WO2017173722A1 - 一种控制终端的方法及装置 - Google Patents

一种控制终端的方法及装置 Download PDF

Info

Publication number
WO2017173722A1
WO2017173722A1 PCT/CN2016/083666 CN2016083666W WO2017173722A1 WO 2017173722 A1 WO2017173722 A1 WO 2017173722A1 CN 2016083666 W CN2016083666 W CN 2016083666W WO 2017173722 A1 WO2017173722 A1 WO 2017173722A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
preset
heating
power control
time period
Prior art date
Application number
PCT/CN2016/083666
Other languages
English (en)
French (fr)
Inventor
魏秋娟
李海禄
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017173722A1 publication Critical patent/WO2017173722A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present invention relate to, but are not limited to, data communication, and in particular, to a method and a terminal for controlling a terminal.
  • the terminals are equipped with batteries including nickel-cadmium batteries, nickel-hydrogen batteries and lithium-ion batteries.
  • the operating temperature of the battery is 0 to 40 °C.
  • the ambient temperature is low, the activity of the battery will decrease to cause the battery to consume very fast and cannot meet the normal working requirements of the terminal.
  • the terminal usually sets a temperature threshold and automatically shuts down when its battery temperature is lower than the temperature threshold.
  • the terminal detects whether the temperature of the battery is self-determined, and determines whether to heat the terminal battery according to the detected temperature. Ensure that the terminal can achieve an increase in its own battery temperature at low temperatures.
  • the embodiment of the invention provides a method and a terminal for controlling a terminal, which can effectively prevent the battery power of the terminal from dropping too fast when the terminal is in a low temperature state, and quickly solve the problem that the terminal automatically shuts down due to the battery temperature being too low.
  • An embodiment of the present invention provides a method for controlling a terminal, including:
  • the battery of the terminal is heated according to the power control parameter.
  • the method before detecting the current battery temperature of the terminal, the method further includes: when the heating function is triggered, heating the battery of the terminal according to the preset power control parameter.
  • determining the power control parameter according to the preset policy includes:
  • Determining that the preset time period is the ith preset time period after the heating function is triggered, and i is greater than or equal to 1;
  • a method for setting a correspondence between the sequence of the preset time segments and the power control parameters includes:
  • the method further includes:
  • the method further includes:
  • determining the power control parameter according to the correspondence between the order of the ith preset time period and the preset preset time period and the power control parameter specifically:
  • the stopping the heating of the terminal battery when the current battery temperature is greater than or equal to the preset temperature threshold includes:
  • Heating of the terminal battery is stopped according to the second interrupt signal.
  • An embodiment of the present invention provides a terminal, including: a detecting unit, a determining unit, and a heating unit, where:
  • the detecting unit is configured to detect a current battery temperature of the terminal when a preset time period after the heating function is triggered arrives;
  • a determining unit configured to determine a power control parameter according to a preset policy when the current battery temperature detected by the detecting unit is less than a preset temperature threshold
  • a heating unit configured to heat the battery of the terminal according to the power control parameter determined by the determining unit.
  • the determining unit is specifically configured to:
  • the preset time period is the ith preset time after the heating function is triggered, i is greater than or equal to 1; according to the ith preset time period, and the preset preset time period sequence and power control The correspondence between the parameters determines the power control parameters.
  • the heating unit is further configured to:
  • the heating function When the heating function is triggered, the battery of the terminal is heated according to a preset power control parameter.
  • the terminal further includes a correspondence acquiring unit, and is configured to:
  • the heating unit is further configured to:
  • the terminal further includes a signal generating unit, configured to: after the detecting unit detects the current battery temperature of the terminal, and after the determining unit determines that the preset time period is the ith after the heating function is triggered Before the preset time period, when the current battery temperature detected by the detecting unit is less than a preset temperature threshold, generating a first interrupt signal for turning on battery heating of the terminal; triggering according to the first interrupt signal First control signal;
  • the determining unit is specifically configured to: according to the first control signal generated by the signal generating unit, the ith preset time period, and a preset preset time period sequence and power control The correspondence between the parameters determines the power control parameters.
  • the signal generating unit is further configured to: when the current battery temperature is greater than or equal to the preset temperature threshold, generating a second interrupt signal for stopping battery heating of the terminal;
  • the heating unit is specifically configured to: when the current battery temperature detected by the detecting unit is greater than or equal to the preset temperature threshold, stop according to the second interrupt signal generated by the signal generating unit Heating of the terminal battery.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions for executing any of the above methods for controlling a terminal.
  • the embodiment of the invention provides a method and a terminal for controlling a terminal.
  • the current battery temperature of the terminal is detected; when the current battery temperature is less than the preset temperature threshold, according to the preset
  • the strategy determines the power control parameters; the battery of the terminal is heated according to the power control parameters.
  • the above technical implementation scheme is adopted, and the power control parameters are dynamically adjusted according to a preset strategy, which effectively prevents the terminal battery from being excessively consumed, rapidly and efficiently increases the temperature of the terminal battery, and quickly solves the problem that the terminal automatically shuts down due to the battery temperature being too low. The problem.
  • FIG. 1 is a schematic flowchart 1 of a method for controlling a terminal according to an embodiment of the present disclosure
  • FIG. 2 is a second schematic flowchart of a method for controlling a terminal according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart 3 of a method for controlling a terminal according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart 4 of a method for controlling a terminal according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram 1 of a terminal according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram 2 of a terminal according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram 3 of a terminal according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram 4 of a terminal according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a determining unit and a heating unit according to an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart 1 of a method for controlling a terminal according to an embodiment of the present invention, including:
  • Step 101 detecting a current battery temperature of the terminal when a preset time period after the heating function is triggered arrives;
  • the preset time period is a preset time interval for detecting the current battery temperature of the terminal after the heating function of the terminal is triggered, and is used for periodically detecting the current battery temperature of the terminal after the heating function of the terminal is triggered.
  • the terminal detects the current battery temperature in a plurality of manners, for example, using a temperature sensor disposed inside the terminal to detect the current battery temperature, which is not specifically limited in this embodiment of the present invention.
  • the terminal includes a terminal of a built-in battery such as a smart phone, a tablet computer, a wireless fidelity (WIFI), and a wireless fidelity (WIFI) hotspot (WIFI).
  • a terminal of a built-in battery such as a smart phone, a tablet computer, a wireless fidelity (WIFI), and a wireless fidelity (WIFI) hotspot (WIFI).
  • WIFI wireless fidelity
  • WIFI wireless fidelity hotspot
  • the battery of the terminal includes, but is not limited to, a lithium battery, a lithium polymer battery, and a battery used by other smart terminals.
  • the embodiment of the present invention does not specifically limit the battery type of the terminal.
  • step 100 when the heating function is triggered, the battery of the terminal is heated according to the preset power control parameter.
  • the preset power control parameter is a power control parameter that the terminal heats the battery of the terminal when the heating function is triggered (when the heating is performed for the first time).
  • the power control parameter is a parameter for controlling heating power when heating the terminal battery, including a heating voltage or a heating current.
  • the terminal can trigger the heating function in various ways.
  • the terminal can periodically trigger the heating function, and the terminal can also trigger the heating function according to the user's needs.
  • the embodiment of the present invention does not specifically limit the manner in which the terminal triggers the heating function.
  • Step 102 When the current battery temperature is less than a preset temperature threshold, determine a power control parameter according to a preset policy.
  • the preset temperature threshold is a preset temperature threshold for determining whether to heat the terminal battery.
  • the preset temperature threshold can be set according to the actual situation. Under normal circumstances, when the battery temperature is -10 °C, the terminal will automatically shut down due to the battery temperature being too low. Then, in order to avoid the phenomenon that the terminal automatically shuts down, the preset temperature threshold needs to be set above -10 °C, for example, the preset temperature threshold is set to -5 °C.
  • the preset strategy is used to determine the stepwise power control parameters.
  • the preset policy may include determining a corresponding power control parameter according to a temperature difference between the current battery temperature and the preset temperature threshold, and a mapping relationship between the temperature difference and the power control parameter.
  • the mapping relationship between the temperature difference and the power control parameter may be set to increase the value of the power control parameter as the temperature difference increases to increase the heating power calculated according to the power control parameter. In this way, a dynamic stepwise adjustment of the heating power is achieved, thereby enabling rapid heating of the battery of the terminal.
  • the preset policy may also include other manners, and the embodiment of the present invention does not specifically limit this.
  • the power control parameter is a parameter for controlling heating power when heating the terminal battery, including a heating voltage or a heating current.
  • the heating power when the resistance value is constant, the heating power can be increased by increasing the heating voltage or increasing the heating current. It can be seen that the heating voltage or the heating current is a power control parameter for controlling the heating power.
  • determining the power control parameter according to the preset policy includes: determining that the preset time period is the ith preset time period after the heating function is triggered, i is greater than or equal to 1; according to the ith preset time period and the preset Determining a power control parameter by a correspondence between a sequence of preset time periods and power control parameters;
  • the preset time period is 10 minutes
  • the 10 minutes after the heating function of the terminal arrives, the current battery temperature T1 of the terminal is detected; when T1 is less than the preset temperature threshold, the preset time period is determined as The first preset time period after the heating function is triggered; determining the power control parameter X1 according to the correspondence between the order of the first preset time period and the preset preset time period and the power control parameter; according to the X1 pair
  • the battery of the terminal is heated.
  • the preset time period is determined as the second preset after the heating function is triggered.
  • the power control parameter is determined according to the i-th preset time period and the preset correspondence, indicating that the power control parameter is dynamically adjustable.
  • the power control parameter may be added. heating power.
  • Table 1 shows the correspondence between the order of preset preset time periods and the order of power control parameters.
  • the i-th heating power is the heating power determined according to the i-th power control parameter, and P1 ⁇ P2 ⁇ P3.
  • the setting method of the correspondence between the order of the preset time period and the power control parameter includes: according to a preset preset time period, the preset power control parameters are iterated according to a preset rule, and corresponding power control parameters are obtained.
  • the preset rule may include multiple iterative algorithms, for example, linear programming, non-linear programming, least squares, etc., which are not specifically limited in this embodiment of the present invention.
  • Table 2 shows the correspondence between the order of the preset time period and the order of the power control parameters, and the power control parameter is the heating voltage, the preset power control parameter is 1.4V, and the iteration parameter is 0.2V.
  • the preset power control parameter 1.4V is used as the initial value of the iteration according to the preset rule, that is, as the sequence number of the preset time period increases, the corresponding heating voltage is incremented according to the iteration parameter of 0.2V. .
  • the preset power control parameter 1.4V is used as the initial value of the iteration according to the preset rule, that is, as the sequence number of the preset time period increases, the corresponding heating voltage is incremented according to the iteration parameter of 0.2V.
  • the first heating voltage corresponding to the first preset time period is the sum of 1.4V and the iteration parameter of 0.2V, that is, 1.6V, and the first heating voltage is taken as the initial value of the next iteration;
  • the second heating voltage corresponding to the second preset time period is the result of the previous iteration, that is, the sum of the first heating voltage of 1.6V and the iteration parameter of 0.2V, that is, 1.8V;
  • the third heating voltage corresponding to the third preset time period is the result of the last iteration, that is, the sum of the second heating voltage of 1.8 V and the iteration parameter of 0.2 V, that is, 2.0 V.
  • the above-mentioned iterative method may also be implemented in another manner, including: setting the preset power control parameter 1.4V as the initial value of the iteration, and corresponding heating voltage as the sequence number of the preset time period increases. It is the sum of the preset power control parameter 1.4V and the corresponding multiple of the iteration parameter 0.2V. Specifically:
  • the first heating voltage corresponding to the first preset time period is, the preset power control parameter is 1.4V, and the iteration parameter is 0.2V, that is, the sum of 0.2V, 1.6V;
  • the second heating voltage corresponding to the second preset time period is a preset power control parameter of 1.4V, which is twice the iteration parameter of 0.2V, that is, 0.4V, and 1.8V;
  • the third heating voltage corresponding to the third preset time period is that the preset power control parameter is 1.4V, which is three times the iteration parameter of 0.2V, that is, the sum of 0.6V, 2.0V.
  • the method further includes: when the current battery temperature is less than the preset temperature threshold, generating a first interrupt signal of the battery heating of the terminal; triggering the first control signal according to the first interrupt signal; correspondingly, corresponding to the power control parameter according to the order of the i-th preset time period and the preset preset time period
  • the determining the power control parameter includes: determining the power control parameter according to the first control signal, the ith preset time period, and the correspondence between the preset preset time period and the power control parameter.
  • the first interrupt signal is used to turn on the battery heating of the terminal.
  • the first control signal is used to trigger the determination of the power control parameter. It can be seen that the terminal determines to turn on the battery heating of the terminal within the current preset time period according to the first interrupt signal, and determines the heating power for heating the battery of the terminal according to the power control parameter.
  • Step 103 Heating the battery of the terminal according to the power control parameter.
  • the power control parameter for heating the battery of the terminal is dynamically adjustable according to a preset strategy, thus avoiding heating the battery of the terminal by a single power control parameter, and improving the heating speed of the battery of the heating terminal.
  • heating can be performed by using a heating element such as a constant resistance electric heating wire, a PTC heating sheet, a heating film, a heating sheet, an electric heater, a power battery heating film, a heating plate, or the like.
  • a heating element such as a constant resistance electric heating wire, a PTC heating sheet, a heating film, a heating sheet, an electric heater, a power battery heating film, a heating plate, or the like. This example does not impose specific restrictions.
  • the heating element can be placed in close proximity to the battery to better heat the battery and improve heating efficiency.
  • step 101 is repeatedly performed. Until the current battery temperature of the terminal is greater than or equal to the preset temperature threshold.
  • step 101 the method further includes step 104:
  • the step 104 specifically includes: generating a second interrupt signal for stopping battery heating of the terminal when the current battery temperature is greater than or equal to the preset temperature threshold; and stopping heating of the terminal battery according to the second interrupt signal.
  • the method further includes: triggering the second control signal according to the second interrupt signal, wherein the second control signal is used to turn off the ith power Determination of control parameters. Since the terminal stops heating the terminal battery according to the second interrupt signal, the terminal does not need to determine the heating power for heating the battery of the terminal, and thus, the second control signal is used to turn off the determination of the i-th power control parameter.
  • a method for controlling a terminal detects a current battery temperature of a terminal when a preset time period after the heating function is triggered, and determines a current battery temperature when the current battery temperature is less than a preset temperature threshold.
  • Power control parameters the battery of the terminal is heated according to the power control parameters.
  • the above technical implementation scheme is adopted, and the power control parameters are dynamically adjusted according to a preset strategy, which effectively prevents the terminal battery from being excessively consumed, rapidly and efficiently increases the temperature of the terminal battery, and quickly solves the problem that the terminal automatically shuts down due to the battery temperature being too low.
  • the problem effectively avoids the situation in which the temperature of the terminal battery cannot be rapidly increased due to heat dissipation greater than heating during single power heating.
  • FIG. 4 is a schematic flowchart diagram of a method for controlling a terminal according to an embodiment of the present disclosure, where the method includes:
  • Step 401 Acquire a preset power control parameter, a preset temperature threshold, and a preset time period.
  • the power control parameter is a parameter for controlling heating power when the terminal battery is heated.
  • the power control parameters are dynamically adjustable, such as X1, X2, and X3 in Table 1.
  • the preset time period is preset to detect the current battery temperature of the terminal after the heating function of the terminal is triggered.
  • the time interval is used to periodically detect the current battery temperature of the terminal after the heating function of the terminal is triggered.
  • the preset temperature threshold is a preset temperature threshold for determining whether to heat the terminal battery. It should be noted that the preset temperature threshold is set according to actual conditions. Under normal circumstances, when the battery temperature is -10 °C, the terminal will automatically shut down due to the battery temperature being too low. Then, in order to avoid the phenomenon that the terminal automatically shuts down, the preset temperature threshold needs to be set above -10 °C, for example, the preset temperature threshold is set to -5 °C.
  • Step 402 When the heating function is triggered, heating the battery of the terminal according to the preset power control parameter;
  • the preset power control parameter is a power control parameter that is used by the terminal to heat the battery of the terminal when the heating function is triggered.
  • the terminal can trigger the heating function in various ways.
  • the terminal can periodically trigger the heating function, and the terminal can also trigger the heating function according to the user's needs.
  • Step 403 When the ith preset time period after the heating function is triggered, the current battery temperature of the terminal is detected, i is greater than or equal to 1;
  • Step 404 Determine whether the current battery temperature is less than the preset temperature threshold, and if so, perform steps 405-408; if not, perform steps 409-410;
  • Step 405 Generate a first interrupt signal for turning on battery heating of the terminal
  • Step 406 Trigger the first control signal according to the first interrupt signal.
  • Step 407 Determine a power control parameter according to a first control signal, and a correspondence between an order of the i-th preset time period and a preset preset time period and a power control parameter;
  • the power control parameters include a heating voltage and a heating current.
  • the heating power can be increased by increasing the heating voltage or increasing the heating current.
  • a method for setting a correspondence between a sequence of a preset time period and a sequence of power control parameters includes: iterating according to a preset rule according to a preset preset time period, And get the order of the corresponding power control parameters.
  • Step 408 Heating the battery of the terminal according to the power control parameter
  • the first interrupt signal is used to turn on the battery heating of the terminal; the first control signal is used to touch The determination of the ith power control parameter is made. It can be seen that the terminal determines to turn on the battery heating of the terminal according to the first interrupt signal, and determines the heating power for heating the battery of the terminal according to the i-th power control parameter.
  • step 403 is repeatedly performed until the current battery temperature of the terminal is greater than or equal to the preset temperature threshold.
  • Step 409 Generate a second interrupt signal for stopping battery heating of the terminal
  • Step 410 Stop heating the terminal battery according to the second interrupt signal.
  • the current battery temperature of the terminal is detected, i is greater than or equal to 1; when the current battery temperature is less than the preset temperature threshold, according to the ith pre-pre.
  • the corresponding relationship between the sequence of the time period and the preset preset time period and the order of the power control parameters is determined, and the i-th power control parameter is determined; and the battery of the terminal is heated according to the i-th power control parameter.
  • the above technology is used to dynamically adjust the power control parameters, effectively preventing the battery power of the terminal from dropping too fast, and quickly and efficiently improving the temperature of the terminal battery, thereby quickly solving the problem that the terminal automatically shuts down due to the low battery temperature, effectively avoiding
  • the heat generated by the heat is greater than the heating, which cannot rapidly increase the temperature of the terminal battery.
  • FIG. 5 is a schematic structural diagram 1 of a terminal according to an embodiment of the present invention.
  • the terminal 50 includes: a detecting unit 501, a determining unit 502, and a heating unit 503, where:
  • the detecting unit 501 is configured to detect a current battery temperature of the terminal when a preset time period after the heating function is triggered arrives;
  • the determining unit 502 is configured to determine, according to a preset policy, a power control parameter when the current battery temperature detected by the detecting unit 501 is less than a preset temperature threshold;
  • the heating unit 503 is configured to heat the battery of the terminal according to the power control parameter determined by the determining unit 502.
  • the determining unit 502 is specifically configured to: determine that the preset time period is the ith preset time after the heating function is triggered, i is greater than or equal to 1; according to the ith preset time period and the preset preset time period
  • the power control parameters are determined by the correspondence between the order and the power control parameters.
  • the heating unit 503 is further configured to: when the heating function is triggered, heat the battery of the terminal according to the preset power control parameter.
  • the terminal further includes a correspondence acquiring unit 504, configured to: according to a preset preset time period, iterate the preset power control parameters according to a preset rule, and obtain corresponding power control. parameter.
  • the heating unit 503 is further configured to stop heating of the terminal battery when the current battery temperature detected by the detecting unit 501 is greater than or equal to the preset temperature threshold.
  • the terminal further includes a signal generating unit 505, configured to determine, after the detecting unit 501 detects the current battery temperature of the terminal, and the determining unit 502 determines that the preset time period is the ith time after the heating function is triggered. Before the preset time period, when the current battery temperature detected by the detecting unit 501 is less than the preset temperature threshold, a first interrupt signal for turning on the battery heating of the terminal is generated; and the first control signal is triggered according to the first interrupt signal;
  • the determining unit 502 is specifically configured to: according to the first control signal generated by the signal generating unit, the i-th preset time period, and the correspondence between the preset preset time period and the power control parameter, Determine the power control parameters.
  • the signal generating unit 505 is further configured to: when the current battery temperature is greater than or equal to the preset temperature threshold, generate a second interrupt signal for stopping battery heating of the terminal; correspondingly, the heating unit 503 is specifically configured to: When the current battery temperature detected by the detecting unit 501 is greater than or equal to the preset temperature threshold, the heating of the terminal battery is stopped according to the second interrupt signal generated by the signal generating unit 505.
  • FIG. 8 is a schematic structural diagram 4 of a terminal according to an embodiment of the present invention.
  • the terminal includes a processor 101 , a heating element 102 , a memory 103 , a bus 104 , and a controller 105 .
  • the foregoing detecting unit 501, the correspondence acquiring unit 504, and the signal generating unit 505 can be implemented by the processor 101 located on the terminal, specifically, a central processing unit (CPU), a microprocessor (MPU), and a digital signal processor (DSP). ) or field programmable gate array (FPGA) implementation.
  • the heating unit 503 can be realized by the heating element 102 disposed on the terminal, specifically a constant resistance electric heating wire, a PTC heating sheet, a heating film, a heating sheet, an electric heater, and a power battery. Hot film, electric heating plate, etc.
  • the above determining unit 502 can be implemented by the controller 105 located on the terminal.
  • the terminal may further include a memory 103.
  • the preset power control parameter, the preset temperature threshold, and the preset time period and the correspondence between the preset preset time period and the order of the power control parameters may be saved in the terminal.
  • the memory 103 and the heating element 102 can be connected to the processor 101 and the controller 105 through a system bus 104, wherein the memory 103 is used to store executable program code, the program code includes computer operation instructions, and the memory 103 may include
  • the high speed RAM memory may also include a non-volatile memory, such as at least one disk storage.
  • FIG. 9 is a schematic structural diagram of a determining unit and a heating unit according to an embodiment of the present invention.
  • the determining unit 502 is specifically composed of a voltage converter 5021 and a voltage selection switch circuit 5022.
  • the voltage converter 5021 is configured to convert the input voltage into a corresponding output voltage, wherein the output voltage includes V1, V2, V3, ..., Vn, V1 ⁇ V2 ⁇ V3 ⁇ ... ⁇ Vn, where V1, V2, V3 Vn corresponds to the power control parameter in the first embodiment.
  • V1, V2, and V3 may correspond to the ith heating voltage in the above Table 2, that is, 1.6V, 1.8V, and 2.0V; and the voltage selection switch circuit 5022 Select to connect or disconnect the corresponding output voltage according to the system control signal.
  • the heating unit 503 includes a constant resistance electric heating wire 5031, wherein one end of the heating wire 5031 is connected to the voltage selection switch circuit 5022, the other end of the heating wire 5031 is grounded, and the heating wire 5031 is disposed close to the battery (see the broken line in FIG. 8). s position.
  • the system control signal is the first control signal in the first embodiment, and is used for triggering the determination of the power control parameter, that is, the output voltage, thereby determining the heating power for heating the terminal battery according to the output voltage.
  • the magnitude of the heating power is controlled by controlling the magnitude of the output voltage, thereby adjusting the heating power of the heating terminal battery by the dynamic output voltage.
  • the embodiment of the present invention does not specifically limit the implementation manner of the determining unit and the heating unit.
  • the terminal in the embodiment of the present invention includes a smart terminal provided with a battery, such as a smart phone, a tablet computer, and a wireless WIFI hotspot.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware. Moreover, the present invention may employ computer-usable storage media (including but not limited to disk storage and storage) in one or more of the computer-usable program code embodied therein. The form of a computer program product implemented on an optical memory or the like.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising instructions that are implemented A function specified in a block or blocks of a flow or a flow and/or a block diagram of a flow chart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • the method for controlling a terminal includes: detecting a current battery temperature of a terminal when a preset time period after the heating function is triggered; and when the current battery temperature is less than a preset temperature threshold, The power control parameter is determined according to a preset policy; the battery of the terminal is heated according to the power control parameter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Telephone Function (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种控制终端的方法及终端,控制终端的方法包括:当加热功能触发后的预设时间段到达时,检测终端的当前电池温度;当当前电池温度小于预设温度阈值时,根据预设的策略确定功率控制参数;根据功率控制参数对终端的电池进行加热。通过本发明实施例提供的技术方案,通过本发明实施例,在终端处于低温状态时有效阻止了终端的电池电量下降过快,快速解决了终端因电池温度过低而自动关机的问题。

Description

一种控制终端的方法及装置 技术领域
本发明实施例涉及但不限于数据通信,尤指一种控制终端的方法及终端。
背景技术
目前,终端配备的电池包括镍镉电池、镍氢电池和锂离子电池等。其中,电池的工作温度为0~40℃。在环境温度较低时,电池的活性会下降以导致电池的电量消耗非常快,不能满足终端的正常工作需求。并且,终端通常会设置温度阈值,在自身的电池温度低于该温度阈值时自动关机。
现有技术中,为了避免终端在环境温度较低时电池的电量消耗过快或者出现自动关机的情况,终端通过检测自身电池的温度,并根据检测的温度来判断是否对终端电池进行加热,从而保证终端在低温时能够实现自身电池温度的提高。
然而,在电池温度极低的情况下,即使对终端的电池进行加热,也无法有效快速的提高电池温度,不能有效的阻止终端的电池电量下降过快,并且不能快速解决终端因电池温度过低而自动关机的问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种控制终端的方法及终端,能够在终端处于低温状态时,有效阻止终端的电池电量下降过快,快速解决终端因电池温度过低而自动关机的问题。
本发明的技术方案是这样实现的:
本发明实施例提供一种控制终端的方法,包括:
当加热功能触发后的预设时间段到达时,检测终端的当前电池温度;
当所述当前电池温度小于预设温度阈值时,根据预设的策略确定功率控制参数;
根据所述功率控制参数对所述终端的电池进行加热。
可选地,所述检测终端的当前电池温度之前还包括:当所述加热功能触发时,根据预设功率控制参数对所述终端的电池进行加热。
可选地,所述根据预设的策略确定功率控制参数包括:
判断出所述预设时间段为加热功能触发后的第i次预设时间段,i大于或等于1;
根据所述第i次预设时间段,以及预设的预设时间段的顺序与功率控制参数之间的对应关系,确定所述功率控制参数。
可选地,所述预设时间段的顺序与功率控制参数之间的对应关系的设置方法,包括:
根据所述预设的预设时间段的顺序,将所述预设功率控制参数按照预设规则迭代,并得到对应的所述功率控制参数。
可选地,在所述检测终端的当前电池温度之后,所述方法还包括:
当所述当前电池温度大于或等于所述预设温度阈值时,停止对所述终端电池的加热。
可选地,在所述检测终端的当前电池温度之后,且在所述判断出所述预设时间段为加热功能触发后的第i次预设时间段之前,所述方法还包括:
当所述当前电池温度小于预设温度阈值时,产生用于开启所述终端的电池加热的第一中断信号;根据所述第一中断信号触发第一控制信号;
相应地,所述根据所述第i次预设时间段和预设的预设时间段的顺序与功率控制参数之间的对应关系,确定功率控制参数,具体包括:
根据所述第一控制信号、所述第i次预设时间段,和预设的预设时间段的顺序与功率控制参数之间的对应关系,确定功率控制参数。
可选地,所述当所述当前电池温度大于或等于所述预设温度阈值时,停止对所述终端电池的加热,具体包括:
当所述当前电池温度大于或等于所述预设温度阈值时,产生用于停止所述终端的电池加热的第二中断信号;
根据所述第二中断信号停止对所述终端电池的加热。
本发明实施例提供了一种终端,包括:检测单元、确定单元和加热单元,其中:
检测单元,设置为当加热功能触发后的预设时间段到达时,检测终端的当前电池温度;
确定单元,设置为当所述检测单元检测的所述当前电池温度小于预设温度阈值时,根据预设的策略确定功率控制参数;
加热单元,设置为根据所述确定单元确定的所述功率控制参数对所述终端的电池进行加热。
可选地,所述确定单元,具体设置为:
判断所述预设时间段为加热功能触发后的第i次预设时间,i大于或等于1;根据所述第i次预设时间段,以及预设的预设时间段的顺序与功率控制参数之间的对应关系,确定功率控制参数。
可选地,所述加热单元还设置为:
当所述加热功能触发时,根据预设功率控制参数对所述终端的电池进行加热。
可选地,所述终端还包括对应关系获取单元,设置为:
根据所述预设的预设时间段的顺序,将所述预设功率控制参数按照预设规则迭代,并得到对应的功率控制参数。
可选地,所述加热单元还设置为:
当所述检测单元检测的所述当前电池温度大于或等于所述预设温度阈值时,停止对所述终端电池的加热。
可选地,所述终端还包括信号产生单元,设置为:在所述检测单元检测终端的当前电池温度之后,且在所述确定单元判断所述预设时间段为加热功能触发后的第i次预设时间段之前,当所述检测单元检测的所述当前电池温度小于预设温度阈值时,产生用于开启所述终端的电池加热的第一中断信号;根据所述第一中断信号触发第一控制信号;
相应地,所述确定单元,具体设置为:根据所述信号产生单元产生的所述第一控制信号、所述第i次预设时间段,和预设的预设时间段的顺序与功率控制参数之间的对应关系,确定功率控制参数。
可选地,所述信号产生单元,还设置为:当所述当前电池温度大于或等于所述预设温度阈值时,产生用于停止所述终端的电池加热的第二中断信号;
相应地,所述加热单元,具体设置为:当所述检测单元检测的所述当前电池温度大于或等于所述预设温度阈值时,根据所述信号产生单元产生的所述第二中断信号停止对所述终端电池的加热。
本发明实施例再提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一控制终端的方法。
本发明实施例提供了一种控制终端的方法及终端,当加热功能触发后的预设时间段到达时,检测终端的当前电池温度;当当前电池温度小于预设温度阈值时,根据预设的策略确定功率控制参数;根据功率控制参数对终端的电池进行加热。采用上述技术实现方案,根据预设的策略来动态调整功率控制参数,有效地阻止了终端电池电量消耗过快,快速高效地提高了终端电池温度,快速解决了终端因电池温度过低而自动关机的问题。
本发明实施例的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例提供的一种控制终端的方法的流程示意图一;
图2为本发明实施例提供的一种控制终端的方法的流程示意图二;
图3为本发明实施例提供的一种控制终端的方法的流程示意图三;
图4为本发明实施例提供的一种控制终端的方法的流程示意图四;
图5为本发明实施例提供的一种终端的结构示意图一;
图6为本发明实施例提供的一种终端的结构示意图二;
图7为本发明实施例提供的一种终端的结构示意图三;
图8为本发明实施例提供的一种终端的结构示意图四;
图9为本发明实施例提供的一种确定单元和加热单元的结构示意图。
本发明的较佳实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
实施例一
图1为本发明实施例提供的一种控制终端的方法的流程示意图一,包括:
步骤101:当加热功能触发后的预设时间段到达时,检测终端的当前电池温度;
其中,预设时间段为预设的在终端的加热功能触发后检测终端当前电池温度的时间间隔,用于在终端的加热功能触发后定时检测终端的当前电池温度。
在实际应用中,终端检测当前电池温度包括多种方式,例如,利用终端内部设置的温度感应器来检测当前电池温度,本发明实施例对此不做具体限制。
需要说明的是,终端包括智能手机、平板电脑、无线保真(WIFI,WIreless-Fidelity)热点等内置电池的终端,本发明实施例对终端的种类不做具体限制。
另外,终端的电池包括但不限于锂电池、锂聚合物电池以及其他智能终端使用的电池。本发明实施例对终端的电池种类不做具体限制。
可选地,参见图2所示,在步骤101之前,还包括步骤100:当加热功能触发时,根据预设功率控制参数对终端的电池进行加热。
其中,预设功率控制参数为终端在加热功能触发时(第一次进行加热时),默认的对终端的电池进行加热的功率控制参数。
其中,功率控制参数为控制加热终端电池时的加热功率的参数,包括加热电压或加热电流。
需要说明的是,终端可以通过多种方式触发加热功能,例如,终端可以定时触发加热功能,终端也可以根据用户的需求触发加热功能。本发明实施例对终端触发加热功能的方式不做具体限制。
步骤102:当当前电池温度小于预设温度阈值时,根据预设的策略确定功率控制参数;
其中,预设温度阈值为预先设置的判断是否对终端电池进行加热的温度阈值。预设温度阈值可以根据实际情况进行设置。一般情况下,在电池温度为-10℃时,由于电池温度过低会出现终端自动关机的现象。那么,为了避免出现终端自动关机的现象,预设温度阈值需要设置在-10℃以上,例如,预设温度阈值设置为-5℃。
其中,预设的策略用于确定阶梯性的功率控制参数。例如,预设的策略可以包括,根据当前电池温度与预设温度阈值的温度差值,以及温度差值与功率控制参数的映射关系,确定对应的功率控制参数。其中,温度差值与功率控制参数的映射关系,可以设置为随着温度差值的增大,增加功率控制参数的值以便增加根据功率控制参数计算得到的加热功率。这样一来,实现了动态的阶梯性的调整加热功率,从而实现了快速对终端的电池进行加热。当然,预设的策略还可以包括其他方式,本发明实施例对此不做具体限制。
其中,功率控制参数为控制加热终端电池时的加热功率的参数,包括加热电压或加热电流。由功率计算公式可知,在电阻阻值一定的情况下,通过提高加热电压或者提高加热电流,便可以提高加热功率,可以看出,加热电压或加热电流为控制加热功率的功率控制参数。
具体地,根据预设的策略确定功率控制参数包括:判断预设时间段为加热功能触发后的第i次预设时间段,i大于或等于1;根据第i次预设时间段和预设的预设时间段的顺序与功率控制参数之间的对应关系,确定功率控制参数;
举例来说,若预设时间段为10分钟,那么当终端的加热功能触发后的10分钟到达时,检测终端的当前电池温度T1;当T1小于预设温度阈值时,判断预设时间段为加热功能触发后的第1次预设时间段;根据第1次预设时间段和预设的预设时间段的顺序与功率控制参数之间的对应关系,确定功率控制参数X1;根据X1对终端的电池进行加热。进一步地,当终端的加热功能触发后的20分钟到达时,检测终端的当前电池温度T2;当T2仍然小于预设温度阈值时,判断预设时间段为加热功能触发后的第2次预设时间段;根据第2次预设时间段和预设的预设时间段的顺序与功率控制参数之间的对应关系,确定功率控制参数X2;根据X2对终端的电池继续进行加热,这样重复执行直到终端的当前电池温度大于或等于预设温度阈值,则停止加热终端的电池。可以看出,根据第i次预设时间段和预设的对应关系确定功率控制参数,说明功率控制参数是动态可调的。
实际应用中,若当终端的加热功能触发后(第一次加热后)的第i次预设时间段到达时,终端的当前电池温度仍然小于预设温度阈值,则可以通过功率控制参数来增加加热功率。表1示出了预设的预设时间段的顺序与功率控制参数的顺序之间的对应关系。
顺序序号i 第i次预设时间段 第i个功率控制参数 第i个加热功率
1 第1次预设时间段 X1 P1
2 第2次预设时间段 X2 P2
3 第3次预设时间段 X3 P3
表1
需要说明的是,第i个加热功率为根据第i个功率控制参数确定的加热功率,且P1<P2<P3。
通过表1,可以看出,当终端的加热功能触发后的第i次预设时间段到达时,终端的当前电池温度仍然小于预设温度阈值,可以通过对应的功率控制参数即X1、X2、X3将加热功率进行动态提高,从而避免了环境温度极低时终端电池温度的持续降低。
优选地,预设时间段的顺序与功率控制参数之间的对应关系的设置方法 包括:根据预设的预设时间段的顺序,将预设功率控制参数按照预设规则迭代,并得到对应的功率控制参数。
可理解地,随着预设时间段的顺序的增加,由对应的功率控制参数控制得到的加热功率是阶梯性递增的,从而有效提高了加热速度。
需要说明的是,预设规则可以包括多种迭代算法,例如,线性规划、非线性规划、最小二乘法等,本发明实施例对此不做具体限制。
举例来说,表2示出了预设时间段的顺序与功率控制参数的顺序之间的对应关系,并以功率控制参数为加热电压,预设功率控制参数为1.4V,迭代参数为0.2V为例进行说明。
顺序序号i 第i次预设时间段 第i个加热电压
1 第1次预设时间段 1.6V
2 第2次预设时间段 1.8V
3 第3次预设时间段 2.0V
表2
由表2可以看出,将预设功率控制参数1.4V作为迭代的初始值按照预设规则迭代,即随着预设时间段的顺序序号的增加,对应的加热电压按照迭代参数0.2V依次递增。具体为:
与第1次预设时间段对应的第1个加热电压为,1.4V与迭代参数0.2V的和,即1.6V,并将第1个加热电压作为下一次迭代的初始值;
与第2次预设时间段对应的第2个加热电压为,上一次迭代的结果即第1个加热电压1.6V与迭代参数0.2V的和,即1.8V;
与第3次预设时间段对应的第3个加热电压为,上一次迭代的结果即第2个加热电压1.8V与迭代参数0.2V的和,即2.0V。
需要说明的是,还可以通过另一种方式来实现上述迭代方法,包括:将预设功率控制参数1.4V作为迭代的初始值,随着预设时间段的顺序序号的增加,对应的加热电压为预设功率控制参数1.4V,与迭代参数0.2V的对应倍数的和。具体为:
与第1次预设时间段对应的第1个加热电压为,预设功率控制参数1.4V,与迭代参数0.2V的一倍即0.2V的和,1.6V;
与第2次预设时间段对应的第2个加热电压为,预设功率控制参数1.4V,与迭代参数0.2V的两倍即0.4V的和,1.8V;
与第3次预设时间段对应的第3个加热电压为,预设功率控制参数1.4V,与迭代参数0.2V的三倍即0.6V的和,2.0V。
可选地,在步骤101之后,且在判断预设时间段为加热功能触发后的第i次预设时间段之前,方法还包括:当当前电池温度小于预设温度阈值时,产生用于开启终端的电池加热的第一中断信号;根据第一中断信号触发第一控制信号;相应地,根据第i次预设时间段和预设的预设时间段的顺序与功率控制参数之间的对应关系,确定功率控制参数,具体包括:根据第一控制信号、第i次预设时间段,和预设的预设时间段的顺序与功率控制参数之间的对应关系,确定功率控制参数。
需要说明的是,第一中断信号用于开启终端的电池加热。第一控制信号,用于触发功率控制参数的确定。可以看出,终端根据第一中断信号确定开启在当前预设时间段内的终端的电池加热,而根据功率控制参数确定对终端的电池进行加热的加热功率。
步骤103:根据功率控制参数对终端的电池进行加热。
可理解地,对终端的电池进行加热的功率控制参数是根据预设策略动态可调的,如此避免了通过单一的功率控制参数加热终端的电池,提高了加热终端电池的加热速度。
实际应用中,对终端的电池进行加热时,可以利用恒定阻值的电热丝、PTC加热片、加热膜、电热片、电热器、动力电池加热膜、电热板等加热元件进行加热,本发明实施例对此不做具体限制。
另外,加热元件可以设置在紧贴电池的位置,以便更好的对电池进行加热,提高加热效率。
需要说明的是,在对终端的电池进行加热后,终端的当前电池温度会改变,且当加热功能触发后的下一次预设时间段到达时,重复执行步骤101, 直到终端的当前电池温度大于或等于预设温度阈值。
可选地,参见图3所示,在步骤101之后,方法还包括步骤104:
当当前电池温度大于或等于预设温度阈值时,停止对终端电池的加热。
可理解地,在终端的当前电池温度大于或等于预设温度阈值时,说明终端当前电池温度可以满足终端的正常工作,因此,无需对终端电池进行加热,因而停止加热终端电池。
可选地,步骤104具体包括:当当前电池温度大于或等于预设温度阈值时,产生用于停止终端的电池加热的第二中断信号;根据第二中断信号停止对终端电池的加热。
在实际应用中,终端在产生用于停止终端的电池加热的第二中断信号之后,还包括:根据第二中断信号触发第二控制信号,其中,第二控制信号用于关闭对第i个功率控制参数的确定。由于终端根据第二中断信号停止对终端电池的加热,因此,终端不需要确定对终端的电池进行加热的加热功率,因而,利用第二控制信号来关闭对第i个功率控制参数的确定。
本发明实施例提供的一种控制终端的方法,当加热功能触发后的预设时间段到达时,检测终端的当前电池温度;当当前电池温度小于预设温度阈值时,根据预设的策略确定功率控制参数;根据功率控制参数对终端的电池进行加热。采用上述技术实现方案,根据预设的策略来动态调整功率控制参数,有效地阻止了终端电池电量消耗过快,快速高效地提高了终端电池温度,快速解决了终端因电池温度过低而自动关机的问题,有效避免了单一功率加热时由于散热大于加热而出现的无法迅速提升终端电池温度的情况。
实施例二
图4为本发明实施例提供的一种控制终端的方法的流程示意图四,该方法包括:
步骤401:获取预设功率控制参数、预设温度阈值以及预设时间段;
其中,功率控制参数为控制加热终端电池时的加热功率的参数。具体地,功率控制参数是动态可调的,例如表1中的X1、X2、X3。
预设时间段为预设的在终端的加热功能触发后检测终端当前电池温度的 时间间隔,用于在终端的加热功能触发后定时检测终端的当前电池温度。
预设温度阈值为预先设置的判断是否对终端电池进行加热的温度阈值。需要说明的是,预设温度阈值根据实际情况进行设置。一般情况下,在电池温度为-10℃时,由于电池温度过低会出现终端自动关机的现象。那么,为了避免出现终端自动关机的现象,预设温度阈值需要设置在-10℃以上,例如,预设温度阈值设置为-5℃。
步骤402:当加热功能触发时,根据预设功率控制参数对终端的电池进行加热;
其中,预设功率控制参数为终端在加热功能触发时,默认的对终端的电池进行加热的功率控制参数。
可理解地,终端可以通过多种方式触发加热功能,例如,终端可以定时触发加热功能,终端也可以根据用户的需求触发加热功能。
步骤403:当加热功能触发后的第i次预设时间段到达时,检测终端的当前电池温度,i大于或等于1;
步骤404:判断出当前电池温度是否小于预设温度阈值,若是,则执行步骤405-步骤408;若否,则执行步骤409-步骤410;
步骤405:产生用于开启终端的电池加热的第一中断信号;
步骤406:根据第一中断信号触发第一控制信号;
步骤407:根据第一控制信号,和第i次预设时间段和预设的预设时间段的顺序与功率控制参数之间的对应关系,确定功率控制参数;
其中,功率控制参数包括加热电压和加热电流。在电阻阻值一定的情况下,通过提高加热电压或者提高加热电流,便可以提高加热功率。
实际应用中,预设时间段的顺序与功率控制参数的顺序之间的对应关系的设置方法,包括:根据预设的预设时间段的顺序,将预设功率控制参数按照预设规则迭代,并得到对应的功率控制参数的顺序。
步骤408:根据功率控制参数对终端的电池进行加热;
其中,第一中断信号用于开启终端的电池加热;第一控制信号,用于触 发第i个功率控制参数的确定。可以看出,终端根据第一中断信号确定开启终端的电池加热,而根据第i个功率控制参数确定对终端的电池进行加热的加热功率。
需要说明的是,在对终端的电池进行加热后,终端的当前电池温度会改变,且当下一次预设时间段到达时,重复执行步骤403,直到终端的当前电池温度大于或等于预设温度阈值。
步骤409:产生用于停止终端的电池加热的第二中断信号;
步骤410:根据第二中断信号停止对终端电池的加热。
综上所述,当加热功能触发后的第i次预设时间段到达时,检测终端的当前电池温度,i大于或等于1;当当前电池温度小于预设温度阈值时,根据第i次预设时间段和预设的预设时间段的顺序与功率控制参数的顺序之间的对应关系,确定第i个功率控制参数;根据第i个功率控制参数对终端的电池进行加热。采用上述技术实现方案,动态调整功率控制参数,有效阻止了终端的电池电量下降过快,快速高效的提高了终端电池温度,进而快速解决了终端因电池温度过低而自动关机的问题,有效避免了单一功率加热时由于散热大于加热而出现的无法迅速提升终端电池温度的情况。
实施例三
图5为本发明实施例提供的一种终端的结构示意图一,该终端50中,包括:检测单元501、确定单元502和加热单元503,其中:
检测单元501,设置为当加热功能触发后的预设时间段到达时,检测终端的当前电池温度;
确定单元502,设置为当检测单元501检测的当前电池温度小于预设温度阈值时,根据预设的策略确定功率控制参数;
加热单元503,设置为根据确定单元502确定的功率控制参数对终端的电池进行加热。
进一步地,确定单元502具体设置为:判断预设时间段为加热功能触发后的第i次预设时间,i大于或等于1;根据第i次预设时间段和预设的预设时间段的顺序与功率控制参数之间的对应关系,确定功率控制参数。
进一步地,加热单元503还设置为:当加热功能触发时,根据预设功率控制参数对终端的电池进行加热。
进一步地,参见图6所示,终端还包括对应关系获取单元504,设置为:根据预设的预设时间段的顺序,将预设功率控制参数按照预设规则迭代,并得到对应的功率控制参数。
进一步地,加热单元503还设置为:当检测单元501检测的当前电池温度大于或等于预设温度阈值时,停止对终端电池的加热。
进一步地,参见图7所示,终端还包括信号产生单元505,设置为在检测单元501检测终端的当前电池温度之后,且在确定单元502判断预设时间段为加热功能触发后的第i次预设时间段之前,当检测单元501检测的当前电池温度小于预设温度阈值时,产生用于开启终端的电池加热的第一中断信号;根据第一中断信号触发第一控制信号;
相应地,确定单元502,具体设置为:根据信号产生单元产生的第一控制信号、第i次预设时间段,和预设的预设时间段的顺序与功率控制参数之间的对应关系,确定功率控制参数。
进一步地,信号产生单元505,还设置为:当当前电池温度大于或等于预设温度阈值时,产生用于停止终端的电池加热的第二中断信号;相应地,加热单元503,具体用于:当检测单元501检测的当前电池温度大于或等于预设温度阈值时,根据信号产生单元505产生的第二中断信号停止对终端电池的加热。
实施例四
图8为本发明实施例提供的一种终端的结构示意图四,参考图8所示,该终端包括处理器101、加热元件102、存储器103、总线104和控制器105。
具体地,上述检测单元501、对应关系获取单元504以及信号产生单元505可由位于终端上的处理器101实现,具体为中央处理器(CPU)、微处理器(MPU)、数字信号处理器(DSP)或现场可编程门阵列(FPGA)等实现。上述加热单元503可以通过终端上设置的加热元件102来实现,具体为恒定阻值的电热丝、PTC加热片、加热膜、电热片、电热器、动力电池加 热膜、电热板等。上述确定单元502可由位于终端上的控制器105实现。终端中还可以包括存储器103,具体的,预设功率控制参数、预设温度阈值以及预设时间段以及预设的预设时间段的顺序与功率控制参数的顺序之间的对应关系可以保存在存储器103中,该存储器103、加热元件102可以通过系统总线104与处理器101和控制器105连接,其中,存储器103用于存储可执行程序代码,该程序代码包括计算机操作指令,存储器103可能包含高速RAM存储器,也可能还包括非易失性存储器,例如,至少一个磁盘存储器。
图9为本发明实施例提供的一种确定单元和加热单元的结构示意图。参见图9所示,确定单元502具体由电压转换器5021和电压选择开关电路5022组成。其中,电压转换器5021用于将输入电压转换成对应的输出电压,其中,输出电压包括V1、V2、V3……Vn,V1<V2<V3<……<Vn,其中,V1、V2、V3……Vn对应上述实施例1中的功率控制参数,具体的,V1、V2、V3可以对应上述表2中的第i个加热电压即1.6V、1.8V、2.0V;电压选择开关电路5022用于根据系统控制信号选择连接或断开对应的输出电压。加热单元503包括恒定阻值的电热丝5031,其中,电热丝5031的一端与电压选择开关电路5022连接,电热丝5031的另一端接地,电热丝5031设置在靠近电池(参见图8中的虚线)的位置。
需要说明的是,系统控制信号即为实施例一中的第一控制信号,用于触发功率控制参数即输出电压的确定,从而根据该输出电压确定对终端电池进行加热的加热功率。这样一来,在电阻阻值一定的情况下,通过控制输出电压的大小,来控制加热功率的大小,进而实现通过动态的输出电压来调整加热终端电池的加热功率。
当然,本发明实施例对确定单元和加热单元的实现方式不做具体限制。
需要说明的是,本发明实施例中的终端包括设置有电池的智能终端,例如智能手机、平板电脑和无线WIFI热点等。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和 光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令的制造品,该指令实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围
工业实用性
本发明实施例提出的控制终端的方法及终端,控制终端的方法包括:当加热功能触发后的预设时间段到达时,检测终端的当前电池温度;当当前电池温度小于预设温度阈值时,根据预设的策略确定功率控制参数;根据功率控制参数对终端的电池进行加热。通过本发明实施例提供的技术方案,在终端处于低温状态时有效阻止了终端的电池电量下降过快,快速解决了终端因电池温度过低而自动关机的问题。

Claims (15)

  1. 一种控制终端的方法,包括:
    当加热功能触发后的预设时间段到达时,检测终端的当前电池温度;
    当所述当前电池温度小于预设温度阈值时,根据预设的策略确定功率控制参数;
    根据所述功率控制参数对所述终端的电池进行加热。
  2. 根据权利要求1所述的方法,所述检测终端的当前电池温度之前还包括:当所述加热功能触发时,根据预设功率控制参数对所述终端的电池进行加热。
  3. 根据权利要求1或2所述的方法,其中,所述根据预设的策略确定功率控制参数包括:
    判断出所述预设时间段为加热功能触发后的第i次预设时间段,i大于或等于1;
    根据所述第i次预设时间段,以及预设的预设时间段的顺序与功率控制参数之间的对应关系,确定所述功率控制参数。
  4. 根据权利要求3所述的方法,其中,所述预设时间段的顺序与功率控制参数之间的对应关系的设置方法,包括:
    根据所述预设的预设时间段的顺序,将所述预设功率控制参数按照预设规则迭代,并得到对应的所述功率控制参数。
  5. 根据权利要求1或2所述的方法,所述检测终端的当前电池温度之后,还包括:当所述当前电池温度大于或等于所述预设温度阈值时,停止对所述终端电池的加热。
  6. 根据权利要求3所述的方法,所述检测终端的当前电池温度之后,且在所述判断出所述预设时间段为加热功能触发后的第i次预设时间段之前,还包括:
    当所述当前电池温度小于预设温度阈值时,产生用于开启所述终端的电池加热的第一中断信号;根据所述第一中断信号触发第一控制信号;
    相应地,所述根据所述第i次预设时间段和预设的预设时间段的顺序与功率控制参数之间的对应关系,确定功率控制参数,包括:
    根据所述第一控制信号、所述第i次预设时间段,和预设的预设时间段的顺序与功率控制参数之间的对应关系,确定功率控制参数。
  7. 根据权利要求5所述的方法,其中,所述当所述当前电池温度大于或等于所述预设温度阈值时,停止对所述终端电池的加热,包括:
    当所述当前电池温度大于或等于所述预设温度阈值时,产生用于停止所述终端的电池加热的第二中断信号;
    根据所述第二中断信号停止对所述终端电池的加热。
  8. 一种终端,包括:检测单元、确定单元和加热单元,其中:
    检测单元,设置为当加热功能触发后的预设时间段到达时,检测终端的当前电池温度;
    确定单元,设置为当所述检测单元检测的所述当前电池温度小于预设温度阈值时,根据预设的策略确定功率控制参数;
    加热单元,设置为根据所述确定单元确定的所述功率控制参数对所述终端的电池进行加热。
  9. 根据权利要求8所述的终端,其中,所述确定单元具体设置为:
    判断出所述预设时间段为加热功能触发后的第i次预设时间,i大于或等于1;根据所述第i次预设时间段,以及预设的预设时间段的顺序与功率控制参数之间的对应关系,确定功率控制参数。
  10. 根据权利要求8所述的终端,所述加热单元还设置为:
    当所述加热功能触发时,根据预设功率控制参数对所述终端的电池进行加热。
  11. 根据权利要求10所述的终端,所述终端还包括对应关系获取单元,设置为:根据所述预设的预设时间段的顺序,将所述预设功率控制参数按照预设规则迭代,并得到对应的功率控制参数。
  12. 根据权利要求8所述的终端,所述加热单元还设置为:
    当所述检测单元检测的所述当前电池温度大于或等于所述预设温度阈值时,停止对所述终端电池的加热。
  13. 根据权利要求9所述的终端,所述终端还包括信号产生单元,设置为:在所述检测单元检测终端的当前电池温度之后,且在所述确定单元判断所述预设时间段为加热功能触发后的第i次预设时间段之前,当所述检测单元检测的所述当前电池温度小于预设温度阈值时,产生用于开启所述终端的电池加热的第一中断信号;根据所述第一中断信号触发第一控制信号;
    相应地,所述确定单元具体设置为:根据所述信号产生单元产生的所述第一控制信号、所述第i次预设时间段,和预设的预设时间段的顺序与功率控制参数之间的对应关系,确定功率控制参数。
  14. 根据权利要求12所述的终端,所述信号产生单元还设置为:当所述当前电池温度大于或等于所述预设温度阈值时,产生用于停止所述终端的电池加热的第二中断信号;
    相应地,所述加热单元具体设置为:当所述检测单元检测的所述当前电池温度大于或等于所述预设温度阈值时,根据所述信号产生单元产生的所述第二中断信号停止对所述终端电池的加热。
  15. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权1~权7任一项的控制终端的方法。
PCT/CN2016/083666 2016-04-06 2016-05-27 一种控制终端的方法及装置 WO2017173722A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610209674.1A CN107275688B (zh) 2016-04-06 2016-04-06 一种控制终端的控制终端的方法及终端
CN201610209674.1 2016-04-06

Publications (1)

Publication Number Publication Date
WO2017173722A1 true WO2017173722A1 (zh) 2017-10-12

Family

ID=60000813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083666 WO2017173722A1 (zh) 2016-04-06 2016-05-27 一种控制终端的方法及装置

Country Status (2)

Country Link
CN (1) CN107275688B (zh)
WO (1) WO2017173722A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111430845A (zh) * 2020-03-20 2020-07-17 威睿电动汽车技术(宁波)有限公司 一种电池包热管理方法、装置、存储介质及电子设备
CN112117503A (zh) * 2019-07-17 2020-12-22 上汽通用五菱汽车股份有限公司 电池加热功能检测方法、检测设备及可读存储介质
CN113890147A (zh) * 2021-09-29 2022-01-04 珠海格力电器股份有限公司 一种电池的控制方法、装置、智能门锁及存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3111855C (en) 2018-09-21 2024-01-02 Huawei Technologies Co., Ltd. Electronic device low-temperature protection method and electronic device
CN109638387B (zh) * 2018-11-30 2020-09-15 北京汽车股份有限公司 一种动力电池加热系统和加热控制方法及车辆
CN110051207A (zh) * 2019-05-21 2019-07-26 珠海格力电器股份有限公司 加热控制方法、装置、食品加工设备及存储介质
CN112002839A (zh) * 2019-05-27 2020-11-27 广州雷利诺车业有限公司 电动摩托车及其控制方法
JP7293156B2 (ja) * 2020-03-13 2023-06-19 株式会社東芝 情報処理装置、情報処理方法およびプログラム
CN115437428B (zh) * 2021-06-02 2024-02-06 北京小米移动软件有限公司 终端的温度控制方法及装置、终端及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834324A (zh) * 2009-03-11 2010-09-15 孙万平 加温式延寿蓄电池
CN103515669A (zh) * 2012-06-26 2014-01-15 希姆通信息技术(上海)有限公司 电子设备电池加热装置及加热方法
CN103545569A (zh) * 2012-07-17 2014-01-29 比亚迪股份有限公司 一种用于控制电池加热的方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262879A (ja) * 2009-05-11 2010-11-18 Kansai Electric Power Co Inc:The 温度調節装置、電力貯蔵装置、温度制御プログラム、および温度制御方法
CN102546946B (zh) * 2012-01-05 2014-04-23 中国联合网络通信集团有限公司 移动终端处理任务的方法及装置
CN104701942B (zh) * 2015-03-06 2017-05-10 惠州Tcl移动通信有限公司 控制关机充电的低功耗的终端及其控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834324A (zh) * 2009-03-11 2010-09-15 孙万平 加温式延寿蓄电池
CN103515669A (zh) * 2012-06-26 2014-01-15 希姆通信息技术(上海)有限公司 电子设备电池加热装置及加热方法
CN103545569A (zh) * 2012-07-17 2014-01-29 比亚迪股份有限公司 一种用于控制电池加热的方法及装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112117503A (zh) * 2019-07-17 2020-12-22 上汽通用五菱汽车股份有限公司 电池加热功能检测方法、检测设备及可读存储介质
CN112117503B (zh) * 2019-07-17 2023-03-14 上汽通用五菱汽车股份有限公司 电池加热功能检测方法、检测设备及可读存储介质
CN111430845A (zh) * 2020-03-20 2020-07-17 威睿电动汽车技术(宁波)有限公司 一种电池包热管理方法、装置、存储介质及电子设备
CN111430845B (zh) * 2020-03-20 2023-08-11 浙江吉利控股集团有限公司 一种电池包热管理方法、装置、存储介质及电子设备
CN113890147A (zh) * 2021-09-29 2022-01-04 珠海格力电器股份有限公司 一种电池的控制方法、装置、智能门锁及存储介质
CN113890147B (zh) * 2021-09-29 2023-10-10 珠海格力电器股份有限公司 一种电池的控制方法、装置、智能门锁及存储介质

Also Published As

Publication number Publication date
CN107275688A (zh) 2017-10-20
CN107275688B (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
WO2017173722A1 (zh) 一种控制终端的方法及装置
WO2016188070A1 (zh) 温度控制方法、装置、终端及存储介质
JP2016226208A (ja) 蓄電池制御装置
WO2015117409A1 (zh) 信息处理方法、智能电池、终端及计算机存储介质
WO2017063446A1 (zh) 一种充电方法及移动终端、存储介质
CN103401036A (zh) 一种移动终端充电方法及移动智能终端
JP5995653B2 (ja) 充放電制御装置、充放電制御方法、プログラム及び充放電制御システム
WO2016197651A1 (zh) 一种实现发热控制的方法及终端
JP2017005849A (ja) 蓄電池制御装置
JP6294494B2 (ja) 電力供給機器、電力供給システム、および電力供給方法
WO2016197988A1 (zh) 一种电池充电方法及装置
WO2018045785A1 (zh) 基于峰谷用电的热泵热水机组及其控制方法和控制系统
CN110285482B (zh) 蓄热式采暖设备的蓄热控制方法、装置及可读存储介质
WO2023134664A1 (zh) 热水器的加热控制方法、装置和热水器
CN103000962B (zh) 一种电池控制方法、电池及电子设备
US20150005947A1 (en) Electronic device and method for controlling rotation speed of fan thereof
CN111711243A (zh) 充电方法、装置、设备及存储介质
CN112346501A (zh) 用于电子设备低温启动的加热系统
CN110912222A (zh) 一种多路供电控制方法、装置、系统及可读介质
CN107478052B (zh) 烘干机的控制方法与装置
CN110068141B (zh) 一种恒温加热控制方法和装置
CN111030249B (zh) 一种截止电压控制方法及电子设备
WO2021018233A1 (zh) 充电方法、装置、电子设备和存储介质
JP2017085826A (ja) 電子機器
TWI545863B (zh) 電池保護系統與電池保護方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897655

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897655

Country of ref document: EP

Kind code of ref document: A1