WO2017179386A1 - 機器管理システム - Google Patents

機器管理システム Download PDF

Info

Publication number
WO2017179386A1
WO2017179386A1 PCT/JP2017/011670 JP2017011670W WO2017179386A1 WO 2017179386 A1 WO2017179386 A1 WO 2017179386A1 JP 2017011670 W JP2017011670 W JP 2017011670W WO 2017179386 A1 WO2017179386 A1 WO 2017179386A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile communication
control terminal
communication device
indoor
location information
Prior art date
Application number
PCT/JP2017/011670
Other languages
English (en)
French (fr)
Inventor
裕介 中島
可知 昌道
列樹 中島
歩 小西
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018511948A priority Critical patent/JPWO2017179386A1/ja
Priority to US16/087,815 priority patent/US10760810B2/en
Publication of WO2017179386A1 publication Critical patent/WO2017179386A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/026Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system using a predictor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • F24F2011/0002Control or safety arrangements for ventilation for admittance of outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/12Position of occupants
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2614HVAC, heating, ventillation, climate control

Definitions

  • the present invention relates to a device management system.
  • Patent Document 1 For example, if the building's room temperature and outside temperature are measured and the building occupant feels comfortable by taking in outside air, the main window for ventilation in the building should be opened to the occupant.
  • Techniques have been developed for outputting recommended messages and for controlling the on / off state of an air conditioner that manages the temperature in a building according to the open / closed state of a window (Patent Document 1).
  • Patent Document 1 The technique described in Patent Document 1 is control based on the assumption that there is a person in the room.
  • the present invention is not limited to such a case.
  • a system capable of adjusting the indoor air environment before a person enters the room is desired.
  • the present invention has been made to solve such a problem, and by accurately detecting the timing when a person who has gone out returns to a base such as a residence, the room can be used while suppressing energy loss even during unmanned times. It aims at providing the equipment management system which arranges the air environment of space.
  • one aspect of the device management system is capable of transmitting and receiving information to and from a plurality of indoor environment control devices that control the air environment in the indoor space. It is the equipment management system provided with the control terminal connected so.
  • the control terminal acquires an external communication unit capable of communicating with the mobile communication device connected to the public line via the public line, and information related to the operating condition of the indoor environment control device from the mobile communication device via the external communication unit.
  • a condition acquisition unit that performs operation
  • an operation condition determination unit that determines an operation condition of the indoor environment control device based on information acquired by the condition acquisition unit, and a control that controls the indoor environment control device with the operation condition determined by the operation condition determination unit With parts.
  • the present invention it is possible to accurately detect the timing of a person (user) who has gone out to return to a base such as a residence, so that the air environment of the indoor space can be adjusted while suppressing energy loss even when there is no person. it can.
  • FIG. 1 is a block diagram of a device management system according to an embodiment.
  • FIG. 2 is a schematic diagram of an example of an indoor space in the embodiment.
  • FIG. 3 is a schematic diagram of an example of a hooded ventilator according to the embodiment.
  • FIG. 4 is a flowchart illustrating an example of the operation of the operation condition determination unit in the embodiment.
  • FIG. 5 is a schematic diagram illustrating a positional relationship between the control terminal and the external communication device in the embodiment.
  • FIG. 6 is a flowchart illustrating another example of the operation of the operation condition determination unit in the embodiment.
  • FIG. 7 is a schematic diagram illustrating a positional relationship between the control terminal and the external communication device in the embodiment.
  • FIG. 8 is a flowchart illustrating an example of the operation of the operation condition determination unit in the embodiment.
  • FIG. 9 is a flowchart illustrating another example of the operation of the operation condition determination unit in the embodiment.
  • FIG. 10 is a schematic diagram illustrating a positional relationship between the control terminal and the mobile communication device in the embodiment.
  • FIG. 11 is a block diagram of a control terminal in the embodiment.
  • FIG. 1 is a block diagram of a device management system according to an embodiment.
  • FIG. 2 is a schematic diagram of an example of an indoor space in the embodiment.
  • the device management system 1 includes a plurality of indoor environment control devices 2, a control terminal 3, and a mobile communication device 9.
  • the plurality of indoor environment control devices 2 controls the air environment of the indoor space 6.
  • at least one of the plurality of indoor environment control devices 2 is exemplified as a hooded ventilator 21 that conveys air from the indoor space 6 to the outdoor space 7.
  • the indoor space 6 refers to a space surrounded by walls, a floor, and a roof, such as a living room, a dining room, and a room (private room), and can also be referred to as indoor.
  • a space in which a window, a duct for ventilation, and the like are provided and these are in a ventable state also corresponds to the indoor space 6.
  • the outdoor space 7 refers to a space in which at least one of a floor, a wall, and a roof is lacking with respect to an indoor space, and can also be referred to as outdoor.
  • the control terminal 3 is connected to a plurality of indoor environment control devices 2 so as to be able to transmit and receive information.
  • FIG. 3 is a schematic diagram of an example of a hooded ventilator according to the embodiment.
  • the hooded ventilator 21 includes an exhaust fan 210, a hood portion 211, an outdoor discharge port 212, and an indoor suction port 213.
  • the exhaust fan 210 sucks air in the indoor space 6 and exhausts the sucked air to the outdoor space 7.
  • the hood part 211 covers the exhaust fan 210.
  • the outdoor discharge port 212 communicates the indoor space 6 and the outdoor space 7.
  • the indoor suction port 213 opens toward the lower portion of the hood portion 211 in order to suck air below the hood portion 211.
  • the exhaust fan 210 is composed of, for example, an impeller held on a rotating shaft of a motor. When the motor is energized, the rotation shaft of the motor rotates. The exhaust fan 210 generates an airflow flowing from the indoor suction port 213 to the outdoor discharge port 212 by rotating the impeller through the rotation shaft of the motor.
  • the hood part 211 and the outdoor discharge port 212 are connected by, for example, an exhaust pipe 214.
  • the hood portion 211 may be directly connected to the outdoor discharge port 212.
  • the hooded ventilator 21 is preferably a range hood device that sucks smoke generated during cooking from the indoor suction port 213 and discharges it to the outdoor space 7 through the outdoor discharge port 212.
  • the ventilator 21 with a hood is a range hood device
  • the indoor suction port 213 is arranged on the upper portion of the stove provided in the kitchen cooking table 10.
  • the hooded ventilator 21 also functions as an exhaust device used during cooking.
  • the hooded ventilation apparatus 21 as a range hood apparatus is often installed in the indoor space 6 of a living dining room where a resident often spends a lot of time. Therefore, the ventilator 21 with a hood can arrange the air environment of the indoor space 6 more efficiently for the resident.
  • a range hood device is often installed as a facility provided at a position designed at the time of construction. Therefore, the equipment management system 1 can easily manage the hooded ventilator 21 as a range hood device.
  • the exhaust fan 210 of the ventilator 21 with a hood has an exhaust capacity of 200 m 3 / h or more.
  • the hooded ventilator 21 has a sufficiently large exhaust capacity, so that a large amount of air can be exhausted in a short time.
  • the ventilator 21 with a hood can control the air flow rate by setting the exhaust amount by the exhaust fan 210 in multiple stages.
  • the hooded ventilator 21 can appropriately control the ventilation amount between the indoor space 6 and the outdoor space 7.
  • the hooded ventilator 21 may include an exhaust shutter 215 capable of opening and closing a conveyance path for conveying air from the indoor space 6 to the outdoor space 7. By closing the exhaust shutter 215 when the operation of the hooded ventilator 21 is stopped, the airtightness of the indoor space 6 can be improved.
  • Examples of the installation position of the exhaust shutter 215 include, but are not limited to, a connection portion between the hood portion 211 and the exhaust pipe 214.
  • At least one of the plurality of indoor environment control devices 2 may be an air conditioner 22 that controls the temperature of the indoor space 6 by heating or cooling the air in the indoor space 6.
  • the air conditioner 22 heats or cools the air in order to set the temperature of the indoor space 6 to a target temperature.
  • the air conditioner 22 may be, for example, a dedicated cooling device that only cools the air in the indoor space 6, a dedicated heating device that only heats the air in the indoor space 6, or the air in the indoor space 6. It may be an air conditioning unit that can be operated by switching between heating and cooling.
  • the indoor environment control device 2 can heat or cool the air in the indoor space 6, and can control the temperature of the indoor space 6 in a wider range.
  • the device management system 1 may further include an indoor temperature sensor 4 that measures an indoor temperature that is the temperature in the indoor space 6.
  • the device management system 1 may further include an outdoor temperature sensor 5 that measures an outdoor temperature that is the temperature of the outdoor space 7.
  • the outdoor temperature is the outside air temperature.
  • the indoor temperature sensor 4 and the outdoor temperature sensor 5 each electrically acquire temperature information, and the obtained temperature information is transmitted to a condition acquisition unit 31 (details will be described later) of the control terminal 3.
  • the indoor temperature sensor 4 and the outdoor temperature sensor 5 include, for example, an infrared radiation thermometer, a thermography, a thermistor, a platinum resistance thermometer, or a thermocouple, and perform temperature measurement.
  • the indoor target temperature of the indoor space 6 is compared with the indoor temperature measured by the indoor temperature sensor 4, and the indoor environment control device 2 is made more efficient. Can be controlled.
  • the device management system 1 further includes an outdoor temperature sensor 5 to compare the outdoor temperature measured by the outdoor temperature sensor 5, the target indoor target temperature, and the indoor temperature measured by the indoor temperature sensor 4.
  • the indoor environment control device 2 can be controlled more efficiently.
  • the room temperature sensor 4 may be replaced with one provided in the indoor environment control device 2 such as the hooded ventilator 21 or the air conditioner 22.
  • the control terminal 3 acquires temperature information of the indoor environment control device 2 via, for example, the control unit 33 and the internal network 8 in the indoor environment control device 2.
  • the control terminal 3 includes a condition acquisition unit 31, an operation condition determination unit 32, a control unit 33, and an external communication unit 34. Hereinafter, each component of the control terminal 3 will be described.
  • the condition acquisition unit 31 acquires information related to the operating conditions of the indoor environment control device 2. Examples of information related to the operating conditions include the indoor target temperature, the indoor temperature of the indoor space 6, the outdoor temperature of the outdoor space 7, the number and types of indoor environment control devices 2 installed, and the like.
  • the indoor target temperature here is a control target temperature of the indoor space 6 when the indoor environment control device 2 is operated.
  • the condition acquisition unit 31 acquires at least one of information related to these operating conditions.
  • the condition acquisition unit 31 As a method for the condition acquisition unit 31 to acquire the indoor target temperature, for example, an input device such as a display panel (not shown) is provided in the control terminal 3 and the indoor target temperature is input to the condition acquisition unit 31 therefrom. Is mentioned.
  • the condition acquisition unit 31 may be connected to the display panel via the internal network 8 and the indoor target temperature may be input to the condition acquisition unit 31 from the display panel.
  • the condition acquisition unit 31 may be connected to a tablet terminal or a mobile phone terminal via wireless communication or the like, and the indoor target temperature may be input to the condition acquisition unit 31 from the tablet terminal or the mobile phone terminal.
  • the internal network 8 refers to a network that is arranged in the indoor space 6 and that connects each communication terminal under its own management.
  • a network to which a communication terminal located in the outdoor space 7 is connected is an external network, specifically, the Internet 91, a public line including the Internet 91, or the like.
  • the method by which the condition acquisition unit 31 acquires the indoor temperature of the indoor space 6 and the outdoor temperature of the outdoor space 7 includes the following.
  • the condition acquisition unit 31 is connected to the indoor temperature sensor 4 and the outdoor temperature sensor 5 via the internal network 8, and acquires temperature information that is output information from the indoor temperature sensor 4 and the outdoor temperature sensor 5.
  • condition acquisition unit 31 acquires the number and types of indoor environment control devices 2 installed, the same method as the method for acquiring the indoor target temperature described above may be used.
  • the operating condition determining unit 32 determines the operating condition of each indoor environment control device 2 based on information related to the operating condition acquired by the condition acquiring unit 31.
  • a method for determining the operating condition for example, there are the following methods. First, the control terminal 3 predicts the user's return time by a process described later. Next, the control terminal 3 operates the hooded ventilator 21 according to the predicted return home time of the user to use the outside air, and regulates the indoor air environment while suppressing energy loss. Then, when the indoor target temperature cannot be achieved only with outside air, the control terminal 3 uses the air conditioner 22 to adjust the indoor air environment. Such processing can suppress energy loss as the prediction accuracy of the user's return time increases. Although various processes can be considered for the operating conditions, details are omitted in the present application for the purpose of improving the prediction accuracy of the user's return time.
  • the control unit 33 operates the indoor environment control device 2 under the operation condition determined by the operation condition determination unit 32.
  • the control unit 33 is connected to the plurality of indoor environment control devices 2 via the internal network 8 so as to be able to transmit and receive information.
  • the control unit 33 controls the plurality of indoor environment control devices 2 by communicating with the plurality of indoor environment control devices 2 via the internal network 8.
  • the internal network 8 that connects the control terminal 3 and the indoor environment control device 2 may use, for example, wireless communication using the Digital Enhanced Cordless Telecommunications (hereinafter referred to as DECT) method. Since wireless communication using the DECT method is not affected by electromagnetic wave noise, wireless connection is possible even near devices that generate electromagnetic wave noise such as a microwave oven and an electromagnetic cooker. Further, by using DECT, for example, in a detached house or the like, a stable connection can be made even in an environment where a wireless connection by a long-distance internal network is required.
  • DECT Digital Enhanced Cordless Telecommunications
  • the mobile communication device 9 is a communication device that can be moved at least in the outdoor space 7 and can transmit and receive information via the external network, that is, the Internet 91 even at the moved location.
  • the mobile communication device 9 corresponds to a mobile phone, a car navigation device, or a GPS (Global Positioning System) transmitter.
  • GPS transmitter is a device that identifies the current location of its own device by receiving signals from GPS satellites, etc., and transmits it to other terminals via an external network. For example, the position of a child or car by a third party is specified. Used for
  • the mobile communication device 9 can be connected to the Internet 91 by wireless communication, for example.
  • the mobile communication device 9 has a position information acquisition function that can acquire position information of the mobile communication device 9 at that time, that is, current location information, by acquiring base station information used in a GPS function or wireless communication.
  • the external communication unit 34 is connected to the Internet 91, and can communicate with the mobile communication device 9 connected to the Internet 91 via the Internet 91.
  • the external communication unit 34 transmits information related to the operating condition of the indoor environment control device 2 and current location information among the information obtained from the mobile communication device 9 through communication with the mobile communication device 9 to the condition acquisition unit 31.
  • the condition acquisition unit 31 stores position information of the control terminal 3 in addition to the operating conditions of the indoor environment control device 2 described above.
  • the position information of the control terminal 3 can be input via an external input terminal or a display panel.
  • the control terminal 3 may have a position information acquisition function similar to that of the mobile communication device 9 and acquire position information from the function.
  • the position information the latitude and longitude of the place where the control terminal 3 is located, or position information (code or the like) indicating a specific place may be stored, or the address or zip code of the building where the control terminal 3 is installed. Etc.
  • FIG. 4 is a flowchart illustrating an example of the operation of the operation condition determination unit in the embodiment.
  • the operation condition determination unit 32 refers to the position information of the control terminal 3 stored in the condition acquisition unit 31 (step S61). Next, the operation condition determination unit 32 acquires the current location information of the mobile communication device 9 acquired by the external communication unit 34 via the condition acquisition unit 31 (step S62).
  • the operating condition determination unit 32 calculates the distance between the control terminal 3 and the mobile communication device 9 based on the position information of the control terminal 3 and the current location information of the mobile communication device 9 (step S63). Next, the operating condition determination unit 32 determines whether or not the distance between the control terminal 3 and the mobile communication device 9 is equal to or less than a predetermined distance (step S64).
  • the predetermined distance is a fixed numerical value stored in advance in the control terminal 3, for example, the condition acquisition unit 31 via a display panel or the like, and specifically corresponds to 10 km or the like.
  • step S64 If the distance between the control terminal 3 and the mobile communication device 9 is equal to or less than the predetermined distance (Yes in step S64), the operation condition determination unit 32 instructs the control unit 33 to start the operation of the indoor environment control device 2. Output (step S65). If the distance between the control terminal 3 and the mobile communication device 9 is longer than the predetermined distance (No in step S64), the process returns to step S62 after a predetermined time has elapsed.
  • the time required for the user carrying the mobile communication device 9 to move the distance indicated by the predetermined distance and return straight to the indoor space 6 in which the control terminal 3 is installed is defined as a return time.
  • the time required for adjusting the air environment of the indoor space 6 by the indoor environment control device 2 is defined as the air environment adjustment time. If the air environment adjustment time is longer than the return time, the air environment of the indoor space 6 cannot be adjusted before the user returns home.
  • the air environment adjustment time varies depending on the moving means of the user, the air environment of the indoor space 6 requested by the user, the capacity of each indoor environment control device 2, and the like. Therefore, the predetermined distance is configured to be appropriately changed by the user via a display panel or the like. Thereby, the range of the return time which can be measured can be set long by setting a predetermined distance long as needed, and the air environment which a user demands can be provided.
  • an example of the operation of the indoor environment control device 2 includes an operation of turning on the ventilator 21 with the hood, but is not limited thereto.
  • the operation condition determination unit 32 acquires the current location information of the mobile communication device 9 via the external communication unit 34 after a predetermined time has elapsed after completion of step S65 (step S66).
  • the operating condition determination unit 32 calculates the distance between the control terminal 3 and the mobile communication device 9 based on the position information of the control terminal 3 referred to in step S61 and the current location information of the mobile communication device 9 acquired in step S66 ( Step S67).
  • the operating condition determination unit 32 compares the distance D63 between the control terminal 3 and the mobile communication device 9 calculated in step S63 and the distance D67 between the control terminal 3 and the mobile communication device 9 calculated in step 67 (step S68).
  • FIG. 5 is a schematic diagram illustrating a positional relationship between the control terminal and the external communication device in the embodiment.
  • the operation condition determination unit 32 outputs an instruction to stop the operating indoor environment control device 2 to the control unit 33 (Step S69). In addition, when the distance D63> the distance D67 (No in step S68), the operation condition determination unit 32 outputs an instruction to return to step S66.
  • the indoor environment control device 2 can be stopped when the user who owns the mobile communication device 9 is less likely to return to the indoor space 6 immediately. Thereby, the useless operation time of the indoor environment control apparatus 2 can be reduced.
  • the operating condition determination unit 32 can operate the indoor environment control device 2 again even after the indoor environment control device 2 is stopped once. For example, the operation condition determination unit 32 starts the flow from step S61 again after step S69 is completed and a predetermined time has elapsed. As a result, the operating condition determination unit 32 calculates the distance between the control terminal 3 and the mobile communication device 9, and when it is determined that the mobile communication device 9 is approaching the control terminal 3 again, the indoor environment control device 2 is again used. Can be operated.
  • condition acquisition unit 31 may be configured to change a predetermined distance stored in advance based on the difference between the acquired indoor target temperature and the temperature of the outdoor space 7.
  • the predetermined distance stored in advance is changed longer.
  • the predetermined distance stored in advance is changed short. That is, the predetermined distance stored in advance is dynamically increased or decreased according to the difference between the indoor target temperature and the temperature of the outdoor space 7.
  • the predetermined distance is lengthened so that the time until the user returns to the indoor space 6 can be recognized at an early stage, that is, the time for adjusting the environment of the indoor space is sufficient. Can be secured. Therefore, since the time which combines various indoor environment control apparatuses 2 can be ensured, the air environment of the indoor space 6 can be prepared, suppressing energy loss.
  • FIG. 6 is a flowchart illustrating another example of the operation of the operation condition determination unit in the embodiment.
  • FIG. 7 is a schematic diagram illustrating a positional relationship between the control terminal and the external communication device in the embodiment.
  • the control terminal 3 in the example described above operates the indoor environment control device 2 in accordance with the distance between the control terminal 3 and the mobile communication device 9, and then again determines the distance between the control terminal 3 and the mobile communication device 9. I was measuring.
  • the control terminal 3 in another example described below measures the distance between the control terminal 3 and the mobile communication device 9 twice before operating the indoor environment control device 2. Details will be described below.
  • the operation condition determination unit 32 refers to the position information of the control terminal 3 stored in the condition acquisition unit 31 (step S71). Next, the operation condition determination unit 32 acquires the current location information of the mobile communication device 9 acquired by the external communication unit 34 via the condition acquisition unit 31 (step S72).
  • the operating condition determination unit 32 calculates the distance between the control terminal 3 and the mobile communication device 9 based on the position information of the control terminal 3 and the current location information of the mobile communication device 9 (step S73). Next, the operation condition determination unit 32 acquires the current location information of the mobile communication device 9 via the external communication unit 34 after a predetermined time has elapsed after completion of step S73 (step 74). The operating condition determination unit 32 calculates the distance between the control terminal 3 and the mobile communication device 9 based on the position information of the control terminal 3 referred to in step S71 and the position information of the mobile communication device 9 acquired in step S74 ( Step S75).
  • the operating condition determination unit 32 compares the distance D73 between the control terminal 3 and the mobile communication device 9 calculated in step S73 with the distance D75 between the control terminal 3 and the mobile communication device 9 calculated in step S75 (step S76). ). If the distance D75 ⁇ the distance D73 (Yes in step S76), the process proceeds to step S77. Otherwise (No in step S76), the process returns to step S72.
  • step S77 the operating condition determination unit 32 determines whether the distance D75 is equal to or less than a predetermined value (step S77).
  • the operation condition determining unit 32 determines that the distance between the control terminal 3 and the mobile communication device 9 is equal to or smaller than the predetermined distance as shown in FIG. It is determined that the mobile communication device 9 is approaching the control terminal 3. Then, the operating condition determination unit 32 operates the indoor environment control device 2 via the control unit 33 (step S78). If the distance D75 is greater than the predetermined value (No in step S77), the process returns to step S72.
  • the moving direction of the mobile communication device 9 relative to the control terminal 3 is also included in the determination of the operation start. Therefore, the possibility that the user who owns the mobile communication device 9 can return home can be detected more accurately, and the energy loss of the indoor environment control device 2 can be suppressed. Therefore, efficient device management is possible.
  • FIG. 8 is a flowchart illustrating an example of the operation of the operation condition determination unit in the embodiment.
  • the control terminal 3 can calculate the moving speed of the mobile communication device 9 and predict the arrival time of the user. Details will be described below.
  • the operating condition determination unit 32 acquires the indoor target temperature and the position information of the control terminal 3 stored in the condition acquisition unit 31 (step S81). Next, the operation condition determination unit 32 acquires time information and current location information from the mobile communication device 9 a plurality of times at different timings via the condition acquisition unit 31 (step S82).
  • the operating condition determination unit 32 calculates the distance between the control terminal 3 and the mobile communication device 9 based on the position information of the control terminal 3 and the current location information of the mobile communication device 9 (step S83).
  • the operating condition determination unit 32 calculates the moving speed of the mobile communication device 9 based on the time information and current location information of the mobile communication device 9 acquired a plurality of times in step S82 (step S84).
  • the operating condition determination unit 32 back-calculates the expected time when the mobile communication device 9 reaches the position of the control terminal 3 based on the moving speed calculated in step S84 and the distance calculated in step S83 (step S85). .
  • the operating condition determination unit 32 sets the predicted time calculated in step S85 as a room temperature achievement time at which the indoor target temperature is to be achieved, and determines an on time at which the indoor environment control device 2 is started based on the room temperature achievement time. . At this time, it is also possible to determine which of the indoor environment control devices 2 is to be moved, such as whether to start only the hooded ventilator 21 or only the air conditioner 22. (Step S86).
  • the operation condition determination unit 32 outputs the operation condition of the indoor environment control device 2 including the ON time determined in step S86 to the control unit 33 (step S87).
  • the control terminal 3 can accurately predict the timing at which the user having the mobile communication device 9 returns to the indoor space 6 by calculating the moving speed of the mobile communication device 9.
  • the control terminal 3 determines the operating condition of the indoor environment control device 2 based on the room temperature achievement time, which is the time when the user returns to the indoor space 6. For this reason, the control terminal 3 can be set to the required indoor environment under the operating condition with the lowest energy loss.
  • FIG. 9 is a flowchart illustrating another example of the operation of the operation condition determination unit in the embodiment.
  • FIG. 10 is a schematic diagram illustrating a positional relationship between the control terminal and the mobile communication device in the embodiment.
  • FIG. 11 is a block diagram of a control terminal in the embodiment.
  • the control terminal 103 in another example described below has a function of calculating a scheduled time when the mobile communication device 9 reaches the position of the control terminal 103 from the past time history. Details will be described below.
  • the operation condition determination unit 32 acquires the indoor target temperature and the position information of the control terminal 103 stored in the condition acquisition unit 31 (step S91). Next, the operation condition determination unit 32 acquires current location information from the mobile communication device 9 via the condition acquisition unit 31 (step S92).
  • the operating condition determination unit 32 calculates the distance between the control terminal 103 and the mobile communication device 9 based on the position information of the control terminal 103 and the current location information of the mobile communication device 9. Further, based on the position information of the control terminal 103 and the current location information of the mobile communication device 9, the direction in which the mobile communication device 9 is located with respect to the control terminal 103 is calculated (step S93).
  • the directions of the mobile communication device 9 from the control terminal 103 are, for example, as shown in FIG. 10, eight areas of east, west, south, north, northeast, northwest, southeast, and southwest centering on the control terminal 103. Divide into
  • the operation condition determination unit 32 first stores the time until the mobile communication device 9 reaches the position of the control terminal 103 from the above direction at least once in the past based on the direction calculated in step S93 and the distance. It is determined whether or not (step S94). The determination is performed as follows, for example.
  • the control terminal 103 has a record storage unit 35 as shown in FIG.
  • the record storage unit 35 associates the area, the distance between the control terminal 103 and the mobile communication device 9 in the area, and the time when the position of the control terminal 103 is reached from the distance of the mobile communication device 9 in the area, Remember. Then, the operating condition determination unit 32 searches for the presence / absence of data that matches the same past conditions in the result storage unit 35. That is, when there is no matching data, it is determined that there is no track record of reaching the position of the control terminal 103 from the corresponding area. If there is matching data, the data time can be used as a time history to be described later.
  • step S95 If the position of the control terminal 103 has not been reached from the azimuth of the mobile communication device 9 calculated in step S93 in the past (No in step S94), it moves to the position of the control terminal 103, and from the calculated azimuth and the calculated azimuth. The time to reach the control terminal 103 is stored, and the process returns to step S92 (step S95).
  • step S96 the scheduled time at which the mobile communication device 9 reaches the position of the control terminal 103 is calculated based on the stored time history until the position of the control terminal 103 of the mobile communication device 9 in the past direction is reached.
  • the calculation of the scheduled time is performed, for example, by adopting the latest time history or calculating the average of a plurality of time histories.
  • the operating condition determination unit 32 sets the scheduled time calculated in step S96 as the room temperature achievement time at which the indoor target temperature is to be achieved, and sets the on time to start the indoor environment control device 2 based on the room temperature achievement time. decide.
  • hooded ventilator 21 or the air conditioner 22 is moved, such as whether only the hooded ventilator 21 of the indoor environment control device 2 is started or only the air conditioner 22 is started. Can also be determined (step S97).
  • the operating condition determining unit 32 outputs the operating conditions of the indoor environment control device 2 including the ON time determined in step S97 to the control unit 33 (step S98).
  • the time for the mobile communication device 9 to reach the position of the control terminal 103 may be stored each time. By predicting the scheduled time when the mobile communication device 9 reaches the position of the control terminal 103 from a plurality of past time histories, the accuracy of the scheduled time can be further improved.
  • the operation condition determination unit 32 calculates the position information stored in the condition acquisition unit 31, but the present invention is not limited to this.
  • the mobile communication device 9 refers to the position information of the control terminal 3 stored in the condition acquisition unit 31 (step S61). Steps S62 to S69 differ only in that the processing shown in “Example of operation condition determination by control terminal using position information of mobile communication device” is performed by mobile communication device 9 instead of operation condition determination unit 32. The others are the same. In steps S62 and S66, the mobile communication device 9 acquires the current location information of the mobile communication device 9 by the position information acquisition function that the mobile communication device 9 has.
  • the distance between the control terminal 3 and the mobile communication device 9 can be continuously calculated. That is, when the mobile communication device 9 cannot be connected to the control terminal 3, the calculation process is continued in the mobile communication device 9, and the information calculated by being in a connectable state with the control terminal 3 is collectively stored in the control terminal 3. To send. Thereby, even if it is in a state where communication is temporarily impossible, accurate information can be acquired later, so that control can be performed without always performing communication.
  • the mobile communication device 9 refers to the position information of the control terminal 3 stored in the condition acquisition unit 31 (step S71). For steps S72 to S78, the mobile communication device 9 performs the processing shown in “Example of operation condition determination by control terminal using position information of mobile communication device” instead of operation condition determination unit 32 of control terminal 3. Only the point is different and the others are the same. In steps S72 and S74, the mobile communication device 9 acquires the current location information of the mobile communication device 9 by the position information acquisition function that the mobile communication device 9 has.
  • the device management system since the user's return time can be accurately predicted, for example, time is required but the thermal efficiency is high (energy loss is low) even during unmanned times.
  • the indoor environment can be adjusted by controlling the indoor environment control device under low operating conditions.
  • the indoor environment control device 2 For example, as an example of the operation of the indoor environment control device 2, the operation of turning on the hooded ventilator 21 has been described. However, the user's return time is predicted, and various indoor environments are determined by the return time. It is possible to arrange the air environment by combining the control device 2.
  • the present invention can accurately detect the timing when a person who has gone out returns to a base such as a residence, the present invention is useful as a device management system that adjusts the air environment of an indoor space while suppressing energy loss even when there is no person. .

Abstract

室内空間の空気環境を制御する複数の室内環境制御装置(2)と、複数の室内環境制御装置(2)各々と情報の送受信が可能となるように接続された制御端末(3)と、を備えた機器管理システム(1)であって、制御端末(3)は、公衆回線を介して接続された移動通信機(9)と通信可能な外部通信部(34)と、外部通信部(34)を介して移動通信機(9)から室内環境制御装置(2)の動作条件に関連する情報を取得する条件取得部(31)と、条件取得部(31)が取得した情報に基づいて室内環境制御装置(2)の動作条件を決定する動作条件決定部(32)と、動作条件決定部(32)が決定した動作条件で室内環境制御装置(2)を動作させる制御部(33)とを備える。

Description

機器管理システム
 本発明は、機器管理システムに関する。
 従来、外気を取り入れることによって、室内空間の環境をより快適にするための管理システムが知られている。
 例えば、建物内の室温および外気温を測定し、建物の居住者が外気を取り入れることで快適と感じる状況になれば、居住者に対して建物における通風のための主要な窓を開放することを薦めるメッセージを出力したり、窓の開閉状態に応じて建物内の温度管理をする空調装置のオンオフ状態を制御したりする技術が開発されている(特許文献1)。
特開2012-251731号公報
 特許文献1に記載された技術は、室内に人が居ることが前提とされた制御である。しかしながら、実際にはこのような場合に限定されず、例えば人が室内に入る前に室内の空気環境の調整が可能なシステムが望まれている。
 本発明は、このような課題を解決するためにされたものであり、外出している人が住居などの拠点に戻るタイミングを精度よく検出することで、無人時においてもエネルギーロスを抑えながら室内空間の空気環境を整える機器管理システムを提供することを目的とする。
 上記目的を達成するために、本発明に係る機器管理システムの一態様は、室内空間の空気環境を制御する複数の室内環境制御装置と、複数の室内環境制御装置各々と情報の送受信が可能となるように接続された制御端末と、を備えた機器管理システムである。制御端末は、公衆回線を介して公衆回線に接続された移動通信機と通信可能な外部通信部と、外部通信部を介して移動通信機から室内環境制御装置の動作条件に関連する情報を取得する条件取得部と、条件取得部が取得した情報に基づいて室内環境制御装置の動作条件を決定する動作条件決定部と、動作条件決定部が決定した動作条件で室内環境制御装置を制御する制御部と備える。
 本発明によれば、外出している人(ユーザ)が住居などの拠点に戻るタイミングを精度よく検出することができるため、無人時においてもエネルギーロスを抑えながら室内空間の空気環境を整えることができる。
図1は、実施の形態における機器管理システムのブロック図である。 図2は、実施の形態における室内空間の一例の概略図である。 図3は、実施の形態におけるフード付換気装置の一例の概略図である。 図4は、実施の形態における動作条件決定部の動作の一例を示すフローチャートである。 図5は、実施の形態における制御端末と外部通信機との位置関係を示す概略図である。 図6は、実施の形態における動作条件決定部の動作の他の例を示すフローチャートである。 図7は、実施の形態における制御端末と外部通信機との位置関係を示す概略図である。 図8は、実施の形態における動作条件決定部の動作の一例を示すフローチャートである。 図9は、実施の形態における動作条件決定部の動作の他の例を示すフローチャートである。 図10は、実施の形態における制御端末と移動通信機との位置関係を示す概略図である。 図11は、実施の形態における制御端末のブロック図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、並びに、ステップ(工程)及びステップの順序などは、一例であって本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 なお、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
 (実施の形態)
 まず、本発明の実施の形態に係る機器管理システム1の構成について、図1~3を用いて説明する。
 [機器管理システムの基本構成]
 図1は、実施の形態における機器管理システムのブロック図である。図2は、実施の形態における室内空間の一例の概略図である。
 本実施の形態に係る機器管理システム1は、複数の室内環境制御装置2と、制御端末3と、移動通信機9とを備えている。
 複数の室内環境制御装置2は、室内空間6の空気環境を制御する。また、複数の室内環境制御装置2のうち少なくとも1つは、室内空間6から室外空間7に空気を搬送するフード付換気装置21として例示する。ここで室内空間6とは、リビングやダイニング、部屋(個室)など、壁、床、及び屋根に囲まれた空間を指し、屋内と言い換えることもできる。なお、窓や換気の為のダクトなどが備えられ、これらが通気可能状態になっている空間も室内空間6に該当する。また室外空間7とは、屋内に対して床や壁、屋根のうち少なくとも1つが欠けた空間を指し、屋外と言い換えることもできる。
 制御端末3は、複数の室内環境制御装置2と情報の送受信が可能となるように接続されている。
 以下、機器管理システム1の各構成要素について説明する。
 [フード付換気装置]
 図3は、実施の形態におけるフード付換気装置の一例の概略図である。図3に示すように、フード付換気装置21は、排気ファン210と、フード部211と、室外吐出口212と、室内吸込口213とを備えている。排気ファン210は、室内空間6の空気を吸込み、吸込んだ空気を室外空間7に排気する。フード部211は、排気ファン210を覆っている。室外吐出口212は、室内空間6と室外空間7とを連通している。室内吸込口213は、フード部211の下方の空気を吸込むために、フード部211の下方に向けて開口している。排気ファン210は、例えば、モーターの回転軸に保持された羽根車から構成されている。モーターに電動機に通電することによってモーターの回転軸が回転する。そして、モーターの回転軸を介して羽根車が回転することによって、排気ファン210は、室内吸込口213から室外吐出口212に流れる気流を生じさせる。
 フード部211と室外吐出口212とは、例えば、排気管214によって接続されている。なお、フード部211は、直接、室外吐出口212と接続されていてもよい。
 また、フード付換気装置21は、調理時に発生する煙を室内吸込口213から吸込み、室外吐出口212を介して室外空間7に排出するレンジフード装置であることが好ましい。
 フード付換気装置21がレンジフード装置である場合、台所の調理台10に設けられたコンロ上部に室内吸込口213が配置される。このような構成により、フード付換気装置21は、調理時に用いられる排気装置としても機能する。また、レンジフード装置としてのフード付換気装置21は、図2に示すように、居住者が多くの時間を過ごすことが多いリビングダイニングの室内空間6に設置される事が多い。そのため、フード付換気装置21は、居住者に対してより効率的に室内空間6の空気環境を整えることができる。また、マンション等の集合住宅において、レンジフード装置は、建設時に設計された位置に備え付けの設備として設置されることが多い。そのため、機器管理システム1は、レンジフード装置としてのフード付換気装置21を管理しやすい。
 また、フード付換気装置21の排気ファン210は、200m/h以上の排気能力を有することが好ましい。このような構成により、フード付換気装置21は、十分に大きな排気能力を持つため、短時間により多くの空気を排気することができる。
 また、フード付換気装置21は、排気ファン210による排気量を多段階に設定することによって、送風量を制御できることが好ましい。このような構成により、フード付換気装置21は、室内空間6と室外空間7との間における換気量を適切に制御することができる。
 また、フード付換気装置21は、室内空間6から室外空間7に空気を搬送する搬送路を開閉することが可能な排気シャッター215を備えていてもよい。排気シャッター215をフード付換気装置21の運転が停止している場合に閉じることによって、室内空間6の気密性を向上させることができる。排気シャッター215の設置位置としては、例えば、フード部211と排気管214の接続部があげられるが、これに限定されない。
 [空調装置]
 複数の室内環境制御装置2のうち少なくとも1つは、室内空間6内の空気の加熱または冷却によって、室内空間6の温度制御を行う空調装置22としてもよい。
 空調装置22は、室内空間6の温度を目標とする温度にするために、空気の加熱または冷却を行う。空調装置22は、例えば、室内空間6内の空気の冷却のみを行う冷房専用装置でもよいし、室内空間6内の空気の加熱のみを行う暖房専用装置でもよいし、室内空間6内の空気の加熱及び冷却を切り替えて運転できる冷暖房兼用装置でもよい。
 空調装置22を備えることにより、室内環境制御装置2は、室内空間6内の空気を加熱または冷却することが可能となり、室内空間6の温度をより幅広い範囲で制御することが可能となる。
 [温度センサ]
 機器管理システム1は、さらに室内空間6内の温度である室内温度を測定する室内温度センサ4を備えていてもよい。また、機器管理システム1は、さらに室外空間7の温度である室外温度を測定する室外温度センサ5を備えていてもよい。室外温度とは、すなわち外気温のことである。
 室内温度センサ4および室外温度センサ5は、それぞれ、電気的に温度情報を取得し、得られた温度情報は、制御端末3の条件取得部31(詳細は後述)に送信される。室内温度センサ4および室外温度センサ5は、例えば、赤外放射温度計、サーモグラフィ、サーミスタ、白金測温抵抗又は熱電対を備え、温度測定を行う。
 機器管理システム1が室内温度センサ4を備えることによって、室内空間6の目標とする室内目標温度と、室内温度センサ4で測定された室内温度とを比較し、室内環境制御装置2をより効率的に制御することができる。
 また、機器管理システム1が室外温度センサ5をさらに備えることによって、室外温度センサ5で測定された室外温度と、目標とする室内目標温度と、室内温度センサ4で測定された室内温度とを比較し、室内環境制御装置2をより効率的に制御することができる。
 なお室内温度センサ4は、フード付換気装置21や空調装置22等の室内環境制御装置2が備えるものを代用可能である。具体的には、室内環境制御装置2における例えば制御部33及び内部ネットワーク8を介して、制御端末3が室内環境制御装置2の温度情報を取得する。
 [制御端末]
 制御端末3は、条件取得部31と、動作条件決定部32と、制御部33と、外部通信部34と、を備えている。以下、制御端末3の各構成要素について説明する。
 条件取得部31は、室内環境制御装置2の動作条件に関連する情報を取得する。動作条件に関連する情報としては、例えば、室内目標温度、室内空間6の室内温度、室外空間7の室外温度、室内環境制御装置2の設置数や種類等が該当する。ここでいう室内目標温度とは、室内環境制御装置2を動作させた場合における、室内空間6の制御目標温度のことである。条件取得部31は、これら動作条件に関連する情報のうち、少なくとも1つを取得する。
 条件取得部31が室内目標温度を取得する方法としては、例えば、制御端末3に表示パネル(図示せず)などの入力装置を設けて、そこから条件取得部31に室内目標温度を入力する方法が挙げられる。また、例えば、条件取得部31は、内部ネットワーク8を介して表示パネルと接続しており、表示パネルから条件取得部31に室内目標温度を入力する構成としてもよい。また、例えば、条件取得部31は無線通信等を介してタブレット端末や携帯電話端末と接続しており、タブレット端末や携帯電話端末から室内目標温度を条件取得部31に入力する構成としてもよい。ここで内部ネットワーク8とは、室内空間6に配置され、自己の管理下にある各通信端末を接続するネットワークを指す。これに対して、室外空間7に位置する通信端末が接続されるネットワークを外部ネットワークとし、具体的にはインターネット91やインターネット91を含む公衆回線等が該当する。
 条件取得部31が、室内空間6の室内温度及び室外空間7の室外温度を取得する方法としては以下がある。例えば、条件取得部31は、内部ネットワーク8を介して室内温度センサ4および室外温度センサ5と接続しており、室内温度センサ4および室外温度センサ5から出力情報である、温度情報を取得する。
 条件取得部31が、室内環境制御装置2の設置数や種類を取得する方法としては、上記に記載した、室内目標温度を取得する方法と同様の方法が挙げられる。
 動作条件決定部32は、条件取得部31が取得した動作条件に関連する情報に基づいて各々の室内環境制御装置2の動作条件を決定する。動作条件を決定する方法としては例えば以下の方法がある。まず、制御端末3は、後述する処理によってユーザの帰宅時間を予測する。次に、制御端末3は、予測されるユーザの帰宅時間に応じてフード付換気装置21を動作させて外気を利用し、エネルギーロスを抑えて室内空気環境を整える。そして、制御端末3は、外気のみでは室内目標温度を達成できない場合には、空調装置22を利用して室内空気環境を整える。このような処理は、ユーザの帰宅時間の予測精度が高いほど、エネルギーロスを抑制することが可能になる。なお、動作条件については様々な処理が考えられるが、本願においてはユーザの帰宅時間の予測精度を高めることを目的とするため、詳細は省略する。
 制御部33は、動作条件決定部32が決定した動作条件で室内環境制御装置2を動作させる。制御部33は、内部ネットワーク8を介して複数の室内環境制御装置2と情報の送受信が可能となるように接続されている。制御部33は、内部ネットワーク8を介して複数の室内環境制御装置2と通信することで、複数の室内環境制御装置2を制御する。
 制御端末3と室内環境制御装置2とを接続する内部ネットワーク8は、例えば、Digital Enhanced Cordless Telecommunications(以下DECTと称する)方式を用いた無線通信を利用していても良い。DECT方式を用いた無線通信は、電磁波ノイズからの影響を受けないため、電子レンジや電磁調理器などの電磁波ノイズを発生させる機器の近くでも無線による接続が可能となる。また、DECTを使用することで、例えば一戸建て住宅等において長距離の内部ネットワークによる無線接続が必要な環境でも安定して接続することができる。
 [移動通信機と外部通信部]
 移動通信機9は、少なくとも室外空間7で移動させることができ、移動させた場所においても外部ネットワーク、すなわちインターネット91を介して情報を送受信することが可能な通信機器である。具体的には、例えば、移動通信機9としては、携帯電話、カーナビゲーション装置又はGPS(Global Positioning System)発信機が該当する。GPS発信機とは、自機の現在地をGPS衛星からの信号などを受信して特定し、外部ネットワークを介して他の端末に送信する機器を指し、例えば第三者による子供や車の位置特定に利用される。
 移動通信機9は、例えば、無線通信によってインターネット91に接続することができる。また、移動通信機9は、GPS機能や無線通信で用いる基地局情報の取得によって移動通信機9のその時点における位置情報、すなわち現在地情報を取得できる位置情報取得機能を備えている。
 外部通信部34は、インターネット91と接続されており、インターネット91を介して、インターネット91に接続された移動通信機9と通信することが可能である。外部通信部34は、移動通信機9との通信によって移動通信機9から得られた情報のうち、室内環境制御装置2の動作条件に関連する情報や現在地情報を条件取得部31に送信する。
 [位置情報検出と室内環境制御装置の動作決定]
 以下、ユーザの帰宅時間の予測精度を高めるための制御端末3及び移動通信機9の位置情報検出と、室内環境制御装置2の動作決定に関して説明する。
 (制御端末の位置情報)
 条件取得部31は、上述した室内環境制御装置2の動作条件に加え、制御端末3の位置情報を記憶している。制御端末3の位置情報は、例えば、制御端末3を設置する際に、外部の入力端末や表示パネルを介して入力することができる。また、制御端末3に、移動通信機9と同様の位置情報取得機能を有し、当該機能から位置情報を取得する構成にしてもよい。位置情報としては、制御端末3の位置する場所の緯度経度、あるいは特定の場所を示す位置情報(コード等)を記憶してもよいし、制御端末3が設置されている建物の住所や郵便番号などでもよい。
 (移動通信機の位置情報を用いた制御端末による動作条件決定の一例)
 次に、実施の形態において、移動通信機9の位置情報を用いた制御端末3(動作条件決定部32)による動作条件決定の一例について図4を用いて説明する。図4は、実施の形態における動作条件決定部の動作の一例を示すフローチャートである。
 動作条件決定部32は、条件取得部31に記憶されている制御端末3の位置情報を参照する(ステップS61)。次に、動作条件決定部32は、外部通信部34が取得した移動通信機9の現在地情報を、条件取得部31を介して取得する(ステップS62)。
 動作条件決定部32は、制御端末3の位置情報と移動通信機9の現在地情報に基づいて、制御端末3と移動通信機9との距離を算出する(ステップS63)。次に動作条件決定部32は、制御端末3と移動通信機9との距離が所定の距離以下であるかどうかを判断する(ステップS64)。ここで所定の距離とは、例えば表示パネル等を介して制御端末3、例えば条件取得部31に予め記憶された固定の数値であり、具体的には10kmなどが該当する。
 動作条件決定部32は、制御端末3と移動通信機9との距離が所定の距離以下である場合は(ステップS64でYes)、室内環境制御装置2の動作を開始する指示を制御部33に出力する(ステップS65)。また、制御端末3と移動通信機9との距離が所定の距離より長い場合は(ステップS64でNo)、所定の時間経過後にステップS62に戻る。
 ここで、移動通信機9を所持しているユーザが、所定の距離で示される距離を移動して制御端末3が設置されている室内空間6にまっすぐ戻るのに要する時間を帰着時間と定義する。また、室内環境制御装置2によって室内空間6の空気環境を整えるのに要する時間を空気環境調整時間と定義する。なお、空気環境調整時間が帰着時間より長い場合には、ユーザの帰宅までに室内空間6の空気環境を整えることができない。また、空気環境調整時間は、ユーザの移動手段や、ユーザが要求する室内空間6の空気環境、あるいは各室内環境制御装置2の能力等によって異なる。よって、所定の距離は、ユーザが表示パネル等を介して適宜変更できる構成とする。これにより、必要に応じて所定の距離を長く設定することで、計測できる帰着時間の範囲を長く設定し、ユーザの要求する空気環境を提供することができる。
 このような構成にすることにより、事前にタイマー等で帰宅時間をセットする必要なく、人(ユーザ)がもうすぐ帰宅すると考えられる場合に室内環境制御装置2の動作を開始することができる。ここで、室内環境制御装置2の動作の例として、フード付換気装置21をオン状態にするという動作等が挙げられるがこれに限定しない。
 次に、動作条件決定部32は、ステップS65完了後、所定の時間経過後に、外部通信部34を介して、移動通信機9の現在地情報を取得する(ステップS66)。動作条件決定部32は、ステップS61で参照した制御端末3の位置情報とステップS66で取得した移動通信機9の現在地情報に基づいて、制御端末3と移動通信機9との距離を算出する(ステップS67)。動作条件決定部32は、ステップS63で算出した制御端末3と移動通信機9との距離D63と、ステップ67で算出した制御端末3と移動通信機9との距離D67とを比較する(ステップS68)。図5は、実施の形態における制御端末と外部通信機との位置関係を示す概略図である。図5に示すように、距離D67が、距離D63よりも長い場合、移動通信機9が制御端末3から離れていると判断する。また、距離D67が距離D63に対して変化していない場合、移動通信機9の移動が停止していると判断する。動作条件決定部32は、距離D63≦距離D67の場合(ステップS68でYes)、制御部33に対して動作中の室内環境制御装置2を停止する指示を出力する(ステップS69)。また、動作条件決定部32は、距離D63>距離D67の場合(ステップS68でNo)、ステップS66に戻る指示を出力する。
 このような構成にすることにより、移動通信機9を所持するユーザが、室内空間6に直ちに戻る可能性が低くなった場合に、室内環境制御装置2を停止することができる。これにより、室内環境制御装置2の無駄な運転時間を減少させることができる。なお、動作条件決定部32は、室内環境制御装置2を一度停止させた後でも、再度、室内環境制御装置2を動作させることができる。例えば、動作条件決定部32は、ステップS69が完了し、所定の時間が経過した後に、再びステップS61からフローを開始する。これにより、動作条件決定部32は、制御端末3と移動通信機9の距離を算出し、再び移動通信機9が制御端末3に近づいていると判断した場合は、再度、室内環境制御装置2を動作させることができる。
 また、所定の距離を短く設定することで、不要に室内環境制御装置2の動作開始指示が出力されることを防止することができる。
 また、条件取得部31は、取得した室内目標温度と室外空間7の温度の差に基づいて予め記憶された所定の距離を変更できる構成としてもよい。室内目標温度と室外空間7の温度の差が大きい場合、例えば5℃以上の場合は、予め記憶された所定の距離を長く変更する。室内目標温度と室外空間7の温度の差が小さい場合、例えば5℃未満の場合は、予め記憶された所定の距離を短く変更する。つまり、予め記憶された所定の距離を室内目標温度と室外空間7の温度の差に応じて動的に増減させる。これにより、例えば温度の差が大きい場合には所定の距離を長くすることで、ユーザが室内空間6に戻るまでの時間を早い段階で認識でき、すなわち室内空間の環境を整えるための時間を十分に確保することができる。よって、種々の室内環境制御装置2を組み合わせる時間が確保できるため、エネルギーロスを抑えながら室内空間6の空気環境を整えることができる。
 (移動通信機の位置情報を用いた制御端末による動作開始決定の他の例)
 次に、移動通信機9の位置情報を用いた制御端末3による動作開始決定の他の例について、図6、図7を用いて説明する。図6は、実施の形態における動作条件決定部の動作の他の例を示すフローチャートである。図7は、実施の形態における制御端末と外部通信機との位置関係を示す概略図である。先に説明した一例における制御端末3は、制御端末3と移動通信機9との距離に応じて室内環境制御装置2を動作させた後、再度、制御端末3と移動通信機9との距離を測定していた。これに対し、以下で述べる他の例における制御端末3は、室内環境制御装置2を動作させる前に、制御端末3と移動通信機9との距離を2回測定する。以下、詳細について説明する。
 動作条件決定部32は、条件取得部31に記憶されている制御端末3の位置情報を参照する(ステップS71)。次に、動作条件決定部32は、外部通信部34が取得した移動通信機9の現在地情報を、条件取得部31を介して取得する(ステップS72)。
 動作条件決定部32は、制御端末3の位置情報と移動通信機9の現在地情報に基づいて、制御端末3と移動通信機9との距離を算出する(ステップS73)。次に、動作条件決定部32は、ステップS73完了後、所定の時間経過後に、外部通信部34を介して、移動通信機9の現在地情報を取得する(ステップ74)。動作条件決定部32は、ステップS71で参照した制御端末3の位置情報とステップS74で取得した移動通信機9の位置情報に基づいて、制御端末3と移動通信機9との距離を算出する(ステップS75)。動作条件決定部32は、ステップS73で算出した制御端末3と移動通信機9との距離D73と、ステップS75で算出した制御端末3と移動通信機9との距離D75とを比較する(ステップS76)。ここで、距離D75<距離D73の場合は(ステップS76でYes)、ステップS77に進み、それ以外の場合は(ステップS76でNo)、ステップS72に戻る。
 次に、ステップS77では、動作条件決定部32は、距離D75が所定値以下かどうかを判断する(ステップS77)。距離D75が所定値以下の場合(ステップS77でYes)、動作条件決定部32は、図7に示すように、制御端末3と移動通信機9との距離が所定の距離以下になり、かつ、移動通信機9が制御端末3に近づいていると判断する。そして、動作条件決定部32は、制御部33を介して室内環境制御装置2を動作させる(ステップS78)。また、距離D75が所定値より大きい場合(ステップS77でNo)、ステップS72に戻る。
 このような構成にすることにより、事前にタイマー等で帰宅時間をセットする必要なく、ユーザがもうすぐ帰宅すると考えられる場合に室内環境制御装置2の動作を開始することができる。またこれに加えて、本実施の形態では、移動通信機9の制御端末3に対する移動方向も、動作開始の判断に入れている。これにより、より正確に、移動通信機9を所持するユーザの帰宅可能性を検知することができ、室内環境制御装置2のエネルギーロスを抑えることができる。よって、効率的な機器管理が可能となる。
 (移動通信機の位置情報を用いた制御端末による動作開始時刻決定の一例)
 次に、移動通信機9の位置情報を用いた制御端末3による動作開始時刻決定の一例について、図8を用いて説明する。図8は、実施の形態における動作条件決定部の動作の一例を示すフローチャートである。制御端末3は、移動通信機9の移動速度を算出し、ユーザの到着時刻を予想することができる。以下、詳細について説明する。
 動作条件決定部32は、条件取得部31に記憶されている室内目標温度と制御端末3の位置情報を取得する(ステップS81)。次に、動作条件決定部32は、条件取得部31を介して移動通信機9から複数回、異なるタイミングで時間情報と現在地情報を取得する(ステップS82)。
 動作条件決定部32は、制御端末3の位置情報と移動通信機9の現在地情報に基づいて、制御端末3と移動通信機9との距離を算出する(ステップS83)。動作条件決定部32は、ステップS82で複数回取得した移動通信機9の時間情報と現在地情報に基づいて、移動通信機9の移動速度を算出する(ステップS84)。動作条件決定部32は、ステップS84で算出した移動速度と、ステップS83にて算出した距離とに基づいて、移動通信機9が制御端末3の位置に到達する予想時刻を逆算する(ステップS85)。動作条件決定部32は、ステップS85で算出した予想時刻を、室内目標温度が達成されるべき室温達成時刻として設定し、室温達成時刻に基づいて室内環境制御装置2を開始するオン時刻を決定する。なお、このとき、室内環境制御装置2のうち、フード付換気装置21のみを運転開始とするのか、空調装置22のみを運転開始とするのか等、どの装置を動かすかについても決定することができる(ステップS86)。動作条件決定部32は、ステップS86で決定したオン時刻を含めた室内環境制御装置2の動作条件を制御部33に出力する(ステップS87)。
 このように構成によれば、制御端末3は、移動通信機9の移動速度を算出することで、移動通信機9を所持するユーザが室内空間6に戻るタイミングを精度よく予測できる。制御端末3は、ユーザが室内空間6に戻る時刻である室温達成時刻に基づいて室内環境制御装置2の動作条件を決定する。このため、制御端末3は、最もエネルギーロスが低い動作条件で必要な室内環境にすることができる。
 (移動通信機の位置情報を用いた制御端末による動作開始時刻決定の他の例)
 次に、移動通信機9の位置情報を用いた制御端末103による動作開始時刻決定の他の例について、図9、図10および図11を用いて説明する。図9は、実施の形態における動作条件決定部の動作の他の例を示すフローチャートである。図10は、実施の形態における制御端末と移動通信機との位置関係を示す概略図である。図11は、実施の形態における制御端末のブロック図である。以下に説明する他の例における制御端末103は、上記に説明した機能に加え、過去の時間履歴から移動通信機9が制御端末103の位置に到達する予定時刻を算出する機能を有する。以下、詳細について説明する。
 動作条件決定部32は、条件取得部31に記憶されている室内目標温度と制御端末103の位置情報を取得する(ステップS91)。次に、動作条件決定部32は、条件取得部31を介して移動通信機9から現在地情報を取得する(ステップS92)。
 動作条件決定部32は、制御端末103の位置情報と移動通信機9の現在地情報に基づいて、制御端末103と移動通信機9との距離を算出する。また、制御端末103の位置情報と移動通信機9の現在地情報に基づいて、制御端末103に対して移動通信機9が位置する方位を算出する(ステップS93)。
 ここで、制御端末103からの移動通信機9の方位は、例えば図10で示すように、制御端末103を中心にして東、西、南、北、北東、北西、南東、南西の8つのエリアに分割する。
 動作条件決定部32は、まず、ステップS93で算出した方位と、距離とに基づいて、過去に一回以上、移動通信機9が上記方位から制御端末103の位置に到達するまでの時間を記憶したかどうか判定する(ステップS94)。判定は、例えば以下のように行われる。
 制御端末103は、図11に示すように、実績記憶部35を有する。実績記憶部35は、エリアと、エリアにおける制御端末103と移動通信機9の距離と、エリアにおける移動通信機9の距離から制御端末103の位置に到達した時間とを関連付けて、過去の実績として記憶する。そして動作条件決定部32は、実績記憶部35における過去の同一条件に合致するデータの有無を検索する。つまり、合致するデータが無い場合には、該当するエリアからの制御端末103の位置への到達実績がないと判断する。合致するデータがある場合には、データの時間が後述する時間履歴として利用可能である。
 過去一度もステップS93で算出した移動通信機9の方位から制御端末103の位置に到達していない場合(ステップS94でNo)、制御端末103の位置まで移動し、算出した方位と算出した方位から制御端末103まで到達する時間を記憶し、ステップS92に戻る(ステップS95)。
 過去一度以上、制御端末103からの移動通信機9の当該方位から制御端末103の位置まで到達し、到達するまでの時間が記憶されている場合は(ステップS94でYes)、ステップS96に進む。ステップS96では、記憶されている過去の方位における移動通信機9の制御端末103の位置に到達するまでの時間履歴に基づいて移動通信機9が制御端末103の位置に到達する予定時刻を算出する(ステップS96)。予定時刻の算出は、例えば最新の時間履歴を採用する、或いは複数の時間履歴の平均を算出するなどして行われる。
 そして、動作条件決定部32は、ステップS96で算出した予定時刻を、室内目標温度が達成されるべき室温達成時刻として設定し、室温達成時刻に基づいて室内環境制御装置2を開始するオン時刻を決定する。
 なお、このとき、室内環境制御装置2のうち、フード付換気装置21のみを運転開始とするのか、空調装置22のみを運転開始とするのか等、フード付換気装置21あるいは空調装置22を動かすかについても決定することができる(ステップS97)。
 動作条件決定部32は、ステップS97で決定したオン時刻を含めた室内環境制御装置2の動作条件を制御部33に出力する(ステップS98)。なお、移動通信機9が制御端末103の位置まで到達する時間は、その都度記憶してもよい。過去の複数の時間履歴から移動通信機9が制御端末103の位置に到達する予定時刻を予測することによって、より予定時刻の精度を高めることができる。
 このように構成することにより、より移動通信機9を所持するユーザが室内空間6に戻る時間をさらに精度よく予測できる。
 以上、機器管理システム1について説明したが、本開示は、上記実施の形態に限定されない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を上記実施の形態に施したものも、本開示の範囲内に含まれる。以下、各種変形例について説明する。
 (変形例)
 (移動通信機の位置情報を用いた移動通信機による動作条件決定の一例)
 本実施の形態では、動作条件決定部32が条件取得部31に記憶されている位置情報を算出したが、これに限定されない。
 例えば、移動通信機9の位置情報を用いて移動通信機9が動作条件を決定するについて、一例について再度、図4を用いて説明する。
 移動通信機9は、条件取得部31に記憶されている制御端末3の位置情報を参照する(ステップS61)。ステップS62~S69については、「移動通信機の位置情報を用いた制御端末による動作条件決定の一例」に示した処理を、動作条件決定部32の代わりに移動通信機9で行う点のみが異なり、他は同様である。なお、ステップS62及びS66において移動通信機9は、自身が有する位置情報取得機能によって移動通信機9の現在地情報を取得する。
 このような構成にすることにより、移動通信機9が制御端末3と接続できない場合でも、制御端末3と移動通信機9との距離の算出は継続して行うことができる。つまり、移動通信機9が制御端末3と接続できない場合には、移動通信機9内で算出処理を継続し、制御端末3と接続可能状態になることで算出した情報を制御端末3に一括して送信する。これにより、一時的に通信できない状態であっても後に正確な情報を取得することができるため、常時通信をすることなく制御することができる。
 (移動通信機の位置情報を用いた移動通信機による動作条件決定の他の例)
 また、移動通信機9の位置情報を用いて移動通信機9が動作条件を決定する他の例について再度、図6を用いて説明する。
 移動通信機9は、条件取得部31に記憶されている制御端末3の位置情報を参照する(ステップS71)。ステップS72~S78については、「移動通信機の位置情報を用いた制御端末による動作条件決定の一例」に示した処理を、制御端末3の動作条件決定部32の代わりに移動通信機9で行う点のみが異なり、他は同様である。なお、ステップS72及びS74において移動通信機9は、自身が有する位置情報取得機能によって移動通信機9の現在地情報を取得する。
 このような構成にすることにより、移動通信機9が制御端末3と接続できない場合でも、制御端末3と移動通信機9との距離の算出は継続して行うことができる点で上述した効果を得ることができる。
 以上に示したように、本発明に係る機器管理システムでは、ユーザの帰宅時間を精度よく予測可能となるため、無人時であっても、例えば時間が必要ではあるが熱効率の高い(エネルギーロスの低い)動作条件で室内環境制御装置を制御して、室内環境を整えることが可能になる。
 (その他)
 以上、本発明に係る信号処理装置について、実施の形態及び変形例に基づいて説明したが、本発明は、上記実施の形態及び変形例に限定されるものではない。
 その他、各実施の形態及び変形例に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
 例えば、室内環境制御装置2の動作の例として、フード付換気装置21をオン状態にするという動作等を挙げたが、ユーザの帰宅の時間を予測し、この帰宅の時間までに様々な室内環境制御装置2を組み合わせて空気環境を整えることが可能である。
 本発明は、外出している人が住居などの拠点に戻るタイミングを精度よく検出することができるため、無人時においてもエネルギーロスを抑えながら室内空間の空気環境を整える機器管理システムとして有用である。
1 機器管理システム
2 室内環境制御装置
21 フード付換気装置
211 フード部
212 室外吐出口
213 室内吸込口
215 排気シャッター
22 空調装置
3,103 制御端末
31 条件取得部
32 動作条件決定部
33 制御部
34 外部通信部
35 実績記憶部
4 室内温度センサ
5 室外温度センサ
6 室内空間
7 室外空間
9 移動通信機
91 インターネット

Claims (13)

  1. 室内空間の空気環境を制御する複数の室内環境制御装置と、前記複数の室内環境制御装置各々と情報の送受信が可能となるように接続された制御端末と、を備えた機器管理システムであって、
    前記制御端末は、
     公衆回線を介して前記公衆回線に接続された移動通信機と通信可能な外部通信部と、
     前記外部通信部を介して前記移動通信機から前記室内環境制御装置の動作条件に関連する情報を取得する条件取得部と、
     前記条件取得部が取得した情報に基づいて前記室内環境制御装置の動作条件を決定する動作条件決定部と、
     前記動作条件決定部が決定した動作条件で前記室内環境制御装置を制御する制御部と、
    を備えた機器管理システム。
  2. 前記制御端末は、
     前記制御端末の位置情報を記憶し、
    前記動作条件決定部は、
     前記外部通信部を介して取得した前記移動通信機の現在地情報と前記制御端末の位置情報とに基づいて前記制御端末と前記移動通信機との距離を算出し、
     前記距離が予め記憶された所定の距離以下になった場合に前記制御部を介して前記室内環境制御装置を動作させる請求項1に記載の機器管理システム。
  3. 前記動作条件決定部は、
     前記外部通信部を介して複数回、前記移動通信機の現在地情報を取得し、
     最後に取得した前記移動通信機の前記現在地情報と前記制御端末の位置情報に基づいて前記制御端末と前記移動通信機との距離を算出し、
     前記距離が前記予め記憶された所定の距離以下になり、かつ、前記移動通信機が前記制御端末に近づいている場合に前記制御部を介して前記室内環境制御装置を制御する請求項2に記載の機器管理システム。
  4. 前記条件取得部は、
     前記室内空間の目標とする温度である室内目標温度を取得し、
    前記動作条件決定部は、
     前記条件取得部を介して前記室内目標温度を取得し、
     前記外部通信部を介して複数回、異なるタイミングで前記移動通信機の現在地情報を取得し、
     前記移動通信機の現在地情報と前記制御端末の位置情報とに基づいて前記制御端末と前記移動通信機との距離を算出し、
     複数の前記移動通信機の現在地情報に基づいて前記移動通信機の移動速度を算出し、
     算出した前記距離と前記移動速度とに基づいて、前記移動通信機が前記制御端末の位置に到達する予定時刻を逆算し、
     逆算した前記予定時刻に基づいて前記室内環境制御装置のオン時刻及び動作条件を決定し、
    前記制御部は、
     前記動作条件決定部が決定した動作条件で前記室内環境制御装置を制御する請求項2に記載の機器管理システム。
  5. 前記制御端末は、
     前記制御端末の位置情報を記憶し、
    前記動作条件決定部は、
     前記外部通信部を介して取得した前記移動通信機の現在地情報と前記制御端末の位置情報とに基づいて前記制御端末と前記移動通信機との距離と、前記制御端末からの前記移動通信機の方位とを算出し、
     前記方位と過去の前記方位における前記移動通信機が前記制御端末の位置に到達するまでの時間の履歴とに基づいて、前記移動通信機が前記制御端末の位置に到達する予定時刻を予測し、
     予測した前記予定時刻に基づいて前記室内環境制御装置のオン時刻を決定し、
    前記制御部は、
     前記動作条件決定部が決定した動作条件で前記室内環境制御装置を動作させる請求項1に記載の機器管理システム。
  6. 前記条件取得部は、
     前記室内空間の目標とする温度である室内目標温度と、
     室外空間の温度と、を取得し、
     前記室内目標温度と前記室外空間の温度との差に基づいて前記予め記憶された所定の距離を変更する請求項4に記載の機器管理システム。
  7. 前記条件取得部は、
     前記室内目標温度と前記室外空間温度との差が大きい場合には前記所定の距離を長く変更する請求項6に記載の機器管理システム。
  8. 前記条件取得部は、
     前記室内目標温度と前期室外空間温度との差が小さい場合には前記所定の距離を短く変更する請求項6に記載の機器管理システム。
  9. 前記動作条件決定部は、
     前記室内環境制御装置の動作を開始した後に前記移動通信機の現在地情報を取得し、
     前記移動通信機の移動が停止し、または前記移動通信機が前記制御端末から離れている場合には動作中の室内環境制御装置を停止する請求項2に記載の機器管理システム。
  10. 自機の現在地情報を取得可能であると共に公衆回線を介して前記公衆回線に接続された前記制御端末と通信可能な移動通信機を備え、
    前記制御端末は、
     前記制御端末の位置情報を記憶し、
    前記移動通信機は、
     前記制御端末から前記公衆回線を介して前記位置情報を取得し、
     前記位置情報と前記移動体通信機の現在地情報とに基づいて前記制御端末と前記移動通信機との距離を算出し、
     前記距離が所定の距離以下になった場合に、前記制御端末を構成する前記動作条件決定部に前記室内環境制御装置を動作させる旨の動作命令を送信し、
    前記動作条件決定部は、
     前記移動通信機からの前記動作命令を受けて、前記制御部を介して前記室内環境制御装置を動作させる請求項1に記載の機器管理システム。
  11. 前記移動通信機は、
     異なるタイミングで複数回、前記制御端末との距離を算出し、
     前記距離が所定の距離以下になり、かつ、前記移動通信機が前記制御端末に近づいている場合に前記動作命令を送信し、前記制御端末を介して前記室内環境制御装置を動作させる請求項10に記載の機器管理システム。
  12. 前記移動通信機は、
     前記室内環境制御装置の動作を開始した後に前記移動通信機の現在地情報を取得し、
     前記移動通信機の移動が停止し、または前記移動通信機が前記制御端末から離れている場合には停止命令を送信し、動作中の前記室内環境制御装置を前記制御端末を介して停止する請求項11記載の機器管理システム。
  13. 前記移動通信機は、携帯電話、カーナビゲーション装置又はGSP発信機である請求項1に記載の機器管理システム。
PCT/JP2017/011670 2016-04-15 2017-03-23 機器管理システム WO2017179386A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018511948A JPWO2017179386A1 (ja) 2016-04-15 2017-03-23 機器管理システム
US16/087,815 US10760810B2 (en) 2016-04-15 2017-03-23 Equipment management system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-081749 2016-04-15
JP2016081749 2016-04-15

Publications (1)

Publication Number Publication Date
WO2017179386A1 true WO2017179386A1 (ja) 2017-10-19

Family

ID=60041753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011670 WO2017179386A1 (ja) 2016-04-15 2017-03-23 機器管理システム

Country Status (3)

Country Link
US (1) US10760810B2 (ja)
JP (1) JPWO2017179386A1 (ja)
WO (1) WO2017179386A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190028402A (ko) * 2018-12-31 2019-03-18 주식회사 제일테크 공용건물 환기장치 통합 원격제어시스템
CN109631269A (zh) * 2018-12-29 2019-04-16 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
JP2020153659A (ja) * 2019-03-18 2020-09-24 ダイキン工業株式会社 空調機の予冷運転又は予暖運転の運転条件決定システム
US11555625B2 (en) 2019-01-17 2023-01-17 Mitsubishi Electric Corporation Air conditioning control system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11536474B2 (en) * 2017-06-01 2022-12-27 Mitsubishi Electric Corporation Air-conditioning system controlling evaporating temperatures of indoor units and ventilator
JPWO2019065599A1 (ja) 2017-09-28 2020-11-05 京セラ株式会社 設備管理システム及び設備管理方法
US11430316B2 (en) * 2020-08-11 2022-08-30 Claudia Lucia ALVAREZ Wearable device and system for tracking
US20220221178A1 (en) * 2021-01-12 2022-07-14 Lennox Industries Inc. Heating, ventilation, and air conditioning system control using adaptive occupancy scheduling

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281279A (ja) * 2007-05-10 2008-11-20 Toyota Motor Corp 室内環境制御連携システム、並びに、室内環境制御連携システムを構成する移動体搭載型装置及び固定施設設置型装置
WO2013118885A1 (ja) * 2012-02-10 2013-08-15 ダイキン工業株式会社 空調制御システム及び方法
JP2014003391A (ja) * 2012-06-15 2014-01-09 Panasonic Corp 機器制御装置、機器制御システム、プログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201005320D0 (en) * 2010-03-30 2010-05-12 Telepure Ltd Improvements in controllers, particularly controllers for use in heating, ventilation and air conditioning systems
JP2012251731A (ja) 2011-06-03 2012-12-20 Sumitomo Forestry Co Ltd 空調システム
US9618227B2 (en) * 2013-03-15 2017-04-11 Emerson Electric Co. Energy management based on location
US10605472B2 (en) * 2016-02-19 2020-03-31 Ademco Inc. Multiple adaptive geo-fences for a building

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281279A (ja) * 2007-05-10 2008-11-20 Toyota Motor Corp 室内環境制御連携システム、並びに、室内環境制御連携システムを構成する移動体搭載型装置及び固定施設設置型装置
WO2013118885A1 (ja) * 2012-02-10 2013-08-15 ダイキン工業株式会社 空調制御システム及び方法
JP2014003391A (ja) * 2012-06-15 2014-01-09 Panasonic Corp 機器制御装置、機器制御システム、プログラム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109631269A (zh) * 2018-12-29 2019-04-16 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
KR20190028402A (ko) * 2018-12-31 2019-03-18 주식회사 제일테크 공용건물 환기장치 통합 원격제어시스템
KR102220235B1 (ko) 2018-12-31 2021-02-26 주식회사 제일테크 공용건물 환기장치 통합 원격제어시스템
US11555625B2 (en) 2019-01-17 2023-01-17 Mitsubishi Electric Corporation Air conditioning control system
JP2020153659A (ja) * 2019-03-18 2020-09-24 ダイキン工業株式会社 空調機の予冷運転又は予暖運転の運転条件決定システム
WO2020189737A1 (ja) * 2019-03-18 2020-09-24 ダイキン工業株式会社 空調機の予冷運転又は予暖運転の運転条件決定システム
CN113614455A (zh) * 2019-03-18 2021-11-05 大金工业株式会社 空调机的预冷运转或预热运转的运转条件确定系统
US11525595B2 (en) 2019-03-18 2022-12-13 Daikin Industries, Ltd. System for determining operation condition of precooling operation/preheating operation of air conditioner

Also Published As

Publication number Publication date
US10760810B2 (en) 2020-09-01
JPWO2017179386A1 (ja) 2019-02-28
US20190086114A1 (en) 2019-03-21

Similar Documents

Publication Publication Date Title
WO2017179386A1 (ja) 機器管理システム
US11598546B2 (en) Occupancy sensing and building control using mobile devices
US20190360718A1 (en) Environment control system and environment control method
JP2013200098A (ja) 空気調和装置
KR102607554B1 (ko) 제어될 기기를 결정하고 제어하기 위한 방법, 이들 방법을 실행하는 장치, 용도 및 시스템
CN109154449B (zh) 空调控制装置、空气调节机及空调系统
CN102809958A (zh) 遥控场所的状态的系统
CN106322661A (zh) 一种空调温度控制的方法及空调
US20190360716A1 (en) Environment estimation device and environment estimation method
JP5684676B2 (ja) 室内環境調整システム
US11708994B2 (en) System for personalized indoor microclimates
JP6125039B2 (ja) 空調制御装置
WO2017078941A1 (en) Hvac management system and method
WO2017179404A1 (ja) 機器管理システム
JP4353301B2 (ja) 空調制御の仲介装置、空調制御システム、空調制御方法および空調制御プログラム
US10203249B2 (en) Ambient temperature sensing
CN105387556B (zh) 空调控制装置以及方法
JPWO2015034079A1 (ja) 空調制御システム
JP2015187510A (ja) 換気・空調システム
JP2009210218A (ja) 空調制御の仲介装置、空調制御システム、空調制御方法および空調制御プログラム
CN112240626B (zh) 用于加热、通风、空调的系统、场所控制器、控制场所的方法和非暂时性计算机可读介质
JP6116225B2 (ja) 住宅内エネルギー機器制御システム
JP2005223799A (ja) 移動端末装置およびそのプログラム
JP2019174075A (ja) 空調システム
CN113286973B (zh) 空调控制系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018511948

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782204

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782204

Country of ref document: EP

Kind code of ref document: A1