WO2017179827A1 - 배터리의 충방전 제어 장치 및 그 제어 방법 - Google Patents

배터리의 충방전 제어 장치 및 그 제어 방법 Download PDF

Info

Publication number
WO2017179827A1
WO2017179827A1 PCT/KR2017/002963 KR2017002963W WO2017179827A1 WO 2017179827 A1 WO2017179827 A1 WO 2017179827A1 KR 2017002963 W KR2017002963 W KR 2017002963W WO 2017179827 A1 WO2017179827 A1 WO 2017179827A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
battery
charge
discharge
range
Prior art date
Application number
PCT/KR2017/002963
Other languages
English (en)
French (fr)
Inventor
송용희
어윤필
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to CN202110622750.2A priority Critical patent/CN113364090B/zh
Priority to US16/091,472 priority patent/US11309728B2/en
Priority to PL17782582.5T priority patent/PL3444917T3/pl
Priority to EP17782582.5A priority patent/EP3444917B1/en
Priority to CN201780020150.0A priority patent/CN108886262B/zh
Publication of WO2017179827A1 publication Critical patent/WO2017179827A1/ko
Priority to US17/694,459 priority patent/US12015297B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • H02J7/007186Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage obtained with the battery disconnected from the charge or discharge circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a charge and discharge control device for a battery and a control method thereof.
  • the battery which is a secondary battery, repeats its cycle of charging and discharging until its end of life.
  • Various charging and discharging control methods have been attempted to extend the life of such batteries.
  • the battery is charged and discharged in the maximum voltage range in the initial use period of the battery, and gradually decreases the voltage use range as the cycle is increased.
  • Such a conventional method of controlling charge and discharge of a battery may not improve deterioration during battery discharge and may not prevent an increase in battery thickness that may occur during an initial use period of the battery.
  • An object of the present invention is to provide an apparatus for controlling charge and discharge of a battery and a method of controlling the battery, which can improve deterioration during battery discharge and prevent an increase in battery thickness that may occur during an initial use period of the battery.
  • An object of the present invention is to provide an apparatus for controlling charge and discharge of a battery and a method of controlling the battery, which can improve deterioration during battery discharge and prevent an increase in battery thickness that may occur during an initial use period of the battery.
  • An apparatus for controlling charging and discharging of a battery may include: a voltage sensor measuring a voltage of the battery; And a constant voltage mode when the battery is charged with a constant current in a constant current mode and the voltage of the battery measured by the voltage sensor corresponds to an end-of-charge voltage.
  • the controller measures or calculates a state of charge of the battery, and if the charge amount is greater than a reference charge amount, resets the charge end voltage to a second charge end voltage, and the second charge end voltage is determined by the first charge end voltage. It may be lower than the charge end voltage.
  • the controller may set a cut-off current in the constant voltage mode to be higher than a default value when the magnitude of the constant current in the constant current mode exceeds the magnitude of the reference current.
  • the control unit stops discharging the battery when the measured voltage of the battery corresponds to the discharge end voltage in the discharge period of the battery, and the discharge end voltage of the measured end point of the discharge voltage decreases in a critical slope. It may be the voltage at the time of exceeding.
  • An apparatus for controlling charging and discharging of a battery may include: a voltage sensor measuring a voltage of the battery; And a controller configured to charge and discharge the battery so that the measured voltage of the battery is within a voltage usage range corresponding to the usage period of the battery.
  • the controller may charge and discharge the battery by setting the voltage use range to a third voltage use range during the terminal use period of the battery, and the third voltage use range may be smaller than the second voltage use range.
  • the third voltage range may be greater than the first voltage range.
  • the medium term usage period may begin.
  • the terminal usage period may begin.
  • the controller may sequentially increase the charge end voltage and sequentially decrease the discharge end voltage during the medium term use period.
  • the first full charge voltage of the battery is FCV
  • the negative threshold potential is NECV
  • the deterioration condition is AC
  • the capacity reduction rate is CRR
  • the reference charge end voltage is REOC
  • the first reference discharge end voltage is REOD1
  • the second reference discharge end voltage is In the case of REOD2
  • EOC the end-of-charge voltage
  • EOC REOC + (FCV-NECV-REOC) * CRR / (100-AC)
  • EOD the end-of-discharge voltage, according to the following equation:
  • And EOD REOD1- (REOD1-REOD2) * CRR / (100-AC)
  • the negative electrode threshold potential is a potential value of a negative electrode in which a negative electrode active material included in the battery causes a phase shift
  • the deterioration condition is the battery Is a percentage value corresponding to a specific discharge capacity reduced relative to the initial discharge capacity of the battery
  • the rate of decrease in capacity is a percentage value corresponding to a difference between the initial
  • the first voltage range and the second voltage range are the voltage range of the battery when the temperature corresponds to the reference temperature range
  • the control unit is the first and second when the temperature is lower than the reference temperature range
  • At least one of the voltage use ranges may be increased, and at least one of the first and second voltage use ranges may be decreased when the temperature is higher than the reference temperature range.
  • a method of controlling charge and discharge of a battery may include: setting a charge termination voltage of a battery; Measuring the voltage of the battery during a period of constant current mode in which the battery is charged with constant current; And when the measured voltage of the battery corresponds to the end-of-charge voltage, switching to a constant voltage mode in which the battery is charged with a constant voltage.
  • the end of charge voltage is set to the first end of charge voltage minus the negative electrode threshold potential from the full charge voltage of the battery, the negative electrode threshold potential is the negative electrode active material included in the battery causes a phase shift The potential value of the cathode.
  • the charging and discharging control method of the battery may include: measuring or calculating a state of charge of the battery; And resetting the charging end voltage to a second charging end voltage when the charging amount is greater than or equal to the reference charging amount, wherein the second charging end voltage may be lower than the first charging end voltage.
  • the charging / discharging control method of the battery may further include setting a cut-off current in the constant voltage mode higher than a default value when the magnitude of the constant current in the constant current mode exceeds a magnitude of a reference current. can do.
  • the charging and discharging control method of the battery includes: measuring a voltage of the battery during a discharge period of the battery; And stopping the discharging of the battery when the voltage of the battery corresponds to the discharging end voltage, wherein the discharging end voltage may be a voltage at a time when the slope of the measured voltage with respect to time exceeds a critical slope. .
  • a method of controlling charging and discharging of a battery comprising: charging and discharging the battery while an initial use period of the battery is set as a voltage use range of the battery; And charging and discharging the battery during the medium term of the battery using the voltage usage range as a second voltage usage range, wherein the voltage usage range corresponds to a voltage difference between the charge end voltage and the discharge end voltage.
  • the second voltage usage range is greater than the first voltage usage range.
  • the charging and discharging control method of the battery may further include charging and discharging the battery using the voltage use range as a third voltage use range during the terminal use period of the battery, wherein the third voltage use range is the third voltage use range. It may be less than 2 voltage range.
  • the third voltage range may be greater than the first voltage range.
  • the medium term usage period may begin.
  • the terminal usage period may begin.
  • the charging and discharging of the battery during the medium term of use may include: sequentially increasing the charge end voltage; And sequentially decreasing the discharge termination voltage.
  • the first full charge voltage of the battery is FCV
  • the negative threshold potential is NECV
  • the deterioration condition is AC
  • the capacity reduction rate is CRR
  • the reference charge end voltage is REOC
  • the first reference discharge end voltage is REOD1
  • the second reference discharge end voltage is In the case of REOD2
  • EOC the end-of-charge voltage
  • EOC REOC + (FCV-NECV-REOC) * CRR / (100-AC)
  • EOD the end-of-discharge voltage, according to the following equation:
  • And EOD REOD1- (REOD1-REOD2) * CRR / (100-AC)
  • the negative electrode threshold potential is a potential value of a negative electrode in which a negative electrode active material included in the battery causes a phase shift
  • the deterioration condition is the battery Is a percentage value corresponding to a specific discharge capacity reduced relative to the initial discharge capacity of the battery
  • the rate of decrease in capacity is a percentage value corresponding to a difference between the initial
  • the first voltage usage range and the second voltage usage range are voltage usage ranges of the battery when a temperature corresponds to a reference temperature range
  • the charge / discharge control method of the battery includes: when the temperature is lower than the reference temperature range. Increasing at least one of the first and second voltage ranges of use; And reducing the at least one of the first and second voltage use ranges when the temperature is higher than the reference temperature range.
  • the discharge end voltage of the medium-term use period may be lower than the discharge end voltage of the initial period.
  • the apparatus for controlling charge and discharge of a battery may improve deterioration during battery discharge and prevent battery thickness increase that may occur during an initial use period of the battery.
  • 1A is a diagram illustrating a configuration of an exemplary battery.
  • 1B is a diagram for describing an apparatus for controlling charge and discharge of a battery, according to an exemplary embodiment.
  • FIG. 2 is a diagram for describing a charging method of a battery, according to an exemplary embodiment.
  • FIG. 3 is a diagram for describing a method of discharging a battery, according to an exemplary embodiment.
  • FIG. 4 is a diagram for describing a voltage use range of a battery according to a use period, according to an exemplary embodiment.
  • FIG. 5 is a diagram illustrating a voltage usage range of a battery during a medium-term use period, according to an exemplary embodiment.
  • FIG. 6A is a diagram illustrating a voltage usage range of a battery according to an increase in temperature according to an embodiment.
  • 6B is a diagram for describing a voltage range of a battery according to a temperature drop according to an embodiment.
  • Electrically connecting two components includes not only connecting the two components directly, but also connecting the two components via other components.
  • 1A is a diagram illustrating a configuration of an exemplary battery.
  • the battery 10 includes a positive electrode 110, a positive electrode terminal 111 electrically connected to the positive electrode 110, a negative electrode 120, a negative electrode terminal 121 electrically connected to the negative electrode 120, and a separator. 130.
  • an electrolyte for moving ions may be filled between the anode 110, the cathode 120, and the separator 130.
  • the positive electrode 110 may include a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector.
  • the positive electrode active material layer may include a positive electrode active material, a binder, and optionally a conductive material.
  • aluminum (Al), nickel (Ni), or the like may be used, but is not limited thereto.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used. Specifically, at least one of cobalt, manganese, nickel, aluminum, iron, or a combination of metal and lithium composite oxide or phosphoric acid may be used. More specifically, lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminum oxide, lithium iron phosphate or a combination thereof may be used.
  • the binder not only adheres the positive electrode active material particles to each other but also adheres the positive electrode active material to the positive electrode current collector, and specific examples thereof include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, Carboxylated polyvinylchloride, polyvinylfluoride, ethylene oxide containing polymer, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylic Laminated styrene-butadiene rubber, epoxy resin, nylon and the like, but is not limited thereto. These can be used individually or in mixture of 2 or more types.
  • the conductive material provides conductivity to the electrode, and examples thereof include natural graphite, artificial graphite, carbon black, carbon fiber, metal powder, and metal fiber, but are not limited thereto. These can be used individually or in mixture of 2 or more types.
  • Metal powder and metal fiber can use metals, such as copper, nickel, aluminum, silver, and the like.
  • the negative electrode 120 may include a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector.
  • the negative electrode current collector may include copper (Cu), gold (Au), nickel (Ni), a copper alloy, or the like, but is not limited thereto.
  • the negative electrode active material layer may include a negative electrode active material, a binder, and optionally a conductive material.
  • a material capable of reversibly intercalating and deintercalating lithium ions a lithium metal, an alloy of lithium metal, a material capable of doping and undoping lithium, a transition metal oxide, or a combination thereof may be used.
  • a lithium metal a lithium metal, an alloy of lithium metal, a material capable of doping and undoping lithium, a transition metal oxide, or a combination thereof.
  • Examples of a material capable of reversibly intercalating and deintercalating lithium ions include carbon-based materials, and examples thereof include crystalline carbon, amorphous carbon, or a combination thereof.
  • Examples of crystalline carbons include amorphous, plate, flake, spherical or fibrous natural graphite or artificial graphite.
  • Examples of amorphous carbon include soft carbon or hard carbon, mesophase pitch carbide, calcined coke, and the like.
  • the alloy of lithium metal is selected from the group consisting of lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al and Sn Alloys of the metals to be used may be used.
  • Examples of materials that can dope and undo lithium include Si, SiOx (0 ⁇ x ⁇ 2), Si-C composites, Si-Y alloys, Sn, SnO2, Sn-C composites, Sn-Y, and the like. In addition, at least one of these and SiO 2 may be mixed and used.
  • Transition metal oxides include vanadium oxide, lithium vanadium oxide, and the like.
  • the binder and the conductive material used in the negative electrode 120 may be the same as the binder and the conductive material used in the positive electrode 110 described above.
  • the positive electrode 110 and the negative electrode 120 may be prepared by mixing each active material, a binder, and optionally a conductive material in a solvent to prepare each active material composition, and applying the active material composition to each current collector.
  • N-methylpyrrolidone may be used as the solvent, but is not limited thereto. Since such an electrode manufacturing method is well known in the art, detailed description thereof will be omitted.
  • the separator 130 separates the negative electrode 120 and the positive electrode 110 and provides a movement path of lithium ions, and may be used as long as they are commonly used in lithium batteries. In other words, those having low resistance to ion migration of the electrolyte and excellent electrolyte-wetting ability can be used.
  • it is selected from glass fiber, polyester, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), or a combination thereof, and may be in a nonwoven or woven form.
  • PTFE polytetrafluoroethylene
  • a polyolefin-based polymer separator such as polyethylene or polypropylene is mainly used for a lithium ion battery, and a coated separator including a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength. Can be used as a structure.
  • 1B is a diagram for describing an apparatus for controlling charge and discharge of a battery, according to an exemplary embodiment.
  • the charge / discharge control device 80 is electrically interposed between the battery 10 and the device 90.
  • Device 90 may be a charger or a power consuming device.
  • the charge / discharge control device 80 may control the charging current I c flowing from the charger to the positive terminal 111 of the battery 10.
  • the charge / discharge control device 80 may control the discharge current I d flowing from the battery 10 to the power consuming device.
  • the charge / discharge control device 80 may include a voltage sensor 810 and a controller 820.
  • One end of the voltage sensor 810 may be electrically connected to the positive terminal 111 of the battery 10, and the other end thereof may be electrically connected to the negative terminal 121 of the battery 10.
  • the voltage sensor 810 may measure the battery voltage using a voltage difference between the positive potential and the negative potential of the battery 10, and transmit the measured battery voltage to the controller 820.
  • the controller 820 charges the battery 10 with a constant current in a constant current mode, and the voltage of the battery 10 measured through the voltage sensor 810 is an end-of-charge voltage.
  • the constant voltage mode may be switched to charge the battery 10 at a constant voltage.
  • controller 820 may stop the discharge of the battery 10 when the measured voltage of the battery 10 corresponds to the end-of-discharge voltage in the discharge period of the battery 10. .
  • the controller 820 may variably set the end-of-charge voltage and the end-of-discharge voltage to prevent the increase in battery thickness and extend the life of the battery 10.
  • FIG. 2 is a diagram for describing a charging method of a battery, according to an exemplary embodiment.
  • the graph 20 has a voltage axis and a current axis on the vertical axis and a time axis on the horizontal axis.
  • the charging current 210 refers to the amount of current flowing from the charger toward the positive terminal 111 of the battery 10
  • the battery voltage 220 is the potential of the positive electrode 110 and the negative electrode 120 in the battery 10. Means the difference between the potentials.
  • the measurement of the battery voltage 220 may be performed through the voltage sensor 810 described above.
  • the charging method of the battery of the present embodiment may include a precharge mode, a constant current mode, and a constant voltage mode.
  • the battery 10 may be slowly charged by receiving a charging current 210 having a low current level in a precharging mode.
  • the precharge mode may be used.
  • a constant current mode may be started.
  • the battery 10 is charged by receiving a charging current 210 which is a constant current having a constant magnitude in the constant current mode. Accordingly, the battery voltage 220 gradually increases, and the constant current mode ends at a time t22 at which the battery voltage 220 corresponds to the end of charge voltage.
  • the charging end voltage is indicated as the first charging end voltage.
  • the end-of-charge voltage of the battery 10 may be set in advance.
  • the first charge end voltage of this embodiment is a voltage obtained by subtracting the negative electrode threshold potential from the full charge voltage of the battery 10.
  • the full charge voltage of the battery 10 is a voltage difference between the positive potential and the negative potential when the state of charge (SOC) of the battery reaches the maximum acceptable capacity of the battery 10, that is, when the charge amount is 100%. Means.
  • the full charge voltage of the battery 10 may be determined based on the full charge voltage of the initial state battery 10. For example, if the full charge voltage is 4.35V and the negative electrode threshold potential is 0.05V, the first charge end voltage may be set to approximately 4.3V.
  • the negative electrode threshold potential may be a potential value of the negative electrode 120 in which the negative electrode active material included in the battery 10 causes a phase shift.
  • the structure in which lithium ions are bonded to the constituent elements of the negative electrode active material is changed, thereby swelling the negative electrode 120. This means what happens. That is, when the negative electrode potential is higher than the negative electrode critical potential, the bonding structure between the constituent elements of the negative electrode active material and lithium ions is referred to as a first coupling structure. In the second coupling structure, expansion of the cathode 120 may occur in the second coupling structure. Therefore, the cathode potential is preferably maintained above the cathode threshold potential so as to maintain the first bonding structure.
  • the negative threshold potential may vary depending on the specification of the battery but may be in the range of approximately 0.05V to 0.08V.
  • the positive electrode potential increases and the negative electrode decreases, thereby increasing the battery voltage 220, which is a voltage difference between the positive electrode potential and the negative electrode potential.
  • the battery voltage 220 increases only up to the first charging end voltage, the reduced final negative electrode potential is maintained at or above the negative electrode threshold potential, thus preventing the expansion of the negative electrode 120. Since the expansion of the negative electrode 120 is prevented, an increase in thickness of the entire battery 10 may be prevented.
  • a constant voltage mode is started in which a constant voltage is applied to the positive terminal and the negative terminal 121 of the battery.
  • the constant voltage may be substantially equal to the charge end voltage.
  • the charging current 210 continuously decreases, and at a time t23 when the reduced charging current 210 reaches the cut-off current, the battery 10 ) Charging is completed and the supply of the charging current 210 is stopped.
  • the charge end voltage may be reset to the second charge end voltage.
  • the charged amount of the battery 10 is calculated for the fully charged battery 10 through measurement or calculation.
  • a conventional charge amount measurement method such as voltage measurement, current measurement, internal resistance calculation, and temperature measurement may be used.
  • the charge end voltage may be reset to the second charge end voltage.
  • the second charging end voltage may be lower than the first charging end voltage.
  • the second charge end voltage may be set to be approximately 85% when the battery 10 is fully charged. For example, when the first charge end voltage is 4.3V, the second charge end voltage may be set to 4.25V.
  • the cutoff current may be set higher than the default value. For example, when the magnitude of the constant current in the constant current mode exceeds the magnitude of the reference current, since the battery voltage 220 rises rapidly, the end of charge voltage is set to the first end of charge voltage, but the cutoff current is set higher than the default value. So that the supply of charge current 210 is terminated earlier. For example, when the constant current exceeds the reference current 0.5C and the default value of the cutoff current is 0.02C, the cutoff current may be reset to approximately 0.3C. Unit C means C-rate here.
  • the charge amount of the battery 10 when fully charged may be maintained at approximately 85%. Accordingly, the negative electrode potential of the battery 10 can be more safely maintained above the negative threshold potential.
  • FIG. 3 is a diagram for describing a method of discharging a battery, according to an exemplary embodiment.
  • the graph 30 has a voltage axis on the vertical axis and a time axis on the horizontal axis.
  • Graph 30 shows the change over time of battery voltage 320.
  • the battery voltage 320 is measured during the discharge period of the battery 10.
  • the voltage measurement of the battery 10 may be performed through the voltage sensor 810 described above.
  • the discharge of the battery may be stopped at a time point t31 when the measured battery voltage 320 corresponds to the discharge end voltage.
  • the discharge termination voltage may be set to a voltage at a time when the measured slope of the battery voltage 320 with respect to time exceeds the threshold slope.
  • the internal resistance increases rapidly and the battery voltage 320 decreases rapidly.
  • the battery 10 may be controlled to discharge the battery 10 within a range in which the slope of the battery voltage 320 does not exceed the threshold slope.
  • the value of the slope means the absolute value of the slope.
  • FIG. 4 is a diagram for describing a voltage use range of a battery according to a use period, according to an exemplary embodiment.
  • the graph 40 has a voltage axis on the vertical axis and a time axis on the horizontal axis.
  • the end-of-charge voltage 421 and the end-of-discharge voltage 422 may be set differently according to an initial use period, a medium term use period, and a terminal use period.
  • the initial use period of the battery 10 is a period between the time points t40 and t41
  • the medium term use period is a period between the time points t41 and t42
  • the end use period is after the time point t42. It may be a period of time.
  • the battery 10 may be charged and discharged by setting the voltage use range of the battery 10 to the first voltage use range VR41.
  • the battery 10 may be charged and discharged by setting the voltage use range of the battery 10 to the second voltage use range VR42.
  • the battery 10 may be charged and discharged by setting the voltage use range of the battery 10 to the third voltage use range VR43.
  • the voltage usage range corresponds to the voltage difference between the charge end voltage 421 and the discharge end voltage 422.
  • the charge end voltage 421 of the battery 10 is set to either the first charge end voltage or the second charge end voltage according to the embodiment of FIG. 2, and the discharge end voltage 422 is shown in FIG. It may be set to the discharge end voltage according to the embodiment of the third.
  • the end-of-charge charging voltage 421 set in this manner may have a voltage level EOC41
  • the end-of-discharge voltage 422 may have a voltage level EOD41.
  • the first voltage range VR41 becomes a difference between the voltage level EOC41 and the voltage level EOD41.
  • the second voltage use range VR42 may be greater than the first voltage use range VR41. According to the following experimental results, since the initial thickness increase phenomenon of the battery 10 decreases in the medium-term usage period beyond the time point t41, even if the second voltage use range VR42 is increased than the first voltage use range VR41. It is not a big problem in battery thickness.
  • the battery 10 having the end-of-charge voltage set to 4.35 V and the end-of-discharge voltage set to 3.0 V has a thickness increase of 0% when the charge / discharge cycle is 0 times and a thickness increase when the charge / discharge cycle is 1 time.
  • Is 1.12% thickness increase is 5.99% at 50 charge / discharge cycles
  • thickness increase is 5.99% at 200 charge / discharge cycles
  • 250 charge / discharge cycles When the thickness increase was 7.12% and the charge / discharge cycle was 300 times, the thickness increase was 8.61%.
  • a battery of the same standard having the end-of-charge voltage set to 4.2 V and the end-of-discharge voltage set to 3.4 V has a thickness increase of 0% when the charge / discharge cycle is zero and a thickness increase of 1.50% when the charge / discharge cycle is one.
  • the thickness increase is 3.76% when the charge / discharge cycle is 50, the thickness increase is 3.38% when the charge / discharge cycle is 150, the thickness increase is 4.14% when the charge / discharge cycle is 200, and the thickness increase when the charge / discharge cycle is 250.
  • An increase in thickness of 4.14% occurred at 4.14% and 300 charge / discharge cycles.
  • the time point t41 may be set to when the charge and discharge cycle is about 50 times.
  • the number of charge and discharge cycles for determining the time point t41 may vary depending on the specification of the battery 10 and the use environment, and may be about 15 to 50 times.
  • the user may use the battery 10 in the second voltage range VR42 between the voltage level EOC42 and the voltage level EOD42, and may experience improved performance while maintaining the thickness of the battery 10.
  • the terminal end use period of the battery 10 may start from a time point t42.
  • the third voltage use range VR43 in the terminal use period is a difference between the voltage level EOC43 and the voltage level EOD43.
  • the third voltage use range VR43 may be smaller than the second voltage use range VR42. This can prevent the increase in thickness at the end of the life of the battery 10.
  • the third voltage use range VR43 may be the same as the first voltage use range VR41. In another embodiment, the third voltage use range VR43 may be greater than the first voltage use range VR41.
  • the time point t42 may be determined when the measured maximum capacity of the battery 10 becomes a certain percentage of the initial maximum capacity of the battery 10. For example, when the measured maximum capacity of the battery 10 at a specific time point is 90% of the initial maximum capacity of the battery 10, this specific time point may be determined as the time point t42.
  • FIG. 5 is a diagram illustrating a voltage usage range of a battery during a medium-term use period, according to an exemplary embodiment.
  • the graph 50 has a voltage axis on the vertical axis and a time axis on the horizontal axis.
  • the time points t50 to t51 are initial use periods of the battery 10, and after the time point t51 are medium-term use periods of the battery 10. Definition and division of the initial use period and the medium term use period are as described above in the embodiment of FIG. 4.
  • the charging end voltage 521 is sequentially increased over time, and the discharge end voltage 522 is sequentially decreased.
  • the end of charge voltage 521 has a voltage level (EOC51) and the end of discharge voltage 522 has a voltage level (EOD51) in the initial period of use
  • the medium-term use of the time points t51 to t52 In the period, the end of charge voltage 521 has a voltage level (EOC52) and the end of discharge voltage 522 has a voltage level (EOD52)
  • the end of charge voltage (521) in the medium-term use period of time (t52) to time (t53) Has a voltage level (EOC53) and the discharge end voltage 522 has a voltage level (EOD53)
  • the charge end voltage 521 has a voltage level (EOC54) in the medium term usage period after the time point t53.
  • the voltage 522 may have a voltage level EOD54.
  • the voltage level of the charging end voltage 521 may increase in the order of the voltage level EOC51, the voltage level EOC52, the voltage level EOC53, and the voltage level EOC54.
  • the voltage level of the discharge termination voltage 522 may decrease in the order of the voltage level EOD51, the voltage level EOD52, the voltage level EOD53, and the voltage level EOC54.
  • the first full charge voltage of the battery 10 is FCV
  • the negative threshold potential is NECV
  • the degradation condition is AC
  • the capacity reduction rate is CRR
  • the reference charge end voltage is REOC
  • the first reference discharge end voltage is REOD1.
  • the EOC which is the charge end voltage 521, may be determined according to Equation 1 below.
  • EOC REOC + (FCV-NECV-REOC) * CRR / (100-AC)
  • EOD of the discharge termination voltage 522 may be determined according to Equation 2 below.
  • EOD REOD1- (REOD1-REOD2) * CRR / (100-AC)
  • the negative electrode threshold potential may be a potential value of the negative electrode 120 causing the phase change of the negative electrode active material included in the battery 10.
  • the deterioration condition may be a percentage value corresponding to the reduced specific discharge capacity relative to the initial discharge capacity of the battery 10.
  • the capacity reduction rate may be a percentage value corresponding to the difference between the initial discharge capacity of the battery 10 and the current discharge capacity.
  • the reference charge end voltage and the first reference discharge end voltage may correspond to the first voltage usage range.
  • the second reference discharge termination voltage may be lower than the first reference discharge termination voltage.
  • the first voltage usage range refers to the voltage usage range of the initial usage period as described above, and accordingly, in this embodiment, the voltage level of the reference charging end voltage corresponds to the voltage level EOC51.
  • the first reference discharge end voltage corresponds to the voltage level EOD51.
  • the reference charge end voltage may be 4.2V and the first reference discharge end voltage may be 3.4V.
  • the second reference discharge termination voltage may be 3.0V.
  • the second reference discharge end voltage may be determined as the discharge end voltage of the battery pack reference.
  • the cathode threshold potential may be approximately 0.05V with reference to the embodiment of FIG. 2.
  • the initial full charge voltage of the battery 10 may be 4.35V.
  • the deterioration condition may be 80%.
  • the dose reduction rate can be measured based on 5% dose reduction, for example 5%, 10%, 15%.
  • Equation 1 When a 5% reduction in capacity occurs at time point t51, according to Equations 1 and 2, the voltage level EOC52 of the increased charge termination voltage 521 is 4.225V, and the voltage level of the reduced discharge termination voltage 522 is reduced. (EOD52) is 3.3V.
  • Equation 1 When a 10% reduction in capacity occurs at time t52, according to Equations 1 and 2, the voltage level EOC53 of the increased charge termination voltage 521 is 4.25V, and the voltage level of the reduced discharge termination voltage 522 is reduced. (EOD53) is 3.2V.
  • Equation 1 the voltage level EOC54 of the increased charge termination voltage 521 is 4.275V, and the voltage level of the reduced discharge termination voltage 522 is reduced. (EOD54) is 3.1V.
  • the user may experience that the capacity of the battery 10 is consistent.
  • the charge termination voltage 521 and the discharge termination voltage 522 may be fixed to suppress deterioration.
  • Equations 1 and 2 described above are one example for embodying the embodiment of FIG. 5, and the present embodiment is not limited by this equation.
  • FIG. 6A is a diagram illustrating a voltage usage range of a battery according to an increase in temperature according to an embodiment.
  • the graph 60 has a voltage axis and a temperature axis on the vertical axis and a time axis on the horizontal axis.
  • the time points t60 to t61 are initial use periods of the battery 10, and after the time point t61 are medium-term use periods of the battery 10. Definition and division of the initial use period and the medium term use period are as described above in the embodiment of FIG. 4.
  • the battery 10 is charged and discharged in the first voltage use range VR61 in the initial use period, and the battery 10 is charged in the second voltage use ranges VR62a and VR62b in the medium use period. Discharged.
  • the first voltage usage range VR61 is determined according to the voltage level EOC61 and the voltage level EOD61
  • the second voltage usage range VR62a is determined according to the voltage level EOC62 and the voltage level EOD62
  • the second voltage use range VR62b is determined according to the voltage level EOC63 and the voltage level EOD63.
  • the first voltage usage range VR61 and the second voltage usage range VR62a are voltage usage ranges of the battery 10 when the temperature 630 falls within the reference temperature range RT
  • the second voltage usage range ( VR62b) is the voltage usage range of the battery 10 when the temperature 630 is higher than the reference temperature range RT.
  • the reference temperature range RT may be a range of ordinary temperature, and the range of room temperature may be set to about 15 degrees to 35 degrees Celsius.
  • the end-of-charge voltage 621 is increased from the voltage level EOC62 to the voltage level EOC63.
  • the discharge termination voltage 622 may be raised from the voltage level EOD62 to the voltage level EOD63. Therefore, the battery 10 is charged and discharged in the second voltage range VR62b which is reduced compared to the second voltage range VR62a. Accordingly, the side reaction of the internal active material may be slowed down to increase the life of the battery.
  • the same principle can be applied when the temperature 630 is higher than the reference temperature range RT in the initial use period. That is, compared with the case of room temperature, the first voltage range VR61 may be reduced.
  • the changed voltage level EOD63 of the discharge end voltage 622 of the medium term usage period is equal to the discharge end voltage 622 of the initial period of use. It may be lower than the voltage level EOD61.
  • the changed voltage level EOC63 of the charging end voltage 621 of the medium term usage period is equal to the voltage level EOC61 of the charging end voltage 621 of the initial usage period. Can be higher than). That is, the second voltage use ranges VR62a and VR62b in the medium term use period may be controlled to be always greater than the first voltage use range VR61 in the initial use period, regardless of the temperature change.
  • the second voltage range may be adjusted in response to the temperature change, and the effect of the embodiment of FIG. 4 may be obtained.
  • 6B is a diagram for describing a voltage range of a battery according to a temperature drop according to an embodiment.
  • the temperature 630 is lower than the reference temperature range RT at time t62.
  • the voltage usage range may be increased to compensate for this.
  • the charge end voltage 621 may be raised from the voltage level EOC62 to the voltage level EOC64 and the discharge end voltage 622 may be reduced from the voltage level EOD62 to the voltage level EOD64. Therefore, the battery 10 is charged and discharged in the second voltage range VR62c which is increased compared to the second voltage range VR62a.
  • the same principle can be applied even when the temperature 630 becomes lower than the reference temperature range RT in the initial use period. That is, compared with the case of room temperature, the first voltage using range VR61 may be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

배터리의 충방전 제어 장치는, 정전류 모드(constant current mode)에서 상기 배터리를 정전류로 충전시키고, 상기 배터리의 전압이 충전 종지 전압(end-of-charge voltage)과 대응할 때, 정전압 모드(constant voltage mode)로 전환되어 상기 배터리를 정전압으로 충전시킨다. 상기 충전 종지 전압은 상기 배터리의 만충전 전압으로부터 음극 임계 전위를 차감한 제1 충전 종지 전압으로 설정되고, 상기 음극 임계 전위는 상기 배터리에 포함된 음극 활물질이 상변이를 일으키는 음극의 전위값이다.

Description

배터리의 충방전 제어 장치 및 그 제어 방법
본 발명은 배터리의 충방전 제어 장치 및 그 제어 방법에 관한 것이다.
2차 전지인 배터리는 수명이 다할 때까지 충전 및 방전의 싸이클(cycle)을 반복한다. 이러한 배터리의 수명을 연장하기 위해서 다양한 충방전 제어 방법이 시도되고 있다.
기존의 배터리의 충방전 제어 방법은, 일반적으로, 배터리의 초기 사용 기간에 최대 전압 범위에서 배터리를 충방전하고, 싸이클의 증가에 따라 전압 사용 범위를 점차적으로 감소시킨다.
이러한 기존의 배터리의 충방전 제어 방법은 배터리 방전시의 열화 현상을 개선할 수 없으며, 배터리의 초기 사용 기간에 발생할 수 있는 배터리 두께 증가 현상을 방지할 수 없다는 단점이 있다.
기술적 과제는 배터리 방전시의 열화 현상을 개선하고 배터리의 초기 사용 기간에 발생할 수 있는 배터리 두께 증가 현상을 방지할 수 있는 배터리의 충방전 제어 장치 및 그 제어 방법을 제공하는 데 있다.
기술적 과제는 배터리 방전시의 열화 현상을 개선하고 배터리의 초기 사용 기간에 발생할 수 있는 배터리 두께 증가 현상을 방지할 수 있는 배터리의 충방전 제어 장치 및 그 제어 방법을 제공하는 데 있다.
한 실시예에 따른 배터리의 충방전 제어 장치는, 배터리의 전압을 측정하는 전압 센서; 및 정전류 모드(constant current mode)에서 상기 배터리를 정전류로 충전시키고, 상기 전압 센서를 통해 측정된 상기 배터리의 전압이 충전 종지 전압(end-of-charge voltage)과 대응할 때, 정전압 모드(constant voltage mode)로 전환되어 상기 배터리를 정전압으로 충전시키는 제어부를 포함하고, 상기 충전 종지 전압은 상기 배터리의 만충전 전압으로부터 음극 임계 전위를 차감한 제1 충전 종지 전압으로 설정되고, 상기 음극 임계 전위는 상기 배터리에 포함된 음극 활물질이 상변이를 일으키는 음극의 전위값이다.
상기 제어부는 상기 배터리의 충전량(state of charge)을 측정하거나 계산하고, 상기 충전량이 기준 충전량이상인 경우, 상기 충전 종지 전압을 제2 충전 종지 전압으로 재설정하고, 상기 제2 충전 종지 전압은 상기 제1 충전 종지 전압보다 낮을 수 있다.
상기 제어부는 상기 정전류 모드의 상기 정전류의 크기가 기준 전류의 크기를 초과하는 경우, 상기 정전압 모드의 차단 전류(cut-off current)를 디폴트 값보다 높게 설정할 수 있다.
상기 제어부는, 상기 배터리의 방전 기간에 있어서, 측정된 상기 배터리의 전압이 방전 종지 전압과 대응할 때 상기 배터리의 방전을 중지시키고, 상기 방전 종지 전압은 상기 측정된 전압의 시간 대비 기울기가 임계 기울기를 초과하는 시점의 전압일 수 있다.
한 실시예에 따른 배터리의 충방전 제어 장치는, 배터리의 전압을 측정하는 전압 센서; 및 측정된 상기 배터리의 전압이, 배터리의 사용 기간에 대응하는 전압 사용 범위 내에 있도록 상기 배터리를 충방전 제어하는 제어부를 포함하고, 상기 제어부는 상기 배터리의 초기 사용 기간 동안 상기 전압 사용 범위를 제1 전압 사용 범위로 설정하여 상기 배터리를 충방전 제어하고, 상기 배터리의 중기 사용 기간 동안 상기 전압 사용 범위를 제2 전압 사용 범위로 설정하여 상기 배터리를 충방전 제어하고, 상기 전압 사용 범위는 충전 종지 전압과 방전 종지 전압의 전압차와 대응하고, 상기 제2 전압 사용 범위는 상기 제1 전압 사용 범위보다 크다.
상기 제어부는 상기 배터리의 말기 사용 기간 동안 상기 전압 사용 범위를 제3 전압 사용 범위로 설정하여 상기 배터리를 충방전하고, 상기 제3 전압 사용 범위는 상기 제2 전압 사용 범위보다 작을 수 있다.
상기 제3 전압 사용 범위는 상기 제1 전압 사용 범위보다 클 수 있다.
상기 배터리의 충방전 횟수가 특정 충방전 사이클 횟수를 초과하는 경우, 상기 중기 사용 기간이 시작될 수 있다.
상기 배터리의 측정되는 최대 용량이 상기 배터리의 최초 최대 용량의 특정 비율이되는 경우, 상기 말기 사용 기간이 시작될 수 있다.
상기 제어부는 상기 상기 중기 사용 기간 동안 상기 충전 종지 전압을 순차적으로 증가시키고, 상기 방전 종지 전압을 순차적으로 감소시킬 수 있다.
상기 배터리의 최초의 만충전 전압이 FCV, 음극 임계 전위가 NECV, 열화 조건이 AC, 용량 감소율이 CRR, 기준 충전 종지 전압이 REOC, 제1 기준 방전 종지 전압이 REOD1이고 제2 기준 방전 종지 전압이 REOD2일 때, 상기 충전 종지 전압인 EOC는 다음 수학식에 따라 결정되고, EOC=REOC+(FCV-NECV-REOC)*CRR/(100-AC), 상기 방전 종지 전압인 EOD는 다음 수학식에 따라 결정되고, EOD=REOD1-(REOD1-REOD2)*CRR/(100-AC), 상기 음극 임계 전위는 상기 배터리에 포함된 음극 활물질이 상변이를 일으키는 음극의 전위값이고, 상기 열화 조건은 상기 배터리의 초기 방전 용량 대비 감소된 특정 방전 용량에 대응하는 백분율 수치이고, 상기 용량 감소율은 상기 배터리의 초기 방전 용량과 현재 방전 용량의 차이에 대응하는 백분율 수치이고, 상기 기준 충전 종지 전압 및 상기 제1 기준 방전 종지 전압은 상기 제1 전압 사용 범위에 대응하고, 상기 제2 기준 방전 종지 전압은 상기 제1 기준 방전 종지 전압보다 낮을 수 있다.
상기 제1 전압 사용 범위 및 제2 전압 사용 범위는 온도가 기준 온도 범위에 해당할 때의 상기 배터리의 전압 사용 범위이고, 상기 제어부는 상기 온도가 상기 기준 온도 범위보다 낮을 때 상기 제1 및 제2 전압 사용 범위 중 적어도 하나를 증가시키고, 상기 온도가 상기 기준 온도 범위보다 높을 때 상기 제1 및 제2 전압 사용 범위 중 적어도 하나를 감소시킬 수 있다.
한 실시예에 따른 배터리의 충방전 제어 방법은: 배터리의 충전 종지 전압을 설정하는 단계; 상기 배터리가 정전류로 충전되는 정전류 모드(constant current mode)의 기간 동안 상기 배터리의 전압을 측정하는 단계; 및 상기 배터리의 측정된 전압이 상기 충전 종지 전압(end-of-charge voltage)과 대응할 때, 상기 배터리가 정전압으로 충전되는 정전압 모드(constant voltage mode)로 전환되는 단계를 포함하고, 상기 충전 종지 전압을 설정하는 단계에서, 상기 충전 종지 전압은 상기 배터리의 만충전 전압으로부터 음극 임계 전위를 차감한 제1 충전 종지 전압으로 설정되고, 상기 음극 임계 전위는 상기 배터리에 포함된 음극 활물질이 상변이를 일으키는 음극의 전위값이다.
상기 배터리의 충방전 제어 방법은: 상기 배터리의 충전량(state of charge)을 측정하거나 계산하는 단계; 및 상기 충전량이 기준 충전량이상인 경우, 상기 충전 종지 전압을 제2 충전 종지 전압으로 재설정하는 단계를 더 포함하고, 상기 제2 충전 종지 전압은 상기 제1 충전 종지 전압보다 낮을 수 있다.
상기 배터리의 충방전 제어 방법은, 상기 정전류 모드의 상기 정전류의 크기가 기준 전류의 크기를 초과하는 경우, 상기 정전압 모드의 차단 전류(cut-off current)를 디폴트 값보다 높게 설정하는 단계를 더 포함할 수 있다.
상기 배터리의 충방전 제어 방법은: 상기 배터리의 방전 기간 동안 상기 배터리의 전압을 측정하는 단계; 및 상기 배터리의 전압이 방전 종지 전압과 대응할 때 상기 배터리의 방전을 중지하는 단계를 더 포함하고, 상기 방전 종지 전압은 상기 측정된 전압의 시간 대비 기울기가 임계 기울기를 초과하는 시점의 전압일 수 있다.
한 실시예에 따른 배터리의 충방전 제어 방법은: 배터리의 초기 사용 기간 동안, 상기 배터리의 전압 사용 범위를 제1 전압 사용 범위로 하여 상기 배터리를 충방전하는 단계; 및 상기 배터리의 중기 사용 기간 동안, 상기 전압 사용 범위를 제2 전압 사용 범위로 하여 상기 배터리를 충방전하는 단계를 포함하고, 상기 전압 사용 범위는 충전 종지 전압과 방전 종지 전압의 전압차와 대응하고, 상기 제2 전압 사용 범위는 상기 제1 전압 사용 범위보다 크다.
상기 배터리의 충방전 제어 방법은, 상기 배터리의 말기 사용 기간 동안, 상기 전압 사용 범위를 제3 전압 사용 범위로 하여 상기 배터리를 충방전하는 단계를 더 포함하고, 상기 제3 전압 사용 범위는 상기 제2 전압 사용 범위보다 작을 수 있다.
상기 제3 전압 사용 범위는 상기 제1 전압 사용 범위보다 클 수 있다.
상기 배터리의 충방전 횟수가 특정 충방전 사이클 횟수를 초과하는 경우, 상기 중기 사용 기간이 시작될 수 있다.
상기 배터리의 측정되는 최대 용량이 상기 배터리의 최초 최대 용량의 특정 비율이되는 경우, 상기 말기 사용 기간이 시작될 수 있다.
상기 중기 사용 기간 동안 상기 배터리를 충방전 하는 단계는: 상기 충전 종지 전압을 순차적으로 증가시키는 단계; 및 상기 방전 종지 전압을 순차적으로 감소시키는 단계를 포함할 수 있다.
상기 배터리의 최초의 만충전 전압이 FCV, 음극 임계 전위가 NECV, 열화 조건이 AC, 용량 감소율이 CRR, 기준 충전 종지 전압이 REOC, 제1 기준 방전 종지 전압이 REOD1이고 제2 기준 방전 종지 전압이 REOD2일 때, 상기 충전 종지 전압인 EOC는 다음 수학식에 따라 결정되고, EOC=REOC+(FCV-NECV-REOC)*CRR/(100-AC), 상기 방전 종지 전압인 EOD는 다음 수학식에 따라 결정되고, EOD=REOD1-(REOD1-REOD2)*CRR/(100-AC), 상기 음극 임계 전위는 상기 배터리에 포함된 음극 활물질이 상변이를 일으키는 음극의 전위값이고, 상기 열화 조건은 상기 배터리의 초기 방전 용량 대비 감소된 특정 방전 용량에 대응하는 백분율 수치이고, 상기 용량 감소율은 상기 배터리의 초기 방전 용량과 현재 방전 용량의 차이에 대응하는 백분율 수치이고, 상기 기준 충전 종지 전압 및 상기 제1 기준 방전 종지 전압은 상기 제1 전압 사용 범위에 대응하고, 상기 제2 기준 방전 종지 전압은 상기 제1 기준 방전 종지 전압보다 낮을 수 있다.
상기 제1 전압 사용 범위 및 제2 전압 사용 범위는 온도가 기준 온도 범위에 해당할 때의 상기 배터리의 전압 사용 범위이고, 상기 배터리의 충방전 제어 방법은: 상기 온도가 상기 기준 온도 범위보다 낮을 때, 상기 제1 및 제2 전압 사용 범위 중 적어도 하나를 증가시키는 단계; 및 상기 온도가 상기 기준 온도 범위보다 높을 때, 상기 제1 및 제2 전압 사용 범위 중 적어도 하나를 감소시키는 단계를 더 포함할 수 있다.
상기 온도가 상기 기준 온도 범위보다 높을 때, 상기 중기 사용 기간의 방전 종지 전압은 상기 초기 사용 기간의 방전 종지 전압보다 낮을 수 있다.
실시예들에 따른 배터리의 충방전 제어 장치 및 그 제어 방법은 배터리 방전시의 열화 현상을 개선하고 배터리의 초기 사용 기간에 발생할 수 있는 배터리 두께 증가 현상을 방지할 수 있다.
도 1a는 예시적인 배터리의 구성을 도시한 도면이다.
도 1b는 한 실시예에 따른 배터리의 충방전 제어 장치를 설명하기 위한 도면이다.
도 2는 한 실시예에 따른 배터리의 충전 방법을 설명하기 위한 도면이다.
도 3은 한 실시예에 따른 배터리의 방전 방법을 설명하기 위한 도면이다.
도 4는 한 실시예에 따른 사용 기간에 따른 배터리의 전압 사용 범위를 설명하기 위한 도면이다.
도 5는 한 실시예에 따른 중기 사용 기간 동안의 배터리의 전압 사용 범위를 설명하기 위한 도면이다.
도 6a는 한 실시예에 따른 온도 상승에 따른 배터리의 전압 사용 범위를 설명하기 위한 도면이다.
도 6b는 한 실시예에 따른 온도 하강에 따른 배터리의 전압 사용 범위를 설명하기 위한 도면이다.
이하, 첨부한 도면을 참고로 하여 여러 실시예들에 대하여 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 실시예들은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.
실시예들을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 번호를 붙이도록 한다. 따라서 이전 도면에 사용된 구성요소의 참조 번호를 다음 도면에서 사용할 수 있다.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 실시예들은 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께 및 영역을 과장하여 나타낼 수 있다.
2개의 구성요소를 전기적으로 연결한다는 것은 2개의 구성요소를 직접(directly) 연결할 경우뿐만 아니라, 2개의 구성요소 사이에 다른 구성요소를 거쳐서 연결하는 경우도 포함한다.
도 1a는 예시적인 배터리의 구성을 도시한 도면이다.
도 1a을 참조하면 배터리(10)는 양극(110), 양극(110)에 전기적으로 연결된 양극 단자(111), 음극(120), 음극(120)에 전기적으로 연결된 음극 단자(121), 및 분리막(130)을 포함한다. 도시되진 않았지만 양극(110), 음극(120), 및 분리막(130) 사이에는 이온의 이동을 위한 전해액이 충진되어 있을 수 있다.
양극(110)은 양극 집전체 및 양극 집전체 위에 형성되는 양극 활물질층을 포함할 수 있다. 양극 활물질층은 양극 활물질, 바인더, 및 선택적으로 도전재를 포함할 수 있다.
양극 집전체로는 알루미늄(Al), 니켈(Ni) 등을 사용할 수 있으나, 이에 한정되지 않는다.
양극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 사용할 수 있다. 구체적으로 코발트, 망간, 니켈, 알루미늄, 철 또는 이들의 조합의 금속과 리튬과의 복합 산화물 또는 복합 인산화물 중에서 1종 이상을 사용할 수 있다. 더욱 구체적으로, 리튬 코발트 산화물, 리튬 니켈 산화물, 리튬 망간 산화물, 리튬 니켈 코발트 망간 산화물, 리튬 니켈 코발트 알루미늄 산화물, 리튬 철 인산화물 또는 이들의 조합을 사용할 수 있다.
바인더는 양극 활물질 입자들을 서로 잘 부착시킬 뿐 아니라 양극 활물질을 양극 집전체에 잘 부착시키는 역할을 하며, 구체적인 예로는 폴리비닐알코올, 카르복시메틸셀룰로오스, 히드록시프로필셀룰로오스, 디아세틸셀룰로오스, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드 함유 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등이 있으나, 이에 한정되지 않는다. 이들은 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.
도전재는 전극에 도전성을 부여하는 것으로, 그 예로 천연흑연, 인조흑연, 카본블랙, 탄소섬유, 금속 분말, 금속 섬유 등이 있으나, 이에 한정되지 않는다. 이들은 단독으로 또는 2종 이상 혼합하여 사용할 수 있다. 금속 분말과 금속 섬유는 구리, 니켈, 알루미늄, 은 등의 금속을 사용할 수 있다.
음극(120)은 음극 집전체 및 음극 집전체 위에 형성되는 음극 활물질층을 포함할 수 있다.
음극 집전체는 구리(Cu), 금(Au), 니켈(Ni), 구리 합금 등을 사용할 수 있으나, 이에 한정되지 않는다.
음극 활물질층은 음극 활물질, 바인더 및 선택적으로 도전재를 포함할 수 있다.
음극 활물질로는 리튬 이온을 가역적으로 인터칼레이션 및 디인터칼레이션할 수 있는 물질, 리튬 금속, 리튬 금속의 합금, 리튬을 도프 및 탈도프할 수 있는 물질, 전이금속 산화물 또는 이들의 조합을 사용할 수 있다.
리튬 이온을 가역적으로 인터칼레이션 및 디인터칼레이션할 수 있는 물질로는 탄소계 물질을 들 수 있으며, 그 예로는 결정질 탄소, 비정질 탄소 또는 이들의 조합을 들 수 있다. 결정질 탄소의 예로는 무정형, 판상, 인편상(flake), 구형 또는 섬유형의 천연흑연 또는 인조흑연을 들 수 있다. 비정질 탄소의 예로는 소프트 카본(soft carbon) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다. 리튬 금속의 합금으로는 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속의 합금이 사용될 수 있다. 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0<x<2), Si-C 복합체, Si-Y 합금, Sn, SnO2, Sn-C 복합체, Sn-Y 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, S, Se, Te, Po 및 이들의 조합으로 이루어진 군에서 선택될 수 있다. 전이금속 산화물로는 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다.
음극(120)에 사용되는 바인더와 도전재의 종류는 전술한 양극(110)에서 사용되는 바인더와 도전재와 같을 수 있다.
양극(110)과 음극(120)은 각각의 활물질 및 바인더와 선택적으로 도전재를 용매 중에 혼합하여 각 활물질 조성물을 제조하고, 활물질 조성물을 각각의 집전체에 도포하여 제조할 수 있다. 이때 용매는 N-메틸피롤리돈 등을 사용할 수 있으나, 이에 한정되지 않는다. 이와 같은 전극 제조 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서 상세한 설명은 생략하기로 한다.
분리막(130)은 음극(120)과 양극(110)을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로 리튬 전지에서 통상적으로 사용되는 것이라면 모두 사용 가능하다. 즉, 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 사용될 수 있다. 예를 들어, 유리 섬유, 폴리에스테르, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌(PTFE) 또는 이들의 조합물 중에서 선택된 것으로서, 부직포 또는 직포 형태이어도 무방하다. 예를 들어, 리튬이온전지에는 폴리에틸렌, 폴리프로필렌 등과 같은 폴리올레핀계 고분자 세퍼레이터가 주로 사용되고, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
도 1b는 한 실시예에 따른 배터리의 충방전 제어 장치를 설명하기 위한 도면이다.
도 1b를 참조하면 충방전 제어 장치(80)는 배터리(10)와 장치(90) 사이에 전기적으로 개재된다.
장치(90)는 충전기(charger) 또는 전력 소모 장치일 수 있다. 예를 들어, 장치(90)가 충전기인 경우, 충방전 제어 장치(80)는 충전기로부터 배터리(10)의 양극 단자(111)로 흐르는 충전 전류(Ic)를 제어할 수 있다. 또한, 장치(90)가 모터(motor) 등의 전력 소모 장치인 경우, 충방전 제어 장치(80)는 배터리(10)로부터 전력 소모 장치로 흐르는 방전 전류(Id)를 제어할 수 있다.
한 실시예에 따른 충방전 제어 장치(80)는 전압 센서(810) 및 제어부(820)를 포함할 수 있다.
전압 센서(810)는 그 일단이 배터리(10)의 양극 단자(111)에 전기적으로 연결되고, 타단이 배터리(10)의 음극 단자(121)에 전기적으로 연결될 수 있다. 전압 센서(810)는 배터리(10)의 양극 전위와 음극 전위의 전압차를 이용하여 배터리 전압을 측정하고, 측정된 배터리 전압을 제어부(820)로 전달할 수 있다.
제어부(820)는 정전류 모드(constant current mode)에서 배터리(10)를 정전류로 충전시키고, 전압 센서(810)를 통해 측정된 배터리(10)의 전압이 충전 종지 전압(end-of-charge voltage)과 대응할 때, 정전압 모드(constant voltage mode)로 전환되어 배터리(10)를 정전압으로 충전시킬 수 있다.
또한 제어부(820)는 배터리(10)의 방전 기간에 있어서, 측정된 배터리(10)의 전압이 방전 종지 전압(end-of-discharge voltage)과 대응할 때 배터리(10)의 방전을 중지시킬 수 있다.
본 실시예에서, 제어부(820)는 이러한 충전 종지 전압 및 방전 종지 전압을 가변적으로 설정하여 배터리 두께 증가 현상을 방지하고, 배터리(10)의 수명을 연장시킬 수 있다.
이하 도 2 내지 6b에서, 제어부(820)에 의한 충방전 제어 방법을 더 상세히 설명한다.
도 2는 한 실시예에 따른 배터리의 충전 방법을 설명하기 위한 도면이다.
도 2를 참조하면 그래프(20)는 세로축으로 전압축과 전류축을 갖고, 가로축으로 시간축을 갖는다. 이하에서 시간 흐름에 따른 충전 전류(210) 및 배터리 전압(220)의 변화를 설명한다. 충전 전류(210)는 충전기로부터 배터리(10)의 양극 단자(111)를 향해 흐르는 전류의 크기를 의미하고, 배터리 전압(220)은 배터리(10)에서 양극(110)의 전위와 음극(120)의 전위 간의 차이를 의미한다. 배터리 전압(220)의 측정은 전술한 전압 센서(810)를 통해 수행될 수 있다.
본 실시예의 배터리의 충전 방법은 예비충전 모드, 정전류 모드, 및 정전압 모드를 포함할 수 있다.
먼저 시점(t20)에, 배터리(10)는 예비충전 모드(precharging mode)에서 낮은 전류 레벨을 갖는 충전 전류(210)를 입력받아 천천히 충전될 수 있다. 배터리(10)가 오랜시간 사용되지 않아 배터리 전압(220)이 매우 낮은 경우 예비충전 모드가 이용될 수 있다.
배터리 전압(220)이 일정 수준 이상이된 시점(t21)에서, 정전류 모드(constant current mode)가 시작될 수 있다. 배터리(10)는 정전류 모드에서 일정한 크기를 갖는 정전류인 충전 전류(210)를 입력받아 충전된다. 이에 따라 배터리 전압(220)이 점차적으로 증가하고, 배터리 전압(220)이 충전 종지 전압과 대응하게 되는 시점(t22)에서 정전류 모드가 종료된다.
도 2에서 충전 종지 전압이 제1 충전 종지 전압으로 표시되어 있다. 배터리(10)의 충전 종지 전압은 미리 설정될 수 있다. 본 실시예의 제1 충전 종지 전압은 배터리(10)의 만충전 전압으로부터 음극 임계 전위를 차감한 전압이다. 배터리(10)의 만충전 전압이란 배터리의 충전량(State Of Charge, SOC)이 배터리(10)의 수용 가능 최대 용량에 도달했을 때, 즉 충전량이 100%일 때의 양극 전위와 음극 전위의 전압차를 의미한다. 배터리(10)의 만충전 전압은 초기 상태 배터리(10)의 만충전 전압을 기준으로 정해질 수 있다. 예를 들어 만충전 전압이 4.35V이고, 음극 임계 전위가 0.05V이면, 제1 충전 종지 전압은 대략 4.3V로 설정될 수 있다.
음극 임계 전위는 배터리(10)에 포함된 음극 활물질이 상변이를 일으키는 음극(120)의 전위값일 수 있다. 음극 활물질의 상변이는, 배터리(10)의 충전시에 음극 전위가 음극 임계 전위보다 낮아지는 경우, 음극 활물질의 구성 원소에 리튬 이온이 결합하는 구조가 달라짐으로써 음극(120)의 팽창(swelling)이 일어나는 현상을 의미한다. 즉, 음극 전위가 음극 임계 전위보다 높을 때 음극 활물질의 구성 원소와 리튬 이온의 결합 구조를 제1 결합 구조라 하고, 음극 전위가 음극 임계 전위보다 낮을 때 음극 활물질의 구성 원소와 리튬 이온의 결합 구조를 제2 결합 구조라 하면, 제2 결합 구조에서 음극(120)의 팽창이 일어날 수 있다. 따라서 제1 결합 구조를 유지하도록 음극 전위는 음극 임계 전위 이상을 유지하는 것이 바람직하다. 음극 임계 전위는 배터리의 규격에 따라 달라질 수 있지만 대략 0.05V 내지 0.08V의 범위에 속할 수 있다.
배터리(10)는 충전됨에 따라 양극 전위가 증가하고 음극 전위가 감소함으로써, 양극 전위와 음극 전위의 전압차인 배터리 전압(220)이 증가하게 된다. 본 실시예에 따르면 제1 충전 종지 전압까지만 배터리 전압(220)이 증가하므로, 감소된 최종 음극 전위는 음극 임계 전위 이상을 유지하게 되고, 따라서 음극(120)의 팽창을 방지할 수 있다. 음극(120)의 팽창이 방지되므로 배터리(10) 전체의 두께 증가 현상을 방지할 수 있다.
배터리 전압(220)이 제1 충전 종지 전압에 도달하는 시점(t22)에서, 배터리의 양극 단자와 음극 단자(121)에 정전압이 인가되는 정전압 모드(constant voltage mode)가 시작된다. 정전압은 충전 종지 전압과 실질적으로 동일할 수 있다.
배터리 전압(220)이 정전압으로 유지됨에 따라 충전 전류(210)는 지속적으로 감소하며, 감소된 충전 전류(210)가 차단 전류(cut-off current)에 도달하는 시점(t23)에서, 배터리(10)의 충전이 완료된 것으로 보고, 충전 전류(210)의 공급을 중단한다.
다른 실시예에서, 충전 종지 전압은 제2 충전 종지 전압으로 재설정될 수 있다. 먼저, 완충된 배터리(10)에 대해서, 측정 또는 계산을 통하여 배터리(10)의 충전량을 산출한다. 배터리(10)의 충전량을 산출하는 데 있어서, 전압 측정, 전류 측정, 내부 저항 계산, 온도 측정 등 종래의 충전량 측정 방법이 이용될 수 있다. 측정된 배터리(10)의 충전량이 기준 충전량, 예를 들어 90%를 초과하면 충전 종지 전압은 제2 충전 종지 전압으로 재설정될 수 있다. 이때 제2 충전 종지 전압은 제1 충전 종지 전압보다 낮을 수 있다. 제2 충전 종지 전압은 배터리(10)가 완충되었을 때의 충전량이 대략 85%가 되도록 설정될 수 있다. 예를 들어, 제1 충전 종지 전압이 4.3V이면, 제2 충전 종지 전압은 4.25V으로 설정될 수 있다.
또 다른 실시예에서, 차단 전류를 디폴트 값(default value)보다 높게 설정할 수 있다. 예를 들어, 정전류 모드의 정전류의 크기가 기준 전류의 크기를 초과하는 경우, 배터리 전압(220)이 빠르게 상승하므로 충전 종지 전압은 제1 충전 종지 전압으로 설정하되, 차단 전류를 디폴트 값보다 높게 설정하여 충전 전류(210)의 공급이 보다 일찍 종료되도록 한다. 예를 들어, 정전류가 기준 전류인 0.5C를 초과하고 차단 전류의 디폴트 값이 0.02C인 경우, 차단 전류는 대략 0.3C로 재설정될 수 있다. 여기서 단위 C는 C-rate를 의미한다.
상술한 실시예들은 공통적으로, 배터리(10)의 완충시의 충전량이 대략 85%에서 유지되도록 할 수 있다. 이에 따라 배터리(10)의 음극 전위를 음극 임계 전위 이상으로 보다 안전하게 유지할 수 있다. 또한 리튬 플레이팅(Li plating)의 발생을 감소시키고, 양극 활물질의 구조 붕괴를 방지하여 크랙 및 공극의 발생을 감소시킴으로써 전해액과의 부반응을 최소화할 수 있다.
도 3은 한 실시예에 따른 배터리의 방전 방법을 설명하기 위한 도면이다.
도 3을 참조하면 그래프(30)는 세로축으로 전압축을 갖고, 가로축으로 시간축을 갖는다. 그래프(30)에는 배터리 전압(320)의 시간에 따른 변화가 도시되어 있다.
먼저, 배터리(10)의 방전 기간 동안 배터리 전압(320)을 측정한다. 배터리(10)의 전압 측정은 전술한 전압 센서(810)를 통해 수행될 수 있다. 측정된 배터리 전압(320)이 방전 종지 전압과 대응하는 시점(t31)에서 배터리의 방전을 중지하도록 할 수 있다.
본 실시예에서 방전 종지 전압은 측정된 배터리 전압(320)의 시간 대비 기울기가 임계 기울기를 초과하는 시점의 전압으로 설정될 수 있다. 시점(t31)에서 내부 저항이 급격히 증가하며 배터리 전압(320)이 급격히 감소하는 것을 확인할 수 있다. 이러한 내부 저항의 증가와 음극 활물질의 구조 변화를 억제하기 위해서, 배터리 전압(320)의 시간 대비 기울기가 임계 기울기를 초과하지 않는 범위에서 배터리(10)를 방전시키도록 제어할 수 있다. 여기서 기울기의 값은 기울기의 절대값을 의미한다.
도 4는 한 실시예에 따른 사용 기간에 따른 배터리의 전압 사용 범위를 설명하기 위한 도면이다.
도 4를 참조하면 그래프(40)는 세로축으로 전압축을 갖고, 가로축으로 시간축을 갖는다. 충전 종지 전압(421) 및 방전 종지 전압(422)은 초기 사용 기간, 중기 사용 기간 및 말기 사용 기간에 따라 달리 설정될 수 있다. 배터리(10)의 초기 사용 기간은 시점(t40) 내지 시점(t41) 사이의 기간이고, 중기 사용 기간은 시점(t41) 내지 시점(t42) 사이의 기간이고, 말기 사용 기간은 시점(t42) 이후의 기간일 수 있다.
배터리(10)의 초기 사용 기간 동안, 배터리(10)의 전압 사용 범위를 제1 전압 사용 범위(VR41)로 설정하여 배터리를 충방전할 수 있다. 배터리(10)의 중기 사용 기간 동안, 배터리(10)의 전압 사용 범위를 제2 전압 사용 범위(VR42)로 설정하여 배터리(10)를 충방전할 수 있다. 배터리(10)의 말기 사용 기간 동안, 배터리(10)의 전압 사용 범위를 제3 전압 사용 범위(VR43)으로 설정하여 배터리(10)를 충방전 할 수 있다. 본 실시예에서 전압 사용 범위는 충전 종지 전압(421)과 방전 종지 전압(422)의 전압차와 대응한다.
예를 들어, 초기 사용 기간 동안 배터리(10)의 충전 종지 전압(421)은 도 2의 실시예에 따라 제1 충전 종지 전압 또는 제2 충전 종지 전압으로 설정되고, 방전 종지 전압(422)은 도 3의 실시예에 따른 방전 종지 전압으로 설정될 수 있다. 이렇게 설정된 초기 사용 기간의 충전 종지 전압(421)은 전압 레벨(EOC41)을 가질 수 있고, 방전 종지 전압(422)은 전압 레벨(EOD41)을 가질 수 있다. 제1 전압 사용 범위(VR41) 는 전압 레벨(EOC41)과 전압 레벨(EOD41)의 차이가 된다. 전술한 바와 같이 제1 전압 사용 범위(VR41)에서 배터리(10)를 충방전하는 경우, 음극(120)의 팽창을 방지하여 배터리(10)의 초기 두께 증가 현상을 방지할 수 있다.
본 실시예에서 제2 전압 사용 범위(VR42)는 제1 전압 사용 범위(VR41)보다 클 수 있다. 아래 실험 결과에 따르면, 시점(t41)을 넘은 중기 사용 기간에서 배터리(10)의 초기 두께 증가 현상이 감소하므로, 제2 전압 사용 범위(VR42)를 제1 전압 사용 범위(VR41)보다 증가시키더라도 배터리 두께에 있어서 큰 문제가 되지 않는다.
실험 결과에 따르면 충전 종지 전압을 4.35V로 설정하고 방전 종지 전압을 3.0V로 설정한 배터리(10)는, 충방전 사이클이 0 회일 때 두께 증가가 0%, 충방전 사이클이 1 회일 때 두께 증가가 1.12%, 충방전 사이클이 50 회일 때 두께 증가가 5.99%, 충방전 사이클이 150 회일 때 두께 증가가 5.99%, 충방전 사이클이 200 회일 때 두께 증가가 5.99%, 충방전 사이클이 250 회일 때 두께 증가가 7.12%, 충방전 사이클이 300 회일 때 두께 증가가 8.61% 발생하였다.
또한 충전 종지 전압을 4.2V로 설정하고 방전 종지 전압을 3.4V로 설정한 동일 규격의 배터리는, 충방전 사이클이 0 회일 때 두께 증가가 0%, 충방전 사이클이 1 회일 때 두께 증가가 1.50%, 충방전 사이클이 50 회일 때 두께 증가가 3.76%, 충방전 사이클이 150 회일 때 두께 증가가 3.38%, 충방전 사이클이 200 회일 때 두께 증가가 4.14%, 충방전 사이클이 250 회일 때 두께 증가가 4.14%, 충방전 사이클이 300 회일 때 두께 증가가 4.14% 발생하였다.
상술한 실험 결과에 따르면, 충방전 사이클이 대략 50회일 때 배터리(10)의 두께 증가 현상이 현저히 감소되므로, 시점(t41)은 대략 충방전 사이클이 50회가 되었을 때로 설정될 수 있다. 시점(t41)을 결정하는 충방전 사이클의 횟수는 배터리(10)의 규격 및 사용 환경에 따라 달라질 수 있으며, 대략 15 내지 50회 정도일 수 있다.
따라서 사용자는 전압 레벨(EOC42)과 전압 레벨(EOD42) 사이의 제2 전압 사용 범위(VR42)에서 배터리(10)를 사용하게 되고, 배터리(10)의 두께가 유지되면서도 향상된 성능을 경험할 수 있다.
또한 상술한 실험 결과에 따르면 제1 전압 사용 범위(VR41)를 작게 함으로써 초기 두께 증가 현상 및 최종적인 배터리(10)의 두께 증가를 방지할 수 있음을 확인할 수 있다.
시점(t42)부터 배터리(10)의 말기 사용 기간이 시작될 수 있다. 말기 사용 기간에서의 제3 전압 사용 범위(VR43)는 전압 레벨(EOC43) 및 전압 레벨(EOD43)의 차이이다.
제3 전압 사용 범위(VR43)는 제2 전압 사용 범위(VR42)보다 작을 수 있다. 이로써 배터리(10)의 수명 말기 두께 증가 현상을 방지할 수 있다. 이때, 제3 전압 사용 범위(VR43)는 제1 전압 사용 범위(VR41)와 동일할 수 있다. 또한, 다른 실시예에서 제3 전압 사용 범위(VR43)는 제1 전압 사용 범위(VR41)보다 클 수 있다.
한 실시예에서 시점(t42)은 배터리(10)의 측정되는 최대 용량이 배터리(10)의 최초 최대 용량의 특정 비율이 되는 때로 정해질 수 있다. 예를 들어, 특정 시점에서 배터리(10)의 측정되는 최대 용량이 배터리(10)의 최초 최대 용량의 90%일 때, 이러한 특정 시점을 시점(t42)으로 정할 수 있다.
도 5는 한 실시예에 따른 중기 사용 기간 동안의 배터리의 전압 사용 범위를 설명하기 위한 도면이다.
도 5를 참조하면 그래프(50)는 세로축으로 전압축을 갖고, 가로축으로 시간축을 갖는다. 시점(t50) 내지 시점(t51)은 배터리(10)의 초기 사용 기간이고, 시점(t51) 이후는 배터리(10)의 중기 사용 기간이다. 초기 사용 기간 및 중기 사용 기간의 정의 및 구분은 도 4의 실시예에서 전술한 바와 같다.
도 5의 실시예와 도 4의 실시예의 차이점은 중기 사용 기간에 있다. 도 5의 실시예에서 중기 사용 기간 동안 배터리(10)를 충방전 함에 있어서, 시간에 따라 충전 종지 전압(521)을 순차적으로 증가시키고, 방전 종지 전압(522)을 순차적으로 감소시킨다.
예를 들어, 초기 사용 기간에서 충전 종지 전압(521)이 전압 레벨(EOC51)을 갖고 방전 종지 전압(522)이 전압 레벨(EOD51)을 갖는다면, 시점(t51) 내지 시점(t52)의 중기 사용 기간에서 충전 종지 전압(521)이 전압 레벨(EOC52)을 갖고 방전 종지 전압(522)이 전압 레벨(EOD52)을 갖고, 시점(t52) 내지 시점(t53)의 중기 사용 기간에서 충전 종지 전압(521)이 전압 레벨(EOC53)을 갖고 방전 종지 전압(522)이 전압 레벨(EOD53)을 갖고, 시점(t53) 이후의 중기 사용 기간에서 충전 종지 전압(521)이 전압 레벨(EOC54)을 갖고 방전 종지 전압(522)이 전압 레벨(EOD54)을 가질 수 있다. 충전 종지 전압(521)의 전압 레벨은 전압 레벨(EOC51), 전압 레벨(EOC52), 전압 레벨(EOC53), 전압 레벨(EOC54) 순서로 증가할 수 있다. 방전 종지 전압(522)의 전압 레벨은 전압 레벨(EOD51), 전압 레벨(EOD52), 전압 레벨(EOD53), 전압 레벨(EOC54) 순서로 감소할 수 있다.
한 실시예에 따라, 배터리(10)의 최초의 만충전 전압이 FCV, 음극 임계 전위가 NECV, 열화 조건이 AC, 용량 감소율이 CRR, 기준 충전 종지 전압이 REOC, 제1 기준 방전 종지 전압이 REOD1이고 제2 기준 방전 종지 전압이 REOD2일 때, 충전 종지 전압(521)인 EOC는 다음 수학식 1에 따라 결정될 수 있다.
[수학식 1]
EOC=REOC+(FCV-NECV-REOC)*CRR/(100-AC)
또한 방전 종지 전압(522)인 EOD는 다음 수학식 2에 따라 결정될 수 있다.
[수학식 2]
EOD=REOD1-(REOD1-REOD2)*CRR/(100-AC)
이때, 음극 임계 전위는 배터리(10)에 포함된 음극 활물질이 상변이를 일으키는 음극(120)의 전위값일 수 있다. 열화 조건은 배터리(10)의 초기 방전 용량 대비 감소된 특정 방전 용량에 대응하는 백분율 수치일 수 있다. 용량 감소율은 배터리(10)의 초기 방전 용량과 현재 방전 용량의 차이에 대응하는 백분율 수치일 수 있다. 기준 충전 종지 전압 및 제1 기준 방전 종지 전압은 제1 전압 사용 범위에 대응할 수 있다. 제2 기준 방전 종지 전압은 제1 기준 방전 종지 전압보다 낮을 수 있다.
아래에서 구체적인 예를 들어 상술한 수학식 1 및 2를 설명한다.
제1 전압 사용 범위는 전술한 바와 같이 초기 사용 기간의 전압 사용 범위를 의미하고, 따라서 본 실시예에서 기준 충전 종지 전압의 전압 레벨은 전압 레벨(EOC51)에 해당한다. 또한 제1 기준 방전 종지 전압은 전압 레벨(EOD51)에 해당한다. 예를 들어, 기준 충전 종지 전압은 4.2V이고, 제1 기준 방전 종지 전압은 3.4V일 수 있다. 제2 기준 방전 종지 전압은 3.0V일 수 있다. 제2 기준 방전 종지 전압은 배터리 팩 기준의 방전 종지 전압으로 결정될 수 있다.
음극 임계 전위는 도 2의 실시예를 참조하여 대략 0.05V일 수 있다. 배터리(10)의 최초의 만충전 전압은 4.35V일 수 있다. 열화 조건은 80%일 수 있다. 용량 감소율은 용량 감소 5%를 기준으로 측정될 수 있으며, 예를 들어 5%, 10%, 15%일 수 있다.
시점(t51)에서 용량 감소 5%가 일어나는 경우, 수학식 1 및 2에 따르면 증가된 충전 종지 전압(521)의 전압 레벨(EOC52)은 4.225V이고, 감소된 방전 종지 전압(522)의 전압 레벨(EOD52)은 3.3V이다.
시점(t52)에서 용량 감소 10%가 일어나는 경우, 수학식 1 및 2에 따르면 증가된 충전 종지 전압(521)의 전압 레벨(EOC53)은 4.25V이고, 감소된 방전 종지 전압(522)의 전압 레벨(EOD53)은 3.2V이다.
시점(t53)에서 용량 감소 15%가 일어나는 경우, 수학식 1 및 2에 따르면 증가된 충전 종지 전압(521)의 전압 레벨(EOC54)은 4.275V이고, 감소된 방전 종지 전압(522)의 전압 레벨(EOD54)은 3.1V이다.
상술한 충방전 제어 방법에 따르면, 실질적으로 배터리(10)의 용량 감소가 발생하더라도, 사용자는 배터리(10)의 용량이 일관성을 갖는것으로 경험할 수 있다.
한 실시예에 따르면 시점(t53) 이후 기간에 대해서 방전 용량의 급락을 방지하기 위해서 충전 종지 전압(521)과 방전 종지 전압(522)을 고정하여 열화를 억제하도록 제어할 수 있다.
상술한 수학식 1 및 2는 도 5의 실시예를 구체화하기 위한 하나의 예시이고, 본 실시예는 이러한 수학식에 의해서 제한되지 않는다.
도 6a는 한 실시예에 따른 온도 상승에 따른 배터리의 전압 사용 범위를 설명하기 위한 도면이다.
도 6a을 참조하면 그래프(60)는 세로축으로 전압축 및 온도축을 갖고, 가로축으로 시간축을 갖는다. 시점(t60) 내지 시점(t61)은 배터리(10)의 초기 사용 기간이고, 시점(t61) 이후는 배터리(10)의 중기 사용 기간이다. 초기 사용 기간 및 중기 사용 기간의 정의 및 구분은 도 4의 실시예에서 전술한 바와 같다.
도 6a의 실시예에서, 초기 사용 기간에 제1 전압 사용 범위(VR61)에서 배터리(10)가 충방전되고, 중기 사용 기간에 제2 전압 사용 범위(VR62a, VR62b)에서 배터리(10)가 충방전된다. 제1 전압 사용 범위(VR61)는 전압 레벨(EOC61) 및 전압 레벨(EOD61)에 따라 정해지고, 제2 전압 사용 범위(VR62a)는 전압 레벨(EOC62) 및 전압 레벨(EOD62)에 따라 정해지고, 제2 전압 사용 범위(VR62b)는 전압 레벨(EOC63) 및 전압 레벨(EOD63)에 따라 정해진다.
제1 전압 사용 범위(VR61) 및 제2 전압 사용 범위(VR62a)는 온도(630)가 기준 온도 범위(RT) 내에 해당할 때의 배터리(10)의 전압 사용 범위이고, 제2 전압 사용 범위(VR62b)는 온도(630)가 기준 온도 범위(RT)보다 높을 때의 배터리(10)의 전압 사용 범위이다. 기준 온도 범위(RT)는 상온(ordinary temperature)의 범위일 수 있고, 상온의 범위란 대략 섭씨 15도 내지 35도 정도로 정해질 수 있다.
온도(630)가 기준 온도 범위(RT)보다 높아지는 시점(t62)에서, 배터리(10)의 방전 용량이 상온 대비 증가하므로, 충전 종지 전압(621)을 전압 레벨(EOC62)에서 전압 레벨(EOC63)로 낮추고 방전 종지 전압(622)을 전압 레벨(EOD62)에서 전압 레벨(EOD63)로 상승시킬 수 있다. 따라서 배터리(10)는 제2 전압 사용 범위(VR62a)에 비해 감소된 제2 전압 사용 범위(VR62b)에서 충방전 제어된다. 이에 따라 내부 활물질의 부반응을 감속시켜 배터리의 수명을 증가시키는 효과를 얻을 수 있다.
도시되진 않았지만, 초기 사용 기간에 온도(630)가 기준 온도 범위(RT)보다 높아지는 경우에도 동일한 원리가 적용될 수 있다. 즉, 상온의 경우에 비해 제1 전압 사용 범위(VR61)가 감소될 수 있다.
한 실시예에 따르면, 온도(630)가 기준 온도 범위(RT)보다 높아지는 경우, 중기 사용 기간의 방전 종지 전압(622)의 변경된 전압 레벨(EOD63)은 초기 사용 기간의 방전 종지 전압(622)의 전압 레벨(EOD61)보다 낮을 수 있다. 또한, 온도(630)가 기준 온도 범위(RT)보다 높아지는 경우, 중기 사용 기간의 충전 종지 전압(621)의 변경된 전압 레벨(EOC63)은 초기 사용 기간의 충전 종지 전압(621)의 전압 레벨(EOC61)보다 높을 수 있다. 즉, 중기 사용 기간의 제2 전압 사용 범위(VR62a, VR62b)는, 온도 변화와 무관하게, 초기 사용 기간의 제1 전압 사용 범위(VR61)보다 항상 크도록 제어될 수 있다. 그럼으로써, 도 6a의 실시예에 따라 온도변화에 대응하여 제2 전압 사용 범위를 조절하면서도, 도 4에 따른 실시예의 효과를 함께 얻을 수 있다.
도 6b는 한 실시예에 따른 온도 하강에 따른 배터리의 전압 사용 범위를 설명하기 위한 도면이다.
도 6b를 도 6a와 비교하면, 온도(630)는 시점(t62)에서 기준 온도 범위(RT)보다 낮아진다. 온도(630)가 기준 온도 범위(RT)보다 낮아지는 경우, 배터리(10)의 방전 용량이 상온 대비 감소하므로 이를 보상하기 위해서 전압 사용 범위를 증가시킬 수 있다.
따라서, 충전 종지 전압(621)을 전압 레벨(EOC62)에서 전압 레벨(EOC64)로 상승시키고 방전 종지 전압(622)을 전압 레벨(EOD62)에서 전압 레벨(EOD64)로 감소시킬 수 있다. 따라서 배터리(10)는 제2 전압 사용 범위(VR62a)에 비해 증가된 제2 전압 사용 범위(VR62c)에서 충방전 제어된다.
도시되진 않았지만, 초기 사용 기간에 온도(630)가 기준 온도 범위(RT)보다 낮아지는 경우에도 동일한 원리가 적용될 수 있다. 즉, 상온의 경우에 비해 제1 전압 사용 범위(VR61)가 증가될 수 있다.
지금까지 참조한 도면과 기재된 발명의 상세한 설명은 단지 본 발명의 예시적인 것으로서, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미 한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (25)

  1. 배터리의 전압을 측정하는 전압 센서; 및
    정전류 모드(constant current mode)에서 상기 배터리를 정전류로 충전시키고, 상기 전압 센서를 통해 측정된 상기 배터리의 전압이 충전 종지 전압(end-of-charge voltage)과 대응할 때, 정전압 모드(constant voltage mode)로 전환되어 상기 배터리를 정전압으로 충전시키는 제어부를 포함하고,
    상기 충전 종지 전압은 상기 배터리의 만충전 전압으로부터 음극 임계 전위를 차감한 제1 충전 종지 전압으로 설정되고,
    상기 음극 임계 전위는 상기 배터리에 포함된 음극 활물질이 상변이를 일으키는 음극의 전위값인,
    배터리의 충방전 제어 장치.
  2. 제1 항에 있어서,
    상기 제어부는 상기 배터리의 충전량(state of charge)을 측정하거나 계산하고, 상기 충전량이 기준 충전량이상인 경우, 상기 충전 종지 전압을 제2 충전 종지 전압으로 재설정하고,
    상기 제2 충전 종지 전압은 상기 제1 충전 종지 전압보다 낮은,
    배터리의 충방전 제어 장치.
  3. 제1 항에 있어서,
    상기 제어부는 상기 정전류 모드의 상기 정전류의 크기가 기준 전류의 크기를 초과하는 경우, 상기 정전압 모드의 차단 전류(cut-off current)를 디폴트 값보다 높게 설정하는,
    배터리의 충방전 제어 장치.
  4. 제2 항에 있어서,
    상기 제어부는, 상기 배터리의 방전 기간에 있어서, 측정된 상기 배터리의 전압이 방전 종지 전압과 대응할 때 상기 배터리의 방전을 중지시키고,
    상기 방전 종지 전압은 상기 측정된 전압의 시간 대비 기울기가 임계 기울기를 초과하는 시점의 전압인,
    배터리의 충방전 제어 장치.
  5. 배터리의 전압을 측정하는 전압 센서; 및
    측정된 상기 배터리의 전압이, 배터리의 사용 기간에 대응하는 전압 사용 범위 내에 있도록 상기 배터리를 충방전 제어하는 제어부를 포함하고,
    상기 제어부는 상기 배터리의 초기 사용 기간 동안 상기 전압 사용 범위를 제1 전압 사용 범위로 설정하여 상기 배터리를 충방전 제어하고, 상기 배터리의 중기 사용 기간 동안 상기 전압 사용 범위를 제2 전압 사용 범위로 설정하여 상기 배터리를 충방전 제어하고,
    상기 전압 사용 범위는 충전 종지 전압과 방전 종지 전압의 전압차와 대응하고,
    상기 제2 전압 사용 범위는 상기 제1 전압 사용 범위보다 큰,
    배터리의 충방전 제어 장치.
  6. 제5 항에 있어서,
    상기 제어부는 상기 배터리의 말기 사용 기간 동안 상기 전압 사용 범위를 제3 전압 사용 범위로 설정하여 상기 배터리를 충방전하고,
    상기 제3 전압 사용 범위는 상기 제2 전압 사용 범위보다 작은,
    배터리의 충방전 제어 장치.
  7. 제6 항에 있어서,
    상기 제3 전압 사용 범위는 상기 제1 전압 사용 범위보다 큰,
    배터리의 충방전 제어 장치.
  8. 제6 항에 있어서,
    상기 배터리의 충방전 횟수가 특정 충방전 사이클 횟수를 초과하는 경우, 상기 중기 사용 기간이 시작되는,
    배터리의 충방전 제어 장치.
  9. 제8 항에 있어서,
    상기 배터리의 측정되는 최대 용량이 상기 배터리의 최초 최대 용량의 특정 비율이되는 경우, 상기 말기 사용 기간이 시작되는,
    배터리의 충방전 제어 장치.
  10. 제5 항에 있어서,
    상기 제어부는 상기 상기 중기 사용 기간 동안 상기 충전 종지 전압을 순차적으로 증가시키고, 상기 방전 종지 전압을 순차적으로 감소시키는,
    배터리의 충방전 제어 장치.
  11. 제10 항에 있어서,
    상기 배터리의 최초의 만충전 전압이 FCV, 음극 임계 전위가 NECV, 열화 조건이 AC, 용량 감소율이 CRR, 기준 충전 종지 전압이 REOC, 제1 기준 방전 종지 전압이 REOD1이고 제2 기준 방전 종지 전압이 REOD2일 때,
    상기 충전 종지 전압인 EOC는 다음 수학식에 따라 결정되고,
    EOC=REOC+(FCV-NECV-REOC)*CRR/(100-AC),
    상기 방전 종지 전압인 EOD는 다음 수학식에 따라 결정되고,
    EOD=REOD1-(REOD1-REOD2)*CRR/(100-AC),
    상기 음극 임계 전위는 상기 배터리에 포함된 음극 활물질이 상변이를 일으키는 음극의 전위값이고,
    상기 열화 조건은 상기 배터리의 초기 방전 용량 대비 감소된 특정 방전 용량에 대응하는 백분율 수치이고,
    상기 용량 감소율은 상기 배터리의 초기 방전 용량과 현재 방전 용량의 차이에 대응하는 백분율 수치이고,
    상기 기준 충전 종지 전압 및 상기 제1 기준 방전 종지 전압은 상기 제1 전압 사용 범위에 대응하고,
    상기 제2 기준 방전 종지 전압은 상기 제1 기준 방전 종지 전압보다 낮은,
    배터리의 충방전 제어 장치.
  12. 제5 항에 있어서,
    상기 제1 전압 사용 범위 및 제2 전압 사용 범위는 온도가 기준 온도 범위에 해당할 때의 상기 배터리의 전압 사용 범위이고,
    상기 제어부는 상기 온도가 상기 기준 온도 범위보다 낮을 때 상기 제1 및 제2 전압 사용 범위 중 적어도 하나를 증가시키고, 상기 온도가 상기 기준 온도 범위보다 높을 때 상기 제1 및 제2 전압 사용 범위 중 적어도 하나를 감소시키는
    배터리의 충방전 제어 장치.
  13. 배터리의 충전 종지 전압을 설정하는 단계;
    상기 배터리가 정전류로 충전되는 정전류 모드(constant current mode)의 기간 동안 상기 배터리의 전압을 측정하는 단계; 및
    상기 배터리의 측정된 전압이 상기 충전 종지 전압(end-of-charge voltage)과 대응할 때, 상기 배터리가 정전압으로 충전되는 정전압 모드(constant voltage mode)로 전환되는 단계를 포함하고,
    상기 충전 종지 전압을 설정하는 단계에서, 상기 충전 종지 전압은 상기 배터리의 만충전 전압으로부터 음극 임계 전위를 차감한 제1 충전 종지 전압으로 설정되고,
    상기 음극 임계 전위는 상기 배터리에 포함된 음극 활물질이 상변이를 일으키는 음극의 전위값인,
    배터리의 충방전 제어 방법.
  14. 제13 항에 있어서,
    상기 배터리의 충전량(state of charge)을 측정하거나 계산하는 단계; 및
    상기 충전량이 기준 충전량 이상인 경우, 상기 충전 종지 전압을 제2 충전 종지 전압으로 재설정하는 단계를 더 포함하고,
    상기 제2 충전 종지 전압은 상기 제1 충전 종지 전압보다 낮은,
    배터리의 충방전 제어 방법.
  15. 제13 항에 있어서,
    상기 정전류 모드의 상기 정전류의 크기가 기준 전류의 크기를 초과하는 경우, 상기 정전압 모드의 차단 전류(cut-off current)를 디폴트 값보다 높게 설정하는 단계를 더 포함하는
    배터리의 충방전 제어 방법.
  16. 제14 항에 있어서,
    상기 배터리의 방전 기간 동안 상기 배터리의 전압을 측정하는 단계; 및
    상기 배터리의 전압이 방전 종지 전압과 대응할 때 상기 배터리의 방전을 중지하는 단계를 더 포함하고,
    상기 방전 종지 전압은 상기 측정된 전압의 시간 대비 기울기가 임계 기울기를 초과하는 시점의 전압인,
    배터리의 충방전 제어 방법.
  17. 배터리의 초기 사용 기간 동안, 상기 배터리의 전압 사용 범위를 제1 전압 사용 범위로 하여 상기 배터리를 충방전하는 단계; 및
    상기 배터리의 중기 사용 기간 동안, 상기 전압 사용 범위를 제2 전압 사용 범위로 하여 상기 배터리를 충방전하는 단계를 포함하고,
    상기 전압 사용 범위는 충전 종지 전압과 방전 종지 전압의 전압차와 대응하고,
    상기 제2 전압 사용 범위는 상기 제1 전압 사용 범위보다 큰,
    배터리의 충방전 제어 방법.
  18. 제17 항에 있어서,
    상기 배터리의 말기 사용 기간 동안, 상기 전압 사용 범위를 제3 전압 사용 범위로 하여 상기 배터리를 충방전하는 단계를 더 포함하고,
    상기 제3 전압 사용 범위는 상기 제2 전압 사용 범위보다 작은,
    배터리의 충방전 제어 방법.
  19. 제18 항에 있어서,
    상기 제3 전압 사용 범위는 상기 제1 전압 사용 범위보다 큰,
    배터리의 충방전 제어 방법.
  20. 제18 항에 있어서,
    상기 배터리의 충방전 횟수가 특정 충방전 사이클 횟수를 초과하는 경우, 상기 중기 사용 기간이 시작되는,
    배터리의 충방전 제어 방법.
  21. 제20 항에 있어서,
    상기 배터리의 측정되는 최대 용량이 상기 배터리의 최초 최대 용량의 특정 비율이되는 경우, 상기 말기 사용 기간이 시작되는,
    배터리의 충방전 제어 방법.
  22. 제17 항에 있어서,
    상기 중기 사용 기간 동안 상기 배터리를 충방전 하는 단계는:
    상기 충전 종지 전압을 순차적으로 증가시키는 단계; 및
    상기 방전 종지 전압을 순차적으로 감소시키는 단계를 포함하는,
    배터리의 충방전 제어 방법.
  23. 제22 항에 있어서,
    상기 배터리의 최초의 만충전 전압이 FCV, 음극 임계 전위가 NECV, 열화 조건이 AC, 용량 감소율이 CRR, 기준 충전 종지 전압이 REOC, 제1 기준 방전 종지 전압이 REOD1이고 제2 기준 방전 종지 전압이 REOD2일 때,
    상기 충전 종지 전압인 EOC는 다음 수학식에 따라 결정되고,
    EOC=REOC+(FCV-NECV-REOC)*CRR/(100-AC),
    상기 방전 종지 전압인 EOD는 다음 수학식에 따라 결정되고,
    EOD=REOD1-(REOD1-REOD2)*CRR/(100-AC),
    상기 음극 임계 전위는 상기 배터리에 포함된 음극 활물질이 상변이를 일으키는 음극의 전위값이고,
    상기 열화 조건은 상기 배터리의 초기 방전 용량 대비 감소된 특정 방전 용량에 대응하는 백분율 수치이고,
    상기 용량 감소율은 상기 배터리의 초기 방전 용량과 현재 방전 용량의 차이에 대응하는 백분율 수치이고,
    상기 기준 충전 종지 전압 및 상기 제1 기준 방전 종지 전압은 상기 제1 전압 사용 범위에 대응하고,
    상기 제2 기준 방전 종지 전압은 상기 제1 기준 방전 종지 전압보다 낮은,
    배터리의 충방전 제어 방법.
  24. 제17 항에 있어서,
    상기 제1 전압 사용 범위 및 제2 전압 사용 범위는 온도가 기준 온도 범위에 해당할 때의 상기 배터리의 전압 사용 범위이고,
    상기 온도가 상기 기준 온도 범위보다 낮을 때, 상기 제1 및 제2 전압 사용 범위 중 적어도 하나를 증가시키는 단계; 및
    상기 온도가 상기 기준 온도 범위보다 높을 때, 상기 제1 및 제2 전압 사용 범위 중 적어도 하나를 감소시키는 단계를 더 포함하는
    배터리의 충방전 제어 방법.
  25. 제24 항에 있어서,
    상기 온도가 상기 기준 온도 범위보다 높을 때, 상기 중기 사용 기간의 방전 종지 전압은 상기 초기 사용 기간의 방전 종지 전압보다 낮은,
    배터리의 충방전 제어 방법.
PCT/KR2017/002963 2016-04-12 2017-03-20 배터리의 충방전 제어 장치 및 그 제어 방법 WO2017179827A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202110622750.2A CN113364090B (zh) 2016-04-12 2017-03-20 电池充/放电控制装置及其控制方法
US16/091,472 US11309728B2 (en) 2016-04-12 2017-03-20 Battery charging/discharging control device and method for controlling same
PL17782582.5T PL3444917T3 (pl) 2016-04-12 2017-03-20 Urządzenie sterujące ładowaniem/rozładowywaniem akumulatora i metoda sterowania nim
EP17782582.5A EP3444917B1 (en) 2016-04-12 2017-03-20 Battery charging/discharging control device and method for controlling same
CN201780020150.0A CN108886262B (zh) 2016-04-12 2017-03-20 电池充/放电控制装置及其控制方法
US17/694,459 US12015297B2 (en) 2016-04-12 2022-03-14 Battery charging/discharging control device and method for controlling same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160044913A KR102589963B1 (ko) 2016-04-12 2016-04-12 배터리의 충방전 제어 장치 및 그 제어 방법
KR10-2016-0044913 2016-04-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/091,472 A-371-Of-International US11309728B2 (en) 2016-04-12 2017-03-20 Battery charging/discharging control device and method for controlling same
US17/694,459 Division US12015297B2 (en) 2016-04-12 2022-03-14 Battery charging/discharging control device and method for controlling same

Publications (1)

Publication Number Publication Date
WO2017179827A1 true WO2017179827A1 (ko) 2017-10-19

Family

ID=60042663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002963 WO2017179827A1 (ko) 2016-04-12 2017-03-20 배터리의 충방전 제어 장치 및 그 제어 방법

Country Status (7)

Country Link
US (2) US11309728B2 (ko)
EP (1) EP3444917B1 (ko)
KR (1) KR102589963B1 (ko)
CN (2) CN113364090B (ko)
HU (1) HUE059851T2 (ko)
PL (1) PL3444917T3 (ko)
WO (1) WO2017179827A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112740500A (zh) * 2019-10-21 2021-04-30 宁德新能源科技有限公司 充电方法、电子装置以及存储介质
US20210234377A1 (en) * 2018-08-07 2021-07-29 Intel Corporation Battery charge termination voltage adjustment
GB2596066A (en) * 2020-06-15 2021-12-22 Tridonic Gmbh & Co Kg A converter for charging a battery for supplying emergency lighting means
US11863009B2 (en) 2019-06-18 2024-01-02 Intel Corporation Battery charge termination voltage adjustment

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199311A1 (ja) * 2017-04-28 2018-11-01 株式会社Gsユアサ 管理装置、蓄電装置および蓄電システム
KR102500690B1 (ko) * 2017-09-18 2023-02-17 삼성전자주식회사 배터리 상태를 기반으로 충전을 제어하는 방법 및 장치
KR102441505B1 (ko) * 2017-12-11 2022-09-07 현대자동차주식회사 전기 자동차의 배터리 충전 방법
CN109065989B (zh) * 2018-07-27 2020-06-05 维沃移动通信有限公司 一种充电方法及充电装置
JP6968774B2 (ja) * 2018-09-26 2021-11-17 本田技研工業株式会社 リチウムイオン電池の制御装置、リチウムイオン電池の制御方法、およびプログラム
CN114503388A (zh) * 2019-05-23 2022-05-13 香港大学 使用动态调整的电池电压阈值的电池充电系统和方法
US11670953B2 (en) 2019-11-02 2023-06-06 Samsung Electronics Co., Ltd. Battery management system and battery charging control method
WO2021149395A1 (ja) * 2020-01-22 2021-07-29 株式会社村田製作所 パワーコンディショナ
JP2022535307A (ja) * 2020-03-24 2022-08-08 東莞新能安科技有限公司 電気化学装置の充電方法、電子装置、及び読み取り可能な記憶媒体
US11614492B2 (en) * 2020-11-02 2023-03-28 Semiconductor Components Industries, Llc Methods and apparatus for a battery
EP4099475A1 (en) * 2021-06-04 2022-12-07 Sonova AG Method of operating a charger for a battery and charger
CN113675490A (zh) * 2021-08-19 2021-11-19 蜂巢能源科技有限公司 电池的分容方法和装置
KR102618037B1 (ko) * 2022-06-20 2023-12-27 주식회사 엘지에너지솔루션 배터리 진단 장치, 배터리 진단 방법 및 배터리 진단 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150884A (ja) * 1997-09-12 1999-06-02 Fuji Photo Film Co Ltd 二次電池の充電制御方法およびその充電装置
JP2014018022A (ja) * 2012-07-11 2014-01-30 Sharp Corp 充電装置、その制御プログラム、情報端末、充電方法、および、電池パック
JP2014049229A (ja) * 2012-08-30 2014-03-17 Toyota Motor Corp 全固体電池用負極体および全固体電池
KR20150020257A (ko) * 2012-07-12 2015-02-25 닛산 지도우샤 가부시키가이샤 2차 전지의 충전 제어 방법 및 충전 제어 장치
US20160072313A1 (en) * 2014-09-04 2016-03-10 Denso Corporation Charging control method for lithium-ion battery, charging control apparatus for lithium-ion battery and lithium-ion battery system

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA952456B (en) * 1994-03-28 1996-03-29 John York Seymour A method and apparatus for processing batteries
KR19990055238A (ko) 1997-12-27 1999-07-15 전주범 전지의 충방전 방법
US6275006B1 (en) * 1998-05-27 2001-08-14 Matsushita Electric Industrial Co., Ltd. Method for charging secondary battery
JPH11355968A (ja) 1998-06-04 1999-12-24 Matsushita Electric Ind Co Ltd 蓄電池の充電方法とその充電装置
JP3676134B2 (ja) * 1998-11-30 2005-07-27 三洋電機株式会社 充放電制御方法
EP1381135A4 (en) 2001-04-17 2006-07-19 Matsushita Electric Ind Co Ltd BATTERY-OPERATED ELECTRONIC DEVICE AND MOBILE COMMUNICATION DEVICE
US7012405B2 (en) * 2001-09-14 2006-03-14 Ricoh Company, Ltd. Charging circuit for secondary battery
JP2003132955A (ja) 2001-10-23 2003-05-09 Nec Yonezawa Ltd 非水電解質二次電池の充放電方法
JP2005269824A (ja) * 2004-03-19 2005-09-29 Yanmar Co Ltd ハイブリッドシステム
JP5089883B2 (ja) * 2005-12-16 2012-12-05 日立ビークルエナジー株式会社 蓄電池管理装置
JP2008061487A (ja) * 2006-07-31 2008-03-13 Toyota Motor Corp 電源システムおよびそれを備えた車両、蓄電装置の昇温制御方法、ならびに蓄電装置の昇温制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
TWI394347B (zh) * 2009-11-10 2013-04-21 Pegatron Corp 行動電子裝置及其電池模組的電量管理方法
JP2011215083A (ja) * 2010-04-01 2011-10-27 Toyota Motor Corp 二次電池の正負電位関係取得装置、二次電池の制御装置、車両、二次電池の正負電位関係取得方法、及び、二次電池の制御方法
KR20130108332A (ko) * 2010-09-03 2013-10-02 엔비아 시스템즈 인코포레이티드 리튬 풍부한 캐소드 물질을 가진 리튬 이온 전지의 매우 긴 사이클링
US8928286B2 (en) * 2010-09-03 2015-01-06 Envia Systems, Inc. Very long cycling of lithium ion batteries with lithium rich cathode materials
KR20120111406A (ko) * 2011-03-31 2012-10-10 삼성에스디아이 주식회사 배터리 시스템 및 이를 포함하는 에너지 저장 시스템
US8854012B2 (en) 2011-08-25 2014-10-07 Apple Inc. Management of high-voltage lithium-polymer batteries in portable electronic devices
JP5739788B2 (ja) 2011-11-15 2015-06-24 株式会社東芝 充放電計画立案システムおよび充放電計画立案方法
EP2645524B1 (en) * 2012-03-30 2015-10-14 EH Europe GmbH Method and apparatus for battery charging
US9231282B2 (en) * 2012-07-06 2016-01-05 Lenovo (Singapore) Pte. Ltd. Method of receiving a potential value of a negative electrode to charge a lithium-ion cell
US10374447B2 (en) * 2013-03-14 2019-08-06 Infineon Technologies Austria Ag Power converter circuit including at least one battery
EP2990818B1 (en) 2014-09-01 2019-11-27 Yokogawa Electric Corporation Secondary battery capacity measurement system and secondary battery capacity measurement method
WO2016051722A1 (ja) * 2014-09-29 2016-04-07 日本電気株式会社 蓄電装置、制御装置、蓄電システム、蓄電装置の制御方法および制御プログラムを格納した非一時的なコンピュータ可読媒体
JP6628501B2 (ja) * 2015-06-08 2020-01-08 株式会社マキタ 充電制御装置、充電器及び充電システム
WO2017033399A1 (ja) * 2015-08-21 2017-03-02 パナソニックIpマネジメント株式会社 管理装置、充放電制御装置、蓄電システム、及び充放電制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150884A (ja) * 1997-09-12 1999-06-02 Fuji Photo Film Co Ltd 二次電池の充電制御方法およびその充電装置
JP2014018022A (ja) * 2012-07-11 2014-01-30 Sharp Corp 充電装置、その制御プログラム、情報端末、充電方法、および、電池パック
KR20150020257A (ko) * 2012-07-12 2015-02-25 닛산 지도우샤 가부시키가이샤 2차 전지의 충전 제어 방법 및 충전 제어 장치
JP2014049229A (ja) * 2012-08-30 2014-03-17 Toyota Motor Corp 全固体電池用負極体および全固体電池
US20160072313A1 (en) * 2014-09-04 2016-03-10 Denso Corporation Charging control method for lithium-ion battery, charging control apparatus for lithium-ion battery and lithium-ion battery system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210234377A1 (en) * 2018-08-07 2021-07-29 Intel Corporation Battery charge termination voltage adjustment
US11728665B2 (en) * 2018-08-07 2023-08-15 Intel Corporation Battery charge termination voltage adjustment
US11863009B2 (en) 2019-06-18 2024-01-02 Intel Corporation Battery charge termination voltage adjustment
CN112740500A (zh) * 2019-10-21 2021-04-30 宁德新能源科技有限公司 充电方法、电子装置以及存储介质
GB2596066A (en) * 2020-06-15 2021-12-22 Tridonic Gmbh & Co Kg A converter for charging a battery for supplying emergency lighting means

Also Published As

Publication number Publication date
EP3444917A1 (en) 2019-02-20
CN108886262B (zh) 2023-07-07
KR102589963B1 (ko) 2023-10-13
CN108886262A (zh) 2018-11-23
US20200328608A1 (en) 2020-10-15
CN113364090A (zh) 2021-09-07
KR20170116816A (ko) 2017-10-20
CN113364090B (zh) 2024-05-28
EP3444917B1 (en) 2022-07-20
EP3444917A4 (en) 2020-01-15
US11309728B2 (en) 2022-04-19
US20220200305A1 (en) 2022-06-23
PL3444917T3 (pl) 2022-11-14
US12015297B2 (en) 2024-06-18
HUE059851T2 (hu) 2023-01-28

Similar Documents

Publication Publication Date Title
WO2017179827A1 (ko) 배터리의 충방전 제어 장치 및 그 제어 방법
WO2019103460A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2017171409A1 (ko) 이차전지용 음극, 이의 제조방법 및 이를 포함하는 이차전지
WO2019151834A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019059724A2 (ko) 이차전지용 전극을 제조하는 방법 및 이에 의해 제조된 전극
WO2020122497A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 양극 및 리튬 이차전지
WO2015102139A1 (ko) 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2019078702A2 (ko) 음극 활물질 및 이를 포함하는 전고체 전지용 음극
WO2019225969A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021006704A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2015102140A1 (ko) 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2018186555A1 (ko) 이차전지용 음극, 이의 제조방법 및 이를 사용하여 제조된 리튬이차전지
WO2018164523A1 (ko) 이차전지의 충전방법
WO2019066497A2 (ko) 전극 합제의 제조 방법 및 전극 합제
WO2014010973A1 (ko) 바이모달 타입의 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2019013511A2 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019017643A2 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2018174619A1 (ko) 이차전지 양극용 슬러리 조성물의 제조방법, 이를 이용하여 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2018174565A1 (ko) 전고체 전지용 전극 및 이를 제조하는 방법
WO2021153936A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021125873A1 (ko) 리튬 이차전지용 양극, 상기 양극을 포함하는 리튬 이차전지
WO2018226070A1 (ko) 음극, 상기 음극을 포함하는 이차 전지, 및 상기 음극의 제조 방법
WO2019088345A1 (ko) 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2018135929A1 (ko) 리튬 이차전지용 음극, 이를 포함하는 리튬 이차전지, 및 이의 제조 방법
WO2017082680A1 (ko) 음극 활물질 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782582

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017782582

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017782582

Country of ref document: EP

Effective date: 20181112