WO2017170751A1 - Li含有酸化珪素粉末 - Google Patents

Li含有酸化珪素粉末 Download PDF

Info

Publication number
WO2017170751A1
WO2017170751A1 PCT/JP2017/013030 JP2017013030W WO2017170751A1 WO 2017170751 A1 WO2017170751 A1 WO 2017170751A1 JP 2017013030 W JP2017013030 W JP 2017013030W WO 2017170751 A1 WO2017170751 A1 WO 2017170751A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
silicon oxide
sio
ratio
particle
Prior art date
Application number
PCT/JP2017/013030
Other languages
English (en)
French (fr)
Inventor
浩樹 竹下
木崎 信吾
悠介 柏谷
Original Assignee
株式会社大阪チタニウムテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大阪チタニウムテクノロジーズ filed Critical 株式会社大阪チタニウムテクノロジーズ
Priority to JP2018509371A priority Critical patent/JP6623285B2/ja
Priority to KR1020187025121A priority patent/KR20180111894A/ko
Priority to CN201780011461.0A priority patent/CN108701826B/zh
Publication of WO2017170751A1 publication Critical patent/WO2017170751A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a silicon oxide-based negative electrode material used for forming a negative electrode of a lithium ion secondary battery, and more particularly to a Li-containing silicon oxide powder doped with lithium.
  • silicon oxide and SiO x are synonymous.
  • SiO x has a large electric capacity and is an excellent negative electrode material for lithium ion secondary batteries.
  • This SiO x negative electrode material is made into a thin film negative electrode by applying a slurry obtained by mixing SiO x powder, a conductive additive and a binder onto a current collector made of copper foil or the like and drying it. .
  • the SiO x powder here is obtained by cooling and precipitating silicon monoxide gas generated by heating a mixture of silicon dioxide and silicon under reduced pressure, and then finely crushing.
  • the SiO x powder produced by such a precipitation method is advantageous because it contains a lot of amorphous parts, reduces the thermal expansion coefficient, and improves cycle characteristics.
  • Li doping As a problem of such a SiO x negative electrode material, there is a low initial efficiency, and lithium doping (Li doping) is known as a technique for solving this problem. Li doping is carried out by mixing SiO x powder and a powdered lithium source and firing them (Patent Documents 1 to 4). By performing Li doping on the SiO x powder particles, the generation of a lithium compound that does not contribute to charge / discharge during the initial charge is suppressed, and the initial efficiency is improved.
  • C coating carbon coating treatment
  • Patent Document 3 C coating is applied after Li doping.
  • Patent Document 4 Li doping is performed after C coating.
  • the Li dope has a problem that the activity of the SiO x powder against air and water is increased and the handling property of the powder is deteriorated.
  • the increase in dust explosiveness due to Li doping is because the reaction between the SiO x powder and the lithium powder source is a surface reaction, and a large amount of highly active Li remains on the particle surface of the Li doped SiO x powder. Conceivable.
  • lithium silicate such Li 2 Si 2 O 5, Li 2 SiO 3, Li 4 SiO 4, but further it believed that such LiSi alloy occurs both SiO x
  • the activity is high, and care must be taken in handling in the air. In general, the activity increases as the Li content increases.
  • Patent Document 5 proposes wet cleaning as a measure for solving the problem of powder activation associated with Li doping. That is, active Li generated on the particle surface by Li doping is removed by wet cleaning. However, in the case of wet cleaning, active Li is removed in the form of lithium silicate or LiSi alloy, so that pure Si is exposed from the inside of the powder particles to the particle surface, and as a result, the reactivity to the electrolyte is increased, The low reactivity with the electrolytic solution, which is the inherent advantage of the SiO x powder, is sacrificed, resulting in a decrease in initial efficiency, which is one of battery performances.
  • Japanese Patent No. 2999741 Japanese Patent No. 4702510 Japanese Patent No. 4985949 Japanese Patent No. 54117781 Japanese Patent Publication No. 2014-532267
  • An object of the present invention is to provide a safe and high-performance Li-containing silicon oxide powder capable of avoiding a decrease in safety associated with Li doping and suppressing a decrease in battery performance that is a problem in wet cleaning.
  • the safety in air SiO x powder Li doped is reduced in comparison with the SiO x powder before Li doped, be SiO x powder exists Li on the particle surface touching the air
  • the cause is that Li contributes to the improvement of the initial efficiency, so if Li is removed unnecessarily, the battery performance is lowered. Therefore, the present inventor limitedly forms a layer with a small amount of Li on the particle surface where the SiO x powder comes into contact with air for the purpose of improving safety while minimizing deterioration in battery performance. And in that layer, we planned to selectively reduce Li without reducing Si, and continued earnest research and study. As a result, the following facts were found.
  • the ratio of the Li amount to the sum of the Li amount and the Si amount (Li amount ratio). It is effective to introduce a ratio between the Li amount ratio at the outermost surface (outermost surface Li amount ratio) and the Li amount ratio (near surface Li amount ratio) at the near surface slightly away from the outermost surface to the inside.
  • Li doped is a surface reaction of SiO x powder, as Li becomes high concentration near the surface of the powder particles in the Li-doped SiO x powder, result, the ratio of the outermost surface Li amount ratio and the near surface Li content ratio Over 1
  • Li is removed on the particle surface in the form of lithium silicate or LiSi alloy, and Si is removed together with Li, so this tendency does not change and is close to the outermost surface Li amount ratio.
  • the ratio of the surface Li amount ratio exceeds 1.
  • the outermost surface Li amount ratio becomes smaller and the near surface Li amount ratio becomes larger, that is, the outermost surface Li amount ratio. It has been found that the above object is achieved when the ratio of the surface Li amount ratio and the near surface Li amount ratio is less than 1.
  • the selective and limited low Li layer on the particle surface can be formed, for example, by selectively blowing off Li existing on the particle surface by irradiating the particle surface with an electron beam. Further, the outermost surface Li amount ratio and the near surface Li amount ratio can be quantitatively calculated by observing powder particles with a STEM and obtaining the spectral intensity of the outermost surface and the near surface by EELS measurement.
  • the Li-containing silicon oxide powder of the present invention was developed on the basis of such knowledge, and is a Li-containing SiO x powder (0.5 ⁇ x ⁇ 1.5) used for a negative electrode material of a lithium secondary battery. There, Obtaining spectral intensities in the Li-K edge region and Si-L edge region when EELS measurement is performed in a 1 ⁇ m square field of view including the particle surface with respect to the powder particle cross section and having a resolution of 50 pixels ⁇ 50 pixels or more, Of the integrated intensity of one row on the outermost surface of the particle in the visual field, the integrated intensity in the Li-K edge region is I Li (s) and the integrated intensity in the Si-L edge region is I Si (s).
  • I Li (s) / (I Li (s) + I Si (s)) is the outermost surface Li intensity ratio R (s)
  • the integrated intensity in the Li-K edge region is I Li (i)
  • the integrated intensity in the Si-L edge region is I as Si I Li when the (i) (i) / ( I Li (i) + I Si (i)) the near surface Li intensity ratio R (i), R (s) / R (i) ⁇ 1 is satisfied.
  • EELS measurement was performed in a 1 ⁇ m square field including the particle surface and having a resolution of 50 pixels ⁇ 50 pixels or more, and mapping was performed on the spectral intensity in the Li-K edge region.
  • a set of measurement points along a direction that is nearly parallel to the particle surface of two orthogonal directions that are parallel to the two sides that form a square field of view is “row”, along a direction that is close to vertical
  • a set of measurement points is a “column”, and for each example, when the spectrum intensity is taken from the outside of the particle toward the inside of the particle, the point having the larger intensity of the two points having the largest intensity difference from the nearest point is selected.
  • the outermost surface point of the row is a set of outermost points designated by this method for each row.
  • the outermost surface Li intensity ratio R (s) is smaller than the near surface Li intensity ratio R (i) in the vicinity of the surface of the powder particles. This means that a low Li layer in which Li is selectively reduced is limitedly formed on the outermost surface of the powder particles. As a result, the safety of the powder is improved, the increase in dust explosiveness associated with the Li dope is avoided, and the decrease in battery performance, which is a problem in wet cleaning, is suppressed.
  • R (s) / R (i) is desirably 0.9 or less, and more desirably 0.8 or less.
  • the outermost surface Li intensity ratio R (s) is small, specifically 0.6 or less.
  • R (s) Li is excessive with respect to Si on the outermost surface, and dust explosiveness is increased. Even if R (s) / R (i) ⁇ 1, if R (s) is large and R (i) is larger than that, the effect of suppressing dust explosiveness is small.
  • R (s) / R (i) ⁇ 1 and R (s) ⁇ 0.6 dust explosiveness is effectively suppressed.
  • the Li content of the powder is desirably 0.2 or more and 0.9 or less in molar ratio Li / O to O.
  • Li / O is less than 0.2, the amount of Li is insufficient, so that improvement in battery performance due to the inclusion of Li cannot be expected.
  • Li / O is more than 0.9, the amount of Li becomes excessive, so that a Li—Si alloy is formed, the reactivity of the powder is extremely increased, and the dust explosiveness is further increased. It is a feature of the powder that Li is sufficiently contained for improving the battery performance and still has high safety.
  • X in SiO x that is, the ratio O / Si of the number of O atoms to the number of Si atoms needs to be more than 0.5 and less than 1.5.
  • x ⁇ 0.5 SiO x becomes too close to Si, the activity against oxygen is increased, and the safety is lowered. Conversely, if x ⁇ 1.5, the initial efficiency is lowered and the battery performance is lowered.
  • the particle diameter of the powder is preferably 0.5 ⁇ m or more and 30 ⁇ m or less, and particularly preferably 1 ⁇ m or more and 20 ⁇ m or less, expressed as a median diameter (D 50 ) measured by a laser diffraction particle size distribution analyzer. If the particle size is too small, the surface area of the powder becomes excessive, resulting in a decrease in coulomb efficiency due to reaction with the electrolyte and an increase in reactivity with air. On the other hand, when the particle diameter is too large, the influence of the expansion of the particles during charging / discharging becomes large and the cycle characteristics are deteriorated.
  • the powder particles may be coated with a conductive carbon film.
  • the coating of the conductive carbon film improves the electrical conductivity between the powder particles that make up the negative electrode and the electrical conductivity between the negative electrode and the current collector that is the base, improving battery characteristics, especially cycle characteristics. Is possible.
  • the coating of the conductive carbon film here is the C coat.
  • the coating amount of the conductive carbon film on the particles of the powder is preferably 0.5 wt% or more and 20 wt% or less in terms of the weight ratio of carbon to the mass of the entire silicon oxide powder.
  • the amount formed is less than 0.5 wt%, the effect of imparting conductivity is small due to the small amount of carbon coating.
  • it exceeds 20 wt% there is a concern that the capacity is reduced due to the weight of the SiO x powder occupying the whole powder and the safety is lowered due to the outermost surface of the particles being covered with a combustible substance.
  • the Li-containing silicon oxide powder of the present invention is a Li-containing SiO x powder subjected to Li doping
  • the Li concentration on the outermost surface of the particles is lower than the Li concentration on the near surface slightly away from the outermost surface to the inside.
  • the dust explosibility of the powder is a level at which no explosion occurs at 2000 g / m 3 or less in the dust explosion lower limit concentration measurement specified in JISZ8818.
  • the Li-containing silicon oxide powder of this embodiment is manufactured by the following method.
  • the particle size of the SiO x powder is 0.5 to 30 ⁇ m in terms of median diameter.
  • the source of powder lithium is lithium hydride (LiH), lithium aluminum hydride (LiAlH), lithium oxide (Li 2 O), lithium hydroxide (LiOH), lithium carbonate (Li 2 CO 3 ), etc. Lithium fluoride (LiH) is used.
  • the C coating for the conductive carbon film is applied to the raw material silicon oxide powder.
  • the C coating is performed by a thermal CVD method using a hydrocarbon gas as a carbon source, for example, a heat treatment in a mixed gas atmosphere of argon and propane.
  • the C coating amount is 0.5 to 20 wt% in terms of the weight ratio of carbon to the total mass of the silicon oxide powder.
  • Li doping is performed on the SiO x powder after C coating. That is, firing a mixture of a SiO x powder and the powder lithium source after C coat.
  • the mixing ratio is 0.2 to 0.9 in terms of Li / O molar ratio, preferably 0.2 to 0.6.
  • the firing temperature is in the range of 300 to 800 ° C., more specifically, a temperature range in which disproportionation of the silicon oxide powder does not occur. By this firing, the SiO x powder is Li-doped to become a Li-containing SiO x powder.
  • Li-containing SiO x powder after Li doping is subjected to Li removal treatment by electron beam irradiation on the powder particle surface.
  • Li can be selectively removed by adjusting the acceleration voltage in electron beam irradiation. That is, only Li is selectively removed leaving Si from the surface of the powder particles.
  • grains will be 0.6 or less, and becomes smaller than Li amount ratio in the near surface which left
  • Li doping is a surface reaction of powder particles
  • the ratio of Li amount to the sum of Li amount and Si amount is from the outermost surface of the particle.
  • the outermost surface Li amount ratio becomes larger than the near surface Li amount ratio, but according to the selective removal treatment of Li by electron beam irradiation on the powder particle surface, the outermost surface Li amount ratio The ratio can be made 0.6 or less to be smaller than the near surface Li amount ratio.
  • the reactivity of the powder which is a problem with Li doping, is increased, and the increase in dust explosiveness due to this is solved.
  • Si unlike the wet cleaning, Si remains, so that the deterioration of the battery performance which becomes a problem in the wet cleaning is also solved.
  • the outermost surface Li amount ratio and the near surface Li amount ratio can be specifically evaluated by STEM observation on the powder particles and calculation of the spectral intensity of the outermost surface and the near surface by EELS measurement.
  • SiO powder as a heat treatment for C coating, a hydrocarbon gas in which argon and propane are mixed at a weight ratio of 1: 1 is used as a carbon source, and this is supplied into the furnace at a flow rate of 1 liter per minute. Then, the SiO powder was heat-treated at 850 ° C. for 30 minutes in the furnace.
  • Li doping was performed on the SiO powder after C coating.
  • LiH powder was selected as the powder lithium source.
  • the SiO powder and LiH powder after C coating were mixed so that the Li / O molar ratio was 0.2, and baked in an argon atmosphere (1 atm, 600 ° C.) in an atmosphere furnace for 24 hours.
  • the particle size of the SiO powder at this stage is 6.26 ⁇ m in terms of the median diameter (D 50 ) measured by a laser diffraction type particle size distribution measuring device.
  • the C coating amount that is, the coating amount of the conductive carbon film is 0.8 wt%.
  • the Li-containing SiO powder obtained by Li doping was irradiated with an electron beam in vacuum and at an acceleration voltage of 300 kV to selectively remove Li existing on the surface of the powder particles. Then, the powder after removing Li was subjected to FIB processing to expose the cross section, and STEM observation was performed.
  • FIB processing Hitachi FB-2000A was used, sampling was performed in Ar gas, and an Al grid was used.
  • STEM observation JEOL JEM-ARM200F was used, GATA JIF Quantum was used for the EELS analysis filter, and GATA Digital micrograph was used for image acquisition. The observation conditions were a beam diameter of 0.2 mm ⁇ , an acceleration voltage of 200 kV, and an energy resolution of about 0.5 eV FWHM.
  • a cross-sectional image of the whole particle by STEM observation is shown in FIG.
  • FIG. 2 shows an ADF image (low-angle annular dark field image) in the vicinity of the particle surface
  • FIG. 3 shows an Li-K edge mapping image in the vicinity
  • FIG. 4 shows an Si-L edge mapping image in the vicinity.
  • the background is calculated and subtracted from the range of 49.54 to 55.04eV using the 1st order Log-polynominal model, and the range of 58.34 to 68.34eV is calculated. The intensity was integrated.
  • the power law model is used to calculate and subtract the background from the range of 88.34 to 98.34 eV, and the intensity in the range of 99.84 to 113.24 eV. Was accumulated.
  • the accumulated intensity of the integrated intensity I Li (i) and Si-L edge region of the Li-K edge region for one column of the near surface remote 500nm from the particle outermost surface inward I Si (i) near The surface Li intensity ratio R (i), that is, I Li (i) / (I Li (i) + I Si (i)) was determined. Then, a ratio between the outermost surface Li intensity ratio R (s) and the near surface Li intensity ratio R (i), that is, R (s) / R (i) was obtained.
  • Example 2 In Example 1, the mixing ratio of the SiO powder and the LiH powder after C coating in Li doping was set to 0.4 in terms of the Li / O molar ratio. Others are the same as Example 1.
  • Example 3 In Example 1, the mixing ratio of the SiO powder and the LiH powder after C coating in Li doping was 0.9 in terms of Li / O molar ratio. Others are the same as Example 1.
  • Example 4 In Example 1, C coating to the SiO powder used for Li dope was abbreviate
  • the mixing ratio of SiO powder and LiH powder in Li dope was set to 0.4 in terms of Li / O molar ratio. Others are the same as Example 1.
  • Example 1 Li removal treatment by electron beam irradiation on Li-containing SiO powder after Li doping was omitted.
  • the mixing ratio of SiO powder and LiH powder in Li dope was set to 0.4 in terms of Li / O molar ratio.
  • Others are the same as Example 1.
  • FIG. 5 shows a Li-K edge mapping image in the vicinity of the surface corresponding to FIG. 3
  • FIG. 6 shows a Si-L edge mapping image in the vicinity of the surface corresponding to FIG.
  • Example 2 Li removal treatment by electron beam irradiation on Li-containing SiO powder after Li doping was omitted.
  • the mixing ratio of SiO powder and LiH powder in Li dope is 0.2 in terms of Li / O molar ratio. Others are the same as Example 1.
  • Example 3 Li removal treatment by electron beam irradiation on Li-containing SiO powder after Li doping was omitted. C coating on the SiO powder used for Li doping was omitted. The mixing ratio of SiO powder and LiH powder in Li dope was set to 0.4 in terms of Li / O molar ratio. Others are the same as Example 1.
  • Example 4 the Li-containing SiO powder after Li doping was subjected to water washing treatment at 25 ° C. for 24 hours instead of Li removal treatment by electron beam irradiation. Specifically, 20 g of Li-containing SiO powder after Li doping was put into 400 g of pure water (25 ° C.), stirred for 24 hours with a magnetic stirrer, and then dried in the atmosphere at 120 ° C. for 24 hours. The mixing ratio of SiO powder and LiH powder in Li dope was set to 0.4 in terms of Li / O molar ratio. Others are the same as Example 1.
  • Example 5 (Comparative Example 5) In Example 1, the same water washing treatment as in Comparative Example 4 was performed on the Li-containing SiO powder after Li doping instead of the Li removal treatment by electron beam irradiation. The mixing ratio of the SiO powder and the LiH powder in the Li dope was 0.9 in terms of a Li / O molar ratio. Others are the same as Example 1.
  • the negative electrode of the lithium ion secondary battery was produced using SiO powder which received C coat and Li dope. Specifically, SiO powder, ketjen black, and a polyimide precursor that is a non-aqueous solvent binder are mixed at a mass ratio of 85: 5: 10, and NMP (n-methylpyrrolidone) is further added and kneaded. The slurry prepared in (1) was applied onto a copper foil having a thickness of 40 ⁇ m and pre-dried at 80 ° C. for 15 minutes. Further, after punching out to a diameter of 11 mm, an imidization treatment was performed to obtain a negative electrode.
  • the median diameter of the Li-containing SiO powder was 6.26 ⁇ m in Example 1, 6.15 ⁇ m in Example 2, 6.22 ⁇ m in Example 3, 6.31 ⁇ m in Example 4, and 6.11 ⁇ m in Comparative Example 1.
  • Comparative Example 2 was 6.21 ⁇ m
  • Comparative Example 3 was 6.30 ⁇ m
  • Comparative Example 4 was 6.45 ⁇ m
  • Comparative Example 5 was 6.01 ⁇ m.
  • a lithium ion secondary battery was produced using the produced negative electrode. Specifically, lithium foil was used for the counter electrode in the secondary battery.
  • As the electrolyte a solution obtained by dissolving LiPF 6 (phosphoryllium hexafluoride) at a ratio of 1 mol / liter in a solution in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 was used. And the coin cell was produced using the 30-micrometer-thick polyethylene porous film for a separator.
  • LiPF 6 phosphoryllium hexafluoride
  • the charging / discharging test was done with respect to the produced lithium ion secondary battery using the secondary battery charging / discharging test apparatus (made by Nagano Co., Ltd.).
  • Table 1 shows the charge / discharge conditions.
  • the dust explosion test results (dust explosion lower limit concentration) and battery performance test results (initial efficiency) of each Li-containing SiO powder obtained in Examples 1 to 4 and Comparative Examples 1 to 5 are the main specifications [C coat Table 2 shows the presence or absence of Li, the presence or absence of Li removal treatment by electron beam irradiation, the outermost surface Li intensity ratio R (s), the near surface Li intensity ratio R (i) and R (s) / R (i)].
  • the Li-containing SiO powder obtained in Comparative Examples 1 and 2 is a conventional general negative electrode material for a lithium secondary battery, and has not been subjected to Li removal treatment by electron beam irradiation on the powder particle surface after Li doping. .
  • the outermost surface Li intensity ratio R (s) exceeds 0.6, and the ratio between the outermost surface Li intensity ratio R (s) and the near surface Li intensity ratio R (i), that is, R (s) / R (i) is 1 is exceeded. Because Li doping is a surface reaction, the closer to the surface, the higher the Li concentration.
  • the Li-containing SiO powder obtained in Comparative Example 3 is not subjected to C-coating treatment as compared with the Li-containing SiO powder obtained in Comparative Examples 1 and 2, and therefore the initial efficiency is low and battery performance cannot be maintained.
  • the Li-containing SiO powders obtained in Examples 1 to 4 have been subjected to Li removal treatment by electron beam irradiation on the powder particle surfaces after Li doping.
  • the outermost surface Li intensity ratio R (s) is 0.6 or less, and the ratio between the outermost surface Li intensity ratio R (s) and the near surface Li intensity ratio R (i), that is, R (s) / R (i) is Less than 1.
  • the dust explosion lower limit concentration exceeds 2000 g / m 3 .
  • the near surface Li intensity ratio R (i) hardly changes.
  • Example 3 although the Li doping amount is as large as 0.9 in Li / O, the Li removal effect on the particle surface is remarkable, and high safety is ensured.
  • the initial efficiency is particularly high due to the large amount of Li doping.
  • the difference from Comparative Example 5 is significant. Therefore, in the Li-containing SiO x powder of the present invention, high Li is allowed, and particularly high initial efficiency is ensured.
  • a particularly desirable Li amount is 0.4 or more in terms of Li / O.
  • Example 4 the C coat is omitted, but the influence on the initial efficiency is negligible. This is because the proportion of the C coat layer in the entire powder is very small. The difference from Comparative Example 3 is remarkable. Therefore, in the Li-containing SiO x powder of the present invention, the C coat can be omitted, and the omission can reduce the manufacturing cost and improve the productivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Liドープに伴う安全性の低下を回避でき、合わせて湿式洗浄で問題となる電池性能の低下を最小限に抑制できるLi含有酸化珪素粉末を提供する。これを実現するために、粉末粒子断面に対し粒子表面を含んで50ピクセル×50ピクセル以上の解像度をもつ1μm四方の視野でEELS測定を行ったときのLi-K edge 域とSi-L edge 域のスペクトル強度を求める。粒子最表面の1列の積算強度のうち、Li-K edge 域の積算強度をILi(s)をとし、Si-L edge 域の積算強度をISi(s)としたときのILi(s)/(ILi(s)+ISi(s))をR(s)とする。前記視野における粒子最表面から内側へ500nm離れた近表面の1列の積算強度のうち、Li-K edge 域の積算強度をILi(i)をとし、Si-Ledge 域の積算強度をISi(i)としたときのILi(i)/(ILi(i)+ISi(i))をR(i)とする。そして、R(s)/R(i)<1を満足する。

Description

Li含有酸化珪素粉末
 本発明は、リチウムイオン二次電池の負極形成に使用される酸化珪素系負極材、より詳しくは、リチウムをドープされたLi含有酸化珪素粉末に関する。なお、本明細書では酸化珪素とSiOxは同義である。
 SiOxは電気容量が大きく、優れたリチウムイオン二次電池用負極材であることが知られている。このSiOx系負極材は、SiOx粉末、導電助剤及びバインダーを混合してスラリー化したものを、銅箔等からなる集電体上に塗布し乾燥させることで薄膜状の負極とされる。ここにおけるSiOx粉末は、二酸化珪素と珪素との混合物を減圧中で加熱して生成した一酸化珪素ガスを冷却し、析出させた後、細かく破砕することにより得られる。このような析出法で製造されるSiOx粉末は、非晶質の部分を多く含み、熱膨張係数を小さくして、サイクル特性を向上させることなどから有利とされている。
 このようなSiOx系負極材の問題点としては、初期効率の低さがあり、これを解消する手法として、リチウムドープ(Liドープ)が知られている。Liドープは、SiOx粉末と粉末リチウム源とを混合し、焼成することにより実施される(特許文献1~4)。SiOxの粉末粒子にLiドープを行うことにより、初回充電時に、充放電に寄与しないリチウム化合物が生成されるのが抑制されて、初期効率の向上が図られる。
 また、Liドープとは別に、SiOx粉末の粒子表面にカーボン被覆処理(Cコート)を実施して、サイクル特性の向上を図ることも行われており、特許文献3ではLiドープ後にCコートが実施され、特許文献4ではCコート後にLiドープが実施されている。
 しかしながら、Liドープには一方で、SiOx粉末の空気、水に対する活性を高くし、その粉末のハンドリング性を悪化させるという問題がある。
 すなわち、Liドープを行う前のSiOxは酸化物であるが故に空気に対する活性が低く、水との反応性も極めて低い。このため、粒径がミクロンオーダーの微粉末であっても、旧来の負極活物質である黒鉛粉末などに比べると安全性が高いという利点があった。実際、D10=2.35、D50=5.76、D90=11.82の粒度分布をもつSiOxはJISZ8818で定める粉塵爆発試験において爆発が起こらないとの結果が出ている。一方、Liドープを行ったSiOxに関しては、LiをLi/O(原子比)=0.4の割合でドープした場合、同様の試験によって粉塵爆発性を有することが確認される。
 Liドープによって粉塵爆発性が高まるのは、SiOx粉末と粉末リチウム源との反応が表面反応であるため、LiドープされたSiOx粉末の粒子表面に活性の高いLiが多く残っているためと考えられる。SiOx粉末と粉末リチウム源との表面反応においては、Li2Si25、Li2SiO3,Li4SiO4といった珪酸リチウム、更にはLiSi合金などが発生すると考えられるが、いずれもSiOxに比べて活性が高く、空気中のハンドリングにおいては注意を要するのである。そして、一般にLiの含有量が多くなるほど活性が高くなる。
 Liドープに伴う粉末活性化の問題を解決するための対策として湿式洗浄が特許文献5により提示されている。すなわち、Liドープにより粒子表面に生じた活性なLiを湿式洗浄により除去するのである。しかしながら、湿式洗浄だと、活性なLiが珪酸リチウムやLiSi合金の形態で除去されるため、粉末粒子の内部からピュアなSiが粒子表面に露出し、その結果として電解液に対する反応性が高まり、SiOx粉末本来の利点である電解液との低い反応性が犠牲になり、電池性能の一つである初期効率が低下する結果となる。
 加えて、湿式洗浄では、Li/Oが大きくなった際に洗浄液に対する活性が高くなりすぎ、洗浄によって可逆容量を担う0価のSiが反応してしまうために、電池性能を維持できなくなるおそれもある。
特許第2997741号公報 特許第4702510号公報 特許第4985949号公報 特許第5411781号公報 特公表2014-532267号公報
 本発明の目的は、Liドープに伴う安全性の低下を回避でき、合わせて湿式洗浄で問題となる電池性能の低下を抑制できる安全で高性能なLi含有酸化珪素粉末を提供することにある。
 前述したとおり、LiドープしたSiOx粉末の空気中での安全性がLiドープ前のSiOx粉末に比して低下するのは、SiOx粉末が空気と触れる粒子表面にLiが存在することが原因であるが、Liは初期効率の改善に寄与しているので、いたずらにLiを取り除けば電池性能の低下を招く。そこで、本発明者は電池性能の低下を最小限に抑制しつつ安全性の向上を図ることを目的として、SiOx粉末が空気と触れる粒子表面にLiの少ない層を限定的に形成すること、及びその層においてはSiを少なくせずLiを選択的に少なくすることを企画し、鋭意研究検討を続けた。その結果、以下の事実が判明した。
 Li含有SiOx粉末の粒子表面における低Li層を表す指標として、Li量とSi量の和に対するLi量の比率(Li量比)を導入するのが有効であり、より詳しくは、粉末粒子の最表面におけるLi量比(最表面Li量比)と、最表面から内側へ僅かに離れた近表面におけるLi量比(近表面Li量比)との比率を導入するのが有効である。
 LiドープはSiOx粉末の表面反応であるので、LiドープSiOx粉末においては粉末粒子の表面に近いところほどLiが高濃度となり、結果、最表面Li量比と近表面Li量比の比率は1を超える。その粉末が湿式洗浄を受けた場合は、粒子表面においてはLiが珪酸リチウムやLiSi合金の形で除去され、Liと共にSiも除去されるので、この傾向は変わらず、最表面Li量比と近表面Li量比の比率は1を超える。
 これに対し、Liが選択的に少なくされた層が粒子表面に限定的に形成されると、最表面Li量比が小さくなり、近表面Li量比の方が大となったとき、すなわち最表面Li量比と近表面Li量比の比率が1未満となったときに上記目的が達成されることが判明した。粒子表面の選択的、限定的な低Li層は、例えば粒子表面への電子線の照射によって粒子表面に存在するLiを選択的に弾き飛ばすことにより形成が可能である。また、最表面Li量比及び近表面Li量比は、粉末粒子をSTEM観察し、EELS測定にて最表面及び近表面のスペクトル強度を求めることにより定量的な算出が可能である。
 本発明のLi含有酸化珪素粉末は、かかる知見を基礎として開発されたものであり、リチウム二次電池の負極材に使用されるLi含有SiOx粉末(0.5<x<1.5)であって、
 粉末粒子断面に対し粒子表面を含んで且つ50ピクセル×50ピクセル以上の解像度をもつ1μm四方の視野でEELS測定を行ったときのLi-K edge 域とSi-L edge 域のスペクトル強度を求め、
 前記視野における粒子最表面の1列の積算強度のうち、Li-K edge 域の積算強度をILi(s)をとし、Si-L edge 域の積算強度をISi(s)としたときのILi(s)/(ILi(s)+ISi(s))を最表面Li強度比R(s)とすると共に、
 前記視野における粒子最表面から内側へ500nm離れた近表面の1列の積算強度のうち、Li-K edge 域の積算強度をILi(i)をとし、Si-L edge 域の積算強度をISi(i)としたときのILi(i)/(ILi(i)+ISi(i))を近表面Li強度比R(i)として、
 R(s)/R(i)<1を満足するものである。
 ここで、最表面の1列とは、粒子表面を含んで且つ50ピクセル×50ピクセル以上の解像度をもつ1μm四方の視野でEELS測定を行い、Li-K edge 域のスペクトル強度についてマッピングを行ったときの、正方形の視野を構成する2辺にそれぞれ平行な2つの直交する方向のうち粒子表面に対して平行に近い方向に沿った測定点の集合を「行」、垂直に近い方向に沿った測定点の集合を「列」とし、各例について粒子外部から粒子内部に向かってスペクトル強度を取ったときに最も隣の点との強度差が大きい2点のうちの強度の大きい方の点をその列の最表面点とし、各列についてこの方法で指定した最表面点の集合をいう。
 本発明のLi含有酸化珪素粉末においては、粉末粒子の表面近傍において最表面Li強度比R(s)が、近表面Li強度比R(i)より小とされる。これは、粉末粒子の最表面にLiが選択的に少なくされた低Li層が限定的に形成されていることを意味する。これにより粉末の安全性が向上し、Liドープに伴う粉塵爆発性の上昇が回避されると共に、湿式洗浄で問題となる電池性能の低下が抑制される。R(s)/R(i)は、望ましくは0.9以下であり、更に望ましくは0.8以下である。
 また、最表面Li強度比R(s)は小さい方が望ましく、具体的には0.6以下が望ましい。R(s)が大きいと、最表面においてLiがSiに対して過剰となり、粉塵爆発性が高くなる。R(s)/R(i)<1であっても、R(s)が大きく、R(i)がそれ以上に大きい場合は、粉塵爆発性を抑制する効果が小さい。R(s)/R(i)<1で且つR(s)≦0.6のとき、粉塵爆発性が効果的に抑制される。
 R(s)/R(i)以外に重要な因子は当該粉末のLi含有量である。このLi含有量は、Oに対するモル比Li/Oで0.2以上0.9以下であることが望まれる。Li/Oが0.2未満であると、Li量が不十分なため、Li含有による電池性能の向上が期待できない。Li/Oが0.9超であると、Li量が過剰になることで、Li-Si合金が生成し、粉末の反応性が極端に高まって粉塵爆発性が一層上昇する。電池性能の向上のためにLiを十分に含み、それでもなお安全性が高いというのが、当該粉末の特徴である。
 SiOxにおけるx、すなわちSi原子数に対するO原子数の割合O/Siは0.5超1.5未満であることが必要である。x≦0.5であるとSiOxがSiに近くなり過ぎ、酸素に対する活性が高くなって安全性が低下する。反対にx≧1.5であると初期効率が低下し、電池性能が低下する。
 当該粉末の粒子径は、レーザ回折式の粒度分布測定装置によって測定したメディアン径(D50)で表して0.5μm以上30μm以下が好ましく、1μm以上20μm以下が特に好ましい。粒子径が小さすぎると粉末の表面積が過大となって電解液との反応によるクーロン効率の低下、及び空気との反応性増大を招く。反対に粒子径が大きすぎる場合は、充放電中の粒子の膨張の影響が大きくなってサイクル特性が低下する。
 本発明のLi含有酸化珪素粉末においては又、粉末粒子の少なくとも一部に導電性炭素皮膜が被覆されているのがよい。その導電性炭素皮膜の被覆により、負極を構成する粉末粒子間の電気伝導性、及び負極とそのベースである集電体との間の電気伝導性が良好となり、電池特性、特にサイクル特性の向上が可能となる。ここにおける導電性炭素皮膜の被覆がCコートである。
 当該粉末の粒子に対する導電性炭素皮膜の被覆量は、酸化珪素粉末全体の質量に対する炭素の重量比率で表して0.5wt%以上20wt%以下が好ましい。この形成量が0.5wt%未満であると、炭素被覆量が少ないことにより導電性付与の効果が薄い。20wt%を超えると粉末全体に占めるSiOx粉末の重量が少なくなることによる容量の低下、及び粒子の最表面が可燃性の物質で覆われることによる安全性の低下が懸念される。
 R(s)/R(i)<1を満足させる方法、すなわち最表面Li強度比R(s)を近表面Li強度比R(i)より小とする方法としては、例えば電子線の照射によって粒子表面のLiを弾き飛ばす方法があるが、それ以外にも例えば粒子表面へSiOx層を蒸着する方法などがあり、その方法を限定するものではない。粒子表面へSiOx層を蒸着すると、粒子表面におけるLi濃度が低下し、安全性が高まる。
 本発明のLi含有酸化珪素粉末は、Liドープを受けたLi含有SiOx粉末でありながら、粒子の最表面におけるLi濃度が、最表面から内側へ僅かに離れた近表面におけるLi濃度より低いので、粉塵爆発性が低く、安全性に優れると共に、湿式洗浄で問題となる電池性能の低下を抑制でき、高い電池性能を示す。当該粉末の粉塵爆発性は、JISZ8818に規定する粉塵爆発下限濃度測定において2000g/m3以下で爆発を起こさないレベルである。
本発明のLi含有酸化珪素粉末の粒子全体の断面像(TEM観察像)である。 同Li含有酸化珪素粉末の表面近傍におけるADF像である。 同Li含有酸化珪素粉末の表面近傍におけるLi-K edge mapping 像である。 同Li含有酸化珪素粉末の表面近傍におけるSi-L edge mapping 像である。 従来のLi含有酸化珪素粉末の表面近傍におけるLi-K edge mapping 像である。 同Li含有酸化珪素粉末の表面近傍におけるSi-L edge mapping 像である。
 以下に本発明の実施形態を説明する。本実施形態のLi含有酸化珪素粉末は次の方法で製造される。
 まず、原料の酸化珪素粉末と、これに混合する粉末リチウム源とを準備する。原料の酸化珪素粉末は、組成式SiOx(0.5<x<1.5)で表される低級酸化珪素粉末であり、ここでは析出法により製造された非晶質のSiO、すなわちSiOx(x=1)を用いる。そのSiOx粉末の粒径はメディアン径で0.5~30μmである。
 粉末リチウム源は、水素化リチウム(LiH)、水素化リチウムアルミニウム(LiAlH)、酸化リチウム(Li2O)、水酸化リチウム(LiOH)、炭酸リチウム(Li2CO3)などであり、ここでは水素化リチウム(LiH)を用いる。
 原料の酸化珪素粉末に対しては導電性炭素皮膜被覆のためのCコートを行う。このCコートは、炭素源として炭化水素ガスを用いた熱CVD法、例えばアルゴンとプロパンの混合ガス雰囲気中での加熱処理により行う。Cコート量は、酸化珪素粉末全体の質量に対する炭素の重量比率で表して0.5~20wt%である。
 Cコート後のSiOx粉末に対してはLiドープを行う。すなわち、Cコート後のSiOx粉末と粉末リチウム源とを混合して焼成する。混合比はLi/Oモル比で0.2~0.9とし、0.2~0.6が好ましい。焼成温度は300~800℃の範囲内であり、より具体的には、酸化珪素粉末の不均化が起こらない温度域とする。この焼成により、SiOx粉末がLiドープされてLi含有SiOx粉末となる。
 Liドープ後のLi含有SiOx粉末に対しては、粉末粒子表面への電子線照射によるLi除去処理を行う。電子線照射における加速電圧を調整することにより、Liの選択的除去が可能となる。すなわち、粉末粒子の表面からSiを残してLiのみを選択的に除去する。これにより、粉末粒子の最表面におけるLi量比が0.6以下となり、最表面から内側へ僅かに離れた近表面におけるLi量比より小となる。
 すなわち、Liドープは粉末粒子の表面反応であるので、Li除去前のLi含有SiOx粉末では、Li量とSi量の和に対するLi量の比率(Li量比)は、粒子の最表面からその内側にかけて漸減する傾向となり、その結果、最表面Li量比は近表面Li量比より大となるが、粉末粒子表面への電子線照射によるLiの選択的除去処理によれば、最表面Li量比を0.6以下にして近表面Li量比より小とすることができる。その結果、Liドープで問題となる粉末の反応性の高まり、これによる粉塵爆発性の高まりが解消される。また、Liの選択的除去によれば、湿式洗浄と異なり、Siが残るので、湿式洗浄で問題となる電池性能の低下も解消される。
 最表面Li量比及び近表面Li量比が粉末粒子に対するSTEM観察、EELS測定による最表面及び近表面のスペクトル強度の算出により具体的に評価が可能であることは前述したとおりである。
(実施例1)
 Li含有酸化珪素粉末の製造原料である酸化珪素粉末として、析出法で製造された非晶質のSiOx粉末(x=1)、すなわちSiO粉末を準備した。この原料SiO粉末に対して、Cコートのための熱処理として、アルゴンとプロパンを1:1の重量比で混合した炭化水素ガスを炭素源として、これを炉中に毎分1リットルの流量で供給し、その炉中で前記SiO粉末を850℃で30分間熱処理した。
 Cコート後のSiO粉末に対してLiドープを行った。粉末リチウム源としてはLiH粉末を選択した。具体的には、Cコート後のSiO粉末とLiH粉末とをLi/Oモル比で0.2となるように混合し、雰囲気炉内のアルゴン雰囲気(1atm、600℃)中で24時間焼成した。この段階でのSiO粉末の粒径は、レーザ回折式の粒度分布測定装置によって測定したメディアン径(D50)で表して6.26μmである。また、Cコート量、すなわち導電性炭素皮膜の被覆量は0.8wt%である。
 Liドープにより得られたLi含有SiO粉末に対して、真空中で且つ300kVの加速電圧で電子線照射を行い、粉末粒子の表面に存在するLiを選択的に除去した。そして、Li除去後の粉末をFIB加工してその断面を露出させてSTEM観察した。FIB加工では、日立製FB-2000Aを使用し、Arガス中でサンプリングを行い、Alグリッドを使用した。STEM観察では、JEOL製JEM-ARM200F を使用し、EELS分析用フィルタにGATA製JIF Quantum を使用し、画像取得にGATA製Digital micrographを使用した。観察条件はビーム径0.2mmφ、加速電圧200kV、エネルギー分解能約0.5eV FWHMとした。STEM観察による粒子全体の断面像を図1に示す。
 粒子全体の断面像を粒子表面近傍について拡大して、EELS分析を行い、Li-K edge mapping とSi-L edge mapping と行った。粒子表面近傍のADF像(低角度環状暗視野像)を図2に示し、同近傍のLi-K edge mapping 像を図3に、同近傍のSi-L edge mapping 像を図4に示す。
 Li-K edge のスペクトル強度の解析に際しては、1st order Log-polynominal モデルを使用して49.54~55.04eVの範囲からバックグラウンドを計算して差し引き、58.34~68.34eVの範囲の強度を積算した。また、Si-L edge のスペクトル強度の解析に際しては、power law モデルを使用して88.34~98.34eVの範囲からバックグラウンドを計算して差し引き、99.84~113.24eVの範囲の強度を積算した。
 このようにして、粒子最表面の1列についてLi-K edge 域の積算強度ILi(s)とSi-L edge 域の積算強度ISi(s)を算出し、最表面Li強度比R(s)、すなわちILi(s)/(ILi(s)+ISi(s))を求めた。また、粒子最表面から内側へ500nm離れた近表面の1列についてLi-K edge 域の積算強度ILi(i)とSi-L edge 域の積算強度ISi(i)とを算出し、近表面Li強度比R(i)、すなわちILi(i)/(ILi(i)+ISi(i))を求めた。そして、最表面Li強度比R(s)と近表面Li強度比R(i)との比、すなわちR(s)/R(i)を求めた。
 電子線照射による表面Li除去後のLi含有SiO粉末に対しては、JISZ8818に規定する方法で粉塵爆発下限濃度試験も合わせて実施した。
(実施例2)
 実施例1において、LiドープにおけるCコート後のSiO粉末とLiH粉末との混合比をLi/Oモル比で0.4とした。他は実施例1と同じである。
(実施例3)
 実施例1において、LiドープにおけるCコート後のSiO粉末とLiH粉末との混合比をLi/Oモル比で0.9とした。他は実施例1と同じである。
(実施例4)
 実施例1において、Liドープに供するSiO粉末へのCコートを省略した。LiドープにおけるSiO粉末とLiH粉末との混合比をLi/Oモル比で0.4とした。他は実施例1と同じである。
(比較例1)
 実施例1において、Liドープ後のLi含有SiO粉末に対する電子線照射によるLi除去処理を省略した。LiドープにおけるSiO粉末とLiH粉末との混合比はLi/Oモル比で0.4とした。他は実施例1と同じである。得られた粉末の図3に対応する表面近傍のLi-K edge mapping 像を図5に、図4に対応する表面近傍のSi-L edge mapping 像を図6に示す。
(比較例2)
 実施例1において、Liドープ後のLi含有SiO粉末に対する電子線照射によるLi除去処理を省略した。LiドープにおけるSiO粉末とLiH粉末との混合比はLi/Oモル比で0.2である。他は実施例1と同じである。
(比較例3)
 実施例1において、Liドープ後のLi含有SiO粉末に対する電子線照射によるLi除去処理を省略した。Liドープに供するSiO粉末へのCコートは省略した。LiドープにおけるSiO粉末とLiH粉末との混合比はLi/Oモル比で0.4とした。他は実施例1と同じである。
(比較例4)
 実施例1において、Liドープ後のLi含有SiO粉末に対し、電子線照射によるLi除去処理に代えて、25℃×24時間の水洗処理を行った。詳しくは、Liドープ後のLi含有SiO粉末20gを400gの純水(25℃)中に投入し、マグネティックスターラで24時間攪拌した後、120℃の大気中で24時間乾燥した。LiドープにおけるSiO粉末とLiH粉末との混合比はLi/Oモル比で0.4とした。他は実施例1と同じである。
(比較例5)
 実施例1において、Liドープ後のLi含有SiO粉末に対し、電子線照射によるLi除去処理に代えて、比較例4と同じ水洗処理を行った。LiドープにおけるSiO粉末とLiH粉末との混合比はLi/Oモル比で0.9とした。他は実施例1と同じである。
(電池性能試験)
 Cコート及びLiドープを受けたSiO粉末を用いてリチウイオン二次電池の負極を作製した。具体的には、SiO粉、ケッチェンブラック、及び非水溶剤系バインダーであるポリイミド前駆体を85:5:10の質量比で混合し、更にNMP(n-メチルピロリドン)を加えて混練することで作製したスラリーを、厚さ40μmの銅箔上に塗布し、80℃で15分間予備乾燥した。更に直径11mmに打ち抜いた後、イミド化処理を行って負極とした。
 なお、Li含有SiO粉末のメディアン径は、実施例1では6.26μm、実施例2では6.15μm、実施例3では6.22μm、実施例4では6.31μm、比較例1では6.11μm、比較例2では6.21μm、比較例3では6.30μm、比較例4では6.45μm、比較例5では6.01μmであった。
 作製された負極を用いてリチウムイオン二次電池を作製した。具体的には、二次電池おける対極にリチウム箔を用いた。電解質にはエチレンカーボネート、及びジエチルカーボネートを1:1の体積比で混合した溶液に、LiPF6(六フッ化リンチリウム)を1モル/リットルの割合になるように溶解させた溶液を用いた。そして、セパレータに厚さ30μmのポリエチレン製多孔質フィルムを用いて、コインセルを作製した。
 作製されたリチウムイオン二次電池に対して、二次電池充放電試験装置(株式会社ナガノ製)を用いて充放電試験を行った。充放電条件を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 この充放電試験により、初回充電容量、及び初回放電容量を測定して、電池性能としての初期効率を求めた。
 実施例1~4及び比較例1~5において得られた各Li含有SiO粉末の粉塵爆発試験結果(粉塵爆発下限濃度)及び電池性能試験結果(初期効率)を、各粉末の主たる仕様〔Cコートの有無、電子線照射によるLi除去処理の有無、最表面Li強度比R(s)、近表面Li強度比R(i)及びR(s)/R(i)〕と共に表2に示す。
Figure JPOXMLDOC01-appb-T000002
 比較例1及び2で得られたLi含有SiO粉末は、従来の一般的なリチウム二次電池用負極材であり、Liドープ後の粉末粒子表面への電子線照射によるLi除去処理を受けていない。最表面Li強度比R(s)は0.6を超え、最表面Li強度比R(s)と近表面Li強度比R(i)との比、すなわちR(s)/R(i)は1を超えている。Liドープが表面反応であるため、表面に近いほどLi濃度が高いことによる。水系バインダーと比べて電池性能を確保しやすい非水溶剤系バインダーを使用したため、初期効率は75%を超えているが、粉塵爆発下限濃度は1700~1800g/m3と、2000g/m3に達しない。
 比較例3で得られたLi含有SiO粉末は、比較例1及び2で得られたLi含有SiO粉末に比べ、Cコート処理も受けていないために初期効率が低く、電池性能を維持できない。
 比較例4及び5で得られたLi含有SiO粉末は、Liドープの後、粉末粒子表面への電子線照射によるLi除去処理の代わりに水洗処理を受けている。粉末粒子の表面からLiが除去されているが、Siも合わせて除去されているために、R(s)/R(i)は依然として1を超えている。水洗処理により粉塵爆発下限濃度は2000g/m3に達するが、表面Li量の減少により初期効率の低下を招く。特に比較例5では、粒子中のLi量がLi/O=0.9と多いにもかかわらず、初期効率が極端に低下し、電池性能を維持できない。これは、Li/Oが大きくなった際に洗浄液に対する活性が高くなりすぎ、洗浄によって可逆容量を担う0価のSiが反応してしまったためである。
 これらに対し、実施例1~4で得られたLi含有SiO粉末は、Liドープの後、粉末粒子表面への電子線照射によるLi除去処理を受けている。最表面Li強度比R(s)は0.6以下となり、最表面Li強度比R(s)と近表面Li強度比R(i)との比、すなわちR(s)/R(i)は1未満となる。その結果、粉塵爆発下限濃度は2000g/m3を超えている。電池性能である初期効率も75%を超えている。近表面Li強度比R(i)はほとんど変化していない。
 加えて、実施例3では、Liドープ量がLi/Oで0.9と多いにもかかわらず、粒子表面でのLi除去効果が顕著であり、高い安全性が確保されている。そして、Liドープ量が多いことにより、初期効率が特に高くなっている。比較例5との差異は顕著である。よって、本発明のLi含有SiOx粉末では、高Liが許容され、特に高い初期効率が確保される。特に望ましいLi量はLi/Oで0.4以上である。
 また、実施例4では、Cコートが省略されているが、初期効率への影響は軽微である。なぜなら、粉末全体に占めるCコート層の割合は非常に小さいからである。比較例3との差異は顕著である。よって、本発明のLi含有SiOx粉末では、Cコートの省略が可能となり、その省略により製造コストの低減及び生産性向上が可能となる。

Claims (6)

  1.  リチウム二次電池の負極材に使用されるLi含有SiOx粉末(0.5<x<1.5)であって、
     粉末粒子断面に対し粒子表面を含んで且つ50ピクセル×50ピクセル以上の解像度をもつ1μm四方の視野でEELS測定を行ったときのLi-K edge 域とSi-L edge 域のスペクトル強度を求め、
     前記視野における粒子最表面の1列の積算強度のうち、Li-K edge 域の積算強度をILi(s)をとし、Si-Ledge 域の積算強度をISi(s)としたときのILi(s)/(ILi(s)+ISi(s))を最表面Li強度比R(s)とすると共に、
     前記視野における粒子最表面から内側へ500nm離れた近表面の1列の積算強度のうち、Li-K edge 域の積算強度をILi(i)をとし、Si-Ledge 域の積算強度をISi(i)としたときのILi(i)/(ILi(i)+ISi(i))を近表面Li強度比R(i)として、
     R(s)/R(i)<1を満足するLi含有酸化珪素粉末。
  2.  請求項1に記載のLi含有酸化珪素粉末において、Li含有量がLi/Oモル比で0.2以上0.9以下であるLi含有酸化珪素粉末。
  3.  請求項1~2の何れかに記載のリチウム含有酸化珪素粉末において、最表面Li強度比R(s)が0.6以下である記載のリチウム含有酸化珪素粉末。
  4.  請求項1~3の何れかに記載のLi含有酸化珪素粉末において、レーザ回折式の粒度分布測定装置によって測定したメディアン径(D50)が0.5μm以上30μm以下であるLi含有酸化珪素粉末。
  5.  請求項1~4の何れかに記載のLi含有酸化珪素粉末において、粉末粒子の外面の少なくとも一部に導電性炭素皮膜が形成されたLi含有酸化珪素粉末。
  6.  請求項5に記載のLi含有酸化珪素粉末において、導電性炭素皮膜の形成量が、酸化珪素粉末全体の質量に対する炭素の重量比率で表して0.5wt%以上20wt%以下であるLi含有酸化珪素粉末。
PCT/JP2017/013030 2016-03-29 2017-03-29 Li含有酸化珪素粉末 WO2017170751A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018509371A JP6623285B2 (ja) 2016-03-29 2017-03-29 Li含有酸化珪素粉末
KR1020187025121A KR20180111894A (ko) 2016-03-29 2017-03-29 Li 함유 산화규소 분말
CN201780011461.0A CN108701826B (zh) 2016-03-29 2017-03-29 含锂氧化硅粉末

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016065457 2016-03-29
JP2016-065457 2016-03-29

Publications (1)

Publication Number Publication Date
WO2017170751A1 true WO2017170751A1 (ja) 2017-10-05

Family

ID=59965706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013030 WO2017170751A1 (ja) 2016-03-29 2017-03-29 Li含有酸化珪素粉末

Country Status (4)

Country Link
JP (1) JP6623285B2 (ja)
KR (1) KR20180111894A (ja)
CN (1) CN108701826B (ja)
WO (1) WO2017170751A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110311121B (zh) * 2019-07-10 2022-05-06 洛阳联创锂能科技有限公司 一种锂离子电池用含锂氧化硅负极材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013242997A (ja) * 2012-05-18 2013-12-05 Shin Etsu Chem Co Ltd リチウムイオン二次電池
JP2014071948A (ja) * 2012-09-27 2014-04-21 Sanyo Electric Co Ltd 負極活物質の製造方法
JP2014532267A (ja) * 2011-10-24 2014-12-04 エルジー・ケム・リミテッド 負極活物質の製造方法、その負極活物質、及びそれを備えるリチウム二次電池
WO2015114692A1 (ja) * 2014-01-31 2015-08-06 株式会社豊田自動織機 非水系二次電池用負極及び非水系二次電池、負極活物質及びその製造方法、ナノシリコンと炭素層とカチオン性ポリマー層とを具備する複合体、ナノシリコンと炭素層よりなる複合体の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1159794C (zh) * 1999-09-24 2004-07-28 松下电器产业株式会社 锂电池
CN102782925B (zh) * 2010-02-25 2015-07-15 松下电器产业株式会社 锂离子二次电池
JP5411780B2 (ja) * 2010-04-05 2014-02-12 信越化学工業株式会社 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池
JP5411781B2 (ja) * 2010-04-05 2014-02-12 信越化学工業株式会社 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池
CN103081188B (zh) * 2010-08-25 2015-09-23 株式会社大阪钛技术 锂离子二次电池负极材料用粉末、使用该负极材料用粉末的锂离子二次电池负极和电容器负极、及锂离子二次电池和电容器
KR101610995B1 (ko) * 2012-11-30 2016-04-08 주식회사 엘지화학 규소계 복합체 및 이의 제조방법
EP2840634B1 (en) * 2012-11-30 2020-06-24 LG Chem, Ltd. Anode active material, lithium secondary battery comprising the same, and method of manufacturing anode active material
WO2014188851A1 (ja) * 2013-05-23 2014-11-27 信越化学工業株式会社 非水電解質二次電池用負極材及び二次電池
JP6359836B2 (ja) * 2014-02-07 2018-07-18 信越化学工業株式会社 非水電解質二次電池用負極材、非水電解質二次電池用負極及びその製造方法並びに非水電解質二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014532267A (ja) * 2011-10-24 2014-12-04 エルジー・ケム・リミテッド 負極活物質の製造方法、その負極活物質、及びそれを備えるリチウム二次電池
JP2013242997A (ja) * 2012-05-18 2013-12-05 Shin Etsu Chem Co Ltd リチウムイオン二次電池
JP2014071948A (ja) * 2012-09-27 2014-04-21 Sanyo Electric Co Ltd 負極活物質の製造方法
WO2015114692A1 (ja) * 2014-01-31 2015-08-06 株式会社豊田自動織機 非水系二次電池用負極及び非水系二次電池、負極活物質及びその製造方法、ナノシリコンと炭素層とカチオン性ポリマー層とを具備する複合体、ナノシリコンと炭素層よりなる複合体の製造方法

Also Published As

Publication number Publication date
JP6623285B2 (ja) 2019-12-18
CN108701826B (zh) 2021-04-16
CN108701826A (zh) 2018-10-23
KR20180111894A (ko) 2018-10-11
JPWO2017170751A1 (ja) 2019-01-17

Similar Documents

Publication Publication Date Title
JP7427156B2 (ja) ニッケル酸リチウム系正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
JP6380608B2 (ja) リチウム複合化合物粒子粉末の製造方法、リチウム複合化合物粒子粉末を非水電解質二次電池に用いる方法
KR101944154B1 (ko) 재충전식 배터리용 음극 재료 및 이의 제조 방법
Wang et al. Atomic layer deposited coatings to significantly stabilize anodes for Li ion batteries: effects of coating thickness and the size of anode particles
JP5440099B2 (ja) 非水系二次電池用負極材料
JP6688673B2 (ja) 酸化珪素系粉末負極材
CN109417168B (zh) 氧化硅系负极材料及其制造方法
WO2011155523A1 (ja) リチウム複合化合物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP6058704B2 (ja) 非水電解質二次電池用負極活物質、当該負極活物質を用いた非水電解質二次電池用負極、及び当該負極を用いた非水電解質二次電池
WO2022199389A1 (zh) 硅氧复合负极材料及其制备方法、锂离子电池
Yuan et al. Evaluation and performance improvement of Si/SiOx/C based composite as anode material for lithium ion batteries
Ncube et al. The electrochemical effect of Al-doping on Li4Ti5O12 as anode material for lithium-ion batteries
CN111936422A (zh) 氧化硅粉末的制造方法及负极材料
JP6264299B2 (ja) リチウムイオン二次電池用負極材及びその評価方法
KR102176590B1 (ko) 리튬 이차전지용 음극 활물질의 제조방법 및 리튬 이차전지
JP6623285B2 (ja) Li含有酸化珪素粉末
Stenina et al. CARBON COMPOSITES AS ANODE MATERIALS FOR LITHIUM-ION BATTERIES.
JP7420241B2 (ja) 複合粒子、負極材およびリチウムイオン二次電池
JP2019043821A (ja) 微粒子、微粒子の製造方法、及びリチウムイオン二次電池
KR102569385B1 (ko) 이차전지용 음극재
TWI820513B (zh) 多孔性矽碳複合物、其製備方法及包含其之負電極活性材料

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187025121

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018509371

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775285

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775285

Country of ref document: EP

Kind code of ref document: A1