WO2017177877A1 - 一种具有初始化线圈封装的磁电阻传感器 - Google Patents

一种具有初始化线圈封装的磁电阻传感器 Download PDF

Info

Publication number
WO2017177877A1
WO2017177877A1 PCT/CN2017/079948 CN2017079948W WO2017177877A1 WO 2017177877 A1 WO2017177877 A1 WO 2017177877A1 CN 2017079948 W CN2017079948 W CN 2017079948W WO 2017177877 A1 WO2017177877 A1 WO 2017177877A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
initialization coil
magnetoresistive
spiral
slices
Prior art date
Application number
PCT/CN2017/079948
Other languages
English (en)
French (fr)
Inventor
迪克詹姆斯·G
张小军
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Priority to EP17781853.1A priority Critical patent/EP3444627A4/en
Priority to US16/093,064 priority patent/US10948554B2/en
Priority to JP2018553191A priority patent/JP6964346B2/ja
Publication of WO2017177877A1 publication Critical patent/WO2017177877A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0005Geometrical arrangement of magnetic sensor elements; Apparatus combining different magnetic sensor types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0017Means for compensating offset magnetic fields or the magnetic flux to be measured; Means for generating calibration magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0047Housings or packaging of magnetic sensors ; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Definitions

  • the present invention relates to magnetic field sensors, and more particularly to a magnetoresistive sensor having an initialization coil package.
  • hysteresis refers to the magnetic induction of the magnet in the process of repeated magnetization.
  • the magnetic induction of the magnet always lags behind the magnetic field strength of the magnet.
  • the hysteresis is characteristic of the magnetic induction of the ferromagnetic material as the magnetic field strength changes.
  • Magnetic domain refers to a small area in which the magnetic moment direction and size of the magnetic material are different.
  • the ferromagnetic material can be decomposed into magnetic domains, which will cause hysteresis.
  • Single-structure magnetic domains or aligned magnetic domains are required to reduce hysteresis, and the magnetization direction must be vertically aligned in the sensitive direction.
  • Hysteresis is caused by discontinuous rotation of magnetic domain wall motion and magnetization.
  • 10 is a sensor element
  • 20 is a flux concentrator
  • 30 is a sensitive axis
  • 40 is the direction of the planned initialization magnetic field
  • the concentrator may demagnetize Magnetic domain state and exhibits hysteresis behavior. Therefore, in order to have low hysteresis, the flux concentrator needs to have its own magnetization direction perpendicular to the sensitive direction.
  • the magnetic domains can be aligned and the sensor can again exhibit low hysteresis behavior.
  • Packaging is critical to the chip. The quality of the packaging technology also directly affects the performance of the chip itself and the design and manufacture of the PCB to which it is connected. There are a variety of semiconductor chip packages, including LGA (Land Grid Array), COB, Filp chip, etc. Their methods are compatible, and there are other packaging methods using substrates, such as hybrids used in aviation and automobiles. Package. LGA has received more and more attention and use with its rich interface, good mechanical stability and heat dissipation characteristics.
  • the bare chip packaged by COB technology is the chip body and I/O terminal above the crystal. When soldering, the bare chip is bonded to the PCB with conductive/thermal adhesive. After solidification, the wire is ultrasonically and hot pressed with a Bonder machine.
  • the chip Under the action of the chip, it is connected to the I/O terminal pad of the chip and the corresponding pad of the PCB. After passing the test, the resin glue is sealed. Compared with COB, the chip structure and I/O end (tin ball) of the Filp chip are oriented downwards. Since the I/O terminals are distributed over the entire chip surface, the Flip chip has reached its peak at the package density and processing speed. It can be processed by means similar to SMT technology, so it is the final direction of chip packaging technology and high-density installation.
  • U.S. Patent No. 5,952,825 A discloses an integrated magnetic field sensing device having a magnetic field sensing element, a first helical coil providing set and reset functions, and second and third coils for carrying current and Generate magnetic fields for testing, compensation, calibration, and feedback applications.
  • placing the reset coil on the sensor chip increases the size of the sensor chip and adds a layer, which increases the complexity of the sensor chip.
  • the low cost coils can be placed on the PCB or on the package substrate instead of being disposed on the silicon substrate. First, this does not significantly increase the size of the package; second, it makes the silicon chip as small as possible. These two factors have inspired a new technology that implements a low-cost approach through high-performance sensor products with initialized coil packages.
  • the present invention provides a low-cost magnetic field sensor packaging technology.
  • An initialization coil is provided for the sensor, which is used to reduce the hysteresis and drift of the sensor.
  • the package of the present invention can coexist with other common semiconductor production packaging technologies.
  • the present invention provides a magnetoresistive sensor having an initialization coil package, including a package structure, at least one set of sensor slices, a spiral initialization coil, a wire bond pad, and an encapsulation layer, wherein the package structure includes a substrate Conductors are patterned on the substrate; the spiral initialization coils are disposed on the substrate, each set of sensor slices includes two sensor slices, and each of the sensor slices includes two sets of magnetoresistance a sensing unit string, the magnetoresistive sensing unit strings on the sensor slice are connected into a magnetoresistive sensing unit bridge, the sensor slices are located above the spiral initialization coil, and are respectively arranged in the spiral initialization coil Around the circumference, the magnetic field generated by the spiral initialization coil is perpendicular to the direction of the sensing axis of the sensor slice.
  • the substrate of the package structure is a PCB.
  • the spiral initializing coil is rectangular, the number of sensor slices is one set, including two sensor slices, and the sensor slices are respectively located on two sides of the symmetry of the spiral initializing coil to form a single sensing axis. .
  • the spiral initialization coil is square
  • the number of sensor slices is two groups, including four sensor slices
  • the sensor slices are symmetrically located around the spiral initialization coil to form a double sensing axis.
  • the spiral initialization coils have the same width and the spacing between the coils is the same.
  • the spiral initialization coil has a width of 0.12 mm and a pitch between the coils of 0.1 mm.
  • an ASIC-specific integrated circuit electrically coupled between the ASIC-specific integrated circuit and the magnetoresistive sensing unit bridge, the wire bond pads being electrically coupled to the ASIC-specific integrated circuit.
  • the ASIC-specific integrated circuit includes an ESD anti-static protection circuit.
  • the ASIC-specific integrated circuit includes an ESD anti-static protection circuit and a processing circuit for calculating an output of the magnetoresistive sensing unit bridge such that it is output in digital form.
  • the package structure is an LGA package.
  • the material of the encapsulation layer is a non-magnetic material, and the magnetoresistive sensing unit bridge is sealed in the encapsulation layer to form a standard semiconductor package.
  • the non-magnetic material is plastic or ceramic.
  • the magnetoresistive sensor slice uses a magnetic layer or a permanent magnet to provide a bias field perpendicular to the free layer of the sensor element in the sensor chip, and the magnetic field generated by the initialization coil is parallel to the direction of the bias field of the free layer of the sensor element in the sensor chip.
  • the material of the spiral initialization coil includes copper or aluminum.
  • the material of the electrical conductor includes silver, copper or aluminum.
  • the conductors have a width in the range of 50-300 microns, a spacing between the conductors of 50-150 microns, and a thickness of the conductors of 10-200 microns.
  • the beneficial effects of the present invention are that the magnetoresistive sensor of the present invention can initialize the magnetic field by using a fast current pulse so that the initialized magnetic field is perpendicular to the sensitive direction of the sensor.
  • the substrate of the present invention is a PCB, which can reduce the manufacturing cost, is easy to manufacture, and makes the size of the magnetoresistive sensor small.
  • Figure 1 is a schematic diagram showing the hysteresis of a plurality of magnetic domains
  • FIG. 2 is a schematic view showing an angle between an applied magnetic field and a magnetization direction
  • Figure 3 is a schematic view showing the relationship between the angle and the hysteresis in Figure 2;
  • FIG. 4 is a schematic view of a small hysteresis corresponding magnetic domain generated after a large magnetic field is applied;
  • Figure 5 is a schematic diagram of a magnetic hysteresis corresponding magnetic domain in a non-ideal case
  • Figure 6 is a block diagram of a magnetic field sensing device of the present invention.
  • FIG. 7 is a schematic diagram of a magnetic field of a magnetic field sensing device of the present invention generating a magnetic field through a coil;
  • Figure 8 is a schematic view showing the magnetic field distribution of the magnetic field sensing device of the present invention.
  • FIG. 9 is a schematic view of a magnetic field sensing device of a dual-axis induction shaft of the present invention.
  • FIG. 10 is a schematic diagram of a package of a magnetic field sensing device of the present invention.
  • FIG. 11 is a schematic view of a substrate circuit of the magnetic field sensing device of the present invention.
  • FIG. 6 is a top plan view of the magnetic field sensing device of the present invention.
  • the layout of the integrated circuit can be seen, including the package structure, a set of sensor slices, the spiral initialization coil 4, and the wire bonding pads 2.
  • the encapsulation structure includes a PCB substrate 1 on which the electrical conductors are patterned; the spiral initialization coils 4 are disposed on the PCB substrate, and each set of sensor slices Including two sensor slices 5, each of the sensor slices includes two sets of magnetoresistive sensing unit strings, and the magnetoresistive sensing unit strings on the two slices are electrically connected to a magnetoresistive sensing unit.
  • a bridge, the sensor slice 5 is located above the spiral initialization coil 4, and is disposed around the spiral initialization coil, respectively, and the magnetic field generated by the spiral initialization coil 4 is perpendicular to the sensing axis direction of the sensor slice 5.
  • the conductors have a width in the range of 50-300 microns, a spacing between the conductors of 50-150 microns, and a thickness of the conductors of 10-200 microns.
  • the material of the electrical conductor includes silver, copper or aluminum.
  • the spiral initialization coils have the same width and the spacing between the coils is the same.
  • the spiral initialization coil has a width of 0.12 mm and a pitch between the coils of 0.1 mm.
  • the material of the spiral initialization coil includes copper or aluminum.
  • the spiral initializing coil has a small resistance and inductance value such that the current pulse width does not cause a delay.
  • the magnetoresistive sensor slice uses a magnetic layer or a permanent magnet to provide a bias field perpendicular to the free layer of the sensor element in the sensor chip, and the magnetic field generated by the initialization coil is parallel to the direction of the bias field of the free layer of the sensor element in the sensor chip.
  • the spiral initialization coil can be disposed above the PCB board instead of on the sensor chip, and the sensor slice is formed on the spiral initialization coil.
  • the sensor slice is formed on the spiral initialization coil.
  • four wire bond pads 2 each of which is connected to a pin of an ASIC ASIC 3, a pin of the ASIC ASIC 3 and a magnetoresistive bar of the magnetoresistive element. The pins are connected and the direction of the pinned layer is as shown in FIG.
  • the number of sensor slices is two, and the spiral initialization coil 4 is rectangular, and the sensor The slices are respectively located on both sides of the symmetry of the spiral initializing coil 4 to form a single sensing axis.
  • a current is passed through the spiral initialization coil. As shown in Figure 7, the current flows counterclockwise through the spiral initialization coil, which creates a magnetic field in the opposite direction of the spiral initialization coil.
  • 8 is a schematic diagram showing the magnetic field distribution of the magnetic field sensing device of the present invention. The magnetic field distribution is detected along the dotted line direction of FIG. 7. However, the magnetic field distribution needs to be improved due to the rapid current pulse and the interval distribution of the spiral initializing coil.
  • FIG. 9 is a schematic diagram of a magnetic field sensing device for a dual-axis induction shaft according to the present invention.
  • the number of sensor slices 5 is four, and the spiral initialization coil 4 is square.
  • the sensor slices are symmetrically located around the spiral initialization coil to form a double sensing axis. .
  • FIG. 10 is a schematic diagram of the package of the magnetic field sensing device of the present invention, and two different design structures of FIGS. 6 and 9 adopt the same package.
  • the package size is 6x6mm, and the pads are equally spaced on the package, wherein the pads have a length of 1.25mm, the pads have a width of 0.75mm, and the pads have a distance of 0.5mm.
  • FIG. 11 is a schematic diagram of a substrate of a magnetic field sensing device of the present invention, wherein the substrate is divided into two layers, the spiral initialization coil is on the top layer, and the pad is on the bottom layer.
  • the ASIC-specific integrated circuit and the magnetoresistive sensing unit bridge are electrically connected, and the wire bonding pads are electrically connected to the ASIC dedicated integrated circuit.
  • the ASIC-specific integrated circuit includes an ESD anti-static protection circuit.
  • the ASIC-specific integrated circuit includes an ESD anti-static protection circuit and a processing circuit for calculating an output of the magnetoresistive sensing unit bridge such that it is output in digital form.
  • the package structure is an LGA package.
  • the material of the encapsulation layer is a non-magnetic material, and the magnetoresistive sensing unit bridge is sealed in the encapsulation layer to form a standard semiconductor package, and the non-magnetic material is plastic or ceramic.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

一种具有初始化线圈封装的磁电阻传感器,包括封装结构、至少一组传感器切片(5)、螺旋初始化线圈(4)、引线键合焊盘(2)、ASIC专用集成电路(3)和封装层,其中螺旋初始化线圈(4)设置在封装结构的PCB基板(1)上,每组传感器切片(5)包括两个传感器切片(5),每个传感器切片(5)包括两组磁电阻传感单元串,且位于传感器切片(5)上的磁电阻传感单元串连接成磁电阻传感单元电桥,ASIC专用集成电路(3)和磁电阻传感单元电桥之间电连接,传感器切片(5)位于螺旋初始化线圈(4)的上方,且分别布置在螺旋初始化线圈(4)的周围,引线键合焊盘(2)与ASIC专用集成电路(3)电连接;该传感器减少了由于通量集中器磁畴产生的传感器磁滞和偏移,成本低,易于制造。

Description

一种具有初始化线圈封装的磁电阻传感器 技术领域
本发明涉及磁场传感器,尤其涉及一种具有初始化线圈封装的磁电阻传感器。
背景技术
对于磁电阻传感器来说,磁滞是指铁磁体在反复磁化的过程中,磁体的磁感应强度的变化总是滞后于磁体的磁场强度,磁滞是铁磁性物质磁感应强度随磁场强度变化时特有的现象。磁畴指磁性材料内部磁矩方向和大小各不相同的小区域,当铁磁质达到磁饱和状态后,如果减小磁化场,介质的磁化强度或者磁感应强度并不沿着起始磁化曲线减小,磁化强度或者磁感应强度滞后于磁化场的变化。所有的磁畴在初始化磁场中沿相同的方向排列,则会减少磁滞。
如附图1所示,如果铁磁物体的形状设计不当或者没有偏磁场以保持铁磁体在一个单磁畴状态,铁磁材料可以分解成磁畴,这将产生磁滞。需要单结构磁畴或对齐的磁畴来减少磁滞,磁化方向必须垂直排列于敏感方向。
磁滞是由磁畴壁运动和磁化的不连续的旋转造成的。
如附图2和图3中,描述了磁化作为应用磁场H用于相对于当H=0时的磁化方向的应用磁场的不同角度。需要注意的是,当H被施加平行于M的方向(H=0),磁滞是高的。当H被施加于相对M(0)垂直的方向,磁滞是很小的。其中,在H施加到相对于M(0)成90度的情况下,磁化方向连续旋转,而不是由畴壁运动。因此理想情况下,我们希望看到集中磁化方向垂直于传感器的敏感方向。
如附图4和5所示,10为传感器元件,20为通量集中器,30为敏感轴,40为计划的初始化磁场的方向,在暴露于高电场之后,集中器可能消磁成多 磁畴状态,并显示出磁滞行为。因此,为了具有低磁滞,通量集中器需要有自己的垂直于敏感方向的磁化方向。然而,如果一个大的磁场施加在上面的曲线图所示的初始化方向,磁畴可以对准并且传感器可以再次显示低的磁滞行为。一些公司通常将线圈应用到磁场来解决该问题。
封装对于芯片来说是至关重要的。封装技术的好坏还直接影响到芯片自身性能的发挥和与之连接的PCB的设计和制造。目前有多种半导体芯片封装形式,包括LGA(Land Grid Array)、COB、Filp chip等,它们的方法是兼容的,还存在着使用基板的其他的封装方法,比如使用在航空和汽车上的混合封装。LGA以其丰富的接口,良好的机械稳定性和散热特性,得到越来越多的关注和使用。用COB技术封装的裸芯片是芯片主体和I/O端子在晶体上方,在焊接时将裸芯片用导电/导热胶粘接在PCB上,凝固后,用Bonder机将金属丝在超声、热压的作用下,分别连接在芯片的I/O端子焊区和PCB相对应的焊盘上,测试合格后,再封上树脂胶。与COB相比,Filp chip的芯片结构和I/O端(锡球)方向朝下,由于I/O引出端分布于整个芯片表面,故在封装密度和处理速度上Flip chip已达到顶峰,特别是它可以采用类似SMT技术的手段来加工,故是芯片封装技术及高密度安装的最终方向。
现有技术中,公开号为US5952825A的美国专利公开了一种集成磁场传感装置,具有磁场传感元件,第一螺旋线圈提供设置和重置功能,第二和第三线圈用于携带电流和产生磁场,用于测试、补偿、校准和反馈的应用中。然而,将重置线圈设置在传感器芯片上,增加了传感器芯片的尺寸,并且添加了一层,这会增加传感器芯片的复杂性。
低成本的线圈可以布置在PCB上或者封装基板上,而不是布置在硅基板上。首先,这不会明显地增加封装的尺寸;其次,使得硅芯片尽可能的小。这两个因素启发了一个新的技术,就是通过带有初始化线圈封装的高性能的传感器产品实现一种低成本的方法。
实用新型内容
为了解决上述问题,本实用新型提供一种低成本的磁场传感器封装技术, 为传感器提供一种初始化线圈,初始化线圈用于减少传感器的磁滞和漂移。此外,本发明的封装还可以与其他普通的半导体生产封装技术共存。
具体地,本实用新型提供一种具有初始化线圈封装的磁电阻传感器,包括封装结构、至少一组传感器切片、螺旋初始化线圈、引线键合焊盘和封装层,其中,所述的封装结构包括基板,在所述的基板上导电体被图形化;所述的螺旋初始化线圈设置在所述的基板上,每组传感器切片包括两个传感器切片,每个所述的传感器切片包括两组磁电阻传感单元串,位于所述传感器切片上的所述磁电阻传感单元串连接成磁电阻传感单元电桥,所述的传感器切片位于螺旋初始化线圈的上方,且分别布置在所述螺旋初始化线圈的周围,所述的螺旋初始化线圈产生的磁场垂直于所述传感器切片的感应轴方向。
所述的封装结构的基板为PCB。
优选地,所述的螺旋初始化线圈为矩形,所述的传感器切片数量为一组,包括2个传感器切片,所述的传感器切片分别位于所述螺旋初始化线圈的对称的两侧,形成单感应轴。
优选地,所述的螺旋初始化线圈为正方形,所述的传感器切片数量为两组,包括4个传感器切片,所述的传感器切片分别对称位于所述螺旋初始化线圈的周围,形成双感应轴。
所述螺旋初始化线圈的宽度相同,且线圈之间的间距相同。
所述螺旋初始化线圈的宽度为0.12mm,所述线圈之间的间距为0.1mm。
还包括ASIC专用集成电路,所述ASIC专用集成电路和所述磁电阻传感单元电桥之间电连接,所述的引线键合焊盘与所述的ASIC专用集成电路电连接。
所述ASIC专用集成电路包括ESD防静电保护电路。
所述ASIC专用集成电路包括ESD防静电保护电路和用于对所述磁电阻传感单元电桥的输出进行计算以使得其以数字形式输出的处理电路。
所述的封装结构为LGA封装。
所述的封装层的材料为非磁性材料,所述磁电阻传感单元电桥被密封在封装层中以形成标准的半导体封装。
所述的非磁性材料为塑胶或陶瓷。
所述的磁电阻传感器切片利用磁性层或者永磁体提供与传感器芯片中的传感器元件自由层垂直的偏置场,初始化线圈产生的磁场与传感器芯片中的传感器元件自由层的偏置场的方向平行。
所述的螺旋初始化线圈的材料包括铜或铝。
所述的导电体的材料包括银、铜或铝。
所述的导电体的宽度范围为50-300微米,导电体之间的间距为50-150微米,所述导电体的厚度为10-200微米。
本发明的有益效果在于:本发明的磁电阻传感器,可以通过使用快速电流脉冲初始化磁场,使初始化的磁场与传感器的敏感方向垂直。本发明的基板是PCB,可以降低制作成本,并且易于制造,并且使得磁电阻传感器的尺寸变小。
附图说明
为了更清楚地说明本发明实施例技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为多磁畴产生磁滞的示意图;
图2为应用磁场与磁化方向的夹角示意图;
图3为图2中的夹角与磁滞大小关系示意图;
图4为施加了大磁场后产生的小的磁滞对应磁畴的示意图;
图5为非理想情况下的磁滞对应磁畴的示意图;
图6为本发明的磁场感测装置的框图;
图7为本发明的磁场感测装置的电流通过线圈产生磁场的示意图;
图8为本发明的磁场感测装置的磁场分布示意图;
图9为本发明的双轴感应轴的磁场感测装置的示意图;
图10为本发明的磁场感测装置的封装示意图;
图11为本发明的磁场感测装置的基板线路示意图。
具体实施方式
下面结合附图分别对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域的技术人员理解,从而对本发明的保护范围作出更为清楚明确的界定。
请参阅附图6,图6显示了本发明的磁场感测装置的俯视平面图,可以看到其集成电路的布局,包括封装结构、一组传感器切片、螺旋初始化线圈4、引线键合焊盘2、封装层等,其中,所述的封装结构包括PCB基板1,在所述的PCB基板上导电体被图形化;所述的螺旋初始化线圈4设置在所述的PCB基板上,每组传感器切片包括两个传感器切片5,每个所述的传感器切片包括两组磁电阻传感单元串,且位于所述两个切片上的所述磁电阻传感单元串电连接成磁电阻传感单元电桥,所述的传感器切片5位于螺旋初始化线圈4的上方,且分别布置在所述螺旋初始化线圈的周围,所述的螺旋初始化线圈4产生的磁场垂直于所述传感器切片5的感应轴方向。
所述的导电体的宽度范围为50-300微米,导电体之间的间距为50-150微米,所述导电体的厚度为10-200微米。所述的导电体的材料包括银、铜或铝。
所述螺旋初始化线圈的宽度相同,且线圈之间的间距相同。所述螺旋初始化线圈的宽度为0.12mm,所述线圈之间的间距为0.1mm。所述的螺旋初始化线圈的材料包括铜或铝。所述的螺旋初始化线圈的电阻和电感值很小,使得电流脉冲宽度不会产生延时。
所述的磁电阻传感器切片利用磁性层或者永磁体提供与传感器芯片中的传感器元件自由层垂直的偏置场,初始化线圈产生的磁场与传感器芯片中的传感器元件自由层的偏置场的方向平行。
由于使用PCB作为基板,螺旋初始化线圈可以设置在PCB板的上方,而不是在传感器芯片上,传感器切片形成在螺旋初始化线圈之上。图6中还包括有四个引线键合焊盘2,每一个引线键合焊盘与ASIC专用集成电路3的引脚相连,ASIC专用集成电路3的引脚与磁阻元件的磁阻条的引脚相连,钉扎层的方向如图6所标识。
在图6中,传感器切片数量为2个,螺旋初始化线圈4为矩形,传感器 切片分别位于所述螺旋初始化线圈4的对称的两侧,形成单感应轴。
在螺旋初始化线圈中通电流,如图7所示,电流以逆时针的形式流过螺旋初始化线圈,这样会在螺旋初始化线圈中产生方向相反的磁场。图8为本发明的磁场感测装置的磁场分布示意图,沿着图7虚线方向检测磁场分布,然而,由于快速电流脉冲以及螺旋初始化线圈的间隔分布,该磁场分布还需要完善。
图9为本发明的双轴感应轴的磁场感测装置的示意图,传感器切片5数量为4个,螺旋初始化线圈4为正方形,传感器切片分别对称位于所述螺旋初始化线圈的周围,形成双感应轴。
图10为本发明的磁场感测装置的封装示意图,图6和图9两种不同的设计结构采用相同的封装。封装体尺寸是6x6mm的结构,焊盘等间距的分布在封装体上,其中焊盘的长度为1.25mm,焊盘的宽度为0.75mm,焊盘之间的距离为0.5mm。
图11为本发明的磁场感测装置的基板示意图,其中该基板分为两层,螺旋初始化线圈在顶层,焊盘在底层。
所述的ASIC专用集成电路和所述磁电阻传感单元电桥之间电连接,所述的引线键合焊盘与所述的ASIC专用集成电路电连接。
优选地,所述ASIC专用集成电路包括ESD防静电保护电路。
优选地,所述ASIC专用集成电路包括ESD防静电保护电路和用于对所述磁电阻传感单元电桥的输出进行计算以使得其以数字形式输出的处理电路。
所述的封装结构为LGA封装。
所述的封装层的材料为非磁性材料,所述磁电阻传感单元电桥被密封在封装层中以形成标准的半导体封装,所述的非磁性材料为塑胶或陶瓷。
以上对本发明的特定实施例结合图示进行了说明,很明显,在不离开本发明的范围和精神的基础上,可以对现有技术和方法进行很多修改。在本发明的所属技术领域中,只要掌握通常知识,就可以在本发明的技术要旨范围内,进行多种多样的变更。

Claims (16)

  1. 一种具有初始化线圈封装的磁电阻传感器,其特征在于,包括封装结构、至少一组传感器切片、螺旋初始化线圈、引线键合焊盘和封装层,其中,所述的封装结构包括基板,在所述的基板上导电体被图形化;所述的螺旋初始化线圈设置在所述的基板上,每组传感器切片包括两个传感器切片,每个所述的传感器切片包括两组磁电阻传感单元串,位于所述传感器切片上的所述磁电阻传感单元串连接成磁电阻传感单元电桥,所述的传感器切片位于螺旋初始化线圈的上方,且分别布置在所述螺旋初始化线圈的周围,所述的螺旋初始化线圈产生的磁场垂直于所述传感器切片的感应轴方向。
  2. 根据权利要求1所述的一种具有初始化线圈封装的磁电阻传感器,其特征在于,所述的封装结构的基板为PCB。
  3. 根据权利要求1所述的一种具有初始化线圈封装的磁电阻传感器,其特征在于,所述的螺旋初始化线圈为矩形,所述的传感器切片数量为一组,包括2个传感器切片,所述的传感器切片分别位于所述螺旋初始化线圈的对称的两侧,形成单感应轴。
  4. 根据权利要求1所述的一种具有初始化线圈封装的磁电阻传感器,其特征在于,所述的螺旋初始化线圈为正方形,所述的传感器切片数量为两组,包括4个传感器切片,所述的传感器切片分别对称位于所述螺旋初始化线圈的周围,形成双感应轴。
  5. 根据权利要求1所述的一种具有初始化线圈封装的磁电阻传感器,其特征在于,所述螺旋初始化线圈的宽度相同,且线圈之间的间距相同。
  6. 根据权利要求5所述的一种具有初始化线圈封装的磁电阻传感器,其特征在于,所述螺旋初始化线圈的宽度为0.12mm,所述线圈之间的间距为0.1mm。
  7. 根据权利要求1所述的一种具有初始化线圈封装的磁电阻传感器,其特征在于,还包括ASIC专用集成电路,所述ASIC专用集成电路和所述磁电阻传感单元电桥之间电连接,所述的引线键合焊盘与所述的ASIC专用集成电路电连接。
  8. 根据权利要求7所述的一种具有初始化线圈封装的磁电阻传感器,其特征在于,所述ASIC专用集成电路包括ESD防静电保护电路。
  9. 根据权利要求7所述的一种具有初始化线圈封装的磁电阻传感器,其特征在于,所述ASIC专用集成电路包括ESD防静电保护电路和用于对所述磁电阻传感单元电桥的输出进行计算以使得其以数字形式输出的处理电路。
  10. 根据权利要求1所述的一种具有初始化线圈封装的磁电阻传感器,其特征在于,所述的封装结构为LGA封装。
  11. 根据权利要求1所述的一种具有初始化线圈封装的磁电阻传感器,其特征在于,所述的封装层的材料为非磁性材料,所述磁电阻传感单元电桥被密封在封装层中以形成标准的半导体封装。
  12. 根据权利要求11所述的一种具有初始化线圈封装的磁电阻传感器,其特征在于,所述的非磁性材料为塑胶或陶瓷。
  13. 根据权利要求1所述的一种具有初始化线圈封装的磁电阻传感器,其特征在于,所述的磁电阻传感器切片利用磁性层或者永磁体提供与传感器芯片中的传感器元件自由层垂直的偏置场,初始化线圈产生的磁场与传感器芯片中的传感器元件自由层的偏置场的方向平行。
  14. 根据权利要求1所述的一种具有初始化线圈封装的磁电阻传感器,其特征在于,所述的螺旋初始化线圈的材料包括铜或铝。
  15. 根据权利要求1所述的一种具有初始化线圈封装的磁电阻传感器,其特征在于,所述的导电体的材料包括银、铜或铝。
  16. 根据权利要求1所述的一种具有初始化线圈封装的磁电阻传感器,其特征在于,所述的导电体的宽度范围为50-300微米,导电体之间的间距为50-150微米,所述导电体的厚度为10-200微米。
PCT/CN2017/079948 2016-04-11 2017-04-10 一种具有初始化线圈封装的磁电阻传感器 WO2017177877A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17781853.1A EP3444627A4 (en) 2016-04-11 2017-04-10 MAGNETO RESISTANCE SENSOR WITH CAPPING OF INITIALIZING COIL
US16/093,064 US10948554B2 (en) 2016-04-11 2017-04-10 Magnetoresistive sensor package with encapsulated initialization coil
JP2018553191A JP6964346B2 (ja) 2016-04-11 2017-04-10 初期化コイルを備えてパッケージングされた磁気抵抗センサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201620296367.7 2016-04-11
CN201620296367.7U CN205581283U (zh) 2016-04-11 2016-04-11 一种具有初始化线圈封装的磁电阻传感器

Publications (1)

Publication Number Publication Date
WO2017177877A1 true WO2017177877A1 (zh) 2017-10-19

Family

ID=56865194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079948 WO2017177877A1 (zh) 2016-04-11 2017-04-10 一种具有初始化线圈封装的磁电阻传感器

Country Status (5)

Country Link
US (1) US10948554B2 (zh)
EP (1) EP3444627A4 (zh)
JP (1) JP6964346B2 (zh)
CN (1) CN205581283U (zh)
WO (1) WO2017177877A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10948554B2 (en) 2016-04-11 2021-03-16 MultiDimension Technology Co., Ltd. Magnetoresistive sensor package with encapsulated initialization coil
JP2021512319A (ja) * 2018-01-30 2021-05-13 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. リセット可能なバイポーラ・スイッチ・センサ

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107479010B (zh) 2016-06-07 2019-06-04 江苏多维科技有限公司 一种具有补偿线圈的磁电阻传感器
CN106707330A (zh) * 2016-11-25 2017-05-24 罗雷 一种mems全向振动传感装置
CN107015171B (zh) * 2017-03-24 2023-10-24 江苏多维科技有限公司 一种具有磁滞线圈的磁传感器封装结构
CN110780243A (zh) * 2019-11-19 2020-02-11 中国电子科技集团公司第四十九研究所 用于水下导航的高灵敏度微型磁传感单元、含有该传感单元的传感器及传感单元的制备方法
DE102019218351A1 (de) * 2019-11-27 2021-05-27 Dr. Johannes Heidenhain Gesellschaft Mit Beschränkter Haftung Sensorelement zur Speicherung von Umdrehungs- oder Positionsinformationen
US12038308B2 (en) 2021-03-24 2024-07-16 Analog Devices International Unlimited Company Magnetic sensor system having an initialization conductor
CN113257511A (zh) * 2021-05-11 2021-08-13 电子科技大学 一种Set/Reset线圈及其设计方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1503001A (zh) * 2002-10-23 2004-06-09 ������������ʽ���� 磁传感器及其制造方法、适合该制造方法的磁铁阵列
US20040189292A1 (en) * 2003-03-25 2004-09-30 Kautz David R. Mechanism for and method of biasing magnetic sensor
CN102298125A (zh) * 2011-03-03 2011-12-28 江苏多维科技有限公司 推挽桥式磁电阻传感器
CN102483443A (zh) * 2009-08-28 2012-05-30 罗伯特·博世有限公司 磁场传感器
CN102540113A (zh) * 2011-11-11 2012-07-04 江苏多维科技有限公司 磁场传感装置
CN205581283U (zh) * 2016-04-11 2016-09-14 江苏多维科技有限公司 一种具有初始化线圈封装的磁电阻传感器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5247278A (en) * 1991-11-26 1993-09-21 Honeywell Inc. Magnetic field sensing device
JPH08510060A (ja) * 1994-02-28 1996-10-22 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 磁束測定装置
US5952825A (en) 1997-08-14 1999-09-14 Honeywell Inc. Magnetic field sensing device having integral coils for producing magnetic fields
US6529114B1 (en) * 1998-05-27 2003-03-04 Honeywell International Inc. Magnetic field sensing device
JP3835354B2 (ja) * 2001-10-29 2006-10-18 ヤマハ株式会社 磁気センサ
AU2002349615B2 (en) * 2002-11-29 2008-04-03 Yamaha Corporation Magnetic sensor and temperature dependency characteristic compensation method for the same
IT1403433B1 (it) * 2010-12-27 2013-10-17 St Microelectronics Srl Sensore magnetoresistivo con capacita' parassita ridotta, e metodo
CN202119391U (zh) 2011-03-03 2012-01-18 江苏多维科技有限公司 一种独立封装的磁电阻角度传感器
CN104569870B (zh) * 2015-01-07 2017-07-21 江苏多维科技有限公司 一种单芯片具有校准/重置线圈的z轴线性磁电阻传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1503001A (zh) * 2002-10-23 2004-06-09 ������������ʽ���� 磁传感器及其制造方法、适合该制造方法的磁铁阵列
US20040189292A1 (en) * 2003-03-25 2004-09-30 Kautz David R. Mechanism for and method of biasing magnetic sensor
CN102483443A (zh) * 2009-08-28 2012-05-30 罗伯特·博世有限公司 磁场传感器
CN102298125A (zh) * 2011-03-03 2011-12-28 江苏多维科技有限公司 推挽桥式磁电阻传感器
CN102540113A (zh) * 2011-11-11 2012-07-04 江苏多维科技有限公司 磁场传感装置
CN205581283U (zh) * 2016-04-11 2016-09-14 江苏多维科技有限公司 一种具有初始化线圈封装的磁电阻传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3444627A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10948554B2 (en) 2016-04-11 2021-03-16 MultiDimension Technology Co., Ltd. Magnetoresistive sensor package with encapsulated initialization coil
JP2021512319A (ja) * 2018-01-30 2021-05-13 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. リセット可能なバイポーラ・スイッチ・センサ
JP7246753B2 (ja) 2018-01-30 2023-03-28 江▲蘇▼多▲維▼科技有限公司 リセット可能なバイポーラ・スイッチ・センサ

Also Published As

Publication number Publication date
US10948554B2 (en) 2021-03-16
JP2019513999A (ja) 2019-05-30
EP3444627A1 (en) 2019-02-20
JP6964346B2 (ja) 2021-11-10
EP3444627A4 (en) 2019-12-11
US20190120915A1 (en) 2019-04-25
CN205581283U (zh) 2016-09-14

Similar Documents

Publication Publication Date Title
WO2017177877A1 (zh) 一种具有初始化线圈封装的磁电阻传感器
US9664754B2 (en) Single chip push-pull bridge-type magnetic field sensor
JP6018093B2 (ja) 単一パッケージブリッジ型磁界角度センサ
US9733316B2 (en) Triaxial magnetic field sensor
US9234948B2 (en) Single-package bridge-type magnetic field sensor
JP6438959B2 (ja) 単一チップz軸線形磁気抵抗センサ
US9678178B2 (en) Magnetoresistive magnetic field gradient sensor
JP6420821B2 (ja) プッシュプル式フリップチップハーフブリッジ磁気抵抗スイッチ
JP6420665B2 (ja) 磁場を測定する磁気抵抗センサ
US9123877B2 (en) Single-chip bridge-type magnetic field sensor and preparation method thereof
US20140225605A1 (en) Mtj three-axis magnetic field sensor and encapsulation method thereof
EP3062119B1 (en) Push-pull bridge-type magnetic sensor for high-intensity magnetic fields
WO2017211279A1 (zh) 一种具有补偿线圈的磁电阻传感器
JP2016525689A (ja) シングルチップ・プッシュプルブリッジ型磁界センサ
TW201120459A (en) A hall effect current sensor system and associated flip-chip packaging
WO2015083601A1 (ja) 三次元磁気センサー
US20110147867A1 (en) Method of vertically mounting an integrated circuit
JP6256431B2 (ja) 磁気センサ装置
CN205845940U (zh) 超小型bga结构封装结构
KR102613576B1 (ko) 자기 차폐층을 구비한 mram 패키지 및 이의 제조방법
JPS61269386A (ja) 磁電変換素子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018553191

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017781853

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017781853

Country of ref document: EP

Effective date: 20181112

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17781853

Country of ref document: EP

Kind code of ref document: A1