WO2017171018A1 - 合わせガラス用中間膜及び合わせガラス - Google Patents

合わせガラス用中間膜及び合わせガラス Download PDF

Info

Publication number
WO2017171018A1
WO2017171018A1 PCT/JP2017/013642 JP2017013642W WO2017171018A1 WO 2017171018 A1 WO2017171018 A1 WO 2017171018A1 JP 2017013642 W JP2017013642 W JP 2017013642W WO 2017171018 A1 WO2017171018 A1 WO 2017171018A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated glass
interlayer film
film
thickness
laminated
Prior art date
Application number
PCT/JP2017/013642
Other languages
English (en)
French (fr)
Inventor
中山 和彦
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to MX2018010692A priority Critical patent/MX2018010692A/es
Priority to EP20201764.6A priority patent/EP3789356B1/en
Priority to JP2017519578A priority patent/JP6835714B2/ja
Priority to EP17775549.3A priority patent/EP3438069B1/en
Priority to KR1020197024915A priority patent/KR20190103462A/ko
Priority to US16/080,576 priority patent/US11318719B2/en
Priority to CN201780019912.5A priority patent/CN109071338B/zh
Priority to KR1020187024070A priority patent/KR102017443B1/ko
Publication of WO2017171018A1 publication Critical patent/WO2017171018A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10559Shape of the cross-section
    • B32B17/10568Shape of the cross-section varying in thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10559Shape of the cross-section
    • B32B17/10577Surface roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10559Shape of the cross-section
    • B32B17/10577Surface roughness
    • B32B17/10587Surface roughness created by embossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10559Shape of the cross-section
    • B32B17/10577Surface roughness
    • B32B17/10596Surface roughness created by melt fracture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10816Making laminated safety glass or glazing; Apparatus therefor by pressing
    • B32B17/10825Isostatic pressing, i.e. using non rigid pressure-exerting members against rigid parts
    • B32B17/10834Isostatic pressing, i.e. using non rigid pressure-exerting members against rigid parts using a fluid
    • B32B17/10844Isostatic pressing, i.e. using non rigid pressure-exerting members against rigid parts using a fluid using a membrane between the layered product and the fluid
    • B32B17/10853Isostatic pressing, i.e. using non rigid pressure-exerting members against rigid parts using a fluid using a membrane between the layered product and the fluid the membrane being bag-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10899Making laminated safety glass or glazing; Apparatus therefor by introducing interlayers of synthetic resin
    • B32B17/10935Making laminated safety glass or glazing; Apparatus therefor by introducing interlayers of synthetic resin as a preformed layer, e.g. formed by extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10972Degassing during the lamination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10981Pre-treatment of the layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/263Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer having non-uniform thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/28Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer comprising a deformed thin sheet, i.e. the layer having its entire thickness deformed out of the plane, e.g. corrugated, crumpled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/06Angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/006Transparent parts other than made from inorganic glass, e.g. polycarbonate glazings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft

Definitions

  • the present invention is for laminated glass that exhibits sufficient deaeration at the time of producing laminated glass and can obtain a highly transparent laminated glass even if it is a thick interlayer film for laminated glass having a thickness of 850 ⁇ m or more at the thickest part.
  • the present invention relates to an interlayer film and a laminated glass using the interlayer film for laminated glass.
  • Laminated glass is safe because it does not scatter glass fragments even if it is damaged by an external impact, so it can be used as a windshield, side glass, rear glass for vehicles such as automobiles, and window glass for aircraft, buildings, etc. Widely used.
  • laminated glass for example, laminated glass in which an interlayer film for laminated glass including a liquid plasticizer and polyvinyl acetal is interposed between at least a pair of glasses is integrated.
  • a laminated body in which an interlayer film for laminated glass is laminated between at least two glass plates is usually handled through a nip roll (handling deaeration method) or placed in a rubber bag and sucked under reduced pressure. (Vacuum degassing method), pre-compression bonding is performed while deaerating air remaining between the glass plate and the intermediate film.
  • the laminated glass after pre-bonding is heated and pressed in an autoclave, for example, to perform main-bonding to produce a laminated glass.
  • deaeration when laminating the glass and the interlayer film for laminated glass is important.
  • fine concave portions are formed for the purpose of ensuring deaeration during the production of laminated glass.
  • the present invention provides a highly transparent laminated glass that exhibits sufficient deaeration at the time of producing laminated glass, even if it is a thick interlayer film for laminated glass having a thickness of 850 ⁇ m or more at its thickest part.
  • An object of the present invention is to provide an interlayer film for laminated glass, and a laminated glass formed using the interlayer film for laminated glass.
  • the present invention is an interlayer film for laminated glass having a large number of recesses on at least one surface, the thickness T ( ⁇ m) of the thickest part of the film measured according to JIS K-6732 (1996), It is an interlayer film for laminated glass in which the maximum height roughness Ry ( ⁇ m) of the thickest part measured in accordance with JIS B-0601 (1994) satisfies the following formula (1) and the following formula (1 ′).
  • Ry ⁇ 0.020 ⁇ T + 16.6 (1) T ⁇ 850 (1 ′) The present invention is described in detail below.
  • the present inventors have studied in detail the conditions under which sufficient deaeration is exhibited even when a laminated glass is manufactured using a thick interlayer film for laminated glass having a thickness of 850 ⁇ m or more at the thickest part.
  • the thickness T ( ⁇ m) of the thickest part of the film measured in accordance with JIS K-6732 (1996) (hereinafter also simply referred to as “thickness T of the thickest part of the film”) and JIS B
  • the maximum height roughness Ry ( ⁇ m) (hereinafter also simply referred to as “maximum height roughness Ry of the thickest portion”) measured in accordance with ⁇ 0601 (1994) has a certain relationship.
  • filling it discovered that sufficient deaeration was exhibited and it could manufacture a highly transparent laminated glass, and completed this invention.
  • the interlayer film for laminated glass of the present invention has a large number of recesses on at least one surface.
  • This recessed part has a role which ensures deaeration in manufacture of a laminated glass. It is preferable that the said recessed part has the groove shape which the bottom part continued, and the adjacent recessed part is formed regularly in parallel.
  • the ease of air removal when pre-crimping and main press-bonding a laminate in which an interlayer film for laminated glass is laminated between two glass plates is closely related to the connectivity and smoothness of the bottom of the recess. is there.
  • the concave portion By forming the concave portion on at least one surface of the intermediate film regularly in parallel with the concave portion having a continuous bottom portion, the above-mentioned bottom portion has better communication, and the preliminary pressure bonding and the main pressure bonding are performed. In particular, the deaeration is remarkably improved.
  • Regularly formed means that the adjacent concave portions may be formed in parallel at equal intervals, and the adjacent concave portions are formed in parallel, but all adjacent It means that the intervals between the recesses need not be equal.
  • 1 and 2 are schematic views showing an example of an interlayer film for laminated glass in which concave portions having a groove shape with a continuous bottom portion on the surface are formed at equal intervals and adjacent concave portions are formed in parallel.
  • the thickness T of the thickest part of the film and the maximum height roughness Ry of the thickest part satisfy the above expressions (1) and (1 ′).
  • Ry is the Ry of the first surface of the interlayer film for laminated glass and the Ry of the second surface opposite to the first surface.
  • the average value hereinafter also referred to as “Ry (Ave)”.
  • the present inventors tend to increase the pressure at the peripheral edge of the laminated glass in the deaeration process of the laminated glass, and the adhesion between the peripheral edge of the film and the glass Therefore, it was speculated that transparency after deaeration was deteriorated by obtaining a laminated glass in a state where the deaeration was not sufficiently completed. Therefore, if the thickness T of the thickest part of the film and the maximum height roughness Ry of the thickest part satisfy the above expressions (1) and (1 ′), the adhesion between the peripheral edge of the film and the glass is early. It was found that a laminated glass having a sufficiently high transparency after deaeration can be obtained.
  • the thickness T of the thickest portion of the film is 850 ⁇ m or more.
  • the excellent effect of the present invention is exhibited when the thickness T of the thickest part of the film is 850 ⁇ m or more.
  • the thickness T of the thickest part of the film is preferably 860 ⁇ m or more. More preferably, it is 900 micrometers or more, More preferably, it is 910 micrometers or more, Most preferably, it is 1000 micrometers or more, Most preferably, it is 1100 micrometers or more.
  • the upper limit of the thickness T of the thickest part of the film is not particularly limited.
  • the maximum thickness of the entire interlayer film for laminated glass of the present invention is 2800 ⁇ m or less. Preferably there is.
  • the excellent effect of the present invention is that, even when the interlayer film for laminated glass of the present invention is, for example, an interlayer film for laminated glass having a wedge-shaped cross section in the thickness direction, the thickness of the film is 850 ⁇ m or more. Demonstrated.
  • the thickness of the thinnest part is preferably 750 ⁇ m or more.
  • the difference in thickness between the thickest part and the thinnest part can be reduced.
  • the thickness of the thinnest part from which laminated glass can be obtained is more preferably 800 ⁇ m or more, further preferably 850 ⁇ m or more, particularly preferably 860 ⁇ m or more, and most preferably 900 ⁇ m or more. .
  • the interlayer film for laminated glass of the present invention preferably further satisfies the following formula (2).
  • the laminated body exhibits sufficient deaeration during the production of laminated glass, and has undergone pre-compression bonding The transparency of can be further improved.
  • the interlayer film for laminated glass of the present invention preferably further satisfies the following formula (3).
  • Ry is the Ry of the first surface of the interlayer film for laminated glass and the Ry of the second surface opposite to the first surface.
  • the larger Ry hereinafter also referred to as “Ry (Max)”.
  • the present inventors tend to increase the pressure at the peripheral edge of the laminated glass in the deaeration process of the laminated glass, and the adhesion between the peripheral edge of the film and the glass Therefore, it was speculated that transparency after deaeration was deteriorated by obtaining a laminated glass in a state where the deaeration was not sufficiently completed.
  • the time until the film and the glass are brought into contact with each other is delayed even after the central portion of the laminated glass is sufficiently degassed, and the production efficiency is increased. I guessed it would be worse.
  • the film and the glass are quickly removed. Adhesion is performed, and an interlayer film for laminated glass capable of improving the production efficiency of laminated glass can be obtained.
  • the interlayer film for laminated glass of the present invention preferably further satisfies the following formula (4).
  • An intermediate for laminated glass that can further improve the production efficiency of laminated glass when the thickness T of the thickest part of the film and the maximum height roughness Ry of the thickest part satisfy the above formula (4).
  • a membrane can be obtained.
  • the thickness T of the thickest part of the film is measured according to JIS K-6732 (1996). Specifically, using a constant pressure thickness measuring instrument (for example, FFD-2 manufactured by Ozaki Seisakusho Co., Ltd.), from one end to the other end perpendicular to the extrusion direction of the interlayer film for laminated glass as a sample The thickness is measured every 5 cm. The measurement is performed in an environment of a temperature of 23 ° C. and a humidity of 30 RH%.
  • the thickness T of the thickest part of the film means the thickness of the thickest point when the thickness of the film is measured by the above method.
  • the extrusion direction at the time of manufacture of the interlayer film for laminated glass in the interlayer film for laminated glass can be confirmed, for example, by the following method. That is, after the laminated film for laminated glass is stored in a constant temperature bath at 140 ° C. for 30 minutes, it can be confirmed by the direction of extrusion that the shrinkage rate in the parallel direction and the vertical direction of the film is larger. In addition, it can confirm by the winding direction of the roll-shaped body of this intermediate film for laminated glasses. This is because the roll-shaped body of the interlayer film for laminated glass is wound up in the direction of extrusion of the film during the production of the interlayer film for laminated glass. This is because the extrusion direction of the film is the same.
  • the maximum height roughness Ry of the thickest part passes through the measurement point of the thickest part in the interlayer film for laminated glass cut out to a size of 15 cm in length and 15 cm in width as a measurement sample, and is an extrusion method.
  • the first surface and the second surface are each measured at three points on a parallel line, and the average value of each Ry obtained by performing the same operation on all the samples cut out for evaluation is calculated. .
  • an interlayer film for glass is cut out to a size of 15 cm in length and 15 cm in width.
  • 15 cm in length and 15 cm in width so as to pass through the center of the interlayer film for laminated glass cut through a line parallel to the extrusion direction that passes through the thickness measurement point of the thickest part.
  • An intermediate film for glass is cut out in accordance with the size of the film (FIGS. 3A and 3B).
  • the intermediate film for glass is adjusted to a size of 15 cm in length and 15 cm in width so that a line passing through the thickness measurement point of the thinnest part and parallel to the extrusion direction passes through the center. Cut out.
  • the laminated glass interlayer film is cut out so as to be in contact with the film end (FIG. 3C).
  • the laminated glass interlayer film of the cut measurement sample is sandwiched between two clear glass plates (length 15 cm ⁇ width 15 cm ⁇ thickness 2.5 mm), and the protruding portion is cut to obtain a laminate.
  • the obtained laminate was preheated in an oven until the surface temperature of the glass reached 30 ° C., and then transferred into a rubber bag.
  • the rubber bag was connected to a suction decompressor and heated, and at the same time under a reduced pressure of ⁇ 600 mmHg, After heating for 14 minutes so that the glass surface temperature (preliminary pressure bonding temperature) of the laminated body becomes 90 ° C., the glass is cooled until the glass surface temperature of the laminated body reaches 40 ° C., and then returned to atmospheric pressure to perform preliminary pressure bonding. Exit.
  • the parallel light transmittance is evaluated by the following method for the laminate after the pre-bonding. That is, in accordance with JIS R 3106 K 7105, the parallel light transmittance Tp (%) of the laminate after pre-compression bonding is measured using a haze meter (for example, HM-150, manufactured by Murakami Color Research Laboratory Co., Ltd.). To do.
  • the measurement position is a central portion where two diagonal lines of the laminate intersect, and five points, which are 4.64 cm away from each vertex of the laminate in the diagonal direction, and the average value is Tp. Note that the measurement is performed on a sample cut out from the laminate with a size of 5 cm ⁇ 5 cm or more around the measurement point (FIG. 4).
  • a method for measuring the seal temperature will be described in detail.
  • An interlayer film for laminated glass is sandwiched between two clear glass plates (vertical 15 cm ⁇ width 15 cm ⁇ thickness 2.5 mm), the protruding part is cut off, and the laminated glass composition (laminated body) thus obtained is preliminarily obtained.
  • Preheat for 10 minutes in an oven heated to 50 ° C. Transfer to a rubber bag preheated to 50 ° C, connect the rubber bag to a suction pressure reducer, and maintain the temperature of the laminated glass structure (laminate) at 50 ° C at -600 mmHg for 5 minutes. After reducing the pressure, the pressure is returned to atmospheric pressure to obtain a pre-compression laminate.
  • the pre-pressed laminated glass structure (laminated body) is put in an autoclave, and after raising the pressure to 13 atm (1300 kpa), the temperature is raised to 140 ° C. and held for 20 minutes, and then the temperature is lowered to 50 ° C. The final pressure bonding is finished by returning to, thereby producing a laminated glass.
  • the obtained laminated glass is stored at 23 ° C. for 24 hours after the main pressure bonding, and then heated in an oven at 140 ° C. for 2 hours. Subsequently, after taking out from oven and leaving still at 23 degreeC for 24 hours, the external appearance of a laminated glass is observed visually. The number of tests is five.
  • the number of air bubbles generated inside 1 cm from the edge of the laminated glass is examined, and deaeration is evaluated according to the following criteria.
  • The number of bubbles generated is 3 or less
  • The same evaluation is performed by increasing the preheating temperature and rubber back temperature of the laminated glass structure in which the number of bubbles exceeds 3 from 50 ° C. to 5 ° C. The lowest temperature at which the evaluation is 0 is taken as the seal temperature.
  • the sealing performance when the laminated glass is produced using the interlayer film for laminated glass is evaluated as follows. ⁇ : Seal temperature is 75 ° C or lower ⁇ : Seal temperature exceeds 75 ° C
  • the interval Sm between the concave portions is preferably 100 ⁇ m or more. 200 ⁇ m or more is more preferable, 600 ⁇ m or less is preferable, 450 ⁇ m or less is more preferable, and 300 ⁇ m or less is still more preferable.
  • the interval Sm between the recesses is within this range, excellent deaeration can be exhibited.
  • the interval Sm between the recesses is measured by a method according to JIS B-0601 (1994).
  • the measurement is performed in an environment of a temperature of 23 ° C. and a humidity of 30 RH%.
  • interval Sm between the recesses is a line parallel to the extrusion method passing through the measurement point of the thickest portion in the interlayer film for laminated glass cut into a size of 15 cm in length and 15 cm in width as a measurement sample.
  • the first surface and the second surface are respectively measured, and the average value of each Sm obtained by performing the same operation on all the samples cut out for evaluation is calculated.
  • a preferable lower limit of the maximum roughness (Ry) of the recess is 20 ⁇ m, more preferably 30 ⁇ m, and still more preferably 40 ⁇ m.
  • a preferable upper limit of the maximum roughness (Ry) of the concave portion is 80 ⁇ m, and a more preferable upper limit is 65 ⁇ m.
  • the interlayer film for laminated glass of the present invention preferably contains a thermoplastic resin.
  • the thermoplastic resin include polyvinylidene fluoride, polytetrafluoroethylene, vinylidene fluoride-hexafluoropropylene copolymer, polytrifluoride ethylene, acrylonitrile-butadiene-styrene copolymer, polyester, polyether, polyamide Polycarbonate, polyacrylate, polymethacrylate, polyvinyl chloride, polyethylene, polypropylene, polystyrene, polyvinyl acetal, ethylene-vinyl acetate copolymer and the like. Of these, polyvinyl acetal or ethylene-vinyl acetate copolymer is preferable, and polyvinyl acetal is more preferable.
  • the polyvinyl acetal can be produced, for example, by acetalizing polyvinyl alcohol with an aldehyde.
  • the polyvinyl alcohol can be produced, for example, by saponifying polyvinyl acetate.
  • the saponification degree of the polyvinyl alcohol is generally in the range of 70 to 99.8 mol%.
  • the average degree of polymerization of the polyvinyl alcohol is preferably 200 or more, more preferably 500 or more, further preferably 1700 or more, particularly preferably more than 1700, preferably 5000 or less, more preferably 4000 or less, still more preferably 3000 or less, Particularly preferably, it is less than 3000.
  • the average degree of polymerization is not less than the above lower limit, the penetration resistance of the laminated glass is further enhanced.
  • the average degree of polymerization is not more than the above upper limit, the intermediate film can be easily molded.
  • the average degree of polymerization of the polyvinyl alcohol is determined by a method based on JIS K6726 “Testing method for polyvinyl alcohol”.
  • the number of carbon atoms of the acetal group contained in the polyvinyl acetal is not particularly limited.
  • the aldehyde used when manufacturing the said polyvinyl acetal is not specifically limited.
  • the preferable lower limit of the carbon number of the acetal group in the polyvinyl acetal is 3, and the preferable upper limit is 6.
  • the carbon number of the acetal group in the polyvinyl acetal is 3 or more, the glass transition temperature of the intermediate film is sufficiently low, and bleeding out of the plasticizer can be prevented.
  • the aldehyde having 3 to 6 carbon atoms may be a linear aldehyde or a branched aldehyde, and examples thereof include n-butyraldehyde and n-valeraldehyde. .
  • the aldehyde is not particularly limited. In general, an aldehyde having 1 to 10 carbon atoms is preferably used as the aldehyde.
  • Examples of the aldehyde having 1 to 10 carbon atoms include propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, 2-ethylbutyraldehyde, n-hexylaldehyde, n-octylaldehyde, and n-nonylaldehyde.
  • propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-hexylaldehyde or n-valeraldehyde is preferable
  • propionaldehyde, n-butyraldehyde or isobutyraldehyde is more preferable
  • n-butyraldehyde is still more preferable.
  • the said aldehyde only 1 type may be used and 2 or more types may be used together.
  • the hydroxyl group content (hydroxyl group amount) of the polyvinyl acetal is preferably 10 mol% or more, more preferably 15 mol% or more, still more preferably 18 mol% or more, preferably 40 mol% or less, more preferably 35 mol%. It is as follows. When the hydroxyl group content is at least the above lower limit, the adhesive strength of the interlayer film is further increased. Further, when the hydroxyl group content is not more than the above upper limit, the flexibility of the interlayer film is increased, and the handling of the interlayer film is facilitated.
  • the content rate of the hydroxyl group of the said polyvinyl acetal is the value which showed the mole fraction calculated
  • the amount of the ethylene group to which the hydroxyl group is bonded can be determined, for example, by measuring in accordance with JIS K6726 “Testing method for polyvinyl alcohol” or in accordance with ASTM D1396-92.
  • the degree of acetylation (acetyl group amount) of the polyvinyl acetal is preferably 0.1 mol% or more, more preferably 0.3 mol% or more, still more preferably 0.5 mol% or more, preferably 30 mol% or less. More preferably, it is 25 mol% or less, More preferably, it is 20 mol% or less.
  • the acetylation degree is not less than the above lower limit, the compatibility between the polyvinyl acetal and the plasticizer is increased.
  • the acetylation degree is not more than the above upper limit, the moisture resistance of the interlayer film and the laminated glass is increased.
  • the degree of acetylation is calculated by subtracting the amount of ethylene groups to which acetal groups are bonded and the amount of ethylene groups to which hydroxyl groups are bonded from the total amount of ethylene groups in the main chain. This is a value obtained by dividing the mole fraction obtained by dividing by the base amount as a percentage.
  • the amount of ethylene group to which the acetal group is bonded can be measured, for example, according to JIS K6728 “Testing method for polyvinyl butyral” or according to ASTM D1396-92.
  • the degree of acetalization of the polyvinyl acetal is preferably 50 mol% or more, more preferably 53 mol% or more, still more preferably 60 mol% or more, and particularly preferably 63 mol% or more. , Preferably 85 mol% or less, more preferably 75 mol% or less, and still more preferably 70 mol% or less.
  • degree of acetalization is not less than the above lower limit, the compatibility between the polyvinyl acetal and the plasticizer increases.
  • the degree of acetalization is not more than the above upper limit, the reaction time required for producing polyvinyl acetal is shortened.
  • the degree of acetalization is a value indicating the mole fraction obtained by dividing the amount of ethylene groups to which acetal groups are bonded by the total amount of ethylene groups in the main chain, as a percentage.
  • the degree of acetalization is determined from the measurement results obtained by measuring the degree of acetylation and the hydroxyl group content by a method based on JIS K6728 “Testing methods for polyvinyl butyral” or a method based on ASTM D1396-92. It can be calculated by calculating the molar fraction and then subtracting the degree of acetylation and the hydroxyl content from 100 mol%.
  • the interlayer film for laminated glass of the present invention preferably contains a plasticizer.
  • the plasticizer is not particularly limited as long as it is a plasticizer generally used for an interlayer film for laminated glass.
  • organic plasticizers such as monobasic organic acid esters and polybasic organic acid esters, organic Examples thereof include phosphoric acid plasticizers such as phosphoric acid compounds and organic phosphorous acid compounds.
  • organic plasticizer examples include triethylene glycol-di-2-ethylhexanoate, triethylene glycol-di-2-ethylbutyrate, triethylene glycol-di-n-heptanoate, and tetraethylene glycol-di-2.
  • triethylene glycol-di-2-ethylhexanoate triethylene glycol-di-2-ethylbutyrate, or triethylene glycol-di-n-heptanoate is preferable, and triethylene glycol-di-2- More preferred is ethyl hexanoate.
  • the content of the plasticizer is not particularly limited, the preferable lower limit with respect to 100 parts by mass of the thermoplastic resin is 25 parts by mass, the more preferable lower limit is 30 parts by mass, the preferable upper limit is 80 parts by mass, and the more preferable upper limit is 70 parts by mass. Part.
  • the content of the plasticizer is not less than the above lower limit, the penetration resistance of the laminated glass is further enhanced.
  • the content of the plasticizer is not more than the above upper limit, the transparency of the interlayer film is further enhanced.
  • the interlayer film for laminated glass of the present invention preferably contains an adhesive strength modifier.
  • an alkali metal salt or alkaline-earth metal salt is used suitably, for example.
  • salts, such as potassium, sodium, magnesium, are mentioned, for example.
  • the acid constituting the salt include organic acids of carboxylic acids such as octylic acid, hexyl acid, 2-ethylbutyric acid, butyric acid, acetic acid and formic acid, or inorganic acids such as hydrochloric acid and nitric acid.
  • the interlayer film for laminated glass of the present invention includes, as necessary, a modified silicone oil, a flame retardant, an antistatic agent, a moisture-resistant agent, a heat ray reflective agent, a heat ray absorbent, as an antioxidant, a light stabilizer, and an adhesion modifier.
  • a coloring agent which consists of an antiblocking agent, an antistatic agent, and a pigment or dye.
  • the interlayer film for laminated glass of the present invention may be composed of a single resin layer or may have a laminated structure having two or more resin layers in the thickness direction.
  • the thickness of the entire interlayer film for laminated glass tends to increase, and the thickness of the thickest part tends to be 850 ⁇ m or more.
  • the present invention is effective in such a thick interlayer film for laminated glass.
  • the interlayer film for laminated glass of the present invention has at least a first resin layer and a second resin layer as two or more resin layers, and is a polyvinyl acetal (hereinafter referred to as polyvinyl acetal) contained in the first resin layer. It is preferable that the amount of hydroxyl group of acetal A) is different from the amount of hydroxyl group of polyvinyl acetal (hereinafter referred to as polyvinyl acetal B) contained in the second resin layer. Since the properties of polyvinyl acetal A and polyvinyl acetal B are different, it is possible to provide an interlayer film for laminated glass having various performances that have been difficult to achieve with only one layer.
  • the first resin layer when the first resin layer is laminated between two layers of the second resin layer and the amount of hydroxyl group of polyvinyl acetal A is lower than the amount of hydroxyl group of polyvinyl acetal B, The resin layer tends to have a lower glass transition temperature than the second resin layer. As a result, the first resin layer is softer than the second resin layer, and the sound insulation of the interlayer film for laminated glass is increased. Further, when the first resin layer is laminated between the two second resin layers and the amount of hydroxyl groups of the polyvinyl acetal A is higher than the amount of hydroxyl groups of the polyvinyl acetal B, the first resin layer The resin layer tends to have a higher glass transition temperature than the second resin layer. As a result, the first resin layer is harder than the second resin layer, and the penetration resistance of the interlayer film for laminated glass is increased.
  • the content of the plasticizer (hereinafter referred to as content A) with respect to 100 parts by mass of the polyvinyl acetal in the first resin layer.
  • the plasticizer content in the second resin layer is preferably different from that of 100 parts by mass of polyvinyl acetal (hereinafter referred to as “content B”).
  • content A the content of the plasticizer
  • content B the content of the polyvinyl acetal
  • the first resin layer When the first resin layer is laminated between the two second resin layers and the content A is less than the content B, the first resin layer is The glass transition temperature tends to be higher than that of the second resin layer. As a result, the first resin layer is harder than the second resin layer, and the penetration resistance of the interlayer film for laminated glass is increased.
  • the sound insulation layer as the first resin layer and the second resin layer A combination with a protective layer may be used as the resin layer.
  • the sound insulating layer contains polyvinyl acetal X and a plasticizer
  • the protective layer contains polyvinyl acetal Y and a plasticizer because the sound insulating properties of the laminated glass are improved.
  • an interlayer film for laminated glass hereinafter, also referred to as a sound insulation interlayer
  • a sound insulation interlayer an interlayer film for laminated glass having excellent sound insulation can be obtained.
  • the sound insulating interlayer will be described more specifically.
  • the sound insulating layer has a role of providing sound insulating properties.
  • the sound insulation layer preferably contains polyvinyl acetal X and a plasticizer.
  • the polyvinyl acetal X can be prepared by acetalizing polyvinyl alcohol with an aldehyde.
  • the polyvinyl alcohol is usually obtained by saponifying polyvinyl acetate.
  • the preferable lower limit of the average degree of polymerization of the polyvinyl alcohol is 200, and the preferable upper limit is 5000.
  • the average degree of polymerization of the polyvinyl alcohol By setting the average degree of polymerization of the polyvinyl alcohol to 200 or more, the penetration resistance of the obtained sound insulating interlayer can be improved, and by setting it to 5000 or less, the moldability of the sound insulating layer can be ensured.
  • the more preferable lower limit of the average degree of polymerization of the polyvinyl alcohol is 500, and the more preferable upper limit is 4000.
  • the average degree of polymerization of the polyvinyl alcohol is determined by a method based on JIS K6726 “Testing method for polyvinyl alcohol”.
  • the preferable lower limit of the carbon number of the aldehyde for acetalizing the polyvinyl alcohol is 4, and the preferable upper limit is 6.
  • the aldehyde having 4 to 6 carbon atoms may be a linear aldehyde or a branched aldehyde, and examples thereof include n-butyraldehyde and n-valeraldehyde. .
  • the upper limit with the preferable amount of hydroxyl groups of the said polyvinyl acetal X is 30 mol%.
  • the more preferable upper limit of the hydroxyl group amount of the polyvinyl acetal X is 28 mol%, the more preferable upper limit is 26 mol%, the particularly preferable upper limit is 24 mol%, the preferable lower limit is 10 mol%, the more preferable lower limit is 15 mol%, and the more preferable lower limit. Is 20 mol%.
  • the amount of hydroxyl groups in the polyvinyl acetal X is a value obtained by dividing the amount of ethylene groups to which the hydroxyl groups are bonded by the total amount of ethylene groups in the main chain, as a percentage (mol%).
  • the amount of the ethylene group to which the hydroxyl group is bonded can be determined, for example, by measuring the amount of ethylene group to which the hydroxyl group of the polyvinyl acetal X is bonded by a method based on JIS K6728 “Testing method for polyvinyl butyral”. it can.
  • the minimum with the preferable amount of acetal groups of the said polyvinyl acetal X is 60 mol%, and a preferable upper limit is 85 mol%.
  • a preferable upper limit is 85 mol%.
  • the lower limit of the amount of acetal group of the polyvinyl acetal X is more preferably 65 mol%, still more preferably 68 mol% or more.
  • the amount of the acetal group can be determined by measuring the amount of ethylene group to which the acetal group of the polyvinyl acetal X is bonded by a method based on JIS K6728 “Testing method for polyvinyl butyral”.
  • the minimum with the preferable amount of acetyl groups of the said polyvinyl acetal X is 0.1 mol%, and a preferable upper limit is 30 mol%.
  • a preferable upper limit is 30 mol%.
  • the more preferable lower limit of the acetyl group amount is 1 mol%, the more preferable lower limit is 5 mol%, the particularly preferable lower limit is 8 mol%, the more preferable upper limit is 25 mol%, and the still more preferable upper limit is 20 mol%.
  • the amount of acetyl groups is the value obtained by subtracting the amount of ethylene groups to which acetal groups are bonded and the amount of ethylene groups to which hydroxyl groups are bonded from the total amount of ethylene groups in the main chain. This is a value expressed as a percentage (mol%) of the mole fraction obtained by dividing by.
  • the above-mentioned sound insulation layer can easily contain a plasticizer in an amount necessary to exhibit sound insulation
  • the above-mentioned polyvinyl acetal X is a polyvinyl acetal having an acetyl group content of 8 mol% or more, or Polyvinyl acetal having an acetyl group amount of less than 8 mol% and an acetal group amount of 65 mol% or more is preferred.
  • the polyvinyl acetal X is a polyvinyl acetal having an acetyl group amount of 8 mol% or more, or a polyvinyl acetal having an acetyl group amount of less than 8 mol% and an acetal group amount of 68 mol% or more. More preferable.
  • the preferable minimum with respect to 100 mass parts of said polyvinyl acetals X is 45 mass parts, and a preferable upper limit is 80 mass parts.
  • a preferable upper limit is 80 mass parts.
  • the more preferred lower limit of the plasticizer content is 50 parts by mass
  • the still more preferred lower limit is 55 parts by mass
  • the more preferred upper limit is 75 parts by mass
  • the still more preferred upper limit is 70 parts by mass.
  • a preferable lower limit of the thickness is 50 ⁇ m.
  • a more preferable lower limit of the thickness of the sound insulation layer is 80 ⁇ m.
  • an upper limit is not specifically limited, Considering the thickness as an interlayer film for laminated glass, a preferable upper limit is 300 ⁇ m.
  • the sound insulation layer may have one end and the other end opposite to the one end, and the other end may have a shape larger than the thickness of the one end.
  • the sound insulation layer preferably has a portion having a wedge-shaped cross-sectional shape in the thickness direction.
  • a preferable lower limit of the minimum thickness of the sound insulation layer is 50 ⁇ m. By setting the minimum thickness of the sound insulation layer to 50 ⁇ m or more, sufficient sound insulation can be exhibited.
  • a more preferable lower limit of the minimum thickness of the sound insulating layer is 80 ⁇ m, and a more preferable lower limit is 100 ⁇ m.
  • the upper limit of the maximum thickness of the said sound-insulating layer is not specifically limited, Considering the thickness as an intermediate film for laminated glasses, a preferable upper limit is 300 micrometers. A more preferable upper limit of the maximum thickness of the sound insulation layer is 220 ⁇ m.
  • the above-mentioned protective layer prevents bleeding of a large amount of plasticizer contained in the sound insulation layer, resulting in a decrease in the adhesion between the interlayer film for laminated glass and the glass. Has the role of granting.
  • the protective layer preferably contains, for example, polyvinyl acetal Y and a plasticizer, and more preferably contains polyvinyl acetal Y having a larger amount of hydroxyl group than polyvinyl acetal X and a plasticizer.
  • the polyvinyl acetal Y can be prepared by acetalizing polyvinyl alcohol with an aldehyde.
  • the polyvinyl alcohol is usually obtained by saponifying polyvinyl acetate.
  • the preferable minimum of the average degree of polymerization of the said polyvinyl alcohol is 200, and a preferable upper limit is 5000.
  • the more preferable lower limit of the average degree of polymerization of the polyvinyl alcohol is 500, and the more preferable upper limit is 4000.
  • the preferable lower limit of the carbon number of the aldehyde for acetalizing the polyvinyl alcohol is 3, and the preferable upper limit is 4.
  • the aldehyde having 3 to 4 carbon atoms may be a linear aldehyde or a branched aldehyde, and examples thereof include n-butyraldehyde.
  • the upper limit with the preferable amount of hydroxyl groups of the said polyvinyl acetal Y is 33 mol%, and a preferable minimum is 28 mol%.
  • the preferable lower limit of the amount of acetal group is 60 mol%, and the preferable upper limit is 80 mol%.
  • the amount of the acetal group is 60 mol% or more, an amount of plasticizer necessary for exhibiting sufficient penetration resistance can be contained.
  • the amount of the acetal group 80 mol% or less it is possible to ensure the adhesive force between the protective layer and the glass.
  • a more preferable lower limit of the amount of the acetal group is 65 mol%, and a more preferable upper limit is 69 mol%.
  • the upper limit with the preferable amount of acetyl groups of the said polyvinyl acetal Y is 7 mol%.
  • the amount of acetyl groups of the polyvinyl acetal Y 7 mol% or less the hydrophobicity of the protective layer can be increased and whitening can be prevented.
  • a more preferable upper limit of the amount of the acetyl group is 2 mol%, and a preferable lower limit is 0.1 mol%.
  • the amount of hydroxyl groups, the amount of acetal groups, and the amount of acetyl groups of polyvinyl acetals A, B, and Y can be measured by the same method as that for polyvinyl acetal X.
  • the preferable minimum with respect to 100 mass parts of said polyvinyl acetals Y is 20 mass parts, and a preferable upper limit is 45 mass parts.
  • a preferable upper limit is 45 mass parts.
  • the more preferred lower limit of the plasticizer content is 30 parts by mass
  • the still more preferred lower limit is 35 parts by mass
  • the more preferred upper limit is 43 parts by mass
  • the still more preferred upper limit is 41 parts by mass. Since the sound insulation of the laminated glass is further improved, the plasticizer content in the protective layer is preferably smaller than the plasticizer content in the sound insulation layer.
  • the amount of hydroxyl group of the polyvinyl acetal Y is preferably larger than the amount of hydroxyl group of the polyvinyl acetal X, more preferably 1 mol% or more, further preferably 5 mol% or more. It is particularly preferably 8 mol% or more.
  • the content of the plasticizer (hereinafter also referred to as content X) relative to 100 parts by mass of the polyvinyl acetal X100 in the sound insulation layer is the polyvinyl acetal Y100 in the protective layer. It is preferably more than the content of plasticizer (hereinafter also referred to as “content Y”) relative to parts by mass, more preferably 5 parts by mass or more, still more preferably 15 parts by mass or more, and more than 20 parts by mass. It is particularly preferred.
  • the glass transition temperature of the sound insulation layer is lowered. As a result, the sound insulation of the laminated glass is further improved.
  • the thickness of the protective layer is not particularly limited as long as it is adjusted to a range that can serve as the protective layer. However, when the protective layer has irregularities, it is preferable to increase the thickness as much as possible so as to prevent the irregularities from being transferred to the interface with the sound insulating layer that is in direct contact therewith. Specifically, when the cross-sectional shape of the protective layer is rectangular, the preferable lower limit of the thickness of the protective layer is 100 ⁇ m, the more preferable lower limit is 300 ⁇ m, the still more preferable lower limit is 400 ⁇ m, and the particularly preferable lower limit is 450 ⁇ m.
  • the upper limit of the thickness of the protective layer is not particularly limited, but in order to ensure the thickness of the sound insulating layer to such an extent that sufficient sound insulating properties can be achieved, the upper limit is substantially about 500 ⁇ m.
  • the protective layer may have one end and the other end opposite to the one end, and the thickness of the other end may be larger than the thickness of the one end.
  • the protective layer preferably has a portion having a wedge-shaped cross-sectional shape in the thickness direction.
  • the thickness of the protective layer is not particularly limited as long as it is adjusted to a range that can serve as the protective layer. However, when the protective layer has irregularities, it is preferable to increase the thickness as much as possible so as to prevent the irregularities from being transferred to the interface with the sound insulating layer that is in direct contact therewith.
  • a preferable lower limit of the minimum thickness of the protective layer is 100 ⁇ m, a more preferable lower limit is 300 ⁇ m, a still more preferable lower limit is 400 ⁇ m, and a particularly preferable lower limit is 450 ⁇ m.
  • the upper limit of the maximum thickness of the protective layer is not particularly limited, but in order to ensure the thickness of the sound insulation layer to the extent that sufficient sound insulation can be achieved, the upper limit is substantially about 1000 ⁇ m, and preferably 800 ⁇ m. .
  • the interlayer film for laminated glass of the present invention may have one end and the other end opposite to the one end.
  • the one end and the other end are end portions on both sides facing each other in the intermediate film.
  • the thickness of the other end is preferably larger than the thickness of the one end.
  • the wedge-shaped wedge angle ⁇ can be adjusted according to the mounting angle of the laminated glass to enable image display that prevents the occurrence of double images in the head-up display. It becomes.
  • the preferable lower limit of the wedge angle ⁇ is 0.1 mrad
  • the more preferable lower limit is 0.2 mrad
  • the still more preferable lower limit is 0.3 mrad
  • the preferable upper limit is 1 mrad
  • the more preferable upper limit is 0.9 mrad.
  • an interlayer film for laminated glass having a wedge-shaped cross section is manufactured by a method of extruding a resin composition using an extruder, a slightly inner region (specifically, from one end on the thin side) , Where X is the distance between one end and the other end, and has a minimum thickness in the range from 0X to 0.2X inward from one end on the thin side, and one end on the thick side
  • the maximum thickness in the region slightly inside specifically, when the distance between one end and the other end is X, the region from 0X to 0.2X inward from one end on the thick side
  • It may become the shape which has. In the present specification, such a shape is also included in the wedge shape.
  • the cross-sectional shape of the interlayer film for laminated glass of the present invention is a wedge shape
  • it may have a multilayer structure including a sound insulating layer and a protective layer. While the thickness of the sound insulating layer is kept within a certain range, the cross-sectional shape of the laminated glass intermediate film as a whole can be adjusted to a wedge shape having a constant wedge angle by laminating the protective layer.
  • FIGS. 5 to 7 are schematic views for explaining an example when the cross-sectional shape of the interlayer film for laminated glass of the present invention is a wedge shape. 5 to 7, for convenience of illustration, the thickness and wedge angle ⁇ of the interlayer film for laminated glass and each layer constituting the interlayer film for laminated glass are shown to be different from the actual thickness and wedge angle. Yes.
  • FIG. 5 shows a cross section in the thickness direction of the interlayer film 5 for laminated glass.
  • the interlayer film for laminated glass 5 has a two-layer structure in which a protective layer 52 is laminated on one surface of the sound insulating layer 51.
  • the sound insulating layer 51 is rectangular
  • the protective layer 52 is formed in a wedge shape, a triangular shape, or a trapezoidal shape so that the entire laminated glass interlayer film 5 has a wedge angle ⁇ of 0.1 to 1 mrad. It has become.
  • FIG. 6 shows a cross section in the thickness direction of the interlayer film 6 for laminated glass.
  • the interlayer film 6 for laminated glass has a three-layer structure in which a protective layer 62 and a protective layer 63 are laminated on both surfaces of the sound insulating layer 61.
  • the sound insulating layer 61 and the protective layer 63 are rectangular with a constant thickness
  • the protective layer 62 in a wedge shape, a triangular shape or a trapezoidal shape
  • the entire interlayer film 6 for laminated glass has a wedge angle ⁇ .
  • FIG. 7 shows a cross section in the thickness direction of the interlayer film 7 for laminated glass.
  • the interlayer film 7 for laminated glass has a three-layer structure in which a protective layer 72 and a protective layer 73 are laminated on both surfaces of the sound insulating layer 71.
  • the sound insulating layer 71 has a wedge shape
  • the laminated glass intermediate film 7 as a whole has a wedge shape with a wedge angle ⁇ of 0.1 to 1 mrad.
  • the manufacturing method of the interlayer film for laminated glass of the present invention is not particularly limited, and a conventionally known manufacturing method can be used.
  • the manufacturing method etc. which knead
  • the method for forming a large number of recesses on at least one surface of the interlayer film for laminated glass in the present invention include an emboss roll method, a calender roll method, a profile extrusion method, and a melt fracture method. Of these, the embossing roll method is preferable.
  • the laminated glass in which the interlayer film for laminated glass of the present invention is laminated between a pair of glass plates is also one aspect of the present invention.
  • the said glass plate can use the transparent plate glass generally used. Examples thereof include inorganic glass such as float plate glass, polished plate glass, template glass, netted glass, wire-containing plate glass, colored plate glass, heat ray absorbing glass, heat ray reflecting glass, and green glass. Further, an ultraviolet shielding glass having an ultraviolet shielding coating layer formed on the glass surface can also be used. Furthermore, organic plastics plates such as polyethylene terephthalate, polycarbonate, and polyacrylate can also be used. Two or more types of glass plates may be used as the glass plate. For example, the laminated glass which laminated
  • an interlayer film for glass and a laminated glass formed using the interlayer film for laminated glass can be provided.
  • Example 1 Preparation of resin composition Polyvinyl butyral obtained by acetalizing polyvinyl alcohol having an average degree of polymerization of 1700 with n-butyraldehyde (acetyl group amount 1 mol%, butyral group amount 69 mol%, hydroxyl group amount 30) 40 parts by mass of triethylene glycol-di-2-ethylhexanoate (3GO) as a plasticizer was added to 100 parts by mass of (mol%).
  • the resin composition was obtained by sufficiently kneading with a mixing roll.
  • the temperature of the interlayer film for laminated glass was 80 ° C.
  • the temperature of the roll was 145 ° C.
  • the linear velocity was 10 m / min
  • the press linear pressure was 0 to 200 kN / m.
  • corrugation which the bottom part continued was provided to the surface of the intermediate film for laminated glasses by the following procedure.
  • a pair of rolls composed of a metal roll milled on a surface using a triangular oblique mill and a rubber roll having a JIS hardness of 45 to 75 is used as a concavo-convex shape transfer device, and a random concavo-convex shape is formed in the first step.
  • the transferred intermediate film for laminated glass is passed through this uneven shape transfer device, and concave portions having a groove shape (engraved line shape) with a continuous bottom are formed on the first surface of the intermediate film for laminated glass at equal intervals. Irregularities were added.
  • the temperature of the interlayer film for laminated glass was set to room temperature 80 ° C., the roll temperature 140 ° C., the linear velocity 10 m / min, and the press pressure 0 to 500 kPa.
  • the same operation was performed on the second surface of the interlayer film for laminated glass to give a groove-shaped (engraved) recess having a continuous bottom.
  • the thickness of the intermediate film for laminated glasses was measured, the thickness of 870 micrometers was shown.
  • Examples 2 to 27, Comparative Examples 1 and 2 The Ry and Sm of the first surface and the second surface have the values described in Tables 1 to 4, and the thickness of the interlayer film for laminated glass after the formation of the recesses has the values described in Tables 1 to 4.
  • the types of blasting materials used in the first step and the second step the temperature of the interlayer film for laminated glass, the temperature of the roll, the linear velocity, the press linear pressure, and the press pressure were adjusted. In the same manner as in Example 1, an interlayer film for laminated glass was produced.
  • Example 28 (1) Preparation of resin composition Polyvinyl butyral obtained by acetalizing polyvinyl alcohol having an average degree of polymerization of 1700 with n-butyraldehyde (acetyl group amount 1 mol%, butyral group amount 69 mol%, hydroxyl group amount 30) 40 parts by mass of triethylene glycol-di-2-ethylhexanoate (3GO) as a plasticizer was added to 100 parts by mass of (mol%).
  • the resin composition was obtained by sufficiently kneading with a mixing roll.
  • Example 29 The Ry and Sm of the first surface and the second surface are the values described in Table 3, and the thickness of the interlayer film for laminated glass after the formation of the recesses is the value described in Table 3. Except that the type of blasting material used in the first step and the second step, the temperature of the interlayer film for laminated glass, the temperature of the roll, the linear velocity, the press linear pressure, and the press pressure were adjusted, the same as in Example 1. Thus, an interlayer film for laminated glass was produced.
  • Example 30 Until the first step of providing the concave portion, the concave portion was provided to the interlayer film for laminated glass by the same method as in Example 28. Thereafter, as a second step of providing the concave portions, groove-shaped irregularities with continuous bottom portions were provided on the surface of the interlayer film for laminated glass provided with the first shape by the following procedure.
  • the intermediate film for use was passed through this uneven shape transfer device, and the first surface of the intermediate film for laminated glass was provided with unevenness formed at equal intervals in parallel with a groove shape having a continuous bottom.
  • the temperature of the interlayer film for laminated glass was adjusted to 70 ° C., the roll temperature to 140 ° C., the linear velocity to 10 m / min, and the press linear pressure to 1 to 100 kN / m.
  • the same operation was performed on the second surface of the interlayer film for laminated glass to give a groove-shaped recess having a continuous bottom.
  • the intersection angle between the groove-shaped (engraved) concave portion with the bottom applied to the first surface and the groove-shaped (engraved) concave portion with the bottom applied to the second surface is It was set to 20 °.
  • the thickness of the interlayer film for laminated glass was measured, it showed a thickness of 1000 ⁇ m.
  • Example 31 In order that Ry and Sm of the first surface and the second surface have the values described in Table 4, and that the thickness of the interlayer film for laminated glass after the formation of the recesses has the values described in Table 4, Except that the type of blasting material used in the first step and the second step, the temperature of the interlayer film for laminated glass, the temperature of the roll, the linear velocity, the press linear pressure, and the press pressure were adjusted, the same as in Example 1. Thus, an interlayer film for laminated glass was produced.
  • Example 32 (1) Preparation of resin composition Polyvinyl butyral obtained by acetalizing polyvinyl alcohol having an average degree of polymerization of 1700 with n-butyraldehyde (acetyl group amount 1 mol%, butyral group amount 69 mol%, hydroxyl group amount 30) 40 parts by mass of triethylene glycol-di-2-ethylhexanoate (3GO) as a plasticizer was added to 100 parts by mass of (mol%).
  • the resin composition was obtained by sufficiently kneading with a mixing roll.
  • the temperature of the interlayer film for laminated glass was 80 ° C.
  • the temperature of the roll was 145 ° C.
  • the linear velocity was 10 m / min
  • the press linear pressure was 0 to 200 kN / m.
  • corrugation which the bottom part continued was provided to the surface of the intermediate film for laminated glasses by the following procedure.
  • a pair of rolls composed of a metal roll milled on a surface using a triangular oblique mill and a rubber roll having a JIS hardness of 45 to 75 is used as a concavo-convex shape transfer device, and a random concavo-convex shape is formed in the first step.
  • the transferred intermediate film for laminated glass is passed through this uneven shape transfer device, and concave portions having a groove shape (engraved line shape) with a continuous bottom are formed on the first surface of the intermediate film for laminated glass at equal intervals. Irregularities were added.
  • the temperature of the interlayer film for laminated glass was set to room temperature 80 ° C., the roll temperature 140 ° C., the linear velocity 10 m / min, and the press pressure 0 to 500 kPa.
  • the same operation was performed on the second surface of the interlayer film for laminated glass to give a groove-shaped (engraved) recess having a continuous bottom.
  • Examples 33 to 49, Comparative Examples 4 to 5 The thicknesses of the thickest and thinnest portions of the interlayer film for laminated glass after providing the recesses are set so that Ry and Sm of the first surface and the second surface are the values described in Tables 5 to 9.
  • the types of blasting materials used in the first step and the second step, the temperature of the interlayer film for laminated glass, the temperature of the roll, the linear velocity, the pressing linear pressure, and the pressing pressure are set so that the values described in 5 to 9 are obtained.
  • An interlayer film for laminated glass was produced in the same manner as in Example 32 except for adjusting.
  • Example 50 (1) Preparation of resin composition Polyvinyl butyral obtained by acetalizing polyvinyl alcohol having an average degree of polymerization of 1700 with n-butyraldehyde (acetyl group amount 1 mol%, butyral group amount 69 mol%, hydroxyl group amount 30) 40 parts by mass of triethylene glycol-di-2-ethylhexanoate (3GO) as a plasticizer was added to 100 parts by mass of (mol%).
  • the resin composition was obtained by sufficiently kneading with a mixing roll.
  • the end portion where the entire thickness of the interlayer film for laminated glass is thin is low temperature
  • the end portion where the thickness of the entire interlayer film is thick is the high temperature side.
  • the temperature gradient was set so as to be adjusted, and the gap of the lip as a lip mold was adjusted in the range of 1.0 to 4.0 mm, and the line speed was adjusted to 10 m / min.
  • the second step of providing the concave portions groove-shaped irregularities with continuous bottom portions were provided on the surface of the interlayer film for laminated glass provided with the first shape by the following procedure.
  • the intermediate film for use was passed through this uneven shape transfer device, and the first surface of the intermediate film for laminated glass was provided with unevenness formed at equal intervals in parallel with a groove shape having a continuous bottom.
  • the temperature of the interlayer film for laminated glass was adjusted to 70 ° C., the roll temperature to 140 ° C., the linear velocity to 10 m / min, and the press linear pressure to 1 to 100 kN / m.
  • the same operation was performed on the second surface of the interlayer film for laminated glass to give a groove-shaped recess having a continuous bottom.
  • the intersection angle between the groove-shaped (engraved) concave portion with the bottom applied to the first surface and the groove-shaped (engraved) concave portion with the bottom applied to the second surface is It was set to 20 °.
  • Example 51 The thickness of the thickest part and the thinnest part of the interlayer film for laminated glass after the provision of the recesses is set so that Ry and Sm of the first face and the second face have the values shown in Table 9.
  • the temperature of the interlayer film for laminated glass, the temperature of the roll, the linear velocity, the press linear pressure, and the press pressure so that the value of Produced an interlayer film for laminated glass in the same manner as in Example 32.
  • Example 52 (1) Preparation of resin composition for protective layer Polyvinyl butyral obtained by acetalizing polyvinyl alcohol having an average polymerization degree of 1700 with n-butyraldehyde (acetyl group content 1 mol%, butyral group content 69 mol%, The resin for the protective layer is obtained by adding 36 parts by mass of triethylene glycol-di-2-ethylhexanoate (3GO) as a plasticizer to 100 parts by mass of the hydroxyl group (30 mol%) and thoroughly kneading with a mixing roll. A composition was obtained.
  • 3GO triethylene glycol-di-2-ethylhexanoate
  • resin composition for sound insulation layer Polyvinyl butyral obtained by acetalizing polyvinyl alcohol having an average polymerization degree of 2300 with n-butyraldehyde (acetyl group content 12 mol%, butyral group content 66 mol%, A resin for sound insulation layer is added by adding 78 parts by mass of triethylene glycol-di-2-ethylhexanoate (3GO) as a plasticizer to 100 parts by mass of hydroxyl group (22 mol%), and kneading thoroughly with a mixing roll. A composition was obtained.
  • 3GO triethylene glycol-di-2-ethylhexanoate
  • the obtained protective layer resin composition and sound insulation layer resin composition are obtained by using the protective layer, the sound insulation layer, the protective layer, and the overall cross-sectional shape, maximum thickness and minimum of the interlayer film.
  • the maximum thickness and the minimum thickness of the protective layer are the total maximum thickness and minimum thickness of the two protective layers.
  • the interlayer film for laminated glass after the concave portion was provided was cut perpendicularly in the film thickness direction using a razor blade (Feather Safety Razor Co., Ltd., feather razor S single blade, product number FAS-10), and the cross section thereof was micronized. Observation was performed using a scope (Olympus, DSX-100). Using the measurement software in the microscope attached software, the distance between the interface of the protective layer and the sound insulation layer was measured, and this was used as the sound insulation layer thickness. The environment at the time of measurement was 23 ° C. and 30 RH%.
  • Examples 53 to 56 Comparative Example 7
  • the composition and content of polyvinyl butyral used for the protective layer and the sound insulation layer, the composition and content of the plasticizer, the Ry and Sm of the first surface and the second surface are the values described in Table 10, and
  • the type of blasting material used in the first step and the second step, the temperature of the interlayer film for laminated glass, and the temperature of the roll so that the thickness of the interlayer film for laminated glass after application of is the value described in Table 10
  • An interlayer film for laminated glass was produced in the same manner as in Example 52 except that the linear velocity, the press linear pressure, and the press pressure were adjusted.
  • Measurement samples of interlayer films for laminated glass having a wedge-shaped cross section in Examples 32 to 51 and Comparative Examples 4 to 6 were prepared by the following procedure.
  • an interlayer film for glass was cut out to a size of 15 cm in length and 15 cm in width.
  • the size is 15 cm long and 15 cm wide so that it passes through the center of the interlayer film for laminated glass cut out through the thickness measurement point of the thickest part and parallel to the extrusion direction. Then, an interlayer film for glass was cut out.
  • the intermediate film for glass is adjusted to 15 cm in length and 15 cm in width so that a line passing through the thickness measurement point of the thinnest part and parallel to the extrusion direction passes through the center. was cut out.
  • the interlayer film for laminated glass was cut out so as to be in contact with the film end.
  • the thickness T of the film is determined by using a constant pressure thickness measuring instrument (manufactured by Ozaki Mfg. Co., Ltd., FFD-2) according to JIS K-6732 (1996).
  • the thickest point was defined as the thickness T of the thickest part of the film.
  • the thickness of the film is measured every 5 cm from one end to the other end. The measurement was performed in the same manner as in Examples 32 to 51 and Comparative Examples 4 to 6, except that the average value was the film thickness.
  • the maximum height roughness Ry of the thickest part is measured on the first surface and the second surface on a line parallel to the extrusion method through the measurement point of the thickest part in the measurement sample.
  • Ry (Ave) and Ry (Max) were calculated from each Ry obtained by performing the same operation on all the samples cut out for evaluation.
  • the interval Sm between the recesses is the first on the line parallel to the extrusion method, passing through the measurement point of the thickest portion in the interlayer film for laminated glass cut into a size of 15 cm in length and 15 cm in width as a measurement sample.
  • Each of the surface and the second surface was measured, and the average value (Sm (Ave)) of each Sm obtained by performing the same operation for all the samples cut out for evaluation was calculated.
  • the rubber bag was connected to a suction decompressor and heated, and at the same time under a reduced pressure of ⁇ 600 mmHg, After heating for 14 minutes so that the glass surface temperature (preliminary pressure bonding temperature) of the laminated body becomes 90 ° C., the glass is cooled until the glass surface temperature of the laminated body reaches 40 ° C., and then returned to atmospheric pressure to perform preliminary pressure bonding. Ended.
  • the parallel light transmittance was evaluated by the following method for the laminated body after the preliminary pressure bonding. That is, in accordance with JIS R 3106 K 7105, the parallel light transmittance Tp (%) of the laminate after the pre-compression bonding was measured using a haze meter (manufactured by Murakami Color Research Laboratory Co., Ltd., HM-150). The measurement position was a central portion where two diagonals of the laminate intersect, and five points that were 4.64 cm away from each vertex of the laminate in the diagonal direction, and the average value was Tp. In addition, the measurement was performed about the sample cut out from the laminated body at 5 cm x 5 cm or more centering on the measurement point.
  • the interlayer film for laminated glass of the measurement sample is sandwiched between two clear glass plates (length 15 cm x width 15 cm x thickness 2.5 mm), and the protruding part is cut off.
  • the laminated glass structure (laminated body) thus obtained was preheated for 10 minutes in an oven preheated to 50 ° C. Transfer to a rubber bag preheated to 50 ° C, connect the rubber bag to a suction pressure reducer, and maintain the temperature of the laminated glass structure (laminate) at 50 ° C at -600 mmHg for 5 minutes. After reducing the pressure, the pressure was returned to atmospheric pressure to obtain a pre-pressed laminate.
  • the pre-pressed laminated glass structure (laminated body) is put in an autoclave, and after raising the pressure to 13 atm (1300 kpa), the temperature is raised to 140 ° C. and held for 20 minutes, and then the temperature is lowered to 50 ° C. The pressure bonding was finished by returning to, and a laminated glass was produced.
  • the obtained laminated glass was stored at 23 ° C. for 24 hours after the main pressure bonding, and then heated in an oven at 140 ° C. for 2 hours. Subsequently, after taking out from oven and leaving still at 23 degreeC for 24 hours, the external appearance of the laminated glass was observed visually. The number of tests was five.
  • the number of air bubbles generated inside 1 cm from the edge of the laminated glass was examined, and deaeration was evaluated according to the following criteria.
  • The number of bubbles generated is 3 or less
  • The same evaluation is performed by increasing the preheating temperature and rubber back temperature of the laminated glass structure in which the number of bubbles exceeds 3 from 50 ° C. to 5 ° C. The lowest temperature at which the evaluation is 0 was taken as the seal temperature.
  • the sealing performance when the laminated glass was produced using the interlayer film for laminated glass was evaluated as follows. ⁇ : Seal temperature is 75 ° C or lower ⁇ : Seal temperature exceeds 75 ° C
  • an interlayer film for glass and a laminated glass formed using the interlayer film for laminated glass can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、最厚部の厚みが850μm以上の厚い合わせガラス用中間膜であっても、合わせガラス製造時に充分な脱気性を発揮し、透明性の高い合わせガラスを得ることができる合わせガラス用中間膜、及び、該合わせガラス用中間膜を用いてなる合わせガラスを提供することを目的とする。 本発明は、少なくとも一方の表面に多数の凹部を有する合わせガラス用中間膜であって、JIS K-6732(1996)に準拠して測定される膜の最厚部の厚みT(μm)と、JIS B-0601(1994)に準拠して測定される最厚部の最大高さ粗さRy(μm)が下記式(1)及び下記式(1')を満たす合わせガラス用中間膜である。 Ry ≧ 0.020×T + 16.6 (1) T≧850 (1')

Description

合わせガラス用中間膜及び合わせガラス
本発明は、最厚部の厚みが850μm以上の厚い合わせガラス用中間膜であっても、合わせガラス製造時に充分な脱気性を発揮し、透明性の高い合わせガラスを得ることができる合わせガラス用中間膜、及び、該合わせガラス用中間膜を用いてなる合わせガラスに関する。
合わせガラスは、外部衝撃を受けて破損してもガラスの破片が飛散することが少なく安全であるため、自動車等の車両のフロントガラス、サイドガラス、リアガラスや、航空機、建築物等の窓ガラス等として広く使用されている。合わせガラスとして、少なくとも一対のガラス間に、例えば、液状可塑剤とポリビニルアセタールとを含む合わせガラス用中間膜を介在させ、一体化させた合わせガラス等が挙げられる。
合わせガラスの製造では、通常、少なくとも2枚のガラス板の間に合わせガラス用中間膜が積層された積層体を、ニップロールを通して扱くか(扱き脱気法)、又は、ゴムバッグに入れて減圧吸引し(真空脱気法)、ガラス板と中間膜との間に残留する空気を脱気しながら予備圧着する。次いで、予備圧着後の積層体を、例えばオートクレーブ内で加熱加圧して本圧着を行うことにより合わせガラスが製造される。合わせガラスの製造工程においては、ガラスと合わせガラス用中間膜とを積層する際の脱気性が重要である。合わせガラス用中間膜の少なくとも一方の表面には、合わせガラス製造時の脱気性を確保する目的で、微細な凹部が形成されている。
近年、合わせガラスに求められる性能も多様化し、該性能を満足するために合わせガラス用中間膜の構造も複雑化している。例えば、厚み方向の断面を楔形状とすることで、合わせガラスをヘッドアップディスプレイとして利用可能になる楔形中間膜(例えば、特許文献1)や、遮音層と保護層とを組み合わせることで遮音性能を発揮する遮音中間膜(例えば、特許文献2)や、これらを組み合わせることで両方の性能を発揮する中間膜等が検討されている。
このように構造が複雑化した合わせガラス用中間膜では、組み合わせる樹脂層の数が増えてしまうことから、合わせガラス用中間膜全体の厚みが増加する傾向にあり、最厚部の厚みが850μm以上となるものもある。しかしながら、このような厚い合わせガラス用中間膜では、合わせガラスを製造する際の脱気性が低下して、得られる合わせガラスの透明性が低下してしまうことがあるという問題があった。
国際公開第2007/132777号 特開2007-331959号公報
本発明は、上記現状に鑑み、最厚部の厚みが850μm以上の厚い合わせガラス用中間膜であっても、合わせガラス製造時に充分な脱気性を発揮し、透明性の高い合わせガラスを得ることができる合わせガラス用中間膜、及び、該合わせガラス用中間膜を用いてなる合わせガラスを提供することを目的とする。
本発明は、少なくとも一方の表面に多数の凹部を有する合わせガラス用中間膜であって、JIS K-6732(1996)に準拠して測定される膜の最厚部の厚みT(μm)と、JIS B-0601(1994)に準拠して測定される最厚部の最大高さ粗さRy(μm)が下記式(1)及び下記式(1’)を満たす合わせガラス用中間膜である。
Ry ≧ 0.020×T + 16.6 (1)
T≧850 (1’)
以下に本発明を詳述する。
本発明者らは、最厚部の厚みが850μm以上の厚い合わせガラス用中間膜を用いて合わせガラスを製造する際にでも、充分な脱気性が発揮される条件を詳細に検討した。その結果、JIS K-6732(1996)に準拠して測定される膜の最厚部の厚みT(μm)(以下、単に「膜の最厚部の厚みT」ともいう。)と、JIS B-0601(1994)に準拠して測定される最厚部の最大高さ粗さRy(μm)(以下、単に「最厚部の最大高さ粗さRy」ともいう。)が一定の関係を満たす場合に、充分な脱気性が発揮され、透明性の高い合わせガラスを製造できることを見出し、本発明を完成した。
本発明の合わせガラス用中間膜は、少なくとも一方の表面に、多数の凹部を有する。該凹部は、合わせガラスの製造において、脱気性を確保する役割を有する。
上記凹部は、底部が連続した溝形状を有し、隣接する凹部が平行して規則的に形成されていることが好ましい。一般に、2枚のガラス板の間に合わせガラス用中間膜が積層された積層体を予備圧着及び本圧着するときの空気の抜け易さは、上記凹部の底部の連通性及び平滑性と密接な関係がある。中間膜の少なくとも一方の面の凹部の形状を、底部が連続した溝形状である凹部が平行して規則的に形成することにより、上記の底部の連通性はより優れ、予備圧着及び本圧着の際に著しく脱気性が向上する。
なお、「規則的に形成されている」とは、隣接する上記凹部が平行して等間隔に形成されていてもよく、隣接する上記凹部が平行して形成されているが、すべての隣接する上記凹部の間隔が等間隔でなくともよいことを意味する。
図1及び図2に、表面に底部が連続した溝形状である凹部が等間隔、かつ、隣接する凹部が平行して形成されている合わせガラス用中間膜の一例を表す模式図を示した。
本発明の合わせガラス用中間膜は、上記膜の最厚部の厚みTと上記最厚部の最大高さ粗さRyが上記式(1)及び上記式(1’)を満たす。
なお、上記式(1)及び下記の式(2)において、Ryは、合わせガラス用中間膜の第1の表面のRyと、第1の表面とは反対側の第2の表面のRyとの平均値(以下、「Ry(Ave)」ともいう。)である。
本発明者らは、従来の膜厚が厚い合わせガラス用中間膜では、合わせガラスの脱気工程において、合わせガラスの周縁部の圧力が増大する傾向にあり、膜の周縁部とガラスとの密着が早期に行われるため、充分に脱気が完了しない状態で合わせガラスが得られてしまうことにより、脱気後の透明度が悪化していると推測した。そこで、膜の最厚部の厚みTと最厚部の最大高さ粗さRyが上記式(1)及び上記式(1’)を満足すれば、膜の周縁部とガラスとの密着が早期に行われることを防止でき、脱気後の透明度が充分に高い合わせガラスを得ることができることを見出した。
上記式(1’)に示したように、上記膜の最厚部の厚みTは850μm以上である。本願発明の優れた効果は、上記膜の最厚部の厚みTが850μm以上である場合に発揮される。上記膜の最厚部の厚みTは860μm以上であることが好ましい。より好ましくは900μm以上、更に好ましくは910μm以上、特に好ましくは1000μm以上、最も好ましくは1100μm以上である。上記膜の最厚部の厚みTの上限は特に限定されないが、合わせガラス用中間膜の取扱性が充分に向上することから、本発明の合わせガラス用中間膜全体の最大厚みは、2800μm以下であることが好ましい。
なお、本発明の優れた効果は、本発明の合わせガラス用中間膜が、例えば厚み方向の断面が楔形状の合わせガラス用中間膜である場合にでも、膜の厚みが850μm以上である領域において発揮される。
本発明の合わせガラス用中間膜は、最薄部の厚みが750μm以上であることが好ましい。上記最薄部の厚みが750μm以上であることにより、最厚部と最薄部の厚みの差を少なくすることができる。これにより、合わせガラスの周縁部にかかる圧力を分散させることができ、より一層膜の周縁部とガラスとの密着が早期に行われることを防止でき、脱気後の透明度がより一層充分に高い合わせガラスを得ることができる、上記最薄部の厚みは800μm以上であることがより好ましく、850μm以上であることが更に好ましく、860μm以上であることが特に好ましく、900μm以上であることが最も好ましい。
本発明の合わせガラス用中間膜は、更に、下記式(2)を満たすことが好ましい。
Ry ≧ 0.025×T + 14.0 (2)
上記膜の最厚部の厚みTと上記最厚部の最大高さ粗さRyが上記式(2)を満たす場合に、合わせガラス製造時に充分な脱気性を発揮し、予備圧着後の積層体の透明度を更により一層向上させることができる。
本発明の合わせガラス用中間膜は、更に、下記式(3)を満たすことが好ましい。
Ry ≦ 0.0195×T + 33.2 (3)
なお、上記式(3)及び下記の式(4)において、Ryは、合わせガラス用中間膜の第1の表面のRyと、第1の表面とは反対側の第2の表面のRyとのいずれか大きい方のRy(以下、「Ry(Max)」ともいう。)である。
本発明者らは、従来の膜厚が厚い合わせガラス用中間膜では、合わせガラスの脱気工程において、合わせガラスの周縁部の圧力が増大する傾向にあり、膜の周縁部とガラスとの密着が早期に行われるため、充分に脱気が完了しない状態で合わせガラスが得られてしまうことにより、脱気後の透明度が悪化していると推測した。一方で、脱気性を充分に向上させるためにRyのみを高くすると、合わせガラスの中央部の脱気が充分に行われた後でも、膜とガラスとの密着までの時間が遅くなり、生産効率が悪くなると推測した。そこで、膜の最厚部の厚みTと最厚部の最大高さ粗さRyが上記式(3)を満足すれば、脱気が充分に行われた後で、速やかに膜とガラスとの密着が行われ、合わせガラスの生産効率を向上可能な合わせガラス用中間膜を得ることができる。
本発明の合わせガラス用中間膜は、更に、下記式(4)を満たすことが好ましい。
Ry ≦ 0.0159×T + 32.2 (4)
上記膜の最厚部の厚みTと上記最厚部の最大高さ粗さRyが上記式(4)を満たす場合に合わせガラスの生産効率を更により一層向上させることができる、合わせガラス用中間膜を得ることができる。
上記膜の最厚部の厚みTは、JIS K-6732(1996)に準拠して測定される。具体的には、定圧厚み測定器(例えば、尾崎製作所社製、FFD-2等)を用い、サンプルとなる合わせガラス用中間膜の押し出し方向とは垂直に、一方の端部から他方の端部まで5cm毎に厚みを計測する。測定は、温度23℃、湿度30RH%の環境下で行う。
なお、膜の最厚部の厚みTは、上記方法により膜の厚みを測定したときに、最も厚い点の厚みを意味する。
合わせガラス用中間膜における、合わせガラス用中間膜製造時の押し出し方向は、例えば、以下の方法によって確認することができる。
即ち、合わせガラス用中間膜を140℃の恒温槽に30分保管した後、フィルムの平行方向と垂直方向の収縮率が大きいほうが押し出し方向であることにより確認することができる。他にも、該合わせガラス用中間膜のロール状体の巻取り方向によって確認することができる。これは、合わせガラス用中間膜のロール状体は、合わせガラス用中間膜製造時の膜の押し出し方向に巻き取られることから、ロール状体の巻取方向と、合わせガラス用中間膜製造時の膜の押し出し方向とが同一であることによる。
上記最厚部の最大高さ粗さRyは、JIS B-0601(1994)に準拠して測定される。
具体的には、測定方向は底部が連続した溝形状に対して垂直方向、メルトフラクチャーを利用して成型されたエンボスの場合は、押し出し方向に対して平行とし、カットオフ値=2.5mm、基準長さ=2.5mm、予備長さ2.5mm、評価長さ=12.5mm、触針の先端半径=2μm、先端角度=60°、測定速度=0.5mm/sの条件で測定を行う。測定は、温度23℃、湿度30RH%の環境下で行う。
また、上記最厚部の最大高さ粗さRyは、測定用サンプルとして縦15cm、横15cmの大きさに切り出した合わせガラス用中間膜の中で、最厚部の測定点を通り、押し出し方法に対して平行な線上を第一の表面、第二の表面それぞれを3点測定し、評価のために切り出した全てのサンプルについて同様の操作を行って得られた各Ryの平均値を算出する。
予備圧着後の積層体の平行光線透過率Tpの測定方法について詳しく説明する。
まず、測定用サンプルとして、縦15cm、横15cmの大きさに合わせガラス用中間膜を切り出す。ここで、最厚部での測定には、最厚部の厚み測定点を通る、押し出し方向に対して平行な線が切り出した合わせガラス用中間膜の中央を通るように、縦15cm、横15cmの大きさに合わせガラス用中間膜を切り出す(図3(a)、(b))。一方、最薄部での測定には、最薄部の厚み測定点を通る、押し出し方向に対して平行な線が中央を通るように、縦15cm、横15cmの大きさに合わせガラス用中間膜を切り出す。ただし、最厚部及び最薄部が、膜端部から7.5cm以内の位置にある場合は、膜端部に接するように合わせガラス用中間膜を切り出す(図3(c))。
次いで、切り出した測定サンプルの合わせガラス用中間膜を二枚のクリアガラス板(縦15cm×横15cm×厚さ2.5mm)の間に挟み、はみ出た部分を切り取り、積層体を得る。得られた積層体をガラスの表面温度が30℃になるまでオーブン内で予備加熱した後、ゴムバッグ内に移し、ゴムバッグを吸引減圧機に接続し、加熱すると同時に-600mmHgの減圧下で、14分間後に積層体のガラスの表面温度(予備圧着温度)が90℃となるように加熱した後、積層体のガラスの表面温度が40℃になるまで冷却した後に、大気圧に戻して予備圧着を終了する。
次いで、予備圧着後の積層体について、以下の方法により平行光線透過率を評価する。
即ち、JIS R 3106 K 7105に準拠して、予備圧着後の積層体の平行光線透過率Tp(%)を、ヘーズメーター(例えば、村上色彩技術研究所社製、HM-150)を用いて測定する。
測定位置は積層体の2つの対角線が交差する中央部、積層体の各頂点から対角線方向に5.64cm離れた4点を合わせた5点として、その平均値をTpとする。
なお、測定は、上記測定点を中心に5cm×5cm以上で積層体から切り出したサンプルについて行う(図4)。
シール温度の測定方法について詳しく説明する。
合わせガラス用中間膜を二枚のクリアガラス板(縦15cm×横15cm×厚さ2.5mm)の間に挟み、はみ出た部分を切り取り、こうして得られた合わせガラス構成体(積層体)をあらかじめ50℃に加熱したオーブン中で10分間予備加熱する。50℃に予備加熱したゴムバッグ内に移し、ゴムバッグを吸引減圧機に接続し、合わせガラス構成体(積層体)の温度(予備圧着温度)を50℃に維持したまま、-600mmHgで5分間減圧した後、大気圧に戻して予備圧着積層体を得る。
予備圧着された合わせガラス構成体(積層体)をオートクレーブ中に入れ、13atm(1300kpa)に昇圧後、温度140℃に昇温し20分間保持した後、50℃まで温度を下げた後、大気圧に戻すことにより本圧着を終了して、合わせガラスを作製する。
得られた合わせガラスを本圧着後23℃で24時間保管した後に、140℃のオーブン中で2時間加熱する。次いで、オーブンから取り出して23℃24時間静置した後、合わせガラスの外観を目視で観察する。テスト枚数は5枚とする。
合わせガラスの端部から1cmよりも内側に気泡が生じた枚数を調べて、以下の基準により脱気性を評価する。
○:気泡が生じた枚数が3枚以下
×:気泡が生じた枚数が3枚を超える
合わせガラス構成体の予備加熱温度、ゴムバック温度を50℃から5℃ずつ増加させて同様の評価を行い、評価が〇となる最低温度をシール温度とする。
得られるシール温度をもとに、合わせガラス用中間膜を用いて合わせガラスを製造したときのシール性を以下のように評価する。
○:シール温度が75℃以下
×:シール温度が75℃を超える
本発明の合わせガラス用中間膜の表面の凹部が、底部が連続した溝形状を有し、隣接する凹部が平行して規則的に形成されている場合、該凹部の間隔Smは100μm以上が好ましく、200μm以上がより好ましく、600μm以下であることが好ましく、450μm以下であることがより好ましく、300μm以下であることが更に好ましい。上記凹部の間隔Smがこの範囲内であると、優れた脱気性を発揮することができる。
なお、本明細書において凹部の間隔Smは、JIS B-0601(1994)に準じる方法により測定される。なお、測定方向は底部が連続した溝形状に対して垂直方向、メルトフラクチャーを利用して成型されたエンボスの場合は、押し出し方向に対して平行とし、カットオフ値=2.5mm、基準長さ=2.5mm、予備長さ2.5mm、評価長さ=12.5mm、触針の先端半径=2μm、先端角度=60°、測定速度=0.5mm/sの条件で測定を行う。測定は、温度23℃、湿度30RH%の環境下で行う。
また、上記凹部の間隔Smは、測定用サンプルとして縦15cm、横15cmの大きさに切り出した合わせガラス用中間膜の中で、最厚部の測定点を通り、押し出し方法に対して平行な線上を第一の表面、第二の表面それぞれを測定し、評価にために切り出した全てのサンプルについて同様の操作を行って得られた各Smの平均値を算出する。
上記凹部の最大粗さ(Ry)の好ましい下限は20μm、より好ましくは30μm、更に好ましくは40μmである。上記凹部の最大粗さ(Ry)の好ましい上限は80μm、より好ましい上限は65μmである。上記凹部の溝深さ(Ry)をこの範囲内とすることにより、予備圧着及び本圧着の際の脱気性をより向上させることができ、
なお、本明細書において凹部の溝深さ(Ry)とは、JIS B-0601(1994)「表面粗さ-定義及び表示」に規定される。また、上記凹部の最大粗さ(Ry)は、表面粗さ測定器(小坂研究所製「SE1700α」)を用いて測定されるデジタル信号をデータ処理することによって容易に得られる。
本発明の合わせガラス用中間膜は、熱可塑性樹脂を含むことが好ましい。
上記熱可塑性樹脂として、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ化ビニリデン-六フッ化プロピレン共重合体、ポリ三フッ化エチレン、アクリロニトリル-ブタジエン-スチレン共重合体、ポリエステル、ポリエーテル、ポリアミド、ポリカーボネート、ポリアクリレート、ポリメタクリレート、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリスチレン、ポリビニルアセタール、エチレン-酢酸ビニル共重合体等が挙げられる。なかでも、ポリビニルアセタール、又は、エチレン-酢酸ビニル共重合体が好ましく、ポリビニルアセタールがより好ましい。
上記ポリビニルアセタールは、例えば、ポリビニルアルコールをアルデヒドによりアセタール化することにより製造できる。上記ポリビニルアルコールは、例えば、ポリ酢酸ビニルをけん化することにより製造できる。上記ポリビニルアルコールのけん化度は、一般に70~99.8モル%の範囲内である。
上記ポリビニルアルコールの平均重合度は、好ましくは200以上、より好ましくは500以上、更に好ましくは1700以上、特に好ましくは1700を超え、好ましくは5000以下、より好ましくは4000以下、更に好ましくは3000以下、特に好ましくは3000未満である。上記平均重合度が上記下限以上であると、合わせガラスの耐貫通性がより一層高くなる。上記平均重合度が上記上限以下であると、中間膜の成形が容易になる。
なお、上記ポリビニルアルコールの平均重合度は、JIS K6726「ポリビニルアルコール試験方法」に準拠した方法により求められる。
上記ポリビニルアセタールに含まれているアセタール基の炭素数は特に限定されない。上記ポリビニルアセタールを製造する際に用いるアルデヒドは特に限定されない。上記ポリビニルアセタールにおけるアセタール基の炭素数の好ましい下限は3、好ましい上限は6である。上記ポリビニルアセタールにおけるアセタール基の炭素数が3以上であると、中間膜のガラス転移温度が充分に低くなり、また、可塑剤のブリードアウトを防止することができる。アルデヒドの炭素数を6以下とすることにより、ポリビニルアセタールの合成を容易にし、生産性を確保できる。上記炭素数が3~6のアルデヒドとしては、直鎖状のアルデヒドであってもよいし、分枝状のアルデヒドであってもよく、例えば、n-ブチルアルデヒド、n-バレルアルデヒド等が挙げられる。
上記アルデヒドは特に限定されない。上記アルデヒドとして、一般には、炭素数が1~10のアルデヒドが好適に用いられる。上記炭素数が1~10のアルデヒドとしては、例えば、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-バレルアルデヒド、2-エチルブチルアルデヒド、n-ヘキシルアルデヒド、n-オクチルアルデヒド、n-ノニルアルデヒド、n-デシルアルデヒド、ホルムアルデヒド、アセトアルデヒド及びベンズアルデヒド等が挙げられる。なかでも、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-ヘキシルアルデヒド又はn-バレルアルデヒドが好ましく、プロピオンアルデヒド、n-ブチルアルデヒド又はイソブチルアルデヒドがより好ましく、n-ブチルアルデヒドが更に好ましい。上記アルデヒドは、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記ポリビニルアセタールの水酸基の含有率(水酸基量)は、好ましくは10モル%以上、より好ましくは15モル%以上、更に好ましくは18モル%以上、好ましくは40モル%以下、より好ましくは35モル%以下である。上記水酸基の含有率が上記下限以上であると、中間膜の接着力がより一層高くなる。また、上記水酸基の含有率が上記上限以下であると、中間膜の柔軟性が高くなり、中間膜の取扱いが容易になる。
なお、上記ポリビニルアセタールの水酸基の含有率は、水酸基が結合しているエチレン基量を、主鎖の全エチレン基量で除算して求めたモル分率を百分率で示した値である。上記水酸基が結合しているエチレン基量は、例えば、JIS K6726「ポリビニルアルコール試験方法」に準拠して又はASTM D1396-92に準拠して、測定することにより求めることができる。
上記ポリビニルアセタールのアセチル化度(アセチル基量)は、好ましくは0.1モル%以上、より好ましくは0.3モル%以上、更に好ましくは0.5モル%以上、好ましくは30モル%以下、より好ましくは25モル%以下、更に好ましくは20モル%以下である。上記アセチル化度が上記下限以上であると、ポリビニルアセタールと可塑剤との相溶性が高くなる。上記アセチル化度が上記上限以下であると、中間膜及び合わせガラスの耐湿性が高くなる。
なお、上記アセチル化度は、主鎖の全エチレン基量から、アセタール基が結合しているエチレン基量と、水酸基が結合しているエチレン基量とを差し引いた値を、主鎖の全エチレン基量で除算して求めたモル分率を百分率で示した値である。上記アセタール基が結合しているエチレン基量は、例えば、JIS K6728「ポリビニルブチラール試験方法」に準拠して又はASTM D1396-92に準拠して測定できる。
上記ポリビニルアセタールのアセタール化度(ポリビニルブチラールの場合にはブチラール化度)は、好ましくは50モル%以上、より好ましくは53モル%以上、更に好ましくは60モル%以上、特に好ましくは63モル%以上、好ましくは85モル%以下、より好ましくは75モル%以下、更に好ましくは70モル%以下である。上記アセタール化度が上記下限以上であると、ポリビニルアセタールと可塑剤との相溶性が高くなる。上記アセタール化度が上記上限以下であると、ポリビニルアセタールを製造するために必要な反応時間が短くなる。
上記アセタール化度は、アセタール基が結合しているエチレン基量を、主鎖の全エチレン基量で除算して求めたモル分率を百分率で示した値である。
なお、上記アセタール化度は、JIS K6728「ポリビニルブチラール試験方法」に準拠した方法又はASTM D1396-92に準拠した方法により、アセチル化度と水酸基の含有率とを測定し、得られた測定結果からモル分率を算出し、次いで、100モル%からアセチル化度と水酸基の含有率とを差し引くことにより算出され得る。
本発明の合わせガラス用中間膜は、可塑剤を含有することが好ましい。
上記可塑剤としては、合わせガラス用中間膜に一般的に用いられる可塑剤であれば特に限定されず、例えば、一塩基性有機酸エステル、多塩基性有機酸エステル等の有機可塑剤や、有機リン酸化合物、有機亜リン酸化合物等のリン酸可塑剤等が挙げられる。
上記有機可塑剤として、例えば、トリエチレングリコール-ジ-2-エチルヘキサノエート、トリエチレングリコール-ジ-2-エチルブチレート、トリエチレングリコール-ジ-n-ヘプタノエート、テトラエチレングリコール-ジ-2-エチルヘキサノエート、テトラエチレングリコール-ジ-2-エチルブチレート、テトラエチレングリコール-ジ-n-ヘプタノエート、ジエチレングリコール-ジ-2-エチルヘキサノエート、ジエチレングリコール-ジ-2-エチルブチレート、ジエチレングリコール-ジ-n-ヘプタノエート等が挙げられる。なかでも、トリエチレングリコール-ジ-2-エチルヘキサノエート、トリエチレングリコール-ジ-2-エチルブチレート、又は、トリエチレングリコール-ジ-n-ヘプタノエートが好ましく、トリエチレングリコール-ジ-2-エチルヘキサノエートがより好ましい。
上記可塑剤の含有量は特に限定されないが、上記熱可塑性樹脂100質量部に対する好ましい下限は25質量部、より好ましい下限は30質量部であり、好ましい上限は80質量部、より好ましい上限は70質量部である。上記可塑剤の含有量が上記下限以上であると、合わせガラスの耐貫通性がより一層高くなる。上記可塑剤の含有量が上記上限以下であると、中間膜の透明性がより一層高くなる。
本発明の合わせガラス用中間膜は、接着力調整剤を含有することが好ましい。
上記接着力調整剤としては、例えば、アルカリ金属塩又はアルカリ土類金属塩が好適に用いられる。上記接着力調整剤として、例えば、カリウム、ナトリウム、マグネシウム等の塩が挙げられる。
上記塩を構成する酸としては、例えば、オクチル酸、ヘキシル酸、2-エチル酪酸、酪酸、酢酸、蟻酸等のカルボン酸の有機酸、又は、塩酸、硝酸等の無機酸が挙げられる。
本発明の合わせガラス用中間膜は、必要に応じて、酸化防止剤、光安定剤、接着力調整剤として変性シリコーンオイル、難燃剤、帯電防止剤、耐湿剤、熱線反射剤、熱線吸収剤、アンチブロッキング剤、帯電防止剤、顔料もしくは染料からなる着色剤等の添加剤を含有してもよい。
本発明の合わせガラス用中間膜は、単層の樹脂層からなるものであってもよく、厚み方向に2層以上の樹脂層を有する積層構造を有するものであってもよい。特に2層以上の樹脂層の積層構造を有する場合には、合わせガラス用中間膜全体の厚みが増加する傾向にあり、最厚部の厚みが850μm以上となりやすい。本願発明は、このような厚い合わせガラス用中間膜において効果を発揮する。
本発明の合わせガラス用中間膜では、2層以上の樹脂層として、少なくとも第1の樹脂層と第2の樹脂層とを有し、上記第1の樹脂層に含まれるポリビニルアセタール(以下、ポリビニルアセタールAという。)の水酸基量が、上記第2の樹脂層に含まれるポリビニルアセタール(以下、ポリビニルアセタールBという。)の水酸基量と異なることが好ましい。
ポリビニルアセタールAとポリビニルアセタールBとの性質が異なるため、1層だけでは実現が困難であった種々の性能を有する合わせガラス用中間膜を提供することができる。例えば、2層の上記第2の樹脂層の間に、上記第1の樹脂層が積層されており、かつ、ポリビニルアセタールAの水酸基量がポリビニルアセタールBの水酸基量より低い場合、上記第1の樹脂層は上記第2の樹脂層と比較してガラス転移温度が低くなる傾向にある。結果として、上記第1の樹脂層が上記第2の樹脂層より軟らかくなり、合わせガラス用中間膜の遮音性が高くなる。また、2層の上記第2の樹脂層の間に、上記第1の樹脂層が積層されており、かつ、ポリビニルアセタールAの水酸基量がポリビニルアセタールBの水酸基量より高い場合、上記第1の樹脂層は上記第2の樹脂層と比較してガラス転移温度が高くなる傾向にある。結果として、上記第1の樹脂層が上記第2の樹脂層より硬くなり、合わせガラス用中間膜の耐貫通性が高くなる。
更に、上記第1の樹脂層及び上記第2の樹脂層が可塑剤を含む場合、上記第1の樹脂層におけるポリビニルアセタール100質量部に対する可塑剤の含有量(以下、含有量Aという。)が、上記第2の樹脂層におけるポリビニルアセタール100質量部に対する可塑剤の含有量(以下、含有量Bという。)と異なることが好ましい。例えば、2層の上記第2の樹脂層の間に、上記第1の樹脂層が積層されており、かつ、上記含有量Aが上記含有量Bより多い場合、上記第1の樹脂層は上記第2の樹脂層と比較してガラス転移温度が低くなる傾向にある。結果として、上記第1の樹脂層が上記第2の樹脂層より軟らかくなり、合わせガラス用中間膜の遮音性が高くなる。また、2層の上記第2の樹脂層の間に、上記第1の樹脂層が積層されており、かつ、上記含有量Aが上記含有量Bより少ない場合、上記第1の樹脂層は上記第2の樹脂層と比較してガラス転移温度が高くなる傾向にある。結果として、上記第1の樹脂層が上記第2の樹脂層より硬くなり、合わせガラス用中間膜の耐貫通性が高くなる。
本発明の合わせガラス用中間膜を構成する2層以上の樹脂層の組み合わせとしては、例えば、合わせガラスの遮音性を向上させるために、上記第1の樹脂層として遮音層と、上記第2の樹脂層として保護層との組み合わせが挙げられる。合わせガラスの遮音性が向上することから、上記遮音層はポリビニルアセタールXと可塑剤とを含み、上記保護層はポリビニルアセタールYと可塑剤とを含むことが好ましい。更に、2層の上記保護層の間に、上記遮音層が積層されている場合、優れた遮音性を有する合わせガラス用中間膜(以下、遮音中間膜ともいう。)を得ることができる。
以下、遮音中間膜について、より具体的に説明する。
上記遮音中間膜において、上記遮音層は遮音性を付与する役割を有する。上記遮音層は、ポリビニルアセタールXと可塑剤とを含有することが好ましい。
上記ポリビニルアセタールXは、ポリビニルアルコールをアルデヒドによりアセタール化することにより調製することができる。上記ポリビニルアルコールは、通常、ポリ酢酸ビニルをけん化することにより得られる。
上記ポリビニルアルコールの平均重合度の好ましい下限は200、好ましい上限は5000である。上記ポリビニルアルコールの平均重合度を200以上とすることにより、得られる遮音中間膜の耐貫通性を向上させることができ、5000以下とすることにより、遮音層の成形性を確保することができる。上記ポリビニルアルコールの平均重合度のより好ましい下限は500、より好ましい上限は4000である。
なお、上記ポリビニルアルコールの平均重合度は、JIS K6726「ポリビニルアルコール試験方法」に準拠した方法により求められる。
上記ポリビニルアルコールをアセタール化するためのアルデヒドの炭素数の好ましい下限は4、好ましい上限は6である。アルデヒドの炭素数を4以上とすることにより、充分な量の可塑剤を安定して含有させることができ、優れた遮音性能を発揮することができる。また、可塑剤のブリードアウトを防止することができる。アルデヒドの炭素数を6以下とすることにより、ポリビニルアセタールXの合成を容易にし、生産性を確保できる。上記炭素数が4~6のアルデヒドとしては、直鎖状のアルデヒドであってもよいし、分枝状のアルデヒドであってもよく、例えば、n-ブチルアルデヒド、n-バレルアルデヒド等が挙げられる。
上記ポリビニルアセタールXの水酸基量の好ましい上限は30モル%である。上記ポリビニルアセタールXの水酸基量を30モル%以下とすることにより、遮音性を発揮するのに必要な量の可塑剤を含有させることができ、可塑剤のブリードアウトを防止することができる。上記ポリビニルアセタールXの水酸基量のより好ましい上限は28モル%、更に好ましい上限は26モル%、特に好ましい上限は24モル%、好ましい下限は10モル%、より好ましい下限は15モル%、更に好ましい下限は20モル%である。上記ポリビニルアセタールXの水酸基量は、水酸基が結合しているエチレン基量を、主鎖の全エチレン基量で除算して求めたモル分率を百分率(モル%)で表した値である。上記水酸基が結合しているエチレン基量は、例えば、JIS K6728「ポリビニルブチラール試験方法」に準拠した方法により、上記ポリビニルアセタールXの水酸基が結合しているエチレン基量を測定することにより求めることができる。
上記ポリビニルアセタールXのアセタール基量の好ましい下限は60モル%、好ましい上限は85モル%である。上記ポリビニルアセタールXのアセタール基量を60モル%以上とすることにより、遮音層の疎水性を高くして、遮音性を発揮するのに必要な量の可塑剤を含有させることができ、可塑剤のブリードアウトや白化を防止することができる。上記ポリビニルアセタールXのアセタール基量を85モル%以下とすることにより、ポリビニルアセタールXの合成を容易にし、生産性を確保することができる。上記ポリビニルアセタールXのアセタール基量の下限は65モル%がより好ましく、68モル%以上が更に好ましい。
上記アセタール基量は、JIS K6728「ポリビニルブチラール試験方法」に準拠した方法により、上記ポリビニルアセタールXのアセタール基が結合しているエチレン基量を測定することにより求めることができる。
上記ポリビニルアセタールXのアセチル基量の好ましい下限は0.1モル%、好ましい上限は30モル%である。上記ポリビニルアセタールXのアセチル基量を0.1モル%以上とすることにより、遮音性を発揮するのに必要な量の可塑剤を含有させることができ、ブリードアウトを防止することができる。また、上記ポリビニルアセタールXのアセチル基量を30モル%以下とすることにより、遮音層の疎水性を高くして、白化を防止することができる。上記アセチル基量のより好ましい下限は1モル%、更に好ましい下限は5モル%、特に好ましい下限は8モル%、より好ましい上限は25モル%、更に好ましい上限は20モル%である。上記アセチル基量は、主鎖の全エチレン基量から、アセタール基が結合しているエチレン基量と、水酸基が結合しているエチレン基量とを差し引いた値を、主鎖の全エチレン基量で除算して求めたモル分率を百分率(モル%)で表した値である。
特に、上記遮音層に遮音性を発揮するのに必要な量の可塑剤を容易に含有させることができることから、上記ポリビニルアセタールXは、上記アセチル基量が8モル%以上のポリビニルアセタール、又は、上記アセチル基量が8モル%未満、かつ、アセタール基量が65モル%以上のポリビニルアセタールであることが好ましい。また、上記ポリビニルアセタールXは、上記アセチル基量が8モル%以上のポリビニルアセタール、又は、上記アセチル基量が8モル%未満、かつ、アセタール基量が68モル%以上のポリビニルアセタールであることが、より好ましい。
上記遮音層における可塑剤の含有量は、上記ポリビニルアセタールX100質量部に対する好ましい下限が45質量部、好ましい上限が80質量部である。上記可塑剤の含有量を45質量部以上とすることにより、高い遮音性を発揮することができ、80質量部以下とすることにより、可塑剤のブリードアウトが生じて、合わせガラス用中間膜の透明性や接着性の低下を防止することができる。上記可塑剤の含有量のより好ましい下限は50質量部、更に好ましい下限は55質量部、より好ましい上限は75質量部、更に好ましい上限は70質量部である。
上記遮音層の厚み方向の断面形状が矩形状である場合には、厚さの好ましい下限は50μmである。上記遮音層の厚さを50μm以上とすることにより、充分な遮音性を発揮することができる。上記遮音層の厚さのより好ましい下限は80μmである。なお、上限は特に限定されないが、合わせガラス用中間膜としての厚さを考慮すると、好ましい上限は300μmである。
上記遮音層は一端と、上記一端の反対側に他端とを有し、上記他端の厚みが、上記一端の厚みよりも大きい形状を有していてもよい。上記遮音層は、厚み方向の断面形状が楔形状である部分を有することが好ましい。この場合、上記遮音層の最小厚みの好ましい下限は50μmである。上記遮音層の最小厚みを50μm以上とすることにより、充分な遮音性を発揮することができる。上記遮音層の最小厚みのより好ましい下限は80μmであり、更に好ましい下限は100μmである。なお、上記遮音層の最大厚みの上限は特に限定されないが、合わせガラス用中間膜としての厚さを考慮すると、好ましい上限は300μmである。上記遮音層の最大厚みのより好ましい上限は220μmである。
上記保護層は、遮音層に含まれる大量の可塑剤がブリードアウトして、合わせガラス用中間膜とガラスとの接着性が低下するのを防止し、また、合わせガラス用中間膜に耐貫通性を付与する役割を有する。
上記保護層は、例えば、ポリビニルアセタールYと可塑剤とを含有することが好ましく、ポリビニルアセタールXより水酸基量が大きいポリビニルアセタールYと可塑剤とを含有することがより好ましい。
上記ポリビニルアセタールYは、ポリビニルアルコールをアルデヒドによりアセタール化することにより調製することができる。上記ポリビニルアルコールは、通常、ポリ酢酸ビニルをけん化することにより得られる。
また、上記ポリビニルアルコールの平均重合度の好ましい下限は200、好ましい上限は5000である。上記ポリビニルアルコールの平均重合度を200以上とすることにより、合わせガラス用中間膜の耐貫通性を向上させることができ、5000以下とすることにより、保護層の成形性を確保することができる。上記ポリビニルアルコールの平均重合度のより好ましい下限は500、より好ましい上限は4000である。
上記ポリビニルアルコールをアセタール化するためのアルデヒドの炭素数の好ましい下限は3、好ましい上限は4である。アルデヒドの炭素数を3以上とすることにより、合わせガラス用中間膜の耐貫通性が高くなる。アルデヒドの炭素数を4以下とすることにより、ポリビニルアセタールYの生産性が向上する。
上記炭素数が3~4のアルデヒドとしては、直鎖状のアルデヒドであってもよいし、分枝状のアルデヒドであってもよく、例えば、n-ブチルアルデヒド等が挙げられる。
上記ポリビニルアセタールYの水酸基量の好ましい上限は33モル%、好ましい下限は28モル%である。上記ポリビニルアセタールYの水酸基量を33モル%以下とすることにより、合わせガラス用中間膜の白化を防止することができる。上記ポリビニルアセタールYの水酸基量を28モル%以上とすることにより、合わせガラス用中間膜の耐貫通性が高くなる。
上記ポリビニルアセタールYは、アセタール基量の好ましい下限が60モル%、好ましい上限が80モル%である。上記アセタール基量を60モル%以上とすることにより、充分な耐貫通性を発揮するのに必要な量の可塑剤を含有させることができる。上記アセタール基量を80モル%以下とすることにより、上記保護層とガラスとの接着力を確保することができる。上記アセタール基量のより好ましい下限は65モル%、より好ましい上限は69モル%である。
上記ポリビニルアセタールYのアセチル基量の好ましい上限は7モル%である。上記ポリビニルアセタールYのアセチル基量を7モル%以下とすることにより、保護層の疎水性を高くして、白化を防止することができる。上記アセチル基量のより好ましい上限は2モル%であり、好ましい下限は0.1モル%である。なお、ポリビニルアセタールA、B、及び、Yの水酸基量、アセタール基量、及び、アセチル基量は、ポリビニルアセタールXと同様の方法で測定できる。
上記保護層における可塑剤の含有量は、上記ポリビニルアセタールY100質量部に対する好ましい下限が20質量部、好ましい上限が45質量部である。上記可塑剤の含有量を20質量部以上とすることにより、耐貫通性を確保することができ、45質量部以下とすることにより、可塑剤のブリードアウトを防止して、合わせガラス用中間膜の透明性や接着性の低下を防止することができる。上記可塑剤の含有量のより好ましい下限は30質量部、更に好ましい下限は35質量部、より好ましい上限は43質量部、更に好ましい上限は41質量部である。合わせガラスの遮音性がよりいっそう向上することから、上記保護層における可塑剤の含有量は、上記遮音層における可塑剤の含有量よりも少ないことが好ましい。
合わせガラスの遮音性がより一層向上することから、ポリビニルアセタールYの水酸基量はポリビニルアセタールXの水酸基量より大きいことが好ましく、1モル%以上大きいことがより好ましく、5モル%以上大きいことが更に好ましく、8モル%以上大きいことが特に好ましい。ポリビニルアセタールX及びポリビニルアセタールYの水酸基量を調整することにより、上記遮音層及び上記保護層における可塑剤の含有量を制御することができ、上記遮音層のガラス転移温度が低くなる。結果として、合わせガラスの遮音性がより一層向上する。
また、合わせガラスの遮音性がより一層向上することから、上記遮音層におけるポリビニルアセタールX100質量部に対する、可塑剤の含有量(以下、含有量Xともいう。)は、上記保護層におけるポリビニルアセタールY100質量部に対する、可塑剤の含有量(以下、含有量Yともいう。)より多いことが好ましく、5質量部以上多いことがより好ましく、15質量部以上多いことが更に好ましく、20質量部以上多いことが特に好ましい。含有量X及び含有量Yを調整することにより、上記遮音層のガラス転移温度が低くなる。結果として、合わせガラスの遮音性がより一層向上する。
上記保護層の厚さは、上記保護層の役割を果たし得る範囲に調整すればよく、特に限定されない。ただし、上記保護層上に凹凸を有する場合には、直接接する上記遮音層との界面への凹凸の転写を抑えられるように、可能な範囲で厚くすることが好ましい。具体的には、上記保護層の断面形状が矩形状であれば、上記保護層の厚さの好ましい下限は100μm、より好ましい下限は300μm、更に好ましい下限は400μm、特に好ましい下限は450μmである。上記保護層の厚さの上限については特に限定されないが、充分な遮音性を達成できる程度に遮音層の厚さを確保するためには、実質的には500μm程度が上限である。
上記保護層は一端と、上記一端の反対側に他端とを有し、上記他端の厚みが、上記一端の厚みよりも大きい形状を有していても良い。上記保護層は、厚み方向の断面形状が楔形状である部分を有することが好ましい。上記保護層の厚さは、上記保護層の役割を果たし得る範囲に調整すればよく、特に限定されない。ただし、上記保護層上に凹凸を有する場合には、直接接する上記遮音層との界面への凹凸の転写を抑えられるように、可能な範囲で厚くすることが好ましい。具体的には、上記保護層の最小厚みの好ましい下限は100μm、より好ましい下限は300μm、更に好ましい下限は400μm、特に好ましい下限は450μmである。上記保護層の最大厚みの上限については特に限定されないが、充分な遮音性を達成できる程度に遮音層の厚さを確保するためには、実質的には1000μm程度が上限であり、800μmが好ましい。
本発明の合わせガラス用中間膜は、一端と、上記一端の反対側に他端とを有していてもよい。上記一端と上記他端とは、中間膜において対向し合う両側の端部である。本発明の合わせガラス用中間膜では、上記他端の厚みが、上記一端の厚みよりも大きいことが好ましい。このような一端と他端の厚みが異なる形状を有することで、本発明の合わせガラス用中間膜を用いた合わせガラスをヘッドアップディスプレイとして好適に用いることができ、その際に、二重像の発生を効果的に抑制できる。本発明の合わせガラス用中間膜は、断面形状が楔形であってもよい。合わせガラス用中間膜の断面形状が楔形であれば、合わせガラスの取り付け角度に応じて、楔形の楔角θを調整することにより、ヘッドアップディスプレイにおいて二重像の発生を防止した画像表示が可能となる。二重像をより一層抑制する観点から、上記楔角θの好ましい下限は0.1mrad、より好ましい下限は0.2mradであり、更に好ましい下限は0.3mrad、好ましい上限は1mrad、より好ましい上限は0.9mradである。なお、例えば押出機を用いて樹脂組成物を押出し成形する方法により断面形状が楔形の合わせガラス用中間膜を製造した場合、薄い側の一方の端部からわずかに内側の領域(具体的には、一端と他端との間の距離をXとしたときに、薄い側の一端から内側に向かって0X~0.2Xの距離の領域)に最小厚みを有し、厚い側の一方の端部からわずかに内側の領域(具体的には、一端と他端との間の距離をXとしたときに、厚い側の一端から内側に向かって0X~0.2Xの距離の領域)に最大厚みを有する形状となることがある。本明細書においては、このような形状も楔形に含まれる。
本発明の合わせガラス用中間膜の断面形状が楔形である場合、遮音層と、保護層を含む多層構造を有するものとすることもできる。上記遮音層の厚みを一定範囲とする一方、上記保護層を積層することにより、合わせガラス用中間膜全体としての断面形状が一定の楔角である楔形となるように調整することができる。
本発明の合わせガラス用中間膜の断面形状が楔形である場合の、態様の一例を説明する模式図を、図5~7に示した。なお、図5~7では、図示の便宜上、合わせガラス用中間膜及び該合わせガラス用中間膜を構成する各層の厚みや楔角θは、実際の厚み及び楔角とは異なるように示されている。
図5には、合わせガラス用中間膜5の厚み方向の断面が示されている。合わせガラス用中間膜5は、遮音層51の一方の面に保護層52が積層された2層構造を有する。ここで遮音層51は矩形であるのに対して、保護層52の形状を楔形、三角形又は台形とすることにより、合わせガラス用中間膜5全体として楔角θが0.1~1mradである楔形となっている。
図6には、合わせガラス用中間膜6の厚み方向の断面が示されている。合わせガラス用中間膜6は、遮音層61の両面に保護層62と保護層63とが積層された3層構造を有する。ここで遮音層61と保護層63とが厚みが一定の矩形であるのに対して、保護層62の形状を楔形、三角形又は台形とすることにより、合わせガラス用中間膜6全体として楔角θが0.1~1mradである楔形となっている。
図7には、合わせガラス用中間膜7の厚み方向の断面が示されている。合わせガラス用中間膜7は、遮音層71の両面に保護層72と保護層73とが積層された3層構造を有する。ここで遮音層71は楔形であり、楔形の保護層72、73を積層することにより、合わせガラス用中間膜7全体として楔角θが0.1~1mradである楔形となっている。
本発明の合わせガラス用中間膜の製造方法は特に限定されず、従来公知の製造方法を用いることができる。例えば、熱可塑性樹脂と必要に応じて配合される他の成分とを混練し、合わせガラス用中間膜を成形する製造方法等が挙げられる。連続的な生産に適しているため、押出成形する製造方法が好ましい。
本発明において合わせガラス用中間膜の少なくとも一方の表面に多数の凹部を形成する方法としては、例えば、エンボスロール法、カレンダーロール法、異形押出法、メルトフラクチャー法等が挙げられる。なかでも、エンボスロール法が好適である。
本発明の合わせガラス用中間膜が、一対のガラス板の間に積層されている合わせガラスもまた、本発明の1つである。
上記ガラス板は、一般に使用されている透明板ガラスを使用することができる。例えば、フロート板ガラス、磨き板ガラス、型板ガラス、網入りガラス、線入り板ガラス、着色された板ガラス、熱線吸収ガラス、熱線反射ガラス、グリーンガラス等の無機ガラスが挙げられる。また、ガラスの表面に紫外線遮蔽コート層が形成された紫外線遮蔽ガラスも用いることができる。更に、ポリエチレンテレフタレート、ポリカーボネート、ポリアクリレート等の有機プラスチックス板を用いることもできる。
上記ガラス板として、2種類以上のガラス板を用いてもよい。例えば、透明フロート板ガラスと、グリーンガラスのような着色されたガラス板との間に、本発明の合わせガラス用中間膜を積層した合わせガラスが挙げられる。また、上記ガラス板として、2種以上の厚さの異なるガラス板を用いてもよい。
本発明によれば、最厚部の厚みが850μm以上の厚い合わせガラス用中間膜であっても、合わせガラス製造時に充分な脱気性を発揮し、透明性の高い合わせガラスを得ることができる合わせガラス用中間膜、及び、該合わせガラス用中間膜を用いてなる合わせガラスを提供できる。
表面に底部が連続した溝形状である凹部が等間隔、かつ、隣接する凹部が平行して形成されている合わせガラス用中間膜の一例を表す模式図である。 表面に底部が連続した溝形状である凹部が等間隔、かつ、隣接する凹部が平行して形成されている合わせガラス用中間膜の一例を表す模式図である。 測定用サンプルの採取方法を説明する模式図である。 予備圧着後の積層体において平行光線透過率を評価する位置を説明する模式図である。 合わせガラス用中間膜の断面形状が楔形である場合の態様の一例を説明する模式図である。 合わせガラス用中間膜の断面形状が楔形である場合の態様の一例を説明する模式図である。 合わせガラス用中間膜の断面形状が楔形である場合の態様の一例を説明する模式図である。 膜の最厚部の厚みT(μm)を横軸に、最厚部の最大高さ粗さRy(Ave)(μm)を縦軸として、実施例及び比較例で得られた合わせガラス用中間膜についての評価結果をプロットした散布図である。
以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例にのみ限定されるものではない。
(実施例1)
(1)樹脂組成物の調製
平均重合度が1700のポリビニルアルコールをn-ブチルアルデヒドでアセタール化することにより得られたポリビニルブチラール(アセチル基量1モル%、ブチラール基量69モル%、水酸基量30モル%)100質量部に対して、可塑剤としてトリエチレングリコール-ジ-2-エチルヘキサノエート(3GO)40質量部を添加した。ミキシングロールで充分に混練し、樹脂組成物を得た。
(2)合わせガラス用中間膜の作製
得られた樹脂組成物を、押出機を用いて単層で押し出し、断面形状が矩形状である合わせガラス用中間膜を作製した。
(3)凹部の付与
第1の工程として、下記の手順により合わせガラス用中間膜の両面にランダムな凹凸形状を転写した。まず、鉄ロール表面に、ブラスト材を用いてランダムな凹凸を施した後、該鉄ロールをバーチカル研削し、更に、より微細なブラスト材を用いて研削後の平坦部に微細な凹凸を施すことにより、粗大なメインエンボスと微細なサブエンボスをもつ同形状の1対のロールを得た。該1対のロールを凹凸形状転写装置として用い、得られた合わせガラス用中間膜の両面にランダムな凹凸形状を転写した。この時の転写条件として、合わせガラス用中間膜の温度を80℃、上記ロールの温度を145℃、線速を10m/min、プレス線圧を0~200kN/mとした。
第2の工程として、下記の手順により合わせガラス用中間膜の表面に底部が連続した溝形状(刻線状)の凹凸を付与した。三角形斜線型ミルを用いて表面にミル加工を施した金属ロールと45~75のJIS硬度を有するゴムロールとからなる一対のロールを凹凸形状転写装置として用い、第1の工程でランダムな凹凸形状を転写した合わせガラス用中間膜をこの凹凸形状転写装置に通し、合わせガラス用中間膜の第1の表面に底部が連続した溝形状(刻線状)である凹部が平行して等間隔に形成された凹凸を付与した。このときの転写条件として、合わせガラス用中間膜の温度を常温80℃、ロール温度を140℃、線速を10m/min、プレス圧を0~500kPaとした。
次いで、合わせガラス用中間膜の第2の表面にも同様の操作を施し、底部が連続した溝形状(刻線状)の凹部を付与した。その後、合わせガラス用中間膜の厚みを測定したところ、870μmの厚みを示した。
(実施例2~27、比較例1~2)
第1の面及び第2の面のRy及びSmが表1~4記載の値となるように、また、凹部の付与後の合わせガラス用中間膜の厚みが表1~4記載の値となるように、第1の工程及び第2の工程で用いるブラスト材の種類や、合わせガラス用中間膜の温度、ロールの温度、線速、プレス線圧、プレス圧を調節したこと以外は、実施例1と同様にして、合わせガラス用中間膜を製造した。
(実施例28)
(1)樹脂組成物の調製
平均重合度が1700のポリビニルアルコールをn-ブチルアルデヒドでアセタール化することにより得られたポリビニルブチラール(アセチル基量1モル%、ブチラール基量69モル%、水酸基量30モル%)100質量部に対して、可塑剤としてトリエチレングリコール-ジ-2-エチルヘキサノエート(3GO)40質量部を添加した。ミキシングロールで充分に混練し、樹脂組成物を得た。
(2)合わせガラス用中間膜の作製及び凹部の付与の第1の工程
得られた樹脂組成物を、押出機を用いて単層で押し出し、合わせガラス用中間膜を製膜すると同時に、その両面に凹凸形状を付与した。即ち、メルトフラクチャー現象を制御したエンボス付与法において、金型入口の樹脂組成物の温度を150~270℃、リップ金型の温度を180-250℃の間で調整し、ラインスピード10m/minの条件にて、合わせガラス用中間膜を成膜すると同時に、その両面に第1の形状を付与した。その後、合わせガラス用中間膜の厚みを測定したところ、1000μmの厚みを示した。
(比較例3)
第1の面及び第2の面のRy及びSmが表4記載の値となるように、また、凹部の付与後の合わせガラス用中間膜の厚みが表4記載の値となるように、メルトフラクチャー現象を制御したエンボス付与法の条件を調整した以外は、実施例28と同様にして合わせガラス用中間膜を製造した。
(実施例29)
第1の面及び第2の面のRy及びSmが表3記載の値となるように、また、凹部の付与後の合わせガラス用中間膜の厚みが表3記載の値となるように、第1の工程及び第2の工程で用いるブラスト材の種類や、合わせガラス用中間膜の温度、ロールの温度、線速、プレス線圧、プレス圧を調節したこと以外は、実施例1と同様にして、合わせガラス用中間膜を製造した。
(実施例30)
凹部の付与の第1の工程までは、実施例28と同様の方法により合わせガラス用中間膜に凹部を付与した。その後、凹部の付与の第2の工程として、第1の形状が付与された合わせガラス用中間膜の表面に、下記の手順により底部が連続した溝形状の凹凸を付与した。三角形斜線型ミルを用いて表面にミル加工を施した金属ロールと45~75のJIS硬度を有するゴムロールとからなる一対のロールを凹凸形状転写装置として用い、第1の形状が付与された合わせガラス用中間膜をこの凹凸形状転写装置に通し、合わせガラス用中間膜の第1の表面に底部が連続した溝形状である凹部が平行して等間隔に形成された凹凸を付与した。このときの転写条件として、合わせガラス用中間膜の温度を70℃、ロール温度を140℃、線速を10m/min、プレス線圧を1~100kN/mに調整した。次いで、合わせガラス用中間膜の第2の表面にも同様の操作を施し、底部が連続した溝形状の凹部を付与した。その際、第1の表面に付与した底部が連続した溝形状(刻線状)の凹部と、第2の表面に付与した底部が連続した溝形状(刻線状)の凹部との交差角度が20°となるようにした。その後、合わせガラス用中間膜の厚みを測定したところ、1000μmの厚みを示した。
(実施例31)
第1の面及び第2の面のRy及びSmが表4記載の値となるように、また、凹部の付与後の合わせガラス用中間膜の厚みが表4記載の値となるように、第1の工程及び第2の工程で用いるブラスト材の種類や、合わせガラス用中間膜の温度、ロールの温度、線速、プレス線圧、プレス圧を調節したこと以外は、実施例1と同様にして、合わせガラス用中間膜を製造した。
(実施例32)
(1)樹脂組成物の調製
平均重合度が1700のポリビニルアルコールをn-ブチルアルデヒドでアセタール化することにより得られたポリビニルブチラール(アセチル基量1モル%、ブチラール基量69モル%、水酸基量30モル%)100質量部に対して、可塑剤としてトリエチレングリコール-ジ-2-エチルヘキサノエート(3GO)40質量部を添加した。ミキシングロールで充分に混練し、樹脂組成物を得た。
(2)合わせガラス用中間膜の作製
得られた樹脂組成物を押出機を用いて単層で押し出し、断面形状が楔形状である合わせガラス用中間膜を作製した。なお、凹部の付与後に得られる合わせガラス用中間膜において、合わせガラス用中間膜の最厚部の膜厚が1240μm、最薄部が790μmとなるように押出条件を設定した。この際、金型の温度を100℃から280℃の範囲で、合わせガラス用中間膜全体の厚みが薄い方の端部が低温に、中間膜全体の厚みが厚い方の端部が高温側となるように温度勾配を設けて調整し、かつ、リップ金型としてリップの間隙を1.0~4.0mmの範囲で調整した。
(3)凹部の付与
第1の工程として、下記の手順により合わせガラス用中間膜の両面にランダムな凹凸形状を転写した。まず、鉄ロール表面に、ブラスト材を用いてランダムな凹凸を施した後、該鉄ロールをバーチカル研削し、更に、より微細なブラスト材を用いて研削後の平坦部に微細な凹凸を施すことにより、粗大なメインエンボスと微細なサブエンボスをもつ同形状の1対のロールを得た。該1対のロールを凹凸形状転写装置として用い、得られた合わせガラス用中間膜の両面にランダムな凹凸形状を転写した。この時の転写条件として、合わせガラス用中間膜の温度を80℃、上記ロールの温度を145℃、線速を10m/min、プレス線圧を0~200kN/mとした。
第2の工程として、下記の手順により合わせガラス用中間膜の表面に底部が連続した溝形状(刻線状)の凹凸を付与した。三角形斜線型ミルを用いて表面にミル加工を施した金属ロールと45~75のJIS硬度を有するゴムロールとからなる一対のロールを凹凸形状転写装置として用い、第1の工程でランダムな凹凸形状を転写した合わせガラス用中間膜をこの凹凸形状転写装置に通し、合わせガラス用中間膜の第1の表面に底部が連続した溝形状(刻線状)である凹部が平行して等間隔に形成された凹凸を付与した。このときの転写条件として、合わせガラス用中間膜の温度を常温80℃、ロール温度を140℃、線速を10m/min、プレス圧を0~500kPaとした。
次いで、合わせガラス用中間膜の第2の表面にも同様の操作を施し、底部が連続した溝形状(刻線状)の凹部を付与した。
(実施例33~49、比較例4~5)
第1の面及び第2の面のRy及びSmが表5~9記載の値となるように、また、凹部の付与後の合わせガラス用中間膜の最厚部及び最薄部の厚みが表5~9記載の値となるように、第1の工程及び第2の工程で用いるブラスト材の種類や、合わせガラス用中間膜の温度、ロールの温度、線速、プレス線圧、プレス圧を調節したこと以外は、実施例32と同様にして、合わせガラス用中間膜を製造した。
(実施例50)
(1)樹脂組成物の調製
平均重合度が1700のポリビニルアルコールをn-ブチルアルデヒドでアセタール化することにより得られたポリビニルブチラール(アセチル基量1モル%、ブチラール基量69モル%、水酸基量30モル%)100質量部に対して、可塑剤としてトリエチレングリコール-ジ-2-エチルヘキサノエート(3GO)40質量部を添加した。ミキシングロールで充分に混練し、樹脂組成物を得た。
(2)合わせガラス用中間膜の作製及び凹部の付与の第1の工程
得られた樹脂組成物を押出機を用いて単層で押し出し、合わせガラス用中間膜を製膜すると同時に、その両面に凹凸形状を付与し、断面形状が楔形状である合わせガラス用中間膜を作製した。なお、凹部の付与後に得られる合わせガラス用中間膜において、合わせガラス用中間膜の最厚部の膜厚が1270μm、最薄部が820μmとなるように押出条件を設定した。この際、金型の温度を100℃から280℃の範囲で、合わせガラス用中間膜全体の厚みが薄い方の端部が低温に、中間膜全体の厚みが厚い方の端部が高温側となるように温度勾配を設けて調整し、リップ金型としてリップの間隙を1.0~4.0mmの範囲で調整し、ラインスピードを10m/minに調整した。
その後、凹部の付与の第2の工程として、第1の形状が付与された合わせガラス用中間膜の表面に、下記の手順により底部が連続した溝形状の凹凸を付与した。三角形斜線型ミルを用いて表面にミル加工を施した金属ロールと45~75のJIS硬度を有するゴムロールとからなる一対のロールを凹凸形状転写装置として用い、第1の形状が付与された合わせガラス用中間膜をこの凹凸形状転写装置に通し、合わせガラス用中間膜の第1の表面に底部が連続した溝形状である凹部が平行して等間隔に形成された凹凸を付与した。このときの転写条件として、合わせガラス用中間膜の温度を70℃、ロール温度を140℃、線速を10m/min、プレス線圧を1~100kN/mに調整した。次いで、合わせガラス用中間膜の第2の表面にも同様の操作を施し、底部が連続した溝形状の凹部を付与した。その際、第1の表面に付与した底部が連続した溝形状(刻線状)の凹部と、第2の表面に付与した底部が連続した溝形状(刻線状)の凹部との交差角度が20°となるようにした。
(実施例51)
第1の面及び第2の面のRy及びSmが表9記載の値となるように、また、凹部の付与後の合わせガラス用中間膜の最厚部及び最薄部の厚みが表9記載の値となるように、第1の工程及び第2の工程で用いるブラスト材の種類や、合わせガラス用中間膜の温度、ロールの温度、線速、プレス線圧、プレス圧を調節したこと以外は、実施例32と同様にして、合わせガラス用中間膜を製造した。
(比較例6)
第1の面及び第2の面のRy及びSmが表9記載の値となるように、また、凹部の付与後の合わせガラス用中間膜の厚みが表9記載の値となるように、メルトフラクチャー現象を制御したエンボス付与法の条件を調整し、且つ、凹部の付与の第2の工程を行わなかった以外は、実施例46と同様にして合わせガラス用中間膜を製造した。
(実施例52)
(1)保護層用樹脂組成物の調製
平均重合度が1700のポリビニルアルコールをn-ブチルアルデヒドでアセタール化することにより得られたポリビニルブチラール(アセチル基量1モル%、ブチラール基量69モル%、水酸基量30モル%)100質量部に対して、可塑剤としてトリエチレングリコール-ジ-2-エチルヘキサノエート(3GO)36質量部を添加し、ミキシングロールで充分に混練し、保護層用樹脂組成物を得た。
(2)遮音層用樹脂組成物の調製
平均重合度が2300のポリビニルアルコールをn-ブチルアルデヒドでアセタール化することにより得られたポリビニルブチラール(アセチル基量12モル%、ブチラール基量66モル%、水酸基量22モル%)100質量部に対して、可塑剤としてトリエチレングリコール-ジ-2-エチルヘキサノエート(3GO)78質量部を添加し、ミキシングロールで充分に混練し、遮音層用樹脂組成物を得た。
(3)合わせガラス用中間膜の作製
得られた保護層用樹脂組成物及び遮音層用樹脂組成物を、得られる保護層、遮音層、保護層及び中間膜全体の断面形状、最大厚み及び最小厚みが表10記載の値となるように共押出機を用いて共押出することにより、保護層、遮音層、保護層の順に積層された3層構造の合わせガラス用中間膜を得た。
なお、表10において保護層の最大厚み及び最小厚みは、2つの保護層の厚みの合計の最大厚み及び最小厚みを記載した。
(4)凹部の付与
第1の面及び第2の面のRy及びSmが表10記載の値となるように、また、凹部の付与後の合わせガラス用中間膜の最厚部及び最薄部の厚みが表10記載の値となるように、第1の工程及び第2の工程で用いるブラスト材の種類や、合わせガラス用中間膜の温度、ロールの温度、線速、プレス線圧、プレス圧を調節したこと以外は、実施例32と同様にして、合わせガラス用中間膜を製造した。
なお、遮音層の厚みは、以下の手順に従って測定し、保護層の厚みは中間膜全体の厚みから遮音層の厚みを差し引くことで、保護層の合計の厚みを求めた。即ち、凹部を付与した後の合わせガラス用中間膜を、カミソリ刃(フェザー安全剃刀社製、フェザーカミソリS片刃、品番FAS-10)を用いて膜厚み方向に垂直に切断し、その断面をマイクロスコープ(オリンパス社製、DSX-100)を用いて観察した。マイクロスコープ付属ソフト内の計測ソフトを用いて、保護層と遮音層の界面間の距離を計測し、これを遮音層厚みとした。測定時の環境は23℃、30RH%であった。
(実施例53~56、比較例7)
保護層及び遮音層に用いるポリビニルブチラールの組成及び含有量、可塑剤の組成及び含有量、第1の面及び第2の面のRy及びSmが表10記載の値となるように、また、凹部の付与後の合わせガラス用中間膜の厚みが表10記載の値となるように、第1の工程及び第2の工程で用いるブラスト材の種類や、合わせガラス用中間膜の温度、ロールの温度、線速、プレス線圧、プレス圧を調節したこと以外は、実施例52と同様にして、合わせガラス用中間膜を製造した。
(評価)
実施例及び比較例で得られた合わせガラス用中間膜について、以下の方法により評価を行った。
結果を表1~10に示した。
(1)測定サンプルの準備
実施例32~51及び比較例4~6の厚み方向の断面形状が楔形状である合わせガラス用中間膜の測定サンプルは以下の手順によって作成した。測定用サンプルとして、縦15cm、横15cmの大きさに合わせガラス用中間膜を切り出した。最厚部での測定には、最厚部の厚み測定点を通る、押し出し方向に対して平行な線が切り出した合わせガラス用中間膜の中央を通るように、縦15cm、横15cmの大きさに合わせガラス用中間膜を切り出した。また、最薄部での測定には、最薄部の厚み測定点を通る、押し出し方向に対して平行な線が中央を通るように、縦15cm、横15cmの大きさに合わせガラス用中間膜を切り出した。
ただし、最厚部及び最薄部が、膜端部から7.5cm以内の位置にある場合は、膜端部に接するように合わせガラス用中間膜を切り出した。
なお、膜の厚みTは、JIS K-6732(1996)に準拠して、定圧厚み測定器(尾崎製作所社製、FFD-2)を用い、サンプルとなる合わせガラス用中間膜の押し出し方向とは垂直に、一方の端部から他方の端部まで5cm毎に計測し、最も厚い点を膜の最厚部の厚みTとした。
実施例1~31及び比較例1~3の厚み方向の断面形状が矩形状である合わせガラス用中間膜の測定サンプルは、一方の端部から他方の端部まで5cm毎に膜の厚みを測定し、その平均値を膜厚としたこと以外は、実施例32~51及び比較例4~6と同様にして測定した。
(2)最厚部の最大高さ粗さRyの測定
最厚部の最大高さ粗さRyを、JIS B-0601(1994)に準拠して測定した。即ち、測定方向は底部が連続した溝形状に対して垂直方向、メルトフラクチャーを利用して成型されたエンボスの場合は、押し出し方向に対して平行とし、カットオフ値=2.5mm、基準長さ=2.5mm、予備長さ2.5mm、評価長さ=12.5mm、触針の先端半径=2μm、先端角度=60°、測定速度=0.5mm/sの条件で測定を行った。
最厚部の最大高さ粗さRyは、測定用サンプルの中で、最厚部の測定点を通り、押し出し方法に対して平行な線上を第一の表面、第二の表面それぞれを測定し、評価にために切り出した全てのサンプルについて同様の操作を行って得られた各RyよりRy(Ave)とRy(Max)を算出した。
(3)凹部の間隔Smの測定
凹部の間隔Smを、JIS B-0601(1994)に準拠して測定した。即ち、測定方向は底部が連続した溝形状に対して垂直方向、メルトフラクチャーを利用して成型されたエンボスの場合は、押し出し方向に対して平行とし、カットオフ値=2.5mm、基準長さ=2.5mm、予備長さ2.5mm、評価長さ=12.5mm、触針の先端半径=2μm、先端角度=60°、測定速度=0.5mm/sの条件で測定を行った。
凹部の間隔Smは、測定用サンプルとして縦15cm、横15cmの大きさに切り出した合わせガラス用中間膜の中で、最厚部の測定点を通り、押し出し方法に対して平行な線上を第一の表面、第二の表面それぞれを測定し、評価にために切り出した全てのサンプルについて同様の操作を行って得られた各Smの平均値(Sm(Ave))を算出した。
(4)合わせガラス製造時の脱気性の評価
測定サンプルの合わせガラス用中間膜を二枚のクリアガラス板(縦15cm×横15cm×厚さ2.5mm)の間に挟み、はみ出た部分を切り取り、積層体を得た。得られた積層体をガラスの表面温度が30℃になるまでオーブン内で予備加熱した後、ゴムバッグ内に移し、ゴムバッグを吸引減圧機に接続し、加熱すると同時に-600mmHgの減圧下で、14分間後に積層体のガラスの表面温度(予備圧着温度)が90℃となるように加熱した後、積層体のガラスの表面温度が40℃になるまで冷却した後に、大気圧に戻して予備圧着を終了した。
次いで、予備圧着後の積層体について、以下の方法により平行光線透過率を評価した。
即ち、JIS R 3106 K 7105に準拠して、予備圧着後の積層体の平行光線透過率Tp(%)を、ヘーズメーター(村上色彩技術研究所社製、HM-150)を用いて測定した。
測定位置は積層体の2つの対角線が交差する中央部、積層体の各頂点から対角線方向に5.64cm離れた4点を合わせた5点として、その平均値をTpとした。なお、測定は、測定点を中心に5cm×5cm以上で積層体から切り出したサンプルについて行った。
得られた平行光線透過率Tpをもとに、合わせガラス用中間膜を用いて合わせガラスを製造したときの脱気性を以下のように評価した。
○:予備圧着後の積層体の平行光線透過率Tpが45%以上
×:予備圧着後の積層体の平行光線透過率Tpが45%未満
(5)合わせガラス製造時のシール性の評価
測定サンプルの合わせガラス用中間膜を二枚のクリアガラス板(縦15cm×横15cm×厚さ2.5mm)の間に挟み、はみ出た部分を切り取り、こうして得られた合わせガラス構成体(積層体)をあらかじめ50℃に加熱したオーブン中で10分間予備加熱した。50℃に予備加熱したゴムバッグ内に移し、ゴムバッグを吸引減圧機に接続し、合わせガラス構成体(積層体)の温度(予備圧着温度)を50℃に維持したまま、-600mmHgで5分間減圧した後、大気圧に戻して予備圧着積層体を得た。
予備圧着された合わせガラス構成体(積層体)をオートクレーブ中に入れ、13atm(1300kpa)に昇圧後、温度140℃に昇温し20分間保持した後、50℃まで温度を下げた後、大気圧に戻すことにより本圧着を終了して、合わせガラスを作製した。
得られた合わせガラスを本圧着後23℃で24時間保管した後に、140℃のオーブン中で2時間加熱した。次いで、オーブンから取り出して23℃24時間静置した後、合わせガラスの外観を目視で観察した。テスト枚数は5枚とした。
合わせガラスの端部から1cmよりも内側に気泡が生じた枚数を調べて、以下の基準により脱気性を評価した。
○:気泡が生じた枚数が3枚以下
×:気泡が生じた枚数が3枚を超える
合わせガラス構成体の予備加熱温度、ゴムバック温度を50℃から5℃ずつ増加させて同様の評価を行い、評価が〇となる最低温度をシール温度とした。
得られたシール温度をもとに、合わせガラス用中間膜を用いて合わせガラスを製造したときのシール性を以下のように評価した。
○:シール温度が75℃以下
×:シール温度が75℃を超える
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
膜の最厚部の厚みT(μm)を横軸に、最厚部の最大高さ粗さRy(Ave)(μm)を縦軸軸として、実施例及び比較例で得られた合わせガラス用中間膜についての評価結果をプロットした散布図を図8に示した。
図8の散布図より、上記式(1)に対応する「Ry = 0.020×T + 16.6」の線形(式(1))と、上記式(2)に対応する「Ry = 0.025×T + 14.0」の線形(式(2))の2本の線形を描画することができることがわかる。そして、Ryが線形(式(1))以上であるときに、高い脱気性を発揮して透明度が高い合わせガラスが得られること、Ryが線形(式(2))以上であるときに、より高い脱気性を発揮してより透明度が高い合わせガラスが得られることがわかる。
本発明によれば、最厚部の厚みが850μm以上の厚い合わせガラス用中間膜であっても、合わせガラス製造時に充分な脱気性を発揮し、透明性の高い合わせガラスを得ることができる合わせガラス用中間膜、及び、該合わせガラス用中間膜を用いてなる合わせガラスを提供できる。
5 合わせガラス用中間膜
51 遮音層
52 保護層
6 合わせガラス用中間膜
61 遮音層
62 保護層
63 保護層
7 合わせガラス用中間膜
71 遮音層
72 保護層
73 保護層

Claims (11)

  1. 少なくとも一方の表面に多数の凹部を有する合わせガラス用中間膜であって、
    JIS K-6732(1996)に準拠して測定される膜の最厚部の厚みT(μm)と、JIS B-0601(1994)に準拠して測定される最厚部の最大高さ粗さRy(μm)が下記式(1)及び下記式(1’)を満たす
    ことを特徴とする合わせガラス用中間膜。
    Ry ≧ 0.020×T + 16.6 (1)
    T≧850 (1’)
  2. 更に、下記式(2)を満たすことを特徴とする請求項1記載の合わせガラス用中間膜。
    Ry ≧ 0.025×T + 14.0 (2)
  3. 更に、下記式(3)を満たすことを特徴とする請求項1又は2記載の合わせガラス用中間膜。
    Ry ≦ 0.0195×T + 33.2 (3)
  4. 更に、下記式(4)を満たすことを特徴とする請求項1、2又は3記載の合わせガラス用中間膜。
    Ry ≦ 0.0159×T + 32.2 (4)
  5. T≧860であることを特徴とする請求項1、2、3又は4記載の合わせガラス用中間膜。
  6. T≧1000であることを特徴とする請求項5記載の合わせガラス用中間膜。
  7. 凹部が、底部が連続した溝形状を有し、隣接する凹部が平行して規則的に形成されていることを特徴とする請求項1、2、3、4、5又は6記載の合わせガラス用中間膜。
  8. 凹部の間隔Smが600μm以下であることを特徴とする請求項7記載の合わせガラス用中間膜。
  9. 厚み方向に2層以上の樹脂層を有する積層構造を有することを特徴とする請求項1、2、3、4、5、6、7又は8記載の合わせガラス用中間膜。
  10. 断面形状が楔形であることを特徴とする請求項1、2、3、4、5、6、7、8又は9記載の合わせガラス用中間膜。
  11. 請求項1、2、3、4、5、6、7、8、9又は10記載の合わせガラス用中間膜が、一対のガラス板の間に積層されていることを特徴とする合わせガラス。
PCT/JP2017/013642 2016-03-31 2017-03-31 合わせガラス用中間膜及び合わせガラス WO2017171018A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MX2018010692A MX2018010692A (es) 2016-03-31 2017-03-31 Capa intermedia para vidrio laminado, y vidrio laminado.
EP20201764.6A EP3789356B1 (en) 2016-03-31 2017-03-31 Interlayer for laminated glass, and laminated glass
JP2017519578A JP6835714B2 (ja) 2016-03-31 2017-03-31 合わせガラス用中間膜及び合わせガラス
EP17775549.3A EP3438069B1 (en) 2016-03-31 2017-03-31 Interlayer for laminated glass, and laminated glass
KR1020197024915A KR20190103462A (ko) 2016-03-31 2017-03-31 합판 유리용 중간막 및 합판 유리
US16/080,576 US11318719B2 (en) 2016-03-31 2017-03-31 Interlayer for laminated glass, and laminated glass
CN201780019912.5A CN109071338B (zh) 2016-03-31 2017-03-31 夹层玻璃用中间膜及夹层玻璃
KR1020187024070A KR102017443B1 (ko) 2016-03-31 2017-03-31 합판 유리용 중간막 및 합판 유리

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016073210 2016-03-31
JP2016-073210 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017171018A1 true WO2017171018A1 (ja) 2017-10-05

Family

ID=59964788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013642 WO2017171018A1 (ja) 2016-03-31 2017-03-31 合わせガラス用中間膜及び合わせガラス

Country Status (8)

Country Link
US (1) US11318719B2 (ja)
EP (2) EP3438069B1 (ja)
JP (2) JP6835714B2 (ja)
KR (2) KR20190103462A (ja)
CN (1) CN109071338B (ja)
MX (1) MX2018010692A (ja)
TW (1) TWI714751B (ja)
WO (1) WO2017171018A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208119A1 (ja) * 2018-04-25 2019-10-31 セントラル硝子株式会社 車両用軽量合わせガラス板の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200138722A (ko) * 2018-03-29 2020-12-10 세키스이가가쿠 고교가부시키가이샤 접합 유리, 헤드업 디스플레이 시스템 및 헤드업 디스플레이 시스템의 제조 방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0940444A (ja) * 1994-11-07 1997-02-10 Sekisui Chem Co Ltd 合わせガラス用中間膜および合わせガラス
JP2001150540A (ja) * 1999-12-01 2001-06-05 Sekisui Chem Co Ltd 熱可塑性樹脂中間膜
JP2007223883A (ja) * 2005-12-26 2007-09-06 Asahi Glass Co Ltd 車両用合せガラス
WO2007132777A1 (ja) 2006-05-12 2007-11-22 Sekisui Chemical Co., Ltd. 合わせガラス用中間膜及び合わせガラス
JP2007331959A (ja) 2006-06-12 2007-12-27 Sekisui Chem Co Ltd 合わせガラス用中間膜及び合わせガラス
JP2008201667A (ja) * 2007-01-24 2008-09-04 Asahi Glass Co Ltd 車両用合わせガラス
JP2010524843A (ja) * 2007-04-29 2010-07-22 ソリユテイア・インコーポレイテツド エンボス表面を有する複数層ポリマー中間層
JP2013001594A (ja) * 2011-06-15 2013-01-07 Sekisui Chem Co Ltd 合わせガラス用中間膜及び合わせガラス
JP2015107915A (ja) * 2012-08-02 2015-06-11 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1233007B1 (en) * 1999-07-01 2008-06-18 Sekisui Chemical Co., Ltd. Interlayer for Laminated Glass
US20070009714A1 (en) 2005-05-11 2007-01-11 Lee David J Polymeric interlayers having a wedge profile
CN101038349A (zh) 2005-12-26 2007-09-19 旭硝子株式会社 用于车辆的层压玻璃
US9574028B2 (en) * 2013-04-09 2017-02-21 Solutia Inc. Embossed polymer sheet
CN113858713B (zh) * 2013-08-01 2023-10-13 积水化学工业株式会社 层合玻璃用中间膜及层合玻璃
JP2015059052A (ja) * 2013-09-17 2015-03-30 株式会社ブリヂストン 積層体形成用シート、及び積層体の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0940444A (ja) * 1994-11-07 1997-02-10 Sekisui Chem Co Ltd 合わせガラス用中間膜および合わせガラス
JP2001150540A (ja) * 1999-12-01 2001-06-05 Sekisui Chem Co Ltd 熱可塑性樹脂中間膜
JP2007223883A (ja) * 2005-12-26 2007-09-06 Asahi Glass Co Ltd 車両用合せガラス
WO2007132777A1 (ja) 2006-05-12 2007-11-22 Sekisui Chemical Co., Ltd. 合わせガラス用中間膜及び合わせガラス
JP2007331959A (ja) 2006-06-12 2007-12-27 Sekisui Chem Co Ltd 合わせガラス用中間膜及び合わせガラス
JP2008201667A (ja) * 2007-01-24 2008-09-04 Asahi Glass Co Ltd 車両用合わせガラス
JP2010524843A (ja) * 2007-04-29 2010-07-22 ソリユテイア・インコーポレイテツド エンボス表面を有する複数層ポリマー中間層
JP2013001594A (ja) * 2011-06-15 2013-01-07 Sekisui Chem Co Ltd 合わせガラス用中間膜及び合わせガラス
JP2015107915A (ja) * 2012-08-02 2015-06-11 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208119A1 (ja) * 2018-04-25 2019-10-31 セントラル硝子株式会社 車両用軽量合わせガラス板の製造方法
JPWO2019208119A1 (ja) * 2018-04-25 2021-07-01 セントラル硝子株式会社 車両用軽量合わせガラス板の製造方法
JP7401781B2 (ja) 2018-04-25 2023-12-20 セントラル硝子株式会社 車両用軽量合わせガラス板の製造方法

Also Published As

Publication number Publication date
TWI714751B (zh) 2021-01-01
EP3438069B1 (en) 2021-01-06
JPWO2017171018A1 (ja) 2019-03-22
EP3438069A4 (en) 2019-12-11
TW201738087A (zh) 2017-11-01
US20210187914A1 (en) 2021-06-24
EP3789356B1 (en) 2022-04-13
KR20190103462A (ko) 2019-09-04
CN109071338A (zh) 2018-12-21
JP6835714B2 (ja) 2021-02-24
KR102017443B1 (ko) 2019-09-02
EP3789356A1 (en) 2021-03-10
CN109071338B (zh) 2022-02-25
US11318719B2 (en) 2022-05-03
JP2021080162A (ja) 2021-05-27
EP3438069A1 (en) 2019-02-06
KR20180131533A (ko) 2018-12-10
MX2018010692A (es) 2019-01-17

Similar Documents

Publication Publication Date Title
JP6698545B2 (ja) 合わせガラス用中間膜、合わせガラス用中間膜の製造方法、及び、合わせガラス
KR20170135830A (ko) 합판 유리용 중간막, 합판 유리, 엠보스 롤의 제조 방법 및 합판 유리용 중간막의 제조 방법
JP2020097518A (ja) 合わせガラス用中間膜及び合わせガラス
JP2021080163A (ja) 合わせガラス用中間膜及び合わせガラス
KR20170135829A (ko) 합판 유리용 중간막, 합판 유리, 및, 합판 유리용 중간막의 제조 방법
WO2016167287A1 (ja) 合わせガラス用中間膜及び合わせガラス
KR20160142815A (ko) 합판 유리용 중간막, 롤상체, 합판 유리, 및 합판 유리의 제조 방법
JP2021080162A (ja) 合わせガラス用中間膜及び合わせガラス
JP2017178678A (ja) 合わせガラス用中間膜及び合わせガラス
JP6688652B2 (ja) 合わせガラス用中間膜及び合わせガラス
JP2020109055A (ja) 合わせガラス用中間膜及び合わせガラス
JP2021006504A (ja) 合わせガラス用中間膜及び合わせガラス

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017519578

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187024070

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/010692

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017775549

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017775549

Country of ref document: EP

Effective date: 20181031

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775549

Country of ref document: EP

Kind code of ref document: A1