WO2017181673A1 - 一种薄膜电感和电源转换电路 - Google Patents
一种薄膜电感和电源转换电路 Download PDFInfo
- Publication number
- WO2017181673A1 WO2017181673A1 PCT/CN2016/106889 CN2016106889W WO2017181673A1 WO 2017181673 A1 WO2017181673 A1 WO 2017181673A1 CN 2016106889 W CN2016106889 W CN 2016106889W WO 2017181673 A1 WO2017181673 A1 WO 2017181673A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic
- type
- winding
- thin film
- columns
- Prior art date
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 317
- 238000006243 chemical reaction Methods 0.000 title claims description 22
- 230000005291 magnetic effect Effects 0.000 claims abstract description 1145
- 238000004804 winding Methods 0.000 claims abstract description 430
- 230000005415 magnetization Effects 0.000 claims abstract description 59
- 239000010408 film Substances 0.000 claims description 191
- 230000001939 inductive effect Effects 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 13
- 230000004907 flux Effects 0.000 description 96
- 239000010410 layer Substances 0.000 description 96
- 230000035699 permeability Effects 0.000 description 31
- 230000008878 coupling Effects 0.000 description 22
- 238000010168 coupling process Methods 0.000 description 22
- 238000005859 coupling reaction Methods 0.000 description 22
- 238000009826 distribution Methods 0.000 description 19
- 238000000034 method Methods 0.000 description 19
- 238000004519 manufacturing process Methods 0.000 description 17
- 238000004088 simulation Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 229920006395 saturated elastomer Polymers 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- 239000010703 silicon Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 238000012545 processing Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000002161 passivation Methods 0.000 description 4
- 230000003014 reinforcing effect Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- WWHARXDHOUYXAD-UHFFFAOYSA-N [Si].[Cu].[Cu] Chemical compound [Si].[Cu].[Cu] WWHARXDHOUYXAD-UHFFFAOYSA-N 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/0006—Printed inductances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/25—Magnetic cores made from strips or ribbons
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/04—Fixed inductances of the signal type with magnetic core
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/04—Fixed inductances of the signal type with magnetic core
- H01F17/045—Fixed inductances of the signal type with magnetic core with core of cylindric geometry and coil wound along its longitudinal axis, i.e. rod or drum core
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/245—Magnetic cores made from sheets, e.g. grain-oriented
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2804—Printed windings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/30—Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/30—Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
- H01F27/306—Fastening or mounting coils or windings on core, casing or other support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
- H01F27/38—Auxiliary core members; Auxiliary coils or windings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/10—Composite arrangements of magnetic circuits
- H01F3/14—Constrictions; Gaps, e.g. air-gaps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0206—Manufacturing of magnetic cores by mechanical means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/0006—Printed inductances
- H01F2017/0066—Printed inductances with a magnetic layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2804—Printed windings
- H01F2027/2809—Printed windings on stacked layers
Definitions
- This application relates to the field of circuits and, more particularly, to a thin film inductor and power conversion circuit.
- the power conversion system of the chip power supply is moving toward miniaturization.
- the main device inductance in the power conversion system is large and difficult to integrate into the processor.
- a high frequency silicon-copper-copper (Copper Magnetic Copper) magnetic film inductor is known, and the thin film magnetic core is formed by laminating a plurality of magnetic thin films, and the shape can be a closed lip shape. .
- the magnetic film has different magnetic properties in different directions and has a very large difference. If the inductance is designed in a direction in which the magnetic flux is difficult to flow, in the formed magnetic core structure, the magnetic permeability is large along the direction in which the magnetic flux is easily circulated, and the magnetic core is easily saturated. Core saturation results in zero magnetic permeability, causing a sharp drop in inductance, resulting in a surge in current and even burning the device in severe cases.
- the current during normal operation includes a direct current and an alternating current
- the generated direct current flux and the alternating magnetic flux circulate in the closed iron core, causing an increase in the alternating magnetic flux in a direction in which the magnetic flux is difficult to flow, which also causes magnetic The core is easy to saturate.
- the present application proposes a thin film inductor and a power conversion circuit to solve the problem that the core of the magnetic thin film material is easily saturated.
- the present application provides a thin film inductor including: a thin film magnetic core including a plurality of magnetic columns, a first end, and a second end opposite the first end
- the plurality of magnetic columns are separated from each other, and the plurality of magnetic columns are rod-shaped, and one end of each of the plurality of magnetic columns is in contact with the first end, and One end is in contact with the second end;
- the plurality of magnetic columns includes two or more winding magnetic columns and one non-winding magnetic column, the non-winding magnetic columns are located on one side of the two or more winding magnetic columns;
- the plurality of magnetic columns includes two or more winding magnetic columns and two non-winding magnetic columns, wherein the two or more winding magnetic columns are located between the two non-winding magnetic columns;
- the thin film magnetic core includes at least a magnetic film, wherein at least one of the first type of gaps is located in a region of each of the magnetic films between the first end and the second end and between adjacent two winding magnetic columns Wherein the length direction of the
- the winding magnetic column refers to a magnetic column in which a winding is wound
- the non-winding magnetic column refers to a magnetic column in which the winding is not wound.
- the magnetic permeability in the easy magnetization direction is lowered, and the magnetic core is less likely to reach saturation.
- a non-winding magnetic column is connected in parallel on the winding magnetic column, and a part of the magnetic flux in the winding magnetic column in the direction of the hard magnetization axis is introduced into the non-winding magnetic column, thereby reducing the risk of magnetic core saturation in the winding magnetic column.
- the width w 1 of the first type of gap is less than or equal to 10 microns.
- first end and the second end are parallel to each other.
- the plurality of magnetic columns are parallel to each other.
- each magnetic post is perpendicular to the first end of the thin film magnetic core.
- the spacing between every two adjacent magnetic columns is the same.
- the thin film inductor further includes windings of the same number as the two or more winding magnetic columns, each winding being wound on one winding magnetic column, and all windings are wound in the same direction.
- each of the magnetic thin films is made of the same material.
- the two or more magnetic thin films include a first magnetic thin film and a first a two-layer magnetic film, the number and the first type of gaps in the first layer of magnetic film The number of the first type of gaps in the second magnetic film is the same, and the first type of gap in the first layer of magnetic film corresponds to the position in the second layer of magnetic film The first type of gaps coincide.
- each of the two or more magnetic thin films includes The number of the first type of gaps is the same, and the first type of gaps corresponding to the positions of any two of the two or more magnetic films are coincident with each other.
- the one non-winding magnetic column Providing at least one second type of gap; in the case where the plurality of magnetic columns include two non-winding magnetic columns, at least one second type of gap is disposed in the two non-winding magnetic columns; wherein The width w 2 of the second type of gap is less than or equal to 1 mm.
- the magnetic resistance of the non-winding magnetic column is increased, the magnetic permeability is reduced, and the magnetic core saturation in the non-winding magnetic column is avoided.
- the size of the second type of gap the magnitude of the reluctance can be controlled, and then the distribution of the magnetic flux in each magnetic column (including the winding magnetic column and the non-winding magnetic column) can be adjusted to control the winding magnetic columns (ie, the phases). Coupling coefficient between inductors).
- the width w 2 of the second type of gap satisfies 10 micrometers ⁇ w 2 ⁇ 50 micrometers.
- the two or more magnetic thin films include the first a magnetic film and a second magnetic film, wherein the number of the second type of gaps in the first magnetic film is the same as the number of the second type of gaps in the second magnetic film, and The second type of gap in the first magnetic film overlaps the second type of gap corresponding to the inner position of the second magnetic film.
- the thin film magnetic core includes two or more magnetic thin films
- each of the two or more magnetic thin films The number of the second type of gaps contained in one layer of the magnetic film is the same, and The second type of gaps corresponding to the positions of any two of the two or more magnetic films are coincident with each other.
- the present application provides a thin film inductor including a thin film magnetic core including a plurality of magnetic columns, a first end, and a second end opposite the first end
- the plurality of magnetic columns are separated from each other, and the plurality of magnetic columns are rod-shaped, and one end of each of the plurality of magnetic columns is in contact with the first end, and the other end Contacting the second end;
- the plurality of magnetic columns include two winding magnetic columns and one or more non-winding magnetic columns, the one or more non-winding magnetic columns being located between the two winding magnetic columns;
- the thin film magnetic core includes at least one magnetic film, and each of the magnetic thin films is located at an area between the first end portion and the second end portion and located between adjacent winding magnetic columns and non-winding magnetic columns.
- the third type of gaps There is at least one of the third type of gaps, wherein a length direction of the third type of gap is parallel to a hard magnetization direction of the magnetic film, and the third type of gap runs through a length of the third type of gap
- the magnetic film is located at an area of the first end or the second end, 3, three types of gap width w is less than or equal to 100 micrometers; in the case of the thin film magnetic core comprising a magnetic thin film of two or more layers, said two or more magnetic films are laminated to overlap each other, and each layer of the magnetic film The sum of the widths of all of the third type of gaps is equal.
- the magnetic permeability in the easy magnetization direction is lowered, and the magnetic core is less likely to reach saturation.
- a non-winding magnetic column is connected in parallel on the winding magnetic column, and a part of the magnetic flux in the winding magnetic column in the direction of the hard magnetization is led to the non-winding magnetic column, thereby reducing the risk of core saturation in the winding magnetic column.
- two or more of the layers of each of the magnetic thin films are located at the first end or the second end and are located between adjacent winding magnetic columns and non-winding magnetic columns.
- Three types of gaps are located at the first end or the second end and are located between adjacent winding magnetic columns and non-winding magnetic columns.
- the width w 3 of the third type of gap is less than or equal to 10 microns.
- first end and the second end are parallel to each other.
- the plurality of magnetic columns are parallel to each other.
- each magnetic post is perpendicular to the first end of the thin film magnetic core.
- the spacing between every two adjacent magnetic columns is the same.
- the thin film inductor further includes the same number of windings as the at least two winding magnetic columns Group, each winding is wound on a winding magnetic column, and all windings are wound in the same direction.
- each of the magnetic thin films is made of the same material.
- the two or more magnetic thin films include a first magnetic thin film and a first a two-layer magnetic film
- the number of the third type of gaps in the first layer of magnetic film is the same as the number of the third type of gaps in the second layer of magnetic film
- the first layer of magnetic film The third type of gap therein coincides with the third type of gap corresponding to the position within the second layer of magnetic film.
- each of the two or more magnetic thin films comprises The number of the third type of gaps is the same, and the third type of gaps corresponding to the positions of any two of the two or more magnetic films are coincident with each other.
- the one non-winding magnetic column Providing at least one fourth type of gap; in the case where the plurality of magnetic columns include two non-winding magnetic columns, at least one fourth type of gap is disposed in the two non-winding magnetic columns; wherein The width w 4 of the four types of gaps is less than or equal to 1 mm.
- the magnetic resistance of the non-winding magnetic column is increased, the magnetic permeability is reduced, and the magnetic core saturation in the non-winding magnetic column is avoided.
- the size of the fourth type of gap the magnitude of the reluctance can be controlled, and then the distribution of the magnetic flux in each magnetic column (including the winding magnetic column and the non-winding magnetic column) can be adjusted to control the winding magnetic columns (ie, the phases). Coupling coefficient between inductors).
- the width w 4 of the fourth type of gap satisfies 10 micrometers ⁇ w 4 ⁇ 50 micrometers.
- the two or more magnetic thin films include the first a magnetic film and a second magnetic film, said first magnetic film
- the number of the fourth type of gap is the same as the number of the fourth type of gaps in the second magnetic film, and the fourth type of gap and the second layer of magneticity in the first layer of magnetic film The fourth type of gap corresponding to the position within the film coincides.
- the thin film magnetic core includes two or more magnetic thin films
- each of the two or more magnetic thin films The number of the fourth type of gaps included in one layer of the magnetic film is the same, and the fourth type of gaps corresponding to the positions of any two of the two or more magnetic films are coincident with each other.
- the present application provides a thin film inductor including a thin film magnetic core including a plurality of magnetic columns, a first end, and a second end opposite to the first end
- the plurality of magnetic columns are separated from each other, and the plurality of magnetic columns are rod-shaped, and one end of each of the plurality of magnetic columns is in contact with the first end, and the other end In contact with the second end, the plurality of magnetic columns include two or more winding magnetic columns and one or more non-winding magnetic columns;
- the thin film magnetic core includes at least one magnetic film, each of which is located in the magnetic film The first end portion and the second end portion are located between the adjacent two winding magnetic columns, and at least one first type of gap is disposed, wherein the length direction of the first type of gap is The hard magnetization direction of the magnetic film is parallel, and the first type of gap penetrates the first end or the second end of the magnetic film along the length direction of the first type of gap, and the width of the first type of gap w 1 is less than or equal to 100 micro
- the third type of gap is set so that the magnetic permeability in the direction of easy magnetization is lowered, and the magnetic core is not easily saturated. And paralleling the non-winding magnetic column on the winding magnetic column, and introducing part of the magnetic flux in the winding magnetic column of the hard magnetization direction to the non-winding magnetic field In the column, thereby reducing the risk of core saturation in the windings.
- the width w 1 of the first type of gap is less than or equal to 10 microns, or the width w 3 of the third type of gap is less than or equal to 10 microns.
- the two or more magnetic thin films include a first magnetic thin film and a first a two-layer magnetic film
- the number of the first type of gaps in the first layer of magnetic film is the same as the number of the first type of gaps in the second layer of magnetic film
- the first layer of magnetic film The first type of gap within the first type of gap corresponding to the inner position of the second layer of magnetic film coincides.
- each of the two or more magnetic thin films comprises The number of the first type of gaps is the same, and the first type of gaps corresponding to the positions of any two of the two or more magnetic films are coincident with each other.
- the one non-winding magnetic column is Providing at least one second type of gap; in the case where the plurality of magnetic columns include two non-winding magnetic columns, at least one second type of gap is disposed in the two non-winding magnetic columns; wherein The width w 2 of the second type of gap is less than or equal to 1 mm.
- the magnetic resistance of the non-winding magnetic column is increased, the magnetic permeability is reduced, and the magnetic core saturation in the non-winding magnetic column is avoided.
- the size of the second type of gap the magnitude of the reluctance can be controlled, and then the distribution of the magnetic flux in each magnetic column (including the winding magnetic column and the non-winding magnetic column) can be adjusted to control the winding magnetic columns (ie, the phases). Coupling coefficient between inductors).
- the width w 2 of the second type of gap satisfies 10 micrometers ⁇ w 2 ⁇ 50 micrometers.
- a fourth possible implementation in the third aspect in a case where the film magnetic body includes two or more magnetic films, the two or more magnetic films include a first magnetic film and a second magnetic film, and the second magnetic film is in the second The number of gaps is the same as the number of the second type of gaps in the second magnetic film, and the second type of gaps in the first layer of magnetic film and the second layer of magnetic film The second type of gap corresponding to the position coincides.
- each of the two or more magnetic thin films in a case where the magnetic property of the thin film includes two or more magnetic thin films, each of the two or more magnetic thin films
- the number of the second type of gaps included in the layer magnetic film is the same, and the second type of gaps corresponding to the positions of any two of the two or more magnetic films are coincident with each other.
- the two or more magnetic thin films include a first magnetic thin film and a first a two-layer magnetic film
- the number of the third type of gaps in the first layer of magnetic film is the same as the number of the third type of gaps in the second layer of magnetic film
- the first layer of magnetic film The third type of gap therein coincides with the third type of gap corresponding to the inner position of the second layer of magnetic film.
- each of the two or more magnetic thin films comprises The number of the third type of gaps is the same, and the third type of gaps corresponding to the positions of any two of the two or more magnetic films are coincident with each other.
- the one non-winding magnetic column Providing at least one fourth type of gap; in the case where the plurality of magnetic columns include two non-winding magnetic columns, at least one fourth type of gap is disposed in the two non-winding magnetic columns; wherein The width w 4 of the four types of gaps is less than or equal to 1 mm.
- the magnetic resistance of the non-winding magnetic column is increased, the magnetic permeability is reduced, and the magnetic core saturation in the non-winding magnetic column is avoided.
- the magnitude of the reluctance can be controlled to adjust the distribution of the magnetic flux in each of the magnetic columns (including the winding magnetic column and the non-winding magnetic column) to control the coupling coefficient between the winding magnetic columns (ie, the inductance of each phase).
- the width w 4 of the fourth type of gap satisfies 10 micrometers ⁇ w 4 ⁇ 50 micrometers.
- the two or more magnetic thin films include the first a magnetic film and a second magnetic film, wherein the number of the fourth type of gaps in the first magnetic film is the same as the number of the fourth type of gaps in the second magnetic film, and The fourth type of gap in the first magnetic film overlaps the fourth type of gap corresponding to the inner position of the second magnetic film.
- the thin film magnetic core includes two or more magnetic thin films
- each of the two or more magnetic thin films The number of the fourth type of gaps included in one layer of the magnetic film is the same, and the fourth type of gaps corresponding to the positions of any two of the two or more magnetic films are coincident with each other.
- the film material is a high frequency silicon-based copper-magnet-copper CMC magnetic film inductor.
- the present application provides a power conversion circuit including: a DC power supply, at least one switching unit, and at least one inductive unit, wherein the at least one switching unit is in one-to-one correspondence with the at least one inductive unit,
- Each of the inductive units is connected to the DC power source through a corresponding switching unit, wherein each of the at least one inductive unit comprises any of the possible implementations of any one of the first to third aspects Thin film inductance.
- the present application provides a method for fabricating a thin film inductor, the method comprising: forming two or more lower layer windings; forming a thin film magnetic core, the thin film magnetic core including a plurality of magnetic columns, a first end portion, and The second end portion of the first end portion is separated from each other by the plurality of magnetic columns, and the plurality of magnetic columns are rod-shaped, and one end of each of the plurality of magnetic columns Contacting the first end and contacting the other end with the second end, the plurality of magnetic columns comprising more than two winding magnetic columns and one or more non-winding magnetic columns; the thin film magnetic core including at least a magnetic film, wherein at least one first type of gap is provided in a region of each of the magnetic films at the first end and the second end and between adjacent two winding magnetic columns, wherein a length direction of the first type of gap is parallel to a hard magnetization direction of the magnetic film, and the first type of gap penetrates the first end of the magnetic film or along a length
- the length direction of the third type of gap is parallel to the hard magnetization direction of the magnetic film, and the third type of gap penetrates the first end of the magnetic film along the length direction of the third type of gap or a second end portion, the width w 3 of the third type of gap is less than or equal to 100 micrometers; in the case where the thin film magnetic core includes two or more magnetic thin films, the two or more magnetic thin films are laminated and overlap each other And the sum of the widths of all the first type of gaps on each of the magnetic thin films is equal; two or more upper windings are formed, and the two or more lower windings are in one-to-one correspondence with the two or more lower windings, The two or more lower windings and the two or more upper windings form two or more windings, and the two or more windings are respectively wound on the two or more winding magnetic columns, the two or more windings and the More than two windings One correspondence, and each winding of the same winding direction.
- the application provides a thin film inductor and a power conversion circuit, which can solve the problem that the magnetic core of the thin film magnetic material is easily saturated.
- FIG. 1a and 1b are schematic structural views of a thin film inductor according to an embodiment of the present application.
- FIG. 2 is a schematic structural view of a thin film inductor according to another embodiment of the present application.
- FIG. 3 is a schematic structural view of a thin film inductor according to still another embodiment of the present application.
- FIG. 4 is a schematic diagram of a power conversion system in accordance with an embodiment of the present application.
- Figure 5 is a current waveform diagram of the inductor unit during normal operation.
- Figures 6a and 6b are schematic views of the magnetic flux generated in the magnetic column during normal operation of the inductive unit.
- FIG. 7 is a schematic structural view of a thin film inductor according to still another embodiment of the present application.
- FIG. 8 is a schematic structural view of a thin film inductor according to still another embodiment of the present application.
- Figures 9a and 9b are schematic views of the magnetic flux generated in the magnetic column during normal operation of the inductive unit.
- FIG. 10 is a schematic flow chart of a method of fabricating a thin film inductor according to an embodiment of the present application.
- FIG. 11a to 11e are schematic views showing a method of fabricating a thin film inductor according to an embodiment of the present application. Figure.
- the thin film inductor of the embodiment of the present invention can be applied to a power conversion system, and can also be applied to other circuits, which is not limited in this application.
- FIG. 1a and 1b are schematic structural views of a thin film inductor 100 according to an embodiment of the present application.
- 1a is a top view of a thin film inductor 100 according to an embodiment of the present application
- FIG. 1b is a cross-sectional view of the thin film inductor 100 according to an embodiment of the present application.
- the thin film inductor 100 includes:
- the thin film magnetic core includes a plurality of magnetic columns, a first end portion 120, and a second end portion 130 opposite to the first end portion 120.
- the plurality of magnetic columns are isolated from each other.
- Each of the magnetic columns has a rod shape, and one end of each of the plurality of magnetic columns is in contact with the first end portion 120, and the other end is in contact with the second end portion 130.
- the plurality of magnetic columns includes more than two winding magnetic columns 140 and one or more non-winding magnetic columns 150.
- the plurality of magnetic columns may include two or more winding magnetic columns 140 and two non-winding magnetic columns 150, and the two or more winding magnetic columns 140 may be located between the two non-winding magnetic columns 150; or
- the post may include more than two winding magnetic columns 140 and one non-winding magnetic column 150, which may be located on one side of the two or more winding magnetic columns 140; or, the plurality of magnetic columns may include two windings The magnetic column 140 and one or more non-winding magnetic columns 150 may be located between the two winding magnetic columns 140.
- a plurality of magnetic columns include two or more winding magnetic columns and one non-winding magnetic column, or in the case where a plurality of magnetic columns include two winding magnetic columns and one or more non-winding magnetic columns, a plurality of magnetic columns Refers to more than three magnetic columns; in the case where multiple magnetic columns include more than two winding magnetic columns and two or more non-winding magnetic columns, multiple magnetic columns refer to more than four magnetic columns.
- the thin film magnetic core includes at least one magnetic film, and each of the magnetic thin films is located at a first end portion and a second end portion and is located between adjacent two winding magnetic columns.
- At least one first type of gap wherein a length direction of the first type of gap is parallel to a hard magnetization direction of the magnetic film, and the first type of gap penetrates the first end or the second end of the magnetic film along a length direction of the first type of gap a width of the first type of gap w 1 is less than or equal to 100 micrometers; or, between each of the first and second ends of each layer of the magnetic film, between adjacent winding magnetic columns and non-winding magnetic columns
- the area is provided with at least one third type of gap, wherein the length direction of the third type of gap is parallel to the hard magnetization direction of the magnetic film, and the third type of gap penetrates the first end of the magnetic film along the length direction of the third type of gap Or the second end, the width w 3 of the third type of gap is less than or equal to 100
- the thin film magnetic core includes two or more magnetic thin films
- the two or more magnetic thin films are laminated and overlap each other, and the sum of the widths of all the first type of gaps on each of the magnetic thin films is equal.
- FIGS. 1 to 9 including FIGS. 9a and 9b.
- a plurality of magnetic columns are shown comprising more than two winding magnetic columns and two non-winding magnetic columns, and two or more winding magnetic columns are located on two non-winding magnetic columns. Between the situation.
- the plurality of magnetic columns include two or more winding magnetic columns (141 and 142) and two non-winding magnetic columns (151 and 152), and the two or more winding magnetic columns (141) And 142) are located between the two non-winding magnetic columns (151 and 152).
- the thin film inductors described in the embodiments of the present application are merely illustrative and should not be construed as limiting the present application.
- the present application is not limited thereto.
- the principle of solving core saturation in the case of non-winding magnetic columns is similar.
- the magnetic film due to the processing characteristics of the film material, the magnetic film has a direction in which magnetic flux is difficult to flow (for ease of understanding and explanation, recorded as a hard magnetization direction) and a direction in which magnetic flux is easily circulated (for ease of understanding and Description, recorded as easy magnetization direction). Since the magnetic core of the magnetic film does not saturate quickly in the direction of the hard magnetization axis, when designing the inductance, the coil (or winding) can be wound in the direction of the hard magnetization axis (ie, the hard magnetization direction of the hard magnetization direction). .
- first end and the second end are parallel to each other.
- the plurality of magnetic columns are parallel to each other.
- each of the magnetic posts is perpendicular to the first end of the thin film magnetic core.
- the thin film inductor 100 shown in FIG. 1a includes two winding magnetic columns 141 and 142 and two non-winding magnetic columns 151 and 152. Winding magnets 141 and 142 are located between the two non-winding magnetic columns 151 and 152.
- the two or more winding magnetic columns 140 and one or more external magnetic columns 150 The length direction is the hard magnetization direction of the magnetic film, and the two or more winding magnetic columns 140 and one or more non-winding magnetic columns 150 are arranged along the easy magnetization direction of the magnetic film.
- the thin film magnetic core 110 includes at least one magnetic film, and the hard magnetization directions of any two of the at least one magnetic thin film are parallel to each other. As shown in FIG. 1b, the thin film magnetic core 110 is formed by alternately laminating the magnetic thin film 101 and the insulating layer 102, and the number and thickness of the stacked layers can be determined according to the requirements of the inductance. Moreover, under the condition of fixing the total magnetic film thickness, the thinner the single-layer magnetic film is, the more the number of layers is, and the smaller the eddy current loss is.
- An area of each of the magnetic films located between the first end portion 120 and the second end portion 130 between the adjacent two winding magnetic columns 141 and 142 is provided with at least one first type of gap 170, wherein The length direction of the first type of gap 170 is parallel to the hard magnetization direction of the magnetic film, and the first type of gap 170 extends through the magnetic film along the length direction of the first type of gap 170 at the first end portion 120 or the In the region of the second end portion 130, the width w 1 of the first type of gap 170 is less than or equal to 100 micrometers ( ⁇ m).
- the first type of gap is a gap at a first end or a second end and located in a region between adjacent two windings. That is, at least a first type of gap is provided in a region of each of the magnetic thin films at the first end and between the adjacent two winding magnetic columns, or each of the magnetic thin films is located at the second end and The region between the adjacent two winding magnetic columns is provided with at least one first type of gap. That is, the first end portion and the second end portion may be respectively provided with at least one first type of gap, or at least one first type of gap may be provided only at the first end portion or the second end portion. This application is not limited thereto.
- the thin film magnetic core includes two or more magnetic thin films
- the two or more magnetic thin films are laminated and overlap each other, and the sum of the widths of all the first type of gaps on each of the magnetic thin films is equal.
- the width w 1 of the first type of gap is less than or equal to 100 micrometers. That is to say, the spacing between two adjacent winding magnetic columns is greater than 100 microns in order to provide a first type of gap in the region between adjacent winding magnetic columns.
- the width w 1 of the first type of gap is less than or equal to 10 microns.
- the width w 1 of the first type of gap is less than or equal to 10 micrometers, the magnetic resistance of the magnetic thin film in the easy magnetization direction can be effectively improved, and the thin film magnetic core can be reduced to reduce the magnetic permeability and avoid the easy magnetization direction. Core saturation works best.
- the spacing between each two adjacent magnetic columns is the same.
- the thin film inductor further includes windings of the same number as the two or more winding magnetic columns, each winding being wound on one winding magnetic column, and all windings are wound in the same direction.
- each of the magnetic thin films is made of the same material.
- the film material is a high frequency silicon-based copper-magnet-copper (CMC) magnetic film inductor.
- paralleling the non-winding magnetic column on the winding magnetic column is equivalent to taking a part of the alternating magnetic flux in the winding magnetic column to the non-winding magnetic column.
- the DC flux generated by the windings on the non-winding magnets is mutually reinforcing, and the DC flux generated on the windings of the windings cancel each other out (the flux distribution of the flux in the winding and non-winding cylinders and The direction will be described in detail later, and therefore, the risk of core saturation in the winding column area can be reduced.
- the two or more magnetic thin films include a first magnetic thin film and a second magnetic thin film, and the first magnetic thin film has a first type of gap
- the number is the same as the number of the first type of gaps in the second magnetic film, and the first type of gaps in the first layer of magnetic film coincide with the first type of gaps corresponding to the positions in the second layer of magnetic film.
- each of the two or more magnetic thin films includes the same number of the first type of gaps, and the two or more layers are magnetic.
- the first type of gaps corresponding to the positions of any two layers of the magnetic film in the film are coincident with each other.
- each of the magnetic thin films can be formed by a mask. Specifically, in the magnetic film forming process, a pattern of the magnetic thin film is formed on the silicon wafer through the pattern portion of the mask. The mask requires lithographic processing with high precision. If the positions of the first type of gaps in the magnetic films of the respective layers are different, different mask plates corresponding to the first type of gap positions need to be formed by different mask plates, and the cost is very high. Therefore, the first type of gaps in the magnetic thin films of the respective layers can be set at the same position, and a mask matching the magnetic films of the respective layers can be produced by a mask of the mask, which can save cost.
- the first type of gap is provided by the region between the adjacent winding magnetic columns at the first end or the second end (ie, the easy magnetization direction), so that the direction of easy magnetization The magnetic permeability is lowered and the magnetic core is not easily saturated.
- a non-winding magnetic column is connected in parallel on the winding magnetic column, and a part of the magnetic flux in the winding magnetic column of the hard magnetization direction is introduced into the non-winding magnetic column, thereby reducing the risk of core saturation in the winding magnetic column.
- the plurality of magnetic columns include one non-winding magnetic column
- at least one second type of gap is disposed in one non-winding magnetic column
- At least one second type of gap is disposed in the two non-winding magnetic columns; wherein the width w 2 of the second type of gap is less than or equal to 1 mm.
- a second type of gap may be disposed in the non-winding magnetic column, and at least one second type of gap may be disposed only in one of the non-winding magnetic columns, or at least one second may be disposed in each of the non-winding magnetic columns respectively.
- Class gap may be disposed in the non-winding magnetic column, and at least one second type of gap may be disposed only in one of the non-winding magnetic columns, or at least one second may be disposed in each of the non-winding magnetic columns respectively.
- FIG. 2 is a schematic structural view of a thin film inductor 100 according to another embodiment of the present application.
- At least one second type of gap 180 is disposed in each of the non-winding magnetic columns of each layer of magnetic film.
- the width of the second type of gap is greater than the width of the first type of gap.
- the magnitude of the magnetic resistance is controlled by controlling the width of the second type of gap by setting a second type of gap on the non-winding magnetic column.
- the width w 2 of the second type of gap satisfies 10 micrometers ⁇ w 2 ⁇ 50 micrometers.
- the two or more magnetic thin films include a first magnetic thin film and a second magnetic thin film, and the number of the second type of gaps in the first magnetic thin film The number of the second type of gaps in the second magnetic film is the same, and the first layer of magnetic The second type of gap in the film coincides with the second type of gap corresponding to the position within the second layer of magnetic film.
- each of the two or more magnetic thin films includes the same number of the second type of gaps, and the two or more magnetic thin films The second type of gaps corresponding to the positions of any two layers of the magnetic film are coincident with each other.
- the second type of gaps in the magnetic films of the respective layers may be partially overlapped or may be completely overlapped. It should be understood that the second type of gap coincidence coincides with the first type of gap, which is also convenient for mask production, which can save cost.
- the detailed description has been described in detail above, and is not described herein again for the sake of brevity.
- the thin film inductor of the embodiment of the present application increases the magnetic permeability of the non-winding magnetic column by setting a second type of gap in the non-winding magnetic column, thereby avoiding the magnetic core in the non-winding magnetic column. saturation.
- the size of the second type of gap the magnitude of the reluctance can be controlled, and then the distribution of the magnetic flux in each magnetic column (including the winding magnetic column and the non-winding magnetic column) can be adjusted to control the winding magnetic columns (ie, the phases). Coupling coefficient between inductors).
- the plurality of magnetic columns include two windings and more winding magnetic columns and two non-winding magnetic columns, at the first end and the second end and located adjacent to the winding magnetic column and non-
- the region between the winding magnets is provided with at least one third type of gap having a width less than or equal to 1 mm.
- FIG. 3 is a schematic structural view of a thin film inductor 100 according to still another embodiment of the present application.
- the two non-winding magnetic columns 150 include a first magnetic column 151 and a second magnetic column 152, and the first magnetic column 151 and the second magnetic column 152 are respectively connected to both ends of the first end portion 120, and The first magnetic column 151 and the second magnetic column 152 are respectively connected to both ends of the second end portion 130, and the two winding magnetic columns 140 are located between the first magnetic column 151 and the second magnetic column 152.
- the two winding magnetic columns 140 include a third magnetic column 141 and a fourth magnetic column 142.
- the third magnetic column 141 is adjacent to the first magnetic column 151
- the fourth magnetic column 142 is adjacent to the second magnetic column 152.
- An area of the one end portion 120 and the second end portion 130 between the first magnetic column 151 and the third magnetic column 141 is provided with at least one fifth type gap 190 at the first end portion 120 or the second end portion At least one fifth type of gap 190 is provided in the region of 130 and located between the second magnetic column 152 and the fourth magnetic column 142. Also, at least one first type of gap 170 is provided in a region between the first end portion 120 and the second end portion 130 and located between the third magnetic column 141 and the fourth magnetic column 142. Wherein, the width of the fifth type of gap is less than or equal to 1 mm.
- the width w 5 of the fifth type of gap satisfies 10 micrometers ⁇ w 5 ⁇ 50 micrometers.
- the width w 5 of the fifth type of gap satisfies 10 ⁇ m ⁇ w 5 ⁇ 50 ⁇ m, which can effectively improve the magnetic resistance of the magnetic film in the direction of the easy magnetization axis, and reduce the magnetic permeability and avoid the direction of easy magnetization.
- the core of the thin film core has the best effect of saturation.
- the two or more magnetic thin films are laminated and overlap each other, and the sum of widths of all the fifth type gaps on each magnetic thin film Is equal.
- the two or more magnetic thin films include a first magnetic thin film and a second magnetic thin film, and the fifth magnetic gap of the first magnetic thin film
- the number is the same as the number of the fifth type of gaps in the second magnetic film, and the fifth type of gap in the first magnetic film coincides with the fifth type of gap corresponding to the inner position of the second magnetic film.
- each of the two or more magnetic thin films includes the same number of the fifth type of gaps, and the two or more layers are magnetic.
- the fifth type of gaps corresponding to the positions of any two layers of the magnetic film in the film are coincident with each other.
- the fifth type of gaps in the magnetic films of the respective layers may partially overlap or may overlap. It should be understood that the fifth type of gap coincidence coincides with the first type of gap, which is also convenient for mask production, which can save cost.
- the detailed description has been described in detail above, and is not described herein again for the sake of brevity.
- the width of the fifth type of gap shown in FIG. 3 and the width of the second type of gap shown in FIG. 2 may be the same, and the functions of the fifth type of gap and the second type of gap are similar, both for avoiding non- The core in the winding magnetic column is saturated.
- the distribution of the magnetic flux in each magnetic column is adjusted to control the magnetic columns of each winding (ie, the inductance of each phase). Coupling coefficient between).
- "Second" and "fifth" are only used to distinguish the location of the gap, and should not constitute any limitation to the present application.
- the second type of gap and the fifth type of gap may be simultaneously disposed in the non-winding magnetic column and the first end portion and the second end portion, respectively.
- the magnitude of the reluctance is adjusted by simultaneously controlling the widths of the second type of gap and the fifth type of gap, and the coupling coefficient between the inductances of the respective phases is controlled.
- FIG. 4 is a schematic diagram of a power conversion system 300 in accordance with an embodiment of the present application.
- the power conversion system 300 includes a direct current (“DC") power supply 310, at least one switching unit 320, at least one inductive unit 330, a filter capacitor 340, and a load 350.
- the circuit operation principle of the power conversion system is a multi-phase interleaved parallel buck (BUCK) circuit.
- the two-phase inductors are coupled in pairs to form an inductor unit, and one or more inductor units are connected in parallel to provide energy to the load.
- Two series-connected switching tubes (for example, switching tubes Q1 and Q2) form a switching unit. Each switch tube is connected to the control IC through a drive (“DRV" for short) to control the opening and closing of the switch tube.
- DUV drive
- the at least one switching unit is in one-to-one correspondence with the at least one inductive unit, and each of the inductive units is connected to the DC power source through the corresponding switching unit.
- the inductance unit may include the thin film inductance described above and below.
- an inductor unit ie, a two-phase inductor, such as L1 shown in FIG. 4
- L1 two-phase inductor
- the first phase power conversion circuit is composed of one of a first switching unit (for example, a switching unit composed of switching transistors Q1 and Q2) and a first inductance unit (for example, an inductor L1).
- a first switching unit for example, a switching unit composed of switching transistors Q1 and Q2
- a first inductance unit for example, an inductor L1
- the switch Q1 When the switch Q1 is turned on, the DC current passes through a phase of the inductor unit connected to the switch Q1, the inductor current starts to rise, and is filtered by the capacitor C to supply the load R; when Q1 is turned off, Q2 starts to conduct, and the filter
- the voltage on the capacitor is reversely applied to the inductor, and the current of the inductor begins to drop, completing the freewheeling portion of the BUCK converter circuit.
- the second phase power conversion circuit is composed of the switching transistors Q3, Q4 and another phase of the inductance unit L1.
- the switch Q3 When the switch Q3 is turned on, the DC current passes through another phase of the inductor unit connected to the switch Q4, the inductor current starts to rise, and is filtered by the capacitor C to supply power to the load R; when Q3 is turned off, Q4 starts to conduct.
- the voltage on the filter capacitor is reversely applied to the inductor, and the current of the inductor begins to drop, completing the freewheeling portion of the BUCK converter circuit.
- the above two-phase BUCK power conversion sections Q1, Q2, Q3, Q4 and the inductance unit L1 constitute a power conversion unit.
- Q2n-3, Q2n-2, Q2n-1, Q2n and the inductance unit Lm constitute a power conversion unit.
- the current requirement according to the output load can be implemented by using a single or multiple power conversion units in parallel.
- BUCK multi-phase interleaved parallel buck
- FIG. 5 is a current waveform diagram of the inductor unit L1 in normal operation.
- I L1 is the first phase inductor current waveform
- I L2 is the second phase inductor current waveform
- I L1 is the same size as I L2 and has a phase difference of 180°.
- both the DC component I dc and the AC component (ie, ripple current) ⁇ I are included.
- 6a and 6b are schematic views of magnetic flux generated in the magnetic column when the inductance unit L1 is operating normally.
- Fig. 6a is a schematic view of the magnetic flux generated in the magnetic column when the direct current component I dc is passed through the inductance unit L1.
- the first magnetic column 401, the second magnetic column 410, the third magnetic column 405, and the fourth magnetic column 408 of the inductive unit L1 are arranged in parallel along the easy magnetization direction, and the first type of gap 407 is located first.
- the end portion is in a region between the third magnetic column 405 and the fourth magnetic column.
- the first winding 406 is wound on the third magnetic post 405 and the second winding 409 is wound on the fourth magnetic post 408.
- the second type of gap 402 is located on the first magnetic column 401, and the second type of gap 411 is located on the second magnetic column 410.
- the DC flux 403 generated in the core by the first winding 406 is in the magnetic column as shown in FIG. 6a. Circulate in the direction shown. It can be seen that the DC magnetic flux generated on the wound magnetic column 405 is opposite to the other three magnetic core columns.
- the DC flux 404 generated in the core of the second winding 409 circulates in the core post in the direction shown in Figure 6a. It can be seen that the magnetic flux generated on the wound magnetic column 408 is opposite to the other three magnetic core columns. Since the number of turns of the two windings is the same, the magnitude of the magnetic flux generated on the two magnetic columns is the same.
- the DC flux generated by the first winding 406 and the second winding 409 are opposite in direction on the third magnetic column 405 and the fourth magnetic column 408, and can be completely cancelled due to the same size; the first winding 406 and the second winding
- the DC magnetic flux generated by 409 is the same in the direction of the DC magnetic flux on the first magnetic column 401 and the second magnetic column 410, and is mutually reinforced. Therefore, it is necessary to increase the magnetic resistance on this path by the second type of gaps 402 and 411 to prevent the magnetic core on the first magnetic column 401 and the second magnetic column 410 from being saturated.
- the magnetic flux of the DC magnetic flux flowing into each magnetic column can be controlled, that is, the magnetic flux distribution ratio between the magnetic columns can be adjusted, thereby controlling the mutual inductance between the magnetic columns, and finally Control the coupling coefficient between the two-phase inductors.
- Fig. 6b is a schematic view of the magnetic flux generated in the magnetic column when the AC component ⁇ I is passed through the inductance unit L1.
- the first magnetic column 451, the second magnetic column 460, the third magnetic column 455, and the fourth magnetic column 458 are arranged in parallel in the inductor unit, and the first type of gap 457 is located at the third magnetic column 455, Any position between the intersection of the four magnetic columns 458 and the first end.
- the first winding 456 is wound on the third magnetic column 455 and the second winding 459 is wound on the fourth magnetic column 458.
- the second type of gap 452 is located on the first magnetic column 451 and the second gap 461 is located on the second magnetic column 460.
- the AC flux 453 generated in the core by the first winding 456 is in the magnetic column as shown in FIG. 6b. Show direction circulation. It can be seen that it is wound
- the DC magnetic flux generated on the magnetic column 455 is opposite to the other three magnetic core columns.
- the DC flux 404 generated in the core of the second winding 409 circulates in the core post in the direction shown in Figure 6a. It can be seen that the magnetic flux generated on the wound magnetic column 408 is opposite to the other three magnetic core columns. Since the number of turns of the two windings is the same, the magnitude of the magnetic flux generated on the two magnetic columns is the same.
- the AC flux generated by the first winding 456 and the second winding 459 is the same in the direction of the third magnetic column 455 and the fourth magnetic column 458, and is mutually reinforcing due to the same size; in the first magnetic column 451 and the second
- the alternating magnetic fluxes on the magnetic column 460 are opposite in direction and cancel each other out.
- the first end portion and the second end portion between the third magnetic column and the fourth magnetic column also have DC magnetic fluxes offset each other and exchange.
- the magnetic resistance can be increased by the first type of gap 407 shown in FIG. 6a or the first type of gap 457 shown in FIG. 6b, and the magnetic permeability can be lowered, thereby being resistant to the AC magnetic flux superposition. Possible core saturation.
- the DC component and the AC component in the current waveform diagram of the inductor unit L1 shown in FIG. 5 are simultaneously passed through the winding, and the magnetic flux generated by the currents of different components are respectively as shown in FIG. 6a and FIG. 6b. Show. That is to say, the magnetic flux of the inductance unit L1 in each magnetic column can be understood as the superposition of the magnetic fluxes in Figs. 6a and 6b.
- the DC component accounts for a large proportion. Therefore, in the schematic diagram of the magnetic flux shown in Figs. 6a and 6b, the specific gravity of the DC magnetic flux is large.
- the DC flux cancels each other out in the winding magnetic column, so that the effective area of the core of the winding magnetic column is reduced, that is, the volume (area, height) of the inductor is reduced.
- the mutually enhanced DC magnetic flux is introduced into the non-winding magnetic column, and the second type of gap in the non-winding magnetic column is used to avoid the saturation of the magnetic core in the non-winding magnetic column.
- the first type of gap can also be used to improve the problem of uneven current flow between multi-phase inductors.
- the current is not completely symmetrical in the two phases of the respective inductive units.
- the current may jump, that is, an asymmetrical current is generated. That is to say, the current in the two phases cannot be completely cancelled.
- the portion of the current that cannot be completely cancelled will flow along the shortest path, forming a loop, that is, a short circuit, in the two magnetic columns (ie, the third magnetic column and the fourth magnetic column) wound by the winding.
- the magnetic reluctance of the magnetic column is very small, and it is easy to cause saturation of the magnetic core.
- non-winding magnetic columns and the winding magnetic columns shown in FIGS. 1 to 6 are merely illustrative.
- This application should not be construed as limiting.
- the non-winding magnetic column can also be one, or the non-winding magnetic column can also be In the case of being between the winding magnetic columns, this application is not particularly limited.
- FIG. 7 is a schematic structural diagram of a thin film inductor 600 according to still another embodiment of the present application.
- the N may take a natural number greater than 2.
- the thin film inductor 600 includes a first end, a second end, two non-winding magnetic columns (ie, a first magnetic post 602 and a second magnetic post 611), and three winding magnetic posts (ie, The third magnetic column 604, the fourth magnetic column 607, and the fifth magnetic column 609).
- the second magnetic column 602 is provided with a second type of gap 601.
- the second magnetic column 611 is provided with a second type of gap 612.
- the third magnetic column 604 is wound with a winding 603, and the fourth magnetic column 607 is wound.
- a region of the first end portion between the third magnetic post 604 and the fourth magnetic post 607 is provided with a first type of gap 605.
- a region of the first end portion between the fourth magnetic column 607 and the fifth magnetic column 609 is provided with a first type of gap 608.
- the plurality of magnetic columns include three winding magnetic columns and two non-winding magnetic columns.
- the inductance unit shown in FIG. 4 is a three-phase inductor, wherein three windings are respectively wound on the three winding magnetic columns, the number of windings is the same, and the winding directions are the same. That is, the three-phase inductor currents have the same magnitude, and the phases are 120° out of phase.
- FIG. 7 the distribution of magnetic flux in the thin film inductor shown in FIG. 7 is similar to that shown in FIG. 6 (including FIGS. 6a and 6b), and is not described herein again for the sake of brevity.
- the first type of gap is disposed in a region between adjacent winding magnetic columns at the first end portion or the second end portion (ie, the easy magnetization direction), so that the magnetic field in the easy magnetization direction The conductivity is lowered and the core is not easily saturated.
- a non-winding magnetic column is connected in parallel on the winding magnetic column, and a part of the magnetic flux in the direction of the hard magnetization is led to the non-winding magnetic column.
- a second type of gap is disposed on the non-winding magnetic column to increase the magnetic resistance of the non-winding magnetic column, reduce the magnetic permeability, and avoid magnetic saturation in the non-winding magnetic column.
- the magnitude of the reluctance can be controlled, and then the distribution of the magnetic flux in each magnetic column (including the winding magnetic column and the non-winding magnetic column) can be adjusted to control the coupling coefficient between the inductances of the respective phases.
- FIG. 8 is a schematic structural view of a thin film inductor 700 according to still another embodiment of the present application.
- the thin film inductor 700 includes a thin film magnetic core including a plurality of magnetic posts, a first end, and a second end opposite the first end. Among them, a plurality of magnetic columns are isolated from each other and have a rod shape. The plurality of magnetic columns includes two winding magnetic columns and one or more non-winding magnetic columns. As shown in FIG.
- the plurality of magnetic columns include a winding magnetic column (including a third magnetic column 702 and a fourth magnetic column 707) and a non-winding magnetic column 705, and the third magnetic column 702 and the fourth magnetic column 707 are respectively The two ends of the second end portion 709 are in contact with each other, and the third magnetic column 702 and the fourth magnetic column 707 are respectively in contact with the two ends of the second end portion 710.
- the winding magnetic column 705 is between the third magnetic column 702 and the fourth magnetic column 707.
- the thin film magnetic core includes at least one magnetic film, and at least one of the first and second end portions of each of the magnetic thin films is disposed between adjacent winding magnetic columns and non-winding magnetic columns.
- the third type of gap wherein the length direction of the third type of gap is parallel to the hard magnetization direction of the magnetic film, and the third type of gap penetrates the magnetic film along the length direction of the third type of gap at the first end or the second end Area. Wherein the width w 3 of the third type of gap is less than or equal to 100 micrometers.
- the thin film magnetic core includes two or more magnetic thin films
- the two or more magnetic thin films are laminated and overlap each other, and the sum of the widths of all the third type of gaps on each of the magnetic thin films is equal.
- two or more third types of gaps are provided in a region of each of the magnetic thin films at the first end or the second end and located between adjacent winding magnetic columns and non-winding magnetic columns.
- the third type of gap may be one or more, and by separately controlling one or simultaneously controlling the widths of the plurality of third type gaps, the magnitude of the reluctance can be adjusted to control the magnetic flux between the magnetic columns. Distribution to control the coupling coefficient between the inductors of each phase.
- the width w 3 of the third type is less than or equal to the gap 10 microns.
- the width of the third type of gap enumerated above is a distance in a direction perpendicular to the longitudinal direction of the third type of gap, that is, it can be understood as the interplanar spacing of the opposite end faces.
- first end and the second end are parallel to each other.
- the plurality of magnetic columns are parallel to each other.
- each of the magnetic posts is perpendicular to the first end of the thin film magnetic core.
- the spacing between every two adjacent magnetic columns is the same.
- the thin film inductor further includes windings of the same number as the at least two winding magnetic columns, each winding being wound on one winding magnetic column, and all windings are wound in the same direction.
- each of the magnetic thin films is made of the same material.
- paralleling the non-winding magnetic column on the winding magnetic column is equivalent to taking a part of the alternating magnetic flux in the winding magnetic column to the non-winding magnetic column.
- the DC flux generated by the windings on the non-winding magnets is mutually reinforcing, and the DC flux generated on the windings of the windings cancel each other out (the flux distribution of the flux in the winding and non-winding cylinders and The direction will be described in detail later, so it can be reduced The risk of core saturation in the winding column area.
- the two or more magnetic thin films include a first magnetic thin film and a second magnetic thin film, and the first magnetic thin film has a first type of gap
- the number is the same as the number of the third type of gaps in the second magnetic film, and the third type of gap in the first magnetic film coincides with the third type of gap corresponding to the inner position of the second magnetic film.
- each of the two or more magnetic thin films includes the same number of the third type of gaps, and the two or more layers are magnetic.
- the third type of gaps corresponding to the positions of any two layers of the magnetic film in the film are coincident with each other.
- the third type of gaps in the magnetic films of the respective layers may partially overlap or may overlap. It should be understood that the third type of gap coincidence coincides with the first type of gap, which is also convenient for mask production, which can save cost.
- the detailed description has been described in detail above, and is not described herein again for the sake of brevity.
- the one non-winding magnetic column is provided with at least one fourth type of gap; and the plurality of magnetic columns includes two non-winding magnetic columns
- at least one fourth type of gap is disposed in the two non-winding magnetic columns; wherein the width w 4 of the fourth type of gap is less than or equal to 1 mm.
- the magnetic resistance of the non-winding magnetic column is increased, the magnetic permeability is reduced, and the magnetic core saturation in the non-winding magnetic column is avoided.
- the size of each type of gap the magnitude of the reluctance can be controlled, and then the distribution of the magnetic flux in each magnetic column (including the winding magnetic column and the non-winding magnetic column) can be adjusted to control the coupling coefficient between the inductances of the respective phases.
- the width w 2 of the fourth type of gap satisfies 10 micrometers ⁇ w 2 ⁇ 50 micrometers.
- the two or more magnetic thin films include a first magnetic thin film and a second magnetic thin film, and the number of the fourth type of gaps in the first magnetic thin film is the same
- the number of the fourth type of gaps in the two-layer magnetic film is the same, and the fourth type of gap in the first layer of magnetic film coincides with the fourth type of gap corresponding to the position in the second layer of the magnetic film.
- each of the two or more magnetic thin films includes the same number of the fourth type of gaps, and any two of the two or more magnetic thin films
- the fourth type of gaps corresponding to the positions of the layer magnetic film are coincident with each other.
- the fourth type of gaps in the magnetic films of the respective layers may be partially overlapped or may be completely overlapped. It should be understood that the fourth type of gap coincidence coincides with the first type of gap, which is also convenient for mask production, which can save cost.
- the detailed description has been described in detail above, and is not described herein again for the sake of brevity.
- FIG. 9a and 9b are schematic diagrams showing the magnetic flux distribution generated in a magnetic column during normal operation in a power conversion system according to still another embodiment of the present application. That is to say, the magnetic film inductance can be understood as the inductance unit L1 in FIG. 4, and the current waveform diagram of the inductance unit L1 in normal operation is as shown in FIG. 5.
- FIG. 9a is a schematic diagram of the magnetic flux generated in the magnetic column when the DC component I dc is passed through the inductance unit.
- the winding magnetic column including the third magnetic column 801, the fourth magnetic column 802 and the non-winding magnetic column 803 in the inductance unit L1 are arranged in parallel along the easy magnetization direction.
- the first type of gap 808 is located at the first end and is in a region between the third magnetic column 801 and the non-winding magnetic column 803.
- the first type of gap 809 is located at the first end and is at the fourth magnetic column 802 and the non-winding The area between the magnetic columns 803.
- the first winding 804 is wound on a third magnetic post 801 and the second winding 806 is wound on a fourth magnetic post 802.
- the second gap 810 is located on the non-winding magnetic column 803.
- the DC flux 805 generated in the magnetic core by the first winding 804 is in the magnetic column as shown in FIG. 9a. Circulate in the direction shown. It can be seen that the magnetic flux generated on the wound third magnetic column 801 is opposite to the other two magnetic cylinders.
- the DC winding 807 generated in the second winding 806 in the core circulates in the direction of the core as shown in Figure 9a.
- the magnetic flux generated on the wound fourth magnetic post 802 is opposite to the other two magnetic cylinders. Since the number of turns of the two windings is the same, the magnitude of the magnetic flux generated on the two magnetic columns is the same. Specifically, the DC flux generated by the first winding 804 and the second winding 806 are opposite in direction of the DC magnetic flux at the first end and the second end, and are the same size and can be completely cancelled; the first winding 804 and the second winding The DC magnetic flux generated by 806 is the same in the direction of the non-winding magnetic column 803, and is the same size and mutually reinforcing.
- the fourth type of gap 810 it is necessary to increase the magnetic resistance on this path by the fourth type of gap 810 to prevent the magnetic core on the non-winding magnetic column 803 from being saturated.
- the magnetic flux of the DC magnetic flux flowing into each magnetic column can be controlled, that is, the magnetic flux distribution ratio between the magnetic columns can be adjusted, thereby controlling the mutual inductance between the magnetic columns, and finally controlling the two phases. Coupling coefficient between inductors.
- Fig. 9b is a schematic view of the magnetic flux generated in the magnetic column when the AC component ⁇ I is passed through the inductance unit.
- the winding magnetic column (including the third magnetic column 801 and the fourth magnetic column 802) in the inductance unit L1 Arranged in parallel with the non-winding magnetic column 803.
- the first gap 808 is located at the first end and is in a region between the third magnetic column 801 and the non-winding magnetic column 803.
- the first gap 809 is located at the first end and is in the fourth magnetic column 802 and the non-winding magnetic column. 803 with the area between.
- the first winding 804 is wound on a third magnetic post 801 and the second winding 806 is wound on a fourth magnetic post 802.
- the second gap 810 is located on the non-winding magnetic column 803.
- the alternating magnetic flux 805 generated in the magnetic core by the first winding 804 is in the magnetic column as shown in FIG. 9a. Show direction circulation. It can be seen that the magnetic flux generated on the wound third magnetic column 801 is opposite to the other two magnetic cylinders.
- the alternating magnetic flux 807 generated in the second winding 806 in the magnetic core circulates in the magnetic core column as shown in Fig. 9b. It can be seen that the magnetic flux generated on the wound magnetic column 802 is opposite to the other two magnetic cylinders.
- the magnitude of the magnetic flux generated on the two magnetic columns is the same.
- the AC flux generated by the first winding 804 and the second winding 806 is opposite in direction on the non-winding magnet 803 and is the same size and can be completely cancelled; the AC flux generated by the first winding 804 and the second winding 806 is
- the AC magnetic flux directions of the first end portion and the second end portion are the same and are mutually reinforced. Therefore, it is necessary to increase the magnetic resistance on the path through the first gap 808 and the third type of gap 809 to prevent saturation of the magnetic core on the first end portion and the second end portion in the easy magnetization direction.
- the third type of gap is disposed in the easy magnetization direction between the two-phase inductors, which can increase the magnetic resistance and reduce the magnetic permeability, thereby avoiding saturation of the magnetic core in the easy magnetization direction.
- the DC magnetic flux in the winding magnetic column is introduced into the non-winding magnetic column, and the fourth type of gap is set on the non-winding magnetic column to increase the magnetic resistance, reduce the magnetic permeability, and avoid the saturation of the magnetic core in the direction of the hard magnetization.
- the magnitude of the reluctance can be controlled, and then the distribution of the magnetic flux in each magnetic column (including the winding magnetic column and the non-winding magnetic column) can be adjusted to control the coupling coefficient between the two-phase inductors.
- widths of the first type of gap, the second type of gap, the third type of gap, the fourth type of gap, and the fifth type of gap enumerated above can be understood as distances perpendicular to the longitudinal direction of each type of gap, That is, it can be understood as the interplanar spacing of the opposite end faces of the gap.
- end faces of the various types of gaps may be end faces perpendicular to the flux flow direction, or may be end faces inclined to the flux flow direction.
- the end face flat end face, the step end face, the slope end face, or the end face of other structures is not particularly limited in the present application. As long as the various types of gaps are respectively through the position (for example, the first end, the second end or the non-winding magnetic column), the gap falls within the protection scope of the present application.
- FIG. 1 to FIG. 9 including FIG. 9a and FIG. 9b.
- FIGS. 10 and 11 FIGS. 11a to 11e.
- FIG. 10 is a schematic flow chart of a method 900 of fabricating a thin film inductor according to an embodiment of the present application. As shown in FIG. 10, the preparation method 900 includes:
- the thin film magnetic core includes a plurality of magnetic columns, a first end portion, and a second end portion opposite to the first end portion, the plurality of magnetic columns are isolated from each other, and the plurality of magnetic columns are separated
- the magnetic columns are rod-shaped. One end of each of the plurality of magnetic columns is in contact with the first end, and the other end is in contact with the second end.
- the plurality of magnetic columns include two or more winding magnetic columns and one or more non-winding magnetic columns;
- the thin film magnetic core includes at least one magnetic film, and each of the magnetic thin films is located at the first end and the second end and located
- the area between the adjacent two winding magnetic columns is provided with at least one first type of gap, wherein the length direction of the first type of gap is parallel to the hard magnetization direction of the magnetic film, and the first type of gap runs through the length direction a first end or a second end of the magnetic film, the width w 1 of the first type of gap is less than or equal to 100 microns; or, the first end portion and the second end of each of the magnetic films are located
- a region between adjacent winding magnetic columns and non-winding magnetic columns is provided with at least one third type of gap, wherein a length direction of the third type of gap is parallel to a hard magnetization direction of the magnetic film, and the third The gap is penetrating the first end or the second end of the magnetic film along the length direction of the third type
- 11a through 11e are schematic views of a method of fabricating a thin film inductor 100 in accordance with an embodiment of the present application.
- a passivation layer is deposited on the silicon substrate of the silicon substrate, and the passivation layer may be a coating of silicon dioxide, silicon nitride or other insulating organic material, and the passivation layer completely covers the silicon substrate. 10 surface.
- the passivation layer through the gas The phase deposition process deposits a conductive seed layer over the entire silicon wafer. A layer of photoresist material is then deposited and etched to form a photoresist layer that covers portions of the seed layer.
- the lower inductive winding portions 11, 12 can be plated onto the seed layer using standard electroplating techniques to form the lower winding portion of the two-phase inductive winding in the inductive unit.
- the photoresist mask can be removed and the residual seed layer removed by reactive ion etching ("RIE") or other suitable etching method.
- RIE reactive ion etching
- a layer of insulating material is deposited to cover the lower layer winding, and a distance of the winding is required to be submerged to ensure the insulation distance between the winding and the core.
- a thin film magnetic core 13 is formed, as shown in Fig. 11b, and Fig. 11b is a silicon wafer after the magnetic film is formed.
- the formation of the magnetic film may be a chemical vapor deposition ("CVD"), a physical vapor deposition (PVD), or an atomic layer deposition ("AALD").
- An insulating layer is deposited between each layer of the magnetic film, and the material of the insulating layer may be silicon dioxide, silicon nitride or other insulating organic material coating to achieve isolation between each layer of magnetic film.
- the thickness of the magnetic film can be controlled to be 1 ⁇ m or less.
- Figure 11c is a connection via 14 between two or more upper windings and two or more lower windings, through which two or more upper windings 15 as shown in Figure 11d and two or more lower windings as shown in Figure 11a Connected to form two or more windings as shown in Figure 11e wound on a magnetic core post.
- the processing process of the two or more upper windings shown in FIG. 11d is basically the same as the processing of the two or more lower windings shown in FIG. 11a, and a standard plating process can be employed.
- the magnetic permeability in the easy magnetization direction is lowered, the magnetic core is not easily saturated, and the winding is magnetic.
- a non-winding magnetic column is connected in parallel on the column, and a part of the magnetic flux in the winding magnetic column of the hard magnetization direction is led to the non-winding magnetic column.
- a second type of gap or a fourth type of gap is disposed on the non-winding magnetic column to increase the magnetic resistance of the non-winding magnetic column, reduce the magnetic permeability, and avoid magnetic saturation in the non-winding magnetic column.
- the size of each type of gap the magnitude of the reluctance can be controlled, and then the distribution of the magnetic flux in each magnetic column can be adjusted to control the coupling coefficient between the inductances of the respective phases.
- the size of the serial numbers of the above processes does not mean The order of execution, the order of execution of each process should be determined by its function and internal logic, and should not be construed as limiting the implementation process of the embodiments of the present application.
- the disclosed systems, devices, and methods may be implemented in other manners.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
- each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
- the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
- the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
- the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM, Read-Only Memory), A variety of media that can store program code, such as random access memory (RAM), disk, or optical disk.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Coils Or Transformers For Communication (AREA)
Abstract
一种薄膜电感,该薄膜电感包括:薄膜磁芯(110),该薄膜磁芯包括多个磁柱、第一端部(120)和第二端部(130),多个磁柱之间相隔离且均呈杆状,每个磁柱的一端与第一端部(120)相接触,另一端与第二端部(130)相接触;该多个磁柱包括两个以上绕组磁柱(140)和一个非绕组磁柱(150),非绕组磁柱位(150)于两个以上绕组磁柱(140)的一侧;或,该多个磁柱包括两个以上绕组磁柱(140)和两个非绕组磁柱(150),两个以上绕组磁柱(140)位于两个非绕组磁柱(150)之间;该薄膜磁芯(110)包括至少一层磁性薄膜(101),每层磁性薄膜(101)中位于第一端部(120)和第二端部(130)且位于相邻的两个绕组磁柱(140)之间的区域设有至少一个第一类间隙(170),第一类间隙(170)的长度方向与磁性薄膜(101)的难磁化方向平行;磁性薄膜(101)层叠并重合,每层磁性薄膜(101)上的所有第一类间隙(170)的宽度之和相等。
Description
本申请要求于2016年4月20日提交中国专利局、申请号为201610248079.9、发明名称为“一种薄膜电感和电源转换电路”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及电路领域,并且更具体地,涉及一种薄膜电感和电源转换电路。
芯片电源的电源转换系统朝着小型化的方向发展,电源转换系统中的主要器件电感的体积较大,很难集成到处理器中去。目前,已知一种高频硅基铜-磁铁-铜(Copper Magnetic Copper,简称“CMC”)磁膜电感,其薄膜磁芯由多层磁性薄膜层叠而成,形状可以是闭合的口字型。
但是,由于磁性薄膜的各向异性的特点,磁性薄膜在不同的方向上,磁性能不同,并且具有非常大的差异。若沿着难于磁通流通的方向设计电感,在形成的磁芯结构中,沿着易于磁通流通的方向,磁导率较大,磁芯容易饱和。磁芯饱和导致磁导率为零,使电感量急剧下降,导致电流激增,严重时甚至烧毁器件。
并且,由于正常工作时的电流包括直流电流和交流电流,所产生的直流磁通和交流磁通在闭合的铁芯内流通,造成难于磁通流通的方向的交流磁通加强,也会导致磁芯易饱和的问题。
发明内容
本申请提出一种薄膜电感和电源转换电路,以解决磁性薄膜材料磁芯易饱和的问题。
第一方面,本申请提出一种薄膜电感,所述薄膜电感包括:薄膜磁芯,所述薄膜磁芯包括多个磁柱、第一端部和与所述第一端部相对的第二端部,所述多个磁柱之间是相隔离的,所述多个磁柱均呈杆状,所述多个磁柱中每个磁柱的一端与所述第一端部相接触,另一端与所述第二端部相接触;所述
多个磁柱包括两个以上绕组磁柱和一个非绕组磁柱,所述非绕组磁柱位于所述两个以上绕组磁柱的一侧;或者,所述多个磁柱包括两个以上绕组磁柱和两个非绕组磁柱,所述两个以上绕组磁柱位于所述两个非绕组磁柱之间;所述薄膜磁芯包括至少一层磁性薄膜,每一层磁性薄膜中位于所述第一端部和所述第二端部的且位于相邻的两个绕组磁柱之间的区域设有至少一个所述第一类间隙,其中,所述第一类间隙的长度方向与所述磁性薄膜的难磁化方向平行,且所述第一类间隙沿所述第一类间隙的长度方向贯穿所述磁性薄膜位于所述第一端部或所述第二端部的区域,所述第一类间隙的宽度w1小于或等于100微米;在所述薄膜磁性包括两层以上磁性薄膜的情况下,所述两层以上磁性薄膜是层叠并且互相重合的,且每一层磁性薄膜上的所有所述第一类间隙的宽度之和是相等的。
其中,绕组磁柱是指在绕制有绕组的磁柱,非绕组磁柱是指未绕制绕组的磁柱。
通过在第一端部或第二端部(即,易磁化方向)的相邻绕组磁柱间的区域设置第一类间隙,使得易磁化方向上的磁导率降低,磁芯不易达到饱和。并在绕组磁柱上并联非绕组磁柱,将难磁化轴方向上的绕组磁柱中的部分磁通引到非绕组磁柱中,从而减小了绕组磁柱中的磁芯饱和的风险。
可选地,所述第一类间隙的宽度w1小于或等于10微米。
通过仿真实验发现,第一类间隙的宽度w1小于或等于10微米时,对减小磁导率、避免易磁化方向的薄膜磁芯的磁芯饱和的效果最好。
可选地,所述第一端部与所述第二端部相互平行。
可选地,所述多个磁柱之间互相平行。
可选地,每一磁柱与所述薄膜磁芯的第一端部相垂直。
可选地,每两个相邻的磁柱之间的间距相同。
可选地,所述薄膜电感还包括与所述两个以上绕组磁柱的数目相同的绕组,每一绕组绕在一个绕组磁柱上,且所有绕组的绕制方向相同。
可选地,在所述薄膜磁芯包括两层以上磁性薄膜的情况下,每层磁性薄膜均采用相同的材料。
结合第一方面,在第一方面的第一种可能的实现方式中,在所述薄膜磁芯包括两层以上磁性薄膜的情况下,所述两层以上磁性薄膜包括第一层磁性薄膜和第二层磁性薄膜,所述第一层磁性薄膜内所述第一类间隙的数量与所
述第二层磁性薄膜内所述第一类间隙的数量是相同的,并且所述第一层磁性薄膜内的所述第一类间隙与所述第二层磁性薄膜内位置相对应的所述第一类间隙相重合。
结合第一方面,在第一方面的第二种可能的实现方式中,在所述薄膜磁芯包括两层以上磁性薄膜的情况下,所述两层以上磁性薄膜中每一层磁性薄膜包含的所述第一类间隙的数量是相同的,并且所述两层以上磁性薄膜中任意两层磁性薄膜包含的位置相对应的所述第一类间隙均是互相重合的。
通过将各层的第一类间隙设置在相同位置,便于掩膜版的制作,节省成本。
结合第一方面的上述可能的实现方式,在第一方面的第三种可能的实现方式中,在所述多个磁柱包括一个非绕组磁柱的情况下,所述一个非绕组磁柱中设置有至少一个第二类间隙;在所述多个磁柱包括两个非绕组磁柱的情况下,所述两个非绕组磁柱中设置有至少一个第二类间隙;其中,所述第二类间隙的宽度w2小于或等于1毫米。
通过在非绕组磁柱中设置第二类间隙,以增大非绕组磁柱的磁阻,减小了磁导率,避免非绕组磁柱中的磁芯饱和。同时通过调节第二类间隙的大小可以控制磁阻的大小,进而调节磁通在各磁柱(包括绕组磁柱和非绕组磁柱)中的分布,以控制各绕组磁柱(即,各相电感)间的耦合系数。
可选地,所述第二类间隙的宽度w2满足10微米≤w2≤50微米。
通过仿真实验发现,第二类间隙的宽度w2满足10微米≤w2≤50微米时,对减小磁导率、避免非绕组磁柱中的磁芯饱和以及控制耦合系数的效果最好。
结合第一方面的上述可能的实现方式,在第一方面的第四种可能的实现方式中,在所述薄膜磁芯包括两层以上磁性薄膜的情况下,所述两层以上磁性薄膜包括第一层磁性薄膜和第二层磁性薄膜,所述第一层磁性薄膜内所述第二类间隙的数量与所述第二层磁性薄膜内所述第二类间隙的数量是相同的,并且所述第一层磁性薄膜内的所述第二类间隙与所述第二层磁性薄膜内位置相对应的所述第二类间隙相重合。
结合第一方面的上述可能的实现方式,在第一方面的第五种可能的实现方式中,在所述薄膜磁芯包括两层以上磁性薄膜的情况下,所述两层以上磁性薄膜中每一层磁性薄膜包含的所述第二类间隙的数量是相同的,并且所述
两层以上磁性薄膜中任意两层磁性薄膜包含的位置相对应的所述第二类间隙均是互相重合的。
通过将各层的第二类间隙设置在相同位置,便于掩膜版的制作,节省成本。
第二方面,本申请提供一种薄膜电感,所述薄膜电感包括薄膜磁芯,所述薄膜磁芯包括多个磁柱、第一端部和与所述第一端部相对的第二端部,所述多个磁柱之间是相隔离的,所述多个磁柱均呈杆状,所述多个磁柱中每个磁柱的一端与所述第一端部相接触,另一端与所述第二端部相接触;所述多个磁柱包括两个绕组磁柱和一个以上非绕组磁柱,所述一个以上非绕组磁柱位于所述两个绕组磁柱之间;所述薄膜磁芯包括至少一层磁性薄膜,每一层磁性薄膜中位于所述第一端部和所述第二端部的且位于相邻的绕组磁柱和非绕组磁柱之间的区域设有至少一个所述第三类间隙,其中,所述第三类间隙的长度方向与所述磁性薄膜的难磁化方向平行,且所述第三类间隙沿所述第三类间隙的长度方向贯穿所述磁性薄膜位于所述第一端部或所述第二端部的区域,所述第三类间隙的宽度w3小于或等于100微米;在所述薄膜磁芯包括两层以上磁性薄膜的情况下,所述两层以上磁性薄膜是层叠并且互相重合的,且每一层磁性薄膜上的所有所述第三类间隙的宽度之和是相等的。
通过在第一端部和第二端部的相邻绕组磁柱和非绕组磁柱间的区域设置第三类间隙,使得易磁化方向上的磁导率降低,磁芯不易达到饱和。并在绕组磁柱上并联非绕组磁柱,将难磁化方向上的绕组磁柱中的部分磁通引到非绕组磁柱中,从而减小了绕组磁柱中的磁芯饱和的风险。
可选地,每一层磁性薄膜中位于所述第一端部或所述第二端部的且位于相邻的绕组磁柱和非绕组磁柱之间的区域设有两个以上所述第三类间隙。
可选地,所述第三类间隙的宽度w3小于或等于10微米。
通过仿真实验发现,第三类间隙的宽度w1小于或等于10微米时,对减小磁导率、避免易磁化方向的薄膜磁芯的磁芯饱和的效果最好。
可选地,所述第一端部与所述第二端部相互平行。
可选地,所述多个磁柱之间互相平行。
可选地,每一磁柱与所述薄膜磁芯的第一端部相垂直。
可选地,每两个相邻的磁柱之间的间距相同。
可选地,所述薄膜电感还包括与所述至少两个绕组磁柱的数目相同的绕
组,每一绕组绕在一个绕组磁柱上,且所有绕组的绕制方向相同。
可选地,在所述薄膜磁芯包括两层以上磁性薄膜的情况下,每层磁性薄膜均采用相同的材料。
结合第二方面,在第二方面的第一种可能的实现方式中,在所述薄膜磁芯包括两层以上磁性薄膜的情况下,所述两层以上磁性薄膜包括第一层磁性薄膜和第二层磁性薄膜,所述第一层磁性薄膜内所述第三类间隙的数量与所述第二层磁性薄膜内所述第三类间隙的数量是相同的,并且所述第一层磁性薄膜内的所述第三类间隙与所述第二层磁性薄膜内的位置相对应的所述第三类间隙相重合。
结合第二方面,在第二方面的第二种可能的实现方式中,在所述薄膜磁芯包括两层以上磁性薄膜的情况下,所述两层以上磁性薄膜中每一层磁性薄膜包含的所述第三类间隙的数量是相同的,并且所述两层以上磁性薄膜中任意两层磁性薄膜包含的位置相对应的所述第三类间隙均是互相重合的。
通过将各层的第三类间隙设置在相同位置,便于掩膜版的制作,节省成本。
结合第二方面的上述可能的实现方式,在第二方面的第三种可能的实现方式中,在所述多个磁柱包括一个非绕组磁柱的情况下,所述一个非绕组磁柱中设置有至少一个第四类间隙;在所述多个磁柱包括两个非绕组磁柱的情况下,所述两个非绕组磁柱中设置有至少一个第四类间隙;其中,所述第四类间隙的宽度w4小于或等于1毫米。
通过在非绕组磁柱中设置第四类间隙,以增大非绕组磁柱的磁阻,减小了磁导率,避免非绕组磁柱中的磁芯饱和。同时通过调节第四类间隙的大小可以控制磁阻的大小,进而调节磁通在各磁柱(包括绕组磁柱和非绕组磁柱)中的分布,以控制各绕组磁柱(即,各相电感)间的耦合系数。
可选地,所述第四类间隙的宽度w4满足10微米≤w4≤50微米。
通过仿真实验发现,第四类间隙的宽度w4满足10微米≤w4≤50微米时,对减小磁导率、避免非绕组磁柱中的磁芯饱和以及控制耦合系数的效果最好。
结合第二方面的上述可能的实现方式,在第二方面的第四种可能的实现方式中,在所述薄膜磁芯包括两层以上磁性薄膜的情况下,所述两层以上磁性薄膜包括第一层磁性薄膜和第二层磁性薄膜,所述第一层磁性薄膜内所述
第四类间隙的数量与所述第二层磁性薄膜内所述第四类间隙的数量是相同的,并且所述第一层磁性薄膜内的所述第四类间隙与所述第二层磁性薄膜内的位置相对应的所述第四类间隙相重合。
结合第二方面的上述可能的实现方式,在第二方面的第五种可能的实现方式中,在所述薄膜磁芯包括两层以上磁性薄膜的情况下,所述两层以上磁性薄膜中每一层磁性薄膜包含的所述第四类间隙的数量是相同的,并且所述两层以上磁性薄膜中任意两层磁性薄膜包含的位置相对应的所述第四类间隙均是互相重合的。
通过将各层的第四类间隙设置在相同位置,便于掩膜版的制作,节省成本。
第三方面,本申请提供一种薄膜电感,所述薄膜电感包括薄膜磁芯,所述薄膜磁芯包括多个磁柱、第一端部和与所述第一端部相对的第二端部,所述多个磁柱之间是相隔离的,所述多个磁柱均呈杆状,所述多个磁柱中每个磁柱的一端与所述第一端部相接触,另一端与所述第二端部相接触,所述多个磁柱包括两个以上绕组磁柱和一个以上非绕组磁柱;所述薄膜磁芯包括至少一层磁性薄膜,每一层磁性薄膜中位于所述第一端部和所述第二端部的且位于相邻的两个绕组磁柱之间的区域设有至少一个第一类间隙,其中,所述第一类间隙的长度方向与所述磁性薄膜的难磁化方向平行,且所述第一类间隙沿所述第一类间隙的长度方向贯穿所述磁性薄膜的第一端部或第二端部,所述第一类间隙的宽度w1小于或等于100微米;或,每一层磁性薄膜中位于所述第一端部和所述第二端部的且位于相邻的绕组磁柱和非绕组磁柱之间的区域设有至少一个第三类间隙,其中,所述第三类间隙的长度方向与所述磁性薄膜的难磁化方向平行,且所述第三类间隙沿所述第三类间隙的长度方向贯穿所述磁性薄膜的第一端部或第二端部,所述第三类间隙的宽度w3小于或等于100微米;在所述薄膜磁芯包括两层以上磁性薄膜的情况下,所述两层以上磁性薄膜是层叠并且互相重合的,且每一层磁性薄膜上的所有所述第一类间隙的宽度之和是相等的。
通过第一端部和第二端部的相邻绕组磁柱间的区域设置第一类间隙,或者在第一端部和第二端部的相邻绕组磁柱和非绕组磁柱间的区域设置第三类间隙,使得易磁化方向上的磁导率降低,磁芯不易达到饱和。并在绕组磁柱上并联非绕组磁柱,将难磁化方向的绕组磁柱中的部分磁通引到非绕组磁
柱中,从而减小了绕组磁柱中的磁芯饱和的风险。
可选地,所述第一类间隙的宽度w1小于或等于10微米,或第三类间隙的宽度w3小于或等于10微米。
通过仿真实验发现,第一类间隙或第三类间隙的宽度小于或等于10微米时,对减小磁导率、避免易磁化方向的薄膜磁芯的磁芯饱和的效果最好。
结合第三方面,在第三方面的第一种可能的实现方式中,在所述薄膜磁芯包括两层以上磁性薄膜的情况下,所述两层以上磁性薄膜包括第一层磁性薄膜和第二层磁性薄膜,所述第一层磁性薄膜内所述第一类间隙的数量与所述第二层磁性薄膜内所述第一类间隙的数量是相同的,并且所述第一层磁性薄膜内的所述第一类间隙与所述第二层磁性薄膜内位置相对应的所述第一类间隙相重合。
结合第三方面,在第三方面的第二种可能的实现方式中,在所述薄膜磁芯包括两层以上磁性薄膜的情况下,所述两层以上磁性薄膜中每一层磁性薄膜包含的所述第一类间隙的数量是相同的,并且所述两层以上磁性薄膜中任意两层磁性薄膜包含的位置相对应的所述第一类间隙均是互相重合的。
通过将各层的第一类间隙设置在相同位置,便于掩膜版的制作,节省成本。
结合第三方面的上述可能的实现方式,在第三方面的第三种可能的实现方式中,在所述多个磁柱包括一个非绕组磁柱的情况下,所述一个非绕组磁柱中设置有至少一个第二类间隙;在所述多个磁柱包括两个非绕组磁柱的情况下,所述两个非绕组磁柱中设置有至少一个第二类间隙;其中,所述第二类间隙的宽度w2小于或等于1毫米。
通过在非绕组磁柱中设置第二类间隙,以增大非绕组磁柱的磁阻,减小了磁导率,避免非绕组磁柱中的磁芯饱和。同时通过调节第二类间隙的大小可以控制磁阻的大小,进而调节磁通在各磁柱(包括绕组磁柱和非绕组磁柱)中的分布,以控制各绕组磁柱(即,各相电感)间的耦合系数。
可选地,所述第二类间隙的宽度w2满足10微米≤w2≤50微米。
通过仿真实验发现,第二类间隙的宽度w2满足10微米≤w2≤50微米时,对减小磁导率、避免非绕组磁柱中的磁芯饱和以及控制耦合系数的效果最好。
结合第三方面的上述可能的实现方式,在第三方面的第四种可能的实现
方式中,在所述薄膜磁性包括两层以上磁性薄膜的情况下,所述两层以上磁性薄膜包括第一层磁性薄膜和第二层磁性薄膜,所述第一层磁性薄膜内所述第二类间隙的数量与所述第二层磁性薄膜内所述第二类间隙的数量是相同的,并且所述第一层磁性薄膜内的所述第二类间隙与所述第二层磁性薄膜内的位置相对应的所述第二类间隙相重合。
结合第三方面的上述可能的实现方式,在第三方面的第五种可能的实现方式中,在所述薄膜磁性包括两层以上磁性薄膜的情况下,所述两层以上磁性薄膜中每一层磁性薄膜包含的所述第二类间隙的数量是相同的,并且所述两层以上磁性薄膜中任意两层磁性薄膜包含的位置相对应的所述第二类间隙均是互相重合的。
通过将各层的第二类间隙设置在相同位置,便于掩膜版的制作,节省成本。
结合第三方面,在第三方面的第六种可能的实现方式中,在所述薄膜磁芯包括两层以上磁性薄膜的情况下,所述两层以上磁性薄膜包括第一层磁性薄膜和第二层磁性薄膜,所述第一层磁性薄膜内所述第三类间隙的数量与所述第二层磁性薄膜内所述第三类间隙的数量是相同的,并且所述第一层磁性薄膜内的所述第三类间隙与所述第二层磁性薄膜内位置相对应的所述第三类间隙相重合。
结合第三方面,在第三方面的第七种可能的实现方式中,在所述薄膜磁芯包括两层以上磁性薄膜的情况下,所述两层以上磁性薄膜中每一层磁性薄膜包含的所述第三类间隙的数量是相同的,并且所述两层以上磁性薄膜中任意两层磁性薄膜包含的位置相对应的所述第三类间隙均是互相重合的。
通过将各层的第三类间隙设置在相同位置,便于掩膜版的制作,节省成本。
结合第三方面的上述可能的实现方式,在第三方面的第八种可能的实现方式中,在所述多个磁柱包括一个非绕组磁柱的情况下,所述一个非绕组磁柱中设置有至少一个第四类间隙;在所述多个磁柱包括两个非绕组磁柱的情况下,所述两个非绕组磁柱中设置有至少一个第四类间隙;其中,所述第四类间隙的宽度w4小于或等于1毫米。
通过在非绕组磁柱中设置第四类间隙,以增大非绕组磁柱的磁阻,减小了磁导率,避免非绕组磁柱中的磁芯饱和。同时通过调节第四类间隙的大小
可以控制磁阻的大小,进而调节磁通在各磁柱(包括绕组磁柱和非绕组磁柱)中的分布,以控制各绕组磁柱(即,各相电感)间的耦合系数。
可选地,所述第四类间隙的宽度w4满足10微米≤w4≤50微米。
通过仿真实验发现,第四类间隙的宽度w4满足10微米≤w4≤50微米时,对减小磁导率、避免非绕组磁柱中的磁芯饱和以及控制耦合系数的效果最好。
结合第三方面的上述可能的实现方式,在第三方面的第九种可能的实现方式中,在所述薄膜磁芯包括两层以上磁性薄膜的情况下,所述两层以上磁性薄膜包括第一层磁性薄膜和第二层磁性薄膜,所述第一层磁性薄膜内所述第四类间隙的数量与所述第二层磁性薄膜内所述第四类间隙的数量是相同的,并且所述第一层磁性薄膜内的所述第四类间隙与所述第二层磁性薄膜内位置相对应的所述第四类间隙相重合。
结合第三方面的上述可能的实现方式,在第三方面的第十种可能的实现方式中,在所述薄膜磁芯包括两层以上磁性薄膜的情况下,所述两层以上磁性薄膜中每一层磁性薄膜包含的所述第四类间隙的数量是相同的,并且所述两层以上磁性薄膜中任意两层磁性薄膜包含的位置相对应的所述第四类间隙均是互相重合的。
通过将各层的第四类间隙设置在相同位置,便于掩膜版的制作,节省成本。
在某些实现方式中,所述薄膜材料为高频硅基铜-磁铁-铜CMC磁膜电感。
第四方面,本申请提供一种电源转换电路,所述电源转换电路包括:直流电源、至少一个开关单元和至少一个电感单元,所述至少一个开关单元与所述至少一个电感单元一一对应,每个电感单元通过所对应的开关单元与所述直流电源相连,其中,所述至少一个电感单元中的每个电感单元包括第一方面至第三方面中的任意一种可能的实现方式中的薄膜电感。
第五方面,本申请提供一种薄膜电感的制备方法,所述制备方法包括:形成两个以上下层绕组;形成薄膜磁芯,所述薄膜磁芯包括多个磁柱、第一端部和与所述第一端部相对的第二端部,所述多个磁柱之间是相隔离的,所述多个磁柱均呈杆状,所述多个磁柱中每个磁柱的一端与所述第一端部相接触,另一端与所述第二端部相接触,所述多个磁柱包括两个以上绕组磁柱和
一个以上非绕组磁柱;所述薄膜磁芯包括至少一层磁性薄膜,每一层磁性薄膜中位于所述第一端部和所述第二端部的且位于相邻的两个绕组磁柱之间的区域设有至少一个第一类间隙,其中,所述第一类间隙的长度方向与所述磁性薄膜的难磁化方向平行,且所述第一类间隙沿所述第一类间隙的长度方向贯穿所述磁性薄膜的第一端部或第二端部,所述第一类间隙的宽度w1小于或等于100微米;或,每一层磁性薄膜中位于所述第一端部和所述第二端部的且位于相邻的绕组磁柱和非绕组磁柱之间的区域设有至少一个第三类间隙,其中,所述第三类间隙的长度方向与所述磁性薄膜的难磁化方向平行,且所述第三类间隙沿所述第三类间隙的长度方向贯穿所述磁性薄膜的第一端部或第二端部,所述第三类间隙的宽度w3小于或等于100微米;在所述薄膜磁芯包括两层以上磁性薄膜的情况下,所述两层以上磁性薄膜是层叠并且互相重合的,且每一层磁性薄膜上的所有所述第一类间隙的宽度之和是相等的;形成两个以上上层绕组,所述两个以上下层绕组与所述两个以上下层绕组一一对应,所述两个以上下层绕组与所述两个以上上层绕组构成两个以上绕组,所述两个以上绕组分别绕制在所述两个以上绕组磁柱上,所述两个以上绕组与所述两个以上绕组磁柱一一对应,且每个绕组的绕制方向相同。
本申请提供一种薄膜电感和电源转换电路,能够解决薄膜磁性材料磁芯易饱和的问题。
图1a和图1b是根据本申请一实施例的薄膜电感的结构示意图。
图2是根据本申请另一实施例的薄膜电感的结构示意图。
图3是根据本申请又一实施例的薄膜电感的结构示意图。
图4是根据本申请一实施例的电源转换系统的示意图。
图5是电感单元正常工作时的电流波形图。
图6a和图6b是电感单元正常工作时在磁柱中产生的磁通的示意图。
图7是根据本申请再一实施例的薄膜电感的结构示意图。
图8是根据本申请再一实施例的薄膜电感的结构示意图。
图9a和图9b是电感单元正常工作时在磁柱中产生的磁通的示意图。
图10是根据本申请一实施例的薄膜电感的制备方法的示意性流程图。
图11a至图11e是根据本申请一实施例的薄膜电感的制备方法的示意
图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
应理解,本申请实施例的薄膜电感可以应用于电源转换系统中,也可以应用于其他的电路中,本申请对此不作限定。
图1a和图1b是根据本申请一实施例的薄膜电感100的结构示意图。其中,图1a是根据本申请一实施例的薄膜电感100的俯视图,图1b是根据本申请一实施例的薄膜电感100的截面图。
如图1a和图1b所示,该薄膜电感100包括:
薄膜磁芯110,该薄膜磁芯包括多个磁柱、第一端部120和与该第一端部120相对的第二端部130,该多个磁柱之间是相隔离的,该多个磁柱均呈杆状,该多个磁柱中每个磁柱的一端与该第一端部120相接触,另一端与该第二端部130相接触。该多个磁柱包括两个以上绕组磁柱140和一个以上非绕组磁柱150。
具体地。该多个磁柱可以包括两个以上绕组磁柱140和两个非绕组磁柱150,该两个以上绕组磁柱140可以位于该两个非绕组磁柱150之间;或者,该多个磁柱可以包括两个以上绕组磁柱140和一个非绕组磁柱150,该非绕组磁柱150可以位于该两个以上绕组磁柱140的一侧;或者,该多个磁柱可以包括两个绕组磁柱140和一个以上非绕组磁柱150,该一个以上非绕组磁柱150可以位于该两个绕组磁柱140之间。
在多个磁柱包括两个以上绕组磁柱和一个非绕组磁柱的情况下,或者,在多个磁柱包括两个绕组磁柱和一个以上非绕组磁柱的情况下,多个磁柱指三个以上磁柱;在多个磁柱包括两个以上绕组磁柱和两个以上非绕组磁柱的情况下,多个磁柱指四个以上磁柱。
在本申请实施例中,薄膜磁芯包括至少一层磁性薄膜,每一层磁性薄膜中位于第一端部和第二端部的且位于相邻的两个绕组磁柱之间的区域设有至少一个第一类间隙,其中,第一类间隙的长度方向与磁性薄膜的难磁化方向平行,且第一类间隙沿第一类间隙的长度方向贯穿磁性薄膜的第一端部或第二端部,第一类间隙的宽度w1小于或等于100微米;或者,每一层磁性
薄膜中位于第一端部和第二端部的且位于相邻的绕组磁柱和非绕组磁柱之间的区域设有至少一个第三类间隙,其中,第三类间隙的长度方向与磁性薄膜的难磁化方向平行,且第三类间隙沿第三类间隙的长度方向贯穿磁性薄膜的第一端部或第二端部,第三类间隙的宽度w3小于或等于100微米。
并且,在薄膜磁芯包括两层以上磁性薄膜的情况下,该两层以上磁性薄膜是层叠并且互相重合的,且每一层磁性薄膜上的所有第一类间隙的宽度之和是相等的。
以下,结合图1至图9(包括图9a和图9b)详细说明根据本申请实施例的薄膜电感的各种结构,以及不同结构的薄膜电感中磁通流通的情况。
继续参见图1a,在图1a所示的实施例中,展示了多个磁柱包括两个以上绕组磁柱和两个非绕组磁柱,且两个以上绕组磁柱位于两个非绕组磁柱之间的情况。
作为一个实施例,如图1a所示,该多个磁柱包括两个以上绕组磁柱(141和142)和两个非绕组磁柱(151和152),该两个以上绕组磁柱(141和142)位于两个非绕组磁柱(151和152)之间。
应理解,本申请实施例所描述的薄膜电感仅为示例性说明,不应对本申请构成任何限定,本申请也不应限于此。在多个磁柱包括两个以上绕组磁柱和一个非绕组磁柱的情况下解决磁芯饱和的原理,与本申请实施例所描述的多个磁柱包括两个以上绕组磁柱和两个非绕组磁柱的情况下解决磁芯饱和的原理是相似的。
在本申请实施例中,由于薄膜材料的加工特性,使得该磁性薄膜具有难于磁通流通的方向(为便于理解和说明,记作难磁化方向)和易于磁通流通的方向(为便于理解和说明,记作易磁化方向)。由于磁性薄膜的磁芯在难磁化轴方向不会很快饱和,因此在设计电感时,可以沿着难磁化轴的方向(即,难磁化方向难磁化方向)绕制线圈(或者说,绕组)。
可选地,第一端部和第二端部相互平行。
可选地,多个磁柱之间互相平行。
可选地,每一磁柱与薄膜磁芯的第一端部相垂直。
具体地,图1a所示的薄膜电感100包含两个绕组磁柱141和142、两个非绕组磁柱151和152。绕组磁柱141和142位于两个非绕组磁柱151和152之间。在本申请实施例中,该两个以上绕组磁柱140和一个以上外置磁柱150
的长度方向为磁性薄膜的难磁化方向,该两个以上绕组磁柱140和一个以上非绕组磁柱150沿磁性薄膜的易磁化方向排布。
其中,该薄膜磁芯110包括至少一层磁性薄膜,该至少一层磁性薄膜中的任意两层磁性薄膜的难磁化方向相互平行。如图1b所示,薄膜磁芯110由磁性薄膜101和绝缘层102交替层叠而成,层叠的数量和厚度可以根据电感量的要求确定。并且,在固定总的磁膜厚度的条件下,单层磁膜越薄,层数越多,所产生的涡流损耗越小。
每一层磁性薄膜中位于该第一端部120和该第二端部130的且位于相邻的两个绕组磁柱141和142之间的区域设有至少一个该第一类间隙170,其中,该第一类间隙170的长度方向与该磁性薄膜的难磁化方向平行,且该第一类间隙170沿该第一类间隙170的长度方向贯穿该磁性薄膜位于该第一端部120或该第二端部130的区域,该第一类间隙170的宽度w1小于或等于100微米(μm)。
具体而言,第一类间隙为位于第一端部或第二端部,且位于相邻两个绕组之间的区域的间隙。即,每一层磁性薄膜中位于第一端部且位于相邻的两个绕组磁柱之间的区域设置有至少一个第一类间隙,或者,每一层磁性薄膜中位于第二端部且位于相邻的两个绕组磁柱之间的区域设置有至少一个第一类间隙。也就是说,第一端部和第二端部可以分别设置有至少一个第一类间隙,也可以仅在第一端部或第二端部设置有至少一个第一类间隙。本申请对此并不限定。
在该薄膜磁芯包括两层以上磁性薄膜的情况下,该两层以上磁性薄膜是层叠并且互相重合的,且每一层磁性薄膜上的所有该第一类间隙的宽度之和是相等的。
也就是说,各层磁性薄膜的第一端部重合,各层磁性薄膜的第二端部重合、各层磁性薄膜的两个以上绕组磁柱重合,且各层磁性薄膜的一个以上非绕组磁柱重合。
其中,第一类间隙的宽度w1小于或等于100微米。也就是说,两个相邻的绕组磁柱间的间距大于100微米,才能在相邻的绕组磁柱间的区域设置第一类间隙。
可选地,第一类间隙的宽度w1小于或等于10微米。
通过仿真实验发现,第一类间隙的宽度w1小于或等于10微米时,能够
有效提高该磁性薄膜在易磁化方向的磁阻,对减小磁导率、避免易磁化方向的薄膜磁芯的磁芯饱和的效果最好。
可选的,每两个相邻的磁柱之间的间距相同。
可选地,该薄膜电感还包括与两个以上绕组磁柱的数目相同的绕组,每一绕组绕在一个绕组磁柱上,且所有绕组的绕制方向相同。
可选地,在该薄膜磁芯包括两层以上磁性薄膜的情况下,每层磁性薄膜均采用相同的材料。
作为示例而非限定,该薄膜材料为高频硅基铜-磁铁-铜(CMC)磁膜电感。
需要说明的是,以上所说的“重合”、“平行”和“相等”分别可以理解为“实质重合”、“实质平行”和“实质相等”,即,对于本领域的技术人员而言,是基于磁性薄膜加工过程中的公差范围和误差范围内的重合、平行和相等。相类似地,以上以及后文中所列举的第一类间隙、第二类间隙、第三类间隙、第四类间隙、第五类间隙的宽度也不应排除基于磁性薄膜加工过程中的公差范围和误差范围内的宽度,对于本领域的技术人员而言,是可以轻易想到的,因此,均落入本申请的保护范围内。
进一步地,在绕组磁柱上并联非绕组磁柱,相当于将绕组磁柱中的交流磁通引出一部分到非绕组磁柱上。绕组在非绕组磁柱上产生的直流磁通是相互加强的,而在绕组磁柱上产生的直流磁通是互相抵消的(磁通在绕组磁柱和非绕组磁柱中的磁通分布及方向会在后文中详细描述),因此,可以降低绕组磁柱区域的磁芯饱和的风险。
可选地,在该薄膜磁芯包括两层以上磁性薄膜的情况下,该两层以上磁性薄膜包括第一层磁性薄膜和第二层磁性薄膜,该第一层磁性薄膜内第一类间隙的数量与第二层磁性薄膜内第一类间隙的数量是相同的,并且第一层磁性薄膜内的第一类间隙与第二层磁性薄膜内的位置相对应的第一类间隙相重合。
可选地,在该薄膜磁芯包括两层以上磁性薄膜的情况下,该两层以上磁性薄膜中每一层磁性薄膜包含的该第一类间隙的数量是相同的,并且该两层以上磁性薄膜中任意两层磁性薄膜包含的位置相对应的第一类间隙均是互相重合的。
也就是说,各层磁性薄膜中的第一类间隙可以部分重合,也可以全部重
合。考虑到薄膜磁芯的制备中,每层磁性薄膜之间可以通过掩膜版来成型。具体地,在磁性薄膜成型过程中,透过掩膜版的图形部分在硅片上形成磁性薄膜的图形。掩膜版需要光刻加工,具有很高的精度。若各层磁性薄膜中第一类间隙的位置不同,需要通过不同的掩膜版模具来制作与第一类间隙位置相对应的不同的掩膜版,成本非常高。因此,可以将各层磁性薄膜中的第一类间隙设置在相同的位置,通过一个掩膜版的模具,就能够制作出与各层磁性薄膜相匹配的掩膜版,可以节省成本。
因此,根据本申请实施例的薄膜电感,通过在第一端部或第二端部(即,易磁化方向)的相邻绕组磁柱间的区域设置第一类间隙,使得易磁化方向上的磁导率降低,磁芯不易达到饱和。并在绕组磁柱上并联非绕组磁柱,将难磁化方向的绕组磁柱中的部分磁通引到非绕组磁柱中,从而减小了绕组磁柱中的磁芯饱和的风险。
可选地,在多个磁柱包括一个非绕组磁柱的情况下,一个非绕组磁柱中设置有至少一个第二类间隙;在多个磁柱包括两个非绕组磁柱的情况下,两个非绕组磁柱中设置有至少一个第二类间隙;其中,第二类间隙的宽度w2小于或等于1毫米。
也就是说,在非绕组磁柱中可以设置有第二类间隙,可以仅在其中一个非绕组磁柱设置至少一个第二类间隙,也可以分别在每个非绕组磁柱设置至少一个第二类间隙。
图2是根据本申请另一实施例的薄膜电感100的结构示意图。
可选地,如图2所示,每层磁性薄膜的每个非绕组磁柱中设置有至少一个第二类间隙180。该第二类间隙的宽度大于第一类间隙的宽度。
在本申请实施例中,通过在非绕组磁柱设置第二类间隙,通过控制对第二类间隙的宽度来控制磁阻的大小。
可选地,第二类间隙的宽度w2满足10微米≤w2≤50微米。
通过仿真实验证明,第二类间隙的宽度w2满足10微米≤w2≤50微米时,能够有效减小该磁性薄膜材料在难磁化轴方向的磁导率,使得磁芯在难磁化轴方向也不容易达到饱和。
可选地,在该薄膜磁芯包括两层以上磁性薄膜的情况下,该两层以上磁性薄膜包括第一层磁性薄膜和第二层磁性薄膜,第一层磁性薄膜内第二类间隙的数量与第二层磁性薄膜内第二类间隙的数量是相同的,并且第一层磁性
薄膜内的第二类间隙与第二层磁性薄膜内位置相对应的第二类间隙相重合。
可选地,在该薄膜磁芯包括两层以上磁性薄膜的情况下,该两层以上磁性薄膜中每一层磁性薄膜包含的第二类间隙的数量是相同的,并且该两层以上磁性薄膜中任意两层磁性薄膜包含的位置相对应的第二类间隙均是互相重合的。
也就是说,各层磁性薄膜中的第二类间隙可以是部分重合,也可以是全部重合。应理解,第二类间隙重合与第一类间隙重合同样便于掩膜版制作,可以节省成本。具体说明在上文中已经详细描述,为了简洁在,这里不再赘述。
因此,本申请实施例的薄膜电感,通过在非绕组磁柱中设置第二类间隙,以增大非绕组磁柱的磁阻,减小了磁导率,避免非绕组磁柱中的磁芯饱和。同时通过调节第二类间隙的大小可以控制磁阻的大小,进而调节磁通在各磁柱(包括绕组磁柱和非绕组磁柱)中的分布,以控制各绕组磁柱(即,各相电感)间的耦合系数。
可选地,在多个磁柱包括两个绕组以上绕组磁柱和两个非绕组磁柱的情况下,在位于第一端部和第二端部的且位于相邻的绕组磁柱和非绕组磁柱之间的区域设置有至少一个第三类间隙,该第三类间隙的宽度小于或等于1毫米。
图3是根据本申请又一实施例的薄膜电感100的结构示意图。
如图3所示,两个非绕组磁柱150包括第一磁柱151和第二磁柱152,第一磁柱151和第二磁柱152分别与第一端部120的两端相连,且第一磁柱151和第二磁柱152分别与第二端部130的两端相连,两个绕组磁柱140位于第一磁柱151和第二磁柱152之间。该两个绕组磁柱140包括第三磁柱141和第四磁柱142,第三磁柱141与第一磁柱151相邻,第四磁柱142与第二磁柱152相邻,位于第一端部120和第二端部130中的且位于第一磁柱151和第三磁柱141之间的区域设置有至少一个第五类间隙190,位于第一端部120或第二端部130的且位于第二磁柱152和第四磁柱142之间的区域设置有至少一个第五类间隙190。并且,位于第一端部120和第二端部130的且位于第三磁柱141和第四磁柱142之间的区域设置有至少一个第一类间隙170。其中,该第五类间隙的宽度小于或等于1毫米。
可选地,该第五类间隙的宽度w5满足10微米≤w5≤50微米。
通过仿真实验发现,第五类间隙的宽度w5满足10微米≤w5≤50微米,能够有效提高该磁性薄膜在易磁化轴方向的磁阻,对减小磁导率、避免易磁化方向的薄膜磁芯的磁芯饱和的效果最好。
可选地,在该薄膜磁芯包括两层以上磁性薄膜的情况下,该两层以上磁性薄膜是层叠并且互相重合的,且每一层磁性薄膜上的所有该第五类间隙的宽度之和是相等的。
也就是说,各层磁性薄膜的第一端部重合,各层磁性薄膜的第二端部重合、各层磁性薄膜的两个以上绕组磁柱重合,且各层磁性薄膜的一个以上非绕组磁柱重合。
可选地,在该薄膜磁芯包括两层以上磁性薄膜的情况下,该两层以上磁性薄膜包括第一层磁性薄膜和第二层磁性薄膜,该第一层磁性薄膜内第五类间隙的数量与第二层磁性薄膜内第五类间隙的数量是相同的,并且第一层磁性薄膜内的第五类间隙与第二层磁性薄膜内位置相对应的第五类间隙相重合。
可选地,在该薄膜磁芯包括两层以上磁性薄膜的情况下,该两层以上磁性薄膜中每一层磁性薄膜包含的该第五类间隙的数量是相同的,并且该两层以上磁性薄膜中任意两层磁性薄膜包含的位置相对应的第五类间隙均是互相重合的。
也就是说,各层磁性薄膜中的第五类间隙可以部分重合,也可以全部重合。应理解,第五类间隙重合与第一类间隙重合同样便于掩膜版制作,可以节省成本。具体说明在上文中已经详细描述,为了简洁在,这里不再赘述。
应理解,图3所示的第五类间隙与图2所示的第二类间隙的宽度可以是相同的,并且第五类间隙与第二类间隙的作用也相似,都是用于避免非绕组磁柱中的磁芯饱和,通过控制磁阻的大小,调节磁通在各磁柱(包括绕组磁柱和非绕组磁柱)中的分布,以控制各绕组磁柱(即,各相电感)间的耦合系数。“第二”和“第五”仅用于区分间隙所在的位置,不应对本申请构成任何限定。还应理解,该非绕组磁柱以及第一端部和第二端部中可以分别同时设置第二类间隙和第五类间隙。通过同时控制第二类间隙和第五类间隙的宽度来调节磁阻的大小,控制各相电感间的耦合系数。
以下,以图2中所示的薄膜电感为例,结合图4至图6(包括图6a和图6b)详细说明根据本申请实施例的薄膜电感在电源转换系统中的工作原理。
图4是根据本申请一实施例的电源转换系统300的示意图。
如图4所示,该电源转换系统300包括:直流(Direct Current,简称“DC”)电源310、至少一个开关单元320、至少一个电感单元330、滤波电容340和负载350。该电源转换系统的电路工作原理为多相交错并联降压(BUCK)电路。其中,两相电感两两耦合,形成一个电感单元,一个或多个电感单元并联输出给负载提供能量。两个串联的开关管(例如,开关管Q1和Q2)构成一个开关单元。各开关管通过驱动(Drive,简称“DRV”)与控制IC连接,以控制开关管的开通与关断。至少一个开关单元与至少一个电感单元一一对应,每个电感单元通过所对应的开关单元与直流电源相连。其中,该电感单元可以包括上文以及下文中所描述中的薄膜电感。
以下,为方便理解和说明,以一个电感单元(即,两相电感,例如图4中所示L1)为例,详细说明电感单元的工作原理。
第一相电源转换电路由第一开关单元(例如,开关管Q1、Q2组成的开关单元)以及第一电感单元(例如,电感L1)中的一相组成。开关管Q1导通时,直流电流通过电感单元中与开关管Q1连接的一相,电感电流开始上升,并经电容C滤波后给负载R供电;当Q1关断后,Q2开始导通,滤波电容上的电压反向加在电感上,电感的电流开始下降,完成BUCK转换电路中的续流部分。同理,第二相电源转换电路由开关管Q3、Q4以及电感单元L1中的另外一相组成。开关管Q3导通时,直流电流通过电感单元中与开关管Q4连接的另外一相,电感电流开始上升,并经电容C滤波后给负载R供电;当Q3关断后,Q4开始导通,滤波电容上的电压反向加在电感上,电感的电流开始下降,完成BUCK转换电路中的续流部分。上述的两相BUCK电源转换部分Q1、Q2、Q3、Q4以及电感单元L1组成一个电源转换单元。以此类推,Q2n-3、Q2n-2、Q2n-1、Q2n以及电感单元Lm组成一个电源转换单元。根据输出负载对电流的要求可以采用单个或者多个电源转换单元并联的方式来实现。
应理解,以上列举的多相交错并联降压(BUCK)电路仅为示例性说明,不应对本申请构成任何限定,例如,本申请实施例的薄膜电感还可以应用于多相交错并联升压(Boost)电路,本申请对此并未特别限定。
图5是电感单元L1正常工作时的电流波形图。如图5所示,IL1为第一相电感电流波形,IL2为第二相电感电流波形。IL1与IL2大小相同,相位相差
180°。在每相电感电流中既包含直流成分Idc,又包含交流成分(即,纹波电流)ΔI。
图6a和图6b是电感单元L1正常工作时在磁柱中产生的磁通的示意图。
图6a是电感单元L1中通过直流成分Idc时在磁柱中产生的磁通的示意图。如图6a所示,该电感单元L1中第一磁柱401、第二磁柱410、第三磁柱405和第四磁柱408沿易磁化方向平行排布,第一类间隙407位于第一端部,且处于第三磁柱405和第四磁柱之间的区域。第一绕组406绕制在第三磁柱405上,第二绕组409绕制在第四磁柱408上。第二类间隙402位于第一磁柱401上,第二类间隙411位于第二磁柱410上。当第一绕组406和第二绕组409中通过方向相同的直流电流(例如,图5中Idc)时,第一绕组406在磁芯中产生的直流磁通403在磁柱中如图6a中所示方向流通。可以看出,在其绕制的磁柱405上产生的直流磁通与其它3个磁芯柱方向相反。第二绕组409在磁芯中产生的直流磁通404在所述磁芯柱中如图6a中所示方向流通。可以看出,在其绕制的磁柱408上产生的磁通与其它3个磁芯柱方向相反。由于两个绕组的线圈匝数相同,故在两个磁柱上产生的磁通的大小相同。具体地,第一绕组406和第二绕组409产生的直流磁通在第三磁柱405和第四磁柱408上方向相反,由于其大小相同,可以完全抵消;第一绕组406和第二绕组409产生的直流磁通在第一磁柱401和第二磁柱410上的直流磁通方向相同,相互加强。因此,需要通过第二类间隙402和411来增大此路上的磁阻,防止第一磁柱401和第二磁柱410上的磁芯饱和。同时,可以通过调节第二类间隙402和411的大小,可以控制直流磁通流入各磁柱的磁通量,即调节各磁柱间的磁通分配比例,从而控制各磁柱间的互感系数,最终控制两相电感间的耦合系数。
图6b是电感单元L1中通过交流成分ΔI时在磁柱中产生的磁通的示意图。如图6b所示,该电感单元中第一磁柱451、第二磁柱460、第三磁柱455和第四磁柱458平行排布,第一类间隙457位于第三磁柱455、第四磁柱458与第一端部交点之间的任意位置。第一绕组456绕制在第三磁柱455上,第二绕组459绕制在第四磁柱458上。第二类间隙452位于第一磁柱451上,第二间隙461位于第二磁柱460上。当第一绕组456和第二绕组459中通过方向相同的交流电流(例如,图5中ΔI)时,第一绕组456在磁芯中产生的交流磁通453在磁柱中如图6b中所示方向流通。可以看出,在其绕制的
磁柱455上产生的直流磁通与其它3个磁芯柱方向相反。第二绕组409在磁芯中产生的直流磁通404在所述磁芯柱中如图6a中所示方向流通。可以看出,在其绕制的磁柱408上产生的磁通与其它3个磁芯柱方向相反。由于两个绕组的线圈匝数相同,故在两个磁柱上产生的磁通的大小相同。具体地,第一绕组456和第二绕组459产生的交流磁通在第三磁柱455和第四磁柱458上方向相同,由于其大小相同,相互加强;在第一磁柱451和第二磁柱460上的交流磁通方向相反,相互抵消。
进一步地,由图6(包括图6a和图6b)可以看出,在第三磁柱与第四磁柱之间的第一端部和第二端部也同时存在直流磁通相互抵消、交流磁通相互加强的情况,可以通过图6a中所示的第一类间隙407或图6b中所示的第一类间隙457来增大磁阻,降低磁导率,从而可以抵抗交流磁通叠加可能引起的磁芯饱和。需要说明的是,图5所示的电感单元L1正常工作时的电流波形图中的直流成分和交流成分是同时通过绕组的,不同成分的电流所产生的磁通分别如图6a和图6b所示。也就是说,电感单元L1在各磁柱中的磁通可以理解为图6a和图6b中磁通的叠加。
并且,在该电流波形图中,直流成分占较大比例。因此,在图6a和图6b示出的磁通的示意图中,直流磁通的比重较大。而直流磁通在绕组磁柱中相互抵消,使得绕组磁柱的磁芯的有效面积得以减小,即减小电感的体积(面积、高度)。同时,将相互加强的直流磁通引到了非绕组磁柱中,并通过非绕组磁柱中的第二类间隙来避免非绕组磁柱中的磁芯饱和。
更进一步地,该第一类间隙还可以用于改善多相电感间的不均流问题。
具体而言,由于在实际工作中,电流在各电感单元的两相中并不是完全对称的。在电源工作的某一时刻,电流可能会有跳变,即,产生了不对称的电流。也就是说,两相中的电流不能完全抵消。不能完全抵消的那一部分电流会沿着最短路径流通,在绕组所绕制的两个磁柱(即,第三磁柱和第四磁柱)中形成环路,也就是短路。而磁柱的磁阻很小,就很容易造成磁芯的饱和。通过在第三磁柱和第四磁柱之间的第一端部或第二端部设置第一类间隙,可以增大磁阻,降低磁导率,避免跳变电流造成的磁芯饱和。
应理解,图1至图6(包括图6a和图6b)所示的非绕组磁柱与绕阻磁柱的数量和排布,以及磁通在各磁柱中的分布仅为示例性说明,不应对本申请构成任何限定。例如,非绕组磁柱也可以为一个,或者,非绕组磁柱也可
以处于绕组磁柱之间,本申请对此并未特别限定。
图7是根据本申请再一实施例的薄膜电感600的结构示意图。
可选地,在本申请实施例中,该N可以取值为大于2的自然数。如图7所示,该薄膜电感600包括第一端部、第二端部、两个非绕组磁柱(即,第一磁柱602和第二磁柱611)、三个绕组磁柱(即,第三磁柱604、第四磁柱607和第五磁柱609)。其中,第一磁柱602上设置有第二类间隙601,第二磁柱611上设置有第二类间隙612,第三磁柱604上绕制有绕组603,第四磁柱607上绕制有绕组606,第五磁柱609上绕制有绕组610。第一端部中位于第三磁柱604和第四磁柱607之间的区域设置有第一类间隙605。第一端部中位于第四磁柱607和第五磁柱609之间的区域设置有第一类间隙608。
也就是说,在本申请实施例中,多个磁柱包括三个绕组磁柱和两个非绕组磁柱。即,图4中所示的电感单元为三相电感,其中,三根绕组分别绕制在该三个绕组磁柱上,绕组数目相同,且绕制方向相同。即,三相电感电流大小相同,相位两两相差120°。
应理解,图7所示的薄膜电感中磁通的分布图与图6(包括图6a和图6b)在示出的磁通分布图相似,为了简洁,这里不再赘述。
因此,本申请实施例的薄膜电感,通过在第一端部或第二端部(即,易磁化方向)的相邻绕组磁柱间的区域设置第一类间隙,使得易磁化方向上的磁导率降低,磁芯不易达到饱和。并在绕组磁柱上并联非绕组磁柱,将难磁化方向上的部分磁通引到非绕组磁柱中。并在非绕组磁柱上设置第二类间隙,以增大非绕组磁柱的磁阻,减小了磁导率,避免非绕组磁柱中的磁芯饱和。同时通过调节各类间隙的大小可以控制磁阻的大小,进而调节磁通在各磁柱(包括绕组磁柱和非绕组磁柱)中的分布,以控制各相电感间的耦合系数。
图8是根据本申请再一实施例的薄膜电感700的结构示意图。
作为一个实施例,该薄膜电感700包括薄膜磁芯,薄膜磁芯包括多个磁柱、第一端部和与第一端部相对的第二端部。其中,多个磁柱之间相隔离,且呈杆状。该多个磁柱包括两个绕组磁柱和一个以上非绕组磁柱。如图8所示,该多个磁柱包括绕组磁柱(包括第三磁柱702、第四磁柱707)和非绕组磁柱705,第三磁柱702、第四磁柱707分别与第一端部709的两端相接触,且第三磁柱702、第四磁柱707分别与第二端部710的两端相接触,非
绕组磁柱705处于第三磁柱702和第四磁柱707之间。
该薄膜磁芯包括至少一层磁性薄膜,每一层磁性薄膜中位于第一端部和第二端部的且位于相邻的绕组磁柱和非绕组磁柱之间的区域设有至少一个所述第三类间隙,其中,第三类间隙的长度方向与磁性薄膜的难磁化方向平行,且第三类间隙沿第三类间隙的长度方向贯穿磁性薄膜位于第一端部或第二端部的区域。其中,该第三类间隙的宽度w3小于或等于100微米。
在该薄膜磁芯包括两层以上磁性薄膜的情况下,该两层以上磁性薄膜是层叠并且互相重合的,且每一层磁性薄膜上的所有第三类间隙的宽度之和是相等的。
可选地,每一层磁性薄膜中位于第一端部或第二端部的且位于相邻的绕组磁柱和非绕组磁柱之间的区域设有两个以上的第三类间隙。
也就是说,第三类间隙可以为一个,也可以为多个,通过单独控制一个或同时控制多个第三类间隙的宽度,可以调节磁阻的大小,进而控制各磁柱间的磁通分布,以控制各相电感间的耦合系数。
可选地,第三类间隙的宽度w3小于或等于10微米。
通过仿真实验发现,第三类间隙的宽度w1小于或等于10微米时,对减小磁导率、避免易磁化方向的薄膜磁芯的磁芯饱和的效果最好。
需要说明的是,以上所列举的第三类间隙的宽度是沿与第三类间隙的长度方向垂直的方向的距离,即,可以理解为相对的两个端面的面间距。
可选地,第一端部与第二端部相互平行。
可选地,该多个磁柱之间互相平行。
可选地,每一磁柱与薄膜磁芯的第一端部相垂直。
可选地,每两个相邻的磁柱之间的间距相同。
可选地,该薄膜电感还包括与至少两个绕组磁柱的数目相同的绕组,每一绕组绕在一个绕组磁柱上,且所有绕组的绕制方向相同。
可选地,在薄膜磁芯包括两层以上磁性薄膜的情况下,每层磁性薄膜均采用相同的材料。
进一步地,在绕组磁柱上并联非绕组磁柱,相当于将绕组磁柱中的交流磁通引出一部分到非绕组磁柱上。绕组在非绕组磁柱上产生的直流磁通是相互加强的,而在绕组磁柱上产生的直流磁通是互相抵消的(磁通在绕组磁柱和非绕组磁柱中的磁通分布及方向会在后文中详细描述),因此,可以降低
绕组磁柱区域的磁芯饱和的风险。
可选地,在该薄膜磁芯包括两层以上磁性薄膜的情况下,该两层以上磁性薄膜包括第一层磁性薄膜和第二层磁性薄膜,该第一层磁性薄膜内第一类间隙的数量与第二层磁性薄膜内第三类间隙的数量是相同的,并且第一层磁性薄膜内第三类间隙与第二层磁性薄膜内位置相对应的第三类间隙相重合。
可选地,在该薄膜磁芯包括两层以上磁性薄膜的情况下,该两层以上磁性薄膜中每一层磁性薄膜包含的该第三类间隙的数量是相同的,并且该两层以上磁性薄膜中任意两层磁性薄膜包含的位置相对应的该第三类间隙均是互相重合的。
也就是说,各层磁性薄膜中的第三类间隙可以部分重合,也可以全部重合。应理解,第三类间隙重合与第一类间隙重合同样便于掩膜版制作,可以节省成本。具体说明在上文中已经详细描述,为了简洁在,这里不再赘述。
可选地,在该多个磁柱包括一个非绕组磁柱的情况下,该一个非绕组磁柱中设置有至少一个第四类间隙;在该多个磁柱包括两个非绕组磁柱的情况下,该两个非绕组磁柱中设置有至少一个第四类间隙;其中,该第四类间隙的宽度w4小于或等于1毫米。
通过在非绕组磁柱中设置第四类间隙,以增大非绕组磁柱的磁阻,减小了磁导率,避免非绕组磁柱中的磁芯饱和。同时通过调节各类间隙的大小可以控制磁阻的大小,进而调节磁通在各磁柱(包括绕组磁柱和非绕组磁柱)中的分布,以控制各相电感间的耦合系数。
可选地,第四类间隙的宽度w2满足10微米≤w2≤50微米。
通过仿真实验发现,第四类间隙的宽度w2满足10微米≤w2≤50微米时,对减小磁导率、避免非绕组磁柱中的磁芯饱和以及控制耦合系数的效果最好。
可选地,在薄膜磁芯包括两层以上磁性薄膜的情况下,两层以上磁性薄膜包括第一层磁性薄膜和第二层磁性薄膜,第一层磁性薄膜内第四类间隙的数量与第二层磁性薄膜内第四类间隙的数量是相同的,并且第一层磁性薄膜内第四类间隙与第二层磁性薄膜内位置相对应的第四类间隙相重合。
可选地,在薄膜磁芯包括两层以上磁性薄膜的情况下,两层以上磁性薄膜中每一层磁性薄膜包含的第四类间隙的数量是相同的,并且两层以上磁性薄膜中任意两层磁性薄膜包含的位置相对应的第四类间隙均是互相重合的。
也就是说,各层磁性薄膜中的第四类间隙可以是部分重合,也可以是全部重合。应理解,第四类间隙重合与第一类间隙重合同样便于掩膜版制作,可以节省成本。具体说明在上文中已经详细描述,为了简洁在,这里不再赘述。
以下,结合图9(包括图9a和图9b)详细说明根据本申请再一实施例的薄膜电感用于电源转换系统中正常工作时磁柱中产生的磁通的分布。
图9a和图9b是根据本申请再一实施例的磁膜电感用于电源转换系统中正常工作时磁柱中产生磁通分布的示意图。也就是说,该磁膜电感可以理解为图4中的电感单元L1,电感单元L1正常工作时的电流波形图如图5所示。
如图9a所示,图9a是电感单元中通过直流成分Idc时在磁柱中产生的磁通的示意图。如图9a所示,该电感单元L1中绕组磁柱(包括第三磁柱801、第四磁柱802)和非绕组磁柱803沿易磁化方向平行排布。第一类间隙808位于第一端部,且处于第三磁柱801和非绕组磁柱803之间的区域,第一类间隙809位于第一端部,且处于第四磁柱802和非绕组磁柱803之间的区域。第一绕组804绕制在第三磁柱801上,第二绕组806绕制在第四磁柱802上。第二间隙810位于非绕组磁柱803上。当第一绕组804和第二绕组806中通过方向相同的直流电流(例如,图5中Idc)时,第一绕组804在磁芯中产生的直流磁通805在磁柱中如图9a中所示方向流通。可以看出,在其绕制的第三磁柱801上产生的磁通与其它2个磁柱方向相反。第二绕组806在磁芯中产生的直流磁通807在所述磁芯柱中如图9a中所示方向流通。可以看出,在其绕制的第四磁柱802上产生的磁通与其它2个磁柱方向相反。由于两个绕组的线圈匝数相同,故在两个磁柱上产生的磁通的大小相同。具体地,第一绕组804和第二绕组806产生的直流磁通在第一端部和第二端部的直流磁通方向相反,且大小相同,可以完全抵消;第一绕组804与第二绕组806产生的直流磁通在非绕组磁柱803上方向相同,且大小相同,相互加强。因此,需要通过第四类间隙810来增大此路上的磁阻,防止非绕组磁柱803上的磁芯饱和。同时,可以通过调节第四类间隙810的大小,控制直流磁通流入各磁柱的磁通量,即调节各磁柱间的磁通分配比例,从而控制各磁柱间的互感系数,最终控制两相电感间的耦合系数。
图9b是电感单元中通过交流成分ΔI时在磁柱中产生的磁通的示意图。如图9b所示,该电感单元L1中绕组磁柱(包括第三磁柱801、第四磁柱802)
和非绕组磁柱803平行排布。第一间隙808位于第一端部,且处于第三磁柱801和非绕组磁柱803之间的区域,第一间隙809位于第一端部,且处于第四磁柱802和非绕组磁柱803与之间的区域。第一绕组804绕制在第三磁柱801上,第二绕组806绕制在第四磁柱802上。第二间隙810位于非绕组磁柱803上。当第一绕组804和第二绕组806中通过方向相同的交流电流(例如,图5中ΔI)时,第一绕组804在磁芯中产生的交流磁通805在磁柱中如图9a中所示方向流通。可以看出,在其绕制的第三磁柱801上产生的磁通与其它2个磁柱方向相反。第二绕组806在磁芯中产生的交流磁通807在所述磁芯柱中如图9b中所示方向流通。可以看出,在其绕制的磁柱802上产生的磁通与其它2个磁柱方向相反。由于两个绕组的线圈匝数相同,故在两个磁柱上产生的磁通的大小相同。具体地,第一绕组804与第二绕组806产生的交流磁通在非绕组磁柱803上方向相反,且大小相同,可以完全抵消;第一绕组804和第二绕组806产生的交流磁通在第一端部和第二端部的交流磁通方向相同,相互加强。因此,需要通过第一间隙808和第三类间隙809来增大此路上的磁阻,防止易磁化方向的第一端部和第二端部上的磁芯饱和。
在本申请实施例中,第三类间隙设置在两相电感间的易磁化方向上,可以增大磁阻,降低磁导率,从而避免易磁化方向的磁芯饱和。并将绕组磁柱中的直流磁通引到非绕组磁柱中,在非绕组磁柱上设置第四类间隙,增大磁阻,降低磁导率,避免难磁化方向的磁芯饱和。同时,通过调节各类间隙的大小可以控制磁阻的大小,进而调节磁通在各磁柱(包括绕组磁柱和非绕组磁柱)中的分布,以控制两相电感间的耦合系数。
应理解,以上所列举的第一类间隙、第二类间隙、第三类间隙、第四类间隙以及第五类间隙的宽度均可以理解为与各类间隙的长度方向垂直的方向的距离,即,可以理解为间隙的相对的两个端面的面间距。
需要说明的是,各类间隙的端面可以为垂直于磁通流通方向的端面,也可以为倾斜于磁通流通方向的端面。该端面平整端面、台阶端面、斜坡端面或者其他结构的端面,本申请对此并未特别限定。只要各类间隙分别为贯穿所在位置(例如,第一端部、第二端部或者非绕组磁柱)的间隙,均落入本申请的保护范围内。
以上,结合图1至图9(包括图9a和图9b)详细说明了根据本申请实
施例的薄膜电感。以下,结合图10和图11(图11a至图11e)详细说明根据本申请实施例的薄膜电感的制备方法。
图10是根据本申请一实施例的薄膜电感的制备方法900的示意性流程图。如图10所示,该制备方法900包括:
S910,形成两个以上下层绕组;
S920,形成薄膜磁芯,该薄膜磁芯包括多个磁柱、第一端部和与第一端部相对的第二端部,该多个磁柱之间是相隔离的,且该多个磁柱均呈杆状。该多个磁柱中每个磁柱的一端与第一端部相接触,另一端与第二端部相接触。该多个磁柱包括两个以上绕组磁柱和一个以上非绕组磁柱;该薄膜磁芯包括至少一层磁性薄膜,每一层磁性薄膜中位于第一端部和第二端部的且位于相邻的两个绕组磁柱之间的区域设有至少一个第一类间隙,其中,该第一类间隙的长度方向与磁性薄膜的难磁化方向平行,且该第一类间隙沿长度方向贯穿该磁性薄膜的第一端部或第二端部,该第一类间隙的宽度w1小于或等于100微米;或,每一层磁性薄膜中位于该第一端部和该第二端部的且位于相邻的绕组磁柱和非绕组磁柱之间的区域设有至少一个第三类间隙,其中,该第三类间隙的长度方向与该磁性薄膜的难磁化方向平行,且该第三类间隙沿该第三类间隙的长度方向贯穿该磁性薄膜的第一端部或第二端部,该第三类间隙的宽度w3小于或等于100微米;在该薄膜磁芯包括两层以上磁性薄膜的情况下,该两层以上磁性薄膜是层叠并且互相重合的,且每一层磁性薄膜上的所有第一类间隙的宽度之和是相等的;
S930,形成两个以上上层绕组,该两个以上下层绕组与两个以上下层绕组一一对应,该两个以上下层绕组与该两个以上上层绕组构成两个以上绕组,该两个以上绕组分别绕制在两个以上绕组磁柱上,该两个以上绕组与两个以上绕组磁柱一一对应,且每个绕组的绕制方向相同。
以下,结合图11a至图11e详细说明根据本申请一实施例的薄膜电感的制备方法。
图11a至图11e是根据本申请一实施例的薄膜电感100的制备方法的示意图。
首先在硅基板上形成两个以上下层绕组。如图11a所示,在硅基板的硅基体上沉积一层钝化层,该钝化层可以为二氧化硅、氮化硅或者其他绝缘的有机材料涂层,且钝化层完全覆盖硅基体10的表面。在钝化层上,通过气
相沉积工艺在整个硅晶片上沉积导电种子层。接下来光致抗刻蚀材料层被沉积和刻蚀,以形成覆盖种子层的部分的光致抗刻蚀掩膜。
其后,可以采用标准的电镀工艺技术,将下层电感绕组部分11、12电镀在种子层上,形成电感单元中两相电感绕组的下层绕组部分。在完成电镀之后,可以去除光致抗蚀掩膜,并通过反应离子刻蚀(Reactive Ion Etching,简称“RIE”)或其它合适的刻蚀方法来去除残留的种子层。
其后,再沉积一层绝缘材料层,覆盖下层绕组,同时需要淹没过绕组一定距离,以保证绕组与磁芯的绝缘距离。
接着形成薄膜磁芯13,如图11b所示,图11b为制作完磁膜后的硅晶片。为了得到更优的电感性能,一般由多层磁膜构成。磁膜的形成可以是化学气相沉积(Chemical Vapor Deposition,简称“CVD”)、物理气相沉积(Physical Vapor Deposition,简称“PVD”)、原子层沉积(Atomic Layer Deposition,简称“ALD”)等实现方式,每层磁膜间沉积有绝缘层,该绝缘层的材料可以是二氧化硅、氮化硅或者其他绝缘的有机材料涂层,实现每层磁膜间的隔离。为了减小磁膜的涡流损耗,磁膜的厚度可以控制在1um以下。
应注意,在磁膜溅射或电镀沉积过程中,需要外加磁场来控制磁性薄膜材料的各向异性,外加磁场方向需沿着易磁化轴方向。
其后形成两个以上上层绕组。图11c是两个以上上层绕组与两个以上下层绕组间的连接过孔14,通过该连接过孔将如图11d所示的两个以上上层绕组15与图11a所示的两个以上下层绕组连接起来,形成绕制在磁芯柱上的如图11e所示的两个以上绕组。
其中,图11d所示的两个以上上层绕组的加工工艺与图11a所示的两个以上下层绕组的加工工艺基本相同,可以采用标准电镀工艺。
因此,本申请实施例的薄膜电感的制备方法,通过在易磁化方向设置第一类间隙或第三类间隙,使得易磁化方向上的磁导率降低,磁芯不易达到饱和,并在绕组磁柱上并联非绕组磁柱,将难磁化方向的绕组磁柱中的部分磁通引到非绕组磁柱中。并在非绕组磁柱上设置第二类间隙或第四类间隙,以增大非绕组磁柱的磁阻,减小了磁导率,避免非绕组磁柱中的磁芯饱和。同时通过调节各类间隙的大小可以控制磁阻的大小,进而调节磁通在各磁柱中的分布,以控制各相电感间的耦合系数。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味
着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、
随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (18)
- 一种薄膜电感,其特征在于,所述薄膜电感包括薄膜磁芯,所述薄膜磁芯包括多个磁柱、第一端部和与所述第一端部相对的第二端部,所述多个磁柱之间是相隔离的,所述多个磁柱均呈杆状,所述多个磁柱中每个磁柱的一端与所述第一端部相接触,另一端与所述第二端部相接触;所述多个磁柱包括两个以上绕组磁柱和一个非绕组磁柱,所述非绕组磁柱位于所述两个以上绕组磁柱的一侧;或者,所述多个磁柱包括两个以上绕组磁柱和两个非绕组磁柱,所述两个以上绕组磁柱位于所述两个非绕组磁柱之间;所述薄膜磁芯包括至少一层磁性薄膜,每一层磁性薄膜中位于所述第一端部和所述第二端部的且位于相邻的两个绕组磁柱之间的区域设有至少一个所述第一类间隙,其中,所述第一类间隙的长度方向与所述磁性薄膜的难磁化方向平行,且所述第一类间隙沿所述第一类间隙的长度方向贯穿所述磁性薄膜位于所述第一端部或所述第二端部的区域,所述第一类间隙的宽度w1小于或等于100微米;在所述薄膜磁芯包括两层以上磁性薄膜的情况下,所述两层以上磁性薄膜是层叠并且互相重合的,且每一层磁性薄膜上的所有所述第一类间隙的宽度之和是相等的。
- 根据权利要求1所述的薄膜电感,其特征在于,所述第一类间隙的宽度w1小于或等于10微米。
- 根据权利要求1或2所述的薄膜电感,其特征在于,所述第一端部与所述第二端部相互平行。
- 根据权利要求1至3任一项所述的薄膜电感,其特征在于,所述多个磁柱之间互相平行。
- 根据权利要求4所述的薄膜电感,其特征在于,每一磁柱与所述薄膜磁芯的第一端部相垂直。
- 根据权利要求1至5任一项所述的薄膜电感,其特征在于,每两个相邻的磁柱之间的间距相同。
- 根据权利要求1至6任一项所述的薄膜电感,其特征在于,所述薄膜电感还包括与所述两个以上绕组磁柱的数目相同的绕组,每一绕组绕在一个绕组磁柱上,且所有绕组的绕制方向相同。
- 根据权利要求1至7任一项所述的薄膜电感,其特征在于,在所述 薄膜磁芯包括两层以上磁性薄膜的情况下,每层磁性薄膜均采用相同的材料。
- 根据权利要求1至8任一项所述的薄膜电感,其特征在于,在所述薄膜磁芯包括两层以上磁性薄膜的情况下,所述两层以上磁性薄膜包括第一层磁性薄膜和第二层磁性薄膜,所述第一层磁性薄膜内所述第一类间隙的数量与所述第二层磁性薄膜内所述第一类间隙的数量是相同的,并且所述第一层磁性薄膜内的所述第一类间隙与所述第二层磁性薄膜内位置相对应的所述第一类间隙相重合。
- 根据权利要求1至8任一项所述的薄膜电感,其特征在于,在所述薄膜磁芯包括两层以上磁性薄膜的情况下,所述两层以上磁性薄膜中每一层磁性薄膜包含的所述第一类间隙的数量是相同的,并且所述两层以上磁性薄膜中任意两层磁性薄膜包含的位置相对应的所述第一类间隙均是互相重合的。
- 根据权利要求1至10任一项所述的薄膜电感,其特征在于,在所述多个磁柱包括一个非绕组磁柱的情况下,所述一个非绕组磁柱中设置有至少一个第二类间隙;在所述多个磁柱包括两个非绕组磁柱的情况下,所述两个非绕组磁柱中设置有至少一个第二类间隙;其中,所述第二类间隙的宽度w2小于或等于1毫米。
- 根据权利要求11所述的薄膜电感,其特征在于,所述第二类间隙的宽度w2满足10微米≤w2≤50微米。
- 根据权利要求11或12所述的薄膜电感,其特征在于,在所述薄膜磁芯包括两层以上磁性薄膜的情况下,所述两层以上磁性薄膜包括第一层磁性薄膜和第二层磁性薄膜,所述第一层磁性薄膜内所述第二类间隙的数量与所述第二层磁性薄膜内所述第二类间隙的数量是相同的,并且所述第一层磁性薄膜内的所述第二类间隙与所述第二层磁性薄膜内位置相对应的的所述第二类间隙相重合。
- 根据权利要求11或12所述的薄膜电感,其特征在于,在所述薄膜磁芯包括两层以上磁性薄膜的情况下,所述两层以上磁性薄膜中每一层磁性薄膜包含的所述第二类间隙的数量是相同的,并且所述两层以上磁性薄膜中任意两层磁性薄膜包含的位置相对应的所述第一类间隙均是互相重合的。
- 一种薄膜电感,其特征在于,所述薄膜电感包括薄膜磁芯,所述薄膜磁芯包括多个磁柱、第一端部和与所述第一端部相对的第二端部,所述多个磁柱之间是相隔离的,所述多个磁柱均呈杆状,所述多个磁柱中每个磁柱的一端与所述第一端部相接触,另一端与所述第二端部相接触;所述多个磁柱包括两个绕组磁柱和一个以上非绕组磁柱,所述一个以上非绕组磁柱位于所述两个绕组磁柱之间;所述薄膜磁芯包括至少一层磁性薄膜,每一层磁性薄膜中位于所述第一端部和所述第二端部的且位于相邻的绕组磁柱和非绕组磁柱之间的区域设有至少一个所述第三类间隙,其中,所述第三类间隙的长度方向与所述磁性薄膜的难磁化方向平行,且所述第三类间隙沿所述第三类间隙的长度方向贯穿所述磁性薄膜位于所述第一端部或所述第二端部的区域,所述第三类间隙的宽度w3小于或等于100微米;在所述薄膜磁芯包括两层以上磁性薄膜的情况下,所述两层以上磁性薄膜是层叠并且互相重合的,且每一层磁性薄膜上的所有所述第三类间隙的宽度之和是相等的。
- 根据权利要求15所述的薄膜电感,其特征在于,每一层磁性薄膜中位于所述第一端部或所述第二端部的且位于相邻的绕组磁柱和非绕组磁柱之间的区域设有两个以上所述第三类间隙。
- 一种薄膜电感,其特征在于,所述薄膜电感包括薄膜磁芯,所述薄膜磁芯包括多个磁柱、第一端部和与所述第一端部相对的第二端部,所述多个磁柱之间是相隔离的,所述多个磁柱均呈杆状,所述多个磁柱中每个磁柱的一端与所述第一端部相接触,另一端与所述第二端部相接触,所述多个磁柱包括两个以上绕组磁柱和一个以上非绕组磁柱;所述薄膜磁芯包括至少一层磁性薄膜,每一层磁性薄膜中位于所述第一端部和所述第二端部的且位于相邻的两个绕组磁柱之间的区域设有至少一个第一类间隙,其中,所述第一类间隙的长度方向与所述磁性薄膜的难磁化方向平行,且所述第一类间隙沿所述第一类间隙的长度方向贯穿所述磁性薄膜的第一端部或第二端部,所述第一类间隙的宽度w1小于或等于100微米;或,每一层磁性薄膜中位于所述第一端部和所述第二端部的且位于相邻的绕组磁柱和非绕组磁柱之间的区域设有至少一个第三类间隙,其中,所述第三类间隙的长度方向与所述磁性薄膜的难磁化方向平行,且所述第三类间 隙沿所述第三类间隙的长度方向贯穿所述磁性薄膜的第一端部或第二端部,所述第三类间隙的宽度w3小于或等于100微米;在所述薄膜磁芯包括两层以上磁性薄膜的情况下,所述两层以上磁性薄膜是层叠并且互相重合的,且每一层磁性薄膜上的所有所述第一类间隙的宽度之和是相等的。
- 一种电源转换电路,其特征在于,包括:直流电源、至少一个开关单元和至少一个电感单元,所述至少一个开关单元与所述至少一个电感单元一一对应,每个电感单元通过所对应的开关单元与所述直流电源相连,其中,所述至少一个电感单元中的每个电感单元包括所述权利要求1至17中任一项所述的薄膜电感。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16899255.0A EP3346476B1 (en) | 2016-04-20 | 2016-11-23 | Thin film inductor and power conversion circuit |
EP20170717.1A EP3761327A1 (en) | 2016-04-20 | 2016-11-23 | Thin film inductor and power conversion circuit |
US16/015,930 US11532420B2 (en) | 2016-04-20 | 2018-06-22 | Thin film inductor and power conversion circuit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610248079.9A CN105761880B (zh) | 2016-04-20 | 2016-04-20 | 一种薄膜电感和电源转换电路 |
CN201610248079.9 | 2016-04-20 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/015,930 Continuation US11532420B2 (en) | 2016-04-20 | 2018-06-22 | Thin film inductor and power conversion circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017181673A1 true WO2017181673A1 (zh) | 2017-10-26 |
Family
ID=56325378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/106889 WO2017181673A1 (zh) | 2016-04-20 | 2016-11-23 | 一种薄膜电感和电源转换电路 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11532420B2 (zh) |
EP (2) | EP3761327A1 (zh) |
CN (1) | CN105761880B (zh) |
WO (1) | WO2017181673A1 (zh) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105761880B (zh) * | 2016-04-20 | 2017-12-29 | 华为技术有限公司 | 一种薄膜电感和电源转换电路 |
WO2018116438A1 (ja) * | 2016-12-22 | 2018-06-28 | 三菱電機株式会社 | 電力変換装置 |
CN106910602B (zh) * | 2017-01-24 | 2019-05-10 | 华为机器有限公司 | 一种薄膜电感和电源转换电路 |
CN107146690B (zh) | 2017-03-03 | 2019-11-05 | 华为机器有限公司 | 一种薄膜电感、电源转换电路和芯片 |
KR102004805B1 (ko) | 2017-10-18 | 2019-07-29 | 삼성전기주식회사 | 코일 전자 부품 |
WO2020210966A1 (zh) * | 2019-04-16 | 2020-10-22 | 华为技术有限公司 | 一种磁膜电感、裸片以及电子设备 |
WO2020215293A1 (zh) * | 2019-04-25 | 2020-10-29 | 华为技术有限公司 | 一种供电电路和供电控制方法 |
JP7107285B2 (ja) | 2019-07-12 | 2022-07-27 | 株式会社村田製作所 | 磁性構造体および磁性構造体の製造方法 |
CN110634655B (zh) * | 2019-08-14 | 2021-05-14 | 华为技术有限公司 | 磁集成器件、功率变换电路、充电器及电动车辆 |
CN114586117A (zh) * | 2019-11-26 | 2022-06-03 | 华为技术有限公司 | 一种电感及其制作方法、电压转换电路以及电子设备 |
JP7173083B2 (ja) * | 2020-04-17 | 2022-11-16 | 株式会社村田製作所 | コイル部品およびその製造方法 |
CN112466598B (zh) * | 2020-11-17 | 2021-09-24 | 电子科技大学 | 一种闭合磁路片上四相耦合电感 |
CN112613258B (zh) * | 2020-12-15 | 2023-03-31 | 天津大学 | 一种耦合系数可调的耦合电感设计方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6583701B2 (en) * | 2001-06-14 | 2003-06-24 | Lite-On Electronics, Inc. | Inductor with variable air-gap separation |
CN102197446A (zh) * | 2008-10-29 | 2011-09-21 | 通用电气公司 | 电感性和电容性部件一体结构 |
CN104637659A (zh) * | 2015-02-11 | 2015-05-20 | 华为技术有限公司 | 耦合电感和交错并联直流变换器 |
CN105761880A (zh) * | 2016-04-20 | 2016-07-13 | 华为技术有限公司 | 一种薄膜电感和电源转换电路 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3305708A1 (de) * | 1983-02-18 | 1984-08-23 | Transformatoren Union Ag, 7000 Stuttgart | Drehstromdrosselspule mit fuenfschenkelkern |
JP4329556B2 (ja) * | 2004-02-06 | 2009-09-09 | 株式会社デンソー | 点火コイル |
DE102008007021A1 (de) * | 2008-01-31 | 2009-08-06 | Osram Gesellschaft mit beschränkter Haftung | Drossel und Verfahren zum Herstellen einer Drosselkerneinheit für eine Drossel |
EP2299456B1 (en) * | 2009-09-17 | 2016-08-24 | DET International Holding Limited | Integrated magnetic component |
US8130067B2 (en) * | 2010-05-11 | 2012-03-06 | Texas Instruments Incorporated | High frequency semiconductor transformer |
JP5689338B2 (ja) * | 2011-03-08 | 2015-03-25 | 株式会社日立製作所 | リアクトル装置、およびこのリアクトル装置を用いた電力変換装置 |
PL221896B1 (pl) * | 2011-03-23 | 2016-06-30 | Akademia Górniczo Hutnicza Im Stanisława Staszica W Krakowie | Zintegrowany element indukcyjny |
JP2013004887A (ja) * | 2011-06-21 | 2013-01-07 | Minebea Co Ltd | コイル部品 |
DE102011107252A1 (de) * | 2011-07-14 | 2013-01-17 | Schneider Electric Sachsenwerk Gmbh | Spule zur Strombegrenzung |
JP2014531742A (ja) * | 2011-08-16 | 2014-11-27 | ジョージア テック リサーチ コーポレーション | 接着剤を用いて積層したナノコンポジット膜を使用する磁気装置 |
US8742539B2 (en) * | 2012-07-27 | 2014-06-03 | Infineon Technologies Austria Ag | Semiconductor component and method for producing a semiconductor component |
US9844141B2 (en) * | 2012-09-11 | 2017-12-12 | Ferric, Inc. | Magnetic core inductor integrated with multilevel wiring network |
US9337251B2 (en) | 2013-01-22 | 2016-05-10 | Ferric, Inc. | Integrated magnetic core inductors with interleaved windings |
CN103489569A (zh) * | 2013-10-08 | 2014-01-01 | 上海理工大学 | 一种多相直流非耦合集成电感器 |
US10366826B2 (en) * | 2014-12-03 | 2019-07-30 | Mitsubishi Electric Corporation | Dual-mode choke coil and high-frequency filter using same, and on-board motor integrated electric power steering and on-board charging device |
US10210983B2 (en) * | 2015-06-17 | 2019-02-19 | Abb Schweiz Ag | Electromagnetic induction device |
CN204834287U (zh) * | 2015-06-30 | 2015-12-02 | 张玮琦 | 一种牵引变压器铁芯结构 |
-
2016
- 2016-04-20 CN CN201610248079.9A patent/CN105761880B/zh active Active
- 2016-11-23 EP EP20170717.1A patent/EP3761327A1/en active Pending
- 2016-11-23 EP EP16899255.0A patent/EP3346476B1/en active Active
- 2016-11-23 WO PCT/CN2016/106889 patent/WO2017181673A1/zh unknown
-
2018
- 2018-06-22 US US16/015,930 patent/US11532420B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6583701B2 (en) * | 2001-06-14 | 2003-06-24 | Lite-On Electronics, Inc. | Inductor with variable air-gap separation |
CN102197446A (zh) * | 2008-10-29 | 2011-09-21 | 通用电气公司 | 电感性和电容性部件一体结构 |
CN104637659A (zh) * | 2015-02-11 | 2015-05-20 | 华为技术有限公司 | 耦合电感和交错并联直流变换器 |
CN105761880A (zh) * | 2016-04-20 | 2016-07-13 | 华为技术有限公司 | 一种薄膜电感和电源转换电路 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3346476A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3761327A1 (en) | 2021-01-06 |
CN105761880A (zh) | 2016-07-13 |
EP3346476B1 (en) | 2020-04-22 |
CN105761880B (zh) | 2017-12-29 |
US20180301270A1 (en) | 2018-10-18 |
EP3346476A4 (en) | 2018-10-17 |
EP3346476A1 (en) | 2018-07-11 |
US11532420B2 (en) | 2022-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017181673A1 (zh) | 一种薄膜电感和电源转换电路 | |
US9679958B2 (en) | Methods for manufacturing integrated multi-layer magnetic films | |
KR101903804B1 (ko) | 통합 갭을 가진 박막 인덕터 | |
US8717136B2 (en) | Inductor with laminated yoke | |
CN106910602B (zh) | 一种薄膜电感和电源转换电路 | |
CN110400680A (zh) | 线圈部件及其制造方法 | |
JP2006286931A (ja) | 薄膜デバイス | |
US10893609B2 (en) | Integrated circuit with laminated magnetic core inductor including a ferromagnetic alloy | |
US11116081B2 (en) | Laminated magnetic core inductor with magnetic flux closure path parallel to easy axes of magnetization of magnetic layers | |
US9064628B2 (en) | Inductor with stacked conductors | |
JP5599935B2 (ja) | 集積磁気薄膜増強回路素子を有する磁気抵抗ランダムアクセスメモリ(mram) | |
US20210383958A1 (en) | Patterned magnetic cores | |
US9607748B2 (en) | Micro-fabricated integrated coil and magnetic circuit and method of manufacturing thereof | |
JP2007273802A (ja) | 薄膜デバイス | |
WO2018157859A1 (zh) | 一种薄膜电感、电源转换电路和芯片 | |
US11058001B2 (en) | Integrated circuit with laminated magnetic core inductor and magnetic flux closure layer | |
US20180295724A1 (en) | Laminated Magnetic Core Inductor with Insulating and Interface Layers | |
US20160203904A1 (en) | Thin film inductor with extended yokes | |
US9761368B2 (en) | Laminated structures for power efficient on-chip magnetic inductors | |
JP2023553310A (ja) | 硬質強磁性バイアス層を有する磁気コア、および当該磁気コアを含む構造 | |
JP2007273803A (ja) | 薄膜デバイス | |
WO2019240747A1 (en) | Laminated magnetic core inductor with insulating and interface layers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |