WO2017183126A1 - デバイス加工方法およびデバイス加工装置 - Google Patents
デバイス加工方法およびデバイス加工装置 Download PDFInfo
- Publication number
- WO2017183126A1 WO2017183126A1 PCT/JP2016/062472 JP2016062472W WO2017183126A1 WO 2017183126 A1 WO2017183126 A1 WO 2017183126A1 JP 2016062472 W JP2016062472 W JP 2016062472W WO 2017183126 A1 WO2017183126 A1 WO 2017183126A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ion beam
- device processing
- processing method
- forming
- film
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/30—Electron-beam or ion-beam tubes for localised treatment of objects
- H01J37/317—Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
Definitions
- the present invention relates to a device processing method and a device processing apparatus, for example, a device processing method and a device processing apparatus for manufacturing a fine structure such as MEMS (Micro Electro Mechanical Systems).
- MEMS Micro Electro Mechanical Systems
- Patent Document 1 a material is attached by an ion beam, or a gallium ion beam from a liquid metal ion source or an argon ion beam from a plasma ion source is directed toward a workpiece surface when the material is attached. Techniques have been disclosed to guide and increase the density of the material being deposited.
- the conventional MEMS manufacturing process is mainly a lithography process similar to LSI (Large Scale Integration) using so-called silicon. It is considered effective to form a MEMS structure by a direct drawing process using a Focused (Ion-Beam) apparatus.
- plasma FIB has the problem of having anisotropy in the physical properties of the object along the scanning direction, for example, when scanning an ion beam in FIB processing, in reverse of the high speed. It was.
- An object of the present invention is to provide a technique for suppressing anisotropy of physical properties of an object by scanning an ion beam in FIB processing.
- the device processing method is a device processing method for forming a structure using an ion beam.
- This device processing method includes a step of forming the structure while changing the irradiation position of the ion beam.
- each region of the structure is formed by a plurality of irradiations using the same type of ion beam.
- a device processing apparatus is a device processing apparatus that forms a structure using an ion beam.
- This device processing apparatus has an ion beam irradiation system that irradiates an ion beam, and a control device that controls the irradiation position of the ion beam irradiated from the ion beam irradiation system.
- the control device controls each region of the structure to be formed by a plurality of irradiations using the same type of ion beam.
- anisotropy of physical properties of an object due to ion beam scanning can be suppressed in FIB processing.
- FIG. 3 is a configuration diagram illustrating an example of a configuration of a device processing apparatus for a MEMS structure according to Embodiment 1.
- FIG. It is explanatory drawing which shows an example of the software structure of the device processing apparatus of FIG. 3 is a flowchart illustrating an example of a procedure of a device processing method according to the first embodiment.
- FIG. 3 it is explanatory drawing which shows an example of the production state in each process.
- 10 is an explanatory diagram illustrating an example of a procedure of a device processing method according to Embodiment 2.
- FIG. It is explanatory drawing which shows an example of the production state in each process following FIG.
- FIG. 6 it is explanatory drawing which shows an example of the cross section of the preparation state in each process.
- FIG. 10 is a flowchart illustrating an example of a procedure of a device manufacturing method including a device processing method according to Embodiment 3.
- FIG. 8 it is explanatory drawing which shows an example of the cross section of the preparation state in each process.
- FIG. 8 it is explanatory drawing which shows an example of the cross section of the production state in each process of FIB processing.
- FIG. 8 it is explanatory drawing which shows an example of the cross section of the preparation state in each process of stress adjustment.
- the procedure of the device processing method in Embodiment 4 it is explanatory drawing which shows an example of the cross section of the production state in each process (when a movable layer is a compressive-stress film
- the procedure of the device processing method in Embodiment 4 it is explanatory drawing which shows an example of the cross section of the production state in each process (when a movable layer is a tensile stress film
- the constituent elements are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
- the technical idea in the present embodiment is to provide a technique for suppressing anisotropy of physical properties of an object by scanning an ion beam (technique of the first embodiment described later) in FIB processing.
- Another technical idea in the present embodiment is to provide a technique (a technique of a second embodiment described later) that corrects the shape of the end in film deposition.
- Another technical idea in the present embodiment is to provide a technique for correcting a deformation in the course of manufacturing the MEMS structure (a technique of a third embodiment described later).
- Another technical idea in the present embodiment is to provide a technique (a technique of a fourth embodiment described later) that relieves internal stress in the film during the manufacturing of the MEMS structure.
- MEMS structure MEMS element
- MEMS sensor MEMS sensor
- FIG. 1 is a configuration diagram illustrating an example of a configuration of a device processing apparatus for a MEMS structure.
- the device processing apparatus in the present embodiment has the FIB apparatus shown in FIG.
- the FIB apparatus includes a vacuum vessel 1, and an ion source 2 that emits ions, a condenser lens 3, a beam limiting aperture 4, an ion beam scanning deflector 5, an aperture rotation mechanism 6, and the like are included in the vacuum vessel 1.
- a configured ion beam irradiation system is arranged.
- the ion beam 7 is irradiated from the ion beam irradiation system.
- the part of the ion beam irradiation system is also called the FIB column 8.
- the ion source 2 includes a liquid metal ion source and a plasma ion source.
- the liquid metal ion source emits gallium ions and is irradiated as a gallium ion beam from an ion beam irradiation system.
- the plasma ion source emits argon ions or xenon ions, and is irradiated as an argon ion beam or xenon ion beam from an ion beam irradiation system.
- the FIB apparatus is provided with an electron beam irradiation system including an electron gun 9, an electron lens 11 for focusing an electron beam 10 emitted from the electron gun 9, an electron beam scanning deflector 12, and the like.
- the FIB apparatus includes a sample 13, a secondary particle detector 14, a sample stage 15, a probe (manipulator) 16, and a source gas (deposition gas) at the time of film formation or a gas for promoting etching at the time of cutting.
- a gas source 17 for introducing the gas into the vacuum vessel 1 is disposed.
- the sample 13 is a semiconductor wafer on which a plurality of MEMS structures (MEMS elements) are formed.
- the device processing apparatus includes the ion beam irradiation system, the electron beam irradiation system, the secondary particle detector 14, and the like, so that the secondary particle detector 14 can be used as a SIM (ScanningScanIon Microscope). ) Can be used for image acquisition or SEM (Scanning Electron Microscope) image acquisition.
- SIM SenningScanIon Microscope
- SEM Sccanning Electron Microscope
- the device processing apparatus includes a sample stage control device 21, a manipulator control device 22, a gas source control device 23, a secondary particle detector control device 24, and an aperture rotation control as devices for controlling the FIB device.
- a mechanism 25, an ion source control device 26, a lens control device 27, a calculation processing device 31, and a storage device for storing a database 32 are included.
- the sample stage 15 includes a linear movement mechanism in two orthogonal directions in the sample placement surface, a linear movement mechanism in a direction perpendicular to the sample placement surface, a sample placement surface rotation mechanism, and a tilt axis in the sample placement surface. These controls are performed by the sample stage control device 21 in response to a command from the calculation processing device 31.
- the calculation processing device 31 displays information input means for inputting necessary information by the device user, an image generated based on the detection signal of the secondary particle detector 14, information input by the information input means, and the like. Provide a display.
- the information input means includes, for example, a mode input unit 34 shown in FIG.
- the calculation processing device 31 implements a software function unit such as a scan sequence creation unit 35 shown in FIG.
- the database 32 stores, for example, scan data 32a, CAD (Computer-Aided Design) data 32b, machining condition data 32c, and the like shown in FIG.
- ions emitted from the ion source 2 are focused on the sample 13 as an ion beam 7 by the condenser lens 3 and the objective lens.
- the focusing condition is set by input to the calculation processing device 31.
- the beam diameter of the ion beam 7 irradiated on the sample 13 is determined by the image formation on the sample 13 using the ion source 2 as a light source and the aberration caused by the condenser lens 3 or the like.
- the aberration due to the condenser lens 3 and the like increases as the aperture of the beam limiting aperture 4 increases, and the beam diameter increases.
- FIG. 2 is an explanatory diagram illustrating an example of a software configuration of the device processing apparatus.
- the FIB apparatus of the device processing apparatus includes a database 32, a mode selection screen 33, a mode input unit 34, a scan sequence creation unit 35, a beam control unit 37 that controls based on beam control data 36, and the like. It is equipped.
- the beam control unit 37 is the aperture rotation control mechanism 25, the ion source control device 26, the lens control device 27, and the like shown in FIG.
- Various data are stored in the database 32.
- scan data 32a such as ion beam scan conditions
- CAD data 32b such as design data of the shape and dimensions of the MEMS structure
- processing position of the MEMS structure e.g., machining condition data 32c
- machining condition data 32c such as machining conditions is stored.
- the CAD data 32b, the processing condition data 32c, and the scan data 32a are input from the information input unit of the calculation processing apparatus 31 by the operator and stored in the database 32 prior to the execution of the device processing. Has been.
- the operator selects a plurality of scan modes by a plurality of scans described later (FIG. 3) from the mode input unit 34 of the calculation processing device 31.
- the mode selection screen 33 it is also possible to select a normal scan mode by one scan in addition to a plurality of scan modes.
- the scan sequence creation unit 35 of the calculation processing device 31 refers to the CAD data 32b and the processing condition data 32c in the database 32 based on the multiple scan mode selected on the mode selection screen 33, and scans in the database 32. Based on the data 32a, a scan sequence in an optimal multiple scan mode is created. For example, when the shape of the film to be formed is a rectangle having a long side in the x direction and a short side in the y direction, a scan sequence such as a set of a scan in the x direction and a scan in the y direction is created for the rectangular figure. .
- the scan sequence created by the scan sequence creation unit 35 is sent as beam control data 36 to the beam control unit 37 of the FIB apparatus.
- the beam controller 37 controls the ion beam irradiation system arranged in the FIB column 8 of the FIB apparatus based on the beam control data 36.
- the calculation processing apparatus 31 when input of the characteristic specification information of the MEMS structure is received, the calculation processing apparatus 31 automatically selects a combination of the ion beam scan condition, the beam shape, and the like.
- the MEMS structure is automatically formed by calculating the irradiation sequence, irradiation direction, moving speed, etc. of the selected plurality of ion beams and sending the information obtained by the calculation to the beam controller 37. Can do.
- FIG. 3 is a flowchart illustrating an example of the procedure of the device processing method according to the first embodiment.
- FIG. 4 is an explanatory view showing an example of a manufacturing state in each step in FIG.
- the device processing method in the present embodiment is an example in which the film constituting the MEMS structure is homogenized by devising ion beam scanning.
- each region of the film is formed by a plurality of irradiations using the same type of ion beam.
- the plurality of irradiations are performed by setting the irradiation direction (scanning direction) of the same type of ion beam to a plurality of different directions.
- the anisotropy of the film depending on the scan direction is suppressed by setting the scan direction of the same type of ion beam to a plurality of different directions.
- the film formed in this example is a film constituting the MEMS structure, and is a single layer film formed by irradiating the same kind of ion beam while blowing the same kind of gas, and is not a laminated film.
- the FIB apparatus scans the ion beam 7 in one direction in a region for forming a film on the substrate 41 (step S ⁇ b> 101).
- step S101 as shown in FIG. 4A, for example, when the shape of the film 42 to be formed is a rectangle having a long side in the x direction and a short side in the y direction, the shape of the film 42 to be formed is changed.
- the ion beam 7 is scanned in the x direction. At this time, the ion beam 7 is scanned by irradiating the ion beam 7 while blowing a gas corresponding to the film 42 to be formed from the gas source 17.
- the FIB apparatus scans the ion beam 7 in a different direction in the same region as the step S101 on the substrate 41 (step S102).
- step S102 as shown in FIG. 4B, the ion beam 7 is scanned in the y direction orthogonal to the x direction in step S101 in accordance with the shape of the film 42 to be formed.
- the ion beam 7 is scanned by irradiating the same type of ion beam 7 as in step S101 while blowing the same type of gas as in step S101.
- the ion beam 7 of the same type is an ion beam having the same conditions such as beam shape, beam current, and beam acceleration voltage.
- the same type of gas is a gas with the same conditions such as type and flow rate.
- the region of the film 42 to be formed is formed by a plurality of irradiations while changing the irradiation position of the ion beam 7.
- the ion beam 7 scans and irradiates in one direction (x direction), and then scans and irradiates in another direction (y direction), so that the film 42 to be formed is generated along the scan direction.
- Anisotropy of physical properties can be suppressed.
- the physical properties of the film 42 to be produced include properties such as stress, Young's modulus, density, resistivity, expansion coefficient, dielectric constant, and withstand voltage.
- the film formed by the device processing method in the present embodiment (film 42 to be made) has the same film quality in at least one of these properties.
- the FIB apparatus causes the ion beam 7 to travel in one direction (x in the same region as steps S101 to S102 on the substrate 41, as in steps S101 to S102. It is also possible to scan in the direction (step S103), then scan the ion beam 7 in another direction (y direction) (step S104), and repeat these steps arbitrarily.
- the direction in which the ion beam 7 is scanned is not limited to the example orthogonal to the cross between the x direction and the y direction, and may be an example orthogonal to the X shape. Furthermore, you may combine the example orthogonal to a cross, and the example orthogonal to X character. In particular, it is desirable that a plurality of directions intersect each other with a plurality of different scan directions of the ion beam 7.
- the anisotropy of the physical properties of the film 42 constituting the MEMS structure that is the target by scanning with the ion beam 7 can be suppressed.
- the film 42 constituting the MEMS structure can be homogenized.
- FIGS. 1 and 2 A device processing apparatus and a device processing method according to the second embodiment will be described with reference to FIGS.
- the device processing apparatus is the same as that in the first embodiment (FIGS. 1 and 2), and the description thereof is omitted here.
- a device processing method different from that of the first embodiment will be mainly described.
- FIG. 5 is an explanatory diagram showing an example of the procedure of the device processing method according to the second embodiment.
- FIG. 6 is an explanatory diagram showing an example of a manufacturing state in each step following FIG.
- FIG. 7 is an explanatory diagram illustrating an example of a cross-section of a manufacturing state in each step in FIG.
- the device processing method in the present embodiment is an example of correcting the shape by scanning the edge of the film constituting the MEMS structure at a low rate in combination with a projection beam.
- the film is formed by combining and irradiating a plurality of shaped ion beams having different shapes.
- a plurality of molded ion beams having different shapes are irradiated in combination to correct the shape of the end portion of the film.
- the FIB apparatus (FIG. 1) irradiates the ion beam 7 using the beam limiting aperture 4 for forming the film 51 to be designed.
- the film 51 is formed.
- the ion beam 7 is irradiated while blowing a gas corresponding to the film 51 to be formed from the gas source 17.
- the inside of the figure formed by the projection system beam using this beam limiting aperture 4 is homogeneous, and the film quality distribution at the end portion is negligible as a whole.
- the FIB apparatus compares only the end portion of the film 51 to be made in design with the step of forming the film shown in FIG. Redraw with the ion beam 7 having a small shape. Also at this time, redrawing is performed with the ion beam 7 while blowing the same kind of gas as in the step of forming the film shown in FIG. In this redrawing, for example, drawing is performed about twice, and when the short side of the end of the film 51 has a length of 2 ⁇ m, for example, the beam diameter of the ion beam 7 is, for example, a circular shape with a cross section of 0.1 ⁇ m. To do.
- the first time is designed with an ion beam 7a as shown in FIG.
- the outer side of this end portion is drawn in contact with the end portion of the film 51 to be formed.
- a film 53 is deposited on the outer side of the portion 52 of the end portion of the film 51.
- the ion beam 7b is brought into contact with the end portion of the film 51 to be designed, and the inside of this end portion is drawn at a rate half the first rate.
- the film 54 is deposited inside the end portion 52 of the film 51, and the end portion 52 of the film 51 disappears. The shape of the end can be sharpened.
- the film 51 includes the end portion of the film 51 formed by one kind of the shaped ion beam 7 among the plurality of shaped ion beams having different shapes.
- the shape of the end of the film 51 can be sharpened by irradiating the other portions with the other shaped ion beams 7a and 7b, and the shape of the end of the film 51 can be corrected.
- the structural strength of the film may be increased by implanting a rare gas to lower the H 2 concentration.
- FIGS. 1 and 2 A device processing apparatus and a device processing method in the third embodiment will be described with reference to FIGS.
- the device processing apparatus is the same as that in the first embodiment (FIGS. 1 and 2), and the description thereof is omitted here.
- a device processing method different from those in the first and second embodiments will be mainly described.
- FIG. 8 is a flowchart illustrating an example of a procedure of a device manufacturing method including the device processing method according to the third embodiment.
- FIG. 9 is an explanatory diagram showing an example of a cross-section of a manufacturing state in each step in FIG.
- FIG. 10 is an explanatory diagram showing an example of a cross-section of a manufacturing state in each step of FIB processing in FIG.
- FIG. 11 is an explanatory diagram showing an example of a cross-section of the production state in each step of stress adjustment in FIG.
- the device processing method is an example in which, in the course of processing a MEMS structure, an ion beam is selectively applied to a floating portion, and in combination with an in-line inspection, the warpage of the floating portion is corrected.
- the movable layer in the step of forming the support layer (first structure), the support material (second structure), and the movable layer (third structure) constituting the MEMS structure while changing the irradiation position of the ion beam, the movable layer The shape of the movable layer is deformed by selectively irradiating a part of the ion beam with the ion beam or selectively irradiating the ion beam to the contact portion of the movable layer with the support material.
- the ion beam is selectively applied to the floating portion of the movable layer to correct the warpage of the floating portion.
- the portion to which the ion beam is applied focuses on the support source of the floating structure.
- the characteristic specification of the MEMS element is received from the operator via the input device of the calculation processing device 31 (FIG. 1) (steps). S201).
- Examples of the characteristic specifications of the MEMS element include resonance frequency and sensitivity.
- the calculation processing apparatus 31 in step S201 will be described as corresponding to the calculation processing apparatus 31 of the device processing apparatus shown in FIG. If this calculation processing device 31 also has a design function, it can be easily handled. However, the calculation processing apparatus 31 may be different from the calculation processing apparatus 31 of the device processing apparatus shown in FIG.
- the calculation processing device 31 performs characteristic inverse problem estimation for extracting the basic structure of the MEMS element based on the characteristic specification of the MEMS element (step S202).
- Step S203 the calculation processing device 31 performs structural design of the MEMS element based on the basic structure of the MEMS element.
- Steps S201 to S203 are steps for designing the structure of the MEMS element that conforms to the characteristic specifications of the MEMS element.
- Step S204 the calculation processing device 31 constructs a flow of the FIB processing process.
- a base structure manufacturing process (Si process) is performed by an apparatus (not shown) similar to the normal Si semiconductor device manufacturing (step S205).
- Si process as shown in FIG. 9, the formation of the SiO 2 film 62, the formation of the underlying wiring layer (AL: aluminum) 63, the photolithography and etching of the underlying wiring layer 63, the insulating layer (SiO 2) on the Si wafer 61. 2 )
- the process is completed by forming 64 and 65, forming vias (W: tungsten) 66, etc., and flattening the surface.
- the FIB apparatus (FIG. 1) performs the FIB processing process based on the flow of the FIB processing process constructed in step S204 (steps S206 to S209).
- a support layer (W) 71 is produced.
- a support material (SiO 2 ) 72, a sacrificial layer (AL) 73, and a movable layer (W) 74 are formed in this order.
- the support layer 71 is a structure serving as a support base of the MEMS structure
- the support material 72 is a structure that partially contacts the support layer 71
- the movable layer 74 is This is a structure that is in partial contact with the support material 72 and is separated from the support layer 71.
- the processing method of the first embodiment can be applied.
- a step of scanning the ion beam in one direction (for example, x direction) (step S209) is performed, and then a step of scanning the ion beam in another direction (for example, y direction) (step S209a: FIG. 8).
- the movable layer 74 is manufactured by performing (shown with a broken line).
- the step of adjusting the stress of the movable layer 74 described later may be omitted depending on the case. For example, when no internal stress remains in the movable layer 74, the stress adjustment can be omitted.
- the etching apparatus removes the sacrificial layer 73 (step S210).
- the sacrificial layer 73 is removed by wet etching, for example.
- it is desirable that the shape of the movable layer 74 is maintained as shown by a broken line in FIG. 10, but for example, when the movable layer 74 has an internal stress, the shape is shown by a solid line in FIG.
- the portion of the movable layer 74 from which the sacrificial layer 73 is removed is in a floating state, and warping occurs. The following stress adjustment is performed for the purpose of correcting the warp of the floating portion of the movable layer 74.
- the FIB apparatus adjusts the stress of the movable layer 74 (step S211).
- the stress adjustment of the movable layer 74 for example, as shown in FIG. 11, in the first stress adjustment, the ion beam 7a is irradiated mainly on the vicinity of the support material 72 of the movable layer 74. Then, the effect of the first stress adjustment is observed.
- the ion beam 7 is irradiated from the ion source 2, the SIM image detected by the secondary particle detector 14 or the electron beam 8 is irradiated, and the SEM detected by the secondary particle detector 14.
- the image is displayed on the display of the calculation processing device 31 and observed.
- the detected image data may be input to the calculation processing device 31 to automatically generate a stress adjustment recipe.
- the warp of the movable layer 74 near the support member 72 can be corrected.
- the portion of the movable layer 74 from the support material 72 to the tip is irradiated with the ion beam 7b having a smaller beam amount than the first time.
- the second stress adjustment since the amount of stress of the movable layer 74 is relatively smaller than that in the first time, the shape adjustment is easy. Then, the effect of the second stress adjustment is observed. By performing the second stress adjustment, the entire warp of the movable layer 74 can be corrected.
- the MEMS element has a cross-sectional structure as shown in FIG.
- This MEMS element has a structure including a support layer 71, a movable layer 74, and a support material 72 that partially supports the support layer 71 and the movable layer 74.
- the separated portion is deformed by application of acceleration or the like, whereby it can function as a MEMS sensor for detecting acceleration.
- a wiring formation process is performed using an apparatus (not shown) similar to a normal semiconductor manufacturing process (step S212).
- a wiring for connecting to the support layer 71 and the movable layer 74 and for drawing out to the pad for external connection is formed. Note that part or all of the wiring formation process may be performed by the FIB process.
- an element cutting process is performed using a dicing apparatus (not shown) similar to that used in a normal semiconductor chip manufacturing process (step S213).
- dicing is performed to cut the wafer into chips on which MEMS elements are formed.
- cutting may be performed with an ion beam of an FIB apparatus.
- step S214 the chip on which the MEMS element is formed is mounted on the lead frame using a bonding apparatus (not shown) similar to that used in a normal semiconductor chip manufacturing process.
- the bonding apparatus mounts an IC (Integrated Circuit) chip such as an ADC (Analog-to-Digital Converter) or MCU (Micro-Controller Unit) on the lead frame (step S215).
- IC Integrated Circuit
- sealing is performed as a MEMS module so as to cover all the chips mounted on the lead frame (step S216).
- MCU control software is developed and debugged using a design device (not shown) similar to that used for normal system development (step S217).
- step S228 operation check and inspection of the MEMS module are performed by an inspection device (not shown) similar to that used for normal product inspection (step S218).
- step S218 the module that has passed is shipped as a product (step S219).
- a part of the movable layer 74 is selectively irradiated with the ion beam 7b, and a portion of the movable layer 74 that contacts the support member 72 is selectively ionized.
- the shape of the movable layer 74 can be deformed by both irradiation with the beam 7a, and the deformation due to the warp of the movable layer 74 can be corrected. As a result, it is possible to correct deformation during the manufacturing of the MEMS structure.
- a part of the movable layer 74 is selectively irradiated with the ion beam 7b, or the support material 72 of the movable layer 74 and One of selectively irradiating the contact portion with the ion beam 7a may be performed.
- FIGS. 1 and 2 A device processing apparatus and a device processing method in the fourth embodiment will be described with reference to FIGS.
- the device processing apparatus is the same as that in the first embodiment (FIGS. 1 and 2), and the description thereof is omitted here.
- a device processing method different from those in the first to third embodiments will be mainly described.
- FIGS. 12 and 13 are explanatory views showing an example of a cross-section of a manufacturing state in each step in the procedure of the device processing method according to the fourth embodiment.
- FIG. 12 shows a case where the movable layer is a compressive stress film.
- Reference numeral 13 denotes a case where the movable layer is a tensile stress film.
- the device processing method in the present embodiment is an example in which the internal stress of the movable layer 74 is relaxed during the processing of the MEMS structure.
- the internal stress of the movable layer 74 is changed.
- the internal stress includes a compressive stress and a tensile stress, and the movable layer 74 may be formed as a compressive stress film or a tensile stress film.
- the movable layer 74 a portion on the support member 72 is referred to as a dummy portion 74a, and a portion on the sacrificial layer 73 is referred to as a stress adjusted portion 74b. Therefore, the movable layer 74 is formed as an integral structure including the dummy portion 74a and the stress adjusted portion 74b.
- the stress-adjusted portion 74b is a portion necessary for function expression
- the dummy portion 74a is a portion that is in contact with the stress-adjusted portion 74b and is not related to function expression.
- the sacrificial layer 73 is removed after the movable layer 74 is formed.
- the FIB apparatus (FIG. 1) forms a wedge-shaped recess 81 in the dummy portion 74a on the support material 72 by the ion beam 7a.
- the sample stage 15 is tilted and irradiated with the ion beam 7a at a desired angle with respect to the surface of the dummy part 74a, and a part of the dummy part 74a is removed and formed. .
- the wedge-shaped concave portion 81 in the dummy portion 74a the internal stress of the stress adjusted portion 74b on the sacrificial layer 73 can be changed, and the compressive stress of the stress adjusted portion 74b can be relaxed.
- the FIB apparatus forms a wedge-shaped recess 81 in the dummy portion 74 a on the support material 72 by the ion beam 7 a, and stress is applied to the wedge-shaped recess 81.
- Application material 82 is deposited locally.
- the stress applying material 82 the ion beam 7b is locally irradiated and deposited while blowing a gas corresponding to the stress applying material 82.
- the internal stress due to the compressive stress or the tensile stress of the movable layer 74 including the dummy portion 74a and the stress adjusted portion 74b is relaxed during the processing of the MEMS structure. Can do.
- the stress applying material 82 when the stress applying material 82 is locally deposited in the wedge-shaped recess 81, a part of the dummy portion 74a, a part of the removed part, and a part of the removed part are all removed. Further, the stress applying material 82 may be deposited by irradiating the ion beam 7b to any of the removed part and the part in the vicinity thereof.
- a device processing apparatus for forming a structure using an ion beam, An ion beam irradiation system for irradiating the ion beam;
- a control device for controlling the irradiation position of the ion beam irradiated from the ion beam irradiation system;
- a device processing apparatus wherein one of the plurality of shaped ion beams having different shapes is smaller in shape than the other shaped ion beams.
- One type of the plurality of shaped ion beams having different shapes is a device processing apparatus having a circular cross section.
- the control device is configured so that, in an end portion of a structure formed by a kind of a plurality of molded ion beams having different shapes, a portion included in the structure is formed by other molding.
- a device processing apparatus that controls to sharpen the shape of the end by irradiating the ion beam.
- the control device performs irradiation by combining a plurality of molded ion beams having different shapes while spraying the same type of gas for film formation.
- a device processing apparatus that controls to form a structure.
- a third structure In the step of forming the structure body, a part of the third structure body is selectively irradiated with the ion beam, or a contact portion of the third structure body with the second structure body is selectively applied.
- a device processing method in which the shape of the third structure is deformed by one or both of irradiating the ion beam.
- a device processing apparatus for forming a structure using an ion beam, An ion beam irradiation system for irradiating the ion beam;
- a control device for controlling the irradiation position of the ion beam irradiated from the ion beam irradiation system;
- the structure includes a first structure, a second structure that partially contacts the first structure, and a part that contacts the second structure and is spaced apart from the first structure.
- a third structure In the step of forming the structure while changing the irradiation position of the ion beam, the control device selectively irradiates a part of the third structure with the ion beam, or the third structure.
- a device processing apparatus that controls to deform the shape of the third structure by either or both of selectively irradiating the ion beam to a contact portion of the second structure.
- a device processing method for forming a structure using an ion beam Forming the structure while changing the irradiation position of the ion beam, The structure has a first part necessary for function expression, and a second part that contacts the first part and is not related to function expression, In the step of forming the structural body, a device processing method of irradiating a part of the second part with the ion beam to remove the part and changing an internal stress of the first part.
- a device processing apparatus for forming a structure using an ion beam, An ion beam irradiation system for irradiating the ion beam; A control device for controlling the irradiation position of the ion beam irradiated from the ion beam irradiation system; Have The structure has a first part necessary for function expression, and a second part that contacts the first part and is not related to function expression, In the step of forming the structure while changing the irradiation position of the ion beam, the controller irradiates a part of the second part with the ion beam, removes the part, and removes the part of the first part. A device processing device that controls the internal stress to change.
- the controller may irradiate a portion of the second portion with the ion beam to remove a portion thereof, a portion of the removed portion, a portion of the removed portion, or a portion of the removed portion.
- a device processing apparatus that performs control to change the internal stress of the first part by irradiating an ion beam different from the ion beam to any one of the parts adjacent thereto and depositing a substance.
- MEMS structure MEMS element
- MEMS sensor MEMS structure
- a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. .
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Welding Or Cutting Using Electron Beams (AREA)
- Chemical Vapour Deposition (AREA)
- Micromachines (AREA)
Abstract
FIB加工において、イオンビームのスキャンによる対象物の物性の異方性を抑制する技術である。デバイス加工方法は、イオンビームを用いて構造体を形成するデバイス加工方法である。このデバイス加工方法は、構造体をイオンビームの照射位置を変えながら形成する工程を有する。この構造体を形成する工程では、構造体の各領域を、同一種のイオンビームを用いて複数の照射によって形成する。
Description
本発明は、デバイス加工方法およびデバイス加工装置に関し、例えばMEMS(Micro Electro Mechanical Systems)などの微細構造体を製造するデバイス加工方法およびデバイス加工装置に関する。
特許文献1には、イオンビームにより材料を付着させることや、材料を付着させているときに加工物表面に向かって、液体金属イオン源からのガリウムイオンビームやプラズマイオン源からのアルゴンイオンビームを導いて、付着中の材料の密度を増大させる技術が開示されている。
従来のMEMSの製造プロセスは、いわゆるシリコンを用いたLSI(Large Scale Integration)と同様のリソグラフィプロセスを主にしたものであるが、少量多品種製品あるいはプロトタイプを迅速に製造するためには、FIB(Focused Ion Beam)装置を用いた直接描画プロセスにてMEMS構造体を形成することが有効と考えられている。
従来のFIB加工プロセスは、顕微鏡観察サンプルの作製や、LSIの一部配線修正などへの適用が主であり、MEMS構造体などを製造するためには、成膜やエッチング速度が極端に不足していた。ところが、上述した特許文献1に記載のように、FIB加工プロセスの中でもプラズマイオン源を応用したプラズマFIBと呼ばれる方式が開発され、大幅に成膜やエッチング速度の改善が図れることが知られている。
しかしながら、プラズマFIBと呼ばれる方式では、速度が早いことの裏返しで、例えば、FIB加工においてイオンビームをスキャンする場合、スキャンの方向に沿って対象物の物性に異方性を持つという問題点があった。
本発明の目的は、FIB加工において、イオンビームのスキャンによる対象物の物性の異方性を抑制する技術を提供することにある。
本発明の前記ならびにその他の目的と新規な特徴については、本明細書の記述および添付図面から明らかになるであろう。
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
一実施の形態におけるデバイス加工方法は、イオンビームを用いて構造体を形成するデバイス加工方法である。このデバイス加工方法は、構造体をイオンビームの照射位置を変えながら形成する工程を有する。この構造体を形成する工程では、構造体の各領域を、同一種のイオンビームを用いて複数の照射によって形成する。
一実施の形態におけるデバイス加工装置は、イオンビームを用いて構造体を形成するデバイス加工装置である。このデバイス加工装置は、イオンビームを照射するイオンビーム照射系と、このイオンビーム照射系から照射されたイオンビームの照射位置を制御する制御装置と、を有する。この制御装置は、構造体をイオンビームの照射位置を変えながら形成する工程において、構造体の各領域を、同一種のイオンビームを用いて複数の照射によって形成するように制御する。
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
一実施の形態によれば、FIB加工において、イオンビームのスキャンによる対象物の物性の異方性を抑制することができる。
以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。
また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。
さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは特に明示した場合および原理的に明らかにそうではないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
また、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。なお、図面をわかりやすくするために、平面図であってもハッチングを付す場合があり、また断面図であってもハッチングを省略する場合がある。
以下、実施の形態を図面に基づいて詳細に説明する。実施の形態の特徴をわかりやすくするために、まず、関連技術に存在する改善の余地について説明する。
[改善の余地]
近年、IoT(Internet of Things)時代になり、多種多様のセンサを多数配置してセンシングする機運が高まっている。特に、MEMSセンサは広く用いられ、多種多様のMEMSセンサを迅速に供給する要請がある。従来のMEMSの製造プロセスは、いわゆるシリコンを用いたLSIと同様のリソグラフィプロセスを主にしたものであるが、少量多品種製品あるいはプロトタイプを迅速に製造するためには、FIB装置を用いた直接描画プロセスにてMEMS構造体を形成することが有効と考えられている。
近年、IoT(Internet of Things)時代になり、多種多様のセンサを多数配置してセンシングする機運が高まっている。特に、MEMSセンサは広く用いられ、多種多様のMEMSセンサを迅速に供給する要請がある。従来のMEMSの製造プロセスは、いわゆるシリコンを用いたLSIと同様のリソグラフィプロセスを主にしたものであるが、少量多品種製品あるいはプロトタイプを迅速に製造するためには、FIB装置を用いた直接描画プロセスにてMEMS構造体を形成することが有効と考えられている。
従来のFIB加工プロセスは、顕微鏡観察サンプルの作製や、LSIの一部配線修正などへの適用が主であり、MEMS構造体などを製造するためには、成膜やエッチング速度が極端に不足していた。ところが、前述した特許文献1に記載のように、FIB加工プロセスの中でもプラズマイオン源を応用したプラズマFIBと呼ばれる方式が開発され、大幅に成膜やエッチング速度の改善が図れることが知られている。
しかしながら、プラズマFIBと呼ばれる方式では、速度が早いことの裏返しで、寸法精度が劣ったり、膜質や応力などの制御が不十分であるという問題点があった。具体的に例えば、FIB加工においてイオンビームをスキャンする場合、スキャンの方向に沿って対象物の物性に異方性を持つという問題点があった。
また、太いイオンビームで高速に膜堆積する場合、端部の形状がだれる(ぼける)問題点もあった。また、膜密度が低いためにその後の熱処理プロセスなどで変形を生じたり、あるいは膜中に内部応力が残るために、MEMS構造体の製造途上に予期せぬ変形(反りなど)が発生する問題点もあった。
そこで、本実施の形態では、上述した関連技術に存在する改善の余地に対する工夫を施している。以下では、この工夫を施した本実施の形態における技術的思想について、図面を参照しながら説明する。本実施の形態における技術的思想は、FIB加工において、イオンビームのスキャンによる対象物の物性の異方性を抑制する技術(後述する実施の形態1の技術)を提供することにある。
また、本実施の形態における別の技術的思想は、膜堆積における端部の形状を補正する技術(後述する実施の形態2の技術)を提供することにある。
また、本実施の形態における別の技術的思想は、MEMS構造体の製造途上における変形を補正する技術(後述する実施の形態3の技術)を提供することにある。
また、本実施の形態における別の技術的思想は、MEMS構造体の製造途上における膜中の内部応力を緩和する技術(後述する実施の形態4の技術)を提供することにある。
[実施の形態1]
実施の形態1におけるデバイス加工装置およびデバイス加工方法について、図1~図4を用いて説明する。本実施の形態では、デバイス加工装置およびデバイス加工方法において、デバイスの一例として、MEMS構造体(MEMS素子)、特にMEMSセンサを説明するが、他の微細構造体や他のセンサなどにも適用できるものである。
実施の形態1におけるデバイス加工装置およびデバイス加工方法について、図1~図4を用いて説明する。本実施の形態では、デバイス加工装置およびデバイス加工方法において、デバイスの一例として、MEMS構造体(MEMS素子)、特にMEMSセンサを説明するが、他の微細構造体や他のセンサなどにも適用できるものである。
<デバイス加工装置>
実施の形態1におけるデバイス加工装置について、図1~図2を用いて説明する。図1は、MEMS構造体のデバイス加工装置の構成の一例を示す構成図である。
実施の形態1におけるデバイス加工装置について、図1~図2を用いて説明する。図1は、MEMS構造体のデバイス加工装置の構成の一例を示す構成図である。
本実施の形態におけるデバイス加工装置は、図1に示すFIB装置を有する。FIB装置は、真空容器1を有しており、真空容器1内には、イオンを放出するイオン源2、コンデンサレンズ3、ビーム制限アパーチャ4、イオンビーム走査偏向器5およびアパーチャ回転機構6などから構成されるイオンビーム照射系が配置されている。イオンビーム照射系からは、イオンビーム7が照射される。イオンビーム照射系の部分を、FIB鏡筒8とも呼ぶ。
イオン源2としては、液体金属イオン源およびプラズマイオン源などを有する。液体金属イオン源はガリウムイオンを放出し、イオンビーム照射系からガリウムイオンビームとして照射される。プラズマイオン源はアルゴンイオンまたはキセノンイオンを放出し、イオンビーム照射系からアルゴンイオンビームまたはキセノンイオンビームとして照射される。
また、FIB装置には、電子銃9、電子銃9から放出する電子ビーム10を集束する電子レンズ11および電子ビーム走査偏向器12などから構成される電子ビーム照射系が配置されている。さらに、FIB装置には、試料13、二次粒子検出器14、試料ステージ15、プローブ(マニュピレータ)16および成膜する際のソースガス(堆積ガス)または切削する際のエッチングを促進するためのガスを真空容器1に導入するガス源17などが配置されている。ここで試料13とは、複数のMEMS構造体(MEMS素子)を形成する半導体ウェハである。
このように、本実施の形態におけるデバイス加工装置は、イオンビーム照射系、電子ビーム照射系および二次粒子検出器14などを備えていることで、二次粒子検出器14をSIM(Scanning Ion Microscope)画像取得またはSEM(Scanning Electron Microscope)画像取得に用いることができる。
また、本実施の形態におけるデバイス加工装置には、FIB装置を制御する装置として、試料ステージ制御装置21、マニュピレータ制御装置22、ガス源制御装置23、二次粒子検出器制御装置24、アパーチャ回転制御機構25、イオン源制御装置26、レンズ制御装置27、計算処理装置31およびデータベース32を記憶する記憶装置などを有する。
試料ステージ15は、試料載置面内の直交2方向への直線移動機構、試料載置面に垂直方向への直線移動機構、試料載置面内回転機構、および試料載置面内に傾斜軸を持つ傾斜機構を備え、これらの制御は計算処理装置31からの指令によって試料ステージ制御装置21で行われる。
また、計算処理装置31は、装置ユーザが必要な情報を入力する情報入力手段、二次粒子検出器14の検出信号を基に生成された画像や、情報入力手段によって入力した情報などを表示するディスプレイなどを備える。情報入力手段には、例えば後述する図2に示すモード入力部34などを含む。ディスプレイには、例えば後述する図2に示すモード選択画面33などを表示する。また、計算処理装置31は、後述する図2に示すスキャンシーケンス作成部35などのソフトウエア機能部を実現する。また、データベース32は、例えば後述する図2に示すスキャンデータ32a、CAD(Computer-Aided Design)データ32bおよび加工条件データ32cなどを格納している。
FIB装置では、イオン源2より放出されたイオンは、コンデンサレンズ3および対物レンズによって試料13上にイオンビーム7として集束される。なお、集束条件設定は計算処理装置31への入力によってなされる。また、試料13上に照射されるイオンビーム7のビーム径は、イオン源2を光源とする試料13上への結像と、コンデンサレンズ3などによる収差によって決定される。コンデンサレンズ3などによる収差は、ビーム制限アパーチャ4の開口が大きくなると増大し、ビーム径の拡大となる。
次に、上述したデバイス加工装置のソフトウエア構成について、図2を用いて説明する。図2は、デバイス加工装置のソフトウエア構成の一例を示す説明図である。
図2に示すように、デバイス加工装置のFIB装置には、データベース32、モード選択画面33、モード入力部34、スキャンシーケンス作成部35およびビーム制御データ36に基づいて制御するビーム制御部37などが備わっている。ビーム制御部37は、図1に示したアパーチャ回転制御機構25、イオン源制御装置26およびレンズ制御装置27などである。
また、データベース32には、各種データが格納されており、例えば、イオンビームのスキャン条件などのスキャンデータ32a、MEMS構造体の形状および寸法の設計データなどのCADデータ32b、MEMS構造体の加工位置および加工条件などの加工条件データ32cなどが格納されている。
例えば、デバイス加工装置においては、デバイス加工の実行に先立って、作業者により計算処理装置31の情報入力手段から、CADデータ32b、加工条件データ32cおよびスキャンデータ32aが入力されて、データベース32に格納されている。
デバイス加工時には、モード選択画面33において、作業者が計算処理装置31のモード入力部34から、後述(図3)する複数のスキャンによる複数スキャンモードを選択する。なお、モード選択画面33においては、複数スキャンモードの他に、1回のスキャンによる通常スキャンモードを選択することも可能である。
そして、計算処理装置31のスキャンシーケンス作成部35は、モード選択画面33において選択された複数スキャンモードに基づいて、データベース32内のCADデータ32bと加工条件データ32cを参照し、データベース32内のスキャンデータ32aをもとに、最適な複数スキャンモードによるスキャンシーケンスを作成する。例えば、作るべき膜の形状が、x方向が長辺でy方向が短辺の長方形の場合に、この長方形の図形に対するx方向のスキャンとy方向のスキャンとの組などのスキャンシーケンスを作成する。
このスキャンシーケンス作成部35で作成されたスキャンシーケンスは、ビーム制御データ36としてFIB装置のビーム制御部37に送られる。そして、ビーム制御部37において、ビーム制御データ36に基づいて、FIB装置のFIB鏡筒8に配置されたイオンビーム照射系の制御が行われる。
このように、本実施の形態におけるデバイス加工装置では、MEMS構造体の特性仕様の情報を入力受付すると、計算処理装置31により自動的に、イオンビームのスキャン条件やビーム形状などの組み合わせを選択し、この選択した複数のイオンビームの照射順序、照射方向、移動速度などを計算し、この計算により得られた情報をビーム制御部37に送り込むことで、MEMS構造体の形成を自動的に行うことができる。
<デバイス加工方法>
実施の形態1におけるデバイス加工方法について、図3~図4を用いて説明する。図3は、実施の形態1におけるデバイス加工方法の手順の一例を示すフローチャートである。図4は、図3において、各工程における作製状態の一例を示す説明図である。
実施の形態1におけるデバイス加工方法について、図3~図4を用いて説明する。図3は、実施の形態1におけるデバイス加工方法の手順の一例を示すフローチャートである。図4は、図3において、各工程における作製状態の一例を示す説明図である。
本実施の形態におけるデバイス加工方法は、イオンビームのスキャンの工夫により、MEMS構造体を構成する膜の均質化を図る例である。特に、MEMS構造体を構成する膜をイオンビームの照射位置を変えながら形成する工程では、膜の各領域を、同一種のイオンビームを用いて複数の照射によって形成する。複数の照射では、同一種のイオンビームの照射方向(スキャン方向)を異なる複数の方向とすることによって行う。このように、本実施の形態では、同一種のイオンビームのスキャン方向を異なる複数の方向にして、スキャン方向に依存する膜の異方性を抑制する。この例で形成される膜は、MEMS構造体を構成する膜であり、同一種のガスを吹き付けながら、同一種のイオンビームを照射して形成される単一層膜であり、積層膜ではない。
デバイス加工方法の手順では、図3に示すように、まず、FIB装置は、基板41上の膜を作製する領域において、イオンビーム7を一方向にスキャンする(工程S101)。この工程S101では、図4(a)に示すように、例えば、作るべき膜42の形状がx方向が長辺でy方向が短辺の長方形である場合に、この作るべき膜42の形状に合わせて、イオンビーム7をx方向にスキャンする。この時に、イオンビーム7のスキャンは、ガス源17から作るべき膜42に対応するガスを吹き付けながら、イオンビーム7を照射する。
続けて、FIB装置は、基板41上の工程S101と同じ領域において、イオンビーム7を別方向にスキャンする(工程S102)。この工程S102では、図4(b)に示すように、作るべき膜42の形状に合わせて、イオンビーム7を工程S101のx方向に対して直交するy方向にスキャンする。この時も、イオンビーム7のスキャンは、工程S101と同一種のガスを吹き付けながら、工程S101と同一種のイオンビーム7を照射する。同一種のイオンビーム7とは、ビーム形状、ビーム電流およびビーム加速電圧などの各条件が同じイオンビームである。同一種のガスとは、種類および流量などの各条件が同じガスである。
このように、本実施の形態におけるデバイス加工方法では、イオンビーム7の照射位置を変えながら、作るべき膜42の領域を複数の照射によって形成する。イオンビーム7は、一方向(x方向)にスキャンして照射し、続けて、別方向(y方向)にスキャンして照射することで、スキャンの方向に沿って発生する、作るべき膜42の物性の異方性を抑制することができる。作るべき膜42の物性には、応力、ヤング率、密度、抵抗率、膨張率、誘電率および絶縁耐圧などの各性質がある。本実施の形態におけるデバイス加工方法で形成される膜(作るべき膜42)は、これらの各性質のうちの少なくとも1つの性質が同じ膜質となる。
さらに、本実施の形態におけるデバイス加工方法では、必要に応じて、FIB装置は、工程S101~S102と同様に、基板41上の工程S101~S102と同じ領域において、イオンビーム7を一方向(x方向)にスキャンし(工程S103)、続けて、イオンビーム7を別方向(y方向)にスキャンし(工程S104)、これらの工程を任意に繰り返して行うことも可能である。
なお、本実施の形態において、イオンビーム7をスキャンする方向は、x方向とy方向との十字に直交する例に限らず、X字に直交する例などにしてもよい。さらに、十字に直交する例とX字に直交する例とを組み合わせてもよい。特に、イオンビーム7のスキャン方向を異なる複数の方向として、複数の方向が交差していることが望ましい。
以上説明した本実施の形態によれば、FIB加工において、イオンビーム7のスキャンによる対象物であるMEMS構造体を構成する膜42の物性の異方性を抑制することができる。この結果、MEMS構造体を構成する膜42の均質化を図ることができる。
[実施の形態2]
実施の形態2におけるデバイス加工装置およびデバイス加工方法について、図5~図7を用いて説明する。本実施の形態において、デバイス加工装置は、前記実施の形態1(図1、図2)と同じなので、ここでの説明は省略する。本実施の形態では、前記実施の形態1と異なるデバイス加工方法について主に説明する。
実施の形態2におけるデバイス加工装置およびデバイス加工方法について、図5~図7を用いて説明する。本実施の形態において、デバイス加工装置は、前記実施の形態1(図1、図2)と同じなので、ここでの説明は省略する。本実施の形態では、前記実施の形態1と異なるデバイス加工方法について主に説明する。
<デバイス加工方法>
実施の形態2におけるデバイス加工方法について、図5~図7を用いて説明する。図5は、実施の形態2におけるデバイス加工方法の手順の一例を示す説明図である。図6は、図5に続く各工程における作製状態の一例を示す説明図である。図7は、図6において、各工程における作製状態の断面の一例を示す説明図である。
実施の形態2におけるデバイス加工方法について、図5~図7を用いて説明する。図5は、実施の形態2におけるデバイス加工方法の手順の一例を示す説明図である。図6は、図5に続く各工程における作製状態の一例を示す説明図である。図7は、図6において、各工程における作製状態の断面の一例を示す説明図である。
本実施の形態におけるデバイス加工方法は、プロジェクション方式ビームとの組み合わせにより、MEMS構造体を構成する膜の端部を低レートでスキャンして形状を補正する例である。特に、MEMS構造体を構成する膜をイオンビームの照射によって形成する工程では、形状の異なる複数の成型されたイオンビームを組み合わせて照射することにより膜を形成する。このように、本実施の形態では、形状の異なる複数の成型されたイオンビームを組み合わせて照射して、膜の端部の形状を補正する。
デバイス加工方法の手順では、図5に示すように、まず、FIB装置(図1)は、設計上の作るべき膜51を形成するためのビーム制限アパーチャ4を用いて、イオンビーム7を照射して膜51を形成する。この時に、ガス源17から作るべき膜51に対応するガスを吹き付けながら、イオンビーム7を照射する。このビーム制限アパーチャ4を用いるプロジェクション方式ビームで作られる図形の内部は均質であり、また、端部部分の膜質分布は全体から見て無視できる程度である。
続けて、図5に示す膜51を形成した後、図6に示すように、FIB装置は、設計上の作るべき膜51の端部のみを、図5に示す膜を形成した工程に比べて形状が小さいイオンビーム7で再描画する。この時も、図5に示す膜を形成した工程と同一種のガスを吹き付けながら、イオンビーム7で再描画する。この再描画では、例えば2回程度の描画を行い、膜51の端部の短辺が、例えば2μmの長さの場合は、イオンビーム7のビーム径は、例えば0.1μmの断面の円形とする。
例えば、2回の描画を行う場合、図7(a)に示すように膜51の端部にだれ52がある例では、1回目は、図6に示すように、イオンビーム7aで、設計上の作るべき膜51の端部に接して、この端部の外側を描画する。この1回目の描画では、図7(b)に示すように、膜51の端部のだれ52の部分の外側に膜53が堆積される。2回目は、図6に示すように、イオンビーム7bで、設計上の作るべき膜51の端部に接して、この端部の内側を、1回目のレートの半分のレートで描画する。この2回目の描画では、図7(c)に示すように、膜51の端部のだれ52の部分の内側に膜54が堆積され、膜51の端部のだれ52がなくなり、膜51の端部の形状を急峻化することができる。
このように、本実施の形態におけるデバイス加工方法では、形状の異なる複数の成型されたイオンビームのうちの一種の成型されたイオンビーム7により形成された膜51の端部において、膜51に含まれる部分に、それ以外の成型されたイオンビーム7a,7bを照射することにより膜51の端部の形状を急峻化して、膜51の端部の形状を補正することができる。
なお、本実施の形態においては、膜51の端部のみをイオンビーム7で再描画する際に、図5に示す膜を形成した工程と同一種のガスを吹き付けながら行ったが、このガスは成膜物質に対応するガスに限られるものではない。例えば、SiO2膜を形成する場合に、希ガスを打ち込んでH2濃度を下げる等して、膜の構造強度を高めてもよい。
[実施の形態3]
実施の形態3におけるデバイス加工装置およびデバイス加工方法について、図8~図11を用いて説明する。本実施の形態において、デバイス加工装置は、前記実施の形態1(図1、図2)と同じなので、ここでの説明は省略する。本実施の形態では、前記実施の形態1~2と異なるデバイス加工方法について主に説明する。
実施の形態3におけるデバイス加工装置およびデバイス加工方法について、図8~図11を用いて説明する。本実施の形態において、デバイス加工装置は、前記実施の形態1(図1、図2)と同じなので、ここでの説明は省略する。本実施の形態では、前記実施の形態1~2と異なるデバイス加工方法について主に説明する。
<デバイス加工方法>
実施の形態3におけるデバイス加工方法について、図8~図11を用いて説明する。図8は、実施の形態3におけるデバイス加工方法を含むデバイス製造方法の手順の一例を示すフローチャートである。図9は、図8において、各工程における作製状態の断面の一例を示す説明図である。図10は、図8において、FIB加工の各工程における作製状態の断面の一例を示す説明図である。図11は、図8において、応力調整の各工程における作製状態の断面の一例を示す説明図である。
実施の形態3におけるデバイス加工方法について、図8~図11を用いて説明する。図8は、実施の形態3におけるデバイス加工方法を含むデバイス製造方法の手順の一例を示すフローチャートである。図9は、図8において、各工程における作製状態の断面の一例を示す説明図である。図10は、図8において、FIB加工の各工程における作製状態の断面の一例を示す説明図である。図11は、図8において、応力調整の各工程における作製状態の断面の一例を示す説明図である。
本実施の形態におけるデバイス加工方法は、MEMS構造体の加工途上において、浮いた部分に選択的にイオンビームを当てて、インライン検査と組み合わせて、浮いた部分の反りを補正する例である。特に、MEMS構造体を構成する支持層(第1構造体)、支持材(第2構造体)および可動層(第3構造体)をイオンビームの照射位置を変えながら形成する工程では、可動層の一部に選択的にイオンビームを照射すること、ないしは、可動層の支持材との接触部分に選択的にイオンビームを照射すること、のいずれか一方あるいは両方によって、可動層の形状を変形させる。このように、本実施の形態では、可動層の浮いた部分に選択的にイオンビームを当てて、浮いた部分の反りを補正する。例えば、イオンビームを当てる部分は、浮いた構造体の支持元を重点とする。
デバイス加工方法を含むデバイス製造方法の手順では、図8に示すように、まず、計算処理装置31(図1)の入力装置を介して、作業者からMEMS素子の特性仕様を入力受付する(工程S201)。このMEMS素子の特性仕様としては、例えば共振周波数、感度などがある。この工程S201における計算処理装置31は、例えば図1に示したデバイス加工装置の計算処理装置31が対応することとして説明する。この計算処理装置31が、設計機能も兼ね備えていれば、容易に対応可能である。しかし、図1に示したデバイス加工装置の計算処理装置31とは別の計算処理装置で行ってもよい。
次に、計算処理装置31は、MEMS素子の特性仕様に基づいてMEMS素子の基本構造を抽出する特性逆問題推定を行う(工程S202)。
次に、計算処理装置31は、MEMS素子の基本構造に基づいてMEMS素子の構造設計を行う(工程S203)。工程S201~S203は、MEMS素子の特性仕様に適合するMEMS素子の構造設計を行う工程となる。
次に、計算処理装置31は、FIB加工プロセスのフローを構築する(工程S204)。
次に、通常のSi半導体デバイス製造と同様の図示しない装置により、下地構造の作製プロセス(Siプロセス)を行う(工程S205)。このSiプロセスでは、図9に示すように、Siウェハ61上に、SiO2膜62の形成、下地配線層(AL:アルミニウム)63の形成、下地配線層63のフォトリソとエッチング、絶縁層(SiO2)64,65の形成、ビア(W:タングステン)66の形成などを行い、表面の平坦化を行うことで終了となる。
次に、Siプロセスによる下地構造の作製が終了した後、FIB装置(図1)は、工程S204で構築したFIB加工プロセスのフローに基づいて、FIB加工プロセスを行う(工程S206~S209)。このFIB加工プロセスでは、図10に示すように、まず、支持層(W)71を作製する。続いて、支持材(SiO2)72、犠牲層(AL)73、可動層(W)74を順に作製する。
FIB加工プロセスで作製される構造体において、支持層71はMEMS構造体の支持母体となる構造体であり、支持材72は支持層71に部分的に接触する構造体であり、可動層74は支持材72に部分的に接触し、支持層71と離間されている構造体である。
なお、例えば可動層74を作製する工程において、前記実施の形態1の加工方法を適用することができる。この場合には、イオンビームを一方向(例えばx方向)にスキャンする工程(工程S209)を行い、次に、イオンビームを別方向(例えばy方向)にスキャンする工程(工程S209a:図8に破線で図示)を行い、可動層74を作製する。このようにして可動層74を作製した場合には、後述する可動層74の応力調整を行う工程は、場合に応じて省いてもよい。例えば、可動層74に内部応力が残っていない場合などには、応力調整を省くことができる。
次に、可動層74までの作製が終了した後、図10に示すように、エッチング装置は、犠牲層73を除去する(工程S210)。この犠牲層73の除去は、例えばウェットエッチングで行う。犠牲層73を除去した後は、図10に破線で示すように、可動層74の形状が維持されることが望ましいが、例えば、可動層74に内部応力があると、図10に実線で示すように、可動層74の犠牲層73を除去した部分が浮いた状態になり、反りが生じる。この可動層74の浮いた部分の反りを補正する目的で以下の応力調整を行う。
次に、FIB装置は、可動層74の応力調整を行う(工程S211)。この可動層74の応力調整では、例えば図11に示すように、1回目の応力調整において、可動層74の支持材72付近を重点にイオンビーム7aを照射する。そして、1回目の応力調整の効果を観察する。この観察においては、FIB装置において、イオン源2からイオンビーム7を照射し、二次粒子検出器14で検出したSIM画像、または電子ビーム8を照射し、二次粒子検出器14で検出したSEM画像を、計算処理装置31のディスプレイに表示して観察する。また、検出した画像データを計算処理装置31に入力して、自動的に応力調整用レシピを生成してもよい。1回目の応力調整では、可動層74の支持材72付近の反りを補正することができる。
続いて、2回目の応力調整において、可動層74の支持材72から先端部までの部分に、1回目よりはビーム量の少ないイオンビーム7bを照射する。2回目の応力調整では、可動層74の応力量が1回目の時点より相対的に少ないため、形状調整が容易であるので、少ないビーム量でもよい。そして、2回目の応力調整の効果を観察する。2回目の応力調整を行うことで、可動層74の全体の反りを補正することができる。ここまでの工程が終了すると、MEMS素子は、図9に示すような断面構造となる。
このMEMS素子は、支持層71と、可動層74と、支持層71と可動層74とを部分的に支持する支持材72とを有する構造において、例えば、支持層71に対して可動層74の離間されている部分が加速度の印加などによって変形することで、加速度検出のMEMSセンサとして機能させることができる。
次に、本実施例においては通常の半導体製造プロセスと同様の図示しない装置を用いて、配線の形成プロセスを行う(工程S212)。この配線の形成プロセスでは、支持層71と可動層74とにそれぞれ繋がり、外部接続用のパッドに引き出すための配線を形成する。なお、配線形成プロセスの一部ないし全部を上記FIBプロセスによって行ってもよい。
次に、通常の半導体チップ製造プロセスで用いられるものと同様の図示しないダイシング装置を用いて、素子の切り出しプロセスを行う(工程S213)。この素子の切り出しプロセスでは、ウェハをMEMS素子が形成されたチップ毎に切断するダイシングを行う。なお、ダイシングに代えて、FIB装置のイオンビームにより切断してもよい。
次に、通常の半導体チップ製造プロセスで用いられるものと同様の図示しないボンディング装置を用いて、MEMS素子が形成されたチップをリードフレームに実装する(工程S214)。
次に、ボンディング装置は、ADC(Analog to Digital Converter)やMCU(Micro Controller Unit)などのIC(Integrated Circuit)チップをリードフレームに実装する(工程S215)。
次に、通常の半導体チップ製造プロセスで用いられるものと同様の図示しないパッケージング装置を用いて、リードフレームに実装された全てのチップを覆うように、MEMSモジュールとして封止する(工程S216)。
次に、通常のシステム開発に使用するのと同様の図示しない設計装置を用いて、MCUの制御ソフトの開発やデバッグを行う(工程S217)。
次に、通常の製品検査に用いられるものと同様の図示しない検査装置により、MEMSモジュールの動作確認や検査を行う(工程S218)。
そして、工程S218の動作確認や検査の結果、合格したモジュールを製品として出荷する(工程S219)。
このように、本実施の形態におけるデバイス加工方法では、可動層74の一部に選択的にイオンビーム7bを照射すること、および、可動層74の支持材72との接触部分に選択的にイオンビーム7aを照射することの両方によって可動層74の形状を変形させ、可動層74の反りによる変形を補正することができる。この結果、MEMS構造体の製造途上における変形を補正することができる。
なお、本実施の形態においては、可動層74の反りによる変形を補正する際に、可動層74の一部に選択的にイオンビーム7bを照射すること、または、可動層74の支持材72との接触部分に選択的にイオンビーム7aを照射することの一方を行ってもよい。
[実施の形態4]
実施の形態4におけるデバイス加工装置およびデバイス加工方法について、図12~図13を用いて説明する。本実施の形態において、デバイス加工装置は、前記実施の形態1(図1、図2)と同じなので、ここでの説明は省略する。本実施の形態では、前記実施の形態1~3と異なるデバイス加工方法について主に説明する。
実施の形態4におけるデバイス加工装置およびデバイス加工方法について、図12~図13を用いて説明する。本実施の形態において、デバイス加工装置は、前記実施の形態1(図1、図2)と同じなので、ここでの説明は省略する。本実施の形態では、前記実施の形態1~3と異なるデバイス加工方法について主に説明する。
<デバイス加工方法>
実施の形態4におけるデバイス加工方法について、図12~図13を用いて説明する。図12および図13は、実施の形態4におけるデバイス加工方法の手順において、各工程における作製状態の断面の一例を示す説明図であり、図12は可動層が圧縮応力膜の場合を示し、図13は可動層が引張応力膜の場合を示す。
実施の形態4におけるデバイス加工方法について、図12~図13を用いて説明する。図12および図13は、実施の形態4におけるデバイス加工方法の手順において、各工程における作製状態の断面の一例を示す説明図であり、図12は可動層が圧縮応力膜の場合を示し、図13は可動層が引張応力膜の場合を示す。
本実施の形態におけるデバイス加工方法は、MEMS構造体の加工途上において、可動層74の内部応力を緩和する例である。特に、MEMS構造体をイオンビームの照射位置を変えながら形成する工程では、可動層74の内部応力を変化させる。この内部応力には、圧縮応力と引張応力とがあり、可動層74は圧縮応力膜として形成される場合と引張応力膜として形成される場合とがある。
ここでは、可動層74のうち、支持材72上の部分をダミー部74aと呼び、犠牲層73上の部分を応力被調整部74bと呼ぶ。よって、可動層74は、ダミー部74aと応力被調整部74bとからなる一体構造で形成される。この可動層74では、応力被調整部74bは機能発現に必要な部分であり、ダミー部74aは応力被調整部74bに接触して機能発現と関係しない部分である。犠牲層73は、前述したように、可動層74の形成後は除去されることとなる。
可動層74が圧縮応力膜の場合は、図12に示すように、FIB装置(図1)は、支持材72上のダミー部74aにイオンビーム7aによりくさび状凹部81を形成する。くさび状凹部81を形成する場合は、試料ステージ15を傾斜させて、ダミー部74aの表面に対して所望の角度でイオンビーム7aを照射して、ダミー部74aの一部を除去して形成する。このように、ダミー部74aにくさび状凹部81を形成することで、犠牲層73上の応力被調整部74bの内部応力を変化させ、応力被調整部74bの圧縮応力を緩和することができる。
可動層74が引張応力膜の場合は、図13に示すように、FIB装置は、支持材72上のダミー部74aにイオンビーム7aによりくさび状凹部81を形成し、このくさび状凹部81に応力印加材料82を局所的に堆積する。応力印加材料82を局所的に堆積する場合は、応力印加材料82に対応するガスを吹き付けながら、イオンビーム7bを局所的に照射して堆積する。このように、ダミー部74aに形成したくさび状凹部81に応力印加材料82を局所的に堆積することで、犠牲層73上の応力被調整部74bの内部応力を変化させ、応力被調整部74bの引張応力を緩和することができる。
このように、本実施の形態におけるデバイス加工方法では、MEMS構造体の加工途上において、ダミー部74aと応力被調整部74bとからなる可動層74の圧縮応力または引張応力による内部応力を緩和することができる。
なお、本実施の形態においては、くさび状凹部81に応力印加材料82を局所的に堆積する際に、ダミー部74aの一部の除去した部分、除去した部分の一部、除去した部分の全て、および、除去した部分の全てとその近傍する部分、のいずれかに対して、イオンビーム7bを照射して応力印加材料82を堆積してもよい。
[実施の形態1~4の効果]
以上説明した実施の形態1~4によれば、FIB加工によるMEMS構造体(微細構造体)の場所毎の物性の分布や異方性を制御したり、成膜ないしエッチング速度を大幅に高めながら被対象物の内部応力などを制御することが可能になる。結果として、製造されるMEMS構造体、例えばMEMSセンサの特性や信頼性が向上する。
以上説明した実施の形態1~4によれば、FIB加工によるMEMS構造体(微細構造体)の場所毎の物性の分布や異方性を制御したり、成膜ないしエッチング速度を大幅に高めながら被対象物の内部応力などを制御することが可能になる。結果として、製造されるMEMS構造体、例えばMEMSセンサの特性や信頼性が向上する。
[付記]
本発明は、請求の範囲に記載の特徴に加えて、以下の特徴を有する。
(1)イオンビームを用いて構造体を形成するデバイス加工装置であって、
前記イオンビームを照射するイオンビーム照射系と、
前記イオンビーム照射系から照射されたイオンビームの照射位置を制御する制御装置と、
を有し、
前記制御装置は、前記構造体を前記イオンビームの照射によって形成する工程において、形状の異なる複数の成型されたイオンビームを組み合わせて照射することにより前記構造体を形成するように制御する、デバイス加工装置。
(2)前記(1)に記載のデバイス加工装置において、
前記形状の異なる複数の成型されたイオンビームのうちの一種は、その他の成型されたイオンビームよりも形状が小さい、デバイス加工装置。
(3)前記(1)に記載のデバイス加工装置において、
前記形状の異なる複数の成型されたイオンビームのうちの一種は、断面が円形である、デバイス加工装置。
(4)前記(1)に記載のデバイス加工装置において、
前記制御装置は、前記形状の異なる複数の成型されたイオンビームのうちの一種の成型されたイオンビームにより形成された構造体の端部において、前記構造体に含まれる部分に、それ以外の成型されたイオンビームを照射することにより前記端部の形状を急峻化するように制御する、デバイス加工装置。
(5)前記(1)に記載のデバイス加工装置において、
前記制御装置は、前記構造体を前記イオンビームの照射によって形成する工程において、膜形成の同一種のガスを吹き付けながら、前記形状の異なる複数の成型されたイオンビームを組み合わせて照射することにより前記構造体を形成するように制御する、デバイス加工装置。
(6)イオンビームを用いて構造体を形成するデバイス加工方法であって、
前記構造体を前記イオンビームの照射位置を変えながら形成する工程を有し、
前記構造体は、第1構造体と、前記第1構造体に部分的に接触する第2構造体と、前記第2構造体に部分的に接触し、前記第1構造体と離間されている第3構造体と、を有し、
前記構造体を形成する工程では、前記第3構造体の一部に選択的に前記イオンビームを照射すること、ないしは、前記第3構造体の前記第2構造体との接触部分に選択的に前記イオンビームを照射すること、のいずれか一方あるいは両方によって、前記第3構造体の形状を変形させる、デバイス加工方法。
(7)イオンビームを用いて構造体を形成するデバイス加工装置であって、
前記イオンビームを照射するイオンビーム照射系と、
前記イオンビーム照射系から照射されたイオンビームの照射位置を制御する制御装置と、
を有し、
前記構造体は、第1構造体と、前記第1構造体に部分的に接触する第2構造体と、前記第2構造体に部分的に接触し、前記第1構造体と離間されている第3構造体と、を有し、
前記制御装置は、前記構造体を前記イオンビームの照射位置を変えながら形成する工程において、前記第3構造体の一部に選択的に前記イオンビームを照射すること、ないしは、前記第3構造体の前記第2構造体との接触部分に選択的に前記イオンビームを照射すること、のいずれか一方あるいは両方によって、前記第3構造体の形状を変形させるように制御する、デバイス加工装置。
(8)イオンビームを用いて構造体を形成するデバイス加工方法であって、
前記構造体を前記イオンビームの照射位置を変えながら形成する工程を有し、
前記構造体は、機能発現に必要な第1部分と、前記第1部分に接触して機能発現と関係しない第2部分と、を有し、
前記構造体を形成する工程では、前記第2部分の一部に前記イオンビームを照射してその一部を除去し、前記第1部分の内部応力を変化させる、デバイス加工方法。
(9)前記(8)に記載のデバイス加工方法において、
前記第2部分の一部に前記イオンビームを照射してその一部を除去した部分、前記除去した部分の一部、前記除去した部分の全て、ないしは、前記除去した部分の全てとその近傍する部分、のいずれかに対して前記イオンビームと異なるイオンビームを照射して物質を堆積し、前記第1部分の内部応力を変化させる、デバイス加工方法。
(10)イオンビームを用いて構造体を形成するデバイス加工装置であって、
前記イオンビームを照射するイオンビーム照射系と、
前記イオンビーム照射系から照射されたイオンビームの照射位置を制御する制御装置と、
を有し、
前記構造体は、機能発現に必要な第1部分と、前記第1部分に接触して機能発現と関係しない第2部分と、を有し、
前記制御装置は、前記構造体を前記イオンビームの照射位置を変えながら形成する工程において、前記第2部分の一部に前記イオンビームを照射してその一部を除去し、前記第1部分の内部応力を変化させるように制御する、デバイス加工装置。
(11)前記(10)に記載のデバイス加工装置において、
前記制御装置は、前記第2部分の一部に前記イオンビームを照射してその一部を除去した部分、前記除去した部分の一部、前記除去した部分の全て、ないしは、前記除去した部分の全てとその近傍する部分、のいずれかに対して前記イオンビームと異なるイオンビームを照射して物質を堆積し、前記第1部分の内部応力を変化させるように制御する、デバイス加工装置。
本発明は、請求の範囲に記載の特徴に加えて、以下の特徴を有する。
(1)イオンビームを用いて構造体を形成するデバイス加工装置であって、
前記イオンビームを照射するイオンビーム照射系と、
前記イオンビーム照射系から照射されたイオンビームの照射位置を制御する制御装置と、
を有し、
前記制御装置は、前記構造体を前記イオンビームの照射によって形成する工程において、形状の異なる複数の成型されたイオンビームを組み合わせて照射することにより前記構造体を形成するように制御する、デバイス加工装置。
(2)前記(1)に記載のデバイス加工装置において、
前記形状の異なる複数の成型されたイオンビームのうちの一種は、その他の成型されたイオンビームよりも形状が小さい、デバイス加工装置。
(3)前記(1)に記載のデバイス加工装置において、
前記形状の異なる複数の成型されたイオンビームのうちの一種は、断面が円形である、デバイス加工装置。
(4)前記(1)に記載のデバイス加工装置において、
前記制御装置は、前記形状の異なる複数の成型されたイオンビームのうちの一種の成型されたイオンビームにより形成された構造体の端部において、前記構造体に含まれる部分に、それ以外の成型されたイオンビームを照射することにより前記端部の形状を急峻化するように制御する、デバイス加工装置。
(5)前記(1)に記載のデバイス加工装置において、
前記制御装置は、前記構造体を前記イオンビームの照射によって形成する工程において、膜形成の同一種のガスを吹き付けながら、前記形状の異なる複数の成型されたイオンビームを組み合わせて照射することにより前記構造体を形成するように制御する、デバイス加工装置。
(6)イオンビームを用いて構造体を形成するデバイス加工方法であって、
前記構造体を前記イオンビームの照射位置を変えながら形成する工程を有し、
前記構造体は、第1構造体と、前記第1構造体に部分的に接触する第2構造体と、前記第2構造体に部分的に接触し、前記第1構造体と離間されている第3構造体と、を有し、
前記構造体を形成する工程では、前記第3構造体の一部に選択的に前記イオンビームを照射すること、ないしは、前記第3構造体の前記第2構造体との接触部分に選択的に前記イオンビームを照射すること、のいずれか一方あるいは両方によって、前記第3構造体の形状を変形させる、デバイス加工方法。
(7)イオンビームを用いて構造体を形成するデバイス加工装置であって、
前記イオンビームを照射するイオンビーム照射系と、
前記イオンビーム照射系から照射されたイオンビームの照射位置を制御する制御装置と、
を有し、
前記構造体は、第1構造体と、前記第1構造体に部分的に接触する第2構造体と、前記第2構造体に部分的に接触し、前記第1構造体と離間されている第3構造体と、を有し、
前記制御装置は、前記構造体を前記イオンビームの照射位置を変えながら形成する工程において、前記第3構造体の一部に選択的に前記イオンビームを照射すること、ないしは、前記第3構造体の前記第2構造体との接触部分に選択的に前記イオンビームを照射すること、のいずれか一方あるいは両方によって、前記第3構造体の形状を変形させるように制御する、デバイス加工装置。
(8)イオンビームを用いて構造体を形成するデバイス加工方法であって、
前記構造体を前記イオンビームの照射位置を変えながら形成する工程を有し、
前記構造体は、機能発現に必要な第1部分と、前記第1部分に接触して機能発現と関係しない第2部分と、を有し、
前記構造体を形成する工程では、前記第2部分の一部に前記イオンビームを照射してその一部を除去し、前記第1部分の内部応力を変化させる、デバイス加工方法。
(9)前記(8)に記載のデバイス加工方法において、
前記第2部分の一部に前記イオンビームを照射してその一部を除去した部分、前記除去した部分の一部、前記除去した部分の全て、ないしは、前記除去した部分の全てとその近傍する部分、のいずれかに対して前記イオンビームと異なるイオンビームを照射して物質を堆積し、前記第1部分の内部応力を変化させる、デバイス加工方法。
(10)イオンビームを用いて構造体を形成するデバイス加工装置であって、
前記イオンビームを照射するイオンビーム照射系と、
前記イオンビーム照射系から照射されたイオンビームの照射位置を制御する制御装置と、
を有し、
前記構造体は、機能発現に必要な第1部分と、前記第1部分に接触して機能発現と関係しない第2部分と、を有し、
前記制御装置は、前記構造体を前記イオンビームの照射位置を変えながら形成する工程において、前記第2部分の一部に前記イオンビームを照射してその一部を除去し、前記第1部分の内部応力を変化させるように制御する、デバイス加工装置。
(11)前記(10)に記載のデバイス加工装置において、
前記制御装置は、前記第2部分の一部に前記イオンビームを照射してその一部を除去した部分、前記除去した部分の一部、前記除去した部分の全て、ないしは、前記除去した部分の全てとその近傍する部分、のいずれかに対して前記イオンビームと異なるイオンビームを照射して物質を堆積し、前記第1部分の内部応力を変化させるように制御する、デバイス加工装置。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
例えば、前記実施の形態においては、デバイスの一例として、MEMS構造体(MEMS素子)を説明したが、他の微細構造体などにも適用することができる。また、MEMS構造体の一例として、MEMSセンサを説明したが、他のセンサなどにも適用することができる。
なお、本発明は上記した実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加、削除、置換をすることが可能である。
1 真空容器
2 イオン源
7 イオンビーム
8 FIB鏡筒
9 電子銃
10 電子ビーム
14 二次粒子検出器
16 プローブ
17 ガス源
21 試料ステージ制御装置
22 マニュピレータ制御装置
23 ガス源制御装置
24 二次粒子検出器制御装置
25 アパーチャ回転制御機構
26 イオン源制御装置
27 レンズ制御装置
31 計算処理装置
32 データベース
32a スキャンデータ
32b CADデータ
32c 加工条件データ
33 モード選択画面
35 スキャンシーケンス作成部
37 ビーム制御部
41 基板
42、51、53、54 膜
52 端部のだれ
61 Siウェハ
62 SiO2膜
63 下地配線層
64、65 絶縁層
66 ビア
71 支持層
72 支持材
73 犠牲層
74 可動層
81 くさび状凹部
82 応力印加材料
2 イオン源
7 イオンビーム
8 FIB鏡筒
9 電子銃
10 電子ビーム
14 二次粒子検出器
16 プローブ
17 ガス源
21 試料ステージ制御装置
22 マニュピレータ制御装置
23 ガス源制御装置
24 二次粒子検出器制御装置
25 アパーチャ回転制御機構
26 イオン源制御装置
27 レンズ制御装置
31 計算処理装置
32 データベース
32a スキャンデータ
32b CADデータ
32c 加工条件データ
33 モード選択画面
35 スキャンシーケンス作成部
37 ビーム制御部
41 基板
42、51、53、54 膜
52 端部のだれ
61 Siウェハ
62 SiO2膜
63 下地配線層
64、65 絶縁層
66 ビア
71 支持層
72 支持材
73 犠牲層
74 可動層
81 くさび状凹部
82 応力印加材料
Claims (15)
- イオンビームを用いて構造体を形成するデバイス加工方法であって、
前記構造体を前記イオンビームの照射位置を変えながら形成する工程を有し、
前記構造体を形成する工程では、前記構造体の各領域を、同一種の前記イオンビームを用いて複数の照射によって形成する、デバイス加工方法。 - 請求項1に記載のデバイス加工方法において、
前記複数の照射は、前記同一種のイオンビームの照射方向を異なる複数の方向とすることによって行う、デバイス加工方法。 - 請求項2に記載のデバイス加工方法において、
前記複数の方向は、第1の方向と第2の方向とを含み、
前記第1の方向と第2の方向とは、直交している、デバイス加工方法。 - 請求項1に記載のデバイス加工方法において、
前記構造体を形成する工程では、前記構造体の各領域を、膜形成の同一種のガスを吹き付けながら、前記同一種のイオンビームを用いて複数の照射によって形成する、デバイス加工方法。 - 請求項1に記載のデバイス加工方法において、
前記構造体は、MEMSを構成する構造体である、デバイス加工方法。 - イオンビームを用いて構造体を形成するデバイス加工装置であって、
前記イオンビームを照射するイオンビーム照射系と、
前記イオンビーム照射系から照射されたイオンビームの照射位置を制御する制御装置と、
を有し、
前記制御装置は、前記構造体を前記イオンビームの照射位置を変えながら形成する工程において、前記構造体の各領域を、同一種の前記イオンビームを用いて複数の照射によって形成するように制御する、デバイス加工装置。 - 請求項6に記載のデバイス加工装置において、
前記複数の照射は、前記同一種のイオンビームの照射方向を異なる複数の方向とすることによって行う、デバイス加工装置。 - 請求項7に記載のデバイス加工装置において、
前記複数の方向は、第1の方向と第2の方向とを含み、
前記第1の方向と第2の方向とは、直交している、デバイス加工装置。 - 請求項6に記載のデバイス加工装置において、
前記制御装置は、前記構造体を前記イオンビームの照射位置を変えながら形成する工程において、前記構造体の各領域を、膜形成の同一種のガスを吹き付けながら、前記同一種のイオンビームを用いて複数の照射によって形成するように制御する、デバイス加工装置。 - 請求項6に記載のデバイス加工装置において、
前記構造体は、MEMSを構成する構造体である、デバイス加工装置。 - イオンビームを用いて構造体を形成するデバイス加工方法であって、
前記構造体を前記イオンビームの照射によって形成する工程を有し、
前記構造体を形成する工程では、形状の異なる複数の成型されたイオンビームを組み合わせて照射することにより前記構造体を形成する、デバイス加工方法。 - 請求項11に記載のデバイス加工方法において、
前記形状の異なる複数の成型されたイオンビームのうちの一種は、その他の成型されたイオンビームよりも形状が小さい、デバイス加工方法。 - 請求項11に記載のデバイス加工方法において、
前記形状の異なる複数の成型されたイオンビームのうちの一種は、断面が円形である、デバイス加工方法。 - 請求項11に記載のデバイス加工方法において、
前記形状の異なる複数の成型されたイオンビームのうちの一種の成型されたイオンビームにより形成された構造体の端部において、前記構造体に含まれる部分に、それ以外の成型されたイオンビームを照射することにより前記端部の形状を急峻化する、デバイス加工方法。 - 請求項11に記載のデバイス加工方法において、
前記構造体を形成する工程では、膜形成の同一種のガスを吹き付けながら、前記形状の異なる複数の成型されたイオンビームを組み合わせて照射することにより前記構造体を形成する、デバイス加工方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/062472 WO2017183126A1 (ja) | 2016-04-20 | 2016-04-20 | デバイス加工方法およびデバイス加工装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/062472 WO2017183126A1 (ja) | 2016-04-20 | 2016-04-20 | デバイス加工方法およびデバイス加工装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017183126A1 true WO2017183126A1 (ja) | 2017-10-26 |
Family
ID=60116637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/062472 WO2017183126A1 (ja) | 2016-04-20 | 2016-04-20 | デバイス加工方法およびデバイス加工装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017183126A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002033070A (ja) * | 2000-07-18 | 2002-01-31 | Hitachi Ltd | イオンビーム装置及び試料加工方法 |
JP2004510295A (ja) * | 2000-09-20 | 2004-04-02 | エフ・イ−・アイ・カンパニー | 荷電粒子ビームシステムにおける同時の映像化と照射のためのリアルタイムモニタリング |
WO2009020151A1 (ja) * | 2007-08-08 | 2009-02-12 | Sii Nanotechnology Inc. | 複合集束イオンビーム装置及びそれを用いた加工観察方法、加工方法 |
JP2010177121A (ja) * | 2009-01-30 | 2010-08-12 | Hitachi High-Technologies Corp | イオンビーム加工装置及び試料加工方法 |
JP2014022601A (ja) * | 2012-07-19 | 2014-02-03 | Fujitsu Semiconductor Ltd | 配線加工方法 |
JP2014044829A (ja) * | 2012-08-24 | 2014-03-13 | Univ Of Tokyo | 微小構造物の製造装置、及び製造方法 |
-
2016
- 2016-04-20 WO PCT/JP2016/062472 patent/WO2017183126A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002033070A (ja) * | 2000-07-18 | 2002-01-31 | Hitachi Ltd | イオンビーム装置及び試料加工方法 |
JP2004510295A (ja) * | 2000-09-20 | 2004-04-02 | エフ・イ−・アイ・カンパニー | 荷電粒子ビームシステムにおける同時の映像化と照射のためのリアルタイムモニタリング |
WO2009020151A1 (ja) * | 2007-08-08 | 2009-02-12 | Sii Nanotechnology Inc. | 複合集束イオンビーム装置及びそれを用いた加工観察方法、加工方法 |
JP2010177121A (ja) * | 2009-01-30 | 2010-08-12 | Hitachi High-Technologies Corp | イオンビーム加工装置及び試料加工方法 |
JP2014022601A (ja) * | 2012-07-19 | 2014-02-03 | Fujitsu Semiconductor Ltd | 配線加工方法 |
JP2014044829A (ja) * | 2012-08-24 | 2014-03-13 | Univ Of Tokyo | 微小構造物の製造装置、及び製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5033314B2 (ja) | イオンビーム加工装置及び加工方法 | |
WO2005003736A1 (ja) | 薄片試料作製方法および複合荷電粒子ビーム装置 | |
JP2008004597A (ja) | 荷電粒子線描画方法、露光装置、及びデバイス製造方法 | |
KR101187957B1 (ko) | 하전 입자선 장치 | |
US8278623B2 (en) | High-vacuum variable aperture mechanism and method of using same | |
JP6207081B2 (ja) | 集束イオンビーム装置 | |
JP2014168031A (ja) | リソグラフィ装置、リソグラフィ方法及び物品製造方法 | |
CN108573844B (zh) | 聚焦离子束装置的控制方法以及记录介质 | |
JP2007320017A (ja) | 原子間力顕微鏡微細加工装置を用いた加工方法 | |
JP6971090B2 (ja) | 荷電粒子線装置 | |
JP5662763B2 (ja) | ステージ装置およびこれを用いた電子ビーム描画装置 | |
WO2017183126A1 (ja) | デバイス加工方法およびデバイス加工装置 | |
CN113169084B (zh) | 用于在基板上进行关键尺寸测量的方法、及用于检测及切割基板上的电子装置的设备 | |
CN110018618B (zh) | 孔径校准方法及多带电粒子束描绘装置 | |
JP4845452B2 (ja) | 試料観察方法、及び荷電粒子線装置 | |
TW202221752A (zh) | 使用帶電粒子束裝置對樣品成像的方法、校準帶電粒子束裝置的方法及帶電粒子束裝置 | |
JP2009182269A (ja) | 荷電ビーム露光装置及び露光方法 | |
JP5792767B2 (ja) | イオンビーム加工装置及び加工方法 | |
JP6722130B2 (ja) | 集束イオンビーム装置の制御方法 | |
JP2010078332A (ja) | 顕微鏡用試料、その作製方法及び顕微鏡観察方法 | |
JP6662654B2 (ja) | 画像取得方法及び電子ビーム検査・測長装置 | |
JP5286094B2 (ja) | 荷電粒子線装置 | |
JP6772088B2 (ja) | 微細構造体の製造方法およびイオンビーム装置 | |
US20220254667A1 (en) | High resolution electron beam apparatus with dual-aperture schemes | |
JP6814109B2 (ja) | 微細構造体の加工方法、および微細構造体の加工装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16899399 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16899399 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |