記回転電機に電圧を印加するためのパワー部を備え、
     上記磁性体、上記回転センサ、上記センサマグネット、上記パワー部の順に軸方向に配置されたことを特徴とする請求項1から10のいずれか一項記載の回転電機。
  12.  上記回転電機に電圧を印加するためのパワー部を備え、
     上記センサマグネット、上記回転センサ、上記磁性体、上記パワー部の順に軸方向に配置されたことを特徴とする請求項1から10のいずれか一項記載の回転電機。
  13.  電動パワーステアリング装置の構成要素として用いられたことを特徴とする請求項1から12のいずれか一項記載の回転電機。
PCT/JP2016/062732 2016-04-22 2016-04-22 回転電機 WO2017183176A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16899448.1A EP3447889B1 (en) 2016-04-22 2016-04-22 Electric rotating machine
JP2018512736A JP6556341B2 (ja) 2016-04-22 2016-04-22 回転電機
CN201680084662.9A CN109075688B (zh) 2016-04-22 2016-04-22 旋转电机
PCT/JP2016/062732 WO2017183176A1 (ja) 2016-04-22 2016-04-22 回転電機
US16/071,132 US11070113B2 (en) 2016-04-22 2016-04-22 Electric rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/062732 WO2017183176A1 (ja) 2016-04-22 2016-04-22 回転電機

Publications (1)

Publication Number Publication Date
WO2017183176A1 true WO2017183176A1 (ja) 2017-10-26

Family

ID=60115787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062732 WO2017183176A1 (ja) 2016-04-22 2016-04-22 回転電機

Country Status (5)

Country Link
US (1) US11070113B2 (ja)
EP (1) EP3447889B1 (ja)
JP (1) JP6556341B2 (ja)
CN (1) CN109075688B (ja)
WO (1) WO2017183176A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020183523A1 (ja) * 2019-03-08 2020-09-17 三菱電機株式会社 モータ、ファン、および空気調和機
JP2020167920A (ja) * 2019-03-29 2020-10-08 日本電産トーソク株式会社 電動オイルポンプ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021209119A1 (de) 2021-08-19 2023-02-23 Robert Bosch Gesellschaft mit beschränkter Haftung Antriebseinrichtung, Druckerzeuger für eine Bremsanlage
CN115313749B (zh) * 2022-10-11 2023-03-14 沈阳微控新能源技术有限公司 飞轮储能装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119876A (ja) * 1999-10-18 2001-04-27 Matsushita Seiko Co Ltd 無刷子電動機
JP3738966B2 (ja) * 2000-12-28 2006-01-25 株式会社デンソー 磁気式回転角度検出装置を内蔵する回転電機

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006017905A1 (de) * 2006-04-19 2007-10-25 Bühler Motor GmbH Baugruppe für einen Kommutatormotor, Kommutatormotor mit dieser Baugruppe und Verfahren zur Montage des Kommutatormotors
US9577496B2 (en) * 2012-11-13 2017-02-21 Asmo Co., Ltd. Rotor and brushless motor with rotation position detection
JP5886269B2 (ja) * 2013-12-27 2016-03-16 マブチモーター株式会社 回転検出装置およびモータ
JP6578642B2 (ja) * 2014-09-30 2019-09-25 日本電産株式会社 モータ
JP6333479B2 (ja) * 2015-06-17 2018-05-30 三菱電機株式会社 永久磁石電動機
WO2018092207A1 (ja) * 2016-11-16 2018-05-24 三菱電機株式会社 回転位置検出装置
JP2019122081A (ja) * 2017-12-28 2019-07-22 日本電産トーソク株式会社 電動アクチュエータ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119876A (ja) * 1999-10-18 2001-04-27 Matsushita Seiko Co Ltd 無刷子電動機
JP3738966B2 (ja) * 2000-12-28 2006-01-25 株式会社デンソー 磁気式回転角度検出装置を内蔵する回転電機

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020183523A1 (ja) * 2019-03-08 2020-09-17 三菱電機株式会社 モータ、ファン、および空気調和機
JPWO2020183523A1 (ja) * 2019-03-08 2021-10-14 三菱電機株式会社 モータ、ファン、および空気調和機
JP7098047B2 (ja) 2019-03-08 2022-07-08 三菱電機株式会社 モータ、ファン、および空気調和機
JP2020167920A (ja) * 2019-03-29 2020-10-08 日本電産トーソク株式会社 電動オイルポンプ

Also Published As

Publication number Publication date
EP3447889A1 (en) 2019-02-27
EP3447889B1 (en) 2021-02-17
CN109075688A (zh) 2018-12-21
JP6556341B2 (ja) 2019-08-07
EP3447889A4 (en) 2019-04-24
JPWO2017183176A1 (ja) 2018-10-25
US11070113B2 (en) 2021-07-20
CN109075688B (zh) 2020-07-17
US20210175781A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
JP6556341B2 (ja) 回転電機
JP4679358B2 (ja) 回転角度検出装置
JP2008151774A (ja) 回転角度検出装置および回転機
JP2010085389A (ja) 角度センサ
JP5927891B2 (ja) 回転角度検出装置
JP2009276261A (ja) 回転角度検出装置および回転機
JP2008151628A (ja) 回転センサ
JP2006525518A (ja) 電磁式シャフト位置センサ及び方法
JP2008151629A (ja) 回転センサ
WO2010026948A1 (ja) 角度センサ
KR101521384B1 (ko) 실장 기판
KR102071753B1 (ko) 자기 센서 장치
JP7155846B2 (ja) 回転装置
JP5421198B2 (ja) 回転角度検出装置
JP5276695B2 (ja) 車両用回転電機
JP2013250073A (ja) 回転角度検出装置
JP2018105757A (ja) 磁気エンコーダ装置
JP5904811B2 (ja) 位置センサ
JP2003315092A (ja) 回転角センサとトルクセンサ
US20240159510A1 (en) Rotational angle measurement apparatus
JP2013251982A (ja) モータ
US20190028000A1 (en) Device for detecting position of rotor, and motor comprising same
JP6861867B1 (ja) 角度検出装置及び回転電機の制御装置
JP2012021840A (ja) センサターゲット及び回転角度検出装置
JP2021135116A (ja) 角度検出装置及び回転電機の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018512736

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016899448

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016899448

Country of ref document: EP

Effective date: 20181122

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899448

Country of ref document: EP

Kind code of ref document: A1