WO2017179203A1 - 共振型電源装置及び共振型電力伝送システム - Google Patents

共振型電源装置及び共振型電力伝送システム Download PDF

Info

Publication number
WO2017179203A1
WO2017179203A1 PCT/JP2016/062145 JP2016062145W WO2017179203A1 WO 2017179203 A1 WO2017179203 A1 WO 2017179203A1 JP 2016062145 W JP2016062145 W JP 2016062145W WO 2017179203 A1 WO2017179203 A1 WO 2017179203A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
inverter circuit
power supply
output
power
Prior art date
Application number
PCT/JP2016/062145
Other languages
English (en)
French (fr)
Inventor
阿久澤 好幸
裕志 松盛
Original Assignee
三菱電機エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機エンジニアリング株式会社 filed Critical 三菱電機エンジニアリング株式会社
Priority to JP2016533735A priority Critical patent/JP6147434B1/ja
Priority to PCT/JP2016/062145 priority patent/WO2017179203A1/ja
Priority to TW105130804A priority patent/TW201739141A/zh
Publication of WO2017179203A1 publication Critical patent/WO2017179203A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a resonant power supply device that outputs high-frequency power, and a resonant power transmission system including the resonant power supply device.
  • the impedance matching operation is performed by switching the matching circuit including the inductor and the capacitor and changing the capacitances of the inductor and the capacitor. Therefore, a large number of matching circuits are required to change the impedance matching constant. That is, a plurality of elements such as an inductor, a capacitor, and a switching circuit are required, or a large element is required to use a variable element, which causes a problem that the apparatus becomes large. Further, when the conventional configuration is used as an application requiring a large amount of power, it is necessary to increase the current capacity of the matching circuit, and there is a problem that the circuit becomes large.
  • the conventional configuration has a problem that it is difficult to switch the matching circuit in a high power transmission state.
  • one of a plurality of matching circuits is selected by switching the contact of the relay. Therefore, if switching is performed with a large current flowing through the contact, spark discharge occurs. End up. Even when a power relay is used, the spark discharge that occurs when the relay contacts are turned on and off is a very high voltage and current, which causes deterioration of the contact life. For this reason, in the case of a high power application according to the conventional configuration, it is necessary to temporarily stop the output of the transmission circuit, switch the relay contact, and then start the output operation of the transmission circuit.
  • the present invention has been made to solve the above-described problems, and provides a resonance type power supply apparatus capable of performing matching operation between its output impedance and load impedance without using a matching circuit.
  • the purpose is to do.
  • a resonance type power supply apparatus includes a plurality of parallel-connected inverter circuits that convert input power into high-frequency power for output, and a switch that is provided for each inverter circuit and switches on / off of input or output in the corresponding inverter circuit
  • a parameter detection unit that detects at least one of the parameters relating to the inverter circuit and changing according to the matching state between the output impedance of the own device and the load impedance, and the parameter relating to the high frequency power, and is detected by the parameter detection unit
  • a switching control unit for controlling the switch so as to match the output impedance of the own device with the load impedance based on the parameter acquired by the parameter acquisition unit.
  • the matching operation between the output impedance of the own device and the load impedance can be performed without using the matching circuit.
  • FIG. 1 It is a figure which shows the structural example of the resonance type power supply device which concerns on Embodiment 1 of this invention.
  • 2A and 2B are circuit diagrams showing an example of a connection relationship between the inverter circuit and the switch according to Embodiment 1 of the present invention. It is a flowchart which shows the operation example of the control part in Embodiment 1 of this invention. It is a figure which shows a general high frequency circuit. It is a figure which shows an example of the matching operation
  • FIG. 1 is a diagram showing a configuration example of a resonant power supply device 1 according to Embodiment 1 of the present invention.
  • the resonant power supply device 1 includes a plurality of inverter circuits 101 connected in parallel, an input detection unit 102, a power supply parameter detection unit 103, an output detection unit 104, a plurality of switches 105, and a control unit 106.
  • suffixes ( ⁇ 1, ⁇ 2,...) are attached to the inverter circuit 101 and the switch 105 of each system.
  • the inverter circuit 101 converts power (input power) input via the input detection unit 102 into high-frequency power and outputs it.
  • the inverter circuit 101 is a resonant switching type inverter circuit such as a class E inverter circuit. Each inverter circuit 101 is synchronized in frequency. Further, the input power may be either DC power or AC power.
  • the input detection unit 102 detects a parameter related to the power (input power) input to the resonant power supply device 1. Specifically, the input detection unit 102 detects one or more of the input current and the input voltage as the parameter.
  • the power supply parameter detection unit 103 detects parameters that are parameters related to the inverter circuit 101 and change depending on the matching state between the output impedance of the resonant power supply device 1 and the load impedance. Specifically, the power supply parameter detection unit 103 includes, as the parameters, the resonance voltage of the inverter circuit 101, the resonance current, the phase of the resonance voltage and the resonance current, the voltage Vds between the drain and source of the switching element included in the inverter circuit 101, or One or more of current Ids, heat generation of elements (switching elements, capacitors, inductors) included in the inverter circuit 101 are detected.
  • the output detection unit 104 detects a parameter relating to the high frequency power output and synthesized from the inverter circuit 101 of each system. Specifically, the output detection unit 104 detects one or more of the phase, amplitude, effective value, passing power, reflected power, standing wave ratio, and the like of the output voltage and output current as the parameters.
  • the input detection unit 102, the power supply parameter detection unit 103, and the output detection unit 104 constitute a parameter detection unit.
  • 1 shows a case where the input detection unit 102, the power supply parameter detection unit 103, and the output detection unit 104 are included as parameter detection units.
  • the accuracy of impedance matching in the control unit 106 changes depending on the detection accuracy of the parameters detected by the parameter detection unit. Therefore, the accuracy of impedance matching in the control unit 106 is improved by detecting a plurality of parameters by the parameter detection unit.
  • the switch 105 is provided for each inverter circuit 101, and switches the output of the corresponding inverter circuit 101 on and off in accordance with an instruction (on / off control signal) from the control unit 106.
  • a semiconductor switch such as a relay or FET (Field Effect Transistor), a MEMS (Micro Electro Mechanical Systems) switch, or the like is used.
  • FIG. 2 is a circuit diagram showing an example of the connection relationship between the inverter circuit 101 and the switch 105.
  • a class E inverter circuit is used as the inverter circuit 101
  • an FET is used as the switch 105.
  • FIG. 2A shows a case where a single switch 105 is connected to the inverter circuit 101.
  • the switch 105 has a drain terminal connected to a terminal on the hot line (output HOT) of the pair of output terminals in the inverter circuit 101.
  • FIG. 2B shows a case where two switches 105 are connected to the inverter circuit 101.
  • the drain terminal of one switch 105 is connected to a terminal (output HOT) on the hot line of the pair of output terminals in the inverter circuit 101.
  • the other switch 105 has a drain terminal connected to a terminal (output RTN) on the return line of the pair of output terminals.
  • the control unit 106 controls the switch 105 based on the parameter detected by the parameter detection unit.
  • the control unit 106 includes, for example, a parameter acquisition unit 1061 and a switching control unit 1062, as shown in FIG.
  • the parameter acquisition unit 1061 acquires the parameters detected by the parameter detection unit.
  • the switching control unit 1062 controls the switch 105 based on the parameter acquired by the parameter acquisition unit 1061 so that the output impedance of the resonant power supply device 1 is matched with the load impedance.
  • the switch 105 is an element other than a relay (such as a semiconductor switch such as an FET)
  • the switching control unit 1062 only needs to output an on / off control signal to the switch 105 to perform control.
  • the switching control unit 1062 when the switch 105 is a relay, the switching control unit 1062 outputs an on / off control signal to a drive control unit (not shown) that controls the switching operation in the inverter circuit 101 in addition to the control of the switch 105. Control. That is, the switching control unit 1062 turns off the switching operation for a moment by turning off the drive control unit for a moment, and switches the relay contacts at that time. Thereby, even when a relay is used as the switch 105, an impedance matching operation in a high power transmission state is possible.
  • the parameter acquisition unit 1061 acquires the parameter detected by the parameter detection unit (step ST301).
  • the switching control unit 1062 controls the switch 105 based on the parameter acquired by the parameter acquisition unit 1061 so that the output impedance of the resonant power supply device 1 is matched with the load impedance (step ST302). For example, when the phase of the output voltage and output current is obtained as a parameter, the switching control unit 1062 switches the switch 105 so that the phase difference is eliminated.
  • the impedance Z includes not only the real part component R due to the pure resistance but also the imaginary part (reactance) component X due to the capacitor C or the inductor L, as represented by the following expression (2).
  • is the angular frequency of AC power.
  • the imaginary part component X of the impedance Z is increased or decreased in order to match the output impedance of the resonant power supply device 1 with the load impedance.
  • FIG. 5 shows a change in output impedance of the resonant power supply device 1 with respect to the number of times the output of the inverter circuit 101 is turned on.
  • the resonance type power supply device 1 is provided with six inverter circuits 101 whose output impedance is set to 100 ⁇ .
  • the control unit 106 performs a matching operation between the output impedance and the load impedance of the resonant power supply device 1 by controlling the number of turning on the output of the inverter circuit 101 following the load impedance.
  • capacitance of the output power of the resonance type power supply device 1 can be increased by increasing the number of turning on the output of the inverter circuit 101.
  • FIG. 5 shows a case where all the output impedances of the inverter circuit 101 are the same.
  • the present invention is not limited to this, and the output impedance of the inverter circuit 101 may be different.
  • a plurality of inverter circuits 101 that are connected in parallel and that convert input power into high-frequency power and output, and an output in the corresponding inverter circuit 101 are provided for each inverter circuit 101.
  • a parameter for detecting at least one of a parameter relating to the switch 105 for switching on and off, a parameter relating to the inverter circuit 101, which varies depending on a matching state between the output impedance and the load impedance of the resonant power supply device 1, and a parameter relating to the high frequency power Based on the detection unit, the parameter acquisition unit 1061 that acquires the parameter detected by the parameter detection unit, and the parameter acquired by the parameter acquisition unit 1061, the output impedance of the resonant power supply device 1 is matched with the load impedance.
  • a switching control unit 1062 for controlling the switch 105 without using a matching circuit, it is possible to perform a matching operation between the output in Pitan scan and load impedance of the resonant power
  • the resonance power supply device 1 since the resonance power supply device 1 does not require a matching circuit, the resonance power supply device 1 can be reduced in size, weight, cost, and power conversion efficiency. Furthermore, the resonance power supply device 1 can perform an impedance matching operation even in a high power transmission state.
  • the output impedance is varied so as to follow the variation of the load impedance. As a result, when the power consumption of the load 10 increases and the load impedance decreases, the output impedance can be lowered to increase the output power.
  • the switching control unit 1062 performs the impedance matching operation by controlling the output of the inverter circuit 101 on and off.
  • a phase difference control unit 1063 may be added to the control unit 106 shown in FIG.
  • the phase difference control unit 1063 controls the phase difference of the switching operation between the inverter circuits 101 so that the output impedance of the resonant power supply device 1 is matched with the load impedance based on the parameter acquired by the parameter acquisition unit 1061.
  • the phase difference control unit 1063 controls the phase difference by delaying the timing of the switching operation in the inverter circuit 101 using a delay circuit or the like. Also by this, since the imaginary part component of the output impedance can be adjusted, the impedance matching range for the load 10 can be further expanded.
  • FIG. FIG. 7 is a diagram showing a configuration example of the resonant power supply device 1 according to the second embodiment of the present invention.
  • the converter 107 is added to the resonant power supply device 1 according to the first embodiment shown in FIG. 1, and the converter control unit 1064 is added to the control unit 106. is doing.
  • Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
  • the converter 107 is provided in front of the input detection unit 102, and increases or decreases the power input to the resonant power supply device 1 in accordance with instructions from the control unit 106.
  • a DC / DC converter is used when DC power is input, and an AC / DC converter is used when AC power is input.
  • the power increased or decreased by the converter 107 is output to the inverter circuit 101 via the input detection unit 102.
  • the converter control unit 1064 controls the converter 107 based on the parameter acquired by the parameter acquisition unit 1061 so that the output impedance of the resonant power supply device 1 is matched with the load impedance. For example, when the converter control unit 1064 obtains an effective value of high-frequency power as a parameter, the converter control unit 1064 controls the amount of increase or decrease in power in the converter 107 based on the magnitude.
  • the output power from the resonant power supply device 1 can be controlled with respect to the configuration of the first embodiment.
  • a load 10 such as a pure resistor
  • the impedance matching operation by the converter 107 does not function and only the power changes.
  • a device that varies the input impedance of the load 10 such as a DC / DC converter or a transmission / reception antenna
  • the impedance matching operation can be performed by the converter 107.
  • the accuracy of the impedance matching operation is improved, and the impedance matching range can be further expanded.
  • the present invention is not limited to this, and a converter 107 and a converter control unit 1064 may be added to the resonant power supply device 1 shown in FIG.
  • FIG. 8 is a diagram showing a configuration example of the resonant power supply device 1 according to the third embodiment of the present invention.
  • a plurality of input detection units 102 are provided with respect to the resonant power supply device 1 according to the first embodiment shown in FIG.
  • suffixes ( ⁇ 1, ⁇ 2,...) are attached to the input detection units 102 of each system.
  • Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
  • the internal configuration of the control unit 106 is not shown.
  • the input detection unit 102 is provided for each inverter circuit 101 and detects a parameter related to power (input power) input to the corresponding inverter circuit 101. Specifically, the input detection unit 102 detects one or more of the input current and the input voltage as the parameter.
  • the difference in performance in the inverter circuit 101 can be complemented.
  • a more accurate impedance matching operation can be performed with respect to the first embodiment.
  • the present invention is not limited to this, and a plurality of input detection units 102 may be provided for the resonant power supply device 1 shown in FIGS.
  • FIG. 9 is a diagram showing a configuration example of a resonant power supply device 1 according to Embodiment 4 of the present invention.
  • a plurality of output detection units 104 are provided with respect to the resonant power supply device 1 according to the first embodiment shown in FIG.
  • suffixes ⁇ 1, ⁇ 2, etc.
  • Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
  • the internal configuration of the control unit 106 is not shown.
  • the output detection unit 104 in the fourth embodiment is provided for each inverter circuit 101 and detects a parameter related to the high-frequency power output from the corresponding inverter circuit 101. Specifically, the output detection unit 104 detects one or more of the phase, amplitude, effective value, passing power, reflected power, standing wave ratio, and the like of the output voltage and output current as the parameters.
  • the difference in performance in the inverter circuit 101 can be complemented.
  • a more accurate impedance matching operation can be performed with respect to the first embodiment.
  • FIG. 10 is a diagram showing a configuration example of a resonant power supply device 1 according to Embodiment 5 of the present invention.
  • the connection position of the switch 105 is changed from the rear stage to the front stage of the inverter circuit 101 with respect to the resonant power supply apparatus 1 according to the first embodiment shown in FIG. It has changed.
  • Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
  • the internal configuration of the control unit 106 is not shown.
  • the switch 105 in the fifth embodiment is provided for each inverter circuit 101 and switches on / off of the input in the corresponding inverter circuit 101 in accordance with an instruction (on / off control signal) from the control unit 106.
  • a semiconductor switch such as a relay or FET, a MEMS switch, or the like is used.
  • FIG. 11 is a circuit diagram showing an example of a connection relationship between the inverter circuit 101 and the switch 105.
  • a class E inverter circuit is used as the inverter circuit 101
  • an FET is used as the switch 105.
  • FIG. 11A shows a case where a single switch 105 is connected to the inverter circuit 101.
  • the switch 105 has a source terminal connected to a terminal on the hot line (input HOT) of the pair of input terminals in the inverter circuit 101.
  • FIG. 11B shows a case where two switches 105 are connected to the inverter circuit 101.
  • one switch 105 has a source terminal connected to a terminal (input HOT) on the hot line of the pair of input terminals in the inverter circuit 101.
  • the other switch 105 has a drain terminal connected to a terminal (input RTN) on the return line of the pair of input terminals.
  • the switch 105 when the switch 105 is provided in the subsequent stage of the inverter circuit 101 as shown in FIG. 1 and the like, the internal impedance of the inverter circuit 101 whose output is turned off cannot be detected from the output detection unit 104.
  • the output detection unit 104 can detect the internal impedance of the inverter circuit 101 whose input is turned off.
  • the output impedance in this case is the combined impedance of the internal impedance of the inverter circuit 101 that is turned off.
  • connection position of the switch 105 is changed from the rear stage to the front stage of the inverter circuit 101 with respect to the resonant power supply device 1 shown in FIG.
  • the present invention is not limited to this, and the connection position of the switch 105 may be changed from the rear stage to the front stage of the inverter circuit 101 in the resonant power supply device 1 shown in FIGS.
  • FIG. 12 is a diagram showing a configuration example of a resonant power transmission system according to Embodiment 6 of the present invention.
  • the resonant power transmission system includes a primary power supply 2, a resonant power supply device 1, a transmission antenna 3, a reception antenna 4, and a reception circuit 5.
  • a load 10 which is a circuit or device that functions by the power from the receiving circuit 5, is connected to the subsequent stage of the receiving circuit 5.
  • Primary power supply 2 outputs power. Note that the power output from the primary power supply 2 may be either DC power or AC power.
  • the resonance type power supply device 1 converts the power (input power) from the primary power supply 2 into high frequency power that matches the resonance frequency of the transmission antenna 3 and outputs it.
  • This resonance type power supply device 1 is the resonance type power supply device 1 according to Embodiments 1 to 5 shown in FIGS.
  • the transmission antenna 3 performs power transmission by resonating at the same frequency (including substantially the same meaning) as the frequency of the high-frequency power from the resonant power supply device 1.
  • the receiving antenna 4 receives the high frequency power from the transmitting antenna 3 by resonating at the same frequency (including substantially the same meaning) as the resonant frequency of the transmitting antenna 3.
  • the high frequency power (AC power) received by the receiving antenna 4 is output to the receiving circuit 5.
  • the power transmission method between the transmitting antenna 3 and the receiving antenna 4 is not particularly limited, and any of a magnetic field resonance method, an electric field resonance method, and an electromagnetic induction method may be used. Further, the transmitting antenna 3 and the receiving antenna 4 are not limited to non-contact as shown in FIG.
  • the receiving circuit 5 performs rectification or rectification and voltage conversion on the AC power from the receiving antenna 4 in accordance with the specifications of the load 10. That is, the receiving circuit 5 includes a configuration including a rectifier circuit, or a configuration including a rectifier circuit and a reception power source (DC / DC converter, DC / AC converter, etc.). The electric power obtained by the receiving circuit 5 is output to the load 10.
  • the resonance type power supply device 1 can be similarly applied to other systems using high frequency power without being limited thereto. It is.
  • the processing circuit 51 is a CPU (Central Processing Unit, a central processing unit, a processing unit that executes a program stored in the memory 53, as shown in FIG. 13B, even if it is dedicated hardware.
  • the processing circuit 51 is dedicated hardware, the processing circuit 51 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field Programmable Gate). Array) or a combination thereof.
  • the functions of the respective units of the parameter acquisition unit 1061 and the switching control unit 1062 may be realized by the processing circuit 51, or the functions of the respective units may be collectively realized by the processing circuit 51.
  • the processing circuit 51 When the processing circuit 51 is the CPU 52, the functions of the parameter acquisition unit 1061 and the switching control unit 1062 are realized by software, firmware, or a combination of software and firmware. Software and firmware are described as programs and stored in the memory 53.
  • the processing circuit 51 implements the functions of each unit by reading and executing the program stored in the memory 53. That is, the control unit 106 includes a memory 53 for storing a program that, when executed by the processing circuit 51, for example, causes each step shown in FIG. 3 to be executed as a result. These programs can also be said to cause the computer to execute the procedures and methods of the parameter acquisition unit 1061 and the switching control unit 1062.
  • the memory 53 is, for example, a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), or the like. And a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disc), and the like.
  • a RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), or the like.
  • EEPROM Electrically EPROM
  • a magnetic disk a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disc), and the like.
  • a part may be implement
  • the function of the parameter acquisition unit 1061 is realized by the processing circuit 51 as dedicated hardware, and the function of the switching control unit 1062 is obtained by the processing circuit 51 reading and executing a program stored in the memory 53. Can be realized.
  • the processing circuit 51 can realize the above-described functions by hardware, software, firmware, or a combination thereof.
  • the resonant power supply device can perform matching operation between the output impedance of the own device and the load impedance without using a matching circuit, and is used for a resonant power supply device that outputs high frequency power. Is suitable.
  • 1 resonance type power supply device 2 primary power supply, 3 transmission antenna, 4 reception antenna, 5 reception circuit, 10 load, 11 power supply, 51 processing circuit, 52 CPU, 53 memory, 101 inverter circuit, 102 input detection unit, 103 power parameter Detection unit, 104 output detection unit, 105 switch, 106 control unit, 107 converter, 1061 parameter acquisition unit, 1062 switching control unit, 1063 phase difference control unit, 1064 converter control unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Inverter Devices (AREA)

Abstract

複数並列接続され、入力電力を高周波電力に変換して出力するインバータ回路(101)と、インバータ回路(101)毎に設けられ、対応するインバータ回路(101)における入力又は出力のオンオフを切換えるスイッチ(105)と、インバータ回路(101)に関するパラメータであって共振型電源装置(1)の出力インピーダンスと負荷インピーダンスとの整合状態により変化するパラメータ、及び高周波電力に関するパラメータのうちの少なくとも一方を検出するパラメータ検出部と、パラメータ検出部により検出されたパラメータを取得するパラメータ取得部(1061)と、パラメータ取得部(1061)により取得されたパラメータに基づいて、共振型電源装置(1)の出力インピーダンスを負荷インピーダンスに整合させるように、スイッチ(105)を制御する切換え制御部(1062)とを備えた。

Description

共振型電源装置及び共振型電力伝送システム
 この発明は、高周波電力を出力する共振型電源装置、及び共振型電源装置を備えた共振型電力伝送システムに関する。
 無線電力伝送において、受信装置の負荷インピーダンスが変化すると、送信装置から受信装置への電力伝送効率が低下する。そこで、インダクタ及びキャパシタから成り、特性が異なる複数の整合回路を設け、接続する整合回路をリレーにより切換える送信装置が知られている(例えば特許文献1参照)。これにより、送信回路と送信アンテナとのインピーダンス整合動作を行うことができ、送信装置から受信装置への電力伝送効率を改善できる。
特開2012-39849号公報
 しかしながら、従来構成では、インダクタ及びキャパシタから成る整合回路を切換えることと、インダクタとキャパシタの容量を変化させることにより、インピーダンス整合動作を行っている。そのため、インピーダンス整合定数を変化させるために多数の整合回路が必要となる。すなわち、インダクタ、キャパシタ、切換え回路等の素子が複数必要となり、又は可変型の素子を利用するために大型の素子が必要となり、装置が大型化するという課題がある。
 また、従来構成を大電力が必要な用途として用いる場合には、整合回路が有する電流容量を大容量化する必要があり、回路が大型化するという課題がある。
 また、従来構成では、大電力の伝送状態における整合回路の切換えは困難であるという課題がある。すなわち、従来構成では、リレーの接点を切換えることで複数の整合回路から一つを選択するようにしているため、接点に大電流が流れている状態で切換えを行うと、火花放電が発生してしまう。例えパワーリレーを用いた場合であっても、リレーの接点のオンオフ時に発生する火花放電は、非常に高い電圧と電流であるため、接点寿命の劣化原因となる。そのため、従来構成による大電力用途の場合には、送信回路の出力を一旦停止した上で、リレーの接点切換えを行い、その後に送信回路の出力動作を開始させる必要がある。
 この発明は、上記のような課題を解決するためになされたもので、整合回路を用いずに、自機の出力インピータンスと負荷インピーダンスとの整合動作を行うことができる共振型電源装置を提供することを目的としている。
 この発明に係る共振型電源装置は、複数並列接続され、入力電力を高周波電力に変換して出力するインバータ回路と、インバータ回路毎に設けられ、対応するインバータ回路における入力又は出力のオンオフを切換えるスイッチと、インバータ回路に関するパラメータであって自機の出力インピーダンスと負荷インピーダンスとの整合状態により変化するパラメータ、及び高周波電力に関するパラメータのうちの少なくとも一方を検出するパラメータ検出部と、パラメータ検出部により検出されたパラメータを取得するパラメータ取得部と、パラメータ取得部により取得されたパラメータに基づいて、自機の出力インピーダンスを負荷インピーダンスに整合させるように、スイッチを制御する切換え制御部とを備えたことを特徴とする。
 この発明によれば、上記のように構成したので、整合回路を用いずに、自機の出力インピータンスと負荷インピーダンスとの整合動作を行うことができる。
この発明の実施の形態1に係る共振型電源装置の構成例を示す図である。 図2A、図2Bは、この発明の実施の形態1におけるインバータ回路とスイッチとの接続関係の一例を示す回路図である。 この発明の実施の形態1における制御部の動作例を示すフローチャートである。 一般的な高周波回路を示す図である。 この発明の実施の形態1に係る共振型電源装置による整合動作の一例を示す図である。 この発明の実施の形態1に係る共振型電源装置の別の構成例を示す図である。 この発明の実施の形態2に係る共振型電源装置の構成例を示す図である。 この発明の実施の形態3に係る共振型電源装置の構成例を示す図である。 この発明の実施の形態4に係る共振型電源装置の構成例を示す図である。 この発明の実施の形態5に係る共振型電源装置の構成例を示す図である。 図11A、図11Bは、この発明の実施の形態5におけるインバータ回路とスイッチとの接続関係の一例を示す回路図である。 この発明の実施の形態6に係る共振型電力伝送システムの構成例を示す図である。 この発明の実施の形態1~5における制御部のハードウェア構成例を示す図である。
 以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1はこの発明の実施の形態1に係る共振型電源装置1の構成例を示す図である。
 共振型電源装置1は、図1に示すように、複数並列接続されたインバータ回路101、入力検出部102、電源パラメータ検出部103、出力検出部104、複数のスイッチ105、及び制御部106を備えている。なお図1では、各系統のインバータ回路101及びスイッチ105に対し、接尾記号(-1,-2,・・・)を付している。
 インバータ回路101は、入力検出部102を介して入力された電力(入力電力)を高周波電力に変換して出力する。このインバータ回路101は、E級インバータ回路等の共振型スイッチング方式のインバータ回路である。なお、各インバータ回路101は、周波数が同期されている。また、入力電力は、直流電力又は交流電力のいずれであってもよい。
 入力検出部102は、共振型電源装置1に入力された電力(入力電力)に関するパラメータを検出する。具体的には、入力検出部102は、上記パラメータとして、入力電流及び入力電圧のうちの1つ以上を検出する。
 電源パラメータ検出部103は、インバータ回路101に関するパラメータであって共振型電源装置1の出力インピーダンスと負荷インピーダンスとの整合状態により変化するパラメータを検出する。具体的には、電源パラメータ検出部103は、上記パラメータとして、インバータ回路101の共振電圧、共振電流、共振電圧と共振電流の位相、インバータ回路101が有するスイッチング素子のドレイン-ソース間の電圧Vds又は電流Ids、インバータ回路101が有する素子(スイッチング素子、キャパシタ、インダクタ)の発熱等のうちの1つ以上を検出する。
 出力検出部104は、各系統のインバータ回路101から出力されて合成された高周波電力に関するパラメータを検出する。具体的には、出力検出部104は、上記パラメータとして、出力電圧と出力電流の位相、振幅、実効値、又は通過電力、反射電力、定在波比等のうちの1つ以上を検出する。
 なお、入力検出部102、電源パラメータ検出部103及び出力検出部104は、パラメータ検出部を構成する。また図1では、パラメータ検出部として、入力検出部102、電源パラメータ検出部103及び出力検出部104を有する場合を示したが、少なくとも電源パラメータ検出部103又は出力検出部104を有していればよい。
 また、パラメータ検出部により検出されたパラメータの検出精度によって、制御部106におけるインピーダンス整合の精度が変化する。そのため、パラメータ検出部により複数のパラメータを検出することで、制御部106におけるインピーダンス整合の精度が向上する。
 スイッチ105は、インバータ回路101毎に設けられ、制御部106からの指示(オンオフ制御信号)に従い、対応するインバータ回路101における出力のオンオフを切換える。このスイッチ105として、リレー又はFET(Field Effect Transistor)等の半導体スイッチ、MEMS(Micro Electro Mechanical Systems)スイッチ等を用いる。
 図2はインバータ回路101とスイッチ105との接続関係の一例を示す回路図である。なお図2では、インバータ回路101としてE級インバータ回路を用い、スイッチ105としてFETを用いている。
 図2Aでは、インバータ回路101に対して単一のスイッチ105を接続した場合を示している。この場合、スイッチ105は、ドレイン端子が、インバータ回路101における一対の出力端子のうちのホットライン上の端子(出力HOT)に接続される。
 また、図2Bでは、インバータ回路101に対して2つのスイッチ105を接続した場合を示している。この場合、一方のスイッチ105は、ドレイン端子が、インバータ回路101における一対の出力端子のうちのホットライン上の端子(出力HOT)に接続される。また、他方のスイッチ105は、ドレイン端子が、上記一対の出力端子のうちのリターンライン上の端子(出力RTN)に接続される。
 制御部106は、パラメータ検出部により検出されたパラメータに基づいて、スイッチ105を制御する。この制御部106は、例えば図1に示すように、パラメータ取得部1061及び切換え制御部1062を備えている。
 パラメータ取得部1061は、パラメータ検出部により検出されたパラメータを取得する。
 切換え制御部1062は、パラメータ取得部1061により取得されたパラメータに基づいて、共振型電源装置1の出力インピーダンスを負荷インピーダンスに整合させるように、スイッチ105を制御する。ここで、スイッチ105がリレー以外の素子(FET等の半導体スイッチ等)の場合には、切換え制御部1062は、スイッチ105に対してのみオンオフ制御信号を出力して制御を行えばよい。
 一方、スイッチ105がリレーの場合には、切換え制御部1062は、スイッチ105の制御に加え、インバータ回路101におけるスイッチング動作を制御するドライブ制御部(不図示)に対してもオンオフ制御信号を出力して制御を行う。すなわち、切換え制御部1062は、ドライブ制御部を一瞬オフすることでスイッチング動作を一瞬オフし、その際にリレーの接点切換えを行う。これにより、スイッチ105としてリレーを用いた場合であっても、大電力の伝送状態におけるインピーダンス整合動作が可能となる。
 次に、実施の形態1における制御部106の動作例について、図3を参照しながら説明する。
 制御部106の動作例では、図3に示すように、まず、パラメータ取得部1061は、パラメータ検出部により検出されたパラメータを取得する(ステップST301)。
 次いで、切換え制御部1062は、パラメータ取得部1061により取得されたパラメータに基づいて、共振型電源装置1の出力インピーダンスを負荷インピーダンスに整合させるように、スイッチ105を制御する(ステップST302)。例えば、切換え制御部1062は、パラメータとして出力電圧と出力電流の位相を得た場合には、その位相差が無くなるようにスイッチ105の切換えを行う。
 ここで、図4に示す一般的な高周波回路では、電源11の出力インピーダンスZと負荷10のインピーダンスZが異なると、電力が電源11に反射する。すなわち、電源11での消費電力が増え、負荷10に供給される電力が低下する。なお反射係数ρは下式(1)で表される。
ρ=(Z-Z)/(Z+Z)      (1)
 例えば、電源11の出力インピーダンスZが100Ωであり、負荷10のインピーダンスZが50Ωであり、インピーダンスが不整合状態であるとする。この場合には、式(1)から反射係数はρ=0.333となり、電力の反射は約33%であるため、負荷10が消費できる電力は約67%となる。
 一方、電源11の出力インピーダンスZが50Ωであり、負荷10のインピーダンスZが50Ωであり、インピーダンスが整合状態であるとする。この場合には、式(1)から反射係数はρ=0となり、電力の反射は0%であるため、負荷10が消費できる電力は100%となる。
 なお、インピーダンスZは、下式(2)で表されるように、純抵抗による実部の成分Rだけではなく、キャパシタC又はインダクタLによる虚部(リアクタンス)の成分Xも含まれる。式(2)において、ωは交流電力の角周波数である。
Z=R+X=√(R+(ωL-(1/ωC)))     (2)
 そして、実施の形態1に係る共振型電源装置1では、共振型電源装置1の出力インピーダンスを負荷インピーダンスに合わせるために、インピーダンスZのうちの虚部の成分Xを増減させる。これにより、純抵抗を増やさずにインピーダンス整合動作を行うことができ、損失の少ない整合動作が可能となる。
 次に、制御部106による整合動作の一例について、図5を用いて説明する。
 図5では、インバータ回路101の出力をオンした数に対する共振型電源装置1の出力インピーダンスの変化を示している。なお図5では、共振型電源装置1に対し、出力インピーダンスが100Ωに設定されたインバータ回路101を6台設けた場合を想定している。
 この図5に示すように、インバータ回路101の出力をオンする数が増えると、共振型電源装置1の出力インピーダンスが小さくなる。そこで、制御部106では、負荷インピーダンスに追従して、インバータ回路101の出力をオンする数を制御することで、共振型電源装置1の出力インピーダンスと負荷インピーダンスとの整合動作を行う。一般的に、負荷10の消費電力が小さい場合には負荷インピーダンスが大きいため、インバータ回路101の出力をオンする数を少なくする。また、負荷10の消費電力が大きい場合には負荷インピーダンスが小さいため、インバータ回路101の出力をオンする数を多くする。また、インバータ回路101の出力をオンする数を多くすることで、共振型電源装置1の出力電力の容量を増加できる。
 なお図5では、インバータ回路101の出力インピーダンスを全て同一とした場合を示した。しかしながら、これに限らず、インバータ回路101の出力インピーダンスは異なっていてもよい。
 以上のように、この実施の形態1によれば、複数並列接続され、入力電力を高周波電力に変換して出力するインバータ回路101と、インバータ回路101毎に設けられ、対応するインバータ回路101における出力のオンオフを切換えるスイッチ105と、インバータ回路101に関するパラメータであって共振型電源装置1の出力インピーダンスと負荷インピーダンスとの整合状態により変化するパラメータ、及び高周波電力に関するパラメータのうちの少なくとも一方を検出するパラメータ検出部と、パラメータ検出部により検出されたパラメータを取得するパラメータ取得部1061と、パラメータ取得部1061により取得されたパラメータに基づいて、共振型電源装置1の出力インピーダンスを負荷インピーダンスに整合させるように、スイッチ105を制御する切換え制御部1062とを備えたので、整合回路を用いずに、共振型電源装置1の出力インピータンスと負荷インピーダンスとの整合動作を行うことができる。
 また、共振型電源装置1では整合回路が不要なため、従来構成に対し、共振型電源装置1の小型化、軽量化、低コスト化、及び電力変換効率の高効率化が可能である。
 更に、共振型電源装置1では、大電力の伝送状態においてもインピーダンス整合動作が可能である。
 また、共振型電源装置1では、負荷インピーダンスの変動に追従するように出力インピーダンスを変動させる。その結果、負荷10の消費電力が大きくなり負荷インピーダンスが小さくなった場合に、出力インピーダンスを下げて出力電力を増やすことが可能となる。
 なお上記では、制御部106において、切換え制御部1062が、インバータ回路101の出力をオンオフ制御することで、インピーダンス整合動作を行う場合を示した。
 それに対し、例えば図6に示すように、図1に示す制御部106に対し、位相差制御部1063を追加してもよい。位相差制御部1063は、パラメータ取得部1061により取得されたパラメータに基づいて、共振型電源装置1の出力インピーダンスを負荷インピーダンスに整合させるように、インバータ回路101間におけるスイッチング動作の位相差を制御する。具体的には、位相差制御部1063は、遅延回路等を用いて、インバータ回路101におけるスイッチング動作のタイミングを遅らせることで、位相差を制御する。これによっても、出力インピーダンスのうちの虚部の成分を調整できるため、負荷10に対するインピーダンス整合範囲を更に広げることができる。
実施の形態2.
 図7はこの発明の実施の形態2に係る共振型電源装置1の構成例を示す図である。この図7に示す実施の形態2に係る共振型電源装置1では、図1に示す実施の形態1に係る共振型電源装置1にコンバータ107を追加し、制御部106にコンバータ制御部1064を追加している。その他の構成は同様であり、同一の符号を付してその説明を省略する。
 コンバータ107は、入力検出部102の前段に設けられ、制御部106からの指示に従い、共振型電源装置1に入力された電力を増減する。コンバータ107としては、直流電力が入力される場合にはDC/DCコンバータを用い、交流電力が入力される場合にはAC/DCコンバータを用いる。このコンバータ107により増減された電力は、入力検出部102を介してインバータ回路101に出力される。
 コンバータ制御部1064は、パラメータ取得部1061により取得されたパラメータに基づいて、共振型電源装置1の出力インピーダンスを負荷インピーダンスに整合させるように、コンバータ107を制御する。例えば、コンバータ制御部1064は、パラメータとして高周波電力の実効値を得た場合には、その大きさからコンバータ107における電力の増減量を制御する。
 このように、入力検出部102の前段にコンバータ107を設けることで、実施の形態1の構成に対し、共振型電源装置1からの出力電力を制御できる。
 ここで、共振型電源装置1の出力端に純抵抗等の負荷10が接続されている場合には、コンバータ107によるインピーダンス整合動作は機能せず、電力が変化するだけである。一方、負荷10の前段にDC/DCコンバータ又は送受信アンテナ等のように負荷10の入力インピーダンスを変動させる機器が接続されている場合には、コンバータ107によってインピーダンス整合動作が可能となる。その結果、インピーダンス整合動作の精度が向上するとともに、インピーダンス整合範囲を更に広げることができる。
 なお上記では、図1に示す共振型電源装置1に対し、コンバータ107及びコンバータ制御部1064を追加した場合を示した。しかしながら、これに限らず、図6に示す共振型電源装置1に対し、コンバータ107及びコンバータ制御部1064を追加してもよい。
実施の形態3.
 図8はこの発明の実施の形態3に係る共振型電源装置1の構成例を示す図である。この図8に示す実施の形態3に係る共振型電源装置1では、図1に示す実施の形態1に係る共振型電源装置1に対し、入力検出部102を複数設けている。なお図8では、各系統の入力検出部102に対し、接尾記号(-1,-2,・・・)を付している。その他の構成は同様であり、同一の符号を付してその説明を省略する。また図8では制御部106の内部構成の図示を省略している。
 実施の形態3における入力検出部102は、インバータ回路101毎に設けられ、対応するインバータ回路101に入力される電力(入力電力)に関するパラメータを検出する。具体的には、入力検出部102は、上記パラメータとして、入力電流及び入力電圧のうちの1つ以上を検出する。
 このように、インバータ回路101に対して個別に入力検出部102を設けることで、インバータ回路101における性能の差異を補完できる。その結果、実施の形態1に対し、より精度の高いインピーダンス整合動作が可能となる。
 なお上記では、図1に示す共振型電源装置1に対し、入力検出部102を複数設けた場合を示した。しかしながら、これに限らず、図6,7に示す共振型電源装置1に対し、入力検出部102を複数設けてもよい。
実施の形態4.
 図9はこの発明の実施の形態4に係る共振型電源装置1の構成例を示す図である。この図9に示す実施の形態4に係る共振型電源装置1では、図1に示す実施の形態1に係る共振型電源装置1に対し、出力検出部104を複数設けている。なお図9では、各系統の出力検出部104に対し、接尾記号(-1,-2,・・・)を付している。その他の構成は同様であり、同一の符号を付してその説明を省略する。また図9では制御部106の内部構成の図示を省略している。
 実施の形態4における出力検出部104は、インバータ回路101毎に設けられ、対応するインバータ回路101から出力された高周波電力に関するパラメータを検出する。具体的には、出力検出部104は、上記パラメータとして、出力電圧と出力電流の位相、振幅、実効値、又は通過電力、反射電力、定在波比等のうちの1つ以上を検出する。
 このように、インバータ回路101に対して個別に出力検出部104を設けることで、インバータ回路101における性能の差異を補完できる。その結果、実施の形態1に対し、より精度の高いインピーダンス整合動作が可能となる。
 なお上記では、図1に示す共振型電源装置1に対し、出力検出部104を複数設けた場合を示した。しかしながら、これに限らず、図6~8に示す共振型電源装置1に対し、出力検出部104を複数設けてもよい。
実施の形態5.
 図10はこの発明の実施の形態5に係る共振型電源装置1の構成例を示す図である。この図10に示す実施の形態5に係る共振型電源装置1では、図1に示す実施の形態1に係る共振型電源装置1に対し、スイッチ105の接続位置をインバータ回路101の後段から前段に変更している。その他の構成は同様であり、同一の符号を付してその説明を省略する。また図10では制御部106の内部構成の図示を省略している。
 実施の形態5におけるスイッチ105は、インバータ回路101毎に設けられ、制御部106からの指示(オンオフ制御信号)に従い、対応するインバータ回路101における入力のオンオフを切換える。このスイッチ105として、リレー又はFET等の半導体スイッチ、MEMSスイッチ等を用いる。
 図11はインバータ回路101とスイッチ105との接続関係の一例を示す回路図である。なお図11では、インバータ回路101としてE級インバータ回路を用い、スイッチ105としてFETを用いている。
 図11Aでは、インバータ回路101に対して単一のスイッチ105を接続した場合を示している。この場合、スイッチ105は、ソース端子が、インバータ回路101における一対の入力端子のうちのホットライン上の端子(入力HOT)に接続される。
 また、図11Bでは、インバータ回路101に対して2つのスイッチ105を接続した場合を示している。この場合、一方のスイッチ105は、ソース端子が、インバータ回路101における一対の入力端子のうちのホットライン上の端子(入力HOT)に接続される。また、他方のスイッチ105は、ドレイン端子が、上記一対の入力端子のうちのリターンライン上の端子(入力RTN)に接続される。
 ここで、図1等に示すようインバータ回路101の後段にスイッチ105を設けた場合には、出力をオフしたインバータ回路101の内部インピーダンスは出力検出部104から検出できない状態となる。それに対し、インバータ回路101の前段にスイッチ105を設けることで、入力をオフしたインバータ回路101の内部インピーダンスを出力検出部104で検出できる状態となる。すなわち、この場合の出力インピーダンスは、オフしているインバータ回路101の内部インピーダンスも合成されたインピーダンスになる。
 なお上記では、図1に示す共振型電源装置1に対し、スイッチ105の接続位置をインバータ回路101の後段から前段に変更した場合を示した。しかしながら、これに限らず、図6~9に示す共振型電源装置1に対し、スイッチ105の接続位置をインバータ回路101の後段から前段に変更してもよい。
実施の形態6.
 実施の形態6では、実施の形態1~5に係る共振型電源装置1の適用例について示す。図12はこの発明の実施の形態6に係る共振型電力伝送システムの構成例を示す図である。
 共振型電力伝送システムは、図12に示すように、一次電源2、共振型電源装置1、送信アンテナ3、受信アンテナ4及び受信回路5を備えている。なお図12では、受信回路5の後段に、受信回路5からの電力により機能する回路又は機器である負荷10が接続されている。
 一次電源2は、電力を出力する。なお、一次電源2が出力する電力は、直流電力又は交流電力のいずれであってもよい。
 共振型電源装置1は、一次電源2からの電力(入力電力)を送信アンテナ3の共振周波数に合わせた高周波電力に変換して出力する。この共振型電源装置1は、図1,6~10に示す実施の形態1~5に係る共振型電源装置1である。
 送信アンテナ3は、共振型電源装置1からの高周波電力の周波数と同一(略同一の意味を含む)周波数で共振することで、電力伝送を行う。
 受信アンテナ4は、送信アンテナ3の共振周波数と同一(略同一の意味を含む)周波数で共振することで、送信アンテナ3からの高周波電力を受信する。この受信アンテナ4により受信された高周波電力(交流電力)は、受信回路5に出力される。
 なお、送信アンテナ3と受信アンテナ4との間の電力伝送方式は特に限定されず、磁界共鳴による方式、電界共鳴による方式、又は、電磁誘導による方式のいずれであってもよい。また、送信アンテナ3と受信アンテナ4は、図12に示すような非接触に限らない。
 受信回路5は、受信アンテナ4からの交流電力に対し、負荷10の仕様に合わせて整流、又は、整流及び電圧変換を行う。すなわち、受信回路5としては、整流回路から成る構成、又は、整流回路及び受信電源(DC/DCコンバータ、DC/ACコンバータ等)から成る構成が挙げられる。この受信回路5により得られた電力は、負荷10に出力される。
 なお上記では、共振型電源装置1を共振型電力伝送システムに適用した場合を示したが、これに限らず、高周波電力を用いるその他のシステムに対しても同様に共振型電源装置1を適用可能である。
 最後に、図13を参照して、実施の形態1~5における制御部106のハードウェア構成例を説明する。なお以下では、図1に示す実施の形態1における制御部106のハードウェア構成例について説明を行うが、他の制御部106についても同様である。
 制御部106におけるパラメータ取得部1061及び切換え制御部1062の各機能は、処理回路51により実現される。処理回路51は、図13Aに示すように、専用のハードウェアであっても、図13Bに示すように、メモリ53に格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)ともいう)52であってもよい。
 処理回路51が専用のハードウェアである場合、処理回路51は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらを組み合わせたものが該当する。パラメータ取得部1061及び切換え制御部1062の各部の機能それぞれを処理回路51で実現してもよいし、各部の機能をまとめて処理回路51で実現してもよい。
 処理回路51がCPU52の場合、パラメータ取得部1061及び切換え制御部1062の機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアやファームウェアはプログラムとして記述され、メモリ53に格納される。処理回路51は、メモリ53に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。すなわち、制御部106は、処理回路51により実行されるときに、例えば図3に示した各ステップが結果的に実行されることになるプログラムを格納するためのメモリ53を備える。また、これらのプログラムは、パラメータ取得部1061及び切換え制御部1062の手順や方法をコンピュータに実行させるものであるともいえる。ここで、メモリ53とは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)等の、不揮発性又は揮発性の半導体メモリや、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)等が該当する。
 なお、パラメータ取得部1061及び切換え制御部1062の各機能について、一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。例えば、パラメータ取得部1061については専用のハードウェアとしての処理回路51でその機能を実現し、切換え制御部1062については処理回路51がメモリ53に格納されたプログラムを読み出して実行することによってその機能を実現することが可能である。
 このように、処理回路51は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、上述の各機能を実現することができる。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明に係る共振型電源装置は、整合回路を用いずに、自機の出力インピータンスと負荷インピーダンスとの整合動作を行うことができ、高周波電力を出力する共振型電源装置等に用いるのに適している。
 1 共振型電源装置、2 一次電源、3 送信アンテナ、4 受信アンテナ、5 受信回路、10 負荷、11 電源、51 処理回路、52 CPU、53 メモリ、101 インバータ回路、102 入力検出部、103 電源パラメータ検出部、104 出力検出部、105 スイッチ、106 制御部、107 コンバータ、1061 パラメータ取得部、1062 切換え制御部、1063 位相差制御部、1064 コンバータ制御部。

Claims (8)

  1.  複数並列接続され、入力電力を高周波電力に変換して出力するインバータ回路と、
     前記インバータ回路毎に設けられ、対応する前記インバータ回路における入力又は出力のオンオフを切換えるスイッチと、
     前記インバータ回路に関するパラメータであって自機の出力インピーダンスと負荷インピーダンスとの整合状態により変化するパラメータ、及び前記高周波電力に関するパラメータのうちの少なくとも一方を検出するパラメータ検出部と、
     前記パラメータ検出部により検出されたパラメータを取得するパラメータ取得部と、
     前記パラメータ取得部により取得されたパラメータに基づいて、自機の出力インピーダンスを負荷インピーダンスに整合させるように、前記スイッチを制御する切換え制御部と
     を備えた共振型電源装置。
  2.  前記パラメータ検出部は、前記入力電力に関するパラメータも検出する
     ことを特徴とする請求項1記載の共振型電源装置。
  3.  前記パラメータ取得部により取得されたパラメータに基づいて、自機の出力インピーダンスを負荷インピーダンスに整合させるように、前記インバータ回路間におけるスイッチング動作の位相差を制御する位相差制御部を備えた
     ことを特徴とする請求項1記載の共振型電源装置。
  4.  入力電力を増減して前記インバータ回路に出力するコンバータと、
     前記パラメータ取得部により取得されたパラメータに基づいて、自機の出力インピーダンスを負荷インピーダンスに整合させるように、前記コンバータを制御するコンバータ制御部とを備えた
     ことを特徴とする請求項1記載の共振型電源装置。
  5.  前記パラメータ検出部は、前記インバータ回路毎に、当該インバータ回路から出力された高周波電力に関するパラメータを検出する
     ことを特徴とする請求項1記載の共振型電源装置。
  6.  前記パラメータ検出部は、前記インバータ回路毎に、当該インバータ回路に入力される前記入力電力に関するパラメータを検出する
     ことを特徴とする請求項2記載の共振型電源装置。
  7.  高周波電力を出力する共振型電源装置と、
     前記共振型電源装置により出力された高周波電力を伝送する送信アンテナとを備え、
     前記共振型電源装置は、
     複数並列接続され、入力電力を高周波電力に変換して出力するインバータ回路と、
     前記インバータ回路毎に設けられ、対応する前記インバータ回路の入力又は出力のオンオフを切換えるスイッチと、
     前記インバータ回路に関するパラメータであって自機の出力インピーダンスと負荷インピーダンスとの整合状態により変化するパラメータ、及び前記高周波電力に関するパラメータのうちの少なくとも一方を検出するパラメータ検出部と、
     前記パラメータ検出部により検出されたパラメータを取得するパラメータ取得部と、
     前記パラメータ取得部により取得されたパラメータに基づいて、自機の出力インピーダンスを負荷インピーダンスに整合させるように、前記スイッチを制御する切換え制御部とを備えた
     ことを特徴とする共振型電力伝送システム。
  8.  前記送信アンテナは、磁界共鳴、電界共鳴又は電磁誘導により電力伝送を行う
     ことを特徴とする請求項7記載の共振型電力伝送システム。
PCT/JP2016/062145 2016-04-15 2016-04-15 共振型電源装置及び共振型電力伝送システム WO2017179203A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016533735A JP6147434B1 (ja) 2016-04-15 2016-04-15 共振型電源装置及び共振型電力伝送システム
PCT/JP2016/062145 WO2017179203A1 (ja) 2016-04-15 2016-04-15 共振型電源装置及び共振型電力伝送システム
TW105130804A TW201739141A (zh) 2016-04-15 2016-09-23 共振型電源裝置及共振型電力傳送系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/062145 WO2017179203A1 (ja) 2016-04-15 2016-04-15 共振型電源装置及び共振型電力伝送システム

Publications (1)

Publication Number Publication Date
WO2017179203A1 true WO2017179203A1 (ja) 2017-10-19

Family

ID=59061240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062145 WO2017179203A1 (ja) 2016-04-15 2016-04-15 共振型電源装置及び共振型電力伝送システム

Country Status (3)

Country Link
JP (1) JP6147434B1 (ja)
TW (1) TW201739141A (ja)
WO (1) WO2017179203A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189374A1 (ja) * 2018-03-29 2019-10-03 パナソニックIpマネジメント株式会社 送電モジュール、送電装置、および無線電力伝送システム
WO2023188021A1 (ja) * 2022-03-29 2023-10-05 三菱電機株式会社 高周波電源装置およびその制御方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7061548B2 (ja) * 2018-10-04 2022-04-28 株式会社日立産機システム 共振型電源装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10190378A (ja) * 1996-12-27 1998-07-21 Nec Corp 超高効率線形増幅器
JP2001016859A (ja) * 1999-06-29 2001-01-19 Nissin Electric Co Ltd 電力変換装置
JP2006234803A (ja) * 2005-01-31 2006-09-07 Ricoh Co Ltd プリント基板のノイズ注入装置
WO2016038737A1 (ja) * 2014-09-12 2016-03-17 三菱電機エンジニアリング株式会社 共振型電力伝送装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10190378A (ja) * 1996-12-27 1998-07-21 Nec Corp 超高効率線形増幅器
JP2001016859A (ja) * 1999-06-29 2001-01-19 Nissin Electric Co Ltd 電力変換装置
JP2006234803A (ja) * 2005-01-31 2006-09-07 Ricoh Co Ltd プリント基板のノイズ注入装置
WO2016038737A1 (ja) * 2014-09-12 2016-03-17 三菱電機エンジニアリング株式会社 共振型電力伝送装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189374A1 (ja) * 2018-03-29 2019-10-03 パナソニックIpマネジメント株式会社 送電モジュール、送電装置、および無線電力伝送システム
CN111937271A (zh) * 2018-03-29 2020-11-13 松下知识产权经营株式会社 送电模块、送电装置以及无线电力传输系统
WO2023188021A1 (ja) * 2022-03-29 2023-10-05 三菱電機株式会社 高周波電源装置およびその制御方法

Also Published As

Publication number Publication date
JPWO2017179203A1 (ja) 2018-04-19
TW201739141A (zh) 2017-11-01
JP6147434B1 (ja) 2017-06-14

Similar Documents

Publication Publication Date Title
JP5911608B2 (ja) 共振型送信電源装置及び共振型送信電源システム
JP6633066B2 (ja) 誘導型電力伝送フィールドにおける異物検出
RU2596606C2 (ru) Динамическая резонансная согласующая схема для беспроводных приемников энергии
JP6568300B2 (ja) 同期整流器制御を使用して出力電力を調整するためのデバイス、システムおよび方法
JP6147434B1 (ja) 共振型電源装置及び共振型電力伝送システム
WO2015097805A1 (ja) 高周波整流回路用自動整合回路
JP2018524966A5 (ja)
WO2015097804A1 (ja) 高周波電源用自動整合回路
EP2924877A1 (en) Power amplifier for wireless power transmission
TWI605664B (zh) 諧振式無線電源發送電路及其控制方法
TW201737591A (zh) 操作無線電源發射器的反相器的方法、裝置及無線電源發射器
JP5832702B1 (ja) 共振型電力伝送装置
US9788368B2 (en) Induction heating generator and an induction cooking hob
WO2015104769A1 (ja) 回路定数可変回路
KR102639744B1 (ko) 출력 전압을 제어하기 위한 무선 전력 수신 장치
JP6312936B1 (ja) 共振型電力受信装置
WO2016017170A1 (ja) Dc-dcコンバータ
WO2014054395A1 (ja) 送電機器、受電機器及び非接触電力伝送装置
JP2010226599A (ja) 整合回路
WO2017105256A1 (en) Inductive power receiver
JP2009027496A (ja) 空中線整合回路
JP6623994B2 (ja) 電力変換装置及び送電機器
JP2015050848A (ja) 送電装置及びワイヤレス電力伝送システム
JP7100734B1 (ja) ワイヤレス受電装置
US20220361299A1 (en) Heating Circuit

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016533735

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898663

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898663

Country of ref document: EP

Kind code of ref document: A1