WO2016084849A1 - ヤヌス微粒子及びその製造方法 - Google Patents

ヤヌス微粒子及びその製造方法 Download PDF

Info

Publication number
WO2016084849A1
WO2016084849A1 PCT/JP2015/083082 JP2015083082W WO2016084849A1 WO 2016084849 A1 WO2016084849 A1 WO 2016084849A1 JP 2015083082 W JP2015083082 W JP 2015083082W WO 2016084849 A1 WO2016084849 A1 WO 2016084849A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
janus
surfactant
solution
common solvent
Prior art date
Application number
PCT/JP2015/083082
Other languages
English (en)
French (fr)
Inventor
村上 正裕
Original Assignee
Cbc株式会社
村上 正裕
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cbc株式会社, 村上 正裕 filed Critical Cbc株式会社
Priority to US15/529,231 priority Critical patent/US20170326073A1/en
Priority to DE112015005320.4T priority patent/DE112015005320T5/de
Priority to JP2016561915A priority patent/JPWO2016084849A1/ja
Publication of WO2016084849A1 publication Critical patent/WO2016084849A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/12Making microcapsules or microballoons by phase separation removing solvent from the wall-forming material solution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/14Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • A61K9/2886Dragees; Coated pills or tablets, e.g. with film or compression coating having two or more different drug-free coatings; Tablets of the type inert core-drug layer-inactive layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5138Organic macromolecular compounds; Dendrimers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • A61K9/5153Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5176Compounds of unknown constitution, e.g. material from plants or animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes

Definitions

  • the present invention relates to irregularly shaped fine particles (Janus fine particles) composed of two or more kinds of different substances and a method for producing the same.
  • Janus fine particles (atypical fine particles), in which one hemisphere is composed of the substance A and the other hemisphere is composed of the substance B different from the substance A, can be applied in various ways.
  • Non-Patent Documents 1 to 4 As application examples of Janus fine particles, for example, substitution of a surfactant (Non-patent document 5), elementary particles of display (Non-patent document 6), magnetic therapy for cancer (Non-patent document 7) and the like have been reported.
  • a method for preparing Janus fine particles a method using a multi-fluid nozzle and a method using phase separation between polymers have been reported (Non-Patent Documents 8 to 10).
  • the promotion of drug absorption in biological membranes has been studied for a long time, and the use of absorption promoters, co-administration of enzyme inhibitors, use of mucoadhesive polymers, etc. have been proposed.
  • the use of fine particles is one of them. It is considered that by releasing the drug near the absorption surface of the biological membrane in the fine particles, the enzymatic degradation of the drug can be suppressed and the amount of drug absorbed in the membrane can be increased.
  • the direction of drug release from the microparticles is not selective and some drugs are released toward the absorption surface, while other drugs are released on the opposite side of the absorption surface. Also, the released drug is subject to degradation until reaching the absorption surface. Takada et al.
  • the present inventors emulsified a solution in which one or more lipids and one or more polymers are dissolved in a common solvent in a liquid containing a surfactant, Next, by removing the common solvent, it was found that Janus fine particles having a particle diameter of 0.01 to 5000 ⁇ m composed of lipid and polymer can be produced, and the present invention has been completed.
  • a lipid comprising a step of emulsifying, in a surfactant-containing liquid, a solution in which one or more lipids and one or more polymers are dissolved in a common solvent; and a step of removing the common solvent;
  • a surfactant aqueous solution is used, and the volume of the surfactant aqueous solution is 0.5 to 10 times the volume of a solution in which one or more lipids and one or more polymers are dissolved in a common solvent.
  • FIG. 1 shows a situation where Janus fine particles including a drug layer are in contact with a biological membrane.
  • FIG. 2 shows the formation of Janus fine particles in Example 1.
  • FIG. 3 shows the formation of Janus fine particles in Example 2.
  • FIG. 4 shows the formation of Janus fine particles in Example 3.
  • FIG. 5 shows the formation of Janus fine particles in Example 4.
  • FIG. 6 shows the formation of Janus fine particles in Example 5.
  • FIG. 7 shows the formation of Janus fine particles in Example 6.
  • FIG. 8 shows the formation of Janus fine particles in Example 7.
  • FIG. 9 shows the formation of Janus fine particles in Example 8.
  • FIG. 10 shows the formation of Janus fine particles in Example 9.
  • FIG. 11 shows the formation of Janus fine particles in Example 10.
  • FIG. 12 shows the formation of Janus fine particles in Example 11.
  • FIG. 11 shows the formation of Janus fine particles in Example 10.
  • FIG. 13 shows the formation of Janus fine particles in Example 12.
  • FIG. 14 shows the formation of Janus fine particles in Example 13.
  • FIG. 15 shows the formation of Janus fine particles in Examples 21-24.
  • FIG. 16 shows the formation of Janus particles in Examples 25 and 26.
  • FIG. 17 shows the formation of Janus fine particles in Examples 27-30.
  • FIG. 18 shows the formation of Janus fine particles in Examples 31-34.
  • FIG. 19 shows the formation of Janus fine particles in Examples 35-38.
  • FIG. 20 shows the formation of Janus fine particles in Examples 39-42.
  • FIG. 21 shows the formation of Janus fine particles in Examples 43-45.
  • FIG. 22 shows the formation of Janus particles in Examples 46 and 47.
  • FIG. 23 shows the formation of Janus fine particles in Example 48.
  • FIG. 24 shows the formation of Janus fine particles in Example 49.
  • FIG. 25 shows the formation of Janus fine particles in Example 50.
  • FIG. 26 shows the formation of Janus fine particles in Example 51.
  • FIG. 27 shows the formation of Janus fine particles in Example 52.
  • FIG. 28 shows a 1 mm scale (1 scale 0.01 mm) when the magnification of the objective lens is ⁇ 4 ⁇ 10 ⁇ 60.
  • Solid in oil (S / O) emulsion and Water in oil (W / O) emulsion are added to the oil phase to form Solid in oil (S / O) emulsion and Water in oil (W / O) emulsion. It was found that solids and water droplets can be localized and drug layers can be formed. Furthermore, it has been found that the distribution of the drug layer in the fine particles can be controlled by the type and amount of the surfactant. According to a preferred embodiment of the present invention, spherical fine particles in which only the hemisphere is melted and absorbed by temperature can be produced.
  • the present invention includes a step of emulsifying, in a surfactant-containing liquid, a solution obtained by dissolving one or more types of lipids and one or more types of polymers in a common solvent, and a step of removing the common solvent.
  • the present invention relates to a method for producing Janus fine particles composed of a polymer and having a particle size of 0.01 to 5000 ⁇ m.
  • one or two or more first surfactants are added to an oil phase and / or a solution in which one or more lipids and one or more polymers are dissolved in a common solvent.
  • a method for producing Janus microparticles having a particle size of 0.01 to 5000 ⁇ m composed of lipid and polymer comprising the steps of preparing a W / O / W emulsion by emulsifying in step and removing the common solvent is provided. .
  • Janus fine particles having a particle size of 0.01 to 5000 ⁇ m composed of the lipid and polymer produced by the production method of the present invention are also within the scope of the present invention.
  • the particle diameter of the Janus fine particles may be 0.01 to 5000 ⁇ m, preferably 0.05 to 500 ⁇ m, and more preferably 0.1 to 100 ⁇ m.
  • the type of lipid used in the present invention is not particularly limited. Specific examples include saturated fatty acids having 14 to 24 carbon atoms (eg, myristic acid, palmitic acid, stearic acid, behenic acid, etc.) or salts thereof (eg, sodium salts) Potassium salts); higher alcohols having 16 to 24 carbon atoms (for example, cetyl alcohol, stearyl alcohol, etc.); monoglycerides, diglycerides or triglycerides of saturated or / and unsaturated fatty acids having 8 to 24 carbon atoms; fats and oils (for example, castor Oil, cottonseed oil, olive oil, soybean oil, rapeseed oil, beef tallow etc.); waxes (eg beeswax, carnauba wax, whale wax etc.); hydrocarbons (eg paraffin, microcrystalline wax etc.); cholesterol; sugar Lipid (eg, sphingolipid, ceramide, etc.); Head (e.g., phosphatidyl
  • the lipid is an ester of fatty acid and glycerin, and fatty acid triglyceride (tri-O-acylglycerin) is particularly preferred. These lipids can be used alone or in combination as appropriate. Further, these lipids include C6-C12 lower lipids (for example, fatty acids such as capric acid and lauric acid and salts thereof, esters, alcohols, glycolipids, phospholipids, etc.) By adding a low melting point lipid such as vegetable oil (for example, soybean oil, olive oil, castor oil, rapeseed oil, etc.), the melting point, consistency, or interfacial tension of the oil phase can be adjusted appropriately.
  • a low melting point lipid such as vegetable oil (for example, soybean oil, olive oil, castor oil, rapeseed oil, etc.)
  • the melting point, consistency, or interfacial tension of the oil phase can be adjusted appropriately.
  • the melting point of the lipid is 28 ° C to 45 ° C, more preferably 30 ° C to 40 ° C, still more preferably 30 to 37 ° C, and particularly preferably 34 to 37 ° C.
  • SUPPCIRE AM PASILLES is a glyceride base containing saturated C8-C18 triglyceride fatty acids, has a melting point of 35.0-36.5 ° C, and a hydroxyl value of 5.
  • the type of polymer used in the present invention is not particularly limited.
  • polyacrylate, polymethacrylate and acrylate-methacrylate copolymer examples include acrylate ammonium methacrylate copolymer (Eudragit® RL100 or RS100, or Eudragit® RL30D or RS30D), ethyl acrylate methyl methacrylate copolymer (Eudragit®). ) NE30D) or methacrylic acid copolymers (Eudragit® L100-55, Eudragit® L30D, Eudragit® E100, Eudragit® EPO), starch polymers, chitosan, etc. can be used .
  • the weight average molecular weight of the polymer is not particularly limited, but is generally about 200 to 50,000,000, preferably about 250 to 10,000,000.
  • a particularly preferable polymer is lactic acid / glycolic acid copolymer, polylactic acid, polyglycolic acid, or Eudragit (registered trademark) RS100.
  • Eudragit (registered trademark) RS100 is a copolymer of ethyl acrylate, methyl methacrylate and a low content of quaternary ammonium group-containing methacrylic acid ester, and the ammonium group exists as a salt.
  • the structure of Eudragit (registered trademark) RS100 is shown below.
  • a solution in which one or more lipids and one or more polymers are dissolved in a common solvent is used.
  • the common solvent is not particularly limited as long as it can dissolve both the lipid and the polymer to be used.
  • methylene chloride, ethyl acetate, hexane, cyclohexane, ethanol, methanol, propanol, acetone, THF, DMF, DMSO , Acetic acid, and mixed solvents thereof can be used.
  • a phase separation is performed with a solution in which one or more lipids and one or more polymers are dissolved in a common solvent.
  • a common solvent for example, water, glycerin, silicone oil, castor oil, soybean oil, olive oil, and the like can be used.
  • the surfactant used in the present invention (also referred to as a first surfactant and a second surfactant) is not particularly limited as long as it can emulsify the above-described polymer and oil solution.
  • As the first surfactant one type of surfactant may be used, or two or more different surfactants may be used in combination, and two or more different surfactants may be used.
  • HLB different surfactants can be used in combination. In particular, in order to obtain a stable emulsified state, two or more surfactants having different HLBs can be added to the oil phase and / or the aqueous phase.
  • the second surfactant one type of surfactant may be used, or two or more different surfactants may be used in combination, or two or more different surfactants may be used.
  • As the agent surfactants having different HLB can be used in combination.
  • Anionic surfactants include soap (fatty acid sodium) RCOO - Na + , monoalkyl sulfate ROSO 3 - M + , alkyl polyoxyethylene sulfate RO (CH 2 CH 2 O) m SO 3 - M + , alkyl benzene sulfone
  • the acid salt RR′CH 2 CHC 6 H 4 SO 3 ⁇ M + , the monoalkyl phosphate ROPO (OH) O ⁇ M + and the like can be mentioned.
  • the cationic surfactants include alkyl trimethyl ammonium salts RN + (CH 3) 3 X -, dialkyl dimethyl ammonium salts RR'N + (CH 3) 2 X -, alkyl benzyl dimethyl ammonium salts RN + (CH 2 Ph) ( CH 3 ) 2 X- and the like.
  • amphoteric surfactants include alkyldimethylamine oxide R (CH 3 ) 2 NO, alkyl carboxybetaine R (CH 3 ) 2 N + CH 2 COO 2-, and the like.
  • Nonionic surfactants include polyoxyethylene alkyl ether RO (CH 2 CH 2 O) m H, fatty acid sorbitan ester, alkyl polyglucoside, fatty acid diethanolamide RCON (CH 2 CH 2 OH) 2 or alkyl monoglyceryl ether ROCH 2 CH (OH) CH 2 OH, polyvinyl alcohol and the like.
  • a nonionic surfactant is particularly preferable, and polyvinyl alcohol is more preferable.
  • the volume of the aqueous surfactant solution is preferably 0.5 to 10 times, more preferably 1 to 10 times the volume of a solution in which lipid and polymer are dissolved in a common solvent.
  • the formulation additive and the drug can be contained in a solution in which one or more lipids and one or more polymers are dissolved in a common solvent, or in the first aqueous surfactant solution.
  • Drugs include peptides, proteins, nucleic acids (DNA, DNA decoys, DNA plasmids, aptamers, RNA, SsiRNA, tRNA, miRNA, and heteroduplex nucleic acids of DNA and RNA) or nucleic acid derivatives (DNA and RNA and their Including derivative chimeric compounds), and peptide nucleic acids.
  • peptides, proteins, nucleic acids or nucleic acid derivatives include, for example, growth hormone releasing factor, growth factor, epidermal growth factor (EGF), nerve growth factor (NGF), TGF, PDGF, insulin growth factor (IGF), fibroblast Cell growth factor (aFGF, bFGF, etc.), somatostatin, calcitonin, insulin, vasopressin, interferon, IL-2, urokinase, cerathiopeptidase, superoxide dismutase (SOD), thyrotropin, release hormone (TRH), luteinizing hormone release Factor (LH-RH), corticotropin-releasing hormone (CRF), growth hormone-releasing hormone (GHRH), oxytocin, erythropotin (EPO), colony stimulating factor (CSF), etc.
  • Peptide vaccines obtained from antigens can also be used as drugs.
  • the nucleic acid derivative is a molecule obtained by modifying ribonucleotide, deoxyribonucleotide, RNA or DNA, and may be a naturally occurring molecule or a non-natural molecule.
  • nucleic acid derivative is a molecule obtained by adding another chemical substance to a nucleic acid.
  • a 5′-polyamine addition derivative a cholesterol addition derivative, a steroid addition derivative, a bile acid addition derivative, a vitamin addition derivative, Cy5 Examples include addition derivatives, Cy3 addition derivatives, 6-FAM addition derivatives, biotin addition derivatives, and the like.
  • nucleic acid derivative for example, as a modified sugar, 2′-O-propylribose, 2′-methoxyethoxyribose, 2′-O-methylribose, 2′-O-methoxyethylribose, Examples thereof include oligonucleotide derivatives substituted with 2′-O- [2- (guanidinium) ethyl] ribose or 2′-O-fluororibose.
  • the modified phosphate group includes an oligonucleotide derivative in which a phosphate diester bond in an oligonucleotide is converted to a phosphorothioate bond, and a phosphate diester bond in an oligonucleotide is N3′-P5 ′ phosphoramidate. Examples thereof include oligonucleotide derivatives converted to date bonds.
  • the time for removing the common solvent is not particularly limited as long as desired Janus fine particles can be produced, but it is preferable to remove the common solvent over 30 minutes.
  • the time for removing the common solvent is more preferably 30 minutes to 6 hours, and further preferably 1 to 4 hours.
  • Janus fine particles having a particle size of 0.01 to 5000 ⁇ m which are produced by the above-described method of the present invention and are composed of lipid and polymer, are also within the scope of the present invention.
  • a mucolytic agent for example, a drug and a preparation additive
  • a solution in which one or more lipids and one or more polymers are dissolved in a common solvent or in a first aqueous surfactant solution in which one or more lipids and one or more polymers are dissolved in a common solvent or in a first aqueous surfactant solution.
  • junction modifiers such as mixtures of bile salts, bile salts, chelating agents, glycolipids including alkyl saccharides, Azone (registered trademark), transcutol (registered trademark), cyclodextrins, claudin binders and derivatives thereof Etc.), buffering agents (eg phosphate buffer, citrate buffer, carbonate buffer etc.), degrading enzyme inhibition (For example, aprotinin, bacitracin, camostat, citric acid, tartaric acid, sodium edetate, sodium glycocholate, SUPERase ⁇ In (registered trademark), RNasin (registered trademark), etc.), specific gravity regulator (for
  • the Janus fine particles of the present invention described above can be used as, for example, a Janus type drug-carrying fine particle preparation containing a hydrophobic permeation accelerator and a water-soluble drug.
  • the following examples further illustrate the present invention, but the present invention is not limited to the examples.
  • Example 1 Lactic acid / glycolic acid copolymer (Wako Pure Chemicals LGA5020) 50 mg, polylactic acid (Wako Pure Chemicals LA0020) 100 mg, and SUPPCIRE AM PASILLES (GATTEFOSSE) 100 mg in 1 mL of methylene chloride were mixed with 0.5% polyvinyl alcohol ( The mixture was emulsified in 5 mL of Kuraray Kuraray Poval 220C) at 5000 rpm for 3 minutes using a homogenizer (IKA Ultra Talux T18).
  • FIG. 2 shows the change in form over time.
  • the droplets were phase-separated, the droplets were united, and after 3 hours, Janus fine particles were formed. After 4 hours, some of the two hemispheres were dissociated. According to observation with an optical microscope, the particle diameter of the Janus fine particles was 1 to 100 ⁇ m.
  • Example 2 Lactic acid / glycolic acid copolymer (Wako Pure Chemicals LGA5020) 100 mg and SUPPCIRE AM PASILLES (GATTEFOSSE) 100 mg dissolved in 1 mL methylene chloride in 0.5% polyvinyl alcohol (Kuraray Kuraray Poval 220C) 5 mL homogenizer (IKA Ultra Talux T18) was used for emulsification at 5000 rpm for 3 minutes. After emulsification, the solvent was distilled off by stirring with a stirrer. After 3 hours, the sample was sampled and observed with an optical microscope. Fine particles in which a boundary line was recognized between the hemispheres were observed (FIG. 3). According to observation with an optical microscope, the particle diameter of the Janus fine particles was 1 to 100 ⁇ m.
  • Example 3 Lactic acid / glycolic acid copolymer (Wako Pure Chemicals LGA5020) 100 mg and SUPPCIRE AM PASILLES (GATTEFOSSE) 150 mg dissolved in 1 mL of methylene chloride in 5 mL of 0.5% polyvinyl alcohol (Kuraray Kuraray Poval 220C) homogenizer (IKA Ultra Talux T18) was used for emulsification at 5000 rpm for 3 minutes. After emulsification, the solvent was distilled off by stirring with a stirrer. After 3 hours, the sample was sampled and observed with an optical microscope. Fine particles classified into three or more sites were observed (FIG. 4). According to observation with an optical microscope, the particle diameter of the Janus fine particles was 1 to 100 ⁇ m.
  • Lactic acid / glycolic acid copolymer (Wako Pure Chemicals LGA5020) 100 mg and SUPPCIRE AM PASILLES (GATTEFOSSE) 100 mg dissolved in 3 mL of ethyl acetate in 5% 0.5% polyvinyl alcohol (Kuraray Kuraray Poval 220C) homogenizer (IKA Ultra Talux T18) was used for emulsification at 5000 rpm for 3 minutes. After emulsification, the solvent was distilled off by stirring with a stirrer. After 3 hours, the sample was sampled and observed with an optical microscope. In almost all the fine particles, fine particles composed of two sites were observed (FIG. 5).
  • the solvent remaining in the fine particles was rapidly extracted by stirring and stirring in 200 mL of purified water for 30 minutes.
  • the obtained dispersion was filtered under reduced pressure using a 20 ⁇ m wire mesh filter, whereby fine particles were taken out and freeze-dried. According to observation with an optical microscope, the particle diameter of the Janus fine particles was 1 to 100 ⁇ m.
  • Example 5 A solution prepared by dissolving 100 mg of EudragitRS100 and 100 mg of SUPPCIRE AM PASILLES (GATTEFOSSE) in 1 mL of methylene chloride was added to 5 mL of 0.5% polyvinyl alcohol (Kuraray Kura Lepoval 220C) using a homogenizer (IKA Ultra Talux T18). Emulsified at 5000 rpm for 3 minutes. After emulsification, the solvent was distilled off by stirring with a stirrer. After 3 hours, the sample was sampled and observed with an optical microscope. Liquid droplets biased near the surface were observed inside the fine particles (FIG. 6). According to observation with an optical microscope, the particle diameter of the Janus fine particles was 1 to 100 ⁇ m.
  • Example 6 Chitosan (Wako Pure Chemicals Chitosan 100) is dispersed in a solution of 100 mg of lactic acid / glycolic acid copolymer (Wako Pure Chemicals LGA5020) and 100 mg of SUPPCIRE AM PASILLES (GATTEFOSSE) in 1 mL of methylene chloride, and 0.5% polyvinyl alcohol ( The mixture was emulsified in 5 mL of Kuraray Kuraray Poval 220C) at 5000 rpm for 3 minutes using a homogenizer (IKA Ultra Talux T18). After emulsification, the solvent was distilled off by stirring with a stirrer. After 3 hours, the sample was sampled and observed with an optical microscope. Fine particles in which partially swollen chitosan was distributed were obtained (FIG. 7). According to observation with an optical microscope, the particle diameter of the Janus fine particles was 1 to 100 ⁇ m.
  • Example 7 Homogenizer (IKA Ultra Thalax) 0.1% albumin (Sigma-Aldrich from chickenegg) in a solution of 100 mg of lactic acid / glycolic acid copolymer (Wako Pure Chemicals LGA5020) and 100 mg of SUPPCIRE AM PASILLES (GATTEFOSSE) in 1 mL of methylene chloride In T18), a W / O emulsion was prepared by emulsifying at 20,000 rpm for 1 minute.
  • IKA Ultra Thalax 0.1% albumin (Sigma-Aldrich from chickenegg) in a solution of 100 mg of lactic acid / glycolic acid copolymer (Wako Pure Chemicals LGA5020) and 100 mg of SUPPCIRE AM PASILLES (GATTEFOSSE) in 1 mL of methylene chloride In T18)
  • GATTEFOSSE SUPPCIRE AM PASILLES
  • the prepared W / O emulsion was emulsified in 5 mL of 0.5% polyvinyl alcohol (Kuraray Kura Lepoval 220C) using a homogenizer (IKA Ultra Turrax T18) at 5000 rpm for 3 minutes to prepare a W / O / W emulsion. .
  • the solvent was distilled off by stirring with a stirrer, and after 3 hours, the sample was sampled and observed with an optical microscope.
  • a form in which water droplets were distributed in one hemisphere could be observed (FIG. 8).
  • the particle diameter of the Janus fine particles was 1 to 100 ⁇ m. The mixture was allowed to stand for 30 minutes, the supernatant was removed, washed with water, and lyophilized.
  • Example 8 Lactic acid / glycolic acid copolymer (Wako Pure Chemicals LGA5020) 100 mg, SUPPCIRE AM PASILLES (GATTEFOSSE) 100 mg, and 1% HCO60 in a solution of 20 mg of glyceryl stearate in 1 mL of methylene chloride (IKA Ultra Tarrax) In T18), a W / O emulsion was prepared by emulsifying at 20,000 rpm for 30 seconds.
  • the prepared W / O emulsion was emulsified in 5 mL of 0.5% polyvinyl alcohol (Kuraray Kura Lepoval 220C) using a homogenizer (IKA Ultra Turrax T18) at 5000 rpm for 3 minutes to prepare a W / O / W emulsion. .
  • the solvent was distilled off by stirring with a stirrer, and after 2 hours, the sample was sampled and observed with an optical microscope.
  • the particle diameter of the Janus fine particles was 1 to 100 ⁇ m.
  • Example 9 Lactic acid / glycolic acid copolymer (Wako Pure Chemicals LGA5020) 100 mg and SUPPCIRE AM PASILLES (GATTEFOSSE) 100 mg in a solution of 1% methylene chloride dissolved in 1% HCO60 with a homogenizer (IKA Ultra Tarrax T18)
  • a W / O emulsion was prepared by emulsification at 20,000 rpm for 30 seconds.
  • the prepared W / O emulsion was emulsified in 5 mL of 0.5% polyvinyl alcohol (Kuraray Kura Lepoval 220C) using a homogenizer (IKA Ultra Turrax T18) at 5000 rpm for 3 minutes to prepare a W / O / W emulsion. .
  • the solvent was distilled off by stirring with a stirrer, and after 2 hours, the sample was sampled and observed with an optical microscope.
  • the particle diameter of the Janus fine particles was 1 to 100 ⁇ m.
  • Example 10 According to the production method of Example 1, the Janus microparticles containing oil red as a hydrophobic drug model were prepared to confirm the identification of the hydrophobic region. As shown in FIG. 11, the oil red was estimated to be a lipid layer. It was proved that the prepared fine particles were Janus type fine particles composed of two regions having different properties. The prepared Janus type fine particle formulation showed a tendency to gather in contact with the hydrophobic region surfaces where oil red was distributed inward, but on the other hand, the shape of the Janus type fine particles was maintained even if left standing overnight. It became clear that redispersion was possible. According to observation with an optical microscope, the particle diameter of the Janus fine particles was 1 to 100 ⁇ m.
  • Example 11 Lactic acid / glycolic acid copolymer (Wako Pure Chemicals LGA5020) 100 mg and SUPPCIRE AM PASILLES (GATTEFOSSE) 100 mg dissolved in 1 mL of methylene chloride in a solution containing 0.05% vitamin B12 (ALEXIS BIOCHEMICALS) Optical pure drug Chitosan 100) -0.5% acetic acid aqueous solution 250 ⁇ L was emulsified with a homogenizer (IKA Ultra Tarrax T18) at 20,000 rpm for 30 seconds to prepare a W / O emulsion.
  • a homogenizer IKA Ultra Tarrax T18
  • the prepared W / O emulsion was emulsified in 5 mL of 0.5% polyvinyl alcohol (Kuraray Kura Lepoval 220C) using a homogenizer (IKA Ultra Turrax T18) at 5000 rpm for 3 minutes to prepare a W / O / W emulsion. .
  • the solvent was distilled off by stirring with a stirrer, and after 30 minutes, the sample was sampled and observed with an optical microscope.
  • the particle diameter of the Janus fine particles was 1 to 100 ⁇ m.
  • Example 12 Lactic acid / glycolic acid copolymer (Wako Pure Chemicals LGA5020) 100 mg, SUPPCIRE AM PASILLES (GATTEFOSSE) 100 mg and monostearate glycerin (Wako Pure Chemicals) 20 mg in a solution of 0.05% vitamin B12 ( A W / O emulsion was prepared by emulsifying 250 ⁇ L of 0.05% chitosan (Wako Pure Chemicals Chitosan 100) -0.5% acetic acid aqueous solution containing ALEXIS BIOCHEMICALS) at 20,000 rpm for 30 seconds with a homogenizer (IKA Ultra Tarax T18).
  • a W / O emulsion was prepared by emulsifying 250 ⁇ L of 0.05% chitosan (Wako Pure Chemicals Chitosan 100) -0.5% acetic acid aqueous solution containing ALEXIS BIOCHEMICALS) at 20,000 rpm for 30 seconds with a homogenizer (I
  • the prepared W / O emulsion was emulsified in 5 mL of 0.5% polyvinyl alcohol (Kuraray Kura Lepoval 220C) using a homogenizer (IKA Ultra Turrax T18) at 5000 rpm for 3 minutes to prepare a W / O / W emulsion. .
  • the solvent was distilled off by stirring with a stirrer, and after 30 minutes, the sample was sampled and observed with an optical microscope.
  • the particle diameter of the Janus fine particles was 1 to 100 ⁇ m.
  • Example 13 Chitosan (Wako Pure Chemicals Chitosan 100) 1.0g was melt
  • the prepared chitosan solution is spray-dried under the conditions of Inlet temperature 120 ° C, drying air 0.55m 2 / min, Pump 0.5 scale, atomizing air 0.15Mpa with a spray dryer (PulvisGB22 Yamato Kagaku). Prepared (particle diameter 0.5-1 ⁇ m according to electron microscope observation).
  • the prepared S / O emulsion was emulsified in 5 mL of 0.5% polyvinyl alcohol (Kuraray Kura Lepoval 220C) using a homogenizer (IKA Ultra Turrax T18) at 5000 rpm for 3 minutes to prepare an S / O / W emulsion. .
  • Observation with an optical microscope revealed the following (FIG. 14). 1. 2. Fine particles with boundary lines between hemispheres were observed, 2. Only one hemisphere was stained with Oil Red O, 3. Chitosan fine particles were distributed in the unstained hemisphere. According to observation with an optical microscope, the particle diameter of the Janus fine particles was 1 to 100 ⁇ m.
  • Examples 21 to 50 (Examples using various lipids) A solution prepared by dissolving 150 mg of lactic acid / glycolic acid copolymer (Wako Pure Chemical Industries LGA5020) and 150 mg of the lipid described in Table 1 in 2 mL of methylene chloride in 5 mL of 0.5% polyvinyl alcohol (Kuraray Kuraray Poval 220C) The mixture was emulsified using a homogenizer (ULTRA-TURRAX (registered trademark) T25digital IKA (registered trademark) Model: T25DS1) at 5000 rpm for 3 minutes.
  • ULTRA-TURRAX registered trademark
  • T25digital IKA registered trademark
  • the solvent was distilled off by stirring with a stirrer, and after a predetermined time shown in Table 1 below, the sample was sampled and observed with an optical microscope. Fine particles with a boundary line between the hemispheres were observed (FIGS. 15 to 25). According to observation with an optical microscope, the Janus fine particles of Examples 21 to 50 had a particle size of 1 to 100 ⁇ m.
  • Example 51 Polylactic acid (Wako Pure Chemicals PLA0020) 150 mg and SUPPOCIRE AM PELLETS (Hydroxyl value 5 mg KOH / g Melting point 35.0-36.5 ° C) (GATTEFOSSE) 150 mg dissolved in 2 mL of methylene chloride was added to 0.5% polyvinyl alcohol (Kuraray Kuraray).
  • the emulsion was emulsified in 5 mL of POVAL 220C using a homogenizer (ULTRA-TURRAX (registered trademark) T25digital IKA (registered trademark) Model: T25DS1) at 5000 rpm for 3 minutes. After emulsification, the solvent was distilled off by stirring with a stirrer. After 1 hour, the sample was sampled and observed with an optical microscope. Fine particles with a boundary line between the hemispheres were observed (FIG. 26). According to observation with an optical microscope, the particle diameter of the Janus fine particles was 1 to 100 ⁇ m.
  • Example 52 Polylactic acid (Wako Pure Chemicals PLA0020) 75 mg, lactic acid / glycolic acid copolymer (Wako Pure Chemicals LGA5020) 75 mg and SUPPOCIRE AM PELLETS (Hydroxyl value 5 mg KOH / g Melting point 35.0-36.5 °C) (GATTEFOSSE) 150 mg in 2 mL of methylene chloride Emulsified solution dissolved in 5% in 5% 0.5% polyvinyl alcohol (Kuraray Kuraray Poval 220C) using a homogenizer (ULTRA-TURRAX (registered trademark) T25digital IKA (registered trademark) Model: T25DS1) for 3 minutes did.
  • SUPPOCIRE AM PELLETS Hydroxyl value 5 mg KOH / g Melting point 35.0-36.5 °C
  • GATTEFOSSE SUPPOCIRE AM PELLETS 150 mg in 2 mL of methylene chloride
  • the solvent was distilled off by stirring with a stirrer. After 1 hour, the sample was sampled and observed with an optical microscope. Fine particles with a boundary line between the hemispheres were observed (FIG. 27). According to observation with an optical microscope, the particle diameter of the Janus fine particles was 1 to 100 ⁇ m.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Botany (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

 本発明の課題は、簡単な方法で薬物を封入することができるヤヌス微粒子及びその製造方法を提供することである。本発明によれば、1種以上の脂質および1種以上の高分子を共通溶媒中に溶解した溶液を、界面活性剤水溶液中において乳化する工程、及び前記共通溶媒を除去する工程を含む、脂質と高分子から構成される粒子径0.01~5000μmのヤヌス微粒子の製造方法が提供される。

Description

ヤヌス微粒子及びその製造方法
 本発明は、2種類以上の異なる物質から構成される異形微粒子(ヤヌス微粒子)及びその製造方法に関する。
 一方の半球が物質Aから構成され、もう一方の半球が物質Aとは異なる物質Bから構成されるヤヌス微粒子(異形微粒子)は、多彩な応用が可能であることから、近年、急速に注目が高まっている(非特許文献1から4)。ヤヌス微粒子の応用例としては、例えば、界面活性剤の代替(非特許文献5)、ディスプレーの素粒子(非特許文献6)、癌の磁気治療(非特許文献7)などが報告されている。ヤヌス微粒子の調製法として、多流体ノズルを用いた方法やポリマー間の相分離を利用した方法が報告されている(非特許文献8から10)。
Perec V et al., Science 315,1393 (2007) Chen Q et al., Science 331, 199 (2011) Reynwaw BJ et al., Nature 447, 461 (2007) Sacanna S et al., Nature 464, 575 (2010) Ruhland T et al., Langmuir 27, 9807 (2011) Yin SN et al., Adv.Matter. 23, 2915 (2011) Hu SH et al.,J.Am.Chem.Soc. 132, 7234 (2010) Takasi Nisisako et al., Adv.Mater. 2006, 18, 1152-1156 Zhihong Nie et al., J.Am.Chem.SOC. 2006, 128, 9408-9412 Chariya . Kaewsaneha et al., ACS Appl. Mater. Interfaces, 2013, 5 (6), 1857-1869
 生体膜における薬物の吸収促進は、古くより検討されており、吸収促進剤の利用、酵素阻害剤の共投与、粘膜付着ポリマーの利用などが提唱されている。微粒子の利用についても、その中の一つの技術である。微粒子において、生体膜の吸収面近くで薬物を放出させることにより、薬物の酵素分解を抑え、膜吸収される薬物量を増大させることができると考えられている。しかしながら、微粒子からの薬物放出の方向性には選択性がなく、吸収面に向かって放出される薬物もあるが、吸収面の反対側に放出される薬物もある。また、放出された薬物は、吸収面に至るまでの間、分解にさらされる。高田らは、球面からの薬物放出を抑えて平面からの薬物放出に限定した半球製剤を提唱している。薬物放出面の平面部分を生体膜の吸収面に付着させる一方、球面は、生体膜の反対側への薬物放出を抑えると同時に酵素に対するバリアとなって、薬物の生体膜への吸収を効率的に行っている。しかしながら、微細な半球製剤を製造するのは技術的な困難を伴う。
 本発明は、簡単な方法で薬物を封入することができるヤヌス微粒子及びその製造方法を提供することを解決すべき課題とする。
 本発明者らは上記課題を解決するために鋭意検討した結果、1種以上の脂質および1種以上の高分子を共通溶媒中に溶解した溶液を、界面活性剤を含有する液体において乳化し、次いで前記共通溶媒を除去することによって、脂質と高分子から構成される粒子径0.01~5000μmのヤヌス微粒子を製造できること見出し、本発明を完成するに至った。
 即ち、本発明によれば以下の発明が提供される。
(1) 1種以上の脂質および1種以上の高分子を共通溶媒中に溶解した溶液を、界面活性剤含有の液体中において乳化する工程、及び前記共通溶媒を除去する工程を含む、脂質と高分子から構成される粒子径0.01~5000μmのヤヌス微粒子の製造方法。
(2) 1種以上の脂質および1種以上の高分子を共通溶媒中に溶解した溶液に対して、1種又は2種以上の第一の界面活性剤を、油相及び/又は水相に、溶解または懸濁した後、乳化してW/Oエマルションを調製する工程、上記で得られたW/Oエマルションを、1種又は2種以上の第二の界面活性剤水溶液中において乳化することによりW/O/Wエマルションを調製する工程、及び前記共通溶媒を除去する工程を含む、脂質と高分子から構成される粒子径0.01~5000μmのヤヌス微粒子の製造方法。
(3) ヤヌス微粒子内における内水相の分布を制御するための、(1)又は(2)に記載の方法。 
(4) 1種以上の脂質および1種以上の高分子を共通溶媒中に溶解した溶液が、薬物を含む、(1)又は(2)に記載の方法。
(5) 第一の界面活性剤として界面活性剤水溶液を使用し、第一の界面活性剤水溶液中が、薬物を含む、(2)に記載の方法。
(6) 1種以上の脂質および1種以上の高分子を共通溶媒中に溶解した溶液に、薬物微粒子または1種類以上の添加物と薬物とを複合化した微粒子を分散してS/Oエマルションを調製する工程、上記で得られたS/Oエマルションを、界面活性剤水溶液中において乳化することによりS/O/Wエマルションを調製する工程、及び前記共通溶媒を除去する工程を含む、脂質と高分子から構成される粒子径0.01~5000μmのヤヌス微粒子の製造方法。 
(7) 薬物がペプチド、タンパク質、核酸又は核酸誘導体である、(4)から(6)の何れかに記載の方法。
(8) 界面活性剤水溶液を使用し、界面活性剤水溶液の容量が、1種以上の脂質および1種以上の高分子を共通溶媒中に溶解した溶液の容量の0.5~10倍である、(1)から(7)の何れか記載の方法。
(9) 脂質の融点が30℃~45℃である、(1)から(8)の何れかに記載の方法。
(10) 脂質が、飽和C8-C18トリグリセリド脂肪酸を含むグリセリド塩基である、(1)から(9)の何れかに記載の方法。
(11) 高分子が、乳酸・グリコール酸コポリマー、ポリ乳酸、ポリグリコール酸、又はEudragit(登録商標)RS100である、(1)から(10)の何れかに記載の方法。
(12) 界面活性剤が、非イオン界面活性剤である、(1)から(11)の何れかに記載の方法。
(13) 界面活性剤が、ポリビニルアルコールである、(1)から(12)の何れかに記載の方法。
(14) 30分間以上かけて共通溶媒を除去する、(1)から(13)の何れかに記載の方法。
(15) (1)から(14)の何れかに記載の方法により製造される、脂質と高分子から構成される粒子径0.01~5000μmのヤヌス微粒子。
 本発明のヤヌス微粒子及びその製造方法によれば、薬物を効率よく生体膜に吸収促進させるための製剤を提供できる。
図1は、薬物層を含むヤヌス微粒子が生体膜に接触する状況を示す。 図2は、実施例1におけるヤヌス微粒子の形成を示す。 図3は、実施例2におけるヤヌス微粒子の形成を示す。 図4は、実施例3におけるヤヌス微粒子の形成を示す。 図5は、実施例4におけるヤヌス微粒子の形成を示す。 図6は、実施例5におけるヤヌス微粒子の形成を示す。 図7は、実施例6におけるヤヌス微粒子の形成を示す。 図8は、実施例7におけるヤヌス微粒子の形成を示す。 図9は、実施例8におけるヤヌス微粒子の形成を示す。 図10は、実施例9におけるヤヌス微粒子の形成を示す。 図11は、実施例10におけるヤヌス微粒子の形成を示す。 図12は、実施例11におけるヤヌス微粒子の形成を示す。 図13は、実施例12におけるヤヌス微粒子の形成を示す。 図14は、実施例13におけるヤヌス微粒子の形成を示す。 図15は、実施例21~24におけるヤヌス微粒子の形成を示す。 図16は、実施例25及び26におけるヤヌス微粒子の形成を示す。 図17は、実施例27~30におけるヤヌス微粒子の形成を示す。 図18は、実施例31~34におけるヤヌス微粒子の形成を示す。 図19は、実施例35~38におけるヤヌス微粒子の形成を示す。 図20は、実施例39~42におけるヤヌス微粒子の形成を示す。 図21は、実施例43~45におけるヤヌス微粒子の形成を示す。 図22は、実施例46及び47におけるヤヌス微粒子の形成を示す。 図23は、実施例48におけるヤヌス微粒子の形成を示す。 図24は、実施例49におけるヤヌス微粒子の形成を示す。 図25は、実施例50におけるヤヌス微粒子の形成を示す。 図26は、実施例51におけるヤヌス微粒子の形成を示す。 図27は、実施例52におけるヤヌス微粒子の形成を示す。 図28は、対物レンズの倍率が×4×10×60の時の1mmスケール(1目盛り0.01mm)を示す。
 以下、本発明について更に詳細に説明する。
 本発明者らは、ヤヌス微粒子の特徴を利用して、一方の半球は生体膜の反対側への薬物放出を抑えると同時に酵素に対するバリアとし、もう一方の半球は体温近くの温度で融解し、生体膜に接触すると吸収されるようにすることで、図1に示すシステムを考案した。本発明者らは創意検討の結果、ポリマーと脂質を適切な溶媒に溶解して油相を製造し、少量の水相に乳化し、徐々に液中乾燥して、その時間を制御することにより、目的の微粒子を製造できることを見出した。さらに、油相に、界面活性剤、不溶性の固体や水滴を加えて、Solid in oil(S/O) エマルションやWater in oil(W/O)エマルションを形成させ、水相に乳化させると、微粒子に固体や水滴を局在化させることができ、薬物層を形成できることを見出した。さらに、界面活性剤の種類と量により、微粒子中の薬物層の分布を制御できることを見出した。本発明の好ましい態様によれば、半球のみが温度により融解し吸収される球形微粒子を製造することができる。
 本発明は、1種以上の脂質および1種以上の高分子を共通溶媒中に溶解した溶液を、界面活性剤含有の液体において乳化する工程、及び前記共通溶媒を除去する工程を含む、脂質と高分子から構成される粒子径0.01~5000μmのヤヌス微粒子の製造方法に関するものである。さらに本発明によれば、1種以上の脂質および1種以上の高分子を共通溶媒中に溶解した溶液に対して、1種又は2種以上の第一の界面活性剤を、油相及び/又は水相に、溶解または懸濁した後、乳化してW/Oエマルションを調製する工程、上記で得られたW/Oエマルションを、1種又は2種以上の第二の界面活性剤水溶液中において乳化することによりW/O/Wエマルションを調製する工程、及び前記共通溶媒を除去する工程を含む、脂質と高分子から構成される粒子径0.01~5000μmのヤヌス微粒子の製造方法が提供される。上記し本発明の製造方法により製造される脂質と高分子から構成される粒子径0.01~5000μmのヤヌス微粒子も本発明の範囲内である。
 ヤヌス微粒子の粒子径は0.01~5000μmであればよいが、好ましくは0.05~500μmであり、より好ましくは0.1~100μmである。
 本発明で用いる脂質の種類は特に限定されないが、具体例としては、炭素数14~24の飽和脂肪酸(例えば、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸など)又はその塩(例えば、ナトリウム塩、カリウム塩);炭素数16~24の高級アルコール(例えば、セチルアルコール、ステアリルアルコールなど);炭素数8~24の飽和あるいは/および不飽和脂肪酸のモノグリセリド、ジグリセリド又はトリグリセリド;油脂類(例えば、ヒマシ油、綿実油、オリーブ油、大豆油、菜種油、牛脂などの硬化油);ロウ類(例えば、蜜ロウ、カルナバロウ、鯨ロウなど);炭化水素類(例えば、パラフィン、マイクロクリスタリンワックスなど);コレステロール;糖脂質(例えば、スフィンゴ脂質、セラミドなど);ホスホリピッド(例えば、ホスファチジルコリン、ホスファチジルエタノールアミン、ホスファチジルセリン、水素添加レシチンなど);疎水性ビタミン類(例えば、ビタミンE、ビタミンA、ビタミンD、ビタミンKなど)が挙げられる。脂質としては、脂肪酸とグリセリンとのエステルであり脂肪酸トリグリセリド(トリ-O-アシルグリセリン)が特に好ましい。これらの脂質を単独で、又は、適当に組み合わせて混合して用いることができる。また、さらに、これらの脂質に、C6-C12の低級の脂質類(例えば、カプリン酸、ラウリン酸などの脂肪酸やその塩類、エステル類、アルコール類、又は、糖脂質類、リン脂質類など)や植物油(例えば、大豆油、オリーブ油、ヒマシ油、菜種油など)などの低融点の脂質を添加することで、油脂相の融点、稠度、又は、界面張力を適切に調節することができる。
 好ましくは脂質の融点は28℃~45℃であり、より好ましくは30℃~40℃であり、さらに好ましくは30~37℃であり、特に好ましくは34~37℃である。
 好ましい脂質の一例としては、SUPPCIRE AM PASILLES (GATTEFOSSE)を挙げることができる。SUPPCIRE AM PASILLESは、飽和C8-C18トリグリセリド脂肪酸を含むグリセリド塩基であり、融点は35.0-36.5℃であり、水酸基価は5である。
 本発明で用いる高分子の種類は特に限定されないが、例えば、ポリ乳酸、ポリグリコール酸、乳酸・グリコール酸コポリマー、オリゴ乳酸、ポリアクリレート、ポリメタクリレート、アクリレート・メタクリレートコポリマー、ポリカプロラクトン、ポリビニルピロリドン(PVP)、セルロース系ポリマー(例えばエチルセルロース、ヒドロキシプロピルメチルセルロース(HPMC)、ヒドロキシプロピルセルロース(HPC)、酢酸フタル酸セルロース、ヒドロキシプロピルメチルセルロースフタレート)などを挙げることができる。ポリアクリレート、ポリメタクリレート及びアクリレート・メタクリレートコポリマーとしては、例えば、アクリレートアンモニウムメタクリレートコポリマー(Eudragit(登録商標)RL100又はRS100、又はEudragit(登録商標)RL30D又はRS30D)、エチルアクリレートメチルメタクリレートコポリマー(Eudragit(登録商標)NE30D)又はメタクリル酸コポリマー(Eudragit(登録商標)L100-55、Eudragit(登録商標)L30D、Eudragit(登録商標)E100、Eudragit(登録商標)EPO)、デンプンポリマー、キトサンなどを使用することができる。
 高分子の重量平均分子量は特に限定されないが、一般的には、200~50,000,000程度であり、好ましくは250 ~10,000,000 程度である。上記の中でも特に好ましい高分子は、乳酸・グリコール酸コポリマー、ポリ乳酸、ポリグリコール酸、又はEudragit(登録商標)RS100である。
 Eudragit(登録商標)RS100は、エチルアクリレートとメチルメタクリレートと低含有量の第4級アンモニウム基含有メタクリル酸エステルとのコポリマーであり、アンモニウム基は塩として存在している。Eudragit(登録商標)RS100の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000001
 本発明においては、1種以上の脂質および1種以上の高分子を共通溶媒中に溶解した溶液を使用する。共通溶媒としては、使用する脂質および高分子の両方を溶解できる溶媒であれば特に限定されないが、例えば、塩化メチレン、酢酸エチル、ヘキサン、シクロヘキサン、エタノール、メタノール、プロパノール、アセトン、THF、DMF、DMSO、酢酸、および、それら溶媒の混合溶媒 などを使用することができる。
1種以上の脂質および1種以上の高分子を共通溶媒中に溶解した溶液を乳化する液体としては、1種以上の脂質および1種以上の高分子を共通溶媒中に溶解した溶液と相分離する液体であれば、特に限定されないが、例えば、水、グリセリン、シリコンオイル、ひまし油、ダイズ油、オリーブ油などを使用できる。
 本発明で使用する界面活性剤(第一の界面活性剤と第二の界面活性剤とも称する)は、上記した高分子と油脂の溶液の乳化を行うことができるものであれば特に限定されず、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、又は非イオン界面活性剤の何れでもよい。
 第一の界面活性剤としては、1種の界面活性剤を使用してもよいし、2種以上の異なる界面活性剤を組み合わせて使用してもよく、2種以上の異なる界面活性剤としては、HLBの異なる界面活性剤を組み合わせて使用することができる。特に、安定な乳化状態を得るためには、HLBの異なる2種以上の界面活性剤を、油相、及び/又は水相に添加することができる。
 同様に、第二の界面活性剤としては、1種の界面活性剤を使用してもよいし、2種以上の異なる界面活性剤を組み合わせて使用してもよく、2種以上の異なる界面活性剤としては、HLBの異なる界面活性剤を組み合わせて使用することができる。
 アニオン界面活性剤としは、石鹸(脂肪酸ナトリウム) RCOO-Na+、モノアルキル硫酸塩ROSO3 -M+、アルキルポリオキシエチレン硫酸塩 RO(CH2CH2O)mSO3 -M+、アルキルベンゼンスルホン酸塩 RR'CH2CHC6H4SO3 -M+、モノアルキルリン酸塩 ROPO(OH)O-M+などを挙げることができる。
 カチオン界面活性剤としては、アルキルトリメチルアンモニウム塩 RN+(CH3)3X-、ジアルキルジメチルアンモニウム塩 RR'N+(CH3)2X-、アルキルベンジルジメチルアンモニウム塩 RN+(CH2Ph)(CH3)2X-などが挙げられる。
 両性界面活性剤としては、アルキルジメチルアミンオキシド R(CH3)2NO、アルキルカルボキシベタイン R(CH3)2N+CH2COO-などが挙げられる。
 非イオン界面活性剤としては、ポリオキシエチレンアルキルエーテル RO(CH2CH2O)mH、脂肪酸ソルビタンエステル、アルキルポリグルコシド、脂肪酸ジエタノールアミド RCON(CH2CH2OH)2又はアルキルモノグリセリルエーテル ROCH2CH(OH)CH2OH、ポリビニルアルコールなどが挙げられる。
 界面活性剤としては、非イオン界面活性剤が特に好ましく、ポリビニルアルコールがさらに好ましい。
 界面活性剤水溶液の容量は、脂質および高分子を共通溶媒中に溶解した溶液の容量の0.5~10倍であることが好ましく、1~10倍であることがより好ましい。
 本発明においては、1種以上の脂質および1種以上の高分子を共通溶媒中に溶解した溶液、または、第一の界面活性剤水溶液中に、製剤添加物と薬物を含めることができる。
 薬物としては、ペプチド、タンパク質、核酸(DNA、DNAデコイ、DNAプラスミド、アプタマー、RNA、SsiRNA、tRNA、miRNA、及び、DNAとRNAのヘテロ二本鎖核酸など)又は核酸誘導体(DNA及びRNA並びにその誘導体のキメラ化合物を含む。)、ペプチド核酸などが例示できる。
 ペプチド、タンパク質、核酸又は核酸誘導体の具体例としては、例えば成長ホルモン放出因子、成長因子、表皮成長因子(EGF)、神経成長因子(NGF)、TGF、PDGF、インシュリン成長因子(IGF)、繊維芽セル成長因子(aFGF、bFGF等)、ソマトスタチン、カルシトニン、インシュリン、バソプレッシン、インターフェロン、IL-2、ウロキナーゼ、セラチオペプチターゼ、スーパーオキシドジスムターゼ(SOD)、チロトロピン、放出ホルモン(TRH)、黄体形成ホルモン放出因子(LH-RH)、コルチコトロピン放出ホルモン(CRF)、成長ホルモン放出ホルモン(GHRH)、オキシトシン、エリトロポチン(EPO)、コロニー刺激因子(CSF)等のタンパク質やそれらの部分より得られるペプチドや、特定の抗原より得られるペプチドワクチンなども薬剤として使用することができる。また、これらのタンパク質やペプチドをコードする核酸又は核酸誘導体を使用することができる。
 核酸誘導体としては、リボヌクレオチド、デオキシリボヌクレオチド、RNAまたはDNAに修飾を施した分子であり、天然に存在する分子でも非天然の分子でもよい。
 核酸誘導体の一例としては、核酸に別の化学物質を付加した分子を挙げることができ、例えば、5’-ポリアミン付加誘導体、コレステロール付加誘導体、ステロイド付加誘導体、胆汁酸付加誘導体、ビタミン付加誘導体、Cy5付加誘導体、Cy3付加誘導体、6-FAM付加誘導体、およびビオチン付加誘導体等をあげることができる。
 核酸誘導体の別の例としては、例えば、糖の修飾体としては、2’-O-プロピルリボース、2’-メトキシエトキシリボース、2’-O-メチルリボース、2’-O-メトキシエチルリボース、2’-O-[2-(グアニジウム)エチル]リボース又は2’-O-フルオロリボースで置換されたオリゴヌクレオチド誘導体などをあげることができる。また、リン酸基の修飾体としては、オリゴヌクレオチド中のリン酸ジエステル結合がホスフォロチオエート結合に変換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のリン酸ジエステル結合がN3’-P5’ホスフォアミデート結合に変換されたオリゴヌクレオチド誘導体等をあげることができる。
 本発明においては、共通溶媒を除去する時間は、所望のヤヌス微粒子を製造できる限り特に限定されないが、30分間以上かけて共通溶媒を除去することが好ましい。共通溶媒を除去する時間は、30分~6時間であることがより好ましく、1~4時間であることがさらに好ましい。
 上記した本発明の方法により製造される、脂質と高分子から構成される粒子径0.01~5000μmのヤヌス微粒子も本発明の範囲内である。
 本発明においては、1種以上の脂質および1種以上の高分子を共通溶媒中に溶解した溶液、または、第一の界面活性剤水溶液中に、薬物及び製剤添加物として、粘液溶解剤(例えば、L-システイン、N-アセチルシステインなど)、透過促進剤あるいは吸収促進剤(例えば、中鎖脂肪酸、長鎖不飽和脂肪酸、これらのモノグリセリド類あるいはこれらのポリエチレングリコールエステル類又はラブラゾールのような両類の混合物、胆汁酸塩、キレート剤、アルキルサッカライドをはじめとする糖脂質類、Azone(登録商標)、トランスキュトール(登録商標)、シクロデキストリン、クラウディン結合剤及びその誘導体などのタイトジャンクション修飾剤など)、緩衝剤(例えば、リン酸緩衝剤、クエン酸緩衝剤、炭酸緩衝剤など)、分解酵素阻害剤(例えば、アプロチニン、バシトラシン、カモスタット、クエン酸、酒石酸、エデト酸ナトリウム、グリココール酸ナトリウム、SUPERase・In(登録商標)、RNasin(登録商標)など)、比重調節剤(例えば、グリセリン、ショ糖、グルコース、アミノ酸、多孔性シリカなど)、酸化防止剤(例えば、アスコルビン酸、ヒドロキシブチルアニソール、トコフェロール、アスコルビン酸、CoQ10、フラーレン、フラーレン誘導体など)、遮光・光吸収剤(酸化チタン、オキシベンゾン及びオクトクリレンなど)等を含めることができる。
 上記した本発明のヤヌス微粒子は、一例としては、疎水性透過促進剤と水溶性薬物を含むヤヌス型薬物担持微粒子製剤として使用することができる。
 以下の実施例により本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。
 以下の実施例において、0.5%ポリビニルアルコール、0.1%アルブミン、1% HCO60はそれぞれの水溶液を用いた。
実施例1
 乳酸・グリコール酸コポリマー(和光純薬LGA5020)50 mg、ポリ乳酸(和光純薬LA0020)100 mgおよびSUPPCIRE AM PASILLES (GATTEFOSSE)100 mgを塩化メチレン1mL中に溶解させた溶液を、0.5%ポリビニルアルコール(クラレクラレポバール220C)5 mL中に、ホモジナイザー(IKAウルトラタラックスT18)を用いて、5000rpm、3分間乳化した。乳化後、スターラーにより撹拌することで溶媒を留去し、経時的にサンプリングして、光学顕微鏡観察した。時間ごとの形態変化を図2に示す。エマルジョン中に、液滴が相分離し、その液滴が合一し、3時間後、ヤヌス微粒子が形成した。4時間後、2つの半球は解離したものも認められた。光学顕微鏡観察によると、ヤヌス微粒子の粒子径は1~100μmであった。
実施例2
 乳酸・グリコール酸コポリマー(和光純薬LGA5020)100 mgおよびSUPPCIRE AM PASILLES (GATTEFOSSE)100 mgを塩化メチレン1mL中に溶解させた溶液を、0.5%ポリビニルアルコール(クラレクラレポバール220C)5 mL中に、ホモジナイザー(IKAウルトラタラックスT18)を用いて、5000rpm、3分間乳化した。乳化後、スターラーにより撹拌することで溶媒を留去し、3時間後、サンプリングして、光学顕微鏡観察した。半球の間に境界線が認められる微粒子が認められた(図3)。光学顕微鏡観察によると、ヤヌス微粒子の粒子径は1~100μmであった。
実施例3
 乳酸・グリコール酸コポリマー(和光純薬LGA5020)100 mgおよびSUPPCIRE AM PASILLES (GATTEFOSSE)150 mgを塩化メチレン1mL中に溶解させた溶液を、0.5%ポリビニルアルコール(クラレクラレポバール220C)5 mL中に、ホモジナイザー(IKAウルトラタラックスT18)を用いて、5000rpm、3分間乳化した。乳化後、スターラーにより撹拌することで溶媒を留去し、3時間後、サンプリングして、光学顕微鏡観察した。3つ以上の部位に区分けされた微粒子が認められた(図4)。光学顕微鏡観察によると、ヤヌス微粒子の粒子径は1~100μmであった。
実施例4
 乳酸・グリコール酸コポリマー(和光純薬LGA5020)100 mgおよびSUPPCIRE AM PASILLES (GATTEFOSSE)100 mgを酢酸エチル3mL中に溶解させた溶液を、0.5%ポリビニルアルコール(クラレクラレポバール220C)5 mL中に、ホモジナイザー(IKAウルトラタラックスT18)を用いて、5000rpm、3分間乳化した。乳化後、スターラーにより撹拌することで溶媒を留去し、3時間後、サンプリングして、光学顕微鏡観察した。ほぼすべての微粒子において、2つの部位からなる微粒子が認められた(図5)。その後、精製水200mL中に30分間撹拌撹拌することで、微粒子中に残存している溶媒を急速に抽出した。得られた分散液より、20μm金網フィルターを用いて、減圧濾過をすることで、微粒子を取出し、凍結乾燥した。光学顕微鏡観察によると、ヤヌス微粒子の粒子径は1~100μmであった。
実施例5
 EudragitRS100100 mgおよびSUPPCIRE AM PASILLES (GATTEFOSSE)100 mgを塩化メチレン1mL中に溶解させた溶液を、0.5%ポリビニルアルコール(クラレクラレポバール220C)5 mL中に、ホモジナイザー(IKAウルトラタラックスT18)を用いて、5000rpm、3分間乳化した。乳化後、スターラーにより撹拌することで溶媒を留去し、3時間後、サンプリングして、光学顕微鏡観察した。微粒子内部に表面近くに偏った液滴が観察された(図6)。光学顕微鏡観察によると、ヤヌス微粒子の粒子径は1~100μmであった。
実施例6
 乳酸・グリコール酸コポリマー(和光純薬LGA5020)100 mgおよびSUPPCIRE AM PASILLES (GATTEFOSSE)100 mgを塩化メチレン1mL中に溶解させた溶液にキトサン(和光純薬キトサン100)を分散させ、0.5%ポリビニルアルコール(クラレクラレポバール220C)5 mL中に、ホモジナイザー(IKAウルトラタラックスT18)を用いて、5000rpm、3分間乳化した。乳化後、スターラーにより撹拌することで溶媒を留去し、3時間後、サンプリングして、光学顕微鏡観察した。一部に膨潤したキトサンが分布した微粒子が得られた(図7)。光学顕微鏡観察によると、ヤヌス微粒子の粒子径は1~100μmであった。
実施例7
 乳酸・グリコール酸コポリマー(和光純薬LGA5020)100 mgおよびSUPPCIRE AM PASILLES (GATTEFOSSE)100 mgを塩化メチレン1mL中に溶解させた溶液に0.1%アルブミン(Sigma-Aldrich from chickenegg)をホモジナイザー(IKAウルトラタラックスT18)にて、20,000rpmで1分間乳化しW/Oエマルションを調製した。調製したW/Oエマルションを0.5%ポリビニルアルコール(クラレクラレポバール220C)5 mL中に、ホモジナイザー(IKAウルトラタラックスT18)を用いて、5000rpm、3分間乳化し、W/O/Wエマルションを調製した。調製後、スターラーにより撹拌することで溶媒を留去し、3時間後、サンプリングして、光学顕微鏡観察した。半球の間に境界線が認められる微粒子が認められたことに加え、水滴が一方の半球に分布した形態が観察できた(図8)。光学顕微鏡観察によると、ヤヌス微粒子の粒子径は1~100μmであった。30分間静置し、上清を取り除き、水洗して、凍結乾燥した。
実施例8
 乳酸・グリコール酸コポリマー(和光純薬LGA5020)100 mg、SUPPCIRE AM PASILLES (GATTEFOSSE)100 mg、および、ステアリン酸グリセリン20mg を塩化メチレン1mL中に溶解させた溶液に1% HCO60をホモジナイザー(IKAウルトラタラックスT18)にて、20,000rpmで30秒間乳化しW/Oエマルションを調製した。調製したW/Oエマルションを0.5%ポリビニルアルコール(クラレクラレポバール220C)5 mL中に、ホモジナイザー(IKAウルトラタラックスT18)を用いて、5000rpm、3分間乳化し、W/O/Wエマルションを調製した。
 調製後、スターラーにより撹拌することで溶媒を留去し、2時間後、サンプリングして、光学顕微鏡観察した。半球の間に境界線が認められる微粒子が認められたことに加え、水滴がその境界線上に分布した形態が観察できた(図9)。光学顕微鏡観察によると、ヤヌス微粒子の粒子径は1~100μmであった。
実施例9
 乳酸・グリコール酸コポリマー(和光純薬LGA5020)100 mg、および、SUPPCIRE AM PASILLES (GATTEFOSSE)100 mgを塩化メチレン1mL中に溶解させた溶液に1% HCO60をホモジナイザー(IKAウルトラタラックスT18)にて、20,000rpmで30秒間乳化しW/Oエマルションを調製した。調製したW/Oエマルションを0.5%ポリビニルアルコール(クラレクラレポバール220C)5 mL中に、ホモジナイザー(IKAウルトラタラックスT18)を用いて、5000rpm、3分間乳化し、W/O/Wエマルションを調製した。調製後、スターラーにより撹拌することで溶媒を留去し、2時間後、サンプリングして、光学顕微鏡観察した。半球の間に境界線が認められる微粒子が認められたことに加え、水滴が一方の半球に分布した形態が観察できた(図10)。光学顕微鏡観察によると、ヤヌス微粒子の粒子径は1~100μmであった。
実施例10
 実施例1の製法に従って、疎水性薬物モデルとしてオイルレッドを含有させたヤヌス微粒子を調製することによって、疎水領域の識別を確認したところ、図11に示すように、オイルレッドは脂質層と推定される領域に局在し、調製した微粒子が性質の異なる二つの領域からなるヤヌス型微粒子であることが実証された。また、調製した本ヤヌス型微粒子製剤は、オイルレッドの分布する疎水領域面同士を内向きに接して集合する傾向を示したが、一方、一晩静置してもヤヌス型微粒子の形状は保たれ、再分散が可能であることが明らかとなった。光学顕微鏡観察によると、ヤヌス微粒子の粒子径は1~100μmであった。
実施例11
 乳酸・グリコール酸コポリマー(和光純薬LGA5020)100 mgおよびSUPPCIRE AM PASILLES (GATTEFOSSE)100 mgを塩化メチレン1mL中に溶解させた溶液に、0.05%ビタミンB12 (ALEXIS BIOCHEMICALS)を含有する0.05%キトサン(和光純薬Chitosan 100)-0.5%酢酸水溶液250μLをホモジナイザー(IKAウルトラタラックスT18)にて、20,000rpmで30秒間乳化しW/Oエマルションを調製した。調製したW/Oエマルションを0.5%ポリビニルアルコール(クラレクラレポバール220C)5 mL中に、ホモジナイザー(IKAウルトラタラックスT18)を用いて、5000rpm、3分間乳化し、W/O/Wエマルションを調製した。調製後、スターラーにより撹拌することで溶媒を留去し、30分後、サンプリングして、光学顕微鏡観察した。半球の間に境界線が認められる微粒子が認められたことに加え、水滴が一方の半球に分布した形態が観察できた(図12)。光学顕微鏡観察によると、ヤヌス微粒子の粒子径は1~100μmであった。
実施例12
 乳酸・グリコール酸コポリマー(和光純薬LGA5020)100 mg、SUPPCIRE AM PASILLES (GATTEFOSSE)100 mgおよびモノステアリン酸グリセリン(和光純薬)20mgを塩化メチレン1mL中に溶解させた溶液に、0.05%ビタミンB12 (ALEXIS BIOCHEMICALS)を含有する0.05%キトサン(和光純薬Chitosan 100)-0.5%酢酸水溶液250μLをホモジナイザー(IKAウルトラタラックスT18)にて、20,000rpmで30秒間乳化しW/Oエマルションを調製した。調製したW/Oエマルションを0.5%ポリビニルアルコール(クラレクラレポバール220C)5 mL中に、ホモジナイザー(IKAウルトラタラックスT18)を用いて、5000rpm、3分間乳化し、W/O/Wエマルションを調製した。調製後、スターラーにより撹拌することで溶媒を留去し、30分後、サンプリングして、光学顕微鏡観察した。半球の間に境界線が認められる微粒子が認められたことに加え、水滴が一方の半球に分布した形態が観察できた(図13)。光学顕微鏡観察によると、ヤヌス微粒子の粒子径は1~100μmであった。
実施例13
 キトサン(和光純薬Chitosan 100)1.0gを0.5%酢酸水溶液500mLに溶解し、精製水4500mLを加えて、キトサン溶液を調製した。調製したキトサン溶液をスプレードライ装置(PulvisGB22      ヤマト科学)にて、Inlet temperature 120℃、drying air 0.55m2/min、Pump0.5目盛、atomizing air0.15Mpaの条件下、スプレードライを行い、キトサン微粒子を調製した(電子顕微鏡観察によると粒子径0.5~1μm)。
 乳酸・グリコール酸コポリマー(和光純薬LGA5020)100 mg、および、SUPPCIRE AM PASILLES (GATTEFOSSE)100 mgを塩化メチレン1mL中に溶解させた溶液に、5%オイルレッドO含有塩化メチレン溶液5滴を加え、キトサン微粒子20mgをバスソニケーターにて、分散し、S/Oエマルションを調製した。調製したS/Oエマルションを0.5%ポリビニルアルコール(クラレクラレポバール220C)5 mL中に、ホモジナイザー(IKAウルトラタラックスT18)を用いて、5000rpm、3分間乳化し、S/O/Wエマルションを調製した。光学顕微鏡観察したところ以下のことが分かった(図14)。1.半球の間に境界線が認められる微粒子が認められた、2.オイルレッドOで1方の半球のみが染色された、3.非染色半球にはキトサン微粒子が分布した。光学顕微鏡観察によると、ヤヌス微粒子の粒子径は1~100μmであった。
実施例21~50(各種脂質を使用した実施例)
 乳酸・グリコール酸コポリマー(和光純薬LGA5020)150 mgおよび下記表1に記載した脂質150 mgを塩化メチレン2mL中に溶解させた溶液を、0.5%ポリビニルアルコール(クラレクラレポバール220C)5 mL中に、ホモジナイザー(ULTRA-TURRAX(登録商標)T25digital IKA(登録商標) Model:T25DS1)を用いて、5000rpm、3分間乳化した。乳化後、スターラーにより撹拌することで溶媒を留去し、下記表1に示す所定の時間後、サンプリングして、光学顕微鏡観察した。半球の間に境界線が認められる微粒子が認められた(図15~図25)。光学顕微鏡観察によると、実施例21~50のヤヌス微粒子の粒子径は1~100μmであった。
実施例51
 ポリ乳酸(和光純薬PLA0020)150 mgおよびSUPPOCIRE AM PELLETS (水酸基価 5mgKOH/g 融点 35.0-36.5℃)(GATTEFOSSE) 150 mgを塩化メチレン2mL中に溶解させた溶液を、0.5%ポリビニルアルコール(クラレクラレポバール220C)5 mL中に、ホモジナイザー(ULTRA-TURRAX(登録商標)T25digital IKA(登録商標)Model:T25DS1)を用いて、5000rpm、3分間乳化した。乳化後、スターラーにより撹拌することで溶媒を留去し、1時間後、サンプリングして、光学顕微鏡観察した。半球の間に境界線が認められる微粒子が認められた(図26)。光学顕微鏡観察によると、ヤヌス微粒子の粒子径は1~100μmであった。
実施例52
 ポリ乳酸(和光純薬PLA0020)75 mgと乳酸・グリコール酸コポリマー(和光純薬LGA5020)75 mgおよびSUPPOCIRE AM PELLETS (水酸基価 5mgKOH/g 融点 35.0-36.5℃) (GATTEFOSSE) 150 mgを塩化メチレン2mL中に溶解させた溶液を、0.5%ポリビニルアルコール(クラレクラレポバール220C)5 mL中に、ホモジナイザー(ULTRA-TURRAX(登録商標)T25digital IKA(登録商標)Model:T25DS1)を用いて、5000rpm、3分間乳化した。乳化後、スターラーにより撹拌することで溶媒を留去し、1時間後、サンプリングして、光学顕微鏡観察した。半球の間に境界線が認められる微粒子が認められた(図27)。光学顕微鏡観察によると、ヤヌス微粒子の粒子径は1~100μmであった。
Figure JPOXMLDOC01-appb-T000002

Claims (15)

  1. 1種以上の脂質および1種以上の高分子を共通溶媒中に溶解した溶液を、界面活性剤含有の液体中において乳化する工程、及び前記共通溶媒を除去する工程を含む、脂質と高分子から構成される粒子径0.01~5000μmのヤヌス微粒子の製造方法。
  2. 1種以上の脂質および1種以上の高分子を共通溶媒中に溶解した溶液に対して、1種又は2種以上の第一の界面活性剤を、油相及び/又は水相に、溶解または懸濁した後、乳化してW/Oエマルションを調製する工程、上記で得られたW/Oエマルションを、1種又は2種以上の第二の界面活性剤水溶液中において乳化することによりW/O/Wエマルションを調製する工程、及び前記共通溶媒を除去する工程を含む、脂質と高分子から構成される粒子径0.01~5000μmのヤヌス微粒子の製造方法。
  3. ヤヌス微粒子内における内水相の分布を制御するための、請求項1又は2に記載の方法。 
  4. 1種以上の脂質および1種以上の高分子を共通溶媒中に溶解した溶液が、薬物を含む、請求項1又は2に記載の方法。
  5. 第一の界面活性剤として界面活性剤水溶液を使用し、第一の界面活性剤水溶液中が、薬物を含む、請求項2に記載の方法。
  6. 1種以上の脂質および1種以上の高分子を共通溶媒中に溶解した溶液に、薬物微粒子または1種類以上の添加物と薬物とを複合化した微粒子を分散してS/Oエマルションを調製する工程、上記で得られたS/Oエマルションを、界面活性剤水溶液中において乳化することによりS/O/Wエマルションを調製する工程、及び前記共通溶媒を除去する工程を含む、脂質と高分子から構成される粒子径0.01~5000μmのヤヌス微粒子の製造方法。 
  7. 薬物がペプチド、タンパク質、核酸又は核酸誘導体である、請求項4から6の何れか一項に記載の方法。
  8. 界面活性剤水溶液を使用し、界面活性剤水溶液の容量が、1種以上の脂質および1種以上の高分子を共通溶媒中に溶解した溶液の容量の0.5~10倍である、請求項1から7の何れか一項に記載の方法。
  9. 脂質の融点が30℃~45℃である、請求項1から8の何れか一項に記載の方法。
  10. 脂質が、飽和C8-C18トリグリセリド脂肪酸を含むグリセリド塩基である、請求項1から9の何れか一項に記載の方法。
  11. 高分子が、乳酸・グリコール酸コポリマー、ポリ乳酸、ポリグリコール酸、又はEudragit(登録商標)RS100である、請求項1から10の何れか一項に記載の方法。
  12. 界面活性剤が、非イオン界面活性剤である、請求項1から11の何れか一項に記載の方法。
  13. 界面活性剤が、ポリビニルアルコールである、請求項1から12の何れか一項に記載の方法。
  14. 30分間以上かけて共通溶媒を除去する、請求項1から13の何れか一項に記載の方法。
  15. 請求項1から14の何れか一項に記載の方法により製造される、脂質と高分子から構成される粒子径0.01~5000μmのヤヌス微粒子。
PCT/JP2015/083082 2014-11-25 2015-11-25 ヤヌス微粒子及びその製造方法 WO2016084849A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/529,231 US20170326073A1 (en) 2014-11-25 2015-11-25 Janus nanoparticle and method for producing the same
DE112015005320.4T DE112015005320T5 (de) 2014-11-25 2015-11-25 Janus Nanopartikel und Verfahren zur Herstellung derselben
JP2016561915A JPWO2016084849A1 (ja) 2014-11-25 2015-11-25 ヤヌス微粒子及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-237362 2014-11-25
JP2014237362 2014-11-25

Publications (1)

Publication Number Publication Date
WO2016084849A1 true WO2016084849A1 (ja) 2016-06-02

Family

ID=56074401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083082 WO2016084849A1 (ja) 2014-11-25 2015-11-25 ヤヌス微粒子及びその製造方法

Country Status (4)

Country Link
US (1) US20170326073A1 (ja)
JP (1) JPWO2016084849A1 (ja)
DE (1) DE112015005320T5 (ja)
WO (1) WO2016084849A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017171087A1 (ja) * 2016-03-31 2017-10-05 積水化成品工業株式会社 金属被覆異形樹脂粒子及びその製造方法、金属被覆異形樹脂粒子の配列膜及びその製造方法、粒子群、並びに粒子配列膜の製造方法
US10383829B2 (en) * 2016-06-13 2019-08-20 National Taiwan University Process for forming Janus particles and application thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109364833B (zh) * 2018-09-25 2021-04-09 西北大学 一种制备两面性纳米颗粒的方法
CN109568590A (zh) * 2018-12-06 2019-04-05 北京航空航天大学 一种油菜果荚型磁性-上转换荧光药物缓释载体的制备方法
JP7470954B2 (ja) * 2019-02-04 2024-04-19 正裕 村上 ナノ粒子の製造方法
CN110229368B (zh) * 2019-07-10 2020-05-22 浙江大学 具有生物相容性的Janus颗粒及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002520120A (ja) * 1998-07-17 2002-07-09 スカイファーマ インコーポレーテッド 封入物質の制御放出のための生分解性組成物
JP2004008015A (ja) * 2002-06-03 2004-01-15 Miyazaki Prefecture 固体脂マイクロカプセルおよびその製造方法
JP2005519944A (ja) * 2002-03-13 2005-07-07 ノバルティス アクチエンゲゼルシャフト 医薬微粒子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002520120A (ja) * 1998-07-17 2002-07-09 スカイファーマ インコーポレーテッド 封入物質の制御放出のための生分解性組成物
JP2005519944A (ja) * 2002-03-13 2005-07-07 ノバルティス アクチエンゲゼルシャフト 医薬微粒子
JP2004008015A (ja) * 2002-06-03 2004-01-15 Miyazaki Prefecture 固体脂マイクロカプセルおよびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017171087A1 (ja) * 2016-03-31 2017-10-05 積水化成品工業株式会社 金属被覆異形樹脂粒子及びその製造方法、金属被覆異形樹脂粒子の配列膜及びその製造方法、粒子群、並びに粒子配列膜の製造方法
US11111346B2 (en) 2016-03-31 2021-09-07 Sekisui Kasei Co., Ltd. Metal-coated non-spherical resin particles and method for producing same, aligned film of metal-coated non-spherical resin particles and method for producing same, particles, and method for producing particle-aligned film
US10383829B2 (en) * 2016-06-13 2019-08-20 National Taiwan University Process for forming Janus particles and application thereof

Also Published As

Publication number Publication date
JPWO2016084849A1 (ja) 2017-10-12
US20170326073A1 (en) 2017-11-16
DE112015005320T5 (de) 2017-08-31

Similar Documents

Publication Publication Date Title
WO2016084849A1 (ja) ヤヌス微粒子及びその製造方法
Choukaife et al. Alginate nanoformulation: Influence of process and selected variables
US20240100122A1 (en) Formulations
El-Zaafarany et al. Identifying lipidic emulsomes for improved oxcarbazepine brain targeting: In vitro and rat in vivo studies
JP5512780B2 (ja) 脂質膜による微粒子の被覆方法
JP5981997B2 (ja) 薬理学的活性物質の徐放性脂質初期製剤およびこれを含む薬学的組成物
Rawat et al. Influence of selected formulation variables on the preparation of enzyme-entrapped Eudragit S100 microspheres
WO2014166994A1 (en) Nano-microdelivery systems for oral delivery of an active ingredient
KR101319773B1 (ko) 핵산-함유 점막점착성 활성 성분을 포함한 다입자 투여 형태, 및 이러한 투여 형태의 제조 방법
AU2014345543A1 (en) Formulations
JP5085313B2 (ja) 被覆微粒子の製造方法
Ali et al. Chitosan-Shea butter solid nanoparticles assemblies for the preparation of a novel nanoparticles in microparticles system containing curcumin
Urimi et al. Formulation development and upscaling of lipid nanocapsules as a drug delivery system for a novel cyclic GMP analogue intended for retinal drug delivery
KR100891278B1 (ko) 생체 적합성 친수성 고분자를 포함하는 콜로이드계 조성물,제형 및 이들의 제조 방법
AU2016228941A1 (en) Drug delivery composition comprising polymer-lipid hybrid microparticles
JP2010248171A (ja) 二段階乳化によるリポソーム製造方法
KR20050081092A (ko) 생체적합성 친수성 고분자를 포함하는 콜로이드계 조성물,제형 및 이들의 제조 방법
Sadiah et al. Preparation and characteristics of nanostructured lipid carrier (NLC) loaded red ginger extract using high pressure homogenizer method
US20230285300A1 (en) Janus fine particle and method for producing same
KR20190026816A (ko) 약제학적 조성물
CN105287431A (zh) 一种载活性药物的聚合物脂质球及其制备方法
Popescu et al. Pharmaceutical Polymers: Bioactive and Synthetic Hybrid Polymers
Makled et al. Optimized solid lipid nanoparticles for pulmonary application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863908

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016561915

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15529231

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015005320

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15863908

Country of ref document: EP

Kind code of ref document: A1