WO2017173709A1 - 液晶材料、液晶显示面板及液晶显示面板的制作方法 - Google Patents

液晶材料、液晶显示面板及液晶显示面板的制作方法 Download PDF

Info

Publication number
WO2017173709A1
WO2017173709A1 PCT/CN2016/082555 CN2016082555W WO2017173709A1 WO 2017173709 A1 WO2017173709 A1 WO 2017173709A1 CN 2016082555 W CN2016082555 W CN 2016082555W WO 2017173709 A1 WO2017173709 A1 WO 2017173709A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
substrate
photosensitive
atom
Prior art date
Application number
PCT/CN2016/082555
Other languages
English (en)
French (fr)
Inventor
兰松
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/039,419 priority Critical patent/US10151951B2/en
Publication of WO2017173709A1 publication Critical patent/WO2017173709A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133703Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by introducing organic surfactant additives into the liquid crystal material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a liquid crystal material, a liquid crystal display panel, and a method of fabricating the liquid crystal display panel.
  • LCDs liquid crystal displays
  • Various consumer electronic products such as digital assistants, digital cameras, notebook computers, and desktop computers have become mainstream in display devices.
  • liquid crystal display devices which include a liquid crystal display panel and a backlight module.
  • the working principle of the liquid crystal display panel is to place liquid crystal molecules in two parallel glass substrates. There are many vertical and horizontal small wires between the two glass substrates, and the liquid crystal molecules are controlled to change direction by energizing or not, and the light of the backlight module is changed. Refracted to produce a picture.
  • a liquid crystal display panel comprises a CF (Color Filter) substrate, a thin film transistor (TFT) substrate, a liquid crystal (LC) sandwiched between the color filter substrate and the thin film transistor substrate, and a sealant frame ( Sealant) composition.
  • CF Color Filter
  • TFT thin film transistor
  • LC liquid crystal
  • Sealant sealant frame
  • the material of the alignment film is polyimide (PI) material, including friction-aligned PI material or photo-aligned PI material, but no matter which kind of alignment material, there will be Shortcomings.
  • PI polyimide
  • the friction-aligned PI material is liable to cause problems such as dust particles, static electricity, and brush marks, thereby reducing the process yield.
  • the photo-alignment type PI material can avoid these problems, heat resistance and aging resistance are limited due to material properties.
  • the commonly used VA (Vertical Alignment) type display panel is a PSVA (Polymer stabilized vertical alignment) display mode
  • the liquid crystal display panel of this mode needs to add one or several kinds of liquid crystal materials.
  • Aggregatable single The body is polymerized under ultraviolet light to form a protrusion having a guiding liquid crystal guide, which is deposited on the surface of the substrate to facilitate a specific pre-angle of the liquid crystal, so that the liquid crystal is aligned during driving.
  • the problem with this technique is that the uniformity and residual amount of the photopolymerizable monomer can affect the quality of the panel; and, in the PSVA type liquid crystal display panel, the ITO on the TFT side is also required to be exposed.
  • An object of the present invention is to provide a liquid crystal material in which a liquid crystal molecule is doped with a photosensitive vertical alignment material, which can function as a liquid crystal alignment and reduce the production cost of the liquid crystal display panel.
  • Another object of the present invention is to provide a liquid crystal display panel, which does not require an alignment film, has a simple structure, and has low production cost.
  • Another object of the present invention is to provide a method for fabricating a liquid crystal display panel, which eliminates the alignment film process, has a simple process, can reduce production cost, increase productivity, and has a good alignment effect of liquid crystal molecules.
  • the present invention firstly provides a liquid crystal material comprising liquid crystal molecules and a photosensitive vertical alignment material mixed in a liquid crystal molecule, and the photosensitive vertical alignment material has a structural formula of A-Sp-B- Sp-R, where
  • A refers to a polar group containing one or more of N, S, O, and Si atoms
  • the group A is -OH or -NH.
  • the mass percentage of the photosensitive vertical alignment material in the liquid crystal material is from 1% by weight to 5% by weight.
  • the photosensitive vertical alignment material in the liquid crystal material is one or more of the following compounds:
  • the present invention also provides a liquid crystal display panel comprising an upper substrate and a lower substrate disposed opposite to each other, and a liquid crystal layer disposed between the upper substrate and the lower substrate;
  • the material of the liquid crystal layer is the above liquid crystal material.
  • the invention also provides a method for manufacturing a liquid crystal display panel, comprising the following steps:
  • Step 1 providing an upper substrate, a lower substrate, and a liquid crystal material
  • the liquid crystal material includes liquid crystal molecules and a photosensitive vertical alignment material mixed in the liquid crystal molecules, and the photosensitive vertical alignment material has a structural formula of A-Sp-B-Sp-R, wherein
  • A refers to a polar group containing one or more of N, S, O, and Si atoms
  • the photosensitive vertical alignment material is adsorbed on the surfaces of the upper substrate and the lower substrate by its own group A, and is arranged perpendicular to the surfaces of the upper substrate and the lower substrate, thereby guiding the liquid crystal molecules to be aligned perpendicular to the upper substrate and the lower substrate;
  • Step 2 irradiating the liquid crystal material with ultraviolet light from the side of the upper substrate or the lower substrate, and the irradiation direction of the ultraviolet light and the upper substrate and the lower substrate are inclined at a certain angle, and are subjected to oblique directions.
  • the group B in the photosensitive vertical alignment material undergoes a photoreaction, and the arrangement direction of the photosensitive vertical alignment material is changed, and is arranged on the upper substrate and the lower surface according to the irradiation direction of the ultraviolet light at a certain inclination angle.
  • the liquid crystal molecules near the surfaces of the upper substrate and the lower substrate are pre-tilted on the substrate to complete the fabrication of the liquid crystal display panel.
  • the group A is -OH or -NH.
  • the mass percentage of the photosensitive vertical alignment material in the liquid crystal material is 1 wt% to 5 wt%.
  • the photosensitive vertical alignment material in the liquid crystal material is one or more of the following compounds:
  • the upper substrate is a TFT substrate
  • the lower substrate is a CF substrate.
  • the liquid crystal material is irradiated with ultraviolet light from the upper substrate side.
  • the ultraviolet light has a wavelength of 320 to 400 nm, an illuminance of 1 to 100 mW/cm 2 , and an irradiation time of 5 to 30 min.
  • the invention has the beneficial effects that the liquid crystal material provided by the invention is doped with a photosensitive vertical alignment material in the liquid crystal molecules, and can function as a liquid crystal alignment.
  • a liquid crystal provided by the invention The display panel adopts the above liquid crystal material, which eliminates the alignment film and reduces the production cost compared with the TN type or STN type liquid crystal display panel, and saves the polymerizability in the PSVA liquid crystal compared with the PSVA type liquid crystal display panel.
  • the monomer while saving a UV light process, simplifies the etching process of the pixel electrode and reduces the production cost.
  • the invention provides a method for fabricating a liquid crystal display panel, which has simple process, and saves the manufacturing process of the alignment film and reduces the production cost compared with the process of the TN type or the STN type liquid crystal display panel, and the PSVA type liquid crystal display panel Compared with the process, the utility model saves a UV illumination process, simplifies the etching process of the pixel electrode, reduces the production cost, and has a good liquid crystal alignment effect of the obtained liquid crystal display panel.
  • 1A is a schematic view showing the structure of a compound of a photosensitive vertical alignment material in a liquid crystal material of the present invention
  • FIG. 1B is a schematic view showing the photosensitive vertical alignment material of FIG. 1A arranged perpendicular to the substrate before ultraviolet light irradiation;
  • FIG. 1C is a schematic view showing the photosensitive vertical alignment material of FIG. 1A arranged on the substrate at a certain inclination angle after ultraviolet light irradiation;
  • 2A is a schematic view showing the structure of another class of compounds of the photosensitive vertical alignment material in the liquid crystal material of the present invention.
  • FIG. 2B is a schematic view showing the photosensitive vertical alignment material of FIG. 2A arranged perpendicular to the substrate before ultraviolet light irradiation;
  • FIG. 2C is a schematic view showing the photosensitive vertical alignment material of FIG. 2A arranged on the substrate at a certain inclination angle after ultraviolet light irradiation;
  • FIG. 3 is a schematic structural view of a liquid crystal display panel of the present invention.
  • FIG. 4 is a schematic flow chart of a method of fabricating a liquid crystal display panel of the present invention.
  • step 1 is a schematic diagram of step 1 of a method for fabricating a liquid crystal display panel of the present invention
  • Fig. 6 is a schematic view showing the second step of the method for fabricating the liquid crystal display panel of the present invention.
  • the present invention firstly provides a liquid crystal material comprising liquid crystal molecules 31 and a photosensitive vertical alignment material 33 mixed in the liquid crystal molecules 31.
  • the photosensitive vertical alignment material 33 has a structural formula of A-Sp. -B-Sp-R, where
  • A refers to a polar group containing one or more of N, S, O, and Si atoms, preferably -OH or -NH;
  • the photosensitive vertical alignment material 33 of the present invention includes two major classes of azo-based photoisomers and photopolymerizable small molecules.
  • an azo photoisomer is a small molecule, and after mixing the azo photoisomers into the liquid crystal, the azo photoisomers are small molecules before UV light irradiation.
  • the structure is trans, and can be adsorbed on the surface of the substrate 100 by its own head base A, and perpendicular to the surface of the substrate 100 (as shown in FIG. 1B), and can guide the liquid crystal molecules to be vertically arranged, if ultraviolet (UV) light is applied in an oblique direction. Irradiation causes a photoreaction of the photosensitive group of the azo-based photoisomerized small molecule. As shown in FIG.
  • the structure of the azo-based photoisomer is changed from trans to cis, and the alignment direction occurs.
  • the change is arranged on the substrate 100 at a certain inclination angle according to the irradiation direction of the ultraviolet light, so that the liquid crystal molecules near the surface of the substrate 100 are caused to have a pretilt angle.
  • the photopolymerizable small molecule can be self-generated before UV light irradiation.
  • the head base A is adsorbed on the surface of the substrate 100 and perpendicular to the surface of the substrate 100 (as shown in FIG. 2B), and the liquid crystal molecules can be guided vertically. If ultraviolet (UV) light is irradiated in an oblique direction, light can be generated.
  • UV ultraviolet
  • the photoactive group of the polymerized small molecule undergoes a photoreaction, and a 2+2 cycloaddition reaction occurs between the adjacent photopolymerizable small molecules, so that the arrangement direction of the photopolymerizable small molecule changes, and the conversion is based on ultraviolet light.
  • the irradiation direction is arranged on the substrate 100 at a certain inclination angle (as shown in FIG. 2C), so that liquid crystal molecules near the surface of the substrate 100 are caused to have a pretilt angle.
  • the photosensitive vertical alignment material 33 in the liquid crystal material may be one or more of the following compounds:
  • the mass percentage of the photosensitive vertical alignment material 33 in the liquid crystal material It is 1 wt% to 5 wt%.
  • the present invention provides a liquid crystal display panel comprising an upper substrate 10 and a lower substrate 20 disposed opposite to each other, and a liquid crystal layer 30 disposed between the upper substrate 10 and the lower substrate 20;
  • the material of the liquid crystal layer 30 is the liquid crystal material described above, and includes liquid crystal molecules 31 and a photosensitive vertical alignment material 33 mixed in the liquid crystal molecules 31.
  • the photosensitive vertical alignment material 33 has a structural formula of A-Sp- B-Sp-R, where
  • A refers to a polar group containing one or more of N, S, O, and Si atoms, preferably -OH or -NH;
  • A is equivalent to the head base, and can be anchored on the upper and lower substrates 10, 20, so that the entire molecule is arranged perpendicular to the upper and lower substrates 10, 20, and functions as a vertical alignment.
  • Sp is an intermediate group
  • B is a photosensitive group, and when irradiated with UV light from an oblique direction, the photosensitive group undergoes a photoreaction, such that the photosensitive vertical alignment material 33 changes its own structure or molecules
  • the reaction occurs such that the alignment direction of the entire molecules of the photosensitive vertical alignment material 33 is changed, and the directions of the UV light irradiation are arranged on the upper and lower substrates 10 and 20 at a certain inclination angle, so that the upper and lower substrates 10,
  • the surface liquid crystal molecules 31 of the surface 20 produce a pretilt angle
  • R is a tail group, and acts like a PI branch to guide the alignment of the liquid crystal molecules 31 in a steric hindrance manner.
  • the photosensitive vertical alignment material 33 in the liquid crystal material may be one or more of the following compounds:
  • the mass percentage of the photosensitive vertical alignment material 33 in the liquid crystal material is 1% by weight to 5% by weight.
  • the liquid crystal display panel further includes a sealant 40 disposed between the upper substrate 10 and the lower substrate 20.
  • the liquid crystal display panel further includes a conductive paste (not shown) located at a periphery of the sealant 40.
  • the upper substrate 10 is a TFT substrate
  • the lower substrate 20 is a CF substrate
  • a pixel electrode 11 is disposed on a side of the upper substrate 10 adjacent to the liquid crystal layer 30, and the lower substrate 20 is adjacent to the liquid crystal layer 30.
  • One side is provided with a common electrode 21.
  • the material of the pixel electrode 11 and the common electrode 21 may be a metal oxide, a metal, or a conductive non-metal material.
  • the metal oxide may be indium tin oxide (In 2 O 3 :Sn, ITO), indium zinc oxide (ZnO: In, IZO), gallium zinc oxide (ZnO: Ga, GZO), or aluminum zinc oxide.
  • ZnO: Al, AZO the metal may be silver (Ag), gold (Au), platinum (Pt), copper (Cu), aluminum (Al), or chromium (Cr); the conductive non-metal
  • the material can be graphene.
  • the above liquid crystal display panel functions as a liquid crystal alignment by doping a photosensitive vertical alignment material in the liquid crystal molecules, thereby eliminating the alignment film and reducing the production cost compared with the TN type or STN type liquid crystal display panel, and the PSVA Compared with the liquid crystal display panel, the polymerizable monomer in the PSVA liquid crystal is omitted, and a UV illumination process is saved, and the etching process of the pixel electrode is simplified, and the production cost is reduced.
  • the present invention further provides a method for fabricating a liquid crystal display panel, including the following steps:
  • Step 1 as shown in FIG. 5, providing an upper substrate 10, a lower substrate 20, and a liquid crystal material;
  • the liquid crystal material includes liquid crystal molecules 31 and a photosensitive vertical alignment material 33 mixed in the liquid crystal molecules 31, and the photosensitive vertical alignment material 33 has a structural formula of A-Sp-B-Sp-R, wherein
  • A refers to a polar group containing one or more of N, S, O, and Si atoms, preferably -OH or -NH;
  • the photosensitive vertical alignment material 33 is adsorbed on the surfaces of the upper substrate 10 and the lower substrate 20 by its own group A, and is aligned perpendicularly to the surfaces of the upper substrate 10 and the lower substrate 20 (as shown in FIG. 6), thereby guiding
  • the liquid crystal molecules 31 are arranged perpendicular to the upper substrate 10 and the lower substrate 20.
  • the mass percentage of the photosensitive vertical alignment material 33 in the liquid crystal material is 1% by weight to 5% by weight.
  • the photosensitive vertical alignment material 33 in the liquid crystal material may be one or more of the following compounds:
  • the sealant 40 is cured by heating or ultraviolet (UV) light irradiation.
  • a conductive paste (not shown) is also applied to the periphery of the sealant 40.
  • the upper substrate 10 and the lower substrate 20 are assembled in a vacuum environment.
  • the upper substrate 10 is a TFT substrate
  • the lower substrate 20 is a CF substrate
  • a pixel electrode 11 is disposed on a side of the upper substrate 10 adjacent to the liquid crystal layer 30, and the lower substrate 20 is adjacent to the liquid crystal layer 30.
  • One side is provided with a common electrode 21.
  • the material of the pixel electrode 11 and the common electrode 21 may be a metal oxide, a metal, or a conductive non-metal material.
  • the metal oxide may be indium tin oxide (In 2 O 3 :Sn, ITO), indium zinc oxide (ZnO: In, IZO), gallium zinc oxide (ZnO: Ga, GZO), or aluminum zinc oxide.
  • ZnO: Al, AZO the metal may be silver (Ag), gold (Au), platinum (Pt), copper (Cu), aluminum (Al), or chromium (Cr); the conductive non-metal
  • the material can be graphene.
  • Step 2 As shown in FIG. 6, the liquid crystal material is irradiated with ultraviolet light from the side of the upper substrate 10 or the lower substrate 20, and the irradiation direction of the ultraviolet light is between the upper substrate 10 and the lower substrate 20.
  • a certain inclination angle after being irradiated by ultraviolet light from an oblique direction, the group B in the photosensitive vertical alignment material 33 undergoes a photoreaction, and the arrangement direction of the photosensitive vertical alignment material 33 is changed, according to the irradiation direction of the ultraviolet light.
  • the liquid crystal molecules 31 adjacent to the surfaces of the upper substrate 10 and the lower substrate 20 are pretilted at a certain inclination angle so as to be at a certain inclination angle (as shown in FIG. 3), and the fabrication of the liquid crystal display panel is completed.
  • the liquid crystal material is irradiated with ultraviolet light from the side of the upper substrate 10 (ie, the TFT substrate).
  • the TFT substrate has a higher light transmittance than the CF substrate, which can increase the transmittance of ultraviolet light and enhance the effect of ultraviolet light irradiation.
  • the ultraviolet light has a wavelength of 320 to 400 nm, an illuminance of 1 to 100 mW/cm 2 , and an irradiation time of 5 to 30 min.
  • the manufacturing method of the liquid crystal display panel described above is simple in process, and by doping the liquid crystal molecules with the photosensitive vertical alignment material, the process of the alignment film is omitted, and the production cost is reduced, compared with the process of the TN type or the STN type liquid crystal display panel.
  • the utility model saves a UV illumination process, simplifies the etching process of the pixel electrode, can reduce the production cost, and has better alignment effect of the obtained liquid crystal display panel.
  • the reaction formula of the step 1 is as follows:
  • the reaction formula of the step 2 is as follows:
  • Step 3 1 mmol of the compound (III) was dissolved in 8 mL of CH 2 Cl 2 , and 5 mmol of triethylamine was added under ice bath to obtain a solution of the compound (III) in CH 2 Cl 2 ; 1 to 1.5 mmol of the compound (V) was dissolved in 4mLCH 2 Cl 2 to give CH 2 Cl 2 solution of the compound (V); a mixed CH 2 Cl 2 solution of CH 2 Cl 2 solution of compound (III), (V), the mixture was stirred at room temperature for 15 to 25 hours , the obtained product is washed with NaOH solution and water, and then dried with anhydrous Na 2 SO 4 , and then recrystallized to obtain the compound (VI);
  • the reaction formula of the step 3 is as follows:
  • the H 1 -NMR data of the compound (VI) are as follows: ⁇ : 0.96 (3H, CH 3 ), 1.33 (2H, CH 2 ), 1.29 (2H, CH 2 ), 1.62 (2H, CH 2 ), 2.55 (2H, CH 2 ), 7.18 (2H, benz), 7.43 (2H, benz), 7.68 (2H, benz), 7.99 (2H, benz), 8.14 (2H, benz), 8.33 (2H, benz), 11.0 (1H, OH);
  • the reaction formula of the step 1 is as follows:
  • the CO 3 solution is argon gas for 15 to 30 minutes, and a small amount of tetrakis(triphenylphosphine)palladium is added.
  • the reaction temperature is 100-300 ° C, and the reaction time is 1-2 h. After separation and purification, the compound (XI) is obtained. .
  • the reaction formula of the step 2 is as follows:
  • the H 1 -NMR data of the compound (XI) are as follows: ⁇ : 0.96 (3H, CH3), 1.33 (2H, CH2), 1.29 (2H, CH2), 1.62 (2H, CH2), 2.55 (2H, CH2), 7.16 (1H,benz), 7.14 (1H, benz), 7.20 (1H, benz), 7.45 (2H, benz), 7.13 (4H, benz), 6.68 (2H, benz), 6.39 (1H, CH), 7.64 ( 1H, CH), 5.0 (1H, OH);
  • the present invention provides a liquid crystal material, a liquid crystal display panel, and a method of fabricating the liquid crystal display panel.
  • the liquid crystal material of the present invention is doped with a photosensitive vertical alignment material in the liquid crystal molecules, and functions as a liquid crystal alignment.
  • the liquid crystal display panel of the present invention adopts the above liquid crystal material, and the alignment film is omitted compared with the TN type or STN type liquid crystal display panel, thereby reducing the production cost, and the PSVA liquid crystal is omitted compared with the PSVA type liquid crystal display panel.
  • the polymerizable monomer in the same time saves a UV light process and simplifies the etching process of the pixel electrode and reduces the production cost.
  • the manufacturing method of the liquid crystal display panel of the invention has simple process, and the process of the alignment film is omitted, and the production cost is reduced, compared with the process of the TN type or the STN type liquid crystal display panel, compared with the process of the PSVA type liquid crystal display panel.
  • the utility model saves a UV illumination process, simplifies the etching process of the pixel electrode, can reduce the production cost, and has better liquid crystal alignment effect of the obtained liquid crystal display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶材料、液晶显示面板及液晶显示面板的制作方法。该液晶材料包括液晶分子(31)与混合于液晶分子(31)之中的光敏性垂直取向材料(33),所述光敏性垂直取向材料(33)包括头A、中间基团Sp、光敏基团B、及尾基R,其中,头基A锚固于基板(100, 10, 20)上,使得整个分子垂直于基板(100, 10, 20)排列,光敏基团B在受到来自倾斜方向的紫外光照射时会发生光反应,导致整个分子的排列方向发生改变,根据紫外光的照射方向以一定的倾角排列于基板(100, 10, 20)上,使得基板(100, 10, 20)表面的液晶分子(31)产生预倾角;通过在液晶分子(31)中掺杂光敏性垂直取向材料(33),起到液晶配向的作用,省去了配向膜,可降低生产成本。

Description

液晶材料、液晶显示面板及液晶显示面板的制作方法 技术领域
本发明涉及显示技术领域,尤其涉及一种液晶材料、液晶显示面板及液晶显示面板的制作方法。
背景技术
随着显示技术的发展,液晶显示器(Liquid Crystal Display,LCD)等平面显示装置因具有高画质、省电、机身薄及应用范围广等优点,而被广泛的应用于手机、电视、个人数字助理、数字相机、笔记本电脑、台式计算机等各种消费性电子产品,成为显示装置中的主流。
现有市场上的液晶显示装置大部分为背光型液晶显示器,其包括液晶显示面板及背光模组(backlight module)。液晶显示面板的工作原理是在两片平行的玻璃基板当中放置液晶分子,两片玻璃基板中间有许多垂直和水平的细小电线,通过通电与否来控制液晶分子改变方向,将背光模组的光线折射出来产生画面。
通常液晶显示面板由彩膜(CF,Color Filter)基板、薄膜晶体管(TFT,Thin Film Transistor)基板、夹于彩膜基板与薄膜晶体管基板之间的液晶(LC,Liquid Crystal)及密封胶框(Sealant)组成。
在TN(Twisted nematic,扭曲向列)型或STN(Super twisted nematic,超扭曲向列)型液晶显示面板的CF基板和TFT基板上,分别有一层薄膜材料,其主要作用是使液晶分子按一定方向排列,我们称之为配向膜,通常所述配向膜的材料为聚酰亚胺(PI)材料,包括摩擦配向型PI材料或光配向型PI材料,但是,无论那种配向材料都会有各自的缺点。首先摩擦配向型PI材料容易造成粉尘颗粒、静电残留、刷痕等问题,从而降低工艺良率,而光配向型PI材料虽然可以避免这些问题,但由于材料特性受限,耐热性和耐老化性不佳,同时锚定LC分子的能力也较弱,从而影响面板的品质;其次,PI材料本身就具有高极性和高吸水性,存储和运送容易造成变质而导致配向不均,并且PI材料价格昂贵,在TFT-LCD上成膜的工艺也较为复杂,导致面板成本提高。
目前,常用的VA(Vertical Alignment,垂直配向)型显示面板为PSVA(Polymer stabilized vertical alignment,聚合物稳定垂直对齐)显示模式,该种模式的液晶显示面板需要在液晶材料中添加一种或几种可聚合的单 体,并在紫外光照射下使其发生聚合反应,形成具有引导液晶导向的凸起物,沉积在基板表面,以利于液晶产生特定的预倾角(Pre-angle),使得液晶驱动时进行定向排列。但是,该技术存在的问题是,这种可聚合单体光聚合的均匀性、残留量等问题都会影响面板的品质;并且,在PSVA型液晶显示面板中,还需要在TFT侧的ITO进行曝光、显影、蚀刻等工艺,以产生具有鱼骨状的图案,工艺复杂;另外,PSVA型液晶显示面板中的可聚合单体需要经过两次紫外(UV)光照制程才能完成聚合,生产成本较高。
发明内容
本发明的目的在于提供一种液晶材料,液晶分子中掺杂有光敏性垂直取向材料,能够起到液晶配向的作用,降低液晶显示面板的生产成本。
本发明的目的还在于提供一种液晶显示面板,不需要采用配向膜,结构简单,生产成本低。
本发明的目的又在于提供一种液晶显示面板的制作方法,省去了配向膜制程,制程简单,可降低生产成本,提升产能,且液晶分子的配向效果良好。
为实现上述目的,本发明首先提供一种液晶材料,包括液晶分子、及混合于液晶分子之中的光敏性垂直取向材料,所述光敏性垂直取向材料的结构通式为A-Sp-B-Sp-R,其中,
A指的是含有N、S、O、和Si原子中的一个或多个的极性基团;
Sp指的是-CH=CH-、-C≡C-、苯基、环烷基、-O-、-S-、-CO-、-CO-O-、-OCO-、-CH2S-、-CF2O-、-OCF2-、-CF2S-、-(CH2)n-、所述-(CH2)n-基团中某个C原子被苯基、环己基、或者一种或多种环烷基与亚烷基的组合取代后的基团、或者所述-(CH2)n-基团中某个H原子被F原子取代后的基团;所述-(CH2)n-基团中,n=1、2、3或4;
B指的是一个或多个光敏性基团,所述光敏性基团的结构式为
Figure PCTCN2016082555-appb-000001
R指的是具有5~20个C原子的直链或支链化的烷基、该烷基中某个CH2基团被苯基、环烷基、-CONH-、-COO-、-O-CO-、-S-、-CO-、或-CH=CH-基团取代后得到的第一基团、该烷基中某个H原子被F或Cl原子取代后得到的第二基团、或者所述第一基团中某个H原子被F或Cl原子取代后得到 的第三基团。
所述基团A为-OH或-NH。
所述光敏性垂直取向材料在所述液晶材料中的质量百分比为1wt%~5wt%。
所述液晶材料中的光敏性垂直取向材料为以下化合物中的一种或多种:
Figure PCTCN2016082555-appb-000002
本发明还提供一种液晶显示面板,包括相对设置的上基板与下基板、及设于所述上基板与下基板之间的液晶层;
所述液晶层的材料为上述的液晶材料。
本发明还提供一种液晶显示面板的制作方法,包括如下步骤:
步骤1、提供一上基板、一下基板、及液晶材料;
所述液晶材料包括液晶分子、及混合于液晶分子之中的光敏性垂直取向材料,所述光敏性垂直取向材料的结构通式为A-Sp-B-Sp-R,其中,
A指的是含有N、S、O、和Si原子中的一个或多个的极性基团;
Sp指的是-CH=CH-、-C≡C-、苯基、环烷基、-O-、-S-、-CO-、-CO-O-、-OCO-、-CH2S-、-CF2O-、-OCF2-、-CF2S-、-(CH2)n-、所述-(CH2)n-基团中某个C原子被苯基、环己基、或者一种或多种环烷基与亚烷基的组合取代后的基团、或者所述-(CH2)n-基团中某个H原子被F原子取代后的基团;所述-(CH2)n-基团中,n=1、2、3或4;
B指的是一个或多个光敏性基团,所述光敏性基团的结构式为
Figure PCTCN2016082555-appb-000003
R指的是具有5~20个C原子的直链或支链化的烷基、该烷基中某个CH2基团被苯基、环烷基、-CONH-、-COO-、-O-CO-、-S-、-CO-、或-CH=CH-基团取代后得到的第一基团、该烷基中某个H原子被F或Cl原子取代后得到的第二基团、或者所述第一基团中某个H原子被F或Cl原子取代后得到的第三基团;
在所述上基板或者下基板上滴注液晶材料,在所述下基板或者上基板的周边位置涂布密封胶,之后将所述上基板与下基板组立贴合,并对所述密封胶进行固化,得到位于所述上基板与下基板之间的液晶层;
此时,所述光敏性垂直取向材料依靠自身的基团A吸附在上基板和下基板表面,并垂直于上基板和下基板表面排列,从而引导液晶分子垂直于上基板和下基板排列;
步骤2、从所述上基板或下基板一侧对所述液晶材料进行紫外光照射,且所述紫外光的照射方向与所述上基板和下基板之间呈一定的倾角,受到来自倾斜方向的紫外光照射后,所述光敏性垂直取向材料中的基团B发生光反应,使光敏性垂直取向材料的排列方向发生改变,根据紫外光的照射方向以一定的倾角排列于上基板和下基板上,从而使得靠近上基板和下基板表面的液晶分子产生预倾角,完成液晶显示面板的制作。
所述基团A为-OH或-NH。
所述光敏性垂直取向材料在所述液晶材料中的质量百分比为 1wt%~5wt%。
所述液晶材料中的光敏性垂直取向材料为以下化合物中的一种或多种:
Figure PCTCN2016082555-appb-000004
所述上基板为TFT基板,所述下基板为CF基板;所述步骤2中,从所述上基板一侧对所述液晶材料进行紫外光照射。
所述步骤2中,所述紫外光的波长为320~400nm,照度为1~100mW/cm2,照射时间为5~30min。
本发明的有益效果:本发明提供的一种液晶材料,在液晶分子中掺杂光敏性垂直取向材料,能够起到液晶配向的作用。本发明提供的一种液晶 显示面板,采用上述的液晶材料,与TN型或STN型液晶显示面板相比,省去了配向膜,降低了生产成本,与PSVA型液晶显示面板相比,省去了PSVA液晶中的可聚合单体,同时节省了一道UV光照制程,并简化了像素电极的蚀刻工艺,降低生产成本。本发明提供的一种液晶显示面板的制作方法,制程简单,与TN型或STN型液晶显示面板的制程相比,省去了配向膜的制程,降低了生产成本,与PSVA型液晶显示面板的制程相比,节省了一道UV光照制程,并简化了像素电极的蚀刻工艺,可降低生产成本,且制得的液晶显示面板的液晶配向效果好。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1A为本发明的液晶材料中的光敏性垂直取向材料的一类化合物的结构示意图;
图1B为图1A的光敏性垂直取向材料在紫外光照射前垂直于基板排列的示意图;
图1C为图1A的光敏性垂直取向材料在紫外光照射后以一定的倾角排列于基板上的示意图;
图2A为本发明的液晶材料中的光敏性垂直取向材料的另一类化合物的结构示意图;
图2B为图2A的光敏性垂直取向材料在紫外光照射前垂直于基板排列的示意图;
图2C为图2A的光敏性垂直取向材料在紫外光照射后以一定的倾角排列于基板上的示意图;
图3为本发明的液晶显示面板的结构示意图;
图4为本发明的液晶显示面板的制作方法的示意流程图;
图5为本发明的液晶显示面板的制作方法的步骤1的示意图;
图6为本发明的液晶显示面板的制作方法的步骤2的示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图3,本发明首先提供一种液晶材料,包括液晶分子31与混合于液晶分子31之中的光敏性垂直取向材料33,所述光敏性垂直取向材料33的结构通式为A-Sp-B-Sp-R,其中,
A指的是含有N、S、O、和Si原子中的一个或多个的极性基团,优选为-OH或-NH;
Sp指的是-CH=CH-、-C≡C-、苯基、环烷基、-O-、-S-、-CO-、-CO-O-、-OCO-、-CH2S-、-CF2O-、-OCF2-、-CF2S-、-(CH2)n-、所述-(CH2)n-基团中某个C原子被苯基、环己基、或者一种或多种环烷基与亚烷基(-CH2-)的组合取代后的基团、或者所述-(CH2)n-基团中某个H原子被F原子取代后的基团;所述-(CH2)n-基团中,n=1、2、3或4;
B指的是一个或多个光敏性基团,所述光敏性基团的结构式为
Figure PCTCN2016082555-appb-000005
R指的是具有5~20个C原子的直链或支链化的烷基、该烷基中某个CH2基团被苯基、环烷基、-CONH-、-COO-、-O-CO-、-S-、-CO-、或-CH=CH-基团取代后得到的第一基团、该烷基中某个H原子被F或Cl原子取代后得到的第二基团、或者所述第一基团中某个H原子被F或Cl原子取代后得到的第三基团。如图1A和图2A所示,本发明的光敏性垂直取向材料33包括偶氮类光异构小分子和可发生光聚合小分子两大类。
如图1A所示,为一种偶氮类光异构小分子,将该偶氮类光异构小分子混合于液晶之后,在UV光照射之前,所述偶氮类光异构小分子的结构为反式,可以依靠自身的头基A吸附在基板100表面,并垂直于基板100表面(如图1B所示),可引导液晶分子垂直排列,若在倾斜方向上以紫外(UV)光进行照射,会使得偶氮类光异构小分子的光敏基团发生光反应,如图1C所示,所述偶氮类光异构小分子的结构由反式变为顺式,排列方向发生改变,根据紫外光的照射方向以一定的倾角排列于基板100上,从而使得靠近基板100表面的液晶分子产生预倾角。
如图2A所示,为一种可发生光聚合小分子,将该可发生光聚合小分子混合于液晶之后,在UV光照射之前,所述可发生光聚合小分子依靠自身 的头基A吸附在基板100表面,并垂直于基板100表面(如图2B所示),可引导液晶分子垂直排列,若在倾斜方向上以紫外(UV)光进行照射,会使得可发生光聚合小分子的光敏基团发生光反应,相邻的可发生光聚合小分子之间发生2+2环加成反应,使得可发生光聚合小分子的排列方向发生改变,转为根据紫外光的照射方向以一定的倾角排列于基板100上(如图2C所示),从而使得靠近基板100表面的液晶分子产生预倾角。
优选的,所述液晶材料中的光敏性垂直取向材料33可以为以下化合物中的一种或多种:
Figure PCTCN2016082555-appb-000006
具体的,所述光敏性垂直取向材料33在所述液晶材料中的质量百分比 为1wt%~5wt%。
基于上述液晶材料,请参阅图3,本发明提供一种液晶显示面板,包括相对设置的上基板10与下基板20、及设于所述上基板10与下基板20之间的液晶层30;所述液晶层30的材料为上述的液晶材料,包括液晶分子31与混合于液晶分子31之中的光敏性垂直取向材料33,所述光敏性垂直取向材料33的结构通式为A-Sp-B-Sp-R,其中,
A指的是含有N、S、O、和Si原子中的一个或多个的极性基团,优选为-OH或-NH;
Sp指的是-CH=CH-、-C≡C-、苯基、环烷基、-O-、-S-、-CO-、-CO-O-、-OCO-、-CH2S-、-CF2O-、-OCF2-、-CF2S-、-(CH2)n-、所述-(CH2)n-基团中某个C原子被苯基、环己基、或者一种或多种环烷基与亚烷基(-CH2-)的组合取代后的基团、或者所述-(CH2)n-基团中某个H原子被F原子取代后的基团;所述-(CH2)n-基团中,n=1、2、3或4;
B指的是一个或多个光敏性基团,所述光敏性基团的结构式为
Figure PCTCN2016082555-appb-000007
R指的是具有5~20个C原子的直链或支链化的烷基、该烷基中某个CH2基团被苯基、环烷基、-CONH-、-COO-、-O-CO-、-S-、-CO-、或-CH=CH-基团取代后得到的第一基团、该烷基中某个H原子被F或Cl原子取代后得到的第二基团、或者所述第一基团中某个H原子被F或Cl原子取代后得到的第三基团。
具体的,所述光敏性垂直取向材料33中,A相当于头基,可以锚固于上、下基板10、20上,使得整个分子垂直于上、下基板10、20排列,起到垂直配向的作用;Sp为中间基团;B为光敏基团,在受到来自倾斜方向的UV光照射时,光敏基团会发生光反应,使得所述光敏性垂直取向材料33的自身结构发生变化或者分子之间发生反应,使得所述光敏性垂直取向材料33的整个分子的排列方向发生改变,根据UV光照射的方向以一定的倾角排列于上、下基板10、20上,使得上、下基板10、20表面的液晶分子31产生预倾角;R为尾基,起到类似于PI支链的作用以立体障碍的方式引导液晶分子31排列。
优选的,所述液晶材料中的光敏性垂直取向材料33可以为以下化合物中的一种或多种:
Figure PCTCN2016082555-appb-000008
具体的,所述光敏性垂直取向材料33在所述液晶材料中的质量百分比为1wt%~5wt%。
具体的,所述液晶显示面板还包括设于所述上基板10与下基板20之间的密封胶40。优选的,所述液晶显示面板还包括位于所述密封胶40的外围的导电胶(未图示)。
具体的,所述上基板10为TFT基板,所述下基板20为CF基板,所述上基板10上靠近液晶层30的一侧设有像素电极11,所述下基板20上靠近液晶层30的一侧设有公共电极21。
具体的,所述像素电极11与公共电极21的材料可以为金属氧化物、 金属、或者导电的非金属材料。优选的,所述金属氧化物可以为氧化铟锡(In2O3:Sn,ITO)、氧化铟锌(ZnO:In,IZO)、氧化镓锌(ZnO:Ga,GZO)、或者氧化铝锌(ZnO:Al,AZO);所述金属可以为银(Ag)、金(Au)、铂(Pt)、铜(Cu)、铝(Al)、或铬(Cr);所述导电的非金属材料可以为石墨烯。
上述液晶显示面板,通过在液晶分子中掺杂光敏性垂直取向材料,起到液晶配向的作用,与TN型或STN型液晶显示面板相比,省去了配向膜,降低了生产成本,与PSVA型液晶显示面板相比,省去PSVA液晶中的可聚合单体,同时节省了一道UV光照制程,并简化了像素电极的蚀刻工艺,降低生产成本。
请参阅图4-6,同时参阅图3,本发明还提供一种液晶显示面板的制作方法,包括以下步骤:
步骤1、如图5所示,提供一上基板10、一下基板20、及液晶材料;
所述液晶材料包括液晶分子31与混合于液晶分子31之中的光敏性垂直取向材料33,所述光敏性垂直取向材料33的结构通式为A-Sp-B-Sp-R,其中,
A指的是含有N、S、O、和Si原子中的一个或多个的极性基团,优选为-OH或-NH;
Sp指的是-CH=CH-、-C≡C-、苯基、环烷基、-O-、-S-、-CO-、-CO-O-、-OCO-、-CH2S-、-CF2O-、-OCF2-、-CF2S-、-(CH2)n-、所述-(CH2)n-基团中某个C原子被苯基、环己基、或者一种或多种环烷基与亚烷基的组合取代后的基团、或者所述-(CH2)n-基团中某个H原子被F原子取代后的基团;所述-(CH2)n-基团中,n=1、2、3或4;
B指的是一个或多个光敏性基团,所述光敏性基团的结构式为
Figure PCTCN2016082555-appb-000009
R指的是具有5~20个C原子的直链或支链化的烷基、该烷基中某个CH2基团被苯基、环烷基、-CONH-、-COO-、-O-CO-、-S-、-CO-、或-CH=CH-基团取代后得到的第一基团、该烷基中某个H原子被F或Cl原子取代后得到的第二基团、或者所述第一基团中某个H原子被F或Cl原子取代后得到的第三基团;
在所述上基板10或者下基板20上滴注液晶材料,在所述下基板20或 者上基板10的周边位置涂布密封胶40,之后将所述上基板10与下基板20组立贴合,并对所述密封胶40进行固化,得到位于上基板10与下基板20之间的液晶层30;
此时,所述光敏性垂直取向材料33依靠自身的基团A吸附在上基板10和下基板20表面,并垂直于上基板10和下基板20表面(如图6所示)排列,从而引导液晶分子31垂直于上基板10和下基板20排列。
具体的,所述光敏性垂直取向材料33在所述液晶材料中的质量百分比为1wt%~5wt%。
优选的,所述液晶材料中的光敏性垂直取向材料33可以为以下化合物中的一种或多种:
Figure PCTCN2016082555-appb-000010
具体的,所述步骤1中,采用加热或紫外(UV)光照射的方法对所述密封胶40进行固化。
优选的,所述步骤1中,在所述下基板20或者上基板10的周边位置涂布密封胶40后,还在所述密封胶40的外围涂布导电胶(未图示)。
优选的,所述步骤1中,在真空环境下将所述上基板10与下基板20组立贴合。
具体的,所述上基板10为TFT基板,所述下基板20为CF基板,所述上基板10上靠近液晶层30的一侧设有像素电极11,所述下基板20上靠近液晶层30的一侧设有公共电极21。
具体的,所述像素电极11与公共电极21的材料可以为金属氧化物、金属、或者导电的非金属材料。优选的,所述金属氧化物可以为氧化铟锡(In2O3:Sn,ITO)、氧化铟锌(ZnO:In,IZO)、氧化镓锌(ZnO:Ga,GZO)、或者氧化铝锌(ZnO:Al,AZO);所述金属可以为银(Ag)、金(Au)、铂(Pt)、铜(Cu)、铝(Al)、或铬(Cr);所述导电的非金属材料可以为石墨烯。
步骤2、如图6所示,从所述上基板10或下基板20一侧对所述液晶材料进行紫外光照射,且紫外光的照射方向与所述上基板10和下基板20之间呈一定的倾角,受到来自倾斜方向的紫外光照射后,所述光敏性垂直取向材料33中的基团B发生光反应,使光敏性垂直取向材料33的排列方向发生改变,根据紫外光的照射方向以一定的倾角排列于上基板10和下基板20上,从而使得靠近上基板10和下基板20表面的液晶分子31产生预倾角(如图3所示),完成液晶显示面板的制作。
优选的,所述步骤2中,从所述上基板10(即TFT基板)一侧对所述液晶材料进行紫外光照射。这是因为TFT基板相较于CF基板具有更高的透光率,可提高紫外光的透过率,提升紫外光照射的效果。
具体的,所述步骤2中,所述紫外光的波长为320~400nm,照度为1~100mW/cm2,照射时间为5~30min。
上述液晶显示面板的制作方法,制程简单,通过在液晶分子中掺杂光敏性垂直取向材料,与TN型或STN型液晶显示面板的制程相比,省去了配向膜的制程,降低了生产成本,与PSVA型液晶显示面板的制程相比,节省了一道UV光照制程,并简化了像素电极的蚀刻工艺,可降低生产成本,且制得的液晶显示面板的配向效果好。
以下以具体实施例Ⅰ与具体实施例Ⅱ来展示两种具体结构的光敏性垂直取向材料33的制备方法:
具体实施例Ⅰ:
化合物
Figure PCTCN2016082555-appb-000011
的制备方法:
步骤1、将对胺基苯甲酸(I)、苯酚(II)、盐酸(HCl)、亚硝酸钠(NaNO2)按照对胺基苯甲酸(I):苯酚(II):HCl:NaNO2=1:1~2:1~5:1.01~1.10的摩尔比混合,在0~5℃的温度条件下反应3~5小时,得到化合物(III);
所述步骤1的反应式如下:
Figure PCTCN2016082555-appb-000012
步骤2、将苯酸(IV)、亚硫酰氯(SOCl2)按照苯酸(IV):SOCl2=1:2~3的摩尔比混合,溶解于甲苯中,在100~200℃的温度条件下反应15~25小时,得到化合物(V);
所述步骤2的反应式如下:
Figure PCTCN2016082555-appb-000013
步骤3、将1mmol化合物(III)溶解于8mLCH2Cl2中,冰浴条件下加入5mmol三乙胺,得到化合物(III)的CH2Cl2溶液;将1~1.5mmol化合物(V)溶解在4mLCH2Cl2中,得到化合物(V)的CH2Cl2溶液;将化合物(III)的CH2Cl2溶液与化合物(V)的CH2Cl2溶液混合后,室温下搅拌15~25小时,得到的产物用NaOH溶液和水洗涤分液后,再用无水Na2SO4干燥,再重结晶后得到化合物(VI);
所述步骤3的反应式如下:
Figure PCTCN2016082555-appb-000014
化合物(VI)的H1-NMR数据如下:δ:0.96(3H,CH3),1.33(2H,CH2),1.29(2H,CH2),1.62(2H,CH2),2.55(2H,CH2),7.18(2H,benz),7.43(2H,benz),7.68(2H,benz),7.99(2H,benz),8.14(2H,benz),8.33(2H,benz),11.0(1H,OH);
Figure PCTCN2016082555-appb-000015
具体实施例Ⅱ:
化合物
Figure PCTCN2016082555-appb-000016
的制备方法:
步骤1、将肉桂酸(Ⅶ)、对溴苯酚(Ⅷ)、4-二甲氨基吡啶(DMAP)按照肉桂酸(Ⅶ):对溴苯酚(Ⅷ):4-二甲氨基吡啶(DMAP)=1:1.1~1.2:0.05的摩尔比溶解在30倍(与肉桂酸(Ⅶ)比较,单位比为mmol:mL)的CH2Cl2中,冰浴搅拌10min,再加入与肉桂酸(Ⅶ)的摩尔量相同的二环己基碳二亚胺(DCC),冰浴搅拌10min后撤除冰浴,室温反应3~5h,分离提纯后,得化合物(Ⅸ)。
所述步骤1的反应式如下:
Figure PCTCN2016082555-appb-000017
步骤2、将化合物(Ⅹ)、化合物(Ⅸ)按照化合物(Ⅸ):化合物(Ⅹ)=1:1.0~1.3的摩尔比溶解在10倍(与化合物(Ⅹ)比较,单位为mmol:mL)的甲苯中,然后加入5倍(与化合物(Ⅹ)比较,单位比为mmol:mL)的乙醇和2倍(与化合物(Ⅹ)比较,单位比为mmol:mL)的1mol/L的Na2CO3溶液,通氩气15~30min,再加入少量的四(三苯基膦)钯,反应温度为100~300℃,反应时间为1~2h;再进行分离提纯后,得到化合物(Ⅺ)。
所述步骤2的反应式如下:
Figure PCTCN2016082555-appb-000018
Figure PCTCN2016082555-appb-000019
化合物(Ⅺ)的H1-NMR数据如下:δ:0.96(3H,CH3),1.33(2H,CH2),1.29(2H,CH2),1.62(2H,CH2),2.55(2H,CH2),7.16(1H,benz),7.14(1H,benz),7.20(1H,benz),7.45(2H,benz),7.13(4H,benz),6.68(2H,benz),6.39(1H,CH),7.64(1H,CH),5.0(1H,OH);
Figure PCTCN2016082555-appb-000020
综上所述,本发明提供一种液晶材料、液晶显示面板及液晶显示面板的制作方法。本发明的液晶材料,在液晶分子中掺杂有光敏性垂直取向材料,能够起到液晶配向的作用。本发明的液晶显示面板,采用上述的液晶材料,与TN型或STN型液晶显示面板相比,省去了配向膜,降低了生产成本,与PSVA型液晶显示面板相比,省去了PSVA液晶中的可聚合单体,同时节省了一道UV光照制程,并简化了像素电极的蚀刻工艺,降低生产成本。本发明的液晶显示面板的制作方法,制程简单,与TN型或STN型液晶显示面板的制程相比,省去了配向膜的制程,降低了生产成本,与PSVA型液晶显示面板的制程相比,节省了一道UV光照制程,并简化了像素电极的蚀刻工艺,可降低生产成本,且制得的液晶显示面板的液晶配向效果好。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (10)

  1. 一种液晶材料,包括液晶分子、及混合于液晶分子之中的光敏性垂直取向材料,所述光敏性垂直取向材料的结构通式为A-Sp-B-Sp-R,其中,
    A指的是含有N、S、O、和Si原子中的一个或多个的极性基团;
    Sp指的是-CH=CH-、-C≡C-、苯基、环烷基、-O-、-S-、-CO-、-CO-O-、-OCO-、-CH2S-、-CF2O-、-OCF2-、-CF2S-、-(CH2)n-、所述-(CH2)n-基团中某个C原子被苯基、环己基、或者一种或多种环烷基与亚烷基的组合取代后的基团、或者所述-(CH2)n-基团中某个H原子被F原子取代后的基团;所述-(CH2)n-基团中,n=1、2、3或4;
    B指的是一个或多个光敏性基团,所述光敏性基团的结构式为
    Figure PCTCN2016082555-appb-100001
    R指的是具有5~20个C原子的直链或支链化的烷基、该烷基中某个CH2基团被苯基、环烷基、-CONH-、-COO-、-O-CO-、-S-、-CO-、或-CH=CH-基团取代后得到的第一基团、该烷基中某个H原子被F或Cl原子取代后得到的第二基团、或者所述第一基团中某个H原子被F或Cl原子取代后得到的第三基团。
  2. 如权利要求1所述的液晶材料,其中,所述基团A为-OH或-NH。
  3. 如权利要求1所述的液晶材料,其中,所述光敏性垂直取向材料在所述液晶材料中的质量百分比为1wt%~5wt%。
  4. 如权利要求1所述的液晶材料,其中,光敏性垂直取向材料为以下化合物中的一种或多种:
    Figure PCTCN2016082555-appb-100002
    Figure PCTCN2016082555-appb-100003
  5. 一种液晶显示面板,包括相对设置的上基板与下基板、及设于所述上基板与下基板之间的液晶层;
    所述液晶层的材料为如权利要求1所述的液晶材料。
  6. 一种液晶显示面板的制作方法,包括如下步骤:
    步骤1、提供一上基板、一下基板、及液晶材料;
    所述液晶材料包括液晶分子、及混合于液晶分子之中的光敏性垂直取向材料,所述光敏性垂直取向材料的结构通式为A-Sp-B-Sp-R,其中,
    A指的是含有N、S、O、和Si原子中的一个或多个的极性基团;
    Sp指的是-CH=CH-、-C≡C-、苯基、环烷基、-O-、-S-、-CO-、-CO-O-、-OCO-、-CH2S-、-CF2O-、-OCF2-、-CF2S-、-(CH2)n-、所述-(CH2)n-基团中某个C原子被苯基、环己基、或者一种或多种环烷基与亚烷基的组合取代后的基团、或者所述-(CH2)n-基团中某个H原子被F原子取代后的基团;所述-(CH2)n-基团中,n=1、2、3或4;
    B指的是一个或多个光敏性基团,所述光敏性基团的结构式为
    Figure PCTCN2016082555-appb-100004
    R指的是具有5~20个C原子的直链或支链化的烷基、该烷基中某个CH2基团被苯基、环烷基、-CONH-、-COO-、-O-CO-、-S-、-CO-、或-CH=CH-基团取代后得到的第一基团、该烷基中某个H原子被F或Cl原子取代后得到的第二基团、或者所述第一基团中某个H原子被F或Cl原子取代后得到的第三基团;
    在所述上基板或者下基板上滴注液晶材料,在所述下基板或者上基板的周边位置涂布密封胶,之后将所述上基板与下基板组立贴合,并对所述密封胶进行固化,得到位于所述上基板与下基板之间的液晶层;
    此时,所述光敏性垂直取向材料依靠自身的基团A吸附在上基板和下基板表面,并垂直于上基板和下基板表面排列,从而引导液晶分子垂直于上基板和下基板排列;
    步骤2、从所述上基板或下基板一侧对所述液晶材料进行紫外光照射,且所述紫外光的照射方向与所述上基板和下基板之间呈一定的倾角,受到来自倾斜方向的紫外光照射后,所述光敏性垂直取向材料中的基团B发生光反应,使光敏性垂直取向材料的排列方向发生改变,根据紫外光的照射方向以一定的倾角排列于上基板和下基板上,从而使得靠近上基板和下基板表面的液晶分子产生预倾角,完成液晶显示面板的制作。
  7. 如权利要求6所述的液晶显示面板的制作方法,其中,所述基团A为-OH或-NH;
    所述光敏性垂直取向材料在所述液晶材料中的质量百分比为1wt%~5wt%。
  8. 如权利要求6所述的液晶显示面板的制作方法,其中,所述液晶材料中的光敏性垂直取向材料为以下化合物中的一种或多种:
    Figure PCTCN2016082555-appb-100005
    Figure PCTCN2016082555-appb-100006
  9. 如权利要求6所述的液晶显示面板的制作方法,其中,所述上基板为TFT基板,所述下基板为CF基板;所述步骤2中,从所述上基板一侧对所述液晶材料进行紫外光照射。
  10. 如权利要求6所述的液晶显示面板的制作方法,其中,所述步骤2中,所述紫外光的波长为320~400nm,照度为1~100mW/cm2,照射时间为5~30min。
PCT/CN2016/082555 2016-04-07 2016-05-18 液晶材料、液晶显示面板及液晶显示面板的制作方法 WO2017173709A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/039,419 US10151951B2 (en) 2016-04-07 2016-05-18 Liquid crystal material, liquid crystal display panel and manufacture method of liquid crystal display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610213472.4A CN105885872B (zh) 2016-04-07 2016-04-07 液晶材料、液晶显示面板及液晶显示面板的制作方法
CN201610213472.4 2016-04-07

Publications (1)

Publication Number Publication Date
WO2017173709A1 true WO2017173709A1 (zh) 2017-10-12

Family

ID=57012913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082555 WO2017173709A1 (zh) 2016-04-07 2016-05-18 液晶材料、液晶显示面板及液晶显示面板的制作方法

Country Status (3)

Country Link
US (1) US10151951B2 (zh)
CN (1) CN105885872B (zh)
WO (1) WO2017173709A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106833677A (zh) 2016-12-29 2017-06-13 深圳市华星光电技术有限公司 一种垂直取向剂材料
CN106833612B (zh) * 2017-02-07 2019-11-08 深圳市华星光电技术有限公司 量子棒组合物、量子棒偏光片及其制作方法
CN110709763B (zh) * 2017-03-28 2022-08-16 夏普株式会社 液晶显示装置及液晶显示装置的制造方法
CN109239815A (zh) * 2017-07-10 2019-01-18 上海箩箕技术有限公司 盖板及其形成方法、盖板母板、电子设备
CN108003897A (zh) * 2017-12-25 2018-05-08 深圳市华星光电技术有限公司 垂直取向剂、自取向液晶混合物及其应用
CN108048114A (zh) * 2017-12-28 2018-05-18 深圳市华星光电技术有限公司 自取向液晶辅助剂、自取向液晶混合物及其应用
JP7259232B2 (ja) * 2018-08-31 2023-04-18 大日本印刷株式会社 表示パネル、画像表示装置及び表示パネルの紫外線吸収層の選別方法
CN109270744A (zh) * 2018-11-14 2019-01-25 成都中电熊猫显示科技有限公司 液晶显示面板、液晶显示装置及光配向方法
CN109897645A (zh) * 2019-03-26 2019-06-18 京东方科技集团股份有限公司 一种液晶组合物、显示面板
CN110317148B (zh) * 2019-06-27 2022-05-03 Tcl华星光电技术有限公司 反应型单体和液晶组合物及液晶显示面板
CN110794619B (zh) * 2019-10-16 2022-05-31 Tcl华星光电技术有限公司 液晶显示面板及其制作方法
CN111333346B (zh) * 2020-03-10 2021-11-02 Tcl华星光电技术有限公司 具有水平配向功能的透明导电膜、液晶显示器和制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004341024A (ja) * 2003-05-13 2004-12-02 Koji Ono 偏光回折素子および偏光回折素子用光反応性高分子液晶
JP2007232934A (ja) * 2006-02-28 2007-09-13 Hayashi Telempu Co Ltd 光配向材料
CN101923240A (zh) * 2009-06-09 2010-12-22 Jsr株式会社 液晶显示元件的制造方法
TW201435066A (zh) * 2013-02-06 2014-09-16 Dainippon Ink & Chemicals 液晶顯示元件及其製造方法
CN105316008A (zh) * 2015-11-16 2016-02-10 深圳市华星光电技术有限公司 反应型垂直取向材料、液晶显示面板、及液晶配向方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100955968B1 (ko) * 1999-07-02 2010-05-13 메르크 파텐트 게엠베하 모노반응성 메소제닉 화합물
CN1220753C (zh) * 2002-12-19 2005-09-28 中国科学院长春光学精密机械与物理研究所 一种常温制备聚酰亚胺液晶取向膜的方法
CN100476548C (zh) * 2004-01-10 2009-04-08 中国科学院长春光学精密机械与物理研究所 一种制备液晶垂直取向膜的方法
KR20060127964A (ko) * 2004-02-04 2006-12-13 코닌클리케 필립스 일렉트로닉스 엔.브이. 광에 의해 움직일 수 있는 플랙시블 호일
US7724330B2 (en) * 2004-07-07 2010-05-25 Merck Patent Gmbh Biaxial film having local birefringence that varies periodically
JP5041134B2 (ja) * 2006-01-30 2012-10-03 Jsr株式会社 液晶の配向剤、配向膜および液晶表示素子
CN102127458A (zh) * 2010-12-31 2011-07-20 北京科技大学 用于盘状液晶取向的二元协同光敏液晶取向剂及制备方法
WO2012096088A1 (ja) * 2011-01-14 2012-07-19 コニカミノルタオプト株式会社 垂直配向型液晶表示装置とその製造方法
CN107083243A (zh) * 2011-07-07 2017-08-22 默克专利股份有限公司 液晶介质
CN103869544B (zh) * 2014-02-14 2016-06-29 北京京东方光电科技有限公司 一种取向层的制备方法、取向层组合物和显示面板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004341024A (ja) * 2003-05-13 2004-12-02 Koji Ono 偏光回折素子および偏光回折素子用光反応性高分子液晶
JP2007232934A (ja) * 2006-02-28 2007-09-13 Hayashi Telempu Co Ltd 光配向材料
CN101923240A (zh) * 2009-06-09 2010-12-22 Jsr株式会社 液晶显示元件的制造方法
TW201435066A (zh) * 2013-02-06 2014-09-16 Dainippon Ink & Chemicals 液晶顯示元件及其製造方法
CN105316008A (zh) * 2015-11-16 2016-02-10 深圳市华星光电技术有限公司 反应型垂直取向材料、液晶显示面板、及液晶配向方法

Also Published As

Publication number Publication date
CN105885872A (zh) 2016-08-24
US10151951B2 (en) 2018-12-11
US20180120650A1 (en) 2018-05-03
CN105885872B (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
WO2017173709A1 (zh) 液晶材料、液晶显示面板及液晶显示面板的制作方法
WO2017084154A1 (zh) 反应型垂直取向材料、液晶显示面板、及液晶配向方法
WO2017181459A1 (zh) 配体修饰量子点材料、液晶显示面板的制作方法及液晶显示面板
US10184080B2 (en) Liquid crystal materials, methods of fabricating liquid crystal display panels and liquid crystal display panels
WO2017181457A1 (zh) 液晶材料、液晶显示面板的制作方法、及液晶显示面板
WO2018214251A1 (zh) 液晶材料、液晶显示面板及其制造方法
WO2017084147A1 (zh) 反应型垂直取向有机硅材料及液晶显示面板的制作方法
WO2018028019A1 (zh) 一种液晶介质混合物及液晶显示面板
JP2013163672A (ja) 反応性メソゲン化合物、これを含む液晶組成物、表示パネルの製造方法、及び表示パネル
US10955706B2 (en) Liquid crystal panel structures containing functionalized graphene layers and methods of preparing functionalized graphene layers
CN105652499B (zh) 液晶组合物及液晶显示元件或显示器
WO2019165653A1 (zh) 一种液晶材料及液晶显示面板
WO2017128472A1 (zh) 热敏型交联材料、液晶显示面板的制作方法及液晶显示面板
CN106188540B (zh) 配向膜材料及配向膜的制作方法、液晶显示面板及其制作方法
TW201839109A (zh) 可聚合化合物及其應用
WO2014075261A1 (zh) 感光单体及液晶面板
CN110872520B (zh) 液晶显示器件
WO2018201511A1 (zh) 一种显示面板及显示装置
CN1292298C (zh) 液晶显示屏制造方法
WO2017031775A1 (zh) 支化型有机硅材料及制备液晶面板的方法
CN112500305B (zh) 一种具有垂直配向性的化合物、液晶显示面板及其制备方法
US20190016956A1 (en) Novel liquid crystal compound and use thereof
US20210286216A1 (en) Liquid crystal material, liqud crystal display panel, and manufacturing method thereof
CN108919566A (zh) 用于液晶显示器的液晶分子层及液晶显示器
US20230144729A1 (en) Spacer, method for manufacturing same, and display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15039419

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897643

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897643

Country of ref document: EP

Kind code of ref document: A1