WO2017179609A1 - ナノコンポジットおよびナノコンポジットの製造方法 - Google Patents
ナノコンポジットおよびナノコンポジットの製造方法 Download PDFInfo
- Publication number
- WO2017179609A1 WO2017179609A1 PCT/JP2017/014939 JP2017014939W WO2017179609A1 WO 2017179609 A1 WO2017179609 A1 WO 2017179609A1 JP 2017014939 W JP2017014939 W JP 2017014939W WO 2017179609 A1 WO2017179609 A1 WO 2017179609A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nanocomposite
- phosphor
- fluorescent
- matrix phase
- silica
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/12—Compositions for glass with special properties for luminescent glass; for fluorescent glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0009—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C14/00—Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
- C03C14/006—Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of microcrystallites, e.g. of optically or electrically active material
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C21/00—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
- C03C21/008—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in solid phase, e.g. using pastes, powders
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/06—Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/56—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
- C09K11/562—Chalcogenides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/61—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
- C09K11/611—Chalcogenides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/7729—Chalcogenides
- C09K11/7731—Chalcogenides with alkaline earth metals
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/7732—Halogenides
- C09K11/7733—Halogenides with alkali or alkaline earth metals
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7783—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
- C09K11/779—Halogenides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7783—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
- C09K11/7795—Phosphates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/88—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
- C09K11/881—Chalcogenides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/88—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
- C09K11/881—Chalcogenides
- C09K11/883—Chalcogenides with zinc or cadmium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2214/00—Nature of the non-vitreous component
- C03C2214/16—Microcrystallites, e.g. of optically or electrically active material
Definitions
- the present invention relates to a nanocomposite, for example, a functional member such as a light emitter or a magnetic body.
- a semiconductor light emitting device such as an LED (Light Emitting Diode) or LD (Laser Diode) is combined with a phosphor that is excited by light emitted from the semiconductor light emitting element and emits wavelength-converted light.
- a light emitting module has been devised that can obtain the light emission color.
- a polycrystal is a collection of fine crystallites having a particle size of several tens of nanometers. It was difficult to permeate the particles.
- the present invention has been made in view of such a situation, and one of exemplary purposes thereof is to provide a light emitting body in which scattering of incident light is suppressed. Another exemplary purpose is to provide a nanocomposite considering function and durability.
- a nanocomposite according to an aspect of the present invention includes a matrix phase and a functional region dispersed in the matrix phase.
- the functional region contains single crystal fine particles.
- the functional region containing the single crystal fine particles is dispersed in the matrix phase, the influence from the environment can be reduced.
- the functional region may be unevenly distributed in a crystal region where a part of the matrix phase is crystallized. Thereby, the functional region can be formed in the matrix phase relatively easily.
- the matrix phase may be silica, and the crystal region may have a cristobalite structure in which a part of silica is crystallized. Thereby, relatively stable silica can be used as a raw material.
- the single crystal fine particles may be a deliquescent compound.
- single crystal fine particles made of a deliquescent compound have an extremely short service life.
- various compounds having low moisture resistance which could not be used conventionally, can be used as long as the initial performance can be satisfied as the functional region.
- the compound is M II X 2 : Re (M II is one or more elements selected from the group consisting of Mg, Ca, Sr, Ba, Cd, Zn, and Mn, and X is a group consisting of F, Cl, and I.
- M II is one or more elements selected from the group consisting of Mg, Ca, Sr, Ba, Cd, Zn, and Mn
- X is a group consisting of F, Cl, and I.
- One or more selected elements, Re may be a phosphor represented by one or more elements selected from the group consisting of rare earth elements.
- M ′ II E is one or more elements selected from the group consisting of Zn and Cd, and E is one or more elements selected from the group consisting of S, Se, and Te). It may be a phosphor.
- the compound is M II S: Re (M II is one or more elements selected from the group consisting of Mg, Ca, Sr, Ba, Cd, Zn, and Mn, and Re is one or more elements selected from the group consisting of rare earth elements
- the phosphor represented by the above element may be used.
- the compound is M I S: M 2+ or M II S: M 2+ (M I is Ag or Cu, M II is one or more elements selected from the group consisting of Sn, Zn, and Cd, M 2+ is Fe , Co, and Mn, one or more elements selected from the group consisting of Co, Mn).
- the fine particles may have an average particle diameter of 1 to 100 nm. Thereby, a desired function can be realized with a smaller amount of fine particles.
- Another aspect of the present invention is a method for producing a nanocomposite.
- This method includes a step of placing one or more compounds as a raw material of the phosphor on the surface of the member that becomes the matrix phase, and a step of heating in a state where the compound is placed on the surface of the member.
- the compound that becomes the phosphor can be invaded into the matrix phase by a simple method. It is also possible to infiltrate a compound that becomes a magnetic substance.
- the surface of the member may have an arithmetic average roughness Ra of 5 to 20 ⁇ m. This makes it easier for the phosphor to enter the matrix phase.
- FIG. 1A is a schematic diagram of a plate-like light emitter
- FIG. 1B is a schematic diagram of a fiber-like light emitter
- FIG. 1C is a schematic diagram of a particulate light emitter.
- 2 (a) to 2 (d) are schematic diagrams illustrating a mechanism for forming a nanocomposite phosphor.
- 2 is a diagram showing a transmission electron microscope (TEM) image of the fluorescent screen according to Example 1.
- TEM transmission electron microscope
- FIGS. 11A to 11D are schematic diagrams for explaining an example of the formation mechanism of the nanocomposite phosphor. It is a figure which shows the absorption spectrum of the silica before and behind sintering measured using the Fourier-transform infrared spectrophotometer (FTIR).
- FTIR Fourier-transform infrared spectrophotometer
- FIG. 14A is a schematic diagram showing a state in which a single nanocrystal of CaI 2 : Eu 2+ is generated inside the sintered SiO 2 agglomerate
- FIG. 14B is a crystal outside the agglomerate
- FIG. 14C is a diagram showing an electron beam diffraction pattern of a region
- FIG. 14C is a diagram showing an electron beam diffraction pattern of an amorphous region on the center side of a granule. It is a figure which shows the excitation spectrum and emission spectrum of nanocomposite fluorescent substance.
- FIG. 10 is a diagram showing an X-ray diffraction pattern of a nanocomposite according to Example 8.
- FIG. 10 is a cross-sectional SEM image of a nanocomposite according to Example 8.
- FIG. 10 is a view showing a cross-sectional STEM image of a nanocomposite according to Example 8.
- FIG. 21 is a diagram showing a result of composition analysis by STEM-EDX along the AA line in FIG. 20. It is a figure which shows the electron beam diffraction pattern of the white spot part shown in FIG.
- FIG. 10 is a diagram showing an X-ray diffraction pattern of a nanocomposite according to Example 9.
- FIG. It is a figure which shows the excitation spectrum and emission spectrum of the nanocomposite which concern on Example 9.
- FIG. 10 is a diagram showing an X-ray diffraction pattern of a nanocomposite according to Example 10.
- FIG. 10 It is a figure which shows the excitation spectrum and emission spectrum of the nanocomposite which concern on Example 10.
- FIG. 10 is a diagram showing an X-ray diffraction pattern of a nanocomposite according to Example 11.
- FIG. It is a figure which shows the excitation spectrum and emission spectrum of the nanocomposite which concern on Example 11.
- FIG. 12 It is a figure which shows the X-ray-diffraction pattern of the nanocomposite which concerns on Example 12.
- FIG. It is a figure which shows the excitation spectrum and emission spectrum of the nanocomposite which concern on Example 12.
- FIG. It is a figure which shows the X-ray-diffraction pattern of the nanocomposite which concerns on Example 13.
- FIG. 13 shows the X-ray-diffraction pattern of the nanocomposite which concerns on Example 12.
- FIG. 1A is a schematic diagram of a plate-like light emitter
- FIG. 1B is a schematic diagram of a fiber-like light emitter
- FIG. 1C is a schematic diagram of a particulate light emitter.
- the light emitter 16 shown in FIG. 1B includes a fiber-like matrix phase 18 and a fluorescent region 14 dispersed in the matrix phase 18.
- the light emitter 20 shown in FIG. 1C includes a particulate matrix phase 22 and a fluorescent region 14 dispersed in the matrix phase 22.
- 2 (a) to 2 (d) are schematic diagrams illustrating a mechanism for forming a nanocomposite phosphor.
- Silica is an amorphous structure having a basic skeleton in which SiO 4 tetrahedrons are connected by Si—O—Si bonds.
- the bond angle of Si—O—Si has an angle of 145 ° ⁇ 10 ° (FIG. 2 (a)).
- the coefficient of thermal expansion is small up to around 1000 ° C., but the coefficient of thermal expansion gradually increases from around 1000 ° C. This is because active hydrogen is generated from OH groups on the silica surface, and Si—O—Si bonds are broken and rearranged in a part of the silica.
- the bond angle of Si—O—Si is 180 °, and a large void is generated in the SiO 4 connection network (FIG. 2B).
- the voids become pockets for the metal cations 24 such as Ca 2+ and Eu 2+ and the anions 26 such as halogen, and these ions are taken into the SiO 4 connection network (FIG. 2C).
- the incorporated ions cause the cation 24 and the anion 26 to bond with each other due to thermal diffusion, and an ionic crystal nucleus 28 is generated (FIG. 2D).
- ionic crystal nucleus 28 is generated (FIG. 2D).
- the silica in the matrix phase is also crystallized to produce cristobalite. In this way, it is presumed that a nanocomposite phosphor was generated.
- the fluorescent region according to the present embodiment has a cristobalite structure by crystallizing a part of the silica that is the matrix phase at least at the interface with the matrix phase. Thereby, the fluorescent substance contained in the fluorescent region can be further stabilized. Further, relatively stable silica can be used as a raw material for the matrix phase.
- Example 1 The luminous body 1 according to Example 1 is a quartz glass plate containing CaI 2 : Eu 2+ as a fluorescent component.
- the degree of roughening may be appropriately selected within the range of 5 to 20 ⁇ m. This makes it easier for the phosphor to enter the matrix phase.
- the glass surface was washed with pure water to produce a substrate-like matrix phase.
- a fluorescent component is prepared.
- the fluorescent component is produced by mixing raw materials CaI 2 , EuCl 3 , NH 4 I, and NH 4 F in a glove box in an N 2 atmosphere (molar ratio 1: 0.08: 0.3: 0.05).
- N 2 atmosphere molecular ratio 1: 0.08: 0.3: 0.05.
- a mixed raw material is produced.
- FIG. 3 is a diagram showing a transmission electron microscope (TEM) image of the fluorescent screen according to Example 1.
- FIG. 4 is a diagram showing an electron diffraction pattern in the region R of FIG. From the results shown in FIG. 3 and FIG. 4 and other analyses, it was found that in the fluorescent plate according to Example 1, the quartz glass was partially crystallized and cristobalite was generated. It was also found that fluorescent components of CaI 2 : Eu single crystal having a diameter of 60 nm were dispersed in the fluorescent plate. It is clear from the electron diffraction pattern shown in FIG. 4 that it is a single crystal. Further, the depth at which the CaI 2 : Eu single crystal is dispersed is about 250 ⁇ m, and it has also been clarified that the fine particles of the single crystal are completely covered with the matrix phase.
- TEM transmission electron microscope
- FIG. 5 is a diagram showing an excitation spectrum and an emission spectrum of the fluorescent plate according to Example 1.
- FIG. 5 As can be seen from the excitation spectrum S1 shown in FIG. 5, the fluorescent plate according to Example 1 absorbs near ultraviolet rays having a wavelength of around 400 nm. The fluorescent plate according to Example 1 is excited by near ultraviolet light having a peak wavelength of 400 nm and emits blue light having a peak wavelength of around 465 nm.
- the luminous body 2 according to Example 2 is an alkaline earth borosilicate glass containing CdSe as a fluorescent component.
- a fluorescent component is prepared.
- the fluorescent plate according to Example 2 was a light-emitting body in which CdSe quantum dots having a diameter of 3 to 8 nm were dispersed inside a glass matrix phase.
- FIG. 6 is a diagram showing an emission spectrum of the fluorescent screen according to Example 2. As shown in FIG. The fluorescent plate according to Example 2 is excited by near ultraviolet rays having a peak wavelength of 400 nm or less, and emits orange light having a peak wavelength of about 520 nm as can be seen from the emission spectrum S3 shown in FIG.
- the luminous body 3 according to Example 3 is a quartz fiber containing CaCl 2 : Eu 2+ as a fluorescent component.
- fiber-like quartz glass having a diameter of 200 ⁇ m and a length of 20 mm is immersed in a 2N NaOH aqueous solution and subjected to ultrasonic treatment for 1 minute. Thereafter, filtration / cleaning with pure water was performed, followed by drying to prepare a fiber-like matrix phase.
- a fluorescent component is prepared.
- the fluorescent component is produced by mixing raw materials CaCl 2 , EuCl 3 , and NH 4 Cl in a glove box in an N 2 atmosphere (molar ratio 1: 0.10: 0.4) to produce a mixed raw material.
- 1.0 g of the mixed raw material powder and 1 g of the above-described quartz fiber are put into a polypropylene pot and mixed for 10 minutes with a rotary blender.
- Example 3 As for the fluorescent fiber which concerns on Example 3, it turned out that quartz glass is partially crystallized and cristobalite has arisen. It was also found that the fluorescent component of CaCl 2 : Eu single crystal having a diameter of 60 nm was dispersed in the fluorescent fiber.
- FIG. 7 is a diagram showing an emission spectrum of the fluorescent fiber according to Example 3.
- the fluorescent fiber according to Example 3 is excited by near ultraviolet light having a peak wavelength of 380 nm or less, and emits blue light having a peak wavelength of about 425 nm as can be seen from the emission spectrum S4 shown in FIG.
- Example 4 The luminous body 4 according to Example 4 is one in which YF 3 : Eu 3+ is contained as a fluorescent component in fluoride glass.
- the fluorescent plate according to Example 4 is a light emitter in which a fluorescent component of YF 3 : Eu 3+ single crystal having a diameter of about 20 nm is dispersed inside a glass matrix phase.
- FIG. 8 is a diagram showing an emission spectrum of the fluorescent plate according to Example 4.
- the fluorescent plate according to Example 4 is excited by ultraviolet light having a peak wavelength of 254 nm, and emits red light having a peak wavelength of about 609 nm as can be seen from the emission spectrum S5 shown in FIG.
- the luminous body 5 according to Example 5 includes phosphoric acid glass containing (Y, Ce, Tb) PO 4 as a fluorescent component.
- the fluorescent plate according to Example 5 is a light emitter in which a fluorescent component of (Y, Ce, Tb) PO 4 single crystal having a diameter of about 30 nm is dispersed inside a glass matrix phase.
- FIG. 9 is a diagram showing an emission spectrum of the fluorescent plate according to Example 5.
- the fluorescent plate according to Example 4 is excited by near ultraviolet light having a peak wavelength of 350 nm or less, and emits green light having a peak wavelength of around 543 nm as can be seen from the emission spectrum S6 shown in FIG.
- Example 6 The luminous body 6 according to Example 6 is obtained by containing CaS: Eu 2+ as a fluorescent component in silica glass. First, 5 g of ⁇ 30 ⁇ m amorphous SiO 2 powder and 20 g of ⁇ 3 mm ZrO 2 ball were weighed, put into a ZrO 2 pot, and ground for 10 minutes using a self-revolving mill at a rotational speed of 300 rpm. did.
- a fluorescent component is prepared.
- the fluorescent plate according to Example 6 was a phosphor in which CaS: Eu 2+ having a diameter of 50 nm was dispersed in the silica matrix phase.
- FIG. 10 is a diagram showing an emission spectrum of the fluorescent plate according to Example 6.
- the fluorescent plate according to Example 6 is excited by blue light having a peak wavelength of 450 nm, and emits red light having a peak wavelength of around 625 nm as can be seen from the emission spectrum S7 shown in FIG.
- Example 7 The luminous body 7 according to Example 7 includes CaI 2 : Eu 2+ as a fluorescent component in silica particles.
- amorphous silica (SiO 2 ) particles are prepared.
- the fluorescent particles according to Example 7 silica was crystallized and cristobalite was the main component. It was also found that the fluorescent component of CaI 2 : Eu single crystal having a diameter of 50 nm was dispersed in the fluorescent particles.
- the fluorescent particles according to Example 7 are excited by near ultraviolet light having a peak wavelength of 400 nm, and emit blue light having a peak wavelength of around 465 nm.
- the fine particles may have an average particle size of about 1 to 100 nm, more preferably about 2 to 80 nm, and even more preferably about 3 to 60 nm. Thereby, desired light emission characteristics can be realized with a phosphor composed of a smaller amount of fine particles.
- the manufacturing method according to the present embodiment includes a step of placing one or more compounds that serve as a raw material of the phosphor on the surface of the member that becomes the matrix phase, and the compound is placed on the surface of the member. And heating in a heated state. Thereby, the compound used as a fluorescent substance can be penetrated into the matrix phase by a simple method.
- the retention rate shown in Table 1 is the ratio of the fluorescence intensity when each phosphor is excited at the same wavelength after the standing test, assuming that the initial fluorescence intensity when each phosphor emits light at an excitation wavelength of 365 nm is 100%.
- the phosphors (luminous materials) according to Examples 1, 2, 3, 6, and 7 all had a maintenance rate of 98% or more, and almost no deterioration was observed.
- the phosphor according to the present embodiment can use various compounds having low moisture resistance, which could not be used conventionally, as long as the phosphor can satisfy the initial performance.
- the following examples (1) to (5) are given as compound parts that can be the phosphor according to the present embodiment.
- M II is one or more elements selected from the group consisting of Mg, Ca, Sr, Ba, Cd, Zn, Mn, X is F, Cl, I
- M ′ II is one or more elements selected from the group consisting of Zn and Cd, E is one or more elements selected from the group consisting of S, Se, and Te)
- M ′ II is one or more elements selected from the group consisting of Zn and Cd
- E is one or more elements selected from the group consisting of S, Se, and Te
- M II S Re (M II is, Mg, Ca, Sr, Ba , Cd, Zn, one or more elements selected from the group consisting of Mn, Re, from the group consisting of rare earth elements A compound represented by one or more selected elements).
- M III is one or more elements selected from the group consisting of Sc, Y, Pb, Cr, La, and Gd, and Re is selected from the group consisting of rare earth elements. One or more elements).
- Re′PO 3 A compound represented by the general formula Re′PO 3 (Re ′ is two or more rare earth elements in which Y is essential).
- the nanocomposite enables the fluorescent component to be dispersed after processing the matrix phase base material into a desired size and shape, and the degree of freedom in shape is significantly improved over conventional powder phosphors.
- the content of the rare earth element serving as the emission center necessary for obtaining the desired fluorescence intensity can be greatly reduced.
- Table 2 compares the rare earth element content contained in the light emitter in the case of 4% of the fluorescent component of Examples 4 and 5 and the rare earth element content in the powder phosphor of the same component. As shown in Table 2, when a phosphor made of single crystal fine particles is contained in the fluorescent region as in the light emitter according to the present embodiment, the rare earth elements to be used can be greatly reduced.
- Nanocomposite The present inventors diligently studied the feasibility of a nanocomposite having various functions, not limited to the above-described nanocomposite type light emitter.
- halides halogen elements (compounds of fluorine (F), chlorine (Cl), bromine (Br), iodine (I), etc.) and elements having lower electronegativity
- chalcogenides Group 16 elements (Compounds of oxygen (O), sulfur (S), selenium (Se), tellurium (Te), polonium (Po), etc.) and elements having a lower electronegativity) have a weak binding force with cations. Because of its low thermal relaxation rate, it is less susceptible to phonon vibration.
- a compound of a transition element (Group 3 element to Group 12 element) and a rare earth element or a compound obtained by doping a transition element with a rare earth has a small interaction between the rare earth and the anion. Therefore, these compounds can be a functional material having a desired function such as a light-emitting material, a magnetic material, a thermoelectric material, an electromagnetic material, and a superconducting material even at room temperature. There are some kinds of such functional materials unless the use conditions and durability are taken into consideration. On the other hand, considering the resistance to external factors such as temperature, humidity, and light, the types of materials that can be practically used are quite limited. For this reason, there is still much room for improvement in functions and performance that can be realized with selectable materials.
- the present inventors have (i) a compound of a halogen element or a chalcogen element and a transition element or a rare earth element, or (ii) a compound of a halogen element or a chalcogen element and a typical element (doped with a rare earth element), By enveloping the material with silica with good moisture resistance, we realized the feasibility of a nanocomposite that can achieve both functions while exhibiting various functions attributable to transition elements and rare earth elements.
- the present inventors have made a conventional approach from the viewpoint of resistance by preventing the functional area from directly contacting the outside world even if the functional area that performs a desired function is not necessarily a material that is resistant to the external environment. It came to the point that many compounds that cannot be used can be used as functional areas.
- the nanocomposite according to this example is obtained by dispersing CaI 2 : Eu 2+ , which is a luminescent single nanocrystal, in a translucent silica (SiO 2 ) matrix.
- a method for producing a nanocomposite according to an aspect of this embodiment is a method in which a single nanocrystal is formed in a crystalline silica matrix by a self-organization process by a simple solid-phase reaction method.
- the nanocomposite phosphor of an aspect of the present embodiment emits strong blue cold light only from a single nanocrystal, and its emission intensity is higher than that of conventional phosphors despite its low Eu content. IQE) is 98%. The absorption rate is about 85%.
- a CaI 2 : Eu light-emitting site is embedded in crystalline silica, and the light-emitting site is protected from external humidity by the crystalline silica. Therefore, it has sufficient practical durability.
- the present inventors have confirmed that blue light is generated from CaI 2 : Eu 2+ single nanocrystals using cathodoluminescence (CL) and scanning transmission electron microscope (STEM).
- CL cathodoluminescence
- STEM scanning transmission electron microscope
- FIGS. 11A to 11D are schematic diagrams for explaining an example of the formation mechanism of the nanocomposite phosphor.
- amorphous SiO 2 particles 30, CaI 2 particles 32, Eu 2 O 3 particles 34, and NH 4 I particles 36 are mixed as raw materials.
- the mixed raw material is heated to 1000 ° C. (1273 K). During this period, the mixed raw material undergoes the following two changes.
- FIG. 12 is a diagram showing absorption spectra of silica before and after sintering, measured using a Fourier transform infrared spectrophotometer (FTIR). As shown in FIG. 12, a peak (arrow) around 3750 cm ⁇ 1, which was present before sintering (line L1) as an indication of Si—OH bonds, was observed after the sintering (line L2 [800 ° C.]). , Line L3 [1000 ° C.]), and it can be seen that the OH groups on the surface of the SiO 2 particles 30 have disappeared.
- FTIR Fourier transform infrared spectrophotometer
- the SiO 2 particles 30 are crystallized from the particle surface due to the flux effect, and several SiO 2 particles 30 are bonded to form one SiO 2 agglomerate 40 during the crystallization (FIG. 11D).
- the particle diameter of (CaI 2 / SiO 2 ): Eu 2+ particles is larger than the particle diameter of the SiO 2 particles 30 at the time of the starting material, as shown in Fig. 13 before mixing (line L4) and after mixing (line L5 ) And a particle size distribution of the SiO 2 particles at each time point after sintering (line L6), as shown in FIG. It can be seen that the SiO 2 particles that have become smaller have an increased average particle size after sintering.
- FIG. 14A is a schematic diagram showing a state in which a single nanocrystal of CaI 2 : Eu 2+ is generated inside the sintered SiO 2 agglomerate
- FIG. 14B is a crystal outside the agglomerate
- FIG. 14C is a diagram showing an electron beam diffraction pattern of a region
- FIG. 14C is a diagram showing an electron beam diffraction pattern of an amorphous region on the center side of a granule.
- the melted CaI 2 is localized between the amorphous region 40a and the crystal region 40b in the bonded SiO 2 particle lump 40. Thereafter, in the temperature lowering step of firing, CaI 2 melted in the SiO 2 particles is solidified to generate CaI 2 : Eu 2+ single nanocrystals 42, and as a result, the nanocomposite phosphor 50 is formed.
- the nanocomposite phosphor made of (CaI 2 / SiO 2 ): Eu 2+ has practical durability as CaI 2 : Eu 2+ with poor moisture resistance is protected from the outside air by crystalline silica. .
- the inside of the ring-shaped region R1 that is, the nucleus of the same quality is amorphous.
- the outer side of the ring-shaped region R1, that is, the matrix portion on the outer side is a tetragonal SiO 2 crystal layer. That is, most of the single nanocrystals 42 made of CaI 2 : Eu 2+ are formed at the boundary between the amorphous region 40 a and the crystal region 40 b of the SiO 2 particles.
- a temperature of 1350 ° C. or higher is required for crystallization of amorphous SiO 2 used as a starting material.
- crystallization of amorphous SiO 2 should not occur at a firing temperature of 1000 ° C.
- the outer portion of the SiO 2 agglomerates 40 SiO 2 is crystallized. That is, it can be seen that only the region where CaI 2 penetrates is crystallized at a firing temperature of 1000 ° C.
- Example 1 The self-assembly of single nanocrystals was confirmed by another method (Example 1).
- an amorphous SiO 2 glass plate having one surface roughened instead of amorphous SiO 2 powder is used as a raw material, a raw material containing CaI 2 is placed on the roughened surface, and fired.
- a nanocomposite phosphor screen was fabricated.
- the nanocomposite phosphor plate thus produced emits blue light with 405 nm purple light excitation. Further, it was confirmed that when the molten CaI 2 flux penetrates into the roughened silica glass, the upper surface side (rough surface side) of the silica glass becomes translucent and emits blue light. On the other hand, the lower surface side maintains transparency. As described above, it is presumed that the penetration of the CaI 2 flux is linked with the formation of the nanocomposite phosphor.
- the solid phase reaction in the sintering temperature such as considerably lower 1000 ° C. than the crystallization temperature of SiO 2, (CaI 2 / SiO 2): Nanocomposite fluorescent consisting Eu 2+
- the body can be synthesized.
- the nanocomposite phosphor has a structure in which CaI 2 : Eu 2+ single nanocrystals are embedded in crystalline silica.
- FIG. 15 is a diagram showing an excitation spectrum and an emission spectrum of the nanocomposite phosphor.
- An excitation spectrum S8 and an emission spectrum S9 shown in FIG. 15 are those of a nanocomposite phosphor made of (CaI 2 / SiO 2 ): Eu 2+ .
- the emission spectrum of the nanocomposite phosphor of an aspect of the present embodiment has a peak wavelength of 471 nm and a half-value width of 32.4 nm.
- the excitation spectrum S10 and the emission spectrum S11 shown in FIG. 15 are those of a BaMgAl 10 O 17 : Eu 2+ (BAM: Eu 2+ ) phosphor widely used as a blue phosphor.
- FIG. 16 is a diagram showing temperature characteristics of the nanocomposite phosphor.
- the luminescence intensity at room temperature (30 ° C.) is normalized as 100%.
- the nanocomposite phosphor can achieve a luminescence intensity of at least 90% from room temperature to 150 ° C.
- FIG. 17 is a diagram showing the results of a life test of the nanocomposite phosphor.
- the life test was performed in an environment of a temperature of 85 ° C. and a humidity of 85%, and the luminescence intensity at each time when the light was continuously emitted up to 2000 h was measured.
- the change in luminescence intensity after lapse of 2000 h is 2% or less, and shows very stable light emission characteristics even in a high temperature and high humidity environment.
- the (CaI 2 / SiO 2 ): Eu 2+ light-emitting sites are formed of iodide with poor moisture resistance, but the light-emitting sites are embedded in the SiO 2 translucent matrix, so that the light-emitting performance and practical level are obtained. Reliability (durability) can be ensured. Therefore, the nanocomposite can be expected to expand the use of substances having low moisture resistance such as halides and chalcogenides as well as phosphors.
- This production method is characterized in that the melting point of the halide or chalcogenide is lower than the crystallization temperature of amorphous silica.
- the functional material is fired at a temperature at which the halogen / chalcogen compound melts and the amorphous silica of the matrix material does not crystallize.
- the halogen / chalcogen compound functions as a flux, and amorphous silica is crystallized at a low temperature below the crystallization temperature.
- the halogen / chalcogen compound is localized near the boundary region between the crystalline and amorphous materials.
- the halogen / chalcogen compound which has been in the liquid phase, is cooled and solidified in the silica crystals and precipitated as crystals of several tens to several tens of ⁇ m, thereby forming a nanocomposite.
- the firing temperature is preferably in the range of 1000 to 1250 ° C., which is lower than 1300 to 1350 ° which is the crystallization temperature of amorphous silica.
- the firing atmosphere and deoxygenation atmosphere are filled with a gas such as nitrogen, argon, or hydrogen-containing nitrogen.
- the halogen / chalcogen compound preferably has a melting point of 1200 ° C. or lower. In general, there is no reactivity between the halogen / chalcogen compound and silica. More specific description will be given below with reference to each embodiment.
- the nanocomposite according to Example 8 contains CaI 2 : Eu 2+ as a fluorescent component in a crystalline silica matrix.
- amorphous silica (average particle diameter 30 ⁇ m) having a crystallization temperature of 1350 °, CaI 2 (melting point 779 ° C.), and EuI 3 have a molar ratio of 6 / 0.8 / 0.1.
- FIG. 18 is a diagram showing an X-ray diffraction pattern of the nanocomposite according to Example 8.
- the nanocomposite according to Example 8 was a powder whose main phase was ⁇ -cristobalite, which is a high-temperature crystal layer of silica.
- this nanocomposite was irradiated with purple light having a peak wavelength of 400 nm, blue light emission having a peak wavelength of 461 nm could be observed.
- FIG. 19 is a diagram showing a cross-sectional SEM image of the nanocomposite according to Example 8. As shown in FIG. 19, the nanocomposite was composed of two layers, a matrix portion and a white spot portion.
- EDX energy dispersive X-ray
- FIG. 20 is a cross-sectional STEM image of the nanocomposite according to Example 8.
- FIG. 21 is a diagram showing the results of composition analysis by STEM-EDX along the line AA in FIG. As shown in FIG. 20, the diameter of the white spot is about 50 nm. Further, in the STEM-EDX line analysis, as shown in FIG. 21, it was found that the white spot portion has a higher content of Ca, I, and Eu than the surrounding area.
- FIG. 22 is a diagram showing an electron diffraction pattern of the white spot portion shown in FIG. 22 . Indexing shown in FIG. 22 is for the white point unit can take matching the case of a single crystal of CaI 2, white spots portion can be estimated to be single nanocrystals CaI 2. Thus, it was found that the particles shown in FIG. 19 are nanocomposite materials in which different crystals form a sea-island structure.
- Example 9 The nanocomposite according to Example 9 contains SrCl 2 : Eu 2+ as a fluorescent component in a crystalline silica matrix.
- amorphous silica (average particle size 30 ⁇ m) having a crystallization temperature of 1350 °, SrCl 2 (melting point: 874 ° C.), and EuCl 3 are initially in a molar ratio of 6 / 0.8 / 0.1.
- FIG. 23 is a diagram showing an X-ray diffraction pattern of the nanocomposite according to Example 9.
- the nanocomposite according to Example 9 was a powder mainly composed of ⁇ -cristobalite and tridymite, which are high-temperature crystal layers of silica.
- this nanocomposite was irradiated with ultraviolet light having a peak wavelength of 365 nm, purple light emission having a peak wavelength of 405 nm could be observed.
- FIG. 24 is a diagram showing an excitation spectrum and an emission spectrum of the nanocomposite according to Example 9.
- the nanocomposite according to Example 10 contains SrI 2 : Eu 2+ as a fluorescent component in a crystalline silica matrix.
- amorphous silica (average particle size 30 ⁇ m) having a crystallization temperature of 1350 °, SrI 2 (melting point: 402 ° C.), and EuI 3 have a molar ratio of 6 / 0.8 / 0.1.
- FIG. 25 is a diagram showing an X-ray diffraction pattern of the nanocomposite according to Example 10.
- the nanocomposite according to Example 10 was a powder whose main phase was ⁇ -cristobalite, which is a high-temperature crystal layer of silica.
- this nanocomposite was irradiated with ultraviolet light having a peak wavelength of 365 nm, blue light emission having a peak wavelength of 430 nm could be observed.
- 26 is a diagram showing an excitation spectrum and an emission spectrum of the nanocomposite according to Example 10. FIG.
- Example 11 The nanocomposite according to Example 11 contains SrBr 2 : Eu 2+ as a fluorescent component in a crystalline silica matrix.
- amorphous silica (average particle diameter 30 ⁇ m) having a crystallization temperature of 1350 °, SrBr 2 (melting point 643 ° C.), and EuBr 3 are in a molar ratio of 6 / 0.8 / 0.1.
- FIG. 27 is a diagram showing an X-ray diffraction pattern of the nanocomposite according to Example 11.
- the nanocomposite according to Example 11 was a powder mainly composed of ⁇ -cristobalite and tridymite, which are high-temperature crystal layers of silica.
- this nanocomposite was irradiated with ultraviolet light having a peak wavelength of 335 nm, blue-violet emission having a peak wavelength of 410 nm could be observed.
- FIG. 28 is a diagram showing an excitation spectrum and an emission spectrum of the nanocomposite according to Example 11.
- Example 12 The nanocomposite according to Example 12 contains MgCl 2 : Eu 2+ as a fluorescent component in a crystalline silica matrix.
- amorphous silica (average particle size 30 ⁇ m) having a crystallization temperature of 1350 °, MgCl 2 (melting point: 714 ° C.), and EuCl 3 have a molar ratio of 6 / 0.8 / 0.1.
- FIG. 29 is a diagram showing an X-ray diffraction pattern of the nanocomposite according to Example 12.
- the nanocomposite according to Example 12 was a powder whose main phase was ⁇ -cristobalite, which is a high-temperature crystal layer of silica.
- this nanocomposite was irradiated with ultraviolet light having a peak wavelength of 340 nm, blue light emission having peak wavelengths of 410 nm and 440 nm could be observed.
- 30 is a diagram showing an excitation spectrum and an emission spectrum of the nanocomposite according to Example 12.
- Example 13 The nanocomposite according to Example 13 contains single crystal fine particles as a magnetic component in a crystalline silica matrix.
- amorphous silica having a crystallization temperature of 1350 ° (average particle size 30 ⁇ m), SnS (melting point 880 ° C.), and CoS (melting point 1100 ° C.) have a molar ratio of 6 / 0.8 / 0.00.
- FIG. 31 is a diagram showing an X-ray diffraction pattern of the nanocomposite according to Example 13.
- the nanocomposite according to Example 13 was a powder whose main phase was ⁇ -cristobalite, which is a high-temperature crystal layer of silica.
- the obtained nanocomposite particles were magnetic and attracted to the magnet. That is, in the nanocomposite according to the present embodiment, it has been clarified that the dispersed single nanocrystal functions not only as a phosphor but also as a magnetic material and other functional regions.
- the present invention relates to a nanocomposite and can be used, for example, for a functional member such as a luminescent material or a magnetic material.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Ceramic Engineering (AREA)
- Dispersion Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Luminescent Compositions (AREA)
- Glass Compositions (AREA)
Abstract
Description
はじめに、本実施の形態に係るナノコンポジット型の発光体の概略構成について説明する。図1(a)は、板状の発光体の模式図、図1(b)は、ファイバー状の発光体の模式図、図1(c)は、粒子状の発光体の模式図である。
実施例1に係る発光体1は、石英ガラス板に蛍光成分としてCaI2:Eu2+を含有したものである。発光体1の製造方法は、はじめに、大きさが30mm×30mm、厚さが1mmの石英ガラスをマトリックス相として準備し、サンドブラスト処理により表面を粗化(算術平均粗さRa=10μm)する。なお粗化の程度は5~20μmの範囲で適宜選択してもよい。これにより、蛍光体をマトリックス相の内部に侵入させやすくなる。その後、ガラス表面を純水で洗浄し、基板状のマトリックス相を作製した。
実施例2に係る発光体2は、アルカリ土類硼珪酸ガラスに蛍光成分としてCdSeを含有したものである。発光体2の製造方法は、はじめにSiO2(60mol%)-SrO(20mol%)-B2O3(20mol%)の混合粉末を1560℃で溶融し、スチールプレート上に流し、10mm□(t=1.5mm)の大きさのガラス片として切り出した。切り出したガラス片を2NのKOH水溶液に1分間浸漬し、表面エッチングをした後、ガラス表面を純水で洗浄し、基板状のマトリックス相を作製した。
実施例3に係る発光体3は、石英ファイバーに蛍光成分としてCaCl2:Eu2+を含有したものである。発光体3の製造方法は、はじめに、φ200μm、長さが20mmのファイバー状の石英ガラスを、2NのNaOH水溶液に浸漬し、1分間超音波処理をする。その後、ろ過/純水洗浄を行い、乾燥させ、ファイバー状のマトリックス相を作製した。
実施例4に係る発光体4は、フッ化ガラスに蛍光成分としてYF3:Eu3+を含有したものである。発光体4の製造方法は、はじめにSiO2(50mol%)-PbF2(49mol%)-YF3(0.5mol%)-EuF3(0.5mol%)の混合粉末を1000℃で溶融し、スチールプレート上に流し、10mm□(t=1.5mm)の大きさのガラスプレートとして切り出した。切り出したガラスプレートを400℃で5時間アニールし、マトリックス相の内部にナノ蛍光体成分を結晶化させた。
実施例5に係る発光体5は、リン酸系ガラスに蛍光成分として(Y,Ce,Tb)PO4を含有したものである。発光体5の製造方法は、はじめにSiO2(50mol%)-P2O5(15mol%)-Y2O3(9mol%)-CeO4(0.3mol%)-TbF3(0.7mol%)の混合粉末を950℃で溶融し、スチールプレート上に流し、10mm□(t=1.5mm)の大きさのガラスプレートとして切り出した。切り出したガラスプレートを400℃で5時間アニールし、マトリックス相の内部にナノ蛍光体成分を結晶化させた。
実施例6に係る発光体6は、シリカガラスに蛍光成分としてCaS:Eu2+を含有したものである。発光体6の製造方法は、はじめにφ30μmのアモルファスSiO2粉末を5g、φ3mmのZrO2ボールを20g秤量し、ZrO2ポットに入れ、自公転式ミルを用い回転速度300rpmの条件で、10分間粉砕した。
実施例7に係る発光体7は、シリカ粒子に蛍光成分としてCaI2:Eu2+を含有したものである。発光体7の製造方法は、はじめに、φ50μmのアモルファスシリカ(SiO2)粒子を準備する。
従来、発光性能が優れた蛍光体は種々あったが、一般に耐湿性が乏しい(潮解性がある)ため実用にならず、蛍光体開発の大きな課題であった。しかしながら、本願発明によるナノコンポジット化により、これらの課題が払拭され、特に蛍光特性に優れているが、耐湿性に乏しい蛍光成分(実施例1、2、3、6、7)に効果がある。表1に85℃85%の環境で24h後の放置試験の結果を示す。表1に示す維持率は、各蛍光体を励起波長365nmで発光させたときの初期蛍光強度を100%としたとき、放置試験後同波長で励起させたときの蛍光強度の割合である。実施例1、2、3、6、7に係る蛍光体(発光体)は、いずれも維持率が98%以上であり、劣化が殆ど見られなかった。
ナノコンポジット化により、マトリックス相の基材を所望のサイズ、形状に加工した後に、蛍光成分を分散させることができ、従来粉末の蛍光体より形状の自由度が格段に向上した。
ナノコンポジット化により、所望の蛍光強度を得るために必要な発光中心となる希土類元素の含有量を大幅に減らすことができる。表2は、実施例4、5の蛍光成分4%の場合に発光体に含まれる希土類元素含有量と、同成分の粉末蛍光体中の希土類元素含有量とを比較したものである。表2に示すように、本実施の形態に係る発光体のように、蛍光領域に単結晶の微粒子からなる蛍光体を含有させた場合、使用する希土類元素を大幅に低減できる。
本発明者らは、上述のナノコンポジット型の発光体に限らず、様々な機能を有するナノコンポジットの実現可能性について鋭意検討した。
実施例8に係るナノコンポジットは、結晶性シリカマトリックス中に蛍光成分としてCaI2:Eu2+を含有したものである。この製造方法は、はじめに結晶化温度1350°のアモルファスシリカ(平均粒径30μm)と、CaI2(融点779℃)と、EuI3とを、mol比が6/0.8/0.1となるように精秤し、Arガス雰囲気中でアルミナ乳鉢に入れ、粉砕/混合した。その後、混合粉末をアルミナるつぼに入れ、水素含有窒素雰囲気(体積比N2/H2=95/5)で1000℃、10時間焼成した。焼成後、温純水で洗浄し、過剰なヨウ化物を除去し、実施例8に係るナノコンポジットのサンプルを得た。
実施例9に係るナノコンポジットは、結晶性シリカマトリックス中に蛍光成分としてSrCl2:Eu2+を含有したものである。この製造方法は、はじめに結晶化温度1350°のアモルファスシリカ(平均粒径30μm)と、SrCl2(融点874℃)と、EuCl3とを、mol比が6/0.8/0.1となるように精秤し、Arガス雰囲気中でアルミナ乳鉢に入れ、粉砕/混合した。その後、混合粉末をアルミナるつぼに入れ、窒素雰囲気(N2=100vol%)で1000℃、10時間焼成した。焼成後、温純水で洗浄し、過剰な塩化物を除去し、実施例9に係るナノコンポジットのサンプルを得た。
実施例10に係るナノコンポジットは、結晶性シリカマトリックス中に蛍光成分としてSrI2:Eu2+を含有したものである。この製造方法は、はじめに結晶化温度1350°のアモルファスシリカ(平均粒径30μm)と、SrI2(融点402℃)と、EuI3とを、mol比が6/0.8/0.1となるように精秤し、Arガス雰囲気中でアルミナ乳鉢に入れ、粉砕/混合した。その後、混合粉末をアルミナるつぼに入れ、水素含有窒素雰囲気(体積比N2/H2=95/5)で1000℃、10時間焼成した。焼成後、温純水で洗浄し、過剰なヨウ化物を除去し、実施例10に係るナノコンポジットのサンプルを得た。
実施例11に係るナノコンポジットは、結晶性シリカマトリックス中に蛍光成分としてSrBr2:Eu2+を含有したものである。この製造方法は、はじめに結晶化温度1350°のアモルファスシリカ(平均粒径30μm)と、SrBr2(融点643℃)と、EuBr3とを、mol比が6/0.8/0.1となるように精秤し、Arガス雰囲気中でアルミナ乳鉢に入れ、粉砕/混合した。その後、混合粉末をアルミナるつぼに入れ、水素含有窒素雰囲気(体積比N2/H2=95/5)で1000℃、10時間焼成した。焼成後、温純水で洗浄し、過剰な臭化物を除去し、実施例11に係るナノコンポジットのサンプルを得た。
実施例12に係るナノコンポジットは、結晶性シリカマトリックス中に蛍光成分としてMgCl2:Eu2+を含有したものである。この製造方法は、はじめに結晶化温度1350°のアモルファスシリカ(平均粒径30μm)と、MgCl2(融点714℃)と、EuCl3とを、mol比が6/0.8/0.1となるように精秤し、Arガス雰囲気中でアルミナ乳鉢に入れ、粉砕/混合した。その後、混合粉末をアルミナるつぼに入れ、水素含有窒素雰囲気(体積比N2/H2=95/5)で1000℃、10時間焼成した。焼成後、温純水で洗浄し、過剰な塩化物を除去し、実施例12に係るナノコンポジットのサンプルを得た。
実施例13に係るナノコンポジットは、結晶性シリカマトリックス中に磁性成分として単結晶の微粒子を含有したものである。この製造方法は、はじめに結晶化温度1350°のアモルファスシリカ(平均粒径30μm)と、SnS(融点880℃)と、CoS(融点1100℃)とを、mol比が6/0.8/0.2となるように精秤し、Arガス雰囲気中でアルミナ乳鉢に入れ、粉砕/混合した。その後、混合粉末をアルミナるつぼに入れ、アルゴンガス雰囲気(Ar=100vol%)で1200℃、10時間焼成した。焼成後、希塩酸で洗浄し、過剰な硫化物を除去し、実施例12に係るナノコンポジットのサンプルを得た。
Claims (11)
- マトリックス相と、
前記マトリックス相に分散している機能領域と、を備え、
前記機能領域は、単結晶の微粒子を含有することを特徴とするナノコンポジット。 - 前記機能領域は、前記マトリックス相の一部が結晶化されている結晶領域に偏在していることを特徴とする請求項1に記載のナノコンポジット。
- 前記マトリックス相は、シリカであり、
前記結晶領域は、前記シリカの一部が結晶化されたクリストバライト構造を有することを特徴とする請求項2に記載のナノコンポジット。 - 前記単結晶の微粒子は、潮解性のある化合物であることを特徴とする請求項1乃至3のいずれか1項に記載のナノコンポジット。
- 前記化合物は、MIIX2:Re(MIIは、Mg,Ca,Sr,Ba,Cd,Zn、Mnからなる群より選ばれる一種以上の元素、Xは、F,Cl,Iからなる群より選ばれる一種以上の元素、Reは、希土類元素からなる群より選ばれる一種以上の元素)で表されている蛍光体であることを特徴とする請求項4に記載のナノコンポジット。
- 前記化合物は、M’IIE(M’IIは、Zn,Cdからなる群より選ばれる一種以上の元素、Eは、S,Se,Teからなる群より選ばれる一種以上の元素)で表されている蛍光体であることを特徴とする請求項4に記載のナノコンポジット。
- 前記化合物は、MIIS:Re(MIIは、Mg,Ca,Sr,Ba,Cd,Zn、Mnからなる群より選ばれる一種以上の元素、Reは、希土類元素からなる群より選ばれる一種以上の元素)で表されている蛍光体であることを特徴とする請求項4に記載のナノコンポジット。
- 前記微粒子は、平均粒径が1~100nmであることを特徴とする請求項1乃至7のいずれか1項に記載のナノコンポジット。
- 前記マトリックス相は、中心側のアモルファス領域と、外側の結晶領域とを有し、前記機能領域は、前記アモルファス領域と前記結晶領域との間に形成されていることを特徴とする請求項1乃至8のいずれか1項に記載のナノコンポジット。
- マトリックス相となる部材の表面に蛍光体の原料となる一種以上の化合物を載置する工程と、
前記化合物が前記部材の表面に載置された状態で加熱する工程と、
を有するナノコンポジットの製造方法。 - 前記部材の表面は、算術平均粗さRaが5~20μmであることを特徴とする請求項10に記載のナノコンポジットの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780023761.0A CN109071324A (zh) | 2016-04-15 | 2017-04-12 | 纳米复合材料及纳米复合材料的制造方法 |
EP17782422.4A EP3444231A4 (en) | 2016-04-15 | 2017-04-12 | NANOCOMPOSITE AND PROCESS FOR PRODUCING NANOCOMPOSITE |
JP2018512040A JP6941600B2 (ja) | 2016-04-15 | 2017-04-12 | ナノコンポジットおよびナノコンポジットの製造方法 |
US16/159,683 US10807903B2 (en) | 2016-04-15 | 2018-10-14 | Nanocomposites and method of manufacturing nanocomposites |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-081918 | 2016-04-15 | ||
JP2016081918 | 2016-04-15 | ||
JP2017-062297 | 2017-03-28 | ||
JP2017062297 | 2017-03-28 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/159,683 Continuation US10807903B2 (en) | 2016-04-15 | 2018-10-14 | Nanocomposites and method of manufacturing nanocomposites |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017179609A1 true WO2017179609A1 (ja) | 2017-10-19 |
Family
ID=60042175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/014939 WO2017179609A1 (ja) | 2016-04-15 | 2017-04-12 | ナノコンポジットおよびナノコンポジットの製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10807903B2 (ja) |
EP (1) | EP3444231A4 (ja) |
JP (1) | JP6941600B2 (ja) |
CN (1) | CN109071324A (ja) |
WO (1) | WO2017179609A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020074905A (ja) * | 2018-11-07 | 2020-05-21 | 古河電気工業株式会社 | 医療器具、医療器具確認システム及び医療器具確認方法 |
WO2022190991A1 (ja) * | 2021-03-11 | 2022-09-15 | 株式会社小糸製作所 | シンチレータ材、放射線検出装置およびシンチレータ材の製造方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6985882B2 (ja) | 2017-10-13 | 2021-12-22 | 株式会社小糸製作所 | シンチレータ材料および放射線検出器 |
CN110459670B (zh) * | 2019-08-06 | 2021-08-10 | 武汉理工大学 | 基于非晶材料原位制备磁性纳米复合热电材料的方法 |
CN112859447B (zh) * | 2021-03-10 | 2023-04-11 | 京东方科技集团股份有限公司 | 光学玻璃及其制备方法、背光模组和显示模组 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001119075A (ja) | 1996-12-27 | 2001-04-27 | Nichia Chem Ind Ltd | 発光ダイオード及びそれを用いたled表示装置 |
JP2006103991A (ja) * | 2004-10-01 | 2006-04-20 | Okamoto Glass Co Ltd | 半導体微粒子分散ガラス蛍光体及びこれを用いた光学機器 |
JP2006229134A (ja) * | 2005-02-21 | 2006-08-31 | Toyota Gakuen | 光増幅媒体とその製造方法および光増幅器 |
JP2008208380A (ja) | 2008-05-26 | 2008-09-11 | Nippon Electric Glass Co Ltd | 発光色変換部材 |
JP2009530452A (ja) * | 2006-03-22 | 2009-08-27 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング | 逆オパールの孔系中への発光性物質のガス相浸透 |
JP2010509735A (ja) * | 2006-11-13 | 2010-03-25 | リサーチ・トライアングル・インスティチュート | 発光デバイス |
JP2014521206A (ja) * | 2011-07-05 | 2014-08-25 | オスラム ゲーエムベーハー | 変換素子の製造方法、及び、変換素子 |
JP2015224299A (ja) * | 2014-05-28 | 2015-12-14 | シャープ株式会社 | 波長変換部材、発光装置、および波長変換部材の製造方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3527711A (en) * | 1963-04-16 | 1970-09-08 | Owens Illinois Inc | Process for preparing rare earth doped luminescent silica glass |
US3522189A (en) * | 1966-10-17 | 1970-07-28 | Owens Illinois Inc | Luminescent material of terbium doped cristobalite |
JP4433631B2 (ja) * | 2000-04-05 | 2010-03-17 | 松本油脂製薬株式会社 | 希土類鉄ガーネットナノクリスタルを分散させたガラス媒体を作成する方法 |
US6774560B1 (en) * | 2000-09-19 | 2004-08-10 | The Regents Of The University Of California | Material system for tailorable white light emission and method for making thereof |
US7078071B2 (en) * | 2000-10-05 | 2006-07-18 | Matsumoto Yushi-Seiyaku Co., Ltd. | Glass composite including dispersed rare earth iron garnet nanoparticles |
JP4191937B2 (ja) * | 2002-02-15 | 2008-12-03 | 株式会社日立製作所 | 白色光源及びそれを用いた画像表示装置 |
EP1566367B1 (en) * | 2002-11-29 | 2015-01-07 | Japan Science and Technology Agency | Luminescent glass |
KR101278768B1 (ko) * | 2006-04-13 | 2013-06-25 | 삼성전자주식회사 | 전계 발광소자 및 이를 포함하는 전자장치 |
JP5371359B2 (ja) * | 2007-12-27 | 2013-12-18 | 豊田合成株式会社 | 蛍光体含有ガラス板及び発光装置の製造方法 |
US8426871B2 (en) * | 2009-06-19 | 2013-04-23 | Honeywell International Inc. | Phosphor converting IR LEDs |
CN103339527B (zh) * | 2011-02-03 | 2016-06-22 | 皇家飞利浦有限公司 | 单能量或多能量垂直辐射敏感探测器 |
CN104969370A (zh) * | 2013-02-04 | 2015-10-07 | 优志旺电机株式会社 | 荧光光源装置 |
CN105916962B (zh) * | 2013-11-19 | 2019-02-05 | 三星电子株式会社 | 发光颗粒、包含其的材料和产品、以及方法 |
JP2016143742A (ja) * | 2015-01-30 | 2016-08-08 | シャープ株式会社 | 波長変換部材、発光装置、および波長変換部材の製造方法 |
WO2017073329A1 (ja) * | 2015-10-27 | 2017-05-04 | 日本電気硝子株式会社 | 波長変換部材の製造方法 |
CN105481254B (zh) * | 2015-11-27 | 2018-03-06 | 南京邮电大学 | 具有转光和光温传感双功能的透明玻璃陶瓷及其制备方法 |
JP6985882B2 (ja) * | 2017-10-13 | 2021-12-22 | 株式会社小糸製作所 | シンチレータ材料および放射線検出器 |
-
2017
- 2017-04-12 CN CN201780023761.0A patent/CN109071324A/zh active Pending
- 2017-04-12 EP EP17782422.4A patent/EP3444231A4/en not_active Withdrawn
- 2017-04-12 WO PCT/JP2017/014939 patent/WO2017179609A1/ja active Application Filing
- 2017-04-12 JP JP2018512040A patent/JP6941600B2/ja active Active
-
2018
- 2018-10-14 US US16/159,683 patent/US10807903B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001119075A (ja) | 1996-12-27 | 2001-04-27 | Nichia Chem Ind Ltd | 発光ダイオード及びそれを用いたled表示装置 |
JP2006103991A (ja) * | 2004-10-01 | 2006-04-20 | Okamoto Glass Co Ltd | 半導体微粒子分散ガラス蛍光体及びこれを用いた光学機器 |
JP2006229134A (ja) * | 2005-02-21 | 2006-08-31 | Toyota Gakuen | 光増幅媒体とその製造方法および光増幅器 |
JP2009530452A (ja) * | 2006-03-22 | 2009-08-27 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング | 逆オパールの孔系中への発光性物質のガス相浸透 |
JP2010509735A (ja) * | 2006-11-13 | 2010-03-25 | リサーチ・トライアングル・インスティチュート | 発光デバイス |
JP2008208380A (ja) | 2008-05-26 | 2008-09-11 | Nippon Electric Glass Co Ltd | 発光色変換部材 |
JP2014521206A (ja) * | 2011-07-05 | 2014-08-25 | オスラム ゲーエムベーハー | 変換素子の製造方法、及び、変換素子 |
JP2015224299A (ja) * | 2014-05-28 | 2015-12-14 | シャープ株式会社 | 波長変換部材、発光装置、および波長変換部材の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3444231A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020074905A (ja) * | 2018-11-07 | 2020-05-21 | 古河電気工業株式会社 | 医療器具、医療器具確認システム及び医療器具確認方法 |
JP2021184878A (ja) * | 2018-11-07 | 2021-12-09 | 古河電気工業株式会社 | 医療器具及び医療器具確認システム |
JP7254865B2 (ja) | 2018-11-07 | 2023-04-10 | 古河電気工業株式会社 | 医療器具及び医療器具確認システム |
WO2022190991A1 (ja) * | 2021-03-11 | 2022-09-15 | 株式会社小糸製作所 | シンチレータ材、放射線検出装置およびシンチレータ材の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109071324A (zh) | 2018-12-21 |
US10807903B2 (en) | 2020-10-20 |
EP3444231A1 (en) | 2019-02-20 |
US20190047903A1 (en) | 2019-02-14 |
EP3444231A4 (en) | 2019-11-13 |
JP6941600B2 (ja) | 2021-09-29 |
JPWO2017179609A1 (ja) | 2019-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10807903B2 (en) | Nanocomposites and method of manufacturing nanocomposites | |
US10711191B2 (en) | Phosphor, method for producing a phosphor and use of a phosphor | |
TWI502052B (zh) | 矽磷酸鹽磷光體 | |
US8048338B2 (en) | Phosphor, phosphor sheet, and manufacturing method therefore, and light emission device using the phosphor | |
US10233388B2 (en) | Lighting device with a first phosphor and filter particles | |
JP5041191B2 (ja) | 蛍光体粒子の製造方法 | |
Wang et al. | Structural and luminescent properties of red-emitting Eu 3+-doped ternary rare earth antimonates R 3 SbO 7 (R= La, Gd, Y) | |
JP4583076B2 (ja) | 発光素子 | |
TW200831642A (en) | Phosphor element comprising ruby for white or colour-on-demand LEDs | |
Erol et al. | Color tunable emission from Eu 3+ and Tm 3+ co-doped CsPbBr 3 quantum dot glass nanocomposites | |
JP6890299B2 (ja) | ガーネット珪酸塩、ガーネット珪酸塩蛍光体、並びにガーネット珪酸塩蛍光体を用いた波長変換体及び発光装置 | |
KR101850755B1 (ko) | 형광체 및 그 용도 | |
CN108603113B (zh) | 荧光体及其制造方法、含荧光体构件以及发光装置或投影仪 | |
Castaing et al. | Hexagonal Sr 1− x/2 Al 2− x Si x O 4: Eu 2+, Dy 3+ transparent ceramics with tuneable persistent luminescence properties | |
Sheoran et al. | Novel synthesis and Optical investigation of trivalent Europium doped MGd2Si3O10 (M= Mg2+, Ca2+, Sr2+ and Ba2+) nanophosphors for full-color displays | |
Salazar-Valenzuela et al. | Color Tunable Emission of Y3Al5O12: Ce3+ and Sm3+‐Doped Zinc–Germanate–Tellurite Glass Nanocomposite Powders and Coatings for Light‐Emitting Diodes Applications | |
US10174245B2 (en) | Method for producing a luminescent material, luminescent material and optoelectronic component | |
JP2009238887A (ja) | 波長変換器および発光装置ならびに照明装置 | |
JPWO2007004366A1 (ja) | 蓄光材料及びその製造方法並びに蓄光表示素子 | |
TW201925419A (zh) | 作為固態光源之色彩轉換器的多組分發光團 | |
Singh et al. | Novel Synthesis and Optical Investigations of Trivalent Europium Doped MGd2Si3O10 (M= Mg2+, Ca2+, Sr2+ and Ba2+) Nanophosphors for Full-Color Displays | |
KR101505431B1 (ko) | 시드를 이용한 옥시오소실리케이트 형광체 제조방법 | |
JP2013129765A (ja) | アルカリ土類金属シリケート蛍光体の製造方法およびアルカリ土類金属シリケート蛍光体 | |
JP2020100734A (ja) | 蓄光材料及び蓄光材料の製造方法 | |
Ghadamyari et al. | Open Ceramics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018512040 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017782422 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017782422 Country of ref document: EP Effective date: 20181115 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17782422 Country of ref document: EP Kind code of ref document: A1 |