WO2017175376A1 - 半導体装置および半導体装置の製造方法 - Google Patents

半導体装置および半導体装置の製造方法 Download PDF

Info

Publication number
WO2017175376A1
WO2017175376A1 PCT/JP2016/061533 JP2016061533W WO2017175376A1 WO 2017175376 A1 WO2017175376 A1 WO 2017175376A1 JP 2016061533 W JP2016061533 W JP 2016061533W WO 2017175376 A1 WO2017175376 A1 WO 2017175376A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
semiconductor substrate
insulating
semiconductor device
portions
Prior art date
Application number
PCT/JP2016/061533
Other languages
English (en)
French (fr)
Inventor
小林 賢司
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2018510206A priority Critical patent/JPWO2017175376A1/ja
Priority to PCT/JP2016/061533 priority patent/WO2017175376A1/ja
Publication of WO2017175376A1 publication Critical patent/WO2017175376A1/ja
Priority to US16/129,072 priority patent/US20190013347A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05639Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13012Shape in top view
    • H01L2224/13014Shape in top view being circular or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/141Disposition
    • H01L2224/1412Layout
    • H01L2224/1413Square or rectangular array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10252Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Definitions

  • the present invention relates to a semiconductor device and a method for manufacturing the semiconductor device.
  • Patent Document 1 A stacked structure of semiconductor chips suitable for miniaturization of semiconductor devices has attracted attention.
  • the imager disclosed in Patent Document 1 includes a plurality of stacked substrates, and a pixel array is disposed on almost the entire surface of the first substrate.
  • further miniaturization of semiconductor chips has been demanded due to the demand for miniaturization of electronic devices.
  • Patent Document 2 discloses a technique for the first requirement.
  • short-circuiting between the bump and the bump is avoided by disposing an insulator between the bumps.
  • a conductor is disposed between two substrates. As a result, it is possible to avoid noise caused by a circuit disposed on the second semiconductor substrate from being superimposed on a signal output from the first semiconductor substrate.
  • Patent Document 2 discloses a method of arranging an insulator.
  • Patent Document 3 discloses a method of arranging a conductor. However, no attempt has been made to satisfy the first request and the second request simultaneously.
  • An object of the present invention is to provide a semiconductor device and a method for manufacturing the semiconductor device that can reduce a short circuit of a connection portion and reduce signal deterioration due to noise.
  • a semiconductor device includes a first semiconductor substrate, a second semiconductor substrate, a plurality of connection portions, a first insulation portion, a shielding portion, and a second insulation.
  • the first semiconductor substrate includes a first circuit.
  • the second semiconductor substrate is stacked on the first semiconductor substrate and includes a second circuit.
  • the plurality of connection portions are disposed between the first semiconductor substrate and the second semiconductor substrate, and electrically connect the first circuit and the second circuit.
  • the first insulating portion is disposed around each of the plurality of connection portions.
  • the shielding part is disposed inside the first insulating part and is made of a conductor.
  • the second insulating portion is disposed between the connection portion and the first insulating portion.
  • the shielding portion is electrically insulated from any of the first semiconductor substrate, the second semiconductor substrate, and the plurality of connection portions. May be.
  • the shielding portion may be electrically connected to only one of the first semiconductor substrate and the second semiconductor substrate.
  • the shielding part may be connected to a fixed potential in the first semiconductor substrate or the second semiconductor substrate to which the shielding part is connected.
  • the semiconductor device may include a plurality of the first insulating portions and a plurality of the shielding portions. .
  • a gap may be provided between the plurality of first insulating portions.
  • a gap may be provided between each of the plurality of first insulating portions and each of the plurality of connection portions.
  • two or more of the first insulating part and the shielding part may be arranged corresponding to each of the plurality of connection parts.
  • the shielding portion includes only one of the first semiconductor substrate and the second semiconductor substrate. It may be electrically connected. A gap may be provided between the first insulating portion and a semiconductor substrate different from the semiconductor substrate to which the shielding portion is connected, of the first semiconductor substrate and the second semiconductor substrate.
  • the second insulating portion may be a gap provided between the connecting portion and the first insulating portion.
  • connection portion may be made of a first material.
  • the shielding portion may be made of a second material different from the first material.
  • the thickness may be smaller than the thickness of the connection portion in the orthogonal direction.
  • the method for manufacturing a semiconductor device includes a first step, a second step, and a third step.
  • a first insulating portion is formed around a first region where each of the plurality of connecting portions is disposed on the first main surface of the first semiconductor substrate, and the first A shielding part is formed inside the insulating part.
  • the first semiconductor substrate includes a first circuit.
  • the said shielding part is comprised with the conductor.
  • the plurality of connection portions are formed in a second region corresponding to the first region on the second main surface of the second semiconductor substrate.
  • the second semiconductor substrate includes a second circuit.
  • the first semiconductor substrate and the second semiconductor substrate are bonded together with the first main surface and the second main surface facing each other, and the connection portion and the A gap is provided between the first insulating portion and the first insulating portion.
  • the plurality of connection portions electrically connect the first circuit and the second circuit.
  • the method of manufacturing the semiconductor device includes: insulating resin after the first semiconductor substrate and the second semiconductor substrate are bonded to each other. You may further have the 4th process of filling the said space
  • the short circuit of the connecting portion is reduced by arranging the first insulating portion.
  • the shielding part By arranging the shielding part, signal deterioration due to noise is reduced.
  • 1 is a cross-sectional view of a semiconductor device according to a first embodiment of the present invention.
  • 1 is a cross-sectional view of a semiconductor device according to a first embodiment of the present invention.
  • It is a block diagram which shows the structure of the 1st board
  • It is a block diagram which shows the structure of the 2nd board
  • FIG. 1 shows a configuration of a semiconductor device 1 according to the first embodiment of the present invention.
  • a cross section of a semiconductor device 1 is shown.
  • the dimensions of the parts constituting the semiconductor device 1 do not always follow the dimensions shown in FIG.
  • the dimensions of the parts constituting the semiconductor device 1 may be arbitrary. The same applies to dimensions in cross-sectional views other than FIG.
  • the semiconductor device 1 includes a first substrate 10, a second substrate 20, a plurality of connection portions 25, a shielding portion 12, a first insulating portion 14, and a plurality of second portions. And an insulating portion 26.
  • reference numerals of one connecting portion 25 and one second insulating portion 26 are shown as representatives.
  • one shielding portion 12 and one first insulating portion 14 are composed of a plurality of portions.
  • the first substrate 10 and the second substrate 20 are stacked in the stacking direction Dr1 between the first substrate 10 and the second substrate 20.
  • the stacking direction Dr1 is a direction perpendicular to the surface 100 of the first substrate 10.
  • the stacking direction Dr1 is the thickness direction of the first substrate 10.
  • the first substrate 10 is made of a semiconductor material.
  • the semiconductor material constituting the first substrate 10 is at least one of silicon (Si) and germanium (Ge). Therefore, the first substrate 10 is a semiconductor substrate.
  • the first substrate 10 has a surface 100 and a surface 101.
  • the surface 100 and the surface 101 are main surfaces of the first substrate 10.
  • the main surface of the first substrate 10 is a relatively wide surface among a plurality of surfaces constituting the surface of the first substrate 10.
  • the surface 100 and the surface 101 face in opposite directions.
  • the first substrate 10 has a plurality of first electrodes 11.
  • symbol of one 1st electrode 11 is shown as a representative.
  • the first electrode 11 is made of a conductive material (conductor).
  • the conductive material constituting the first electrode 11 is a metal such as gold (Au), silver (Ag), or copper (Cu).
  • the first electrode 11 is disposed in the first region R1 of the surface 100.
  • the first electrode 11 is electrically connected to the first circuit included in the first substrate 10.
  • the second substrate 20 is made of a semiconductor material similar to the semiconductor material constituting the first substrate 10. Therefore, the second substrate 20 is a semiconductor substrate.
  • the second substrate 20 has a surface 200 and a surface 201.
  • the surface 200 and the surface 201 are main surfaces of the second substrate 20.
  • the main surface of the second substrate 20 is a relatively wide surface among a plurality of surfaces constituting the surface of the second substrate 20.
  • the surface 200 and the surface 201 face in opposite directions.
  • the surface 100 and the surface 201 are opposed to each other.
  • the second substrate 20 has a plurality of second electrodes 21.
  • symbol of one 2nd electrode 21 is shown as a representative.
  • the second electrode 21 is made of the same conductive material as that of the first electrode 11.
  • the second electrode 21 is disposed in the second region R2 of the surface 201.
  • the first region R1 and the second region R2 are opposed to each other.
  • the second electrode 21 is electrically connected to the second circuit included in the second substrate 20.
  • the connecting portion 25 is made of a conductive material.
  • the conductive material constituting the connection portion 25 is a metal such as gold (Au), silver (Ag), or copper (Cu).
  • the connection part 25 is a columnar structure.
  • the connection unit 25 is disposed between the first substrate 10 and the second substrate 20.
  • the connecting portion 25 is disposed in the first region R1 and is disposed in the second region R2.
  • the connection part 25 is connected to the first electrode 11 and the second electrode 21.
  • the connecting portion 25 is connected to the first substrate 10 and the second substrate 20.
  • the connection unit 25 electrically connects the first circuit included in the first substrate 10 and the second circuit included in the second substrate 20.
  • the shield 12 is made of a conductive material.
  • the conductive material constituting the shielding part 12 is a metal such as aluminum (Al) or copper (Cu).
  • the first insulating portion 14 is made of an insulating material (insulator).
  • the insulating material constituting the first insulating portion 14 is silicon oxide (SiO 2).
  • the first insulating portion 14 is a wall-like structure.
  • the shielding unit 12 and the first insulating unit 14 are disposed between the first substrate 10 and the second substrate 20.
  • the first insulating portion 14 is in contact with the first substrate 10 and the second substrate 20.
  • the first insulating portion 14 may contact only the first substrate 10. That is, a gap may be provided between the first insulating portion 14 and the second substrate 20.
  • the shielding portion 12 is disposed inside the first insulating portion 14. That is, the first insulating part 14 covers the shielding part 12.
  • the shielding part 12 and the first insulating part 14 are arranged around the connection part 25.
  • the shielding unit 12 shields noise.
  • the first insulating part 14 insulates the shielding part 12.
  • the second insulating part 26 is a space (space).
  • the second insulating unit 26 is disposed between the first substrate 10 and the second substrate 20.
  • the second insulating portion 26 is disposed between the connecting portion 25 and the first insulating portion 14.
  • the second insulating portion 26 is not filled with a solid material.
  • the connecting portion 25 and the first insulating portion 14 are not in contact with each other.
  • the second insulating part 26 insulates the connecting part 25.
  • FIG. 2 is a cross-sectional view of the semiconductor device 1 including the line A1-A2 of FIG.
  • the cross section shown in FIG. 1 and the cross section shown in FIG. 2 are orthogonal to each other.
  • reference numerals of one connecting portion 25, one shielding portion 12, and one second insulating portion 26 are shown as representatives.
  • the plurality of connecting portions 25 and the plurality of second insulating portions 26 are arranged in a matrix.
  • the first insulating portion 14 is composed of a plurality of portions.
  • the plurality of portions of the first insulating portion 14 are connected to each other at positions not shown. Therefore, the semiconductor device 1 has one first insulating part 14 and one shielding part 12. Between the two adjacent connecting portions 25, the shielding portion 12, the first insulating portion 14, and the second insulating portion 26 are disposed.
  • connection portion 25 is a circle.
  • the connection portion 25 may have a polygonal cross section. In FIG. 2, four connections 25 are shown. The number of the connection parts 25 should just be two or more.
  • FIG. 3 shows the configuration of the first substrate 10.
  • the first substrate 10 includes a pixel unit 30 and a vertical readout circuit 40.
  • the positions of the plurality of connecting portions 25 are shown.
  • the sizes of the plurality of connecting portions 25 are not shown.
  • symbol of the one connection part 25 is shown as a representative.
  • the pixel unit 30 has a plurality of pixels 31.
  • a symbol of one pixel 31 is shown as a representative.
  • the plurality of pixels 31 are arranged in a matrix. In FIG. 3, four pixels 31 are shown.
  • the number of pixels 31 may be two or more.
  • the pixel 31 includes a photoelectric conversion element, a transfer transistor, a reset transistor, and a selection transistor.
  • the photoelectric conversion element generates a pixel signal corresponding to the light incident on the pixel 31.
  • the transfer transistor reads a pixel signal from the photoelectric conversion element.
  • the reset transistor resets the pixel 31.
  • the selection transistor selects a pixel 31 that outputs a pixel signal.
  • the vertical readout circuit 40 outputs a control signal for controlling the readout of the pixel signal. Thereby, the vertical readout circuit 40 controls readout of pixel signals from the plurality of pixels 31.
  • the control signal output from the vertical readout circuit 40 is transferred to the plurality of pixels 31. With this control signal, pixel signals are simultaneously read from two or more pixels 31 arranged in the same row in the array of the plurality of pixels 31.
  • the three control signals are a control signal ⁇ TX, a control signal ⁇ RST, and a control signal ⁇ SEL.
  • the control signal ⁇ TX is a signal for controlling the transfer transistor.
  • the control signal ⁇ RST is a signal for controlling the reset transistor.
  • the control signal ⁇ SEL is a signal for controlling the selection transistor.
  • the plurality of pixels 31 output pixel signals according to the control signal.
  • Each of the plurality of pixels 31 is connected to one connection unit 25. That is, each of the plurality of connection portions 25 is disposed so as to correspond to each of the plurality of pixels 31. Two or more pixels 31 may be connected to one connection unit 25.
  • the connection unit 25 transfers the pixel signal output from the pixel 31 to the second substrate 20.
  • the pixel 31 constitutes a first circuit arranged on the first substrate 10.
  • FIG. 4 shows the configuration of the second substrate 20.
  • the second substrate 20 includes a horizontal readout circuit 41, a memory unit 50, a signal processing circuit 60, and an output unit 70.
  • the positions of the plurality of connecting portions 25 are shown.
  • the sizes of the plurality of connecting portions 25 are not shown.
  • symbol of one connection part 25 is shown as a representative.
  • the connection unit 25 outputs pixel signals output from the plurality of pixels 31 to the second substrate 20.
  • the connection unit 25 is connected to the memory unit 50.
  • the memory unit 50 holds pixel signals output from the plurality of pixels 31.
  • the pixel signal held in the memory unit 50 is output to the signal processing circuit 60.
  • the signal processing circuit 60 performs signal processing on the pixel signal according to control by the horizontal readout circuit 41. For example, the signal processing circuit 60 performs processing such as noise suppression by CDS (Correlated Double Sampling).
  • the horizontal readout circuit 41 reads out the pixel signal processed by the signal processing circuit 60 to the horizontal signal line 80. More specifically, the horizontal readout circuit 41 outputs a control signal for controlling signal processing by the signal processing circuit 60 and readout of the pixel signal to the signal processing circuit 60. By this control, pixel signals output from two or more pixels 31 arranged in the same row in the arrangement of the plurality of pixels 31 are sequentially read out to the horizontal signal line 80.
  • the output unit 70 outputs the pixel signal processed by the signal processing circuit 60 to the outside of the semiconductor device 1. More specifically, the output unit 70 performs processing such as amplification processing on the pixel signal processed by the signal processing circuit 60. The output unit 70 outputs the processed pixel signal to the outside of the semiconductor device 1.
  • the memory unit 50, the signal processing circuit 60, and the output unit 70 constitute a second circuit arranged on the second substrate 20.
  • the semiconductor device 1 includes the first substrate 10 (first semiconductor substrate), the second substrate 20 (second semiconductor substrate), the plurality of connection portions 25, and the first insulating portion. 14, the shielding part 12, and the second insulating part 26.
  • the first substrate 10 includes a first circuit.
  • the second substrate 20 is stacked on the first substrate 10 and includes a second circuit.
  • the plurality of connecting portions 25 are disposed between the first substrate 10 and the second substrate 20 and electrically connect the first circuit and the second circuit.
  • the first insulating portion 14 is disposed around each of the plurality of connecting portions 25.
  • the shielding part 12 is disposed inside the first insulating part 14 and is made of a conductor.
  • the second insulating portion 26 is disposed between the connecting portion 25 and the first insulating portion 14.
  • the connecting part 25 or the first insulating part 14 When the connecting part 25 or the first insulating part 14 is formed, the connecting part 25 or the first insulating part 14 may be displaced. When the first substrate 10 and the second substrate 20 are bonded to each other, a positional shift between the first substrate 10 and the second substrate 20 may occur. Due to these positional shifts, there is a possibility that the connecting portion 25 and the first insulating portion 14 come into contact. However, since the shielding part 12 is surrounded by the first insulating part 14, the connecting part 25 and the shielding part 12 do not contact each other. For this reason, the short circuit of the connection part 25 is reduced. Since the shielding unit 12 is disposed between the first substrate 10 and the second substrate 20, the second disposed on the second substrate 20 is superimposed on the signal output from the first substrate 10. Noise caused by this circuit is reduced. That is, signal degradation due to noise is reduced.
  • FIGS. 5 to 13 show cross sections of portions constituting the semiconductor device 1.
  • a first substrate 10 is prepared.
  • a first circuit (not shown) is arranged on the first substrate 10.
  • the first circuit is formed by a known semiconductor manufacturing process. After the diffusion layer corresponding to the necessary circuit is formed on the first substrate 10, patterning, etching, via formation, and wiring formation are performed. By repeating these processes, the first circuit is formed.
  • the insulating layer 13 is formed on the surface 100 of the first substrate 10, and the shielding part 12 is formed inside the insulating layer 13. Specifically, after the insulating layer is formed on the surface 100, the groove is formed by etching the surface of the insulating layer. For example, the shielding part 12 is formed in the groove by plating. After the surface of the insulating layer is planarized, the insulating layer 13 is formed by depositing an insulating material.
  • the groove 15 includes a recess formed in the first region R1 of the first substrate 10. That is, the groove 15 is formed at a position corresponding to the first region R1.
  • the interval between the adjacent first insulating portions 14 is D1.
  • the interval D1 is a distance in the direction Dr2 (FIG. 1) orthogonal to the stacking direction Dr1 between the first substrate 10 and the second substrate 20.
  • the orthogonal direction Dr2 is a direction horizontal to the surface 100a. 6 and FIG. 7, the first insulating portion 14 is formed around the first region R ⁇ b> 1, and the shielding portion 12 is formed inside the first insulating portion 14.
  • the first electrode 11 is formed in the recess 15 of the first region R ⁇ b> 1 of the first substrate 10 in the groove 15.
  • the first electrode 11 is formed by plating or vapor deposition.
  • substrate 20 with which the 2nd electrode 21 was formed is prepared.
  • a second circuit (not shown) is arranged on the second substrate 20.
  • the method for forming the second circuit is the same as the method for forming the first circuit of the first substrate 10.
  • the second electrode 21 is disposed in the second region R2 corresponding to the first region R1 of the first substrate 10 on the surface 201 of the second substrate 20.
  • the method for forming the second electrode 21 is the same as the method for forming the first electrode 11.
  • a resist 23 is formed on the surface 201 of the second substrate 20.
  • a groove 24 is formed at a position corresponding to the second region R2 where the second electrode 21 is disposed.
  • the groove 24 is formed by etching the resist 23. That is, the portion corresponding to the second region R2 in the resist 23 is removed.
  • the columnar connection portion 25 is formed by filling the groove 24 with a conductive material.
  • the connection part 25 is formed by plating or vapor deposition.
  • the thickness of the connection part 25 is D2.
  • the thickness D2 is a width in the direction Dr2 (FIG. 1) orthogonal to the stacking direction Dr1 of the first substrate 10 and the second substrate 20.
  • the thickness D2 is smaller than the distance D1.
  • substrate 20 are bonded together.
  • the surface 100 of the first substrate 10 and the surface 201 of the second substrate 20 face each other.
  • the positions of the first substrate 10 and the second substrate 20 are controlled so that the first region R1 of the first substrate 10 and the second region R2 of the second substrate 20 face each other.
  • the first substrate 10 and the second substrate 20 are bonded together by heat compression.
  • the semiconductor device 1 shown in FIG. 1 is completed.
  • the second insulating portion 26 shown in FIG. 1 is formed.
  • the manufacturing method of the semiconductor device 1 includes the first step (FIGS. 6 and 7), the second step (FIGS. 10, 11, and 12), and the third step (FIG. 13). ).
  • the first step the first insulating portion 14 is formed around the first region R1 in which each of the plurality of connection portions 25 is disposed on the surface 100 (first main surface) of the first substrate 10.
  • the shielding part 12 is formed inside the first insulating part 14.
  • the first substrate 10 includes a first circuit.
  • the shielding part 12 is comprised with the conductor.
  • a plurality of connection portions 25 are formed in the second region R2 corresponding to the first region R1 on the surface 201 (second main surface) of the second substrate 20.
  • the second substrate 20 includes a second circuit.
  • the first substrate 10 and the second substrate 20 are bonded together with the surface 100 and the surface 201 facing each other, and a gap is formed between the connection portion 25 and the first insulating portion 14.
  • the plurality of connection portions 25 electrically connect the first circuit and the second circuit.
  • the semiconductor device of each aspect of the present invention may not have a configuration corresponding to at least one of the first electrode 11 and the second electrode 21.
  • the semiconductor device according to each aspect of the present invention may not include a circuit other than the first circuit and the second circuit that are electrically connected by the connection portion 25.
  • the semiconductor device of each aspect of the present invention may be a device other than an imager.
  • the method for manufacturing a semiconductor device according to each aspect of the present invention may not include steps other than the first to third steps.
  • the short circuit of the connection portion 25 is reduced by disposing the first insulating portion 14.
  • the shielding unit 12 signal degradation due to noise is reduced.
  • the shielding unit 12 may be electrically insulated from any of the first substrate 10, the second substrate 20, and the plurality of connection units 25.
  • the shielding part 12 When the shielding part 12 is floating, it is not necessary to form a structure for connecting the shielding part 12 to a fixed potential. For this reason, the shielding part 12 can be miniaturized. As a result, the interval between the connecting portions 25 can be reduced. For this reason, high density of the connection part 25 is implement
  • the connecting part 25 may be made of a first material, and the shielding part 12 may be made of a second material different from the first material. That is, the connection part 25 and the shielding part 12 may be comprised with a mutually different material.
  • the shielding part 12 is comprised with the material which is easy to carry out fine processing, the area which the 1st insulating part 14 occupies is reduced. For this reason, high density of the connection part 25 is implement
  • the manufacturing cost of the semiconductor device 1 is suppressed more than the manufacturing cost when the gap is filled with resin.
  • the connection portion 25 is prevented from being peeled off from the first substrate 10 or the second substrate 20 due to the expansion of the resin.
  • FIG. 14 shows a configuration of a semiconductor device 1a according to a modification of the first embodiment of the present invention.
  • FIG. 14 shows a cross section of the semiconductor device 1a. In FIG. 14, differences from FIG. 1 will be described.
  • the second insulating portion 26 in the semiconductor device 1 shown in FIG. 1 is changed to the second insulating portion 26a.
  • the second insulating portion 26a is made of an insulating material.
  • the insulating material constituting the second insulating portion 26a is a resin.
  • the second insulating portion 26 a is disposed between the connecting portion 25 and the first insulating portion 14.
  • the second insulating part 26 a contacts the connecting part 25 and the first insulating part 14.
  • the connecting portion 25 and the first insulating portion 14 are not in contact with each other.
  • the second insulating part 26 a insulates the connecting part 25.
  • the semiconductor device 1 a has a plurality of first insulating portions 14 and a plurality of shielding portions 12. Gaps are provided between the plurality of first insulating portions 14. A gap is provided between each of the plurality of first insulating portions 14 and each of the plurality of connection portions 25. That is, a gap is provided between two adjacent first insulating portions 14. The plurality of first insulating portions 14 are separated from each other. Each of the plurality of first insulating portions 14 and each of the plurality of connection portions 25 are separated from each other. A second insulating portion 26a is disposed in the gap. Each of the plurality of shielding portions 12 is disposed inside each of the plurality of first insulating portions 14.
  • the thickness of the connecting portion 25 is D2a.
  • the thickness D2a is the width in the direction Dr2 orthogonal to the stacking direction Dr1 of the first substrate 10 and the second substrate 20. Thickness D2a is larger than thickness D2 (FIG. 11) of connecting portion 25 in semiconductor device 1 shown in FIG.
  • FIG. 15 is a cross-sectional view of the semiconductor device 1a including the line B1-B2 of FIG.
  • the cross section shown in FIG. 14 and the cross section shown in FIG. 15 are orthogonal to each other.
  • reference numerals of one connecting portion 25, one shielding portion 12, and one first insulating portion 14 are shown as representatives. In FIG. 15, differences from FIG. 2 will be described.
  • first insulating portions 14 and shielding portions 12 are arranged. That is, two or more first insulating portions 14 and shielding portions 12 are arranged around one connection portion 25. As shown in FIG. 15, four first insulating portions 14 and shielding portions 12 are arranged around one connection portion 25.
  • One connecting portion 25 is surrounded by two or more first insulating portions 14 and shielding portions 12.
  • the thickness D3 of the shielding part 12 in the orthogonal direction Dr2 with respect to the stacking direction Dr1 of the first substrate 10 and the second substrate 20 is smaller than the thickness D2a of the connection part 25 in the orthogonal direction Dr2.
  • the manufacturing method of the semiconductor device 1a includes a process shown in FIGS. 5 to 13 and a resin filling process. Since the steps shown in FIGS. 5 to 13 have been described, description of these steps will be omitted. The resin filling process will be described with reference to FIG.
  • a gap is provided around the first insulating portion 14 and the connecting portion 25 by the process shown in FIG. As shown in FIG. 14, the second insulating part 26a is formed by filling the gap with resin.
  • the manufacturing method of the semiconductor device 1a includes a fourth step in addition to the first to third steps. After the first substrate 10 and the second substrate 20 are bonded together, an insulating resin is filled in the gap in the fourth step.
  • the thickness D3 of the shielding part 12 may be equal to or greater than the thickness D2a of the connection part 25.
  • the second insulating portion 26 may be made of resin.
  • the thickness D3 of the shielding part 12 is smaller than the thickness D2a of the connection part 25, the interval between the connection parts 25 can be reduced. For this reason, high density of the connection part 25 is implement
  • a resin injection path is formed between the plurality of first insulating portions 14. Since voids are less likely to occur when the resin is filled, the second insulating portion 26a can be easily formed.
  • connection portion 25 is reduced from being peeled off from the first substrate 10 or the second substrate 20 due to an external impact on the semiconductor device 1a.
  • FIG. 16 shows the configuration of the semiconductor device 2 according to the second embodiment of the present invention.
  • a cross section of the semiconductor device 2 is shown.
  • FIG. 16 differences from FIG. 14 will be described.
  • the first substrate 10 in the semiconductor device 1a shown in FIG. 14 is changed to the first substrate 10a.
  • the first substrate 10 a is made of a semiconductor material similar to the semiconductor material that forms the first substrate 10.
  • the first substrate 10a has a surface 100a and a surface 101a.
  • the surface 100a and the surface 101a are main surfaces of the first substrate 10a.
  • the surface 100a and the surface 101a face in opposite directions.
  • the first substrate 10 a has a plurality of first electrodes 11 and a plurality of third electrodes 17.
  • the symbol of one third electrode 17 is shown as a representative.
  • the third electrode 17 is made of a conductive material.
  • the conductive material constituting the third electrode 17 is a metal such as gold (Au), silver (Ag), or copper (Cu).
  • the third electrode 17 is disposed in the third region R3 of the surface 100a.
  • a fixed potential is applied to the third electrode 17.
  • the fixed potential is a power supply or ground.
  • the third electrode 17 may be electrically connected to a first circuit included in the first substrate 10a.
  • the third electrode 17 may have a pad shape or a via shape.
  • the shielding part 12 is electrically connected to only one of the first substrate 10a and the second substrate 20.
  • the shielding unit 12 is connected to a fixed potential in the first substrate 10a or the second substrate 20 to which the shielding unit 12 is connected.
  • the shielding portion 12 is connected to the third electrode 17. Therefore, the shielding part 12 is electrically connected to the first substrate 10 a and is insulated from the second substrate 20.
  • the shielding part 12 may be electrically connected to the second substrate 20 and insulated from the first substrate 10a.
  • the thickness of the connecting portion 25 in FIG. 16 may be the same as the thickness of the connecting portion 25 in FIG. In the semiconductor device 2, one first insulating portion 14 may be arranged similarly to the semiconductor device 1 shown in FIG. 1.
  • the configuration shown in FIG. 16 is the same as the configuration shown in FIG.
  • the cross section of the semiconductor device 2 including the line C1-C2 in FIG. 16 is the same as the cross section of the semiconductor device 1a shown in FIG.
  • the shielding effect against noise is improved by connecting the shielding part 12 to a fixed potential.
  • FIG. 17 shows the configuration of the semiconductor device 3 according to the third embodiment of the present invention.
  • a cross section of the semiconductor device 3 is shown.
  • FIG. 17 differences from FIG. 16 will be described.
  • the first substrate 10a in the semiconductor device 2 shown in FIG. 16 is changed to the first substrate 10b.
  • the first substrate 10b is made of a semiconductor material similar to the semiconductor material constituting the first substrate 10a.
  • the first substrate 10b has a surface 100b and a surface 101b.
  • the surface 100b and the surface 101b are main surfaces of the first substrate 10b.
  • the surface 100b and the surface 101b face in opposite directions.
  • the first substrate 10a in the semiconductor device 2 shown in FIG. 16 has a plurality of third electrodes 17, whereas the first substrate 10b in the semiconductor device 3 shown in FIG. Similar to the semiconductor device 1 shown in FIG. 1, the semiconductor device 3 has one shielding portion 12. The shielding part 12 is connected to one third electrode 17.
  • the shield 12 is electrically connected to only one of the first substrate 10b and the second substrate 20.
  • a gap is provided between the first insulating portion 14 and a semiconductor substrate different from the semiconductor substrate to which the shielding portion 12 is connected, of the first substrate 10 b and the second substrate 20.
  • the shielding part 12 is connected to the third electrode 17. Therefore, the shielding part 12 is electrically connected to the first substrate 10 b and insulated from the second substrate 20. A gap is provided between the second substrate 20 and the first insulating portion 14. A second insulating portion 26a is disposed in the gap. The shielding part 12 may be electrically connected to the second substrate 20 and insulated from the first substrate 10b. A gap may be provided between the first substrate 10 b and the first insulating portion 14.
  • the configuration shown in FIG. 17 is the same as the configuration shown in FIG.
  • the cross section of the semiconductor device 3 including the line D1-D2 in FIG. 17 is the same as the cross section of the semiconductor device 1 shown in FIG.
  • the gap between the first insulating portion 14 and the second substrate 20 becomes a resin injection path. Therefore, it is not necessary to arrange the plurality of first insulating portions 14.
  • the shielding part 12 is connected to a fixed potential, it is not necessary to arrange the plurality of third electrodes 17. For this reason, the space
  • each embodiment of the present invention by arranging the first insulating portion, short-circuiting of the connecting portion is reduced. By arranging the shielding part, signal deterioration due to noise is reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Wire Bonding (AREA)

Abstract

 半導体装置は、第1の半導体基板と、第2の半導体基板と、複数の接続部と、第1の絶縁部と、遮蔽部と、第2の絶縁部とを有する。前記第2の半導体基板は、前記第1の半導体基板に積層されている。前記複数の接続部は、前記第1の半導体基板と前記第2の半導体基板との間に配置され、かつ前記第1の回路と前記第2の回路とを電気的に接続する。前記第1の絶縁部は前記複数の前記接続部の各々の周囲に配置されている。前記遮蔽部は、前記第1の絶縁部の内部に配置され、かつ導電体で構成されている。前記第2の遮蔽部は、前記接続部と前記第1の絶縁部との間に配置されている。

Description

半導体装置および半導体装置の製造方法
 本発明は、半導体装置および半導体装置の製造方法に関する。
 半導体デバイスの小型化に適した半導体チップの積層構造が注目されている。例えば、特許文献1に開示されたイメージャは、積層された複数の基板を有し、かつ第1の基板の表面のほぼ全体に画素アレイが配置されている。近年、電子機器の小型化の要求のために、半導体チップの更なる小型化が要求されている。
 積層型の半導体チップにおいて、2つの要求がある。
 第1の要求:2枚の半導体基板を接続するバンプ(接続部)は、微細に形成される。バンプは、高密度に配置される。2枚の半導体基板が貼り合わされるときにバンプが倒れるまたはつぶれることによるバンプのショートが発生しない。
 第2の要求:第1の半導体基板から出力された信号に、第2の半導体基板に配置された回路に起因するノイズが重畳しない。例えば、積層型イメージャにおいて、第1の半導体基板に配置された光電変換部から出力された信号に、第2の半導体基板に配置された回路に起因するノイズが重畳しない。
 上記の2つの要求に対して、特許文献2および特許文献3で開示された技術により解決が試みられている。特許文献2には、第1の要求に対する技術が開示されている。特許文献2に開示された技術において、バンプの間に絶縁物が配置されることによりバンプとバンプとの短絡が回避される。特許文献3に開示された技術において、2枚の基板の間に導体が配置される。これにより、第1の半導体基板から出力された信号に、第2の半導体基板に配置された回路に起因するノイズが重畳することが回避される。
日本国特許第4349232号公報 日本国特開平6-236981号公報 日本国特開2015-60909号公報
 第1の要求を満たすために、絶縁物を配置する方法が特許文献2に開示されている。第2の要求を満たすために、導体を配置すること方法が特許文献3に開示されている。しかし、第1の要求および第2の要求を同時に満たす試みはなされていない。
 本発明は、接続部のショートを低減し、かつノイズによる信号の劣化を低減することができる半導体装置および半導体装置の製造方法を提供することを目的とする。
 本発明の第1の態様によれば、半導体装置は、第1の半導体基板と、第2の半導体基板と、複数の接続部と、第1の絶縁部と、遮蔽部と、第2の絶縁部とを有する。前記第1の半導体基板は、第1の回路を含む。前記第2の半導体基板は、前記第1の半導体基板に積層され、かつ第2の回路を含む。前記複数の接続部は、前記第1の半導体基板と前記第2の半導体基板との間に配置され、かつ前記第1の回路と前記第2の回路とを電気的に接続する。前記第1の絶縁部は、前記複数の前記接続部の各々の周囲に配置されている。前記遮蔽部は、前記第1の絶縁部の内部に配置され、かつ導電体で構成されている。前記第2の絶縁部は、前記接続部と前記第1の絶縁部との間に配置されている。
 本発明の第2の態様によれば、第1の態様において、前記遮蔽部は、前記第1の半導体基板、前記第2の半導体基板、および前記複数の前記接続部のいずれとも電気的に絶縁されてもよい。
 本発明の第3の態様によれば、第1の態様において、前記遮蔽部は、前記第1の半導体基板および前記第2の半導体基板のいずれか1つのみと電気的に接続されてもよい。前記遮蔽部は、前記遮蔽部が接続された前記第1の半導体基板または前記第2の半導体基板内の固定された電位に接続されてもよい。
 本発明の第4の態様によれば、第1から第3の態様のいずれか1つにおいて、前記半導体装置は、複数の前記第1の絶縁部および複数の前記遮蔽部を有してもよい。前記複数の前記第1の絶縁部の間に間隙が設けられてもよい。前記複数の前記第1の絶縁部の各々と前記複数の前記接続部の各々との間に間隙が設けられてもよい。
 本発明の第5の態様によれば、第4の態様において、前記複数の前記接続部の各々に対応して2以上の前記第1の絶縁部および前記遮蔽部が配置されてもよい。
 本発明の第6の態様によれば、第1から第5の態様のいずれか1つにおいて、前記遮蔽部は、前記第1の半導体基板および前記第2の半導体基板のいずれか1つのみと電気的に接続されてもよい。前記第1の半導体基板および前記第2の半導体基板のうち前記遮蔽部が接続された半導体基板と異なる半導体基板と前記第1の絶縁部との間に間隙が設けられてもよい。
 本発明の第7の態様によれば、第1の態様において、前記第2の絶縁部は、前記接続部と前記第1の絶縁部との間に設けられた空隙であってもよい。
 本発明の第8の態様によれば、第1から第7の態様のいずれか1つにおいて、前記接続部は、第1の材料で構成されてもよい。前記遮蔽部は、前記第1の材料と異なる第2の材料で構成されてもよい。
 本発明の第9の態様によれば、第1から第8の態様のいずれか1つにおいて、前記第1の半導体基板と前記第2の半導体基板との積層方向に対する直交方向における前記遮蔽部の厚さは、前記直交方向における前記接続部の厚さよりも小さくてもよい。
 本発明の第10の態様によれば、半導体装置の製造方法は、第1の工程と、第2の工程と、第3の工程とを有する。前記第1の工程により、第1の半導体基板の第1の主面において、複数の接続部の各々が配置される第1の領域の周囲に第1の絶縁部が形成され、かつ前記第1の絶縁部の内部に遮蔽部が形成される。前記第1の半導体基板は第1の回路を含む。前記遮蔽部は導電体で構成されている。前記第2の工程により、第2の半導体基板の第2の主面において、前記第1の領域と対応する第2の領域に前記複数の前記接続部が形成される。前記第2の半導体基板は第2の回路を含む。前記第3の工程により、前記第1の主面と前記第2の主面とが対向した状態で前記第1の半導体基板と前記第2の半導体基板とが貼り合わされ、かつ前記接続部と前記第1の絶縁部との間に空隙が設けられる。前記複数の前記接続部は、前記第1の回路と前記第2の回路とを電気的に接続する。
 本発明の第11の態様によれば、第10の態様において、前記半導体装置の製造方法は、前記第1の半導体基板と前記第2の半導体基板とが貼り合わされた後、絶縁性の樹脂を前記空隙に充填する第4の工程をさらに有してもよい。
 上記の各態様によれば、第1の絶縁部が配置されることにより、接続部のショートが低減する。遮蔽部が配置されることにより、ノイズによる信号の劣化が低減する。
本発明の第1の実施形態の半導体装置の断面図である。 本発明の第1の実施形態の半導体装置の断面図である。 本発明の第1の実施形態の第1の基板の構成を示すブロック図である。 本発明の第1の実施形態の第2の基板の構成を示すブロック図である。 本発明の第1の実施形態の半導体装置の製造方法を説明するための断面図である。 本発明の第1の実施形態の半導体装置の製造方法を説明するための断面図である。 本発明の第1の実施形態の半導体装置の製造方法を説明するための断面図である。 本発明の第1の実施形態の半導体装置の製造方法を説明するための断面図である。 本発明の第1の実施形態の半導体装置の製造方法を説明するための断面図である。 本発明の第1の実施形態の半導体装置の製造方法を説明するための断面図である。 本発明の第1の実施形態の半導体装置の製造方法を説明するための断面図である。 本発明の第1の実施形態の半導体装置の製造方法を説明するための断面図である。 本発明の第1の実施形態の半導体装置の製造方法を説明するための断面図である。 本発明の第1の実施形態の変形例の半導体装置の断面図である。 本発明の第1の実施形態の変形例の半導体装置の断面図である。 本発明の第2の実施形態の半導体装置の断面図である。 本発明の第3の実施形態の半導体装置の断面図である。
 図面を参照し、本発明の実施形態を説明する。
 (第1の実施形態)
 図1は、本発明の第1の実施形態の半導体装置1の構成を示している。図1において、半導体装置1の断面が示されている。
 半導体装置1を構成する部分の寸法は、図1に示される寸法に従うとは限らない。半導体装置1を構成する部分の寸法は任意であってよい。図1以外の断面図における寸法についても同様である。
 図1に示すように、半導体装置1は、第1の基板10と、第2の基板20と、複数の接続部25と、遮蔽部12と、第1の絶縁部14と、複数の第2の絶縁部26とを有する。図1において、代表として1つの接続部25と1つの第2の絶縁部26との符号が示されている。図1に示す断面において、1つの遮蔽部12および1つの第1の絶縁部14は、複数の部分で構成されている。第1の基板10および第2の基板20は、第1の基板10と第2の基板20との積層方向Dr1に積層されている。積層方向Dr1は、第1の基板10の面100に垂直な方向である。積層方向Dr1は、第1の基板10の厚さ方向である。
 第1の基板10は、半導体材料で構成されている。例えば、第1の基板10を構成する半導体材料は、シリコン(Si)とゲルマニウム(Ge)との少なくとも1つである。したがって、第1の基板10は、半導体基板である。第1の基板10は、面100と面101とを有する。面100および面101は、第1の基板10の主面である。第1の基板10の主面は、第1の基板10の表面を構成する複数の面のうち相対的に広い面である。面100および面101は、互いに反対方向を向く。
 第1の基板10は、複数の第1の電極11を有する。図1において、代表として1つの第1の電極11の符号が示されている。第1の電極11は、導電材料(導電体)で構成されている。例えば、第1の電極11を構成する導電材料は、金(Au)、銀(Ag)、または銅(Cu)のような金属である。第1の電極11は、面100の第1の領域R1に配置されている。第1の電極11は、第1の基板10に含まれる第1の回路と電気的に接続されている。
 第2の基板20は、第1の基板10を構成する半導体材料と同様の半導体材料で構成されている。したがって、第2の基板20は、半導体基板である。第2の基板20は、面200と面201とを有する。面200および面201は、第2の基板20の主面である。第2の基板20の主面は、第2の基板20の表面を構成する複数の面のうち相対的に広い面である。面200および面201は、互いに反対方向を向く。面100および面201は、対向する。
 第2の基板20は、複数の第2の電極21を有する。図1において、代表として1つの第2の電極21の符号が示されている。第2の電極21は、第1の電極11を構成する導電材料と同様の導電材料で構成されている。第2の電極21は、面201の第2の領域R2に配置されている。第1の領域R1および第2の領域R2は、対向する。第2の電極21は、第2の基板20に含まれる第2の回路と電気的に接続されている。
 接続部25は、導電材料で構成されている。例えば、接続部25を構成する導電材料は、金(Au)、銀(Ag)、または銅(Cu)のような金属である。接続部25は、柱状の構造体である。接続部25は、第1の基板10と第2の基板20との間に配置されている。接続部25は、第1の領域R1に配置され、かつ第2の領域R2に配置されている。接続部25は、第1の電極11および第2の電極21に接続されている。これによって、接続部25は、第1の基板10および第2の基板20に接続されている。接続部25は、第1の基板10に含まれる第1の回路と、第2の基板20に含まれる第2の回路とを電気的に接続する。
 遮蔽部12は、導電材料で構成されている。例えば、遮蔽部12を構成する導電材料は、アルミニウム(Al)または銅(Cu)のような金属である。第1の絶縁部14は、絶縁材料(絶縁体)で構成されている。例えば、第1の絶縁部14を構成する絶縁材料は、酸化シリコン(SiO2)である。第1の絶縁部14は、壁状の構造体である。遮蔽部12および第1の絶縁部14は、第1の基板10と第2の基板20との間に配置されている。第1の絶縁部14は、第1の基板10および第2の基板20に接触する。第1の絶縁部14は、第1の基板10のみに接触してもよい。つまり、第1の絶縁部14と第2の基板20との間に間隙が設けられてもよい。第1の基板10および第2の基板20の主面に垂直な断面において、遮蔽部12は第1の絶縁部14の内部に配置されている。つまり、第1の絶縁部14は、遮蔽部12を覆う。遮蔽部12および第1の絶縁部14は、接続部25の周囲に配置されている。遮蔽部12は、ノイズを遮蔽する。第1の絶縁部14は、遮蔽部12を絶縁する。
 第2の絶縁部26は、空隙(空間)である。第2の絶縁部26は、第1の基板10と第2の基板20との間に配置されている。第2の絶縁部26は、接続部25と第1の絶縁部14との間に配置されている。第2の絶縁部26は、固形物によって充填されていない。接続部25および第1の絶縁部14は、互いに接触していない。第2の絶縁部26は、接続部25を絶縁する。
 図2は、図1の線A1-A2を含む半導体装置1の断面図である。図1に示す断面と図2に示す断面とは、直交する。図2において、代表として1つの接続部25と1つの遮蔽部12と1つの第2の絶縁部26との符号が示されている。複数の接続部25と複数の第2の絶縁部26とは、行列状に配置されている。図2において第1の絶縁部14は複数の部分で構成されている。第1の絶縁部14の複数の部分は、図示していない位置で互いに接続されている。したがって、半導体装置1は、1つの第1の絶縁部14と1つの遮蔽部12とを有する。隣接する2つの接続部25の間に、遮蔽部12と第1の絶縁部14と第2の絶縁部26とが配置されている。
 図2において、接続部25の断面は円である。接続部25の断面は多角形であってもよい。図2において、4つの接続部25が示されている。接続部25の数は2以上であればよい。
 半導体装置1がイメージャ(イメージセンサ)である例について、詳細に説明する。図3は、第1の基板10の構成を示している。図3に示すように、第1の基板10は、画素部30と、垂直読み出し回路40とを有する。図3において、複数の接続部25の位置が示されている。図3において、複数の接続部25の大きさは示されていない。図3において、代表として1つの接続部25の符号が示されている。
 画素部30は、複数の画素31を有する。図3において、代表として1つの画素31の符号が示されている。複数の画素31は行列状に配置されている。図3において、4つの画素31が示されている。画素31の数は2以上であればよい。画素31は、光電変換素子と、転送トランジスタと、リセットトランジスタと、選択トランジスタとを有する。光電変換素子は、画素31に入射した光に応じた画素信号を生成する。転送トランジスタは、光電変換素子から画素信号を読み出す。リセットトランジスタは、画素31をリセットする。選択トランジスタは、画素信号を出力する画素31を選択する。
 垂直読み出し回路40は、画素信号の読み出しを制御するための制御信号を出力する。これによって、垂直読み出し回路40は、複数の画素31からの画素信号の読み出しを制御する。垂直読み出し回路40から出力された制御信号は、複数の画素31に転送される。この制御信号によって、複数の画素31の配列における同一の行に配置された2つ以上の画素31から同時に画素信号が読み出される。
 図3において、3つの制御信号が示されている。3つの制御信号は、制御信号φTXと、制御信号φRSTと、制御信号φSELとである。制御信号φTXは、転送トランジスタを制御するための信号である。制御信号φRSTは、リセットトランジスタを制御するための信号である。制御信号φSELは、選択トランジスタを制御するための信号である。
 複数の画素31は、制御信号に応じて画素信号を出力する。複数の画素31の各々は、1つの接続部25に接続されている。つまり、複数の接続部25の各々は、複数の画素31の各々と対応するように配置されている。2つ以上の画素31が1つの接続部25に接続されてもよい。接続部25は、画素31から出力された画素信号を第2の基板20に転送する。
 画素31は、第1の基板10に配置された第1の回路を構成する。
 図4は、第2の基板20の構成を示している。図4に示すように、第2の基板20は、水平読み出し回路41と、メモリ部50と、信号処理回路60と、出力部70とを有する。図4において、複数の接続部25の位置が示されている。図4において、複数の接続部25の大きさは示されていない。図4において、代表として1つの接続部25の符号が示されている。
 接続部25は、複数の画素31から出力された画素信号を第2の基板20に出力する。接続部25は、メモリ部50に接続されている。メモリ部50は、複数の画素31から出力された画素信号を保持する。メモリ部50に保持された画素信号は、信号処理回路60に出力される。信号処理回路60は、水平読み出し回路41による制御に従って、画素信号に対して信号処理を行う。例えば、信号処理回路60は、CDS(Correlated Double Sampling:相関二重サンプリング)によるノイズ抑圧などの処理を行う。
 水平読み出し回路41は、信号処理回路60によって処理された画素信号を水平信号線80に読み出す。より具体的には、水平読み出し回路41は、信号処理回路60による信号処理と、画素信号の読み出しとを制御するための制御信号を信号処理回路60に出力する。この制御によって、複数の画素31の配列における同一の行に配置された2つ以上の画素31から出力された画素信号が水平信号線80に順次読み出される。
 出力部70は、信号処理回路60によって処理された画素信号を半導体装置1の外部に出力する。より具体的には、出力部70は、信号処理回路60によって処理された画素信号に対して、増幅処理などの処理を行う。出力部70は、処理された画素信号を半導体装置1の外部に出力する。
 メモリ部50と、信号処理回路60と、出力部70とは、第2の基板20に配置された第2の回路を構成する。
 上記のように、半導体装置1は、第1の基板10(第1の半導体基板)と、第2の基板20(第2の半導体基板)と、複数の接続部25と、第1の絶縁部14と、遮蔽部12と、第2の絶縁部26とを有する。第1の基板10は、第1の回路を含む。第2の基板20は、第1の基板10に積層され、かつ第2の回路を含む。複数の接続部25は、第1の基板10と第2の基板20との間に配置され、かつ第1の回路と第2の回路とを電気的に接続する。第1の絶縁部14は、複数の接続部25の各々の周囲に配置されている。遮蔽部12は、第1の絶縁部14の内部に配置され、かつ導電体で構成されている。第2の絶縁部26は、接続部25と第1の絶縁部14との間に配置されている。
 接続部25または第1の絶縁部14が形成されるときに接続部25または第1の絶縁部14に位置ずれが発生しうる。第1の基板10と第2の基板20とが貼り合わされるときに第1の基板10と第2の基板20との位置ずれが発生しうる。これらの位置ずれにより、接続部25と第1の絶縁部14とが接触する可能性がある。しかし、遮蔽部12が第1の絶縁部14により囲まれているため、接続部25と遮蔽部12とは接触しない。このため、接続部25のショートは低減される。遮蔽部12が第1の基板10と第2の基板20との間に配置されているため、第1の基板10から出力された信号に重畳する、第2の基板20に配置された第2の回路に起因するノイズは低減される。つまり、ノイズによる信号の劣化は低減される。
 図5から図13を参照し、半導体装置1の製造方法を説明する。図5から図13は、半導体装置1を構成する部分の断面を示している。
 (第1の準備工程)
 図5に示すように、第1の基板10が準備される。図示されていない第1の回路が第1の基板10に配置されている。第1の回路は、周知の半導体製造プロセスにより形成される。第1の基板10に必要な回路に対応する拡散層が形成された後、パターニング、エッチング、ビアの形成、および配線の形成が行われる。これらのプロセスを繰り返すことにより、第1の回路が形成される。
 (遮蔽部12および第1の絶縁部14の形成工程)
 図6に示すように、第1の基板10の面100に絶縁層13が形成され、かつ絶縁層13の内部に遮蔽部12が形成される。具体的には、面100に絶縁層が形成された後、絶縁層の表面をエッチングすることにより、溝が形成される。例えば、メッキにより、溝に遮蔽部12が形成される。絶縁層の表面が平坦化された後、絶縁材料を堆積することにより、絶縁層13が形成される。
 (エッチング工程)
 図7に示すように、絶縁層13および第1の基板10がエッチングされ、かつ溝15が形成される。これによって、第1の絶縁部14が形成される。絶縁層13のうちエッチングによって残った部分が第1の絶縁部14である。溝15は、第1の基板10の第1の領域R1に形成された凹部を含む。つまり、溝15は、第1の領域R1と対応する位置に形成される。隣接する第1の絶縁部14の間隔は、D1である。間隔D1は、第1の基板10と第2の基板20との積層方向Dr1に対する直交方向Dr2(図1)の距離である。直交方向Dr2は、面100aに水平な方向である。図6および図7に示す工程により、第1の領域R1の周囲に第1の絶縁部14が形成され、かつ第1の絶縁部14の内部に遮蔽部12が形成される。
 (電極形成工程)
 図8に示すように、溝15において、第1の基板10の第1の領域R1の凹部に第1の電極11が形成される。例えば、メッキまたは蒸着により第1の電極11が形成される。
 (第2の準備工程)
 図9に示すように、第2の電極21が形成された第2の基板20が準備される。図示されていない第2の回路が第2の基板20に配置されている。第2の回路の形成方法は、第1の基板10の第1の回路の形成方法と同様である。第2の電極21は、第2の基板20の面201において、第1の基板10の第1の領域R1と対応する第2の領域R2に配置されている。第2の電極21の形成方法は、第1の電極11の形成方法と同様である。
 (レジスト形成工程)
 図10に示すように、第2の基板20の面201にレジスト23が形成される。レジスト23において、第2の電極21が配置された第2の領域R2と対応する位置に溝24が形成される。溝24は、レジスト23をエッチングすることにより形成される。つまり、レジスト23において、第2の領域R2と対応する部分は除去される。
 (接続部形成工程)
 図11に示すように、溝24を導電材料で埋めることにより、柱状の接続部25が形成される。例えば、メッキまたは蒸着により接続部25が形成される。接続部25の厚さは、D2である。厚さD2は、第1の基板10と第2の基板20との積層方向Dr1に対する直交方向Dr2(図1)の幅である。厚さD2は、間隔D1よりも小さい。
 (レジスト除去工程)
 図12に示すように、レジスト23が除去される。
 (貼り合わせ工程)
 図13に示すように、第1の基板10と第2の基板20とが貼り合わされる。このとき、第1の基板10の面100と第2の基板20の面201とが対向する。このとき、第1の基板10の第1の領域R1と第2の基板20の第2の領域R2とが対向するように、第1の基板10および第2の基板20の位置が制御される。例えば、加熱圧縮により第1の基板10と第2の基板20とが貼り合わされる。第1の基板10と第2の基板20とが貼り合わされた後、図1に示す半導体装置1が完成する。第1の基板10と第2の基板20とが貼り合わされることにより、図1に示す第2の絶縁部26が形成される。
 上記のように、半導体装置1の製造方法は、第1の工程(図6および図7)と、第2の工程(図10、図11、および図12)と、第3の工程(図13)とを有する。第1の工程により、第1の基板10の面100(第1の主面)において、複数の接続部25の各々が配置される第1の領域R1の周囲に第1の絶縁部14が形成され、かつ第1の絶縁部14の内部に遮蔽部12が形成される。第1の基板10は第1の回路を含む。遮蔽部12は導電体で構成されている。第2の工程により、第2の基板20の面201(第2の主面)において、第1の領域R1と対応する第2の領域R2に複数の接続部25が形成される。第2の基板20は第2の回路を含む。第3の工程により、面100と面201とが対向した状態で第1の基板10と第2の基板20とが貼り合わされ、かつ接続部25と第1の絶縁部14との間に空隙が設けられる。複数の接続部25は、第1の回路と第2の回路とを電気的に接続する。
 本発明の各態様の半導体装置は、第1の電極11および第2の電極21の少なくとも1つに対応する構成を有していなくてもよい。本発明の各態様の半導体装置は、接続部25によって電気的に接続される第1の回路および第2の回路以外の回路を有していなくてもよい。本発明の各態様の半導体装置は、イメージャ以外の装置であってもよい。本発明の各態様の半導体装置の製造方法は、上記の第1から第3の工程以外の工程を有していなくてもよい。
 第1の実施形態の半導体装置1およびその製造方法において、第1の絶縁部14が配置されることにより、接続部25のショートが低減する。遮蔽部12が配置されることにより、ノイズによる信号の劣化が低減する。
 遮蔽部12は、第1の基板10、第2の基板20、および複数の接続部25のいずれとも電気的に絶縁されていてもよい。遮蔽部12がフローティングである場合、遮蔽部12を固定電位に接続するための構造を形成する必要がない。このため、遮蔽部12を微細化することができる。この結果、接続部25の間隔を小さくすることができる。このため、接続部25の高密度化が実現される。
 接続部25は、第1の材料で構成され、かつ遮蔽部12は、第1の材料と異なる第2の材料で構成されてもよい。つまり、接続部25と遮蔽部12とは、互いに異なる材料で構成されてもよい。微細加工しやすい材料で遮蔽部12が構成された場合、第1の絶縁部14が占める面積が低減される。このため、接続部25の高密度化が実現される。
 接続部25と第1の絶縁部14との間に空隙が設けられているため、半導体装置1の製造コストは、その空隙に樹脂が充填される場合の製造コストよりも抑制される。半導体装置1において、樹脂の膨張により接続部25が第1の基板10または第2の基板20から剥がれることが回避される。
 (第1の実施形態の変形例)
 図14は、本発明の第1の実施形態の変形例の半導体装置1aの構成を示している。図14において、半導体装置1aの断面が示されている。図14において、図1と異なる点を説明する。
 半導体装置1aにおいて、図1に示す半導体装置1における第2の絶縁部26が第2の絶縁部26aに変更される。第2の絶縁部26aは、絶縁材料で構成されている。例えば、第2の絶縁部26aを構成する絶縁材料は、樹脂である。第2の絶縁部26aは、接続部25と第1の絶縁部14との間に配置されている。第2の絶縁部26aは、接続部25および第1の絶縁部14に接触する。接続部25および第1の絶縁部14は、互いに接触していない。第2の絶縁部26aは、接続部25を絶縁する。
 半導体装置1aは、複数の第1の絶縁部14および複数の遮蔽部12を有する。複数の第1の絶縁部14の間に間隙が設けられている。複数の第1の絶縁部14の各々と複数の接続部25の各々との間に間隙が設けられている。つまり、隣接する2つの第1の絶縁部14の間に間隙が設けられている。複数の第1の絶縁部14は互いに離間している。複数の第1の絶縁部14の各々と複数の接続部25の各々とは互いに離間している。その間隙に第2の絶縁部26aが配置されている。複数の遮蔽部12の各々は、複数の第1の絶縁部14の各々の内部に配置されている。
 接続部25の厚さは、D2aである。厚さD2aは、第1の基板10と第2の基板20との積層方向Dr1に対する直交方向Dr2の幅である。厚さD2aは、図1に示す半導体装置1における接続部25の厚さD2(図11)よりも大きい。
 上記以外の点については、図14に示す構成は、図1に示す構成と同様である。
 図15は、図14の線B1-B2を含む半導体装置1aの断面図である。図14に示す断面と図15に示す断面とは、直交する。図15において、代表として1つの接続部25と1つの遮蔽部12と1つの第1の絶縁部14との符号が示されている。図15において、図2と異なる点を説明する。
 複数の接続部25の各々に対応して2以上の第1の絶縁部14および遮蔽部12が配置されている。つまり、1つの接続部25の周囲に2以上の第1の絶縁部14および遮蔽部12が配置されている。図15に示すように、1つの接続部25の周囲に4つの第1の絶縁部14および遮蔽部12が配置されている。1つの接続部25は、2以上の第1の絶縁部14および遮蔽部12によって囲まれている。
 第1の基板10と第2の基板20との積層方向Dr1に対する直交方向Dr2における遮蔽部12の厚さD3は、直交方向Dr2における接続部25の厚さD2aよりも小さい。
 上記以外の点については、図15に示す構成は、図2に示す構成と同様である。
 半導体装置1aの製造方法は、図5から図13に示す工程と、樹脂充填工程とを有する。図5から図13に示す工程については説明したので、これらの工程についての説明を省略する。図14を参照し、樹脂充填工程を説明する。
 (樹脂充填工程)
 図13に示す工程により、第1の絶縁部14および接続部25の周囲に空隙が設けられる。図14に示すように、この空隙に樹脂が充填されることにより、第2の絶縁部26aが形成される。
 半導体装置1aの製造方法は、第1から第3の工程に加えて、第4の工程を有する。第1の基板10と第2の基板20とが貼り合わされた後、第4の工程において絶縁性の樹脂が空隙に充填される。
 半導体装置1aにおいて、遮蔽部12の厚さD3は、接続部25の厚さD2a以上であってもよい。図1に示す半導体装置1において、第2の絶縁部26が樹脂で構成されてもよい。
 遮蔽部12の厚さD3が接続部25の厚さD2aよりも小さいことにより、接続部25の間隔を小さくすることができる。このため、接続部25の高密度化が実現される。あるいは、遮蔽部12の厚さD3が接続部25の厚さD2aよりも小さいことにより、接続部25の厚さD2aを大きくすることができる。このため、第1の基板10および第2の基板20と接続部25との接続の信頼性が向上する。
 複数の第1の絶縁部14が配置されることにより、複数の第1の絶縁部14の間に樹脂の注入経路が形成される。樹脂の充填時にボイドが発生しにくいため、第2の絶縁部26aの形成が容易である。
 第2の絶縁部26aが配置されているため、半導体装置1aに対する外部からの衝撃により接続部25が第1の基板10または第2の基板20から剥がれることが低減される。
 (第2の実施形態)
 図16は、本発明の第2の実施形態の半導体装置2の構成を示している。図16において、半導体装置2の断面が示されている。図16において、図14と異なる点を説明する。
 半導体装置2において、図14に示す半導体装置1aにおける第1の基板10が第1の基板10aに変更される。第1の基板10aは、第1の基板10を構成する半導体材料と同様の半導体材料で構成されている。第1の基板10aは、面100aと面101aとを有する。面100aおよび面101aは、第1の基板10aの主面である。面100aおよび面101aは、互いに反対方向を向く。
 第1の基板10aは、複数の第1の電極11と、複数の第3の電極17とを有する。図16において、代表として1つの第3の電極17の符号が示されている。第3の電極17は、導電材料で構成されている。例えば、第3の電極17を構成する導電材料は、金(Au)、銀(Ag)または銅(Cu)のような金属である。第3の電極17は、面100aの第3の領域R3に配置されている。固定電位が第3の電極17に印加されている。例えば、固定電位は、電源またはグランドである。第3の電極17は、第1の基板10aが有する第1の回路に電気的に接続されてもよい。第3の電極17はパッド形状であってもよいし、ビア形状であってもよい。
 遮蔽部12は、第1の基板10aおよび第2の基板20のいずれか1つのみと電気的に接続されている。遮蔽部12は、遮蔽部12が接続された第1の基板10aまたは第2の基板20内の固定された電位に接続されている。
 図16に示す半導体装置2において、遮蔽部12は、第3の電極17と接続されている。したがって、遮蔽部12は、第1の基板10aと電気的に接続され、かつ第2の基板20とは絶縁されている。遮蔽部12は、第2の基板20と電気的に接続され、かつ第1の基板10aとは絶縁されてもよい。
 図16における接続部25の厚さと、図14における接続部25の厚さとは、異なる。しかし、図16における接続部25の厚さと、図14における接続部25の厚さとが同一であってもよい。半導体装置2において、図1に示す半導体装置1と同様に1つの第1の絶縁部14が配置されてもよい。
 上記以外の点については、図16に示す構成は、図14に示す構成と同様である。図16の線C1-C2を含む半導体装置2の断面は、図15に示す半導体装置1aの断面と同様である。
 遮蔽部12が固定電位に接続されることにより、ノイズに対する遮蔽効果が向上する。
 (第3の実施形態)
 図17は、本発明の第3の実施形態の半導体装置3の構成を示している。図17において、半導体装置3の断面が示されている。図17において、図16と異なる点を説明する。
 半導体装置3において、図16に示す半導体装置2における第1の基板10aが第1の基板10bに変更される。第1の基板10bは、第1の基板10aを構成する半導体材料と同様の半導体材料で構成されている。第1の基板10bは、面100bと面101bとを有する。面100bおよび面101bは、第1の基板10bの主面である。面100bおよび面101bは、互いに反対方向を向く。
 図16に示す半導体装置2における第1の基板10aは複数の第3の電極17を有するが、図17に示す半導体装置3における第1の基板10bは1つの第3の電極17を有する。図1に示す半導体装置1と同様に、半導体装置3は1つの遮蔽部12を有する。遮蔽部12は、1つの第3の電極17と接続されている。
 遮蔽部12は、第1の基板10bおよび第2の基板20のいずれか1つのみと電気的に接続されている。第1の基板10bおよび第2の基板20のうち遮蔽部12が接続された半導体基板と異なる半導体基板と第1の絶縁部14との間に間隙が設けられている。
 図17に示す半導体装置3において、遮蔽部12は、第3の電極17と接続されている。したがって、遮蔽部12は、第1の基板10bと電気的に接続され、かつ第2の基板20とは絶縁されている。第2の基板20と第1の絶縁部14との間に間隙が設けられている。その間隙に第2の絶縁部26aが配置されている。遮蔽部12は、第2の基板20と電気的に接続され、かつ第1の基板10bとは絶縁されてもよい。第1の基板10bと第1の絶縁部14との間に間隙が設けられてもよい。
 上記以外の点については、図17に示す構成は、図16に示す構成と同様である。図17の線D1-D2を含む半導体装置3の断面は、図2に示す半導体装置1の断面と同様である。
 第1の絶縁部14と第2の基板20との間の間隙が樹脂の注入経路になる。したがって、複数の第1の絶縁部14を配置する必要がない。遮蔽部12が固定電位に接続される場合、複数の第3の電極17を配置する必要がない。このため、第1の電極11の間隔を小さくする、すなわち接続部25の間隔を小さくすることができる。このため、接続部25の高密度化が実現される。
 以上、本発明の好ましい実施形態を説明したが、本発明はこれら実施形態およびその変形例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。
 本発明の各実施形態によれば、第1の絶縁部が配置されることにより、接続部のショートが低減する。遮蔽部が配置されることにより、ノイズによる信号の劣化が低減する。
 1,1a,2,3 半導体装置
 10,10a,10b 第1の基板
 11 第1の電極
 12 遮蔽部
 14 第1の絶縁部
 17 第3の電極
 20 第2の基板
 21 第2の電極
 25 接続部
 26,26a 第2の絶縁部
 30 画素部
 31 画素
 40 垂直読み出し回路
 41 水平読み出し回路
 50 メモリ部
 60 信号処理回路
 70 出力部

Claims (11)

  1.  第1の回路を含む第1の半導体基板と、
     前記第1の半導体基板に積層され、かつ第2の回路を含む第2の半導体基板と、
     前記第1の半導体基板と前記第2の半導体基板との間に配置され、かつ前記第1の回路と前記第2の回路とを電気的に接続する複数の接続部と、
     前記複数の前記接続部の各々の周囲に配置された第1の絶縁部と、
     前記第1の絶縁部の内部に配置され、かつ導電体で構成された遮蔽部と、
     前記接続部と前記第1の絶縁部との間に配置された第2の絶縁部と、
     を有する半導体装置。
  2.  前記遮蔽部は、前記第1の半導体基板、前記第2の半導体基板、および前記複数の前記接続部のいずれとも電気的に絶縁されている
     請求項1に記載の半導体装置。
  3.  前記遮蔽部は、前記第1の半導体基板および前記第2の半導体基板のいずれか1つのみと電気的に接続され、
     前記遮蔽部は、前記遮蔽部が接続された前記第1の半導体基板または前記第2の半導体基板内の固定された電位に接続されている
     請求項1に記載の半導体装置。
  4.  複数の前記第1の絶縁部および複数の前記遮蔽部を有し、
     前記複数の前記第1の絶縁部の間に間隙が設けられ、
     前記複数の前記第1の絶縁部の各々と前記複数の前記接続部の各々との間に間隙が設けられている
     請求項1から請求項3のいずれか一項に記載の半導体装置。
  5.  前記複数の前記接続部の各々に対応して2以上の前記第1の絶縁部および前記遮蔽部が配置されている
     請求項4に記載の半導体装置。
  6.  前記遮蔽部は、前記第1の半導体基板および前記第2の半導体基板のいずれか1つのみと電気的に接続され、
     前記第1の半導体基板および前記第2の半導体基板のうち前記遮蔽部が接続された半導体基板と異なる半導体基板と前記第1の絶縁部との間に間隙が設けられている
     請求項1から請求項5のいずれか一項に記載の半導体装置。
  7.  前記第2の絶縁部は、前記接続部と前記第1の絶縁部との間に設けられた空隙である
     請求項1に記載の半導体装置。
  8.  前記接続部は、第1の材料で構成され、
     前記遮蔽部は、前記第1の材料と異なる第2の材料で構成されている
     請求項1から請求項7のいずれか一項に記載の半導体装置。
  9.  前記第1の半導体基板と前記第2の半導体基板との積層方向に対する直交方向における前記遮蔽部の厚さは、前記直交方向における前記接続部の厚さよりも小さい
     請求項1から請求項8のいずれか一項に記載の半導体装置。
  10.  第1の半導体基板の第1の主面において、複数の接続部の各々が配置される第1の領域の周囲に第1の絶縁部を形成し、かつ前記第1の絶縁部の内部に遮蔽部を形成し、前記第1の半導体基板は第1の回路を含み、前記遮蔽部は導電体で構成された第1の工程と、
     第2の半導体基板の第2の主面において、前記第1の領域と対応する第2の領域に前記複数の前記接続部を形成し、前記第2の半導体基板は第2の回路を含む第2の工程と、
     前記第1の主面と前記第2の主面とが対向した状態で前記第1の半導体基板と前記第2の半導体基板とを貼り合わせ、かつ前記接続部と前記第1の絶縁部との間に空隙を設け、前記複数の前記接続部は、前記第1の回路と前記第2の回路とを電気的に接続する第3の工程と、
     を有する半導体装置の製造方法。
  11.  前記第1の半導体基板と前記第2の半導体基板とが貼り合わされた後、絶縁性の樹脂を前記空隙に充填する第4の工程をさらに有する
     請求項10に記載の半導体装置の製造方法。
PCT/JP2016/061533 2016-04-08 2016-04-08 半導体装置および半導体装置の製造方法 WO2017175376A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018510206A JPWO2017175376A1 (ja) 2016-04-08 2016-04-08 半導体装置および半導体装置の製造方法
PCT/JP2016/061533 WO2017175376A1 (ja) 2016-04-08 2016-04-08 半導体装置および半導体装置の製造方法
US16/129,072 US20190013347A1 (en) 2016-04-08 2018-09-12 Semiconductor device and method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/061533 WO2017175376A1 (ja) 2016-04-08 2016-04-08 半導体装置および半導体装置の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/129,072 Continuation US20190013347A1 (en) 2016-04-08 2018-09-12 Semiconductor device and method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2017175376A1 true WO2017175376A1 (ja) 2017-10-12

Family

ID=60000930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061533 WO2017175376A1 (ja) 2016-04-08 2016-04-08 半導体装置および半導体装置の製造方法

Country Status (3)

Country Link
US (1) US20190013347A1 (ja)
JP (1) JPWO2017175376A1 (ja)
WO (1) WO2017175376A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022044821A1 (ja) * 2020-08-26 2022-03-03 株式会社村田製作所 電子部品、モジュールおよび電子部品の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3719841B1 (en) 2019-04-01 2022-02-16 Detection Technology Oy Radiation sensor element and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237537A (ja) * 1987-03-26 1988-10-04 Canon Inc 電気回路部材
JPH06236981A (ja) * 1993-02-10 1994-08-23 Fujitsu Ltd 固体撮像素子
JP2005175263A (ja) * 2003-12-12 2005-06-30 Seiko Epson Corp 半導体装置の製造方法、半導体装置、電子機器
JP2013183059A (ja) * 2012-03-02 2013-09-12 New Japan Radio Co Ltd 半導体装置の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0284820A3 (en) * 1987-03-04 1989-03-08 Canon Kabushiki Kaisha Electrically connecting member, and electric circuit member and electric circuit device with the connecting member
JP2015060909A (ja) * 2013-09-18 2015-03-30 オリンパス株式会社 半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237537A (ja) * 1987-03-26 1988-10-04 Canon Inc 電気回路部材
JPH06236981A (ja) * 1993-02-10 1994-08-23 Fujitsu Ltd 固体撮像素子
JP2005175263A (ja) * 2003-12-12 2005-06-30 Seiko Epson Corp 半導体装置の製造方法、半導体装置、電子機器
JP2013183059A (ja) * 2012-03-02 2013-09-12 New Japan Radio Co Ltd 半導体装置の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022044821A1 (ja) * 2020-08-26 2022-03-03 株式会社村田製作所 電子部品、モジュールおよび電子部品の製造方法

Also Published As

Publication number Publication date
JPWO2017175376A1 (ja) 2019-02-14
US20190013347A1 (en) 2019-01-10

Similar Documents

Publication Publication Date Title
US11626356B2 (en) Semiconductor device
JP5853351B2 (ja) 半導体装置、半導体装置の製造方法、及び電子機器
JP6779825B2 (ja) 半導体装置および機器
JP5664205B2 (ja) 半導体装置とその製造方法、及び電子機器
EP2317558B1 (en) Semiconductor device, manufacturing method thereof, and electronic apparatus
US9478520B2 (en) Solid-state imaging device, imaging apparatus, substrate, semiconductor device and method of manufacturing the solid-state imaging device
CN105720067B9 (zh) 固态图像拾取设备
CN110678984B (zh) 成像器件和电子装置
KR20210083382A (ko) 반도체 장치, 고체 촬상 장치 및 전자기기
US11908879B2 (en) Semiconductor device
JP6256562B2 (ja) 固体撮像装置及び電子機器
KR20120067282A (ko) 반도체 장치와 그 제조 방법, 및 전자 기기
WO2021084959A1 (ja) 撮像装置及び電子機器
WO2017175376A1 (ja) 半導体装置および半導体装置の製造方法
JP6233376B2 (ja) 固体撮像装置及び電子機器
JPWO2016067386A1 (ja) 固体撮像装置
JP2018078305A (ja) 固体撮像装置及び電子機器
JP7001120B2 (ja) 固体撮像装置及び電子機器
WO2023105993A1 (ja) 固体撮像装置及び電子機器
WO2016035184A1 (ja) 固体撮像装置
KR20100079556A (ko) 씨모스 이미지 센서 및 그의 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018510206

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897932

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897932

Country of ref document: EP

Kind code of ref document: A1