WO2017171087A1 - 金属被覆異形樹脂粒子及びその製造方法、金属被覆異形樹脂粒子の配列膜及びその製造方法、粒子群、並びに粒子配列膜の製造方法 - Google Patents
金属被覆異形樹脂粒子及びその製造方法、金属被覆異形樹脂粒子の配列膜及びその製造方法、粒子群、並びに粒子配列膜の製造方法 Download PDFInfo
- Publication number
- WO2017171087A1 WO2017171087A1 PCT/JP2017/013851 JP2017013851W WO2017171087A1 WO 2017171087 A1 WO2017171087 A1 WO 2017171087A1 JP 2017013851 W JP2017013851 W JP 2017013851W WO 2017171087 A1 WO2017171087 A1 WO 2017171087A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin particles
- metal
- coated
- deformed resin
- particle
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
- C08J3/128—Polymer particles coated by inorganic and non-macromolecular organic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/04—Dispersions; Emulsions
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/09—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
- C08J3/11—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids from solid polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/044—Forming conductive coatings; Forming coatings having anti-static properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/41—Refractivity; Phase-affecting properties, e.g. optical path length
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2333/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2333/04—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
- C08J2333/06—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C08J2333/10—Homopolymers or copolymers of methacrylic acid esters
- C08J2333/12—Homopolymers or copolymers of methyl methacrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2333/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2333/04—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
- C08J2333/14—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
Definitions
- the present invention relates to metal-coated deformed resin particles and a production method thereof, an array film of metal-coated deformed resin particles, a production method thereof, a particle group, and a method of producing a particle arrangement film.
- the present invention also relates to a dispersion containing metal-coated irregularly shaped resin particles, a resin composition, and an external preparation.
- Patent Document 1 describes metal-nonmetal Janus particles in which a metal layer of gold, silver, platinum, aluminum, copper, or the like is partially formed in a hat shape on spherical fine particles.
- Non-Patent Document 1 a single layer of spherical silica particles is formed on a glass substrate, and a metal (mainly gold) is deposited thereon to form a metal-nonmetal Janus metal-coated hemisphere. Particles are described.
- an object of the present invention is to provide metal-coated deformed resin particles in which a part of the surface of the deformed resin particles is coated with a metal and a simple manufacturing method thereof.
- Another object of the present invention is to provide an array film of metal-coated deformed resin particles, a manufacturing method thereof, a particle group, and a simple manufacturing method of the particle array film.
- the inventors of the present invention emulsified a mixture of deformed resin particles and a specific organic solvent in water to obtain an emulsion, and then volatilizes the organic solvent. After forming a particle arrangement film of irregular resin particles and coating a part of the particle arrangement film with metal, by removing the irregular resin particles from the arrangement film, a part of the surface of the irregular resin particles is made of metal. It has been found that coated metal-coated irregular shaped resin particles can be obtained. Based on such knowledge, the present invention has been further researched and completed.
- the present invention includes the inventions described in the following sections.
- Item 1 Metal-coated deformed resin particles in which a part of the surface of the deformed resin particles is coated with metal.
- Item 2 The metal-coated deformed resin particles according to Item 1, wherein the aspect ratio is 1.2 or more.
- Item 3 The outer shape of the deformed resin particle when viewed from the direction where the projected area is maximized is circular, and the outer shape of the deformed resin particle when viewed from the direction where the projected area is minimized is noncircular. Metal-coated irregular shaped resin particles as described.
- Item 4 The metal-coated deformed resin particle according to Item 1, which has a plurality of plane portions, (2) a plane portion and a curved portion, or (3) a curved portion.
- Item 5 The metal-coated deformed resin particles according to Item 1, having a surface coated with a metal and a surface not coated with a metal.
- Item 6 The metal-coated deformed resin particle according to Item 1, wherein the deformed resin particle has a hemispherical shape having a hemispherical portion and a flat portion.
- Item 7 The metal-coated deformed resin particles according to Item 6, wherein at least a part of the surface of the hemispherical surface is coated with a metal.
- Item 8 The metal-coated deformed resin particles according to Item 6, wherein at least a part of the surface of the flat portion is coated with a metal.
- Item 9 The metal-coated deformed resin particle according to Item 1, wherein the deformed resin particle has a biconvex lens shape having a curved surface portion or a flat shape.
- Item 10 The metal-coated deformed resin particles according to Item 9, wherein only the one-side convex lens portion of the biconvex lens shape is coated, or only the flat-shaped one-side portion is covered.
- Item 11 The metal-coated deformed resin particles according to Item 1, which have phototactic properties.
- Item 12. An array film in which the metal-coated deformed resin particles according to Item 1 are regularly arranged in a planar shape.
- Item 13 A particle group of metal-coated deformed resin particles according to Item 1, wherein the coefficient of variation of the number average particle diameter is 30% or less.
- Item 14 A particle group of metal-coated odd-shaped resin particles according to Item 1, wherein the average aspect ratio is 1.2 or more.
- Item 15. A particle group of metal-coated deformed resin particles according to Item 1, wherein the coefficient of variation in aspect ratio is 30% or less.
- Item 17. The method for producing a particle array film according to Item 16, wherein the irregular-shaped resin particles have a hemispherical shape having a hemispherical portion and a flat portion.
- Item 18 The step of taking out the particle arrangement film obtained by the production method according to Item 16 or 17, and the step of coating a part of the particle arrangement film with metal, A method for producing an array film of metal-coated deformed resin particles.
- Item 19 A method for producing metal-coated deformed resin particles, comprising a step of taking out metal-coated deformed resin particles from an array film of metal-coated deformed resin particles obtained by the production method according to Item 18.
- Item 20 A dispersion comprising the metal-coated deformed resin particles according to Item 1.
- Item 21 The dispersion according to Item 20, which has conductivity.
- Item 22 A resin composition comprising the metal-coated deformed resin particles according to Item 1.
- Item 23 An external preparation comprising the metal-coated irregularly shaped resin particles according to Item 1.
- non-spherical metal-coated deformed resin particles capable of improving characteristics such as light diffusion characteristics and reflection characteristics when used in optical applications as compared with true spherical metal-coated resin particles. be able to.
- (A)-(e) is a schematic explanatory drawing of a deformed resin particle. It is the SEM photograph obtained by imaging the particle
- the present invention includes metal-coated deformed resin particles and a production method thereof, an array film of metal-coated deformed resin particles and a production method thereof, a particle group, and a method of producing a particle arrangement film.
- an array film of metal-coated deformed resin particles is manufactured, and then the metal-coated deformed resin particles are formed from the array film of the metal-coated deformed resin particles.
- Step 1 for preparing a mixture of irregularly shaped resin particles and an organic solvent that can disperse the irregularly shaped resin particles, has a lower specific gravity than water, and is incompatible with water;
- Step 2 in which the mixture is emulsified in water to obtain an emulsion, and
- the emulsion is allowed to stand to volatilize the organic solvent, and a particle array film of deformed resin particles is formed at the gas-liquid interface. It is a manufacturing method provided with the process 3 to form.
- each step will be described.
- Step 1 is a step of preparing a mixture of irregularly shaped resin particles and an organic solvent that can disperse the irregularly shaped resin particles, has a lower specific gravity than water, and is incompatible with water.
- the deformed resin particles have a circular outer shape when viewed from the direction where the projected area is maximized, and the outer shape of the deformed resin particles when viewed from the direction where the projected area is minimum. Preferably there is.
- FIG. 1A is a projection view of odd-shaped resin particles having a cross-section of a horseshoe shape, with the upper figure showing the maximum projected area and the lower figure showing the minimum.
- the outer shape of the particle in the figure with the maximum projected area is circular.
- grain of the figure where a projection area becomes the minimum becomes a shape which consists of a recessed part and a sector corresponding to the projection figure of a notch part.
- the recess has a depth B that is 0.1 to 0.9 times the particle diameter A of the odd-shaped resin particles, and has a width C of the opening that is 0.1 to 0.95 times. .
- FIG. 1B is a diagram in which the projected area of mushroom-shaped deformed resin particles is minimized.
- the irregular shaped resin particles are composed of an umbrella part and a shaft part.
- the bottom width D1 of the shaft portion is 0.1 to 0.8 times the particle diameter A of the irregular shaped resin particles
- the width D2 of the middle portion of the shaft portion is 0 of the particle diameter A of the irregular shaped resin particles.
- the height E in the axial direction is 0.2 to 1.5 times the particle diameter A of the irregular shaped resin particles.
- FIG. 1 (c) is a projection view of hemispherical irregular shaped resin particles, with the upper figure showing the maximum projected area and the lower figure showing the minimum.
- the height F of the irregular shaped resin particles is 0.2 to 0.8 times the particle diameter A of the irregular shaped resin particles.
- FIG. 1 (d) is a projection view of the irregular-shaped resin particles in the shape of a meteorite, the upper view is a view in which the projected area is the maximum, and the lower view is the view in which it is the minimum.
- the heights H and I of the convex lens are 0.2 to 0.8 times the particle diameter A of the irregular shaped resin particles.
- Fig. 1 (e) is a projection view of a deformed resin particle having a flat shape, with the upper drawing showing the maximum projection area and the lower drawing showing the minimum.
- the height J of the flat particles is 0.2 to 0.8 times the particle diameter A of the irregular shaped resin particles.
- the particle diameter A can be in the range of 0.5 to 30 ⁇ m. Furthermore, the sphere-converted volume average particle diameter of the irregular shaped resin particles can be in the range of 0.5 to 30 ⁇ m.
- the deformed resin particles described in FIGS. 1A to 1E can be obtained by a method for producing deformed resin particles described later.
- 1 (a) to 1 (e) are diagrams showing ideal shapes for explaining the shape of the deformed resin particles, and the actual deformed resin particles have some bulges and dents. Deformed resin particles can also be used in the present invention.
- the irregularly shaped resin particles are preferably non-spherical and preferably have (1) a plurality of plane portions, (2) a plane portion and a curved surface portion, or (3) a curved surface portion.
- the case where the odd-shaped resin particle has (1) a plurality of plane portions means, for example, a case where it is configured from a triangular pyramid shape, a cubic shape, or a rectangular parallelepiped shape. In this specification, the case where the odd-shaped resin particles are composed of only a plurality of plane portions is included.
- the case where the odd-shaped resin particles have (2) a flat surface portion and a curved surface portion means, for example, a case where the odd-shaped resin particles are formed from a hemispherical shape, a disc shape, or a cylindrical shape. In this specification, the case where the deformed resin particles are composed of only a flat surface portion and a curved surface portion is also included.
- the case where the irregularly shaped resin particles have (3) a curved surface portion means, for example, a case where the deformed resin particles are composed of a meteorite shape, a flat shape, a red blood cell shape, a biconvex lens shape, and an uneven lens shape. In the present specification, the case where the deformed resin particles are composed of only a curved surface portion is also included.
- the shape of the irregular shaped resin particles is a shape with a high degree of irregularity
- the metal-coated irregular shaped resin particles of the present invention are used for optical applications, a spherical metal Compared with the coated resin particles, characteristics such as light diffusion characteristics and reflection characteristic anisotropy can be further improved.
- the sphere-converted volume average particle diameter of the deformed resin particles is preferably 0.1 to 300 ⁇ m, more preferably 0.5 to 100 ⁇ m, and particularly preferably 1 to 30 ⁇ m.
- the aspect ratio of the irregular shaped resin particles is preferably 1.2 or more, more preferably 1.2 to 5.0, and more preferably 1.4 to 3. 5 is particularly preferred.
- the aspect ratio of the irregular shaped resin particles means the ratio of the major axis and minor axis of each irregular shaped resin particle (major axis of irregular shaped resin particle / minor diameter of irregular shaped resin particle).
- the method for producing the irregular shaped resin particles is not limited.
- the seed particles can absorb the polymerizable vinyl monomer in the aqueous emulsion and polymerize the absorbed polymerizable vinyl monomer. It can manufacture suitably.
- the seed particles are preferably resin particles derived from a monomer containing a (meth) acrylic acid ester containing at least an alkyl group having 5 or less carbon atoms in the ester portion.
- the monomer for forming the resin particles preferably contains 50% by weight or more of (meth) acrylic acid ester containing an alkyl group having 3 to 5 carbon atoms in the ester portion. Resin particles derived from such monomers are likely to be non-spherical (abnormal) particles.
- alkyl group having 3 to 5 carbon atoms examples include linear alkyl groups such as n-propyl, n-butyl and n-pentyl, and branched alkyl groups such as isopropyl, isobutyl and t-butyl.
- (meth) acrylic acid esters include n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, and t- (meth) acrylic acid.
- monomers such as butyl. These monomers may be used alone or in combination of two or more.
- resin particles using a (meth) acrylic acid ester having a branched alkyl group are preferable because they easily become non-spherical (abnormal) resin particles.
- the weight average molecular weight of the seed particles is in the range of 150,000 to 1,000,000, preferably in the range of 200,000 to 800,000, as measured by GPC (gel permeation chromatography) from the viewpoint of producing irregularly shaped resin particles. is there.
- the size and shape of the seed particles are not particularly limited.
- As the seed particles spherical particles having a particle diameter of 0.1 to 5 ⁇ m are usually used.
- the particle diameter of the seed particles can be measured with a laser diffraction / scattering particle size distribution analyzer.
- the method for producing seed particles is not particularly limited, and known methods such as emulsion polymerization, soap-free emulsion polymerization, seed polymerization, suspension polymerization and the like can be used.
- the production method is preferably an emulsion polymerization, a soap-free emulsion polymerization or a seed polymerization method in consideration of the particle size uniformity of the seed particles and the simplicity of the production method.
- the polymerization may be performed in the presence of a molecular weight modifier.
- molecular weight modifiers examples include ⁇ -methylstyrene dimer; mercaptans such as n-octyl mercaptan and t-dodecyl mercaptan; terpenes such as t-terpinene and dipentene; halogenated hydrocarbons (eg, chloroform, carbon tetrachloride)
- a chain transfer agent such as The molecular weight modifier is preferably used in the range of 0.1 to 10 parts by weight with respect to 100 parts by weight of the monomer for producing seed particles.
- the polymerizable vinyl monomer is not particularly limited as long as it is a monomer containing 5 to 50% by weight of a crosslinkable monomer.
- a crosslinkable monomer for example, a polyfunctional monomer having two or more polymerizable vinyl groups in one molecule such as ethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, and divinylbenzene is used.
- the use amount of the crosslinkable monomer is preferably 5 to 50% by weight, and preferably 10 to 40% by weight, based on the total amount of the polymerizable vinyl monomer, from the viewpoint of preparing the irregular shaped resin particles. Further preferred.
- the polymerizable vinyl monomer may contain other monomers.
- Other monomers include (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, (meth) acrylic acid t (Meth) acrylic acid alkyl esters such as butyl; (meth) acrylic acid derivatives such as (meth) acrylamide, 2-hydroxylethyl (meth) acrylate, glycidyl (meth) acrylate; vinyl acetate; acrylonitrile; styrene, vinyltoluene, and aromatic vinyl monomers such as t-butylstyrene.
- (meth) acrylic acid alkyl ester is preferable, and (meth) acrylic acid ester having an alkylene oxide group is more preferable because non-spherical (abnormal) particles are easily obtained.
- Examples of the (meth) acrylic acid ester include compounds represented by the following formula (1).
- R 1 is H or CH 3
- R 2 and R 3 are different alkylene groups selected from C 2 H 4 , C 3 H 6 , C 4 H 8 , C 5 H 10 ;
- m is an integer of 0 to 50,
- n is an integer of 0 to 50 (provided that m and n are not 0 at the same time), and
- R 4 is H or CH 3 .
- the range of m and n is preferably 0 to 30, and more preferably 0 to 15.
- a commercially available product can be used as the (meth) acrylic acid ester having an alkylene oxide group.
- the amount of the (meth) acrylic acid ester having an alkylene oxide group is preferably 1 to 40% by weight, preferably 3 to 40% by weight, based on the total amount of the polymerizable vinyl monomer, from the viewpoint of polymerization stability. More preferably, it is 5 to 30% by weight, particularly preferably 10 to 20% by weight.
- the method for producing irregular shaped resin particles is a so-called seed polymerization method in which seed particles absorb a polymerizable vinyl monomer in an aqueous emulsion and polymerize the absorbed polymerizable vinyl monomer.
- the general method of the seed polymerization method is described below. It is also possible to produce deformed resin particles by spheroidizing resin particles obtained by pulverizing the resin as a raw material and then applying physical force to the spheroidized particles. Is not to be done.
- seed particles are added to an aqueous emulsion composed of a polymerizable vinyl monomer and an aqueous medium.
- the aqueous medium include water and a mixed medium of water and a hydrophilic solvent (for example, lower alcohol).
- the aqueous medium contains a surfactant.
- a surfactant any of anionic, cationic, nonionic and zwitterionic compounds can be used.
- anionic surfactant include fatty acid oils such as sodium oleate and castor oil potassium, alkyl sulfate salts such as sodium lauryl sulfate and ammonium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, and alkylnaphthalene sulfone.
- Acid salts alkane sulfonates, dialkyl sulfosuccinates such as sodium dioctyl sulfosuccinate, alkenyl succinates (dipotassium salts), alkyl phosphate esters, naphthalene sulfonate formalin condensates, polyoxyethylene alkylphenyl ether sulfates Examples thereof include salts, polyoxyethylene alkyl ether sulfates such as sodium polyoxyethylene lauryl ether sulfate, and polyoxyethylene alkyl sulfate salts.
- the cationic surfactant examples include alkylamine salts such as laurylamine acetate and stearylamine acetate, and quaternary ammonium salts such as lauryltrimethylammonium chloride.
- alkylamine salts such as laurylamine acetate and stearylamine acetate
- quaternary ammonium salts such as lauryltrimethylammonium chloride.
- nonionic surfactant polyoxyethylene alkyl ether, polyoxyethylene alkyl allyl ether, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene fatty acid ester and the like can be used.
- the zwitterionic surfactant examples include lauryl dimethylamine oxide, phosphate ester, phosphite ester surfactant, and the like. You may use the said surfactant individually or in combination of 2 or more types.
- an anionic surfactant is preferable from the viewpoint of dispersion stability during polymerization.
- the aqueous emulsion can be prepared by a known method.
- an aqueous emulsion can be obtained by adding a polymerizable vinyl monomer to an aqueous medium and dispersing it with a fine emulsifier such as a homogenizer, an ultrasonic processor, or a nanomizer.
- the polymerizable vinyl monomer may contain a polymerization initiator as necessary.
- the polymerization initiator may be mixed with the polymerizable vinyl monomer in advance and then dispersed in an aqueous medium, or a mixture obtained by separately dispersing both in an aqueous medium.
- the particle diameter of the droplets of the polymerizable vinyl monomer in the obtained aqueous emulsion is preferably smaller than the resin particles because the polymerizable vinyl monomer is efficiently absorbed by the resin particles.
- the seed particles may be added directly to the aqueous emulsion, or may be added in a form in which the seed particles are dispersed in an aqueous dispersion medium (hereinafter referred to as seed particle dispersion).
- seed particle dispersion an aqueous dispersion medium
- the polymerizable vinyl monomer is absorbed into the seed particles. This absorption can usually be carried out by stirring the aqueous emulsion after addition of seed particles at room temperature (about 20 ° C.) for 1 to 12 hours. Further, absorption may be promoted by heating the aqueous emulsion to about 30 to 50 ° C.
- the seed particles swell due to absorption of the polymerizable vinyl monomer.
- the mixing ratio of the polymerizable vinyl monomer to the seed particles is preferably in the range of 5 to 150 parts by weight of the polymerizable vinyl monomer with respect to 1 part by weight of the seed particles. More preferably, it is the range.
- the monomer mixing ratio decreases, the increase in particle diameter due to polymerization decreases, resulting in a decrease in productivity. May produce particles.
- the end of absorption can be determined by confirming the enlargement of the particle diameter by observation with an optical microscope.
- Polymerization initiator can be added as needed.
- the polymerization initiator include benzoyl peroxide, lauroyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, t-butylperoxy-2-ethylhexano Organic peroxides such as ate and di-t-butyl peroxide; 2,2′-azobisisobutyronitrile, 1,1′-azobiscyclohexanecarbonitrile, 2,2′-azobis (2,4- And azo compounds such as dimethylvaleronitrile).
- the polymerization initiator is preferably used in the range of 0.1 to 3 parts by weight with respect to 100 parts by weight of the polymerizable vinyl monomer.
- the irregular-shaped resin particle is obtained by polymerizing the polymerizable vinyl monomer absorbed in the resin particle.
- the polymerization temperature can be appropriately selected according to the type of the polymerizable vinyl monomer and the polymerization initiator.
- the polymerization temperature is preferably 25 to 110 ° C, more preferably 50 to 100 ° C.
- the polymerization reaction is preferably carried out by raising the temperature after the monomer, optionally the polymerization initiator, is completely absorbed by the resin particles.
- the irregular shaped resin particles are centrifuged to remove the aqueous medium, washed with water and a solvent, and then dried and isolated.
- a polymer dispersion stabilizer may be added in order to improve the dispersion stability of the irregular shaped resin particles.
- the polymer dispersion stabilizer include polyvinyl alcohol, polycarboxylic acid, cellulose compounds (such as hydroxyethyl cellulose and carboxymethyl cellulose), and polyvinyl pyrrolidone.
- An inorganic water-soluble polymer compound such as sodium tripolyphosphate can also be used in combination. Of these, polyvinyl alcohol and polyvinyl pyrrolidone are preferred.
- the addition amount of the polymer dispersion stabilizer is preferably 1 to 10 parts by weight with respect to 100 parts by weight of the polymerizable vinyl monomer.
- water-soluble polymerization inhibitors such as nitrite compounds, sulfite compounds, hydroquinone compounds, ascorbic acid compounds, water-soluble vitamin B compounds, citrate compounds, and polyphenol compounds are added. It may be used.
- the organic solvent used in step 1 is not particularly limited as long as it can disperse irregularly shaped resin particles, has a lower specific gravity than water, and is incompatible with water.
- toluene, benzene, Xylene, normal hexane, cyclohexane, normal pentane, cyclopentane, methyl isobutyl ketone, cyclohexanone, propylene glycol monobutyl ether, and the like can be used.
- toluene is preferable because the irregularly shaped resin particles are easily dispersed.
- water As said water, the water used at the process 2 is meant, for example, ion-exchange water can be used.
- dispersible means a state in which the dispersed particles are dispersed in a single molecule when the deformed resin particles and the organic solvent are mixed, and the dispersed particles are not dissolved in each other.
- incompatible means that when water and an organic solvent are mixed, they do not dissolve each other at the molecular level.
- low specific gravity means that the specific gravity of an organic solvent is smaller than the specific gravity of water.
- Step 2 is a step of emulsifying the mixture prepared in Step 1 in water to obtain an emulsion.
- an emulsion in which the mixture is emulsified in water can be obtained.
- the emulsifying dispersion method include a method of emulsifying by ultrasonic irradiation, a method of emulsifying with a fine emulsifier such as a homogenizer, a nanomizer, and the like.
- Step 3 is a step of allowing the emulsion obtained in Step 2 to stand, volatilizing the organic solvent, and forming a particle array film of deformed resin particles at the gas-liquid interface.
- the specific gravity of the organic solvent is smaller than that of water, so that separation between the organic solvent in which the irregularly shaped resin particles are dispersed and water occurs, and the organic solvent phase A two-phase separation state is formed in which is present above the aqueous phase. Thereafter, the organic solvent in the organic solvent phase is volatilized to form a particle array film of deformed resin particles at the gas-liquid interface.
- the shape of the deformed resin particle is a hemispherical shape having a hemispherical portion and a flat portion
- the hemispherical portion of the deformed resin particle is in contact with the water phase surface so that the surface area in contact with the gas phase is small
- the deformed resin particles are arranged so that the flat portion of the deformed resin particles faces the gas phase.
- the hemispherical odd-shaped resin particles are regularly arranged in a planar manner, that is, arranged in a two-dimensional manner with their orientations aligned.
- FIG. 2 is a SEM photograph of an array film of deformed resin particles, and it can be seen that the deformed resin particles are aligned two-dimensionally.
- the shape of the deformed resin particle is a biconvex lens shape having a curved surface portion
- the respective convex lens surfaces of the biconvex lens face the water phase surface and the gas phase surface so that the surface area in contact with the gas phase is reduced.
- the irregular shaped resin particles are arranged.
- Step 4 of taking out the particle array film of deformed resin particles obtained by the method for producing a particle array film of deformed resin particles, and (5) coating a part of the particle array film of the extracted deformed resin particles with metal.
- Process 5 is performed. Hereinafter, each step will be described.
- Step 4 is a step of taking out the particle array film of deformed resin particles obtained in Step 3.
- the particle array film can be taken out.
- transparent film base materials such as films made of various resins; light transmissive base materials other than transparent film base materials such as transparent resin plates and glass plates made of various resins; aluminum plates and the like are used. can do.
- the resin examples include acrylic resin, alkyl (meth) acrylate-styrene copolymer, polycarbonate, polyester such as polyethylene terephthalate (PET), polyethylene, polypropylene, polystyrene, and the like.
- the base material As a means for transferring onto the base material, for example, after subjecting the base material to hydrophilic treatment such as surface oxidation treatment with sodium hypochlorite or the like, the base material is inserted perpendicularly to the liquid surface and pulled up, Examples thereof include a means for transferring a particle arrangement film of irregularly shaped resin particles on a substrate, an LB film forming apparatus, and the like.
- Step 5 is a step of covering a part of the particle arrangement film of the deformed resin particles taken out in Step 4 with a metal.
- Examples of the metal used when coating a part of the particle arrangement film of the irregular shaped resin particles include gold, silver, platinum, copper, aluminum, titanium, nickel, chromium, strontium, tin and the like.
- gold and silver are preferable from the viewpoint of light diffusion characteristics and reflection characteristics when used for optical applications, and gold, silver, platinum and copper are preferable when using plasmon resonance in visible light.
- Examples of methods for coating with metal include vapor deposition, ion plating, sputtering, laser ablation, molecular beam epitaxy, and CVD.
- the thickness of the metal coating when the particle arrangement film of the irregular shaped resin particles is coated with a metal is 1 nm to 500 nm.
- a part of the particle arrangement film of the irregular shaped resin particles being coated with a metal means that the particle arrangement film of the irregular shaped resin particles is locally coated with a metal. Specifically, it means that the particle array film of irregular shaped resin particles has a part coated with metal and a part not coated with metal. For example, one side of the particle array film (film) is coated with metal. To do.
- the use in the state where a part of the particle arrangement film of the irregular shaped resin particles is coated with metal is not limited, for example, it is useful as a metamolecule of a metamaterial, a nonlinear optical material, or the like.
- the metal-coated deformed resin particles of the present invention form an alignment film that is regularly arranged in a planar shape.
- a substrate eg, glass, PET film, etc.
- the method for producing metal-coated atypical resin particles according to the present invention comprises removing metal-coated atypical resin particles from the arrayed film of the metal-coated atypical resin particles obtained in Step 5 to obtain a metal-coated atypical resin particle. This is a production method for obtaining particles.
- Examples of the method for taking out the metal-coated deformed resin particles from the array film of metal-coated deformed resin particles include, for example, a method of crushing the array film for each particle, dispersing the array film in water, and irradiating with ultrasonic waves for separation. Methods and the like.
- metal-coated deformed resin particles obtained by the method for producing the metal-coated deformed resin particles will be described.
- Metal-coated deformed resin particles are preferably metal-coated deformed resin particles obtained by the above-described method for producing metal-coated deformed resin particles, and a part of the surface of each deformed resin particle is a metal. It is covered.
- a part of the surface of the irregular shaped resin particle is coated with a metal means that the surface of the irregular shaped resin particle is locally coated with a metal. Specifically, it means that there are a portion where the surface of the irregular shaped resin particle is coated with metal and a portion which is not covered with metal.
- the part means that 1% or more and less than 100% of the surface of the irregular shaped resin particle is coated with a metal. Among them, 20% or more and less than 80% is preferable, and 25% or more and less than 75% is more preferable. .
- metal-coated deformed resin particles of the present invention when a part of the surface of the deformed resin particles is coated with a metal, those that become true spherical metal-coated deformed resin particles are excluded depending on the thickness of the coated metal.
- the outer shape of the deformed resin particles when viewed from the direction where the projected area is maximized is circular, and the outer shape of the deformed resin particles when viewed from the direction where the projected area is minimized. It is preferably non-circular.
- the deformed resin particles having the above configuration have a circular outer shape when viewed from the direction where the projected area is maximized, and a non-circular shape when viewed from the direction where the projected area is minimized. Therefore, it may have shape anisotropy. Therefore, effects such as a light diffusion effect and a reflection effect on the surface of the irregular shaped resin particles can have anisotropy.
- the metal-coated irregular shaped resin particles of the present invention preferably have an aspect ratio of 1.2 or more.
- the aspect ratio of the metal-coated irregular resin particles means the ratio of the major axis to the minor axis of each metal-coated irregular resin particle (major diameter of the metal-coated irregular resin particles / minor diameter of the metal-coated irregular resin particles).
- the aspect ratio of each metal-coated deformed resin particle is preferably 1.2 or more and 5.0 or less, and preferably 1.2 or more and 3.0 or less, from the viewpoint of light diffusion characteristics, reflection characteristics and the like when used for optical applications. Or less, more preferably 1.2 or more and 2.5 or less, and particularly preferably 1.4 to 2.1.
- the shape anisotropy is increased, so that the diffusion and reflection of light is complicated, resulting in high light diffusibility and reflection characteristics as an optical material. Can be obtained.
- the metal-coated deformed resin particles of the present invention preferably have a particle shape composed of (1) a plurality of flat portions, (2) flat portions and curved portions, or (3) curved portions.
- the case where the metal-coated odd-shaped resin particles have (1) a plurality of plane portions means, for example, a case where the metal-coated odd-shaped resin particles are composed of a triangular pyramid shape, a cubic shape, and a rectangular parallelepiped shape. In this specification, the case where the odd-shaped resin particles are composed of only a plurality of plane portions is included.
- the case where the metal-coated odd-shaped resin particles have (2) a flat surface portion and a curved surface portion refers to a case where the metal-coated irregular resin particles are composed of, for example, a hemispherical shape, a disk shape, or a cylindrical shape.
- the case where the deformed resin particles are composed of only a flat surface portion and a curved surface portion is also included.
- the case where the metal-coated deformed resin particles have (3) a curved surface portion means, for example, a case where the metal-coated odd-shaped resin particles are composed of a meteorite shape, a red blood cell shape, a biconvex lens shape, and an uneven lens shape.
- the case where the deformed resin particles are composed of only a curved surface portion is also included.
- the metal-coated deformed resin particles have a large anisotropy because of the regular shape composed of a plurality of surfaces.
- the metal-coated deformed resin particles of the present invention preferably have a hemispherical shape in which the deformed resin particles have a hemispherical surface portion (curved surface portion) and a flat surface portion.
- the metal-coated deformed resin particles of the present invention preferably have a biconvex lens shape or a flat shape (flat shape) having a curved surface portion.
- the metal-coated deformed resin particles of the present invention it is preferable that at least a part of the surface of the hemispherical portion is coated with a metal.
- the term “part” means that 1% or more and 100% of the surface of the hemispherical surface is covered with metal. Among these, 30% or more and 100% are preferable, and 50% or more and 100% are more preferable.
- the metal-coated deformed resin particles of the present invention it is preferable that at least a part of the surface of the flat portion is coated with a metal.
- the term “part” means that 1% or more and 100% of the surface of the plane portion is covered with metal, and among these, 30% or more and 100% are preferable, and 50% or more and 100% are more preferable.
- the metal-coated deformed resin particles of the present invention it is preferable that at least a part of the surface of the curved surface portion is coated with a metal.
- the term “part” means that 1% or more and 100% of the surface of the plane portion is covered with metal, and among these, 30% or more and 100% are preferable, and 50% or more and 100% are more preferable.
- the metal-coated deformed resin particles of the present invention have a surface coated with a metal and a surface not coated with a metal, the particles themselves have anisotropic conductivity, anisotropic optical characteristics, anisotropic surface characteristics, It has special properties such as anisotropic coloring and anisotropic heat characteristics.
- the irregular shaped resin particles have (1) a plurality of plane portions includes metal-coated irregular resin particles in which only one surface of the plane portions of a triangular pyramid shape, a cubic shape, and a rectangular parallelepiped shape is coated with a metal.
- the case where the irregular shaped resin particle has (3) a curved surface portion means that when the biconvex lens shape, flat shape, meteorite shape, erythrocyte shape, bowl shape particle is bisected horizontally with respect to the particle thickness, Examples thereof include metal-coated deformed resin particles in which the surface corresponding to the surface is coated with metal.
- a hemispherical deformed resin particle having a hemispherical part and a flat part at least a part of the surface of the hemispherical part or the flat part is coated with metal, or in a biconvex lens-shaped odd resin particle having a curved part
- characteristics such as light diffusion characteristics and reflection characteristics can be further improved as shown in the following examples.
- the irregular shaped resin particles having a flat shape the surface of one of the particles when horizontally divided into two with respect to the particle thickness of the shaped resin particles having a flat shape is coated with metal, as shown in the following examples.
- characteristics such as light diffusion characteristics and reflection characteristics can be further improved.
- the metal-coated deformed resin particles of the present invention have phototactic properties.
- having the phototaxis means that when the metal-coated deformed resin particles are dispersed in water and irradiated with laser light (for example, 405 nm, 75 mV laser light), the metal-coated deformed resin particles move. Means that.
- the use of the metal-coated deformed resin particles of the present invention is not limited.
- metal-coated deformed resin particles of the present invention can be suitably used for the following applications.
- the metal-coated deformed resin particles of the present invention preferably have a sphere equivalent volume average particle diameter in the range of 0.1 to 300 ⁇ m, more preferably 0.5 to 100 ⁇ m, and particularly preferably 1 to 30 ⁇ m. preferable. Thereby, it becomes a particle suitable for various uses.
- the sphere equivalent volume average particle diameter is more preferably in the range of 1 to 30 ⁇ m.
- the metal-coated deformed resin particles of the present invention are used as a constituent element (light diffusing agent) of a light diffusing plate
- the sphere-converted volume average particle diameter is preferably in the range of 0.5 to 20 ⁇ m.
- the dispersion of the present invention contains the metal-coated deformed resin particles of the present invention.
- the dispersion medium of the dispersion of the present invention is preferably an aqueous medium.
- the aqueous medium is a liquid containing water as a main component and may contain an organic solvent such as alcohol, ketone, ester or aromatic hydrocarbon.
- the dispersion of the present invention preferably has conductivity.
- the conductive dispersion include conductive paint and conductive ink.
- the conductive ink contains the dispersion of the present invention, and may contain a curable monomer and a binder resin as necessary.
- the conductive ink can be applied onto a substrate by, for example, an inkjet method, a screen printing method, or the like, dried, and then heated to form a conductive member such as a wiring or a thin film.
- the resin composition of the present invention comprises a base resin and the metal-coated deformed resin particles of the present invention. Since the resin composition of the present invention includes the metal-coated deformed resin particles of the present invention and is excellent in optical characteristics and electrical conductivity, it can be used for lighting covers (light emitting diode (LED) lighting lighting covers, fluorescent lamp lighting lighting covers). Etc.), and can also be used as a light diffusing material such as a light diffusing sheet and a light diffusing plate, or as a raw material for a conductive resin. As said base resin, the thermoplastic resin different from the component of the polymer which comprises metal-coated irregular shaped resin particle can be normally used.
- thermoplastic resin examples include acrylic resin, alkyl (meth) acrylate-styrene copolymer, polycarbonate, polyester, polyethylene, polypropylene, and polystyrene.
- acrylic resin, alkyl (meth) acrylate-styrene copolymer, polycarbonate, polyester, and polystyrene are preferable when excellent transparency is required for the base resin.
- thermoplastic resins can be used alone or in combination of two or more.
- the addition ratio of the metal-coated deformed resin particles to the base resin is preferably in the range of 1 to 1000 parts by weight with respect to 100 parts by weight of the base resin, and in the range of 10 to 500 parts by weight. It is more preferable.
- the external preparation of the present invention contains the metal-coated resin particles of the present invention. Since the external preparation of the present invention exerts optical characteristics when applied to the skin, pores, spots, wrinkles and the like can be made inconspicuous.
- the content of the metal-coated deformed resin particles in the external preparation of the present invention can be appropriately set according to the type of external preparation, but is preferably in the range of 1 to 90% by weight, and in the range of 3 to 80% by weight. More preferably, it is within.
- the external preparation of the present invention can be used, for example, as an external medicine, a cosmetic or the like.
- the topical medicine is not particularly limited as long as it is applied to the skin. Specific examples include creams, ointments, and emulsions.
- Cosmetics include, for example, soaps, body shampoos, facial cleansing creams, scrub facial cleansers, toothpastes, and other cosmetics; funerals, face powders (loose powders, pressed powders, etc.), foundations (powder foundations, liquid foundations, emulsification types) Foundation), lipstick, lip balm, blusher, eyebrow cosmetics (eye shadow, eyeliner, mascara, etc.), nail polish and other makeup cosmetics; pre-shave lotion, body lotion and other lotions; body powder, baby powder and other bodies
- External preparations skin care agents such as lotion, cream, milky lotion (skin lotion), antiperspirants (liquid antiperspirants, solid antiperspirants, cream antiperspirants, etc.), packs, hair washing cosmetics, dyes Hair, hairdressing, aromatic cosmetics, bath preparation, sun Only protection products, suntan products, include the shaving cream and the like.
- Particle group of metal-coated deformed resin particles The particle group of metal-coated deformed resin particles of the present invention preferably has an average aspect ratio of 1.2 or more from the viewpoint of light diffusion characteristics, reflection characteristics, and the like. It is more preferably 2 to 5.0, and particularly preferably 1.4 to 3.5.
- the particle group of the metal-coated deformed resin particles of the present invention preferably has a coefficient of variation in number average particle diameter of 30% or less.
- the coefficient of variation of the number average particle diameter is 30% or less, the particle diameter of the metal-coated irregularly shaped resin particles becomes uniform, and the particle groups are easily oriented. Such functions are easy to be demonstrated. Further, the coefficient of variation of the number average particle diameter is more preferably 10% or more and 20% or less, and particularly preferably 10% or more and 15% or less.
- the coefficient of variation of the number average particle diameter of the metal-coated irregular shaped resin particles can be measured by a Coulter counter method or the like.
- the particle group of the metal-coated deformed resin particles of the present invention preferably has an aspect ratio variation coefficient of 30% or less.
- variation coefficient of the aspect ratio is 30% or less, the shape of the particle group of the metal-coated deformed resin particles becomes uniform, the particle group is easily oriented, and when used for optical applications, functions such as light diffusivity Is easy to be demonstrated.
- the variation coefficient of the aspect ratio is more preferably 10% or more and 20% or less, and particularly preferably 10% or more and 15% or less.
- the coefficient of variation of the aspect ratio of the metal-coated deformed resin particles can be measured by measuring an image taken with a scanning electron microscope or the like.
- the measuring method of the weight average molecular weight (Mw) was measured using gel permeation chromatography (GPC).
- the measured weight average molecular weight means a polystyrene (PS) conversion weight average molecular weight.
- the measuring method is as follows. First, 50 mg of a sample was dissolved in 10 ml of tetrahydrofuran (THF). The resulting solution was filtered through a 0.45 ⁇ m non-aqueous chromatodisc. The obtained filtrate was analyzed by GPC and the weight average molecular weight in terms of PS was measured.
- GPC measurement conditions were as follows.
- GPC apparatus manufactured by Tosoh Corporation, trade name “Gel Permeation Chromatograph HLC-8020” Column: Two manufactured by Tosoh Corporation, trade name “TSKgel GMH-XL-L” (diameter 7.8 mm ⁇ length 30 cm) Column temperature: 40 ° C.
- Carrier gas Tetrahydrofuran (THF)
- Carrier gas flow rate 1 mL / min
- Injection / pump temperature 35 ° C
- Detection RI (differential refractive index detector)
- Injection volume 100 ⁇ L
- the average particle size of the seed particles was measured with a laser diffraction / scattering particle size distribution analyzer (LS230 type, manufactured by Beckman Coulter, Inc.). Specifically, 0.1 g of seed particles and 10 ml of a 0.1% by weight nonionic surfactant solution are put into a test tube, and the touch mixer (manufactured by Yamato Kagaku Co., Ltd., “TOUCHMIXER MT-31”) is used for 2 seconds. Mixed. Thereafter, the seed particles in the test tube were dispersed for 10 minutes using a commercially available ultrasonic cleaner (“ULTRASONIC CLEARNER VS-150” manufactured by VervoCrea Inc.) to obtain a dispersion.
- ULTRASONIC CLEARNER VS-150 manufactured by VervoCrea Inc.
- the average particle size of the seed particles in the dispersion was measured with a laser diffraction / scattering particle size distribution analyzer (LS230, manufactured by Beckman Coulter, Inc.). The optical model at the time of measurement was adjusted to the refractive index of the produced seed particles.
- the refractive index of the homopolymer of the monomer was used as the refractive index of the seed particles.
- the average value obtained by weighted average of the refractive index of the homopolymer of each monomer by the amount of each monomer used as the refractive index of the seed particles was used.
- the length of the irregular shaped resin particles was measured as follows. Using a scanning electron microscope “JSM-6360LV” (manufactured by JEOL Ltd.), arbitrary 30 deformed resin particles were observed at a magnification of 5,000 to 10,000 times. The minor axis was measured.
- the sphere-converted volume average particle diameter and sphere-converted number average particle diameter of the deformed resin particles and metal-coated deformed resin particles were measured with a Coulter Multisizer TM 3 (measurement device manufactured by Beckman Coulter, Inc.). The measurement was performed using an aperture calibrated according to the Multisizer TM 3 user's manual issued by Beckman Coulter, Inc. The aperture used for the measurement was appropriately selected depending on the size of the polymer particles to be measured. Current (aperture current) and Gain (gain) were appropriately set according to the size of the selected aperture.
- the current is set to ⁇ 800 and the gain (gain) is set to 4.
- 0.1 g of polymer particles in 10 mL of a 0.1 wt% nonionic surfactant aqueous solution was added to a touch mixer (manufactured by Yamato Kagaku Co., Ltd., “TOUCHMIXER MT-31”) and an ultrasonic cleaner (stock) Dispersed using “ULTRASONIC CLEANER VS-150” (manufactured by VervoCrea) and used as a dispersion.
- the number average particle diameter of the irregularly shaped resin particles and the metal-coated irregularly shaped resin particles was the arithmetic average in the particle size distribution based on the number of 100,000 particles.
- the number average particle diameter of the irregularly shaped resin particles and the metal-coated irregularly shaped resin particles was an arithmetic average in a volume-based particle size distribution of 100,000 particles.
- emulsion aqueous emulsion
- the obtained emulsion contained 14% by weight of a solid content (methyl methacrylate polymer), and the solid content consisted of true spherical particles having an average particle diameter of 0.4 ⁇ m and a weight average molecular weight of 600,000.
- a separable flask equipped with a stirrer, a thermometer, and a reflux condenser contains 550 g of water as an aqueous medium, 70 g of the emulsion obtained in Synthesis Example 1, and a halogenated alkyl group having 2 to 10 carbon atoms in the ester part.
- seed particle-containing emulsion an emulsion containing seed particles (hereinafter referred to as “seed particle-containing emulsion”) was obtained.
- the obtained mixture was mixed with 1 L of ion-exchanged water containing 10 g of sodium succinate as a surfactant, and treated with TK homomixer (manufactured by Primics) at 8000 rpm for 10 minutes to obtain an aqueous emulsion. .
- TK homomixer manufactured by Primics
- 360 g of a resin particle-containing emulsion having an average particle size of 1.0 ⁇ m obtained in Seed Particle Production Example 1 was added with stirring. After the stirring was continued for 3 hours, the dispersion was observed with an optical microscope. As a result, it was found that the polymerizable vinyl monomer in the aqueous emulsion was absorbed by the seed particles (swelling ratio was about 20 times).
- the obtained resin particles were observed with a scanning electron microscope and found to be biconvex lens-shaped irregular resin particles. Further, the sphere-converted volume average particle diameter of the irregularly shaped resin particles was 2.57 ⁇ m, and the coefficient of variation of the number average particle diameter was 11.4%.
- the polyester-based raw material resin was coarsely pulverized with a lab miller (Osaka Chemical Co., Ltd., trade name: small mill lab miller PLUS LMPLUS), and then Nisshin Engineering Co., Ltd., trade name: Current Jet Mill CJ-10 (pulverization air pressure 0.5 MPa) ), Fine polyester resin particles having a volume average particle diameter of 6.5 ⁇ m were obtained.
- polyester resin particles were spheroidized with a hot air surface modification device (manufactured by Nippon Pneumatic Co., Ltd., trade name: Meteole Inbo MR-10 (hot air temperature 450 ° C.). Polyester resin particles were obtained.
- the particle emulsion film was obtained on the beaker liquid surface by allowing the emulsion to stand for 8 hours and volatilizing toluene.
- a glass plate hydrophilized with sodium hypochlorite was inserted perpendicularly to the liquid surface and pulled up to transfer the particle arrangement film (an arrangement film of deformed resin particles) onto the glass plate.
- the obtained particle array film was imaged with a scanning electron microscope (SEM) to obtain the SEM image of FIG. From the SEM image in FIG. 2, it was found that the hemispherical portions of the irregular shaped resin particles were regularly arranged on the glass plate so as to face the glass plate.
- SEM scanning electron microscope
- the average value of the aspect ratio of the obtained metal-coated deformed resin particles was 1.70, and any of the measured arbitrary particles had an aspect ratio of 1.5 or more, and the variation coefficient of the aspect ratio was 11.7%.
- the thickness of the metal coating was 60 nm.
- 30% of the surface of the irregular shaped resin particles is coated with metal.
- the obtained metal-coated irregular shaped resin particle was disperse
- the obtained particle array film was imaged with a scanning electron microscope (SEM) to obtain the SEM image of FIG. From the SEM image of FIG. 3, it was found that the planar portions of the irregular shaped resin particles were regularly arranged on the cellophane tape so as to face the cellophane tape.
- SEM scanning electron microscope
- an array film of metal-coated deformed resin particles was obtained by depositing platinum on the particle array film. Dispersing the array film of metal-coated deformed resin particles in 50 ml of ion-exchanged water, and then separating the array film by irradiating with an ultrasonic wave using an ultrasonic disperser (trade name: US-1 manufactured by NS) Thus, metal-coated deformed resin particles in which a single-sided lens portion having a double-sided lens shape was coated with metal were obtained.
- the average value of the aspect ratio of the obtained metal-coated deformed resin particles was 1.50, and any of the measured arbitrary particles had an aspect ratio of 1.4 or more, and the coefficient of variation of the aspect ratio was 10.1%.
- the thickness of the metal coating was 55 nm. In this metal-coated irregular shaped resin particle, since half of both convex shapes are coated with metal, 50% of the irregular shaped resin particle surface is coated with metal in calculation.
- an array film of metal-coated deformed resin particles was obtained by depositing platinum on the particle array film. Dispersing the array film of metal-coated deformed resin particles in 50 ml of ion-exchanged water, and then separating the array film by irradiating with an ultrasonic wave using an ultrasonic disperser (trade name: US-1 manufactured by NS) Thus, metal-coated deformed resin particles in which metal was coated on one particle surface when horizontally divided into two with respect to the thickness of the flat polyester particles were obtained.
- the average value of the aspect ratio of the obtained metal-coated deformed resin particles was 1.55, and any of the measured arbitrary particles had an aspect ratio of 1.3 or more, and the variation coefficient of the aspect ratio was 13.1%.
- the thickness of the metal coating was 35 nm. Since this metal-coated irregular shaped resin particle was divided into two halves horizontally with respect to the particle thickness, one surface was coated with metal, so that 50% of the irregular shaped resin particle surface was coated with metal. It will be.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Dispersion Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Materials Engineering (AREA)
- Birds (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Laminated Bodies (AREA)
Abstract
Description
例えば、特許文献1には、球状の微粒子上に帽子状に、金、銀、白金、アルミニウム、銅等の金属層が部分的に形成された金属-非金属ヤヌス粒子が記載されている。
また、非特許文献1には、ガラス基板上に球状のシリカ粒子の単層を形成し、そこに金属(主に金)を蒸着することで、半球面が金属コートされた金属-非金属ヤヌス粒子が記載されている。
また、形状が真球とは異なる異形粒子(非真球状の粒子)を制御することは難しく、当該異形粒子の表面の一部に金属を被覆した金属-非金属ヤヌス粒子を作成することは困難である。
そこで、本発明の目的は、異形樹脂粒子の表面の一部が金属で被覆されている金属被覆異形樹脂粒子及びその簡便な製造方法を提供することにある。また、本発明の目的は、金属被覆異形樹脂粒子の配列膜及びその製造方法、粒子群、並びに粒子配列膜の簡便な製造方法を提供することにある。
混合物を水に乳化させて乳化液を得る工程、及び
乳化液を静置して、有機溶剤を揮発させると共に気液界面に異形樹脂粒子の粒子配列膜を形成する工程、
を備える、粒子配列膜の製造方法。
粒子配列膜の一部を金属で被覆する工程、
を備える、金属被覆異形樹脂粒子の配列膜の製造方法。
本発明の粒子配列膜の製造方法は、
(1)異形樹脂粒子と、当該異形樹脂粒子を分散可能であり、水よりも低比重であり、かつ水と非相溶である有機溶剤との混合物を調製する工程1、
(2)当該混合物を水に乳化させて乳化液を得る工程2、及び
(3)当該乳化液を静置して、当該有機溶剤を揮発させると共に気液界面に異形樹脂粒子の粒子配列膜を形成する工程3を備える、製造方法である。以下、各工程について説明する。
工程1は、異形樹脂粒子と、当該異形樹脂粒子を分散可能であり、水よりも低比重であり、かつ水と非相溶である有機溶剤との混合物を調製する工程である。
異形樹脂粒子は、投影面積が最大となる方向から見たときの当該異形樹脂粒子の外形が円形であり、投影面積が最小となる方向から見たときの当該異形樹脂粒子の外形が非円形であることが好ましい。
図1(a)は、断面馬蹄形状の異形樹脂粒子の投影図であり、上図が投影面積が最大となる図であり、下図が最小となる図である。投影面積が最大となる図の粒子の外形は円形となる。また、投影面積が最小となる図の粒子の外形は切り欠き部の投影図に対応する凹部と扇形とからなる形状となる。ここで、凹部は、異形樹脂粒子の粒子径Aの0.1~0.9倍の深さBを有し、かつ0.1~0.95倍の開口部の幅Cを有している。
異形樹脂粒子が、(2)平面部及び曲面部を有する場合とは、例えば、半球形状、円板形状、円柱形状から構成される場合をいう。本明細書において、異形樹脂粒子が平面部及び曲面部のみからなる場合も含まれる。
異形樹脂粒子が、(3)曲面部を有する場合とは、例えば、碁石形状、扁平形状、赤血球形状、両凸レンズ形状、凹凸レンズ形状から構成される場合をいう。本明細書において、異形樹脂粒子が曲面部のみからなる場合も含まれる。
以下、異形樹脂粒子の製造用の原料及び異形樹脂粒子の製造法を説明する。
種粒子は、炭素数5以下のアルキル基をエステル部に少なくとも含む(メタ)アクリル酸エステルを含む単量体に由来する樹脂粒子であることが好ましい。
樹脂粒子を形成するための単量体中には、炭素数3以上5以下のアルキル基をエステル部に含む(メタ)アクリル酸エステルを50重量%以上含むことが好ましい。
このような単量体に由来する樹脂粒子は、非真球状(異形)粒子となり易い。
(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル等の単量体が挙げられる。これらの単量体は、1種のみを用いてもよいし、2種以上を混合して用いてもよい。
これらの中でも、分岐アルキル基(例えば、イソプロピル、イソブチル、t-ブチル)を有する(メタ)アクリル酸エステルを用いた樹脂粒子は、非真球状(異形)樹脂粒子となり易いため好ましい。
なお、種粒子の大きさ及び形状は特に限定されない。種粒子には、通常0.1~5μmの粒径の球状粒子が使用される。種粒子の粒子径は、レーザー回折散乱粒度分布測定装置で測定することができる。
種粒子の製造方法は特に限定されず、乳化重合、ソープフリー乳化重合、シード重合、懸濁重合等の公知の方法を用いることができる。製造方法は、種粒子の粒子径均一性及び製造方法の簡便性を考慮すると、乳化重合、ソープフリー乳化重合及びシード重合法が好ましい。
重合は、分子量調整剤の存在下で行ってもよい。分子量調整剤としては、α-メチルスチレンダイマー;n-オクチルメルカプタン、t-ドデシルメルカプタン等のメルカプタン類;t-テルピネン、ジペンテン等のテルペン類;ハロゲン化炭化水素類(例えば、クロロホルム、四塩化炭素)のような連鎖移動剤を使用できる。分子量調整剤は、種粒子製造用の単量体100重量部対して0.1~10重量部の範囲で使用することが好ましい。
重合性ビニル系単量体としては、架橋性単量体が5~50重量%含まれている単量体であれば特に限定されない。架橋性単量体としては、例えば、エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、ジビニルベンゼン等の重合性ビニル基を1分子中に2つ以上有する多官能性単量体が用いられる。架橋性単量体の使用量は、異形樹脂粒子を作製する観点から、重合性ビニル単量体全量に対して、5~50重量%であることが好ましく、10~40重量%であることがさらに好ましい。
これらの中でも、非真球状(異形)の粒子が得られやすいことから、(メタ)アクリル酸アルキルエステルが好ましく、アルキレンオキサイド基を有する(メタ)アクリル酸エステルがより好ましい。
異形樹脂粒子の製造方法は、種粒子に、水性乳化液中の重合性ビニル系単量体を吸収させ、吸収させた重合性ビニル系単量体を重合させる、いわゆるシード重合法である。以下にシード重合法の一般的な方法を述べる。また、原料である樹脂を粉砕して得られた樹脂粒子を球形化し、その後、球形化した粒子を物理的に力を加える方法によって異形樹脂粒子を製造することもできるが、これらの方法に限定されるものではない。
まず、重合性ビニル系単量体と水性媒体とから構成される水性乳化液に種粒子を添加する。
水性媒体としては、水、水と親水性溶媒(例えば、低級アルコール)との混合媒体が挙げられる。
アニオン系界面活性剤としては、例えば、オレイン酸ナトリウム、ヒマシ油カリ等の脂肪酸油、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム等のアルキル硫酸エステル塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルカンスルホン酸塩、ジオクチルスルホコハク酸ナトリウム等のジアルキルスルホコハク酸塩、アルケルニルコハク酸塩(ジカリウム塩)、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンラウリルエーテル硫酸ナトリウム等のポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキル硫酸エステル塩等が挙げられる。
ノニオン系界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル等を用いることができる。
両性イオン系界面活性剤としては、ラウリルジメチルアミンオキサイド、リン酸エステル系、亜リン酸エステル系界面活性剤等が挙げられる。
上記界面活性剤は、単独で又は2種以上を組み合わせて用いてもよい。上記界面活性剤の中でも、重合時の分散安定性の観点から、アニオン系界面活性剤が好ましい。
種粒子の水性乳化液への添加後、種粒子の中へ重合性ビニル系単量体を吸収させる。この吸収は、通常、種粒子添加後の水性乳化液を、室温(約20℃)で1~12時間撹拌することで行うことができる。また、水性乳化液を30~50℃程度に加温することにより吸収を促進してもよい。
重合温度は、重合性ビニル系単量体、重合開始剤の種類に応じて、適宜選択することができる。重合温度は、25~110℃が好ましく、より好ましくは50~100℃である。重合反応は、樹脂粒子に単量体、任意に重合開始剤が完全に吸収された後に、昇温して行うのが好ましい。重合完了後、必要に応じて異形樹脂粒子は、遠心分離を行って水性媒体を除去し、水及び溶剤で洗浄した後、乾燥、単離される。
高分子分散安定剤としては、例えば、ポリビニルアルコール、ポリカルボン酸、セルロース化合物(ヒドロキシエチルセルロース、カルボキシメチルセルロース等)、ポリビニルピロリドン等である。またトリポリリン酸ナトリウム等の無機系水溶性高分子化合物も併用することができる。これらのうち、ポリビニルアルコール及びポリビニルピロリドンが好ましい。高分子分散安定剤の添加量は、重合性ビニル系単量体100重量部に対して1~10重量部が好ましい。
また、水系での乳化粒子の発生を抑えるために、亜硝酸塩化合物、亜硫酸塩化合物、ハイドロキノン化合物、アスコルビン酸化合物、水溶性のビタミンB化合物、クエン化合物、ポリフェノール化合物等の水溶性の重合禁止剤を用いてもよい。
工程1で使用する有機溶剤としては、異形樹脂粒子を分散可能であり、水よりも低比重であり、かつ水と非相溶であるものであれば特に限定されず、例えば、トルエン、ベンゼン、キシレン、ノルマルヘキサン、シクロヘキサン、ノルマルペンタン、シクロペンタン、メチルイソブチルケトン、シクロヘキサノン、プロプレングリコールモノブチルエーテル等を用いることができる。これらの中でも、異形樹脂粒子を分散させやすい点でトルエンが好ましい。
上記水としては、工程2で用いる水を意味し、例えば、イオン交換水を用いることができる。
本明細書において非相溶とは、水と有機溶剤とを混合したときに、分子レベルで相互に溶解しないことを意味する。
本明細書において低比重とは、有機溶剤の比重が水の比重よりも小さいことを意味する。
工程2は、工程1で調製した混合物を水に乳化させて乳化液を得る工程である。
乳化分散の方法としては、例えば、超音波照射により乳化する方法、ホモジナイザー、ナノマイザー等の微細乳化機により乳化する方法等が挙げられる。
工程3は、工程2で得られた乳化液を静置して、有機溶剤を揮発させると共に気液界面に異形樹脂粒子の粒子配列膜を形成する工程である。
また、異形樹脂粒子の形状が、曲面部を有する両凸レンズ形状である場合にも、気相と接する表面積が小さくなるように、両凸レンズのそれぞれの凸レンズ面が水相面、気相面に対向するように異形樹脂粒子が配列する。このような構成をとることにより、両凸レンズ形状の異形樹脂粒子が平面的に規則的に、二次元的に配列することになる。扁平形状の場合も同様である。
本発明の金属被覆異形樹脂粒子の配列膜の製造方法は、
(4)異形樹脂粒子の粒子配列膜の製造方法により得られた異形樹脂粒子の粒子配列膜を取り出す工程4、及び
(5)取り出した異形樹脂粒子の粒子配列膜の一部を金属で被覆する工程5をしている。
以下、各工程について説明する。
工程4は、工程3で得られた異形樹脂粒子の粒子配列膜を取り出す工程である。
工程5は、工程4で取り出した異形樹脂粒子の粒子配列膜の一部を金属で被覆する工程である。
本発明の金属被覆異形樹脂粒子の製造方法は、工程5で得られた金属被覆異形樹脂粒子の配列膜から金属被覆異形樹脂粒子を取り出すことにより、金属被覆異形樹脂粒子を得る製造方法である。
本発明の金属被覆異形樹脂粒子は、好ましくは上記金属被覆異形樹脂粒子の製造方法により得られた金属被覆異形樹脂粒子であり、各異形樹脂粒子の表面の一部が金属で被覆されている。
当該一部とは、異形樹脂粒子の表面の1%以上100%未満が金属で被覆していることを意味し、中でも、20%以上80%未満が好ましく、25%以上75%未満がより好ましい。
金属被覆異形樹脂粒子が、(2)平面部及び曲面部を有する場合とは、例えば、半球形状、円板状、円柱状から構成される場合をいう。本明細書において、異形樹脂粒子が平面部及び曲面部のみからなる場合も含まれる。
金属被覆異形樹脂粒子が、(3)曲面部を有する場合とは、例えば、碁石状、赤血球状、両凸レンズ状、凹凸レンズ状から構成される場合をいう。本明細書において、異形樹脂粒子が曲面部のみからなる場合も含まれる。
異形樹脂粒子が、(2)平面部及び曲面部を有する場合とは、半球形状、円板形状、円柱形状の平面部の一つの面のみが金属で被覆された金属被覆異形樹脂粒子が挙げられる。
異形樹脂粒子が、(3)曲面部を有する場合とは、両凸レンズ形状、扁平形状、碁石形状、赤血球形状、おわん形状の粒子を粒子厚みに対して水平に二等分した際に片方の粒子表面に相当する面を金属で被覆した金属被覆異形樹脂粒子が挙げられる。
本発明の金属被覆異形樹脂粒子の用途は限定的ではなく、例えば、光拡散フィルム(光学シート)用等の光拡散部材用コーティング剤等として用いられるコーティング剤(塗布用組成物)の添加剤;光拡散板製造用の光拡散性樹脂組成物を構成する光拡散剤;二倍波発生のための非線形光学材料、誘電率及び透磁率を制御可能なメタマテリアル材料として有用である。
本発明の分散体は、本発明の金属被覆異形樹脂粒子を含むものである。本発明の分散体の分散媒としては、水性媒体が好ましい。本発明において、水性媒体とは、水を主成分とする液体であり、アルコール、ケトン、エステル、芳香族炭化水素等の有機溶剤を含有していてもよい。
本発明の分散体は、導電性を有することが好ましい。導電性を有する分散体とは、例えば、導電性塗料、導電性インクが挙げられる。例えば、導電性インクは、本発明の分散体を含んでおり、必要に応じて、硬化性モノマー、バインダー樹脂を含んでいてもよい。上記導電性インクを、例えば、インクジェット法、スクリーン印刷法等により基材上に塗布して、乾燥後、加熱して、配線、薄膜等の導電部材とすることができる。
本発明の樹脂組成物は、基材樹脂と本発明の金属被覆異形樹脂粒子とを含むものである。本発明の樹脂組成物は、本発明の金属被覆異形樹脂粒子を含むことによって、光学特性、導電性に優れることから、照明カバー(発光ダイオード(LED)照明用照明カバー、蛍光灯照明用照明カバー等)の原料として使用することができ、光拡散シート、光拡散板等の光拡散体、又は導電性樹脂の原料としても使用することができる。上記基材樹脂としては、通常、金属被覆異形樹脂粒子を構成する重合体の成分と異なる熱可塑性樹脂を使用することができる。
本発明の外用剤は、本発明の金属被覆樹脂粒子を含むものである。本発明の外用剤は、肌に塗布されることで、光学特性を発揮するため、毛穴、シミ、シワ等を目立たなくすることができる。本発明の外用剤における上記金属被覆異形樹脂粒子の含有量は、外用剤の種類に応じて適宜設定できるが、1~90重量%の範囲内であることが好ましく、3~80重量%の範囲内であることがより好ましい。本発明の外用剤は、例えば、外用医薬品、化粧料等として使用できる。外用医薬品としては、皮膚に適用するものであれば特に限定されない。具体的には、クリーム、軟膏、乳剤等が挙げられる。化粧料としては、例えば、石鹸、ボディシャンプー、洗顔クリーム、スクラブ洗顔料、歯磨き等の洗浄用化粧品;おしろい類、フェイスパウダー(ルースパウダー、プレストパウダー等)、ファンデーション(パウダーファンデーション、リキッドファンデーション、乳化型ファンデーション等)、口紅、リップクリーム、頬紅、眉目化粧品(アイシャドー、アイライナー、マスカラ等)、マニキュア等のメイクアップ化粧料;プレシェーブローション、ボディローション等のローション剤;ボディパウダー、ベビーパウダー等のボディー用外用剤;化粧水、クリーム、乳液(化粧乳液)等のスキンケア剤、制汗剤(液状制汗剤、固形状制汗剤、クリーム状制汗剤等)、パック類、洗髪用化粧品、染毛料、整髪料、芳香性化粧品、浴用剤、日焼け止め製品、サンタン製品、ひげ剃り用クリーム等が挙げられる。
本発明の金属被覆異形樹脂粒子の粒子群は、光拡散特性、反射特性等の観点から、アスペクト比の平均値が1.2以上であることが好ましく、1.2~5.0であることがより好ましく、1.4~3.5であることが特に好ましい。
走査型電子顕微鏡「JSM-6360LV」(日本電子株式会社製)を用いて、5,000~10,000倍の倍率で、金属被覆異形樹脂粒子の粒子群における任意の30個の金属被覆異形樹脂粒子を観察し、各金属被覆異形樹脂粒子の長径及び短径を測定する。金属被覆異形樹脂粒子のアスペクト比は下記の数式にて算出し、30個の平均値とする。
金属被覆異形樹脂粒子のアスペクト比=金属被覆異形樹脂粒子の長径/金属被覆異形樹脂粒子の短径
また、個数平均粒子径の変動係数が10%以上20%以下であることがさらに好ましく、10%以上15%以下であることが特に好ましい。
また、アスペクト比の変動係数が10%以上20%以下であることがさらに好ましく、10%以上15%以下であることが特に好ましい。
重量平均分子量(Mw)の測定方法は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定した。測定した重量平均分子量は、ポリスチレン(PS)換算重量平均分子量を意味する。その測定方法は、次の通りである。まず、試料50mgをテトラヒドロフラン(THF)10mlに溶解させた。得られた溶液を0.45μmの非水系クロマトディスクで濾過した。得られた濾液をGPCにより分析し、PS換算重量平均分子量を測定した。GPCの測定条件は、下記の通りとした。
カラム:東ソー社製、商品名「TSKgel GMH-XL-L」(直径7.8mm×長さ30cm)2本
カラム温度:40℃
キャリアーガス:テトラヒドロフラン(THF)
キャリアーガス流量:1mL/分
注入・ポンプ温度:35℃
検出:RI(示差屈折率検出器)
注入量:100μL
PS換算重量平均分子量を算出するための検量線用標準ポリスチレン:昭和電工株式会社製の商品名「shodex」(重量平均分子量:1030000)及び東ソー株式会社製の検量線用標準ポリスチレン(重量平均分子量:5480000、3840000、355000、102000、37900、9100、2630、870)
種粒子の平均粒子径は、レーザー回折散乱粒度分布測定装置(ベックマン・コールター株式会社製、LS230型)で測定した。具体的には、試験管に、種粒子0.1gおよび0.1重量%ノニオン性界面活性剤溶液10mlを投入し、タッチミキサー(ヤマト科学株式会社製、「TOUCHMIXER MT-31」)で2秒間混合した。この後、試験管内の種粒子を市販の超音波洗浄器(株式会社ヴェルヴォクリーア製、「ULTRASONIC CLEARNER VS-150」)を用いて10分間かけて分散させて、分散液を得た。分散液に超音波を照射しながら、分散液中の種粒子の平均粒子径をレーザー回折散乱粒度分布測定装置(ベックマン・コールター株式会社製、LS230型)にて測定した。その測定のときの光学モデルは、作製した種粒子の屈折率に合わせた。種粒子の製造に1種類の単量体を用いた場合には、種粒子の屈折率としてその単量体の単独重合体の屈折率を用いた。種粒子の製造に複数種類の単量体を用いた場合には、種粒子の屈折率として、各単量体の単独重合体の屈折率を各単量体の使用量で加重平均した平均値を用いた。
異形樹脂粒子の長さは、以下のようにして測定した。走査型電子顕微鏡「JSM-6360LV」(日本電子株式会社製)を用いて、5,000~10,000倍の倍率で任意の30個の異形樹脂粒子を観察し、各異形樹脂粒子の長径及び短径を測定した。異形樹脂粒子のアスペクト比は下記の数式にて算出した。
異形樹脂粒子のアスペクト比=異形樹脂粒子の長径/異形樹脂粒子の短径
アスペクト比の変動係数=(異形樹脂粒子のアスペクト比の標準偏差)/(異形樹脂粒子のアスペクト比の平均値)×100
異形樹脂粒子、金属被覆異形樹脂粒子の球換算体積平均粒子径及び球換算個数平均粒子径は、コールターMultisizerTM 3(ベックマン・コールター株式会社製測定装置)により測定した。測定は、ベックマン・コールター株式会社発行のMultisizerTM 3ユーザーズマニュアルに従って校正されたアパチャーを用いて実施した。
測定に用いるアパチャーは、測定する重合体粒子の大きさによって、適宜選択した。Current(アパチャー電流)及びGain(ゲイン)は、選択したアパチャーのサイズによって、適宜設定した。例えば、50μmのサイズを有するアパチャーを選択した場合、Current(アパチャー電流)は、-800、Gain(ゲイン)は、4と設定した。
測定用試料としては、重合体粒子0.1gを0.1重量%ノニオン性界面活性剤水溶液10mL中にタッチミキサー(ヤマト科学株式会社製、「TOUCHMIXER MT-31」)及び超音波洗浄器(株式会社ヴェルヴォクリーア製、「ULTRASONIC CLEANER VS-150」)を用いて分散させ、分散液としたものを使用した。測定中はビーカー内に気泡が入らない程度に緩く攪拌しておき、重合体粒子を10万個測定した時点で測定を終了した。
異形樹脂粒子、金属被覆異形樹脂粒子の個数平均粒子径は、10万個の粒子の個数基準の粒度分布における算術平均とした。
異形樹脂粒子、金属被覆異形樹脂粒子の個数平均粒子径は、10万個の粒子の体積基準の粒度分布における算術平均とした。
異形樹脂粒子の個数平均粒子径の変動係数(CV値)を、以下の数式によって算出した。
異形樹脂粒子の個数平均粒子径の変動係数=(異形樹脂粒子の個数基準の粒度分布の標準偏差)/(異形樹脂粒子の個数平均粒子径)×100
攪拌機、温度計および還流コンデンサーを備えたセパラブルフラスコに、水性媒体としての水600gと、(メタ)アクリル酸エステルとしてのメタクリル酸メチル100gと、連鎖移動剤としてのn-ドデシルメルカプタン0.5gとを仕込み、セパラブルフラスコの内容物を攪拌機で攪拌しながらセパラブルフラスコ内の空間を窒素置換し、セパラブルフラスコの内温を70℃に昇温した。セパラブルフラスコの内温を70℃に保ちながら、重合開始剤として過硫酸カリウム0.5gをセパラブルフラスコの内容物に添加した後、セパラブルフラスコの内温を70℃に保ったまま8時間かけて重合反応させ、エマルジョン(水性乳化液)を得た。得られたエマルジョンは、固形分(メタクリル酸メチル重合体)を14重量%含有し、その固形分は、平均粒子径0.4μm、重量平均分子量60万の真球状粒子からなっていた。
攪拌機、温度計、および還流コンデンサーを備えたセパラブルフラスコに、水性媒体としての水550gと、合成例1で得られたエマルジョン70gと、炭素数2~10のハロゲン化アルキル基をエステル部に含む(メタ)アクリル酸エステルとしてのメタクリル酸2,2,2-トリフルオロエチル100gと、連鎖移動剤としてのn-ドデシルメルカプタン0.3gとを仕込み、セパラブルフラスコの内容物を攪拌機で攪拌しながらセパラブルフラスコ内の空間を窒素置換し、セパラブルフラスコの内温を70℃に昇温した。セパラブルフラスコの内温を70℃に保ちながら、重合開始剤としての過硫酸カリウム0.5gを添加した後、セパラブルフラスコの内温を70℃に保ったまま8時間かけて重合反応させた。これにより、種粒子を含有するエマルジョン(以下「種粒子含有エマルジョン」と呼ぶ)が得られた。
攪拌機、温度計を備えた5Lの反応器に、重合性ビニル系単量体として、メタクリル酸メチル600g、エチレングリコールジメタクリレート300g、ポリ(エチレングリコール-プロピレングリコール)モノメタクリレート(製品名:ブレンマー50PEP-300/日油社製、式(1)中、R1=CH3、R2=C2H4、R3=C3H6、R4=Hであり、m及びnは平均してm=3.5及びn=2.5の混合物である)100g、重合開始剤としてアゾビスブチロニトリル6gを入れて混合した。得られた混合物を、界面活性剤としてコハクスルホン酸ナトリウム10gが含まれたイオン交換水1Lと混合し、TKホモミキサー(プライミクス社製)にて8000rpmで10分間処理して水性乳化液を得た。この水性乳化液に種粒子製造例1で得た平均粒子径が1.0μmの樹脂粒子含有エマルジョン360gを攪拌しながら加えた。
攪拌を3時間継続後、分散液を光学顕微鏡で観察したところ、水性乳化液中の重合性ビニル系単量体は種粒子に吸収されていることを認めた(膨潤倍率約20倍)。その後、分散安定剤としてポリビニルアルコール(クラレ社製 PVA-224E)40gを溶解した水溶液2000gを反応器に入れ、攪拌しながら60℃で6時間重合を行った。得られた樹脂粒子を走査型電子顕微鏡で観察したところ、半球状の異形樹脂粒子であった。また、異形樹脂粒子の球換算体積平均粒子径は2.60μmであり、個数平均粒子径の変動係数は11.8%であった。
重合性ビニル系単量体として、スチレン600g、エチレングリコールジメタクリレート300g、ポリ(エチレングリコール-プロピレングリコール)モノメタクリレート(製品名:ブレンマー50PEP-300/日油社製、式(1)中、R1=CH3、R2=C2H4、R3=C3H6、R4=Hであり、m及びnは平均してm=3.5及びn=2.5の混合物である)100gとしたこと以外は異形樹脂粒子製造例1と同様にして樹脂粒子を得た。得られた樹脂粒子を走査型電子顕微鏡で観察したところ、両凸レンズ状の異形樹脂粒子であった。また、異形樹脂粒子の球換算体積平均粒子径は2.57μmであり、個数平均粒子径の変動係数は11.4%であった。
ポリエチレンテレフタレート(Honam Petrochemical Corp.社製、商品名:GLOBIO BCB80)のペレット50g、3-メトキシ-3-メチル-1-ブタノール(クラレ社製、商品名:ソルフィット)100gを攪拌機付き容量300mlのオートクレーブに投入し、185℃の条件下で2時間攪拌した。2時間後に速やかに室温まで冷却し、内容物を濾別、水洗、80℃のオーブンでの乾燥を経て、溶剤との接触済ポリエステル系原料樹脂のペレット49gを得た。当該ポリエステル系原料樹脂をラボミルサー(大阪ケミカル社製、商品名:小型粉砕機ラボミルサーPLUS LMPLUS)で粗粉砕した後、日清エンジニアリング社製、商品名:カレントジェットミル CJ-10(粉砕空気圧 0.5MPa)にて微粉砕処理を行った結果、体積平均粒子径6.5μmの微細なポリエステル系樹脂粒子を得た。
異形樹脂粒子の球換算体積平均粒子径は6.20μmであり、個数平均粒子径の変動係数は29.1%であった。
異形樹脂粒子製造例1で得られた平均粒子径2.60μmの半球状の異形樹脂粒子30mgとトルエン3mlとを混合し、別途100mlのビーカーにイオン交換水100mlを入れたものに添加した。超音波分散器(エヌエスディー社製 商品名US-1)にて10分間処理することで上記混合液を乳化させた。
金属被覆異形樹脂粒子の製造例1と同様にしてガラスプレート上に粒子配列膜(異形樹脂粒子の粒子配列膜)を転写した後、粒子配列膜にセロハンテープの粘着面を押し当て転写した。
異形樹脂粒子の製造例2で得られた平均粒子径2.57μmの両凸レンズ状の異形樹脂粒子を用いたこと以外は金属被覆異形樹脂粒子の製造例1と同様にしてガラスプレート上に粒子配列膜(異形樹脂粒子の配列膜)を転写した。
得られた粒子配列膜を走査型電子顕微鏡(SEM)で撮像し、図4のSEM画像を得た。図4のSEM画像より、各異形樹脂粒子の凸レンズ部がガラスプレートに対向するようにガラスプレート上に規則的に配列していることが分かった。
異形樹脂粒子の製造例3で得られた扁平状ポリエステル系樹脂粒子30mgをトルエン3mlに分散させ、その分散液を別途100mlのビーカーにイオン交換水100mlを入れた水面上に静かに展開した。展開後、8時間放置しトルエンを揮発させることで、ビーカー液面に粒子配列膜を得た。次亜塩素酸ナトリウムで親水化処理したガラスプレートを液面に対し垂直に差し込み、引き揚げることで、ガラスプレートに粒子配列膜(異形樹脂粒子の配列膜)を転写した。
Claims (23)
- 異形樹脂粒子の表面の一部が金属で被覆されている、金属被覆異形樹脂粒子。
- アスペクト比が1.2以上である、請求項1に記載の金属被覆異形樹脂粒子。
- 投影面積が最大となる方向から見たときの前記異形樹脂粒子の外形が円形であり、投影面積が最小となる方向から見たときの前記異形樹脂粒子の外形が非円形である、請求項1に記載の金属被覆異形樹脂粒子。
- (1)複数の平面部、(2)平面部及び曲面部、又は(3)曲面部を有する、請求項1に記載の金属被覆異形樹脂粒子。
- 金属で被覆された面と金属で被覆されていない面とを有する、請求項1に記載の金属被覆異形樹脂粒子。
- 前記異形樹脂粒子が、半球面部と平面部とを有する半球形状である、請求項1に記載の金属被覆異形樹脂粒子。
- 前記半球面部の表面の少なくとも一部が金属で被覆されている、請求項6に記載の金属被覆異形樹脂粒子。
- 前記平面部の表面の少なくとも一部が金属で被覆されている、請求項6に記載の金属被覆異形樹脂粒子。
- 前記異形樹脂粒子が、曲面部を有する両凸レンズ形状、又は扁平形状である、請求項1に記載の金属被覆異形樹脂粒子。
- 前記両凸レンズ形状の片側凸レンズ部のみが被覆されている、又は前記扁平形状の片側部のみが被覆されている、請求項9に記載の金属被覆異形樹脂粒子。
- 走光性を有する、請求項1に記載の金属被覆異形樹脂粒子。
- 請求項1に記載の金属被覆異形樹脂粒子が、平面状に規則的に配列している、配列膜。
- 請求項1に記載の金属被覆異形樹脂粒子の粒子群であって、個数平均粒子径の変動係数が30%以下である、粒子群。
- 請求項1に記載の金属被覆異形樹脂粒子の粒子群であって、アスペクト比の平均値が1.2以上である、粒子群。
- 請求項1に記載の金属被覆異形樹脂粒子の粒子群であって、アスペクト比の変動係数が30%以下である、粒子群。
- 異形樹脂粒子と、当該異形樹脂粒子を分散可能であり、水よりも低比重であり、かつ水と非相溶である有機溶剤との混合物を調製する工程、
前記混合物を水に乳化させて乳化液を得る工程、及び
前記乳化液を静置して、前記有機溶剤を揮発させると共に気液界面に前記異形樹脂粒子の粒子配列膜を形成する工程、
を備える、粒子配列膜の製造方法。 - 前記異形樹脂粒子が、半球面部と平面部とを有する半球形状である、請求項16に記載の粒子配列膜の製造方法。
- 請求項16又は17に記載の製造方法により得られた粒子配列膜を取り出す工程、及び
前記粒子配列膜の一部を金属で被覆する工程、
を備える、金属被覆異形樹脂粒子の配列膜の製造方法。 - 請求項18に記載の製造方法により得られた金属被覆異形樹脂粒子の配列膜から金属被覆異形樹脂粒子を取り出す工程を備える、金属被覆異形樹脂粒子の製造方法。
- 請求項1に記載の金属被覆異形樹脂粒子を含む、分散体。
- 導電性を有する、請求項20に記載の分散体。
- 請求項1に記載の金属被覆異形樹脂粒子を含む、樹脂組成物。
- 請求項1に記載の金属被覆異形樹脂粒子を含む、外用剤。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780020924.XA CN108884252A (zh) | 2016-03-31 | 2017-03-31 | 覆金属异形树脂颗粒和其制造方法、覆金属异形树脂颗粒的排列膜和其制造方法、颗粒组、以及颗粒排列膜的制造方法 |
EP17775618.6A EP3438169A4 (en) | 2016-03-31 | 2017-03-31 | METAL-COVERED IRREGULAR-SHAPED RESIN PARTICLES AND METHOD FOR THE PRODUCTION THEREOF, ORIENTED FILM OF METAL-COVERED IRON-SHAPED RESIN PARTICLES AND METHOD FOR THE PRODUCTION THEREOF, PARTICLES AND METHOD FOR THE PRODUCTION THEREOF |
KR1020187029856A KR20180132703A (ko) | 2016-03-31 | 2017-03-31 | 금속 피복 이형 수지 입자와 그 제조 방법, 금속 피복 이형 수지 입자의 배열막과 그 제조 방법, 입자군, 및 입자 배열막의 제조 방법 |
JP2018509709A JP7027306B2 (ja) | 2016-03-31 | 2017-03-31 | 金属被覆異形樹脂粒子及びその製造方法、金属被覆異形樹脂粒子の配列膜及びその製造方法、粒子群、並びに粒子配列膜の製造方法 |
US16/088,925 US11111346B2 (en) | 2016-03-31 | 2017-03-31 | Metal-coated non-spherical resin particles and method for producing same, aligned film of metal-coated non-spherical resin particles and method for producing same, particles, and method for producing particle-aligned film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-071706 | 2016-03-31 | ||
JP2016071706 | 2016-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017171087A1 true WO2017171087A1 (ja) | 2017-10-05 |
Family
ID=59964854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/013851 WO2017171087A1 (ja) | 2016-03-31 | 2017-03-31 | 金属被覆異形樹脂粒子及びその製造方法、金属被覆異形樹脂粒子の配列膜及びその製造方法、粒子群、並びに粒子配列膜の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11111346B2 (ja) |
EP (1) | EP3438169A4 (ja) |
JP (1) | JP7027306B2 (ja) |
KR (1) | KR20180132703A (ja) |
CN (1) | CN108884252A (ja) |
WO (1) | WO2017171087A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019189420A1 (ja) * | 2018-03-29 | 2019-10-03 | 積水化成品工業株式会社 | ポリエチレンテレフタレート系樹脂粒子 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7317668B2 (ja) * | 2019-10-30 | 2023-07-31 | 住友化学株式会社 | 樹脂ペレット及び樹脂ペレットの製造方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003181275A (ja) * | 2001-12-18 | 2003-07-02 | Ricoh Co Ltd | 微粒子配列膜形成方法 |
WO2010113812A1 (ja) * | 2009-03-30 | 2010-10-07 | 積水化成品工業株式会社 | 異形粒子及びその製造法 |
WO2012132533A1 (ja) * | 2011-03-31 | 2012-10-04 | 積水化成品工業株式会社 | 着色樹脂粒子、その製造方法、及びその用途 |
WO2013027849A1 (ja) * | 2011-08-25 | 2013-02-28 | 積水化成品工業株式会社 | 異形樹脂粒子およびその製造方法並びにその用途 |
JP2015010143A (ja) * | 2013-06-27 | 2015-01-19 | 株式会社ミマキエンジニアリング | インクジェット印刷用インク、インクジェット印刷用インクの製造方法、及びインクジェット印刷方法 |
WO2016084849A1 (ja) * | 2014-11-25 | 2016-06-02 | Cbc株式会社 | ヤヌス微粒子及びその製造方法 |
JP2016130354A (ja) * | 2015-01-13 | 2016-07-21 | 三菱マテリアル電子化成株式会社 | 銀被覆樹脂粒子及びその製造方法並びにそれを用いた導電性ペースト |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005036265A (ja) | 2003-07-18 | 2005-02-10 | Natoko Kk | 導電性粒子、導電性材料および異方性導電膜 |
JP2006306998A (ja) | 2005-04-28 | 2006-11-09 | Sekisui Chem Co Ltd | 光干渉樹脂微粒子及び光干渉複合微粒子 |
JP5487530B2 (ja) * | 2006-01-27 | 2014-05-07 | Jsr株式会社 | 異形粒子、異形粒子組成物及びその製造方法、並びに光拡散成形品 |
TWI447442B (zh) * | 2008-06-26 | 2014-08-01 | Eternal Chemical Co Ltd | 具有非球形粒子之光學薄膜 |
JP5967756B2 (ja) * | 2012-04-27 | 2016-08-10 | 学校法人 東洋大学 | 分光用基板 |
JP6018857B2 (ja) * | 2012-09-18 | 2016-11-02 | 住友化学株式会社 | 金属系粒子集合体 |
CN105396149B (zh) * | 2015-07-07 | 2018-10-09 | 宋玉军 | 一种具有自主靶向和影像功能的纳米合金抗癌药物及其制备方法 |
-
2017
- 2017-03-31 US US16/088,925 patent/US11111346B2/en active Active
- 2017-03-31 JP JP2018509709A patent/JP7027306B2/ja active Active
- 2017-03-31 WO PCT/JP2017/013851 patent/WO2017171087A1/ja active Application Filing
- 2017-03-31 CN CN201780020924.XA patent/CN108884252A/zh active Pending
- 2017-03-31 EP EP17775618.6A patent/EP3438169A4/en not_active Withdrawn
- 2017-03-31 KR KR1020187029856A patent/KR20180132703A/ko not_active Application Discontinuation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003181275A (ja) * | 2001-12-18 | 2003-07-02 | Ricoh Co Ltd | 微粒子配列膜形成方法 |
WO2010113812A1 (ja) * | 2009-03-30 | 2010-10-07 | 積水化成品工業株式会社 | 異形粒子及びその製造法 |
WO2012132533A1 (ja) * | 2011-03-31 | 2012-10-04 | 積水化成品工業株式会社 | 着色樹脂粒子、その製造方法、及びその用途 |
WO2013027849A1 (ja) * | 2011-08-25 | 2013-02-28 | 積水化成品工業株式会社 | 異形樹脂粒子およびその製造方法並びにその用途 |
JP2015010143A (ja) * | 2013-06-27 | 2015-01-19 | 株式会社ミマキエンジニアリング | インクジェット印刷用インク、インクジェット印刷用インクの製造方法、及びインクジェット印刷方法 |
WO2016084849A1 (ja) * | 2014-11-25 | 2016-06-02 | Cbc株式会社 | ヤヌス微粒子及びその製造方法 |
JP2016130354A (ja) * | 2015-01-13 | 2016-07-21 | 三菱マテリアル電子化成株式会社 | 銀被覆樹脂粒子及びその製造方法並びにそれを用いた導電性ペースト |
Non-Patent Citations (1)
Title |
---|
See also references of EP3438169A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019189420A1 (ja) * | 2018-03-29 | 2019-10-03 | 積水化成品工業株式会社 | ポリエチレンテレフタレート系樹脂粒子 |
CN111655762A (zh) * | 2018-03-29 | 2020-09-11 | 积水化成品工业株式会社 | 聚对苯二甲酸乙二醇酯系树脂粒子 |
KR20200108074A (ko) * | 2018-03-29 | 2020-09-16 | 세키스이가세이힝코교가부시키가이샤 | 폴리에틸렌테레프탈레이트계 수지 입자 |
KR102474387B1 (ko) | 2018-03-29 | 2022-12-05 | 세키스이가세이힝코교가부시키가이샤 | 폴리에틸렌테레프탈레이트계 수지 입자 |
Also Published As
Publication number | Publication date |
---|---|
KR20180132703A (ko) | 2018-12-12 |
JP7027306B2 (ja) | 2022-03-01 |
US20200325283A1 (en) | 2020-10-15 |
JPWO2017171087A1 (ja) | 2019-02-14 |
US11111346B2 (en) | 2021-09-07 |
EP3438169A1 (en) | 2019-02-06 |
CN108884252A (zh) | 2018-11-23 |
EP3438169A4 (en) | 2020-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI531585B (zh) | 樹脂粒子集合體、其製造方法以及其用途 | |
EP2754676B1 (en) | Non-spherical resin particles, manufacturing method thereof, and use thereof | |
JP5439102B2 (ja) | 中空粒子、その製造法及びその用途 | |
JP5844889B2 (ja) | 重合体粒子、その製造方法、及び、その用途 | |
JP2016104869A (ja) | 多孔質樹脂粒子およびその用途 | |
JP5613431B2 (ja) | 表面に凸部を有する樹脂粒子及びその製造方法、それを用いた塗布用組成物、塗布物及び外用剤 | |
Scheid et al. | Single-source magnetic nanorattles by using convenient emulsion polymerization protocols | |
Moughton et al. | Multicompartment Micelles by Aqueous Self-Assembly of μ-A (BC) n Mikto brush Terpolymers | |
WO2017171087A1 (ja) | 金属被覆異形樹脂粒子及びその製造方法、金属被覆異形樹脂粒子の配列膜及びその製造方法、粒子群、並びに粒子配列膜の製造方法 | |
Liu et al. | Patchy templated synthesis of macroporous colloidal hollow spheres and their application as catalytic microreactors | |
JP4489052B2 (ja) | 樹脂粒子凝集体およびその用途 | |
JP3827617B2 (ja) | 樹脂粒子及びその製造方法 | |
WO2013002386A1 (ja) | 異形樹脂粒子、その製造方法、およびその用途 | |
JP3821719B2 (ja) | 樹脂粒子凝集体の製造方法 | |
JP6294204B2 (ja) | 複合粒子、複合粒子の製造方法、及び、その用途 | |
TWI534159B (zh) | 樹脂粒子及其用途 | |
CN103030731B (zh) | 树脂粒子及其用途 | |
JP5651509B2 (ja) | 異形粒子及びその製造法 | |
JP5666487B2 (ja) | 異形樹脂粒子、その製造方法、およびその用途 | |
JP2015193780A (ja) | 合成樹脂粒子集合体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018509709 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20187029856 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017775618 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017775618 Country of ref document: EP Effective date: 20181031 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17775618 Country of ref document: EP Kind code of ref document: A1 |