WO2017170946A1 - 重荷重用空気入りタイヤ - Google Patents
重荷重用空気入りタイヤ Download PDFInfo
- Publication number
- WO2017170946A1 WO2017170946A1 PCT/JP2017/013422 JP2017013422W WO2017170946A1 WO 2017170946 A1 WO2017170946 A1 WO 2017170946A1 JP 2017013422 W JP2017013422 W JP 2017013422W WO 2017170946 A1 WO2017170946 A1 WO 2017170946A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- groove
- center
- tire
- circumferential main
- width direction
- Prior art date
Links
- 238000010276 construction Methods 0.000 claims description 6
- 239000004575 stone Substances 0.000 description 69
- 230000000669 biting effect Effects 0.000 description 39
- 230000000052 comparative effect Effects 0.000 description 8
- 230000001055 chewing effect Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000011324 bead Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/11—Tread patterns in which the raised area of the pattern consists only of isolated elements, e.g. blocks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/0306—Patterns comprising block rows or discontinuous ribs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/0311—Patterns comprising tread lugs arranged parallel or oblique to the axis of rotation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/13—Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/13—Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
- B60C11/1369—Tie bars for linking block elements and bridging the groove
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0339—Grooves
- B60C2011/0341—Circumferential grooves
- B60C2011/0344—Circumferential grooves provided at the equatorial plane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0339—Grooves
- B60C2011/0341—Circumferential grooves
- B60C2011/0348—Narrow grooves, i.e. having a width of less than 4 mm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0339—Grooves
- B60C2011/0341—Circumferential grooves
- B60C2011/0353—Circumferential grooves characterised by width
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0339—Grooves
- B60C2011/0341—Circumferential grooves
- B60C2011/0355—Circumferential grooves characterised by depth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0339—Grooves
- B60C2011/0358—Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
- B60C2011/0365—Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by width
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0339—Grooves
- B60C2011/0358—Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
- B60C2011/0367—Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by depth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0339—Grooves
- B60C2011/0358—Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
- B60C2011/0367—Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by depth
- B60C2011/0369—Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by depth with varying depth of the groove
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0339—Grooves
- B60C2011/0381—Blind or isolated grooves
- B60C2011/0383—Blind or isolated grooves at the centre of the tread
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C2200/00—Tyres specially adapted for particular applications
- B60C2200/06—Tyres specially adapted for particular applications for heavy duty vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C2200/00—Tyres specially adapted for particular applications
- B60C2200/06—Tyres specially adapted for particular applications for heavy duty vehicles
- B60C2200/065—Tyres specially adapted for particular applications for heavy duty vehicles for construction vehicles
Definitions
- the present invention relates to a heavy duty pneumatic tire with a tread pattern.
- a tire in which a plurality of blocks are formed as a tread pattern on the tread surface is known from the viewpoint of ensuring sufficient traction performance.
- heavy-duty tires with multiple blocks on the tread surface tend to generate heat due to repeated deformation of the block during travel, especially during long-distance driving off-road, due to heat generated by the block, tread rubber and tread It is easy to cause peeling called heat separation with the belt layer inside the part. For this reason, high heat resistance is required for heavy duty tires.
- the heavy duty tire of Patent Document 1 has a center block row and a shoulder block row.
- the center block row is partitioned by a circumferential narrow groove formed along the tire circumferential direction and a lateral narrow groove formed along the tire width direction.
- the shoulder block row is partitioned by a circumferential narrow groove and a main lug groove.
- the tread gauge in the tread center region is 95 mm or more.
- the depth of the main lug groove is 70-80% of the tread gauge.
- the negative rate in the contact width is 15 to 30%.
- the number of center blocks or shoulder blocks is 32 to 44.
- the center block includes one or more sub-thin grooves having a length of 100 to 180% of the circumferential length of the center block.
- heat resistance is improved, so that it can be suitably used as a heavy-duty tire for construction vehicles.
- the cooling effect of the crown portion is enhanced by providing one or more sub-grooves having a length of 100 to 180% of the circumferential length of the center block, and cut resistance It is said that the separation property can be improved.
- the heat resistance can be expected to be improved.
- the sub-thin groove easily bites stones during off-road driving in a mine or the like.
- the present invention provides a heavy-duty pneumatic tire capable of maintaining or improving one of heat resistance and stone chewing resistance while improving the other.
- One embodiment of the present invention is a heavy duty pneumatic tire with a tread pattern.
- the tread pattern of the heavy duty pneumatic tire is: A pair of circumferential main grooves provided in each of the first tread region and second half tread region in the tire width direction with respect to the tire equator line and formed in a wave shape over the tire circumferential direction; A center region between the pair of circumferential main grooves extends in the tire circumferential direction, and a center thick groove whose groove width is thicker than the groove width of the circumferential main groove, A first center region between one of the circumferential main grooves in the first half tread region and the center thick groove, and the circumferential main in the second half tread region; A plurality of second center regions between one of the grooves and the center thick groove are provided at intervals in the tire circumferential direction, and extend in a direction inclined with respect to the tire width direction and the tire circumferential direction.
- a linear center lug groove opening in the center thick groove In each of the half tread regions, a plurality of shoulder lug grooves that are provided at intervals in the tire circumferential direction, extend outward in the tire width direction, and open to the ground contact ends on both sides in the tire width direction.
- the position in the tire width direction of the end in the tire width direction of the shoulder lug groove is outside the tire width direction outer end of the center lug groove, and in the tire circumferential direction.
- a shoulder lug groove provided one by one between adjacent center lug grooves adjacent to each other in the tire circumferential direction among the center lug grooves.
- the pair of circumferential main grooves are convex outward in the tire width direction so as to alternately connect the outer ends of the center lug grooves in the tire width direction and the inner ends of the shoulder lug grooves in the tire width direction.
- a first groove bent portion curved or bent and a second groove bent portion curved or bent in a convex shape inside the tire width direction The groove width of the center lug groove and the circumferential main groove is narrower than that of the shoulder lug groove,
- the center lug groove in the first center region and the center lug groove in the second center region extend in parallel to each other and open to the center thick groove at different positions in the tire circumferential direction.
- the depth of the center thick groove is constant, being shallower than the maximum depth of the circumferential main groove and the center lug groove.
- the ratio W1 / W2 is preferably 2.8 or more and 3.4 or less, where W1 is the width of the center thick groove and W2 is the width of the circumferential main groove.
- the ratio D1 / D2 is preferably 0.05 or more and 0.2 or less, where D1 is the depth of the center thick groove and D2 is the maximum depth of the circumferential main groove.
- the maximum groove depth of the circumferential main groove is shallower than the maximum groove depth of the center lug groove, and the maximum groove depth of the center lug groove is shallower than the maximum groove depth of the shoulder lug groove.
- a belt portion including a pair of intersecting belt layers in which the direction of the belt cord with respect to the tire circumferential direction is inclined to different sides in the tire width direction
- the tread pattern is further provided in each of the first center region and the second center region, and is defined by the adjacent center lug groove, the circumferential main groove, and the center thick groove, and is in the tire circumferential direction.
- Including a plurality of center blocks formed in a row The length in the tire width direction of the center block row including the center block row of the first center region, the center block row including the center block row of the second center region, and the region occupied by the center thick groove is WB.
- the ratio WB / W5 is preferably 0.55 or more and 0.85 or less.
- each of the pair of circumferential main grooves includes a bottom raised portion in which the groove depth is partially shallow.
- the ratio D3 / T is preferably 0.01 or more and 0.05 or less, where D3 is the shallowest groove depth in the raised portion and T is the tread width in the tire width direction of the tread portion.
- the center thick groove is preferably a linear groove passing through the tire equator line.
- the ratio W1 / D1 is preferably 1.5 or more and 5.0 or less.
- the groove widths of the circumferential main groove and the center lug groove are preferably 7 mm or more and 20 mm or less, respectively.
- the heavy-duty pneumatic tire is suitable for use in construction vehicles or industrial vehicles.
- one of heat resistance and stone chewing resistance can be maintained or improved while the other can be improved.
- FIG. 1 is a figure which shows the example of the tread pattern of the pneumatic tire for heavy loads of one embodiment of the present invention. It is a figure which expands and shows a part of tread pattern of FIG. (A) is a figure which shows the example of the tread pattern of the pneumatic tire for heavy loads of one embodiment of this invention in the early stage of wear, (b) is the heavy load of one embodiment of this invention which further advanced wear. It is a figure which shows the example of the tread pattern of a heavy duty pneumatic tire. It is sectional drawing which shows the bottom raising part of the circumferential direction main groove of the heavy duty pneumatic tire of one Embodiment of this invention. It is a figure which shows the modification of the tread pattern of FIG.
- FIG. 1 is a cross-sectional view showing a part of a heavy duty pneumatic tire (hereinafter also referred to as a tire) 1 of the present embodiment. That is, FIG. 1 shows a profile of the tire 1 when the tire 1 is cut along a plane including the tire rotation axis, passing through the II line in FIG. 2 referred later, and including the tire radial direction.
- the heavy-duty pneumatic tire referred to in this specification is one type (dump truck, scraper) described in Chapter D in addition to the tire described in Chapter C of JATMA (Japan Automobile Tire Association Standard) YEAR BOOK 2014.
- the tire 1 includes a carcass ply 3, a belt 4, and a pair of bead cores 5 as skeleton materials.
- a tread rubber 6, a side rubber 7, a bead filler 8, an inner liner 9, and the like are provided around these skeleton materials. Each rubber member is included.
- the belt 4 includes a pair of first cross belt layers 31, a pair of second cross belt layers 33, and a pair of third cross belt layers 35. Further, a sheet-like rubber 37 is disposed between the belt layers of the second cross belt layer 33.
- Each of the first cross belt layer 31, the second cross belt layer 33, and the third cross belt layer 35 is a pair of belts in which the direction of the belt cords is inclined to different sides in the tire width direction with respect to the tire circumferential direction. The layers are arranged in this order from the inner side to the outer side in the tire radial direction.
- the tread rubber 6 has a tread pattern 10 shown in FIG. FIG. 2 is a plan view of the tread pattern of the tire 1.
- the vertical direction is the tire circumferential direction
- the horizontal direction is the tire width direction.
- the tire circumferential direction is the rotation direction of the rotation surface of the tread surface that is formed when the tire 1 is rotated about the tire rotation center axis.
- the tire width direction is the rotation center axis direction of the tire 1.
- the tire radial direction is a direction orthogonal to the tire circumferential direction and the tire width direction.
- the direction of rotation of the tire of the tread pattern and the direction of the tire width direction when the vehicle is mounted are not particularly specified.
- the tread pattern 10 includes a pair of circumferential main grooves 15, a center thick groove 17, a center lug groove 11, and a shoulder lug groove 13.
- the circumferential main grooves 15 are provided in each of the half tread regions Ta and Tb on both sides in the tire width direction with respect to the tire equator line CL as a pair.
- the circumferential main groove 15 includes a first groove bent portion 15a and a second groove bent portion 15b, and is formed in a wave shape over the entire circumference in the tire circumferential direction.
- the first groove bent portion 15a is a portion of the circumferential main groove 15 that is curved or bent so as to protrude outward in the tire width direction.
- the second groove bent portion 15b is a portion of the circumferential main groove 15 that is curved or bent in a convex shape on the inner side in the tire width direction.
- the circumferential main groove 15 alternately connects the end 11a of the center lug groove 11 and the end 13a of the shoulder lug groove 13 on the inner side in the tire width direction.
- the circumferential main groove 15 is connected to the shoulder lug groove 13 at the first groove bent portion 15a that is curved to protrude outward in the tire width direction, and is bent to be convex inward in the tire width direction. It connects with the center lug groove 11 by the 2 groove bending part 15b.
- the groove having a wave shape means a shape in which the groove meanders.
- the circumferential main groove 15 has a plurality of first groove bent portions 15a and second groove bent portions 15b on the tire circumference, and extends in the tire circumferential direction while meandering so as to form a wave shape by alternately connecting them. Since the circumferential main groove 15 has a wave shape, the surface area of the groove wall of the circumferential main groove 15 is increased, and heat dissipation is improved. For this reason, the heat resistance is improved.
- the first groove bent portion 15a and the second groove bent portion 15b may have a bent shape, a rounded curved shape, or a combination of a bent shape and a curved shape.
- the curved shape also includes a shape obtained by rounding the top of the bent shape, for example, by defining a curvature radius.
- the combination of the bent shape and the curved shape means that one side extends linearly from the top of the first groove bent portion 15a or the second groove bent portion 15b and the other side curves and extends from the top. .
- the first groove bent portion 15a or the second groove bent portion 15b may be of a bent shape, a curved shape, or a combination thereof, and the same shape may be used, or different types of shapes may be used. May be.
- portions of the circumferential main groove 15 other than the first groove bent portion 15a and the second groove bent portion 15b may be linear or curved.
- the portions other than the first groove bent portion 15a or the second groove bent portion 15b and the first groove bent portion 15a or the second groove bent portion 15b are both curved, the two curved shapes are curved with the same radius of curvature. There may be.
- the circumferential main groove 15 extends in a wave shape with the same period and with a phase shifted in the tire circumferential direction. Specifically, the position in the tire circumferential direction of the second groove bent portion 15b is displaced in the tire circumferential direction with respect to the second groove bent portion 15b in the opposite half tread region.
- the circumferential main grooves 15 may extend in the tire circumferential direction in the tire circumferential direction with the same period and the same phase, or may extend in the waveform in different periods.
- the groove width of the circumferential main groove 15 is narrower than the shoulder lug groove 13. For this reason, the contact pressure of the center blocks 21 and 22 during traveling is relaxed, and the wear life of the tire 1 is extended.
- the center thick groove 17 extends in the tire circumferential direction in the center region between the pair of circumferential main grooves 15, and the groove width is larger than the groove width of the circumferential main groove 15.
- the center thick groove 17 having such a form ensures a sufficient groove volume in the center region, and as a result, the air passage is good, thereby improving the heat resistance.
- the term “center region” simply refers to a region between the pair of circumferential main grooves 15, which will be described later, a first center region Ce 1, a second center region Ce 2, and a center thick groove 17. The area occupied by.
- the groove depth of the center thick groove 17 is smaller than the maximum groove depth of the circumferential main groove 15 and the center lug groove 11 and is constant.
- the groove width of the center thick groove 17 is larger than that of the circumferential main groove 15, stones can easily enter, and the stone biting resistance may decrease.
- the groove depth of the center thick groove 17 is shallower than the maximum groove depth of the circumferential main groove 15 and the center lug groove 11, stones entering the groove are easily discharged, Stone biting is improved.
- the groove depth of the center thick groove 17 is constant, a function of discharging stones is obtained in the tire circumferential direction, and constant stone biting resistance is ensured in the tire circumferential direction.
- the center thick groove 17 has a groove depth shallower than the maximum groove depths of the circumferential main groove 15 and the center lug groove 11, and when the tire 1 is worn, as shown in FIG.
- FIG. 4B is a diagram illustrating a tread pattern of the tire 1 in which wear has progressed from the early stage of wear.
- FIG. 4A is a diagram showing a tread pattern of the tire 1 in the early stage of wear.
- the initial stage of wear refers to the wear stage of the tire 1 in which the groove having the shallowest groove depth, for example, the center thick groove 17 has not yet disappeared, and includes when the tire 1 is new.
- the tread pattern 10 further includes one or a plurality of center narrow grooves extending in the region of the center blocks 21 and 22 in the center region.
- the center narrow groove preferably has a narrower groove width than the center thick groove 17, but may be equal to or greater than the groove width of the center thick groove 17.
- One end or both ends of the center narrow groove may be open to any one of the circumferential main groove 15, the center lug groove 11, and the center thick groove 17, and in the region of the center blocks 21 and 22, Both ends may be occluded.
- the center lug groove 11 includes the first center region Ce1 between the circumferential main groove 15 and the center thick groove 17 in the half tread region Ta, and the circumferential main groove 15 and the center thick groove 17 in the half tread region Tb.
- a plurality of second center regions Ce2 are provided at intervals in the tire circumferential direction.
- the first center region Ce1 and the second center region Ce2 are two regions where the center region is divided in the tire width direction by the center thick groove 17.
- the center lug groove 11 is a linear groove that extends in a direction inclined with respect to the tire width direction and the tire circumferential direction and opens to the center thick groove 17. Since the center lug groove 11 is linear, the stone biting resistance is improved.
- the center lug groove 11 of the first center region Ce1 and the center lug groove 11 of the second center region Ce2 extend in parallel to each other and open to the center thick groove 17 at different positions in the tire circumferential direction. ing.
- the center lug groove 11 is not connected to the center lug groove 11 in the opposite half tread region, and these two center lug grooves 11 are formed by the center thick groove 17. Is divided in the tire width direction.
- the center thick groove 17 has a groove depth shallower than that of the center lug groove 11 and is raised to the bottom of the center lug groove 11.
- a portion including the groove bottom of the center lug groove 11 at the end 11b is blocked in the tire width direction by a wall surface extending inward in the tire radial direction from the groove bottom of the center thick groove 17. For this reason, the air that has passed through the center lug groove 11 collides with the wall surface, and the portion extending from the groove bottom of the center thick groove 17 to the inside in the tire radial direction and the center block in the opposite half tread region. Can be cooled. Such a cooling action improves heat resistance.
- the groove width of the center lug groove 11 is narrower than that of the shoulder lug groove 13. For this reason, the ground pressure of the center blocks 21 and 22 during traveling is relaxed, and the wear life of the tire 1 is extended.
- a plurality of shoulder lug grooves 13 are provided at intervals in the tire circumferential direction in each of the half tread regions Ta and Tb.
- the shoulder lug groove 13 extends outward in the tire width direction in each of the half tread regions Ta and Tb, and opens to the closest grounding end of the grounding ends 10a and 10b on both sides in the tire width direction.
- the grounding terminals 10a and 10b are determined as follows.
- the ground contact ends 10a and 10b are tire width direction ends of the ground contact surface when the tire 1 is assembled to a regular rim, filled with a regular internal pressure, and grounded on a horizontal plane under the condition that the load is 100% of the regular load. .
- the regular rim referred to here means “measurement rim” defined in JATMA, “Design Rim” defined in TRA, or “Measuring Rim” defined in ETRTO.
- the normal internal pressure means “maximum air pressure” defined by JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” defined by TRA, or “INFLATION PRESSURES” defined by ETRTO.
- the normal load means “maximum load capacity” defined in JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” defined in TRA, or “LOAD CAPACITY” defined in ETRTO.
- the tire width direction positions of the ground contact ends 10a and 10b coincide with the tire width direction positions of both ends of the tread width described later.
- the shoulder lug grooves 13 located on both sides in the tire width direction, the position in the tire circumferential direction of one shoulder lug groove 13 arranged in one half-tread region is adjacent to the two adjacent half-tread regions.
- the two shoulder lug grooves 13 are located between the positions in the tire circumferential direction.
- the shoulder lug groove 13 has a tire width direction position of an end 13a on the inner side in the tire width direction of the shoulder lug groove 13 in each of the half tread regions Ta and Tb.
- the shoulder lug groove 13 is located on the outer side in the tire width direction with respect to the position in the width direction, and the shoulder lug groove 13 is located between adjacent center lug grooves 11 adjacent to each other in the tire circumferential direction in the center lug groove 11 in the tire circumferential direction. One is provided in each area.
- the circumferential main groove 15 to be described later is formed by alternately connecting the end 11a of the center lug groove 11 and the inner end 13a of the shoulder lug groove 13 in the tire width direction in each of the half tread regions Ta and Tb. Form the shape.
- the shoulder lug groove 13 has a groove width that changes in the direction in which the groove extends in FIG. 2, but may be constant.
- the tread pattern 10 further includes center blocks 21 and 22 and a shoulder block 27.
- the center block 21 is provided in the first center region Ce1, and the center block 22 is provided in the second center region Ce2.
- the tire is defined by the adjacent center lug groove 11, the circumferential main groove 15, and the center thick groove 17.
- a plurality are formed in a row in the circumferential direction.
- the center block 21 and the center block 22 are displaced from each other in the tire circumferential direction by the center lug groove 11 opening in the center thick groove 17 at different positions in the tire circumferential direction as described above.
- the shift amount X (see FIG. 3) that the center block 21 and the center block 22 are displaced in the tire circumferential direction is equal to or greater than the groove width W3 (see FIG. 3) of the center lug groove 11. preferable.
- the amount of deviation X also corresponds to the amount of misalignment of the center lug grooves 11 and 11 that join the center thick groove 17 from both sides in the tire width direction.
- heat is accumulated by the deformation of rubber in the air that has passed through the center lug groove 11 in the portion extending inward in the tire radial direction from the groove bottom of the center thick groove 17 and the half tread region on the opposite side. It can be made to collide with an easy part, and heat resistance is improved.
- FIG. 3 is an enlarged view of a part of the tread pattern shown in FIG.
- the amount of deviation X is preferably 0.25 times or more and 0.75 times or less the tire circumferential direction length of the center block 21 or 22.
- the shoulder block 27 includes a pair of adjacent shoulder lug grooves 13 adjacent to each other in the tire circumferential direction of the shoulder lug grooves 13, the circumferential main groove 15, and the tread rubber 6 in each of the half tread regions Ta and Tb. And a plurality of tread portions that are in contact with the tire in the tire width direction are formed in a row in the tire circumferential direction.
- the shoulder block 27 is inclined to a side different from the side where the center blocks 21 and 22 are inclined with respect to the tire equator line CL.
- the ratio W1 / W2 Is preferably 2.8 or more and 3.4 or less.
- the ratio W1 / W2 is 2.8 or more, the difference in groove width between the center thick groove 17 and the circumferential main groove 15 is large, so that the stone biting resistance can be maintained. Stone biting usually occurs when a stone is sandwiched between a pair of groove walls constituting a groove, but the center wide groove 17 has a clearly wide groove width. The stone biting property can be secured.
- the ratio W1 / W2 is preferably 2.6 or more and 3.1 or less.
- the ratio D1 / D2 is 0.05 or more and 0.2 or less.
- the stone biting resistance is improved.
- the ratio D1 / D2 is 0.05 or more, a sufficient groove volume of the circumferential main groove 15 can be secured, and the heat resistance is improved.
- the ratio D1 / D2 is preferably between 0.1 and 0.2.
- each groove included in the tread pattern 10 simply referring to the groove depth refers to the maximum groove depth when the groove depth is not constant, and refers to the groove depth when the groove depth is constant.
- the maximum groove depth is a groove depth of a portion of the circumferential main groove 15 that is not raised.
- the sizes of D1 and D2 shown in FIG. 1 do not accurately represent the ratio described in the present embodiment.
- the maximum groove depth of the circumferential main groove 15 is shallower than the maximum groove depth of the center lug groove 11, and the maximum groove depth of the center lug groove 11 is the shoulder lug groove 13. It is preferably shallower than the maximum groove depth.
- the maximum groove depth of the center lug groove 11 is not less than the maximum groove depth of the circumferential main groove 15.
- the maximum groove depth of the circumferential main groove 15 is the center lug. It is preferable to be shallower than the maximum groove depth of the groove 11.
- WB the belt width in the tire width direction of the outermost belt layer of the belt 4
- W5 the belt width in the tire width direction of the outermost belt layer of the belt 4
- the ratio WB / W5 Is preferably 0.55 or more and 0.85 or less.
- the outermost belt layer of the belt 4 is a belt layer on the outer side in the tire radial direction among the belt layers of the third cross belt layer 35, but the belt 4 includes the third cross belt layer 35.
- the ratio WB / W5 is preferably 0.60 or more and 0.80 or less.
- the tire 1 preferably includes a bottom raised portion 15 c in which the groove is partially shallow in each of the circumferential main grooves 15.
- FIG. 5 shows a partial profile of the tread portion when the tire 1 is cut along a plane including the tire radial direction through the line VV in FIG.
- the bottom of the raised portion 15c is raised at the bottom corresponding to the position where the first groove bent portion 15a and the second groove bent portion 15b are disposed. Since the circumferential main groove 15 includes the bottom raised portion 1c, a function of trying to discharge the stone that enters the groove to the outside of the groove is obtained, and the stone biting resistance is improved.
- the bottom raised portion 15c may have a constant shallow groove depth D3 as illustrated, or the groove depth may not be constant.
- the groove depth D3 refers to the shallowest groove depth in the bottom raised portion 15c, and is the minimum groove depth of the circumferential main groove 15.
- the bottom raised portion 15c is formed at a position corresponding to the first groove bent portion 15a and the second groove bent portion 15b, but the first groove bent portion 15a and the second groove bent portion 15b. It may be formed in an intermediate region between.
- the ratio D3 / T is 0 with respect to the shallowest groove depth D3 (see FIG. 5) in the bottom raised portion 15c and the tread width T (see FIG. 2) of the tread portion in the tire width direction. It is preferably 0.01 or more and 0.05 or less.
- the tread width T is a peripheral length along the outer shape between the ground contact ends 10a and 10b in the tire width direction of the tread portion.
- the ratio D3 / T is 0.05 or less, the stone biting resistance improving effect by the raised portion 15c is increased.
- the ratio D3 / T is 0.01 or more, it is possible to avoid deterioration of the air passage in the groove and to suppress a decrease in heat resistance.
- the ratio D3 / T is preferably 0.02 or more and 0.04 or less.
- the center thick groove 17 is preferably a linear groove passing through the tire equator line CL.
- the passage of air in the center region is improved, and the heat resistance is improved.
- the center thick groove 17 has a linear shape, the stone is often sandwiched at two places from the groove walls on both sides. Therefore, even if the stone enters the center thick groove 17 and is sandwiched between the grooves, It is easy to be discharged and stone chewing is unlikely to occur.
- the center thick groove is not a straight shape, for example, a bent shape, the stone is often pinched at three places from the groove wall and fixed in the groove, and it is difficult for the stone to be discharged from the groove. It tends to occur. In the example shown in FIG.
- the center thick groove 17 has a linear shape that passes through the tire equator line CL.
- the center thick groove 17 does not pass through the tire equator line CL.
- the center thick groove that is not linear may have, for example, groove bent portions similar to the groove bent portions 15a and 15b of the circumferential main groove 15.
- the center thick groove 17 may extend in a wave shape with the same or different period as the circumferential main groove 15, and the phase is shifted in the tire circumferential direction from any one of the circumferential main grooves 15.
- the phases may coincide and extend in a wave shape.
- the ratio W1 / D1 is preferably 1.5 or more and 5.0 or less. If there is a groove whose groove width is larger than the groove width of the circumferential main groove 15 in the center region, stones can easily enter and stone biting resistance may be reduced. However, in the tire 1 of one embodiment, even if a stone tries to enter the center thick groove 17, the ratio W1 / D1 is 1.5 or more, and the groove depth is shallow with respect to the groove width. Is easily discharged, and the resistance to stone chewing is improved.
- ratio W1 / D1 is 5.0 or less, since sufficient groove volume of the center thick groove 17 can be ensured, heat resistance is improved.
- the ratio W1 / D1 is less than 1.5 or exceeds 5.0, the heat resistance and the stone biting resistance may not be compatible.
- the ratio W1 / D1 is preferably 2.0 or greater and 4.0 or less.
- the groove widths of the circumferential main groove 15 and the center lug groove 11 are 7 mm or more and 20 mm or less, respectively.
- the width of the circumferential main groove 15 and the center lug groove 11 is, for example, 18 mm.
- the tire 1 is suitable when mounted on a construction vehicle or an industrial vehicle.
- Construction vehicles or industrial vehicles are, for example, dump trucks, scrapers, graders, excavator loaders, tire rollers, wheel cranes, truck cranes described in JATMA, or ⁇ COMPACTOR '', ⁇ EARTHMOVING '' as defined in TRA, Includes vehicles such as “GRADER” and “LOADER AND DOZER”.
- the tire 1 of the present embodiment may have the tread pattern 10 shown in FIG. 6 instead of the example shown in FIG.
- FIG. 6 is a view showing a modification of the tread pattern shown in FIG.
- the same reference symbols as those used in FIG. 2 are used for elements corresponding to the elements included in the pattern 10 shown in FIG.
- the deviation amount X is smaller than the example shown in FIG. 2, but the heat resistance is improved as described above by being not less than the groove width W ⁇ b> 3 of the center lug groove 11.
- the air that has passed through the center lug grooves 11 Colliding with a wall surface extending inward in the tire radial direction from the groove bottom of the groove 17, a portion extending inward in the tire radial direction from the groove bottom of the center thick groove 17, and the center block 21 or center in the opposite half tread region Block 22 can be cooled.
- Such a cooling action improves heat resistance.
- the presence of the center thick groove 17 having a larger groove width than the circumferential main groove 15 ensures a sufficient groove volume in the center region, and the air flow is good, thereby improving the heat resistance.
- the groove depth of the center thick groove 17 is shallower than the circumferential main groove 15 and the center lug groove 11, it is difficult to enter the groove, and even if stones enter the groove, the stones that enter the groove are easily discharged, and stone biting resistance is improved. improves. Since the groove depth of the center thick groove 17 is constant, a function of discharging stones is obtained in the tire circumferential direction, and a constant stone biting resistance is ensured in the tire circumferential direction.
- the ratio D1 / D2 is 0.2 or less, the stone biting resistance is improved. Further, when the ratio D1 / D2 is 0.05 or more, a sufficient groove volume of the center thick groove 17 can be secured, and the heat resistance is improved.
- the maximum groove depth of the circumferential main groove 15 is preferably shallower than the maximum groove depth of the center lug groove 11, and the maximum groove depth of the center lug groove 11 is preferably shallower than the maximum groove depth of the shoulder lug groove 13.
- the center region has a high ground pressure, and the center blocks 21 and 22 are likely to generate heat due to repeated deformation. Therefore, in order to improve heat resistance, the maximum groove depth of the center lug groove 11 Is preferably larger than the maximum groove depth of the circumferential main groove 15.
- the maximum groove depth of the circumferential main groove 15 is the center lug. It is preferably shallower than the groove 11.
- the ratio WB / W5 is not less than 0.55 and not more than 0.85, and by making the outermost belt layer of the belt 4 closest to the center blocks 21 and 22 wider than the center blocks 21 and 22, the center block The whole 21 and 22 are reinforced, and rigidity can be improved. Accordingly, even if a relatively large stone enters the center region, the center region of the tread portion is less likely to be deformed inwardly in the tire radial direction, so that it is difficult for the groove to sandwich the stone. Thereby, the stone biting resistance is improved. Moreover, since the rigidity of the center blocks 21 and 22 is increased, excessive movement for each block can be suppressed, and heat resistance is improved.
- the circumferential main groove 15 has the bottom raised portion 15c, so that stones can be prevented from entering the groove, and even if stones enter the groove, the function of trying to discharge the stone that has entered into the groove is obtained.
- the stone biting property is improved.
- a sufficient groove volume is ensured due to the deep groove depth, and the heat resistance is improved.
- the ratio D3 / T is 0.05 or less, the stone biting resistance improving effect by the raised portion 15c is increased. Further, when the ratio D3 / T is 0.01 or more, it is possible to avoid deterioration of the air passage in the groove and to suppress a decrease in heat resistance.
- center thick groove 17 is a linear groove passing through the tire equator line CL, air passage in the center region is improved and heat resistance is improved. Further, since the center thick groove 17 has a linear shape, it is difficult to cause stone biting.
- the ratio W1 / D1 is 1.5 or more and the groove depth is relatively shallow, so that the tire 1 enters the groove. Pile stones are easily discharged and the resistance to stone chewing is improved. Further, when the ratio W1 / D1 is 5.0 or less, the groove depth is not too shallow and a sufficient groove volume can be secured, so that the heat resistance is improved.
- the groove widths of the circumferential main groove 15 and the center lug groove 11 are 7 mm or more and 20 mm or less, respectively, it is suitable for use as an off-road tire.
- the tire 1 is suitable when mounted on a construction vehicle or an industrial vehicle.
- Example 2 As shown in Tables 1 to 3, various tires having different tread patterns were prototyped (Examples 1 to 13 and Comparative Examples 1 to 3), and heat resistance and stone biting resistance in the tread center region were examined. In Examples 1 to 13 and Comparative Examples 1 to 3, tires having the specifications shown in Tables 1 to 3 were manufactured using the tread pattern shown in FIG. The sizes of the prototyped tires are 33.00R51.
- the test piece was mounted on a rim having a size of 51 ⁇ 24-5.0, and a heat generation resistance test and a stone biting resistance test were performed under the test conditions of 700 kPa (TRA standard maximum air pressure).
- Table 1 it has a pair of circumferential main grooves, has two types of center lug grooves that are parallel to each other and offset in the tire circumferential direction, has a center thick groove, It has been found that when the groove depth is shallower and constant than the maximum groove depth of the circumferential main groove and the center lug groove (Example 1), both heat resistance and stone biting resistance can be achieved. On the other hand, when the groove depth of the center thick groove is not constant (Comparative Example 3), the stone biting resistance is lowered.
- the groove depth of the center thick groove is not constant, an aspect in which the groove depth is the same as the maximum groove depth of the center lug groove at a portion where the center thick groove is connected to the center lug groove is adopted.
- Comparative Example 3 when the groove depth of the center thick groove was not shallower than the circumferential main groove and the center lug groove (Comparative Example 2), the stone biting resistance further decreased.
- the center thick groove has a groove depth that is the maximum groove depth of the center lug groove. Although it is shallower than this, the aspect which is the same as the maximum groove depth of the circumferential main groove was adopted.
- the ratio WB / W5 is 0.55 or more and 0.85 or less (Example 5)
- the ratio WB / W5 is less than 0.55 (Example 6)
- the ratio WB / W5 is Compared with the case where it exceeds 0.85 (Example 7)
- both the heat resistance and the stone biting resistance were improved.
- both the heat resistance and the stone biting resistance are improved compared to the case where the center thick groove is not a straight line (Example 9).
- the aspect which inclined with respect to the tire circumferential direction and the tire width direction was employ
- the ratio W1 / D1 is 1.5 or more and 5.0 or less (Examples 10 to 12)
- heat resistance is higher than when the ratio W1 / D1 is less than 1.5 (Example 8).
- the stone biting resistance was improved.
- compared with the case where the ratio W1 / D1 exceeds 5.0 (Example 13) the stone biting resistance is maintained at least, and the heat resistance is improved.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Tires In General (AREA)
Abstract
Description
このような重荷重用タイヤによれば、耐発熱性が向上するため、建設車両用重荷重タイヤとして好適に使用できる、とされている。また、このような重荷重用タイヤによれば、センターブロックの周方向長さの100~180%の長さを有する副細溝を1本以上備えることで、クラウン部の冷却効果が高まり、耐カットセパレーション性を向上させることができる、とされている。
本発明は、耐発熱性および耐石噛み性のうち一方を維持あるいは向上させつつ、他方を向上させることができる重荷重用空気入りタイヤを提供する。
タイヤ赤道線を基準としたタイヤ幅方向の第1の側および第2の側の半トレッド領域のそれぞれに設けられ、タイヤ周方向にわたって波形状に形成された一対の周方向主溝と、
前記一対の周方向主溝の間のセンター領域をタイヤ周方向に延び、溝幅が前記周方向主溝の溝幅より太いセンター太溝と、
前記第1の側の半トレッド領域にある前記周方向主溝の1つと前記センター太溝との間の第1のセンター領域、および、前記第2の側の半トレッド領域にある前記周方向主溝の1つと前記センター太溝との間の第2のセンター領域のそれぞれに、タイヤ周方向に間隔をあけて複数設けられ、タイヤ幅方向及びタイヤ周方向に対して傾斜した向きに延びて前記センター太溝に開口する直線形状のセンターラグ溝と、
前記半トレッド領域のそれぞれにおいて、タイヤ周方向に間隔をあけて複数設けられ、タイヤ幅方向外側に延びて、タイヤ幅方向外側の端がタイヤ幅方向の両側にある接地端に開口するショルダーラグ溝であって、前記ショルダーラグ溝のタイヤ幅方向内側の端のタイヤ幅方向の位置が、前記センターラグ溝のタイヤ幅方向外側の端よりもタイヤ幅方向の外側にあり、かつ、タイヤ周方向において、前記センターラグ溝のうちタイヤ周方向に隣りあう隣接センターラグ溝の間に1つずつ設けられたショルダーラグ溝と、を備える。
前記一対の周方向主溝は、前記センターラグ溝のタイヤ幅方向外側の端と、前記ショルダーラグ溝のタイヤ幅方向の内側の端を交互に接続するように、タイヤ幅方向の外側に凸形状をなして湾曲あるいは屈曲した第1溝曲がり部とタイヤ幅方向の内側に凸形状をなして湾曲あるいは屈曲した第2溝曲がり部と、を有しており、
前記センターラグ溝および前記周方向主溝の溝幅は、前記ショルダーラグ溝の溝幅より狭く、
前記第1のセンター領域の前記センターラグ溝と、前記第2のセンター領域の前記センターラグ溝は、互いに平行な向きに延び、かつ、タイヤ周方向の互いに異なる位置で前記センター太溝に開口し、
前記センター太溝の溝深さは、前記周方向主溝および前記センターラグ溝の最大溝深さよりも浅く、一定である。
前記トレッドパターンは、さらに、前記第1のセンター領域および前記第2のセンター領域のそれぞれに設けられ、前記隣接センターラグ溝、前記周方向主溝、および前記センター太溝によって画されてタイヤ周方向に一列に複数形成されたセンターブロックを含み、
前記第1のセンター領域の前記センターブロックの列、前記第2のセンター領域の前記センターブロックの列を含んだセンターブロック列、および、前記センター太溝が占める領域のタイヤ幅方向の長さをWBとし、前記ベルト部の最外層のベルト層のタイヤ幅方向のベルト幅をW5としたとき、比WB/W5が0.55以上0.85以下であることが好ましい。
図1は、本実施形態の重荷重用空気入りタイヤ(以降、タイヤともいう)1の一部を示す断面図である。すなわち、図1は、タイヤ回転軸を含み、後で参照する図2中のI-I線を通り、タイヤ径方向を含む平面でタイヤ1を切断したときのタイヤ1のプロファイルを示す。
本明細書でいう重荷重用空気入りタイヤとは、JATMA(日本自動車タイヤ協会規格) YEAR BOOK 2014のC章に記載されるタイヤの他に、D章に記載される1種(ダンプトラック、スクレーバ)用タイヤ、2種(グレーダ)用タイヤ、3種(ショベルローダ等)用タイヤ、4種(タイヤローラ)用タイヤ、モビールクレーン(トラッククレーン、ホイールクレーン)用タイヤ、あるいはTRA 2013 YEAR BOOKのSECTION 4 あるいは、SECTION 6に記載される車両用タイヤをいう。
タイヤ1は、骨格材として、カーカスプライ3と、ベルト4と、一対のビードコア5とを有し、これらの骨格材の周りに、トレッドゴム6、サイドゴム7、ビードフィラー8、インナーライナ9等の各ゴム部材を有する。
周方向主溝15の溝幅は、ショルダーラグ溝13よりも溝幅が狭い。このため、走行時のセンターブロック21,22の接地圧が緩和され、タイヤ1の摩耗寿命が伸びる。
なお、センター太溝17は、溝深さが周方向主溝15およびセンターラグ溝11の最大溝深さよりも浅いことで、タイヤ1が摩耗すると、図4(b)に示されるように、周方向主溝15およびセンターラグ溝11よりも早く消失し、2つのセンターブロック21,22は、センター太溝17のタイヤ径方向内側の部分と繋がって、タイヤ周方向に連続して延びるセンター陸部となる。図4(b)は、摩耗初期よりも摩耗が進行したタイヤ1のトレッドパターンを示す図である。なお、図4(a)は、摩耗初期におけるタイヤ1のトレッドパターンを示す図である。摩耗初期とは、最も溝深さの浅い溝、例えばセンター太溝17がまだ消失していないタイヤ1の摩耗段階をいい、タイヤ1の新品時を含む。
センターラグ溝11の溝幅は、ショルダーラグ溝13の溝幅よりも狭い。このため、走行時のセンターブロック21,22の接地圧が緩和され、タイヤ1の摩耗寿命が延びる。
ここで、接地端10a,10bは以下のように定められる。接地端10a,10bは、タイヤ1を正規リムに組み付け、正規内圧を充填し、正規荷重の100%を負荷荷重とした条件において水平面に接地させたときの接地面のタイヤ幅方向端部である。なお、ここでいう正規リムとは、JATMAに規定される「測定リム」、TRAに規定される「Design Rim」、あるいはETRTOに規定される「Measuring Rim」をいう。また、正規内圧とは、JATMAに規定される「最高空気圧」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「INFLATION PRESSURES」をいう。また、正規荷重とは、JATMAに規定される「最大負荷能力」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「LOAD CAPACITY」をいう。なお、接地端10a,10bのタイヤ幅方向位置は、後述するトレッド幅の両端のタイヤ幅方向位置と一致している。
さらに、ショルダーラグ溝13は、半トレッド領域Ta,Tbのそれぞれにおいて、ショルダーラグ溝13が有するタイヤ幅方向内側の端13aのタイヤ幅方向の位置が、後述するセンターラグ溝11の端11aのタイヤ幅方向の位置よりもタイヤ幅方向の外側にあり、かつ、ショルダーラグ溝13は、タイヤ周方向において、センターラグ溝11のうちタイヤ周方向に隣りあう隣接センターラグ溝11の間に位置するショルダー領域に1つずつ設けられている。これにより、後述する周方向主溝15は、半トレッド領域Ta,Tbのそれぞれにおいて、センターラグ溝11の端11aとショルダーラグ溝13のタイヤ幅方向の内側の端13aを交互に接続して波形状を成す。ショルダーラグ溝13は、図2において、溝が延びる方向に溝幅が変化しているが、一定であってもよい。
底上げ部15cは、図示されるように一定の浅い溝深さD3を有していてもよく、溝深さが一定でなくてもよい。なお、溝深さD3は、底上げ部15cにおける最も浅い溝深さをいい、周方向主溝15の最小溝深さである。底上げ部15cは、図5に示される例において、第1溝曲がり部15aおよび第2溝曲がり部15bと対応する位置に形成されているが、第1溝曲がり部15aと第2溝曲がり部15bとの間の中間領域に形成されていてもよい。
図6において、ズレ量Xは、図2に示される例より小さいが、センターラグ溝11の溝幅W3以上であることにより、上述したように耐発熱性が向上する。
表1~3に示されるようにトレッドパターンの異なるタイヤを種々試作し(実施例1~13、比較例1~3)、トレッドセンター領域の耐発熱性と、耐石噛み性とを調べた。実施例1~13、比較例1~3は、図2に示すトレッドパターンを用いて、表1~3に示した仕様のタイヤを作製した。
試作したタイヤのサイズはいずれも、33.00R51である。サイズ51×24-5.0のリムに装着し、700kPa(TRA規格最大空気圧)を試験条件として、耐発熱性試験及び耐石噛み性試験を行なった。
試作したタイヤを室内ドラム試験機に取り付け、TRA規格最大荷重(38,750kg)の110%の負荷荷重の条件で、速度5km/時にて走行し、12時間ごとに速度を1km/時ずつ増加させ、タイヤが発熱によって破壊されるまでの走行時間を測定した。その結果を、比較例1を100とする指数で表した。指数が大きいほど耐発熱性に優れている。
試作したタイヤを実車に装着して、TRA規格最大荷重(38,750kg)の試験条件で、2~20mmのサイズの石を敷いた採石場内の300mの区間を2往復走行後、センターブロックに接する溝(周方向主溝、センターラグ溝)およびセンター領域内の溝(センター太溝)が噛んだ石の数を目視で数え、比較例1を102とする指数で表した。指数の値が大きいほど耐石噛み性に優れる。なお、指数が100以上である場合は、耐石噛み性は比較例1と同程度以上であるとした。
以上の結果、耐発熱性および耐石噛み性の指数がいずれも100以上であって、かつ、指数の合計が206以上である場合を、耐発熱性および耐石噛み性を両立できたと評価した。
これに対し、センター太溝の溝深さが一定でない場合(比較例3)は、耐石噛み性が低下した。なお、センター太溝の溝深さが一定でない態様として、センター太溝がセンターラグ溝と接続する部分において溝深さがセンターラグ溝の最大溝深さと同じである態様を採用した。
比較例3において、さらに、センター太溝の溝深さが周方向主溝およびセンターラグ溝より浅くない場合(比較例2)は、耐石噛み性がさらに低下した。なお、センター太溝が、センター太溝の溝深さが周方向主溝およびセンターラグ溝の最大溝深さより浅くない態様としては、センター太溝の溝深さが、センターラグ溝の最大溝深さより浅いが、周方向主溝の最大溝深さと同じである態様を採用した。
また、表2からわかるように、比W1/W2が2.8以上3.4以下である場合(実施例5)は、W1/W2が2.8未満である場合(実施例4)と比べ、耐発熱性が向上した。また、W1/W2が3.4を超える場合(実施例2)と比べ、耐発熱性および耐石噛み性がいずれも向上した。
また、比WB/W5が0.55以上0.85以下である場合(実施例5)は、比WB/W5が0.55未満である場合(実施例6)、および、比WB/W5が0.85を超える場合(実施例7)と比べ、耐発熱性および耐石噛み性がいずれも向上した。
また、センター太溝が、タイヤ赤道線CLを通る直線状である場合(実施例8)は、直線状でない場合(実施例9)と比べ、耐発熱性および耐石噛み性はいずれも向上した。なお、センター太溝が直線状でない態様として、センター太溝がタイヤ赤道線と交差するよう、タイヤ周方向およびタイヤ幅方向に対して傾斜した態様を採用した。
また、比W1/D1が1.5以上5.0以下である場合(実施例10~12)は、比W1/D1が1.5未満である場合(実施例8)と比べ、耐発熱性および耐石噛み性はいずれも向上した。また、比W1/D1が5.0を超える場合(実施例13)と比べ、耐石噛み性が少なくとも維持され、耐発熱性が向上した。
4 ベルト
6 トレッドゴム
10 トレッドパターン
11 センターラグ溝
13 ショルダーラグ溝
15 周方向主溝
15a 第1溝曲がり部
15b 第2溝曲がり部
15c 底上げ部
17 センター太溝
21,22 センターブロック
27 ショルダーブロック
Claims (11)
- トレッドパターン付き重荷重用空気入りタイヤであって、
前記トレッドパターンは、
タイヤ赤道線を基準としたタイヤ幅方向の第1の側および第2の側の半トレッド領域のそれぞれに設けられ、タイヤ周方向にわたって波形状に形成された一対の周方向主溝と、
前記一対の周方向主溝の間のセンター領域をタイヤ周方向に延び、溝幅が前記周方向主溝の溝幅より太いセンター太溝と、
前記第1の側の半トレッド領域にある前記周方向主溝の1つと前記センター太溝との間の第1のセンター領域、および、前記第2の側の半トレッド領域にある前記周方向主溝の1つと前記センター太溝との間の第2のセンター領域のそれぞれに、タイヤ周方向に間隔をあけて複数設けられ、タイヤ幅方向及びタイヤ周方向に対して傾斜した向きに延びて前記センター太溝に開口する直線形状のセンターラグ溝と、
前記半トレッド領域のそれぞれにおいて、タイヤ周方向に間隔をあけて複数設けられ、タイヤ幅方向外側に延びて、タイヤ幅方向外側の端がタイヤ幅方向の両側にある接地端に開口するショルダーラグ溝であって、前記ショルダーラグ溝のタイヤ幅方向内側の端のタイヤ幅方向の位置が、前記センターラグ溝のタイヤ幅方向外側の端よりもタイヤ幅方向の外側にあり、かつ、タイヤ周方向において、前記センターラグ溝のうちタイヤ周方向に隣りあう隣接センターラグ溝の間に1つずつ設けられたショルダーラグ溝と、を備え、
前記一対の周方向主溝は、前記センターラグ溝のタイヤ幅方向外側の端と、前記ショルダーラグ溝のタイヤ幅方向の内側の端を交互に接続するように、タイヤ幅方向の外側に凸形状をなして湾曲あるいは屈曲した第1溝曲がり部とタイヤ幅方向の内側に凸形状をなして湾曲あるいは屈曲した第2溝曲がり部と、を有しており、
前記センターラグ溝および前記周方向主溝の溝幅は、前記ショルダーラグ溝の溝幅より狭く、
前記第1のセンター領域の前記センターラグ溝と、前記第2のセンター領域の前記センターラグ溝は、互いに平行な向きに延び、かつ、タイヤ周方向の互いに異なる位置で前記センター太溝に開口し、
前記センター太溝の溝深さは、前記周方向主溝および前記センターラグ溝の最大溝深さよりも浅く、一定であることを特徴とする重荷重用空気入りタイヤ。 - 前記センター太溝の溝幅をW1とし、前記周方向主溝の溝幅をW2としたとき、比W1/W2は2.8以上3.4以下である、請求項1に記載の重荷重用空気入りタイヤ。
- 前記センター太溝の溝深さをD1とし、前記周方向主溝の最大溝深さをD2としたとき、比D1/D2は0.05以上0.2以下である、請求項1または2に記載の重荷重用空気入りタイヤ。
- 前記周方向主溝の最大溝深さは、前記センターラグ溝の最大溝深さよりも浅く、前記センターラグ溝の最大溝深さは、前記ショルダーラグ溝の最大溝深さよりも浅い、請求項1から3のいずれか1項に記載の重荷重用空気入りタイヤ。
- さらに、タイヤ周方向に対してベルトコードの向きがタイヤ幅方向の異なる側に傾斜した一対の交差ベルト層を含むベルト部を備え、
前記トレッドパターンは、さらに、前記第1のセンター領域および前記第2のセンター領域のそれぞれに設けられ、前記隣接センターラグ溝、前記周方向主溝、および前記センター太溝によって画されてタイヤ周方向に一列に複数形成されたセンターブロックを含み、
前記第1のセンター領域の前記センターブロックの列、前記第2のセンター領域の前記センターブロックの列を含んだセンターブロック列、および、前記センター太溝が占める領域のタイヤ幅方向の長さをWBとし、前記ベルト部の最外層のベルト層のタイヤ幅方向のベルト幅をW5としたとき、比WB/W5が0.55以上0.85以下である、請求項1から4のいずれか1項に記載の重荷重用空気入りタイヤ。 - 前記一対の周方向主溝それぞれにおいて、溝深さが部分的に浅くなった底上げ部を備える、請求項1から5のいずれか1項に記載の重荷重用空気入りタイヤ。
- 前記底上げ部において最も浅い溝深さをD3とし、前記トレッド部のタイヤ幅方向のトレッド幅をTとしたとき、比D3/Tは0.01以上0.05以下である、請求項6に記載の重荷重用空気入りタイヤ。
- 前記センター太溝は、タイヤ赤道線を通る直線形状の溝である、請求項1から7のいずれか1項に記載の重荷重用空気入りタイヤ。
- 前記センター太溝の溝深さをD1とし、前記センター太溝の溝幅をW1としたとき、比W1/D1は1.5以上5.0以下である、請求項1から8のいずれか1項に記載の重荷重用空気入りタイヤ。
- 前記周方向主溝および前記センターラグ溝の溝幅はそれぞれ7mm以上20mm以下である、請求項1から9のいずれか1項に記載の重荷重用空気入りタイヤ。
- 建設用車両または産業用車両に装着される、請求項1から10のいずれか1項に記載の重荷重用空気入りタイヤ。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018138166A RU2680887C1 (ru) | 2016-03-31 | 2017-03-30 | Пневматическая шина для высоконагруженных машин |
US16/088,803 US11167598B2 (en) | 2016-03-31 | 2017-03-30 | Heavy duty pneumatic tire |
AU2017239856A AU2017239856B2 (en) | 2016-03-31 | 2017-03-30 | Heavy duty pneumatic tire |
CN201780019997.7A CN108883667B (zh) | 2016-03-31 | 2017-03-30 | 重载用充气轮胎 |
JP2017540810A JP6237971B1 (ja) | 2016-03-31 | 2017-03-30 | 重荷重用空気入りタイヤ |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-072216 | 2016-03-31 | ||
JP2016072216 | 2016-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017170946A1 true WO2017170946A1 (ja) | 2017-10-05 |
Family
ID=59965928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/013422 WO2017170946A1 (ja) | 2016-03-31 | 2017-03-30 | 重荷重用空気入りタイヤ |
Country Status (6)
Country | Link |
---|---|
US (1) | US11167598B2 (ja) |
JP (1) | JP6237971B1 (ja) |
CN (1) | CN108883667B (ja) |
AU (1) | AU2017239856B2 (ja) |
RU (1) | RU2680887C1 (ja) |
WO (1) | WO2017170946A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021024963A1 (ja) * | 2019-08-08 | 2021-02-11 | 横浜ゴム株式会社 | 空気入りタイヤ |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111323245A (zh) * | 2020-03-13 | 2020-06-23 | 安徽德技汽车检测中心有限公司 | 一种检测轮胎行驶中夹带石子的试验方法 |
JP7518350B2 (ja) * | 2020-05-12 | 2024-07-18 | 横浜ゴム株式会社 | タイヤ |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0781326A (ja) * | 1993-09-09 | 1995-03-28 | Sumitomo Rubber Ind Ltd | 氷雪路用タイヤ |
JP2000264018A (ja) * | 1999-03-19 | 2000-09-26 | Bridgestone Corp | 空気入りタイヤ |
JP2007022151A (ja) * | 2005-07-12 | 2007-02-01 | Sumitomo Rubber Ind Ltd | 重荷重用タイヤ |
JP2015134571A (ja) * | 2014-01-17 | 2015-07-27 | 株式会社ブリヂストン | タイヤ |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2322767T3 (es) * | 2000-01-26 | 2009-06-26 | Bridgestone Corporation | Neumatico. |
JP2004262295A (ja) * | 2003-02-28 | 2004-09-24 | Bridgestone Corp | 建設車両用重荷重用空気入りタイヤ |
ES2334369T3 (es) | 2004-06-23 | 2010-03-09 | Bridgestone Corporation | Neumatico. |
US8210218B2 (en) * | 2004-08-03 | 2012-07-03 | Bridgestone Corporation | Pneumatic tire with tread having isosceles trapezoidal block portion between lug grooves |
JP5094103B2 (ja) * | 2006-12-12 | 2012-12-12 | 株式会社ブリヂストン | 空気入りタイヤ |
JP1520593S (ja) * | 2014-05-29 | 2015-03-30 |
-
2017
- 2017-03-30 AU AU2017239856A patent/AU2017239856B2/en not_active Ceased
- 2017-03-30 WO PCT/JP2017/013422 patent/WO2017170946A1/ja active Application Filing
- 2017-03-30 US US16/088,803 patent/US11167598B2/en active Active
- 2017-03-30 RU RU2018138166A patent/RU2680887C1/ru active
- 2017-03-30 JP JP2017540810A patent/JP6237971B1/ja active Active
- 2017-03-30 CN CN201780019997.7A patent/CN108883667B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0781326A (ja) * | 1993-09-09 | 1995-03-28 | Sumitomo Rubber Ind Ltd | 氷雪路用タイヤ |
JP2000264018A (ja) * | 1999-03-19 | 2000-09-26 | Bridgestone Corp | 空気入りタイヤ |
JP2007022151A (ja) * | 2005-07-12 | 2007-02-01 | Sumitomo Rubber Ind Ltd | 重荷重用タイヤ |
JP2015134571A (ja) * | 2014-01-17 | 2015-07-27 | 株式会社ブリヂストン | タイヤ |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021024963A1 (ja) * | 2019-08-08 | 2021-02-11 | 横浜ゴム株式会社 | 空気入りタイヤ |
JP2021024522A (ja) * | 2019-08-08 | 2021-02-22 | 横浜ゴム株式会社 | 空気入りタイヤ |
JP7298381B2 (ja) | 2019-08-08 | 2023-06-27 | 横浜ゴム株式会社 | 空気入りタイヤ |
Also Published As
Publication number | Publication date |
---|---|
CN108883667A (zh) | 2018-11-23 |
US11167598B2 (en) | 2021-11-09 |
US20190054773A1 (en) | 2019-02-21 |
AU2017239856B2 (en) | 2019-01-17 |
JP6237971B1 (ja) | 2017-11-29 |
CN108883667B (zh) | 2019-06-28 |
AU2017239856A1 (en) | 2018-10-25 |
JPWO2017170946A1 (ja) | 2018-04-12 |
RU2680887C1 (ru) | 2019-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6229726B2 (ja) | 重荷重用空気入りタイヤ | |
WO2017170562A1 (ja) | 重荷重用空気入りタイヤ | |
JP6229735B2 (ja) | 重荷重用空気入りタイヤ | |
JP6229722B2 (ja) | 重荷重用空気入りタイヤ | |
JP6237971B1 (ja) | 重荷重用空気入りタイヤ | |
JP6229725B2 (ja) | 重荷重用空気入りタイヤ | |
JP6237970B1 (ja) | 重荷重用空気入りタイヤ | |
JP6432518B2 (ja) | 空気入りタイヤ | |
JP6229723B2 (ja) | 重荷重用空気入りタイヤ | |
JP6229734B2 (ja) | 空気入りタイヤ | |
JP6229724B2 (ja) | 重荷重用空気入りタイヤ | |
JP6237810B2 (ja) | 重荷重用空気入りタイヤ | |
JP6443376B2 (ja) | 重荷重用空気入りタイヤ | |
JP5910795B1 (ja) | 重荷重用空気入りタイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017540810 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017239856 Country of ref document: AU Date of ref document: 20170330 Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17775480 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17775480 Country of ref document: EP Kind code of ref document: A1 |