WO2017183176A1 - 回転電機 - Google Patents
回転電機 Download PDFInfo
- Publication number
- WO2017183176A1 WO2017183176A1 PCT/JP2016/062732 JP2016062732W WO2017183176A1 WO 2017183176 A1 WO2017183176 A1 WO 2017183176A1 JP 2016062732 W JP2016062732 W JP 2016062732W WO 2017183176 A1 WO2017183176 A1 WO 2017183176A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- output shaft
- sensor
- electrical machine
- rotating electrical
- magnetic body
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K29/00—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
- H02K29/06—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
- H02K29/08—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/20—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
- H02K11/21—Devices for sensing speed or position, or actuated thereby
- H02K11/215—Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/16—Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
- H02K5/173—Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
- H02K5/1732—Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at both ends of the rotor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/03—Machines characterised by numerical values, ranges, mathematical expressions or similar information
Definitions
- This invention relates to a rotating electrical machine equipped with a rotation sensor for detecting the rotation angle of an output shaft.
- a device in which a rotation sensor is mounted on an electric motor of an electric power steering device for a vehicle is known.
- an apparatus in which a control unit that calculates a rotation position and a rotation angle from a rotation signal detected by a rotation sensor is integrated with a rotating electric machine.
- the problem of noise suppression and improvement in rotation accuracy has arisen as the entire apparatus is reduced in size and weight (for example, see Patent Document 1). ).
- Patent Document 1 describes the positioning of a ring magnet (sensor magnet) and a hall element (rotation sensor) of a rotating electrical machine.
- a ring magnet is mounted in the vicinity of the stator coil
- the Hall element is mounted on the cylindrical portion of the bearing.
- the ring magnet and the Hall element are arranged to face each other with a slight gap.
- the ring magnet and the Hall element are arranged in the vicinity of the poles, and further miniaturized by bringing them into close contact with peripheral members.
- the structure disclosed in Patent Document 1 has a structure for detecting the magnetic flux density in the axial direction from the ring magnet to the magnetic bypass member, and detection at a plurality of positions is necessary. In that case, since the detection accuracy of the rotation angle is determined by the positional accuracy of the Hall elements, it is necessary to manage the positional accuracy of the plurality of Hall elements.
- the present invention has been made to solve the above-described problems, and an object thereof is to obtain a rotating electrical machine in which the arrangement of a rotation sensor for detecting the rotation angle of an output shaft is optimized.
- a rotating electrical machine includes an output shaft of a rotating electrical machine, a magnetic body fixed in a case of the rotating electrical machine surrounding the output shaft, and a rotational angle of the output shaft fixed to the output shaft.
- a rotation sensor for outputting a signal wherein the sensor magnet is magnetized with S and N poles in a circumferential direction centered on the output shaft, and the rotation sensor has a magnetic flux density of the magnetic field.
- the nth-order (n is an even number) angle error fn (k) expressed by the amplitude ratio k is the required rotational angle detection accuracy.
- E It is characterized in that the location.
- the rotating electrical machine of the present invention it is possible to suppress the difference in the fundamental wave amplitude between the radial component and the circumferential component of the magnetic flux density of the magnetic field generated by the sensor magnet and the magnetic body, and to improve the rotation angle detection accuracy of the output shaft. It becomes possible to improve.
- FIG. 3 is a plan view of a sensor magnet of the rotating electrical machine according to the first embodiment.
- FIG. 3 is a side sectional view showing a control unit of the rotating electrical machine according to the first embodiment.
- FIG. 3 is a side sectional view showing a control unit of the rotating electrical machine according to the first embodiment.
- FIG. 5A is a diagram showing the angular dependence of the magnetic flux density when the amplitude ratio of the radial component Br and the circumferential component B ⁇ of the magnetic flux density B of the magnetic field generated in the rotating electrical machine is 1.
- FIG. 5B is a diagram illustrating the angle dependency of the signal values of the sine signal Vsin and the cosine signal Vcos.
- FIG. 6A is a diagram showing the angle dependency of the magnetic flux density when the amplitude ratio of the radial component Br and the circumferential component B ⁇ of the magnetic flux density B of the magnetic field generated in the rotating electrical machine is 1.2.
- FIG. 6B is a diagram showing the angle dependence of the signal values of the sine signal Vsin and the cosine signal Vcos.
- FIG. 7A is a diagram showing the angle dependency of the magnetic flux density when the amplitude ratio of the radial component Br and the circumferential component B ⁇ of the magnetic flux density B of the magnetic field generated in the rotating electrical machine is 1.8.
- FIG. 7B is a diagram illustrating the angle dependency of the signal values of the sine signal Vsin and the cosine signal Vcos.
- FIG. 5 is a schematic diagram showing angle detection accuracy on the axial and radial coordinates of the rotating electrical machine. It is a sectional side view which shows the control unit of the rotary electric machine of Embodiment 2 of this invention. It is a sectional side view which shows the control unit of the rotary electric machine of Embodiment 2 of this invention. It is explanatory drawing of the rotary electric machine of Embodiment 1 and Embodiment 2 of this invention, and is a schematic diagram which shows that the magnetic field which the electric current which flows through a power part produces
- Embodiment 1 FIG.
- the rotating electrical machine according to Embodiment 1 of the present invention has a structure in which a motor and a control unit are integrated, and includes a rotation sensor that detects a rotation angle of an output shaft. Then, the magnetic flux density of the magnetic field generated between the sensor magnet and the magnetic body is measured by one rotation sensor, and the rotation angle of the output shaft is detected. When the rotation angle of the output shaft is detected by one rotation sensor, the rotation angle can be calculated from the relationship between the radial direction component of the magnetic flux density around the output shaft and the circumferential direction component of the magnetic flux density. .
- FIG. 1 is a side sectional view of the rotating electrical machine 100, and shows, for example, an electric power steering apparatus.
- the rotating electrical machine 100 has a structure in which the motor 1 and the control unit 20 are integrated. As illustrated in FIG. 1, the motor 1 is disposed on the end side (lower side of the paper) of the output shaft 7, and the control unit 20 is coaxially disposed on the output side (upper side of the paper) of the output shaft 7.
- the motor 1 includes a yoke 2, a stator 3, a rotor 4 and the like as main components.
- a stator 3 around which a winding coil is wound is disposed inside the yoke 2.
- Coil ends 5 constituting end portions of the winding coil are located at both ends of the stator 3, and a winding terminal 9 is extended from the coil end 5 to the outside of the motor 1 via an annular support portion 8. Yes.
- An output shaft 7 is disposed at the center of the stator 3, and a rotor 4 fixed to the output shaft 7 is disposed on the inner peripheral side of the stator 3.
- the rotor 4 is provided with a permanent magnet.
- the output shaft 7 is rotatably supported by bearings 6 provided at the upper and lower parts of the rotating electrical machine 100 in FIG.
- the bearing 6 is configured to hold the ball by an inner ring 6 a fixed to the output shaft 7 and an outer ring 6 b fixed to the case 21.
- the upper part of the motor 1 is covered with a frame 10.
- the lower part from the frame 10 corresponds to the motor 1.
- winding terminals 9 for at least three phases are inserted through holes in the frame 10 and extend upward in the drawing.
- the control unit 20 constituting the rotating electrical machine 100 is provided on the output side of the output shaft 7, that is, on the upper part of the frame 10 of the motor 1.
- a case 21 that surrounds the output shaft 7 and that constitutes the control unit 20 is provided to have the same diameter as the yoke 2, and a control board 22 that constitutes a circuit unit is disposed therein.
- the control board 22 is equipped with a CPU and outputs a control signal for driving the motor 1.
- a power unit 23 for receiving a control signal and supplying a current to the winding coil of the motor 1 is disposed below the control board 22.
- the power unit 23 when the motor 1 is a brushless three-phase motor, a large number of switching elements are mounted in a bridge configuration. A total of two power units 23 are arranged on the left and right in FIG.
- the power unit 23 In order to supply current to the motor 1, the power unit 23 generates heat by controlling the switching element, and the frame 10 is used as a heat sink to dissipate heat.
- the winding terminal 9 penetrating the frame 10 (heat sink) and the terminal of the power unit 23 are connected, and the connection is made, for example, by welding. Further, a plurality of terminals are extended from the power unit 23 to the control board 22, and the above-described control signal is transmitted to the terminals.
- An intermediate member 24 made of an insulating member is disposed between the control board 22 and the power unit 23.
- the intermediate member 24 is inserted with a power source line (+, ⁇ ) and other conductors to the power unit 23. Further, a capacitor and other parts are arranged in the space between the intermediate member 24 and the control board 22 to effectively use the space.
- the output shaft 7 passes through the center of the control unit 20 and extends through the case 21 to the outside.
- the tip of the output shaft 7 is configured to be fitted with a speed reducer (not shown). It is particularly important for a brushless motor to detect the rotation state of the output shaft 7. It has been found that if the detection accuracy of the rotation angle is poor, the detection accuracy of the rotational position calculated from the rotation angle is similarly deteriorated, which affects the smoothness of the rotation of the motor 1. Therefore, the rotation sensor 26 for detecting the rotation state of the output shaft 7 is a design item in which detection accuracy is important. Furthermore, as described above, the requirements to be satisfied by the rotation sensor 26 include a miniaturization factor.
- the control unit 20 is provided with a sensor magnet 27 that generates a magnetic field for detecting the rotation angle.
- the sensor magnet 27 cannot be attached to the end portion of the output shaft 7 and is disposed in the intermediate portion.
- the sensor magnet 27 cannot be disposed close to the power unit 23 through which the drive current of the motor 1 flows in order to improve the detection accuracy of the rotation angle and suppress noise. Therefore, the sensor magnet 27 is disposed on the surface of the control board 22 opposite to the power unit 23 (upper side in FIG. 1).
- FIG. 2 shows a plan view of the sensor magnet 27.
- the sensor magnet 27 is a plate-like member having an annular planar shape and a uniform thickness.
- the N pole and the S pole are magnetized in the circumferential direction around the axial direction of the output shaft 7.
- a single pole pair will be described, but the same applies to a multipole pair.
- the rotation sensor 26 that detects the N and S magnetic fields is disposed above the sensor magnet 27.
- the rotation sensor 26 may be arranged on the control board 22 side or on the control board 22 when viewed from the sensor magnet 27.
- a magnetic material for realizing a magnetic field having a desired direction component is required.
- the space for arranging the magnetic body is on the control board 22 side or on the control board 22, such a configuration can also be adopted.
- the magnetic body 28 is not arranged on the control board 22 side when viewed from the sensor magnet 27, and the upper side of the sensor magnet 27 where the control board 22 is not provided. The case where it arrange
- the case 21 in which the magnetic body 28 is housed is not an iron-based magnetic body but an aluminum-based non-magnetic body.
- An annular magnetic body 28 (for example, iron) is attached to the inside of the case 21.
- a sensor substrate 25 on which a rotation sensor 26 is mounted is disposed below the magnetic body 28 in FIG.
- the sensor board 25 and the control board 22 are connected by an electrical wiring 29 to supply power to the rotation sensor 26 and to transmit and receive a detection signal from the sensor.
- a part of the N pole magnetic flux of the sensor magnet 27 reaches the magnetic body 28.
- the rotation sensor 26 is disposed at an intermediate portion between the sensor magnet 27 and the magnetic body 28.
- FIG. 3 is a side sectional view of the control unit 20 of the rotating electrical machine 100 of FIG. 1 and shows an enlarged view near the arrangement region of the rotation sensor 26a.
- the outer diameter of the sensor magnet 27 a is smaller than the outer diameter of the magnetic body 28.
- the effective range 31a of the magnetic flux that enables the rotation sensor 26 to detect the rotation angle with high accuracy is indicated by a rectangle as shown in FIG. be able to.
- the effective range 31a corresponds to an area determined according to the strength of the magnetic field for detecting the rotation angle.
- the rotation sensor 26a is arranged in the effective range 31a, the detection error of the rotation angle of the output shaft 7 can be reduced.
- the detection unit may be arranged so as to be within the effective range 31a, and the part other than the detection unit of the rotation sensor 26a protrudes from the effective range 31a. There is no problem even if it is placed.
- the effective range 31a includes an arrow 30b extending from the outer diameter (maximum circumferential end) of the sensor magnet 27a to the outer periphery of the magnetic body 28, and a position on the inner periphery of the sensor magnet 27a.
- the rotation sensor 26 a can be disposed radially outside the range where the sensor magnet 27 is projected.
- 3 indicates the axial direction (z direction) of the output shaft, and arrow r indicates the radial direction (r direction) of the sensor magnet 27a.
- the direction from the back to the front of the paper indicates the circumferential direction ( ⁇ direction), and the sensor magnet 27a rotates in this ⁇ direction.
- the rotation sensor 26a and the sensor substrate 25 serving as a support substrate are displayed in virtual lines because their arrangement is determined according to the strength of the magnetic field for angle detection. It is.
- the arrangement of the rotation sensor 26a in the z direction is related to the distance between the sensor magnet 27a and the magnetic body 28, and the magnetic field strength is proportional to the product of the magnetic pole strength and proportional to the square of the distance. Determined by Coulomb's law. Since the distance in the z direction from the sensor magnet 27a of the rotation sensor 26a is determined to be a distance that can secure the strength (magnetic flux density) of the magnetic field, this maximum distance is naturally determined. That is, the distance between the magnetic body 28 and the sensor magnet 27a is preferably in a range in which the magnetic body 28 can sufficiently absorb the magnetic flux.
- the rotation sensor 26a is provided on the sensor substrate 25. If the distance in the z direction is determined, the height of the sensor substrate 25 is adjusted using the leg portions 25a or the like in order to arrange the sensor substrate 25 at an effective distance. Can do.
- the magnetic field is attenuated by the square of the distance similarly to the arrow z. Can be determined in consideration of this. Therefore, the effective range 31 a is not used up to the outer peripheral end of the magnetic body 28.
- FIG. 4 is a side sectional view of the control unit 20 of the rotating electrical machine 100 of FIG. 1, and shows an enlarged view near the arrangement region of the rotation sensor 26b.
- the arrangement of the rotation sensor 26b will be described in detail with reference to FIG.
- the outer diameter of the sensor magnet 27 b is larger than the outer diameter of the magnetic body 28.
- the effective range 31b of the magnetic flux in which the rotation sensor 26b can detect the rotation angle with high accuracy is indicated by a square as shown in FIG. be able to.
- the effective range 31b may be determined in the same manner as the effective range 31a. As shown in FIG. 4, an arrow 30d extending from the outer diameter end of the sensor magnet 27b to the outer periphery of the magnetic body 28, and the sensor magnet This corresponds to a quadrangular range surrounded by an arrow 30c extending from a position on the inner periphery of 27b to the inner peripheral end of the magnetic body 28.
- the effective range 31b corresponds to a region determined according to the strength of the magnetic field for detecting the rotation angle.
- the rotation sensor 26b can be disposed within a range where the sensor magnet 27 is projected. Further, in determining the arrangement of the rotation sensors 26 (26a, 26b), considering that there is an appropriate relationship between the radial direction r and the circumferential direction ⁇ of the magnetic field, the effective ranges 31a, 31b are arranged on the inner circumference side. It is necessary to determine the boundary line.
- an example of a magnetic sensor that serves as the rotation sensor 26 is an MR element.
- the MR element is a magnetoresistive element, and its magnetoresistance value increases almost in proportion to the magnetic flux density.
- Two such magnetoresistive elements are connected in series, and a voltage appearing at both ends of the element whose electrical resistance is changed by a magnetic field such as a magnet is detected. If the magnetic field is applied evenly to both resistance elements, the median value (midpoint voltage) is obtained. If the magnetic field is applied so that there is a difference rather than equality, the voltage at the center changes. The rotation angle can be obtained.
- the rotation sensor 26 has two magnetoresistive elements having different directional components that can be detected here, so that one can be detected as a sine signal Vsin and the other as a cosine signal Vcos.
- the rotation sensor 26 having two magnetoresistive elements connected in series will be described, but it goes without saying that the same can be said for a magnetoresistive element.
- the magnetic flux density B can be expressed as a vector having components in three directions, and the radial component Br, the circumferential component B ⁇ , and the axial component Bz are given by the following equation (1).
- the relationship between Vcos and Vsin, Br and B ⁇ is given by the following equation (2).
- Equation (2) when the amplitude of Br and B ⁇ are equal becomes a constant value a r1, varies if the amplitude is different.
- an equation including the square root in the denominator is Taylor-expanded, it can be expanded as in the following equation (3), and therefore V cos and V sin are given as in the following equation (4).
- the angle error e is given by an approximate expression such as the following expression (5). Since the odd-order signal error component appears as an even-order angle error, the larger the higher-order error component included in the signal, the greater the higher-order error that appears at the detection angle. Therefore, the sine detected by the rotation sensor 26 As both the signal Vsin and the cosine signal Vcos have less distortion, the rotation angle detection accuracy can be improved.
- FIG. 5A shows the angular dependence of the magnetic flux density B of Br and B ⁇ when the amplitude ratio of Br and B ⁇ is 1: 1, that is, when the amplitudes are equal, and FIG. It shows the angle dependence of the signal value V of Vcos and Vsin at the time.
- FIG. 6A shows the angular dependence of the magnetic flux density B of Br and B ⁇ when the amplitude ratio of Br and B ⁇ is 1: 1.2, and FIG. This shows the angle dependency of the signal value V of Vcos and Vsin.
- FIG. 7A shows the angular dependence of the magnetic flux density B of Br and B ⁇ when the amplitude ratio of Br and B ⁇ is 1: 1.8, and FIG. This shows the angle dependency of the signal value V of Vcos and Vsin.
- the required rotation angle detection accuracy may vary depending on the specifications of the apparatus, and the ratio between r and ⁇ can be determined based on the required accuracy. For example, as shown in FIGS. 5 (a), 5 (b), 6 (a), and 6 (b), when the amplitude ratio is 1 to 1.2, it is determined that the accuracy is satisfied. However, a device corresponding to this amplitude ratio can be used. Then, as shown in FIGS. 7 (a) and 7 (b), when the amplitude ratio is 1.8, it is determined that the accuracy is not satisfied, and a device corresponding to this amplitude ratio is used. Impossible. Thus, the allowable range that matches the specification is determined by the amplitude ratio of Br and B ⁇ .
- the amplitude ratio k may be in a range that satisfies the following equation (6).
- V cos and V sin are expressed by the following equation (7).
- Vcos and Vsin are given by the following equation (8) when approximated and expanded using the third term of equation (3).
- the amplitude ratio k In order to make these errors satisfy the required rotation angle detection accuracy E, it is necessary to set the amplitude ratio k within the range determined by the following equation (11).
- the allowable range is determined for the second-order, fourth-order, and sixth-order components.
- the amplitude ratio is large, the angular error e may be estimated in consideration of higher order components. It should be noted that, since the order component error to be considered for determining the range is the largest in the lower order, it may be considered that this component is less than the required rotation angle detection accuracy E.
- FIG. 5 is a schematic diagram showing the rotation angle detection accuracy in the corresponding section. In each section, the accuracy level corresponding to the rotation angle detection accuracy is indicated by a number. The number increases as the rotation angle detection accuracy increases.
- FIG. 8 exemplifies a case where the accuracy level of the rotation angle detection accuracy is shown in five stages.
- the number 0 is displayed in a space without hatching. ing.
- the numeral 1 is displayed in the hatched hatching space.
- the area 42 with the lowest rotation angle detection accuracy next to the area 41 has the numeral 2 displayed in the hatching space of the lattice.
- the numeral 3 is displayed in the hatched space with horizontal stripes.
- the numeral 4 is displayed in the hatched space of vertical stripes.
- the following can be said qualitatively with respect to the arrangement of the sensor magnet 27 and the rotation sensor 26.
- the magnetic field travels directly from the sensor magnet 27 to the output shaft 7 without passing through the magnetic body 28. Therefore, the areas 32a and 32b in the vicinity of the sensor magnet 27 and the output shaft 7 shown in FIGS. 3 and 4 cannot be used for arranging the rotation sensor 26a.
- the region between the regions 32a and 32b and the effective ranges 31a and 31b is an unusable region because the r-direction component is larger than the ⁇ -direction component and the sine signal and cosine signal are distorted due to the relationship between Br and B ⁇ .
- the effective ranges 31a and 31b are regions (regions having a relationship of Br: B ⁇ 1: 1) with good rotation angle detection accuracy obtained in consideration of all of z, r, and ⁇ .
- each direction component of the magnetic flux density B changes depending on the distance between the sensor magnet 27 and the magnetic body 28, so that the effective ranges 31 a and 31 b change depending on the distance between the sensor magnet 27 and the rotation sensor 26 in the z direction. Then, as the distance between the sensor magnet 27 and the rotation sensor 26 in the z direction becomes smaller, the angle between the inner diameter side line (arrow 30a) of the effective range 31a and the z axis, the outer diameter side line of the effective range 31b (arrow 30d). The angle formed by the z axis becomes smaller.
- the arrangement of the sensor magnet 27, the rotation sensor 26, and the magnetic body 28 is determined in consideration of z, r, and ⁇ , and the rotation angle detection accuracy is improved, thereby improving the rotation accuracy of the output shaft and noise.
- the effect of improving the resistance can be obtained.
- the magnetic body 28 is also arranged in consideration of the effective ranges 31a and 31b, which are areas where the rotation angle detection error is reduced, so that it is not necessary to unnecessarily increase the size of the magnetic body 28 and to reduce the weight. -Miniaturization can be achieved.
- the annular magnetic body 28 has a structure that is sandwiched between the inner surface of the case 21 and the sensor substrate 25, and a leg portion 25 a having the same height as the magnetic body 28 is fixed in the case 21.
- the sensor substrate 25 is fixed to the portion 25a, and the magnetic body 28 is disposed therebetween.
- the magnetic body 28 can also be used as a leg portion for fixing the sensor substrate 25. In this case, the number of parts can be reduced.
- there is no problem in the dimension limitation in the thickness direction of the magnetic body 28 as long as the magnetic flux density B from the sensor magnet 27 is not saturated.
- the annular magnetic body 28 has been described. However, if the magnetic circuit configured between the sensor magnet 27 and the magnetic body 28 is effective, the same effect can be obtained even in a shape having a notch. .
- FIG. 1 shows an example in which the control unit 20 is arranged on the output side of the motor output shaft, and the sensor magnet 27 and the rotation sensor 26 are mounted therein, but the counter-output of the lower output shaft 7 in the figure. Even in the structure in which the control unit is arranged on the side, the arrangement of the rotation sensor 26 can be similarly determined.
- FIG. 9 and FIG. 9 and 10 are side sectional views of the control unit 20 and show the vicinity of the arrangement area of the rotation sensors 26a and 26b, respectively.
- the magnetic body 28 is not used, and instead the bearing 6 is used.
- the outer rings 6b and 6d are used as magnetic bodies.
- FIG. 9 shows a case where the outer diameter of the sensor magnet 27 is smaller than the outer diameter of the bearing 6, and
- FIG. 10 shows a case where the outer diameter of the sensor magnet 27 is larger than the outer diameter of the bearing.
- the bearing 6 is held by the case 21, and a sensor magnet 27 is disposed in the vicinity of the bearing 6. 3 and 4, in order to reduce the distance between the bearing 6 and the sensor magnet 27, the lower surface of the bearing 6 is disposed so as to have substantially the same height as the inner wall surface of the case 21. .
- the inner ring 6c and the ball 6e of the bearing 6 rotate together with the output shaft 7, but the outer ring 6d is fixed to the case 21 side and does not rotate.
- the outer ring 6d has an annular shape similar to that of the sensor magnet 27 and has a constant diameter.
- the outer ring 6d is a magnetic body, and is made of, for example, iron. For this reason, the outer ring 6d is used in place of the magnetic body 28 of the first embodiment, and has a structure for undertaking the role of collecting a magnetic field.
- the arrangement of the rotation sensors 26a and 26b is determined according to the arrangement of the outer ring 6d.
- a broken line arrow 30c extending from the sensor magnet 27 to the outer diameter of the inner ring 6c so as to be parallel to the axial direction of the output shaft 7.
- a region between the output shaft 7 and an arrangement prohibition region in consideration of the relationship between r and ⁇ in the first embodiment described above.
- the region on the outer diameter side from the arrow 30b extending from the outer peripheral portion of the sensor magnet 27 to the outer diameter (outermost peripheral end) of the outer ring 6b is also an arrangement prohibited region.
- the arrow 30a extending from the sensor magnet 27 to the inner diameter (innermost peripheral end) of the bearing 6d can be set so as to be an area having a relationship of Br: B ⁇ 1: 1 as in the first embodiment. it can.
- rotation sensor 26a, 26b can be arrange
- the performance of the bearing 6 is determined by the thickness of the output shaft 7 and the rotational torque of the output shaft 7, and the size of the bearing 6 is determined. Therefore, as shown in FIGS. 9 and 10, the arrow 30a on the inner circumference side of the effective ranges 31a and 31b is on the line connecting the position on the sensor magnet 27 that becomes the contact point of the broken arrow 30c and the inner diameter of the outer ring 6d. It will be in the position.
- the outer ring 6 d is annular like the sensor magnet 27.
- the surface shape of the outer ring 6d and the sensor magnet 27 is a smooth surface shape with no irregularities, with no corners smoothed, and the inner diameter and the outer diameter need not change depending on the z direction. There is.
- the outer ring corners of the outer ring 6d and the sensor magnet 27 are smooth curved surfaces with the corners cut off, irregularities in the horizontal direction (radial direction) and the vertical direction in FIGS. 9 and 10 ( If there is a dimensional change), the distances z and r between the outer ring 6d and the sensor magnet 27 partially change. If the distances in the z and r directions of the rotation sensors 26a and 26b change, the detection accuracy deteriorates.
- the outer diameter of the outer ring 6d tends to be smaller than that of the magnetic body 28 of the first embodiment, as shown in FIGS.
- the effective ranges 31a and 31b in which the rotation sensors 26a and 26b can be arranged are narrower in the radial direction than in FIGS. 3 and 4 of the first embodiment. In order to widen the effective ranges 31a and 31b, it is effective to widen the formation range of the magnetic body itself by adding a part that functions as a magnetic body in contact with the outer ring 6d.
- a cover made of a magnetic material is attached to the ball 6e, or the magnetic material 28 similar to that of the first embodiment is disposed in the outer diameter direction in which the outer ring 6d abuts, or another outer side of the outer ring 6d is provided.
- the dimension in the width direction of the portion functioning as a magnetic body can be made larger than when only the outer ring 6d is used.
- the magnetic body 28 or the outer ring 6d of the bearing 6, the rotation sensor 26, the sensor magnet 27, and the power unit 23 are arranged in this order in the axial direction of the rotating electrical machine 100.
- the rotation sensor 26 has a region where the amplitude of the radial component Br and the circumferential component B ⁇ of the magnetic flux density B of the magnetic field is equal, and the distance from the sensor magnet 27 is the strength of the magnetic field for detecting the rotation angle.
- the sensor magnet 27, the rotation sensor 26, the magnetic body 28, and the power unit 23 can be arranged in the axial direction in the order as long as the condition of being arranged in a region determined accordingly can be satisfied. .
- FIG. 11 is an explanatory diagram of the rotating electrical machine 100 according to the first and second embodiments of the present invention, and is a schematic diagram showing that the magnetic field 51 generated by the current 50 flowing through the power unit 23 is shielded.
- the magnetic field 51 generated by the current 50 flowing through the power unit 23 can be shielded by the magnetic body 28 (in the second embodiment, the outer ring 6 d of the bearing 6).
- the rotation sensor 26 By arranging the rotation sensor 26 in a region where the influence of the magnetic field 51 is reduced by the magnetic body 28 (outer ring 6d), it is possible to reduce the influence of the magnetic field 51 on the detection value of the rotation sensor 26.
- the magnetic body 28 (outer ring 6 d) is exemplified as being annular, in FIG.
- the magnetic body 28 is only in the vicinity of the rotation sensor 26. This is explained using a model in which is provided.
- the degree of influence varies depending on the strength of the magnetic field 51 and the like, the accuracy required for the rotation angle of the rotating electrical machine 100 can be achieved by adjusting the size of the magnetic body 28 (outer ring 6d).
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
- Brushless Motors (AREA)
Abstract
Description
また、特許文献1に開示された構造では、リング磁石から磁気バイパス部材への軸方向の磁束密度を検出する構造となっており、複数位置での検出が必要であった。その場合には、ホール素子の位置精度によって回転角度の検出精度が決定されるため、複数のホール素子の位置精度を管理する必要があった。
この発明の上記以外の目的、特徴、観点および効果は、図面を参照する以下のこの発明の詳細な説明から、さらに明らかになるであろう。
本発明の実施の形態1の回転電機は、モータと制御ユニットが一体化された構造であり、出力軸の回転角度を検出する回転センサを備えている。そして、一つの回転センサによって、センサマグネットと磁性体との間に生じる磁界の磁束密度を計測し、出力軸の回転角度を検出する。一つの回転センサで出力軸の回転角度を検出する場合には、出力軸を中心とした磁束密度の径方向成分と、磁束密度の周方向成分との関係から、回転角を算出することができる。しかし、磁束密度の径方向成分と周方向成分の振幅比が1からずれると、そのズレに応じて回転センサの出力値に角度誤差が表れる。
そこで、本発明の回転電機では、検出する回転角度の誤差低減のため、回転センサを、磁束密度の径方向成分と周方向成分の振幅比のずれ量を低減できる領域に配置することを提案している。
図1は、回転電機100の側断面図であり、例えば、電動パワーステアリング装置を示している。回転電機100は、モータ1と制御ユニット20を一体化させた構造である。そして、図1に例示するように、出力軸7の端部側(紙面下側)にモータ1が配置され、出力軸7の出力側(紙面上側)に、制御ユニット20が、同軸上に配置されている。
モータ1は、主構成要素として、ヨーク2、ステータ3、ロータ4等を含んでいる。そして、ヨーク2の内部には、巻線コイルが巻回されたステータ3が配置されている。ステータ3の両端には、巻線コイルの端部を構成するコイルエンド5が位置し、コイルエンド5から巻線端子9が、環状の支持部8を介してモータ1の外部に延出されている。
出力軸7は、図1中において、回転電機100の上部および下部に設けられた軸受6により回転可能に支持されている。軸受6は、出力軸7に固定された内輪6aとケース21に固定された外輪6bによってボールを保持する構成である。
モータ1は、その上部がフレーム10によって覆われている。そして、このフレーム10から下部がモータ1に相当している。
モータ1がブラシレス3相モータである場合、少なくとも3相分の巻線端子9がフレーム10の孔に挿通されて図中上側に延出されている。
ここでは装置の小型化のため、図1に示すように、磁性体28を、センサマグネット27から見て制御基板22側には配置せず、制御基板22が設けられていないセンサマグネット27の上側に配置する場合について説明する。
センサマグネット27のN極の磁束の一部は、磁性体28へ到達する。回転センサ26は、センサマグネット27と磁性体28との中間部に配置されている。
有効範囲31aは、図3に示すように、センサマグネット27aの外径(最大円周端)から磁性体28の外周部へ延ばされた矢印30bと、センサマグネット27aの内周のある位置から磁性体28の内周端へ延ばされた矢印30aで囲まれた四角形の範囲に相当している。
センサマグネット27の外径が、磁性体28の外径よりも小さい場合、回転センサ26aは、センサマグネット27を投影した範囲よりも径方向外側に配置することができる。
図3中の矢印zは出力軸の軸方向(z方向)を示し、矢印rはセンサマグネット27aの径方向(r方向)を示す。紙面奥から手前に向けての方向が周方向(θ方向)を示し、このθ方向に、センサマグネット27aは回転する。
なお、図3中において、回転センサ26aおよび支持基板となるセンサ基板25は、それらの配置が、角度検出用の磁界の強度に応じて決められることから、仮想線にて表示を行っているものである。
回転センサ26aのセンサマグネット27aからのz方向の距離は、磁界の強さ(磁束密度)を確保できる距離に決められるため、この最大距離は自ずと決定される。つまり、磁性体28とセンサマグネット27aの距離は、磁性体28が十分に磁束を吸い寄せることができる範囲とするとよい。回転センサ26aは、センサ基板25上に設けるが、z方向の距離が決まれば、センサ基板25を有効距離に配置するために、脚部25a等を用いてセンサ基板25の高さ調整を行うことができる。
センサマグネット27の外径が、磁性体28の外径より大きい場合、回転センサ26bは、センサマグネット27を投影した範囲内に配置することができる。
また、回転センサ26(26a、26b)の配置を決定する上で、磁界の径方向r、周方向θについては適切な関係があることを考慮して、有効範囲31a、31bの内周側の境界線を決定する必要がある。
このとき角度誤差eは、次の式(5)のような近似式で与えられる。
図5(a)は、BrとBθの振幅比が1:1、つまり振幅が等しい場合のBrとBθの磁束密度Bの角度依存性を示したものであり、図5(b)は、そのときのVcos、Vsinの信号値Vの角度依存性を示すものである。
図6(a)は、BrとBθの振幅比が1:1.2の場合のBrとBθの磁束密度Bの角度依存性を示したものであり、図6(b)は、そのときのVcos、Vsinの信号値Vの角度依存性を示すものである。
図7(a)は、BrとBθの振幅比が1:1.8の場合のBrとBθの磁束密度Bの角度依存性を示したものであり、図7(b)は、そのときのVcos、Vsinの信号値Vの角度依存性を示すものである。
出力軸7近傍では、磁界は磁性体28を経由せずにセンサマグネット27から出力軸7へ直接進む。そのため、図3および図4において示したセンサマグネット27と出力軸7の近傍の領域32a、32bは、回転センサ26aを配置するために使用することができない。領域32a、32bと有効範囲31a、31bの間の領域は、上記BrとBθの関係からr方向成分がθ方向成分より大きく、正弦信号および余弦信号が歪むため使用不可領域である。有効範囲31a、31bが、z、r、θの全部を考慮して得られた回転角度検出精度が良好な領域(Br:Bθ≒1:1の関係を有する領域)となる。
一方、図4に示すように、回転センサ26bをセンサマグネット27の外径より内側に置き、有効範囲31bを使用する場合には、z方向の距離が小さくなるほど回転センサ26bを外径側に配置した方が、BrとBθの振幅比を1に近づけることができ、回転角検出誤差を低減させることができる。
また磁性体28の厚み方向の寸法制限は、センサマグネット27からの磁束密度Bが飽和しない程度の厚みであれば問題ない。ここでは、環状の磁性体28として説明したが、センサマグネット27と磁性体28の間で構成される磁気回路が有効であれば、切り欠き部を持つ形状であっても同様の効果を得られる。
次に実施の形態2について図9および図10を用いて説明する。図9および図10は、制御ユニット20の側断面図であり、回転センサ26a、26bの配置領域付近をそれぞれ示している。
上述の実施の形態1では、磁性体28を配設した例を示していたが、この実施の形態2では、図9、図10に示すように、磁性体28は用いず、代わりに軸受6の外輪6b、6dを磁性体として用いる例を示している。図9は、センサマグネット27の外径が軸受6の外径よりも小さい場合を示し、図10は、センサマグネット27の外径が軸受の外径よりも大きい場合を示している。
また、この外輪6dはセンサマグネット27と同様の環状であり、一定の径を有した構造である。さらに、この外輪6dは磁性体であり、例えば鉄製である。そのため、この外輪6dを、実施の形態1の磁性体28の代わりに利用し、磁界を集める役目を請け負わせる構造となっている。
まず、回転センサ26a、26bを配置できない領域として、図9、図10に示すように、出力軸7の軸方向に平行となるように、センサマグネット27から内輪6cの外径へ伸びる破線矢印30cと、出力軸7との間の領域があり、上述した実施の形態1のr、θとの関係を考慮した配置禁止領域となる。同様にセンサマグネット27の外周部から外輪6bの外径(最外周端)へ伸びる矢印30bより外径側の領域も配置禁止領域となる。
センサマグネット27から軸受け6dの内径(最内周端)へ伸びる矢印30aは、上述の実施の形態1と同様に、Br:Bθ≒1:1の関係を有する領域となるように設定することができる。そして、矢印30a、30b、センサマグネット27、外輪6dで囲まれた四角形の有効範囲31bの領域上に回転センサ26a、26bを配置することができる。
外輪6dおよびセンサマグネット27の外表面角部が、角が削られた滑らかな曲面となっている場合には、図9、図10中の、紙面左右方向(径方向)及び上下方向に凹凸(寸法変化)があると、部分的に外輪6dとセンサマグネット27の距離z、rに変化が生じることになる。回転センサ26a、26bのz、r方向の距離が変化すれば、検出精度悪化となる。
有効範囲31a、31bを広げるためには、外輪6dに接して磁性体として機能する部品を追加するなどして、磁性体自体の形成範囲を広げることが有効である。そのためには、例えばボール6eに磁性体よりなるカバーを取り付ける、または、外輪6dの当接する外径方向に実施の形態1と同様な磁性体28を配置する、あるいは、外輪6dの外側に別の外輪を装着させるなどすることで、磁性体として機能する部分の幅方向の寸法を、外輪6dのみを用いた場合よりも大きくすることが可能となる。
なお、磁性体28(外輪6d)は環状であることを例示していたが、図11では、磁性体28の配置による磁界51の変化を説明するため、回転センサ26の近傍にのみ磁性体28を配設したモデルを用いて説明している。
パワー部23を流れる電流の大きさ、回転センサ26と磁性体28(外輪6d)の距離、磁性体28(外輪6d)とパワー部23の距離、センサマグネット27が回転センサ26の位置で生成する磁界51の強度などによって影響度は異なるが、磁性体28(外輪6d)の大きさを調整することによって回転電機100の回転角に要求される精度に収めることが可能となる。
Claims (13)
- 回転電機の出力軸、
上記出力軸を取り囲む上記回転電機のケース内に固定された磁性体、
上記出力軸に固定され、上記出力軸の回転角度を検出するための磁界を発生させるセンサマグネット、
上記回転電機のケース内に固定され、上記出力軸の軸方向において、上記磁性体と上記センサマグネットとの間に配置され、回転角検出用の上記磁界の強度に応じて信号を出力する回転センサを備え、
上記センサマグネットは、上記出力軸を中心とした周方向にS極、N極が着磁され、
上記回転センサは、上記磁界の磁束密度の、上記出力軸を中心とした径方向成分と周方向成分の振幅比をkとしたとき、振幅比kで表現されるn次(nは偶数)の角度誤差fn(k)が、要求される回転角検出精度Eを満たす領域に配置されることを特徴とする回転電機。 - 上記回転センサは、上記出力軸の軸方向において、上記センサマグネットからの距離が、回転角検出用の上記磁界の強度に応じて決められた領域内に配置されることを特徴とする請求項1記載の回転電機。
- 上記磁性体は、平面形状が環状であり、上記出力軸と同軸に、上記出力軸の外周から離間して配置されたことを特徴とする請求項1または請求項2記載の回転電機。
- 上記センサマグネットは、平面形状が環状であり、上記出力軸の外周に内接し、径方向に広がって配置され、
上記回転センサは、上記センサマグネットを軸方向に投影した範囲内に配置されることを特徴とする請求項1から3のいずれか一項記載の回転電機。 - 上記センサマグネットは、平面形状が環状であり、上記出力軸の外周に内接し、径方向に広がって配置され、
上記回転センサは、上記センサマグネットを軸方向に投影した範囲よりも外側に配置されることを特徴とする請求項1から3のいずれか一項記載の回転電機。 - 上記出力軸は軸受によって保持され、上記軸受は上記出力軸と一体となり回転する内輪と、回転しない外輪とを備え、上記外輪を上記磁性体として用いたことを特徴とする請求項1から5のいずれか一項記載の回転電機。
- 上記出力軸は軸受によって保持され、
上記磁性体は上記軸受と上記回転センサとの間に配置され、上記磁性体の外径は、上記軸受の外径よりも大きいことを特徴とする請求項1から5のいずれか一項記載の回転電機。 - 上記回転センサは、上記磁性体の外径よりも内側に配置されたことを特徴とする請求項1から7のいずれか一項記載の回転電機。
- 上記磁性体は、上記回転センサを装着するセンサ基板と上記ケースの内壁面に当接することを特徴とする請求項1から8のいずれか一項記載の回転電機。
- 上記出力軸の軸上に、上記回転電機のモータを構成するステータおよびロータを覆うためのフレームを備え、上記出力軸の軸方向において、上記センサマグネットと上記フレームとの間に上記回転電機を制御する制御基板が配置されたことを特徴とする請求項1から9のいずれか一項記載の回転電機。
- 上記回転電機に電圧を印加するためのパワー部を備え、
上記磁性体、上記回転センサ、上記センサマグネット、上記パワー部の順に軸方向に配置されたことを特徴とする請求項1から10のいずれか一項記載の回転電機。 - 上記回転電機に電圧を印加するためのパワー部を備え、
上記センサマグネット、上記回転センサ、上記磁性体、上記パワー部の順に軸方向に配置されたことを特徴とする請求項1から10のいずれか一項記載の回転電機。 - 電動パワーステアリング装置の構成要素として用いられたことを特徴とする請求項1から12のいずれか一項記載の回転電機。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16899448.1A EP3447889B1 (en) | 2016-04-22 | 2016-04-22 | Electric rotating machine |
JP2018512736A JP6556341B2 (ja) | 2016-04-22 | 2016-04-22 | 回転電機 |
CN201680084662.9A CN109075688B (zh) | 2016-04-22 | 2016-04-22 | 旋转电机 |
PCT/JP2016/062732 WO2017183176A1 (ja) | 2016-04-22 | 2016-04-22 | 回転電機 |
US16/071,132 US11070113B2 (en) | 2016-04-22 | 2016-04-22 | Electric rotating machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/062732 WO2017183176A1 (ja) | 2016-04-22 | 2016-04-22 | 回転電機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017183176A1 true WO2017183176A1 (ja) | 2017-10-26 |
Family
ID=60115787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/062732 WO2017183176A1 (ja) | 2016-04-22 | 2016-04-22 | 回転電機 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11070113B2 (ja) |
EP (1) | EP3447889B1 (ja) |
JP (1) | JP6556341B2 (ja) |
CN (1) | CN109075688B (ja) |
WO (1) | WO2017183176A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020183523A1 (ja) * | 2019-03-08 | 2020-09-17 | 三菱電機株式会社 | モータ、ファン、および空気調和機 |
JP2020167920A (ja) * | 2019-03-29 | 2020-10-08 | 日本電産トーソク株式会社 | 電動オイルポンプ |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021209119A1 (de) | 2021-08-19 | 2023-02-23 | Robert Bosch Gesellschaft mit beschränkter Haftung | Antriebseinrichtung, Druckerzeuger für eine Bremsanlage |
CN115313749B (zh) * | 2022-10-11 | 2023-03-14 | 沈阳微控新能源技术有限公司 | 飞轮储能装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001119876A (ja) * | 1999-10-18 | 2001-04-27 | Matsushita Seiko Co Ltd | 無刷子電動機 |
JP3738966B2 (ja) * | 2000-12-28 | 2006-01-25 | 株式会社デンソー | 磁気式回転角度検出装置を内蔵する回転電機 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006017905A1 (de) * | 2006-04-19 | 2007-10-25 | Bühler Motor GmbH | Baugruppe für einen Kommutatormotor, Kommutatormotor mit dieser Baugruppe und Verfahren zur Montage des Kommutatormotors |
US9577496B2 (en) * | 2012-11-13 | 2017-02-21 | Asmo Co., Ltd. | Rotor and brushless motor with rotation position detection |
JP5886269B2 (ja) * | 2013-12-27 | 2016-03-16 | マブチモーター株式会社 | 回転検出装置およびモータ |
JP6578642B2 (ja) * | 2014-09-30 | 2019-09-25 | 日本電産株式会社 | モータ |
JP6333479B2 (ja) * | 2015-06-17 | 2018-05-30 | 三菱電機株式会社 | 永久磁石電動機 |
WO2018092207A1 (ja) * | 2016-11-16 | 2018-05-24 | 三菱電機株式会社 | 回転位置検出装置 |
JP2019122081A (ja) * | 2017-12-28 | 2019-07-22 | 日本電産トーソク株式会社 | 電動アクチュエータ |
-
2016
- 2016-04-22 WO PCT/JP2016/062732 patent/WO2017183176A1/ja active Application Filing
- 2016-04-22 CN CN201680084662.9A patent/CN109075688B/zh active Active
- 2016-04-22 JP JP2018512736A patent/JP6556341B2/ja active Active
- 2016-04-22 EP EP16899448.1A patent/EP3447889B1/en active Active
- 2016-04-22 US US16/071,132 patent/US11070113B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001119876A (ja) * | 1999-10-18 | 2001-04-27 | Matsushita Seiko Co Ltd | 無刷子電動機 |
JP3738966B2 (ja) * | 2000-12-28 | 2006-01-25 | 株式会社デンソー | 磁気式回転角度検出装置を内蔵する回転電機 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020183523A1 (ja) * | 2019-03-08 | 2020-09-17 | 三菱電機株式会社 | モータ、ファン、および空気調和機 |
JPWO2020183523A1 (ja) * | 2019-03-08 | 2021-10-14 | 三菱電機株式会社 | モータ、ファン、および空気調和機 |
JP7098047B2 (ja) | 2019-03-08 | 2022-07-08 | 三菱電機株式会社 | モータ、ファン、および空気調和機 |
JP2020167920A (ja) * | 2019-03-29 | 2020-10-08 | 日本電産トーソク株式会社 | 電動オイルポンプ |
Also Published As
Publication number | Publication date |
---|---|
EP3447889A1 (en) | 2019-02-27 |
EP3447889B1 (en) | 2021-02-17 |
CN109075688A (zh) | 2018-12-21 |
JP6556341B2 (ja) | 2019-08-07 |
EP3447889A4 (en) | 2019-04-24 |
JPWO2017183176A1 (ja) | 2018-10-25 |
US11070113B2 (en) | 2021-07-20 |
CN109075688B (zh) | 2020-07-17 |
US20210175781A1 (en) | 2021-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6556341B2 (ja) | 回転電機 | |
JP4679358B2 (ja) | 回転角度検出装置 | |
JP2008151774A (ja) | 回転角度検出装置および回転機 | |
JP2010085389A (ja) | 角度センサ | |
JP5927891B2 (ja) | 回転角度検出装置 | |
JP2009276261A (ja) | 回転角度検出装置および回転機 | |
JP2008151628A (ja) | 回転センサ | |
JP2006525518A (ja) | 電磁式シャフト位置センサ及び方法 | |
JP2008151629A (ja) | 回転センサ | |
WO2010026948A1 (ja) | 角度センサ | |
KR101521384B1 (ko) | 실장 기판 | |
KR102071753B1 (ko) | 자기 센서 장치 | |
JP7155846B2 (ja) | 回転装置 | |
JP5421198B2 (ja) | 回転角度検出装置 | |
JP5276695B2 (ja) | 車両用回転電機 | |
JP2013250073A (ja) | 回転角度検出装置 | |
JP2018105757A (ja) | 磁気エンコーダ装置 | |
JP5904811B2 (ja) | 位置センサ | |
JP2003315092A (ja) | 回転角センサとトルクセンサ | |
US20240159510A1 (en) | Rotational angle measurement apparatus | |
JP2013251982A (ja) | モータ | |
US20190028000A1 (en) | Device for detecting position of rotor, and motor comprising same | |
JP6861867B1 (ja) | 角度検出装置及び回転電機の制御装置 | |
JP2012021840A (ja) | センサターゲット及び回転角度検出装置 | |
JP2021135116A (ja) | 角度検出装置及び回転電機の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018512736 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016899448 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2016899448 Country of ref document: EP Effective date: 20181122 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16899448 Country of ref document: EP Kind code of ref document: A1 |