WO2017170739A1 - ボールエンドミル - Google Patents

ボールエンドミル Download PDF

Info

Publication number
WO2017170739A1
WO2017170739A1 PCT/JP2017/013009 JP2017013009W WO2017170739A1 WO 2017170739 A1 WO2017170739 A1 WO 2017170739A1 JP 2017013009 W JP2017013009 W JP 2017013009W WO 2017170739 A1 WO2017170739 A1 WO 2017170739A1
Authority
WO
WIPO (PCT)
Prior art keywords
end mill
roughness
ball end
less
maximum height
Prior art date
Application number
PCT/JP2017/013009
Other languages
English (en)
French (fr)
Inventor
博史 渡邊
光太郎 坂口
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Publication of WO2017170739A1 publication Critical patent/WO2017170739A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape

Definitions

  • the present invention relates to a ball end mill.
  • the present application claims priority based on Japanese Patent Application No. 2016-074723 filed in Japan on April 1, 2016, the contents of which are incorporated herein by reference.
  • An object of the present invention is to provide a ball end mill from which a finished surface having good smoothness can be obtained.
  • an end mill body that rotates about an axis, a bottom blade that has an arcuate side view provided at one end in the axial direction of the end mill body, and is formed on at least the surface of the bottom blade.
  • An arithmetic average roughness Ra of the tip flank of the bottom blade is 0.01 ⁇ m or less and a maximum height roughness Rz is 0.1 ⁇ m or less, and an arithmetic average of the rake face of the bottom blade
  • a ball end mill having a roughness Ra of 0.01 ⁇ m or less and a maximum height roughness Rz of 0.1 ⁇ m or less is provided.
  • the maximum height roughness Rz of the tip flank may be less than 0.1 ⁇ m, and the maximum height roughness Rz of the tip flank is more preferably less than 0.06 ⁇ m.
  • a finished surface having good smoothness can be obtained by using it for finishing.
  • the side view of the ball end mill of FIG. The front view of the ball end mill of FIG.
  • FIG. 1 is a perspective view showing a ball end mill of the present embodiment.
  • FIG. 2 is a side view of the ball end mill of FIG.
  • FIG. 3 is a front view of the ball end mill of FIG.
  • the ball end mill 1 of the present embodiment has a shaft-shaped end mill body 2.
  • the end mill main body 2 is a substantially columnar member made of a hard material such as cemented carbide, cermet, ceramics or the like.
  • a blade 3 a is formed at one end of the end mill body 2 in the direction of the axis O.
  • a portion other than the blade portion 3a of the end mill body 2 is a shank portion 3b.
  • the direction from the shank portion 3b to the blade portion 3a is referred to as the distal end side, and the direction from the blade portion 3a to the shank portion 3b is referred to as the proximal end side.
  • a direction orthogonal to the axis O is referred to as a radial direction.
  • the direction approaching the axis O is referred to as the radial inner side, and the direction away from the axis O is referred to as the radial outer side.
  • a direction that circulates around the axis O is referred to as a circumferential direction.
  • the direction in which the end mill body 2 rotates during cutting is referred to as a tool rotation direction T.
  • a plurality of (two in this embodiment) chip discharge grooves 4 are formed on the outer periphery of the blade portion 3a at intervals in the circumferential direction.
  • the chip discharge grooves 4 are provided at equal intervals in the circumferential direction.
  • the chip discharge groove 4 is open to the tip surface of the end mill body 2.
  • the chip discharge groove 4 extends by twisting (spiral) toward the side opposite to the tool rotation direction T as it goes from the distal end surface of the end mill body 2 toward the proximal end side.
  • the chip discharge groove 4 is rounded up to the outer periphery of the end mill main body 2 at the end portion on the proximal end side of the blade portion 3a.
  • a cutting edge is formed on the edge of the chip discharge groove 4 on the T rotation direction T side.
  • the cutting edge includes an outer peripheral edge 6 and a bottom edge 9. The outer peripheral edge 6 and the bottom edge 9 continue smoothly along the chip discharge groove 4.
  • the outer peripheral blade 6 is formed on the outer peripheral surface of the blade portion 3 a at the intersecting ridge line between the rake face 7 and the outer peripheral flank 5.
  • the outer peripheral flank 5 is a surface adjacent to the chip discharge groove 4 on the side opposite to the tool rotation direction T.
  • the rake face 7 is a wall surface facing the tool rotation direction T of the chip discharge groove 4.
  • the outer peripheral blade 6 extends in a spiral shape (spiral) along the outer peripheral edge of the chip discharge groove 4.
  • the width of the outer peripheral flank 5 (the length in the direction orthogonal to the outer peripheral blade 6) is substantially constant along the extending direction of the outer peripheral blade 6.
  • the diameter of the outer peripheral blade 6 (the distance from the axis O along the radial direction to the outer peripheral blade 6, that is, the radius) is constant along the axis O direction.
  • a rotation locus formed by rotating the outer peripheral blade 6 around the axis O is a single cylindrical surface centered on the axis O.
  • the bottom blade 9 is formed on the intersecting ridge line between the wall surface facing the tool rotation direction T in the chip discharge groove 4 and the tip surface of the end mill body 2. That is, the bottom blade 9 is formed at the intersection ridgeline of the rake face 7 and the tip flank 8 at the tip of the blade portion 3a.
  • the rake face 7 is a wall surface facing the tool rotation direction T of the chip discharge groove 4, and the tip flank 8 is a face adjacent to the chip discharge groove 4 on the side opposite to the tool rotation direction T.
  • the tip flank 8 has a convex curved surface that is convex toward the outer peripheral side of the tip of the end mill body 2.
  • the proximal end portion of the distal end flank 8 is connected to the distal end portion of the outer peripheral flank 5.
  • the width of the tip flank 8 constituting the bottom blade 9 (the length in the direction perpendicular to the bottom blade 9) is uniform along the extending direction of the bottom blade 9. In the case of this embodiment, the width of the tip flank 8 is smaller than the width of the outer peripheral flank 5.
  • the bottom blade 9 has a convex arc shape that is convex toward the outer peripheral side of the tip end of the end mill body 2. Therefore, in the side view of the end mill main body 2 shown in FIG. 2, the bottom blade 9 is arcuate, and the rotation locus formed by the bottom blade 9 rotating around the axis O is a single center around the axis O. It becomes a hemispherical surface.
  • the surface of at least the blade part 3a of the end mill body 2 is coated with a coating film.
  • a coating film for example, a metal containing one or more of the 4a, 5a, 6a group transition elements and the 3b, 4b group elements of the periodic table such as Ti, Al, V, Cr, Zr, Hf Carbides, nitrides, oxides, carbonitrides, or borides can be used.
  • the coating film is typically a high melting point hard film such as TiN, TiCN, AlTiN, AlCrN, AlTiSiN, AlCrSiN.
  • PVD physical vapor deposition
  • a suitable film forming method is an arc ion plating method.
  • the ball end mill 1 is configured to have a blade portion 3a having two blades (two cutting blades), but the number of cutting blades (the number of sets of outer peripheral blades 6 and bottom blades 9) is particularly large. It is not limited and it is good also as three or more blades.
  • the ball end mill 1 is gripped by the spindle of the machine tool or the like at the shank portion 3b of the end mill body 2.
  • the ball end mill 1 is rotated in one direction around the axis O (tool rotation direction T) and is fed in a direction crossing the axis O to cut a workpiece made of a metal material (rolling). Used for processing).
  • the ball end mill 1 of the present embodiment is particularly suitable for finishing processing that smoothes the processed surface.
  • the arithmetic average roughness Ra of the tip flank 8 is 0.01 ⁇ m or less and the maximum height roughness Rz is 0.1 ⁇ m or less. Further, the arithmetic average roughness Ra on the rake face 7 is 0.01 ⁇ m or less and the maximum height roughness Rz is 0.1 ⁇ m or less.
  • the ball end mill 1 of the present embodiment since the surface roughness of the tip flank 8 satisfies the above range, the undulation of the tip flank 8 is reduced, so that a glossy finished surface with few cutting marks is obtained. Obtainable. Therefore, when the ball end mill 1 of the present embodiment is used for cutting a mold, for example, a smooth surface can be obtained only by the cutting process, so that the hand finishing process of the mold surface can be omitted or shortened.
  • the ball end mill 1 of the present embodiment can be suitably used for machining high-hardness steel, and a good finished surface can be obtained even when machining high-speed steel.
  • the rake surface 7 is also a smooth surface, the ridge line (bottom blade 9) between the rake surface 7 and the tip flank 8 can be reduced in undulation and unevenness, and only the tip flank 8 is smoothed. Even if compared with the case, a smoother machined surface can be obtained.
  • the surface roughness of the outer peripheral flank 5 may be the same as that of the tip flank 8.
  • the arithmetic average roughness Ra on the tip flank 8 exceeds 0.01 ⁇ m, the waviness of the tip flank 8 impairs the uniformity of the processed surface, and a good finished surface cannot be obtained. If the maximum height roughness Rz exceeds 0.1 ⁇ m, cutting traces remain on the processed surface due to the irregularities on the surface of the tip flank 8, and a good finished surface cannot be obtained. Further, when the arithmetic average roughness Ra on the rake face 7 exceeds 0.01 ⁇ m, or the maximum height roughness Rz exceeds 0.1 ⁇ m, it is processed by the unevenness at the ridge line between the rake face 7 and the tip flank 8. Surface smoothness decreases.
  • a shot blast type surface polishing apparatus is applied to the tip flank 8 and rake face 7 after forming the chip discharge groove 4.
  • the first surface polishing treatment pre-coating polishing treatment
  • a second surface polishing process post-coating polishing process
  • the ball end mill 1 of the present embodiment is formed by shot blasting the forming process of forming the end mill body 2 and the bottom blade 9 of FIGS. 1 to 3 and the tip flank 8 and the rake face 7 of the molded bottom blade 9.
  • Shot blasting includes a pre-coating polishing process for polishing, a coating process for forming a coating film made of a hard material on the polished tip flank 8 and rake face 7, and the coated tip flank 8 and rake face 7 And a post-coating polishing process step for polishing by polishing.
  • a polishing process using a finishing grindstone may be performed before the pre-coating polishing process. By performing the polishing process together, a smoother flank 8 and rake face 7 can be obtained.
  • the lower limit values of the arithmetic average roughness Ra and the maximum height roughness Rz of the tip flank 8 and the rake face 7 are not particularly limited, but these are preferably as small as possible, so the lower limit value is preferably 0 ⁇ m. Further, the maximum height roughness Rz of the rake face 7 is preferably less than 0.06 ⁇ m.
  • the maximum height roughness Rz preferably satisfy the above ranges.
  • the arithmetic average roughness Ra and the maximum height roughness Rz are calculated according to JIS B 0601: 2013 (ISO 4287: 1997).
  • the surface of the blade portion 3a is coated with a coating film.
  • the present invention is not limited to this, and it is sufficient that at least the surface of the bottom blade 9 is coated with the coating film.
  • the surface adjacent to the side opposite to the tool rotation direction T of the bottom blade 9 which is the tip flank 8 of the bottom blade 9 and the rake surface 7 which is the rake surface of the bottom blade 9 (the tool rotation direction of the chip discharge groove 4). It is only necessary that the surface of the bottom blade 9 adjacent to the tool rotation direction T in the wall surface facing T be coated. That is, it is only necessary that the surfaces adjacent to both sides in the circumferential direction of the bottom blade 9 are coated. If the arithmetic average roughness Ra and the maximum height roughness Rz on the surfaces of the coating films provided on these surfaces are within the above ranges, the above-described effects are exhibited.
  • Example 1 First, a chip discharge groove was formed on a cylindrical cemented carbide base material by grinding to produce an end mill body.
  • the base material was a cemented carbide.
  • the rake face and the tip flank face of the end mill body were polished using a # 3000 or more grindstone.
  • the rake face and the tip flank face were subjected to a polishing process (a pre-coating polishing process) using a shot blast type surface polishing apparatus.
  • a polishing process a pre-coating polishing process
  • shot blasting spherical media made of a hard abrasive material and having an average particle size of less than 1 ⁇ m were used.
  • a coating film made of AlTiN was formed on the end mill body after the polishing treatment by an ion plating method.
  • the surface of the coating film was subjected to a polishing process (post-coating polishing process) using a shot blast type surface polishing apparatus.
  • a polishing process post-coating polishing process
  • shot blasting spherical media made of a hard abrasive material and having an average particle size of less than 1 ⁇ m were used.
  • the ball end mill of Example 1 was produced through the above steps.
  • the shape of the ball end mill was the same as that of the ball end mill VFR2SBFR0300 manufactured by Mitsubishi Materials Corporation.
  • Comparative Example 1 A ball end mill of Comparative Example 1 was manufactured in the same manner as in Example 1 except that the pre-coating polishing process and the post-coating polishing process were not performed.
  • Comparative Example 2 A ball end mill of Comparative Example 2 was produced in the same manner as in Example 1 except that the pre-coating polishing treatment was omitted.
  • Comparative Example 3 In the same manner as in Example 1, except that the post-coating polishing treatment was omitted, a ball end mill of Comparative Example 3 was produced.
  • Comparative Examples 4 to 6 Ball end mills of Comparative Examples 4 to 6 were produced in the same manner as in Example 1 except that the pre-coating polishing time and / or the post-coating polishing time was changed. Tables 1 and 2 show the pre-coating polishing time and post-coating polishing time of Example 1 and Comparative Examples 1 to 6, respectively. The case where the pre-coating polishing treatment and / or the post-coating polishing treatment was not performed was described as “none”.
  • Example 1 the surface roughness (arithmetic average roughness Ra and maximum height roughness Rz) of the tip flank was measured by a surface roughness meter (SV-C3200, manufactured by Mitutoyo Corporation). It measured using. The measurement results are shown in Table 1.
  • Table 2 shows the results of measuring the surface roughness of the rake face in the same manner. The surface roughness was measured in a region within 50 ⁇ m from the blade edge on both the tip flank face and the rake face.
  • the surface roughness of the rake face was measured in the grinding feed direction (polishing feed direction).
  • the column of “finished surface” is “A” when the arithmetic average roughness Ra of the finished surface obtained by finishing described later is 50 nm or less, and the arithmetic average roughness Ra is 50 nm.
  • the excess was designated as “B”.
  • the arithmetic mean roughness Ra of the finished surface was obtained by measuring the surface roughness in the depth direction of the cavity around the bottom of the finished inner surface of the cavity.
  • the surface roughness of the tip flank, rake face and finished face was determined according to JIS B 0601: 2013 (ISO 4287: 1997).
  • Example 1 In the ball end mill of Example 1 that had been subjected to surface polishing both before and after coating, the arithmetic average roughness Ra was 0.01 ⁇ m or less and the maximum height roughness Rz was 0.00 on both the tip flank and the rake face. It was 1 ⁇ m or less, and a good cutting edge surface and ridgeline were formed. In the ball end mills of Comparative Examples 1 to 6 in which at least one surface polishing treatment before and after coating was omitted or at least one surface polishing treatment time before and after coating was shorter than that in Example 1, either the tip flank or the rake face was used. Also, the desired surface roughness could not be obtained.
  • the cut surface remains on the processed surface due to the unevenness remaining on the cutting edge, and the processing surface does not become a uniform flat surface due to the waviness of the cutting edge surface, resulting in a low gloss finish Became a face.
  • the arithmetic average roughness Ra of the tip flank exceeds 0.01 ⁇ m and the maximum height roughness Rz exceeds 0.1 ⁇ m
  • the arithmetic average roughness Ra of the finished surface could not be made 1.0 ⁇ m or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)

Abstract

本発明のボールエンドミルは、軸線周りに回転するエンドミル本体と、前記エンドミル本体の軸線方向の一方の端部に設けられた側面視弧状の底刃と、少なくとも前記底刃の表面に形成されたコーティング膜と、を備え、前記底刃の先端逃げ面の算術平均粗さRaが0.01μm以下かつ最大高さ粗さRzが0.1μm以下であり、前記底刃のすくい面の算術平均粗さRaが0.01μm以下かつ最大高さ粗さRzが0.1μm以下である。

Description

ボールエンドミル
 本発明は、ボールエンドミルに関する。
 本願は、2016年4月1日に、日本に出願された特願2016-074723号に基づき優先権を主張し、その内容をここに援用する。
 表面に硬質膜が形成された表面被覆切削工具において、硬質膜形成時に生じる粗大粒子に起因する被削材の表面精度の低下を抑制するために、硬質膜の成膜後に粗大粒子を湿式ブラスト法により除去することが提案されている(例えば特許文献1,2参照)。
特開2006-263857号公報 特開2005-001088号公報
 近年、仕上げ加工が手作業から機械加工に移行しており、高速に高精度の仕上げ加工が可能な切削工具のニーズが増している。しかし、従来のエンドミルでは、十分に平滑な仕上げ面を得ることが難しかった。
 本発明は、良好な平滑性を有する仕上げ面が得られるボールエンドミルを提供することを目的の一つとする。
 本発明の一態様によれば、軸線周りに回転するエンドミル本体と、前記エンドミル本体の軸線方向の一方の端部に設けられた側面視弧状の底刃と、少なくとも前記底刃の表面に形成されたコーティング膜と、を備え、前記底刃の先端逃げ面の算術平均粗さRaが0.01μm以下かつ最大高さ粗さRzが0.1μm以下であり、前記底刃のすくい面の算術平均粗さRaが0.01μm以下かつ最大高さ粗さRzが0.1μm以下である、ボールエンドミルが提供される。
 前記先端逃げ面の最大高さ粗さRzが0.1μm未満である構成としてもよく、前記先端逃げ面の最大高さ粗さRzは0.06μm未満がより好ましい。
 本発明のボールエンドミルによれば、仕上げ加工に用いることで良好な平滑性を有する仕上げ面を得ることができる。
実施形態のボールエンドミルを示す斜視図。 図1のボールエンドミルの側面図。 図1のボールエンドミルの正面図。
 以下、本発明のボールエンドミルの実施の形態について、図面を参照しつつ説明する。
 図1は、本実施形態のボールエンドミルを示す斜視図である。図2は、図1のボールエンドミルの側面図である。図3は、図1のボールエンドミルの正面図である。
 本実施形態のボールエンドミル1は、軸状のエンドミル本体2を有する。エンドミル本体2は、例えば、超硬合金、サーメット、セラミックス等の硬質材料からなる概略円柱状の部材である。エンドミル本体2の軸線O方向の一方の端部に刃部3aが形成されている。エンドミル本体2の刃部3a以外の部位がシャンク部3bである。
 本明細書においては、エンドミル本体2の軸線O方向のうち、シャンク部3bから刃部3aへ向かう方向を先端側、刃部3aからシャンク部3bへ向かう方向を基端側という。
 また、軸線Oに直交する方向を径方向という。径方向のうち、軸線Oに接近する向きを径方向の内側、軸線Oから離間する向きを径方向の外側という。また、軸線O回りに周回する方向を周方向という。周方向のうち、切削加工時にエンドミル本体2が回転する方向を工具回転方向Tという。
 刃部3aの外周には、複数条(本実施形態では二条)の切屑排出溝4が周方向に間隔をあけて形成されている。切屑排出溝4は周方向に等間隔に設けられている。切屑排出溝4は、エンドミル本体2の先端面に開口している。切屑排出溝4は、エンドミル本体2の先端面から基端側へ向かうに従い、工具回転方向Tとは反対側へ向けてねじれて(螺旋状に)延びている。切屑排出溝4は、刃部3aの基端側の端部において、エンドミル本体2の外周に切り上がっている。
 切屑排出溝4の工具回転方向T側の端縁に切れ刃が形成されている。切れ刃は外周刃6と底刃9とを含む。外周刃6と底刃9は切屑排出溝4に沿って滑らかに連続する。
 外周刃6は、刃部3aの外周面において、すくい面7と外周逃げ面5との交差稜線に形成されている。外周逃げ面5は、切屑排出溝4の工具回転方向Tとは反対側に隣接する面である。すくい面7は、切屑排出溝4の工具回転方向Tを向く壁面である。外周刃6は、切屑排出溝4の外周端縁に沿って、つる巻き線状(螺旋状)に延びている。外周逃げ面5の幅(外周刃6に直交する向きの長さ)は、外周刃6の延在方向に沿ってほぼ一定である。
 外周刃6の径(径方向に沿う軸線Oから外周刃6までの距離。つまり半径)は、軸線O方向に沿って一定である。外周刃6が軸線O回りに回転して形成される回転軌跡は、軸線Oを中心とする1つの円筒面となる。
 底刃9は、切屑排出溝4における工具回転方向Tを向く壁面と、エンドミル本体2の先端面との交差稜線に形成されている。すなわち、底刃9は、刃部3aの先端において、すくい面7と先端逃げ面8との交差稜線に形成されている。すくい面7は、切屑排出溝4の工具回転方向Tを向く壁面であり、先端逃げ面8は、切屑排出溝4の工具回転方向Tとは反対側に隣接する面である。
 先端逃げ面8は、エンドミル本体2の先端外周側へ向けて凸となる凸曲面状をなしている。先端逃げ面8の基端部は、外周逃げ面5の先端部に接続されている。底刃9を構成する先端逃げ面8の幅(底刃9に直交する向きの長さ)は、底刃9の延在方向に沿って一様である。本実施形態の場合、先端逃げ面8の幅は、外周逃げ面5の幅よりも小さい。
 底刃9は、エンドミル本体2の先端外周側へ向けて凸となる凸円弧状である。したがって、図2に示されるエンドミル本体2の側面視において、底刃9は弧状であって、底刃9が軸線O回りに回転して形成される回転軌跡は、軸線Oを中心とする1つの半球面となる。
 エンドミル本体2の少なくとも刃部3aの表面には、コーティング膜が被覆されている。コーティング膜としては、例えばTi、Al、V、Cr、Zr、Hfのような周期律表第4a、5a、6a族遷移元素と第3b、4b族元素のうち1種または2種以上を含む金属の炭化物、窒化物、酸化物、炭窒化物、または硼化物を用いることができる。コーティング膜は、代表的にはTiN、TiCN、AlTiN、AlCrN、AlTiSiN、AlCrSiNなどの高融点硬質物皮膜である。コーティング膜の成膜方法としては、イオンプレーティング法やスパッタリング法等の物理蒸着(PVD)法を用いることができる。好適な成膜方法としては、アークイオンプレーティング法が挙げられる。
 なお、本実施形態では、ボールエンドミル1は、二枚刃(2つの切れ刃)の刃部3aを有する構成としたが、切れ刃の数(外周刃6及び底刃9の組数)は特に限定されず、三枚刃以上としてもよい。
 ボールエンドミル1は、エンドミル本体2のシャンク部3bにおいて工作機械の主軸等に把持される。ボールエンドミル1は、軸線O周りの一方向(工具回転方向T)に回転させられ、かつ軸線Oに交差する方向に送りを与えられて、金属材料等からなる被削材の切削加工(転削加工)に使用される。本実施形態のボールエンドミル1は、特に、加工面を平滑化する仕上げ加工に適している。
 上記構成を備えた本実施形態のボールエンドミル1では、先端逃げ面8における算術平均粗さRaが0.01μm以下かつ最大高さ粗さRzが0.1μm以下である。また、すくい面7における算術平均粗さRaが0.01μm以下かつ最大高さ粗さRzが0.1μm以下である。
 本実施形態のボールエンドミル1によれば、先端逃げ面8の表面粗さが上記範囲を満たしていることで、先端逃げ面8のうねりが少なくなるので、切削痕が少ない光沢のある仕上げ面を得ることができる。したがって本実施形態のボールエンドミル1を例えば金型の切削加工に用いた場合、切削加工のみで平滑な面が得られるため、金型表面の手仕上げ工程を省略又は短縮することができる。本実施形態のボールエンドミル1は、高硬度鋼の加工に好適に用いることができ、高速度鋼の加工においても良好な仕上げ面を得ることができる。
 また、すくい面7も平滑な面であることから、すくい面7と先端逃げ面8との稜線(底刃9)のうねりや凹凸を少なくすることができ、先端逃げ面8のみを平滑化した場合と比較しても、より平滑な加工面を得ることができる。
 本実施形態のボールエンドミル1では、外周逃げ面5の表面粗さを、先端逃げ面8と同等の表面粗さとしてもよい。
 先端逃げ面8における算術平均粗さRaが0.01μmを超えていると、先端逃げ面8のうねりにより加工面の均一性が損なわれ、良好な仕上げ面が得られない。最大高さ粗さRzが0.1μmを超えていると、先端逃げ面8の表面の凹凸によって加工面に切削痕が残り、良好な仕上げ面が得られない。また、すくい面7における算術平均粗さRaが0.01μmを超え、あるいは最大高さ粗さRzが0.1μmを超えている場合、すくい面7と先端逃げ面8との稜線における凹凸によって加工面の平滑性が低下する。
 先端逃げ面8及びすくい面7において、上記範囲の表面粗さを得るには、切屑排出溝4を形成した後、先端逃げ面8及びすくい面7に対して、ショットブラスト方式の表面研磨装置を用いて1回目の表面研磨処理(コーティング前研磨処理)を施す。さらに、基材表面に硬質材料のコーティングを施した後、ショットブラスト方式の表面研磨装置を用いて2回目の表面研磨処理(コーティング後研磨処理)を施す。すなわち、本実施形態のボールエンドミル1は、図1~3のエンドミル本体2や底刃9を形成する形成工程と、成形された底刃9の先端逃げ面8とすくい面7とをショットブラストにより研磨するコーティング前研磨処理工程と、研磨された先端逃げ面8とすくい面7とに硬質材料からなるコーティング膜を形成するコーティング工程と、コーティングされた先端逃げ面8とすくい面7とをショットブラストにより研磨するコーティング後研磨処理工程と、により製造される。このようにコーティング前後で研磨処理を実施することで、研磨痕やパーティクルが除去された平滑な先端逃げ面8及びすくい面7を得ることができる。
 上記の製造方法において、切屑排出溝4を形成した後、コーティング前研磨処理を施す前に、仕上げ用砥石を用いた磨き加工を施してもよい。磨き加工を併せて行うことにより、さらに平滑な逃げ面8及びすくい面7を得ることができる。
 なお、先端逃げ面8とすくい面7との算術平均粗さRa及び最大高さ粗さRzの下限値は特に限定されないが、これらは小さいほど好ましいので、下限値は好ましくは0μmである。また、すくい面7の最大高さ粗さRzは0.06μm未満が好ましい。
 底刃9を形成する際に先端逃げ面8とすくい面7とに対し施される研削加工の研削送り方向と平行な方向に測定された先端逃げ面8とすくい面7の算術平均粗さRa及び最大高さ粗さRzが、それぞれ上記範囲を満たすことが好ましい。もしくは、底刃9に平行な方向に測定された先端逃げ面8とすくい面7の算術平均粗さRa及び最大高さ粗さRzが、それぞれ上記範囲を満たすことが好ましい。なお、算術平均粗さRa、最大高さ粗さRzは、JIS B 0601:2013(ISO 4287:1997)に従い算出される。
 なお、本実施形態では刃部3aの表面にコーティング膜を被覆しているが、これに限定されず、少なくとも底刃9の表面にコーティング膜が被覆されていれば良い。言い換えると、底刃9の先端逃げ面8である底刃9の工具回転方向Tと反対側に隣接する面と、底刃9のすくい面であるすくい面7(切屑排出溝4の工具回転方向Tを向く壁面)のうち底刃9の工具回転方向Tに隣接する面とにコーティングが施されていれば良い。すなわち、底刃9の周方向両側に隣接する面にコーティングが施されていれば良い。そして、これらの面上に設けられたコーティング膜の表面の算術平均粗さRaと最大高さ粗さRzとが、上記範囲内であれば上述の効果が発揮される。
 (実施例1)
 まず、円柱状の超硬合金基材に研削加工により切り屑排出溝を形成し、エンドミル本体を作製した。基材の素材を超硬合金とした。切り屑排出溝の形成後、エンドミル本体のすくい面と先端逃げ面に対して、#3000以上の砥石を用いて磨き加工を施した。磨き加工の後、すくい面と先端逃げ面に対して、ショットブラスト方式の表面研磨装置を用いて研磨処理(コーティング前研磨処理)を施した。ショットブラストには、硬質研磨材料からなる平均粒径1μm未満の球状のメディアを用いた。
 研磨処理後のエンドミル本体に、AlTiNからなるコーティング膜をイオンプレーティング法により成膜した。成膜後、コーティング膜の表面に対して、ショットブラスト方式の表面研磨装置を用いて研磨処理(コーティング後研磨処理)を施した。ショットブラストには硬質研磨材料からなる平均粒径1μm未満の球状のメディアを用いた。
 以上の工程により実施例1のボールエンドミルを作製した。なお、ボールエンドミルの形状は、三菱マテリアル株式会社製ボールエンドミルVFR2SBFR0300と同等の形状とした。
 (比較例1)
 実施例1の工程において、コーティング前研磨処理、及びコーティング後研磨処理を実施しない以外は同様として、比較例1のボールエンドミルを作製した。
 (比較例2)
 実施例1の工程において、コーティング前研磨処理を省略した以外は同様として、比較例2のボールエンドミルを作製した。
 (比較例3)
 実施例1の工程において、コーティング後研磨処理を省略した以外は同様として、比較例3のボールエンドミルを作製した。
 (比較例4~6)
 実施例1の工程において、コーティング前研磨処理時間及び/又はコーティング後研磨処理時間を変更した以外は同様として、比較例4~6のボールエンドミルを作製した。なお、実施例1及び比較例1~6のコーティング前研磨処理時間及びコーティング後研磨処理時間を表1、2に示す。なお、コーティング前研磨処理及び/又はコーティング後研磨処理を施さなかった場合については「無」と記載した。
 (測定及び評価)
 実施例1及び比較例1~6のボールエンドミルについて、先端逃げ面の表面粗さ(算術平均粗さRa及び最大高さ粗さRz)を、面粗さ計(ミツトヨ社製、SV-C3200)を用いて測定した。測定結果を表1に示す。
 なお、すくい面の面粗さを同様に測定した結果を表2に示す。面粗さの測定は、先端逃げ面及びすくい面のいずれも、刃先から50μm以内の領域について実施した。詳細には、底刃9が軸線O回りに回転して形成される回転軌跡の半球の中心と測定位置とを結ぶ直線と軸線Oとがなす角度が45°となる位置において、先端逃げ面とすくい面の面粗さを研削送り方向(研磨送り方向)に測定した。
 表1及び表2において、「仕上げ面」の列は、後述する仕上げ加工により得られた仕上げ面の算術平均粗さRaが50nm以下であるものを「A」、算術平均粗さRaが50nmを超えるものを「B」とした。なお、仕上げ面の算術平均粗さRaは、仕上げ加工されたキャビティの内面のうち底周辺についてキャビティの深さ方向に面粗さを測定することにより得た。
 先端逃げ面、すくい面及び仕上げ面の表面粗さは、JIS B 0601:2013(ISO 4287:1997)に従い求めた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 コーティングの前後両方で表面研磨処理を施した実施例1のボールエンドミルは、先端逃げ面及びすくい面のいずれにおいても、算術平均粗さRaが0.01μm以下、最大高さ粗さRzが0.1μm以下であり、良好な切れ刃表面及び稜線が形成されていた。
 コーティング前後の少なくとも一方の表面研磨処理を省略した、またはコーティング前後の少なくとも一方の表面研磨処理時間を実施例1よりも短くした比較例1~6のボールエンドミルでは、先端逃げ面及びすくい面のいずれにおいても所望の表面粗さを得ることができなかった。
 次に、実施例1、比較例1~6のボールエンドミルを用いて、ステンレス鋼の表面仕上げ加工を行った。詳細には、被削材としてSUS420J2を用い、以下の条件で半球状のキャビティの表面仕上げ加工を行った。
  使用機械:立形マシニングセンタ(回転工具用ホルダ:HSK-E25)
  加工条件:エアブロー
  回転速度:32,000min-1
  切込み量:ap=0.02mm、ae=0.02mm
  1刃当たりの送り:0.02mm/tooth(テーブル送り:1,280mm/min)
 先端逃げ面の算術平均粗さRaが0.01μm以下、最大高さ粗さRzが0.1μm以下であった実施例1のボールエンドミルを用いた仕上げ加工では、切削痕が少なく、表面のうねりも抑制された良好な仕上げ面が得られた。実施例1のボールエンドミルによる仕上げ面は良好な光沢を有する面であり、算術平均粗さRaが50nm以下である極めて平滑な面が得られた。
 比較例1~6のボールエンドミルを用いた仕上げ加工では、刃先に残った凹凸により加工面に切削痕が残り、刃先表面のうねりにより加工面が均一な平坦面とならず、光沢性の低い仕上げ面となった。先端逃げ面の算術平均粗さRaが0.01μmを超えており、最大高さ粗さRzが0.1μmを超えている比較例1~3のボールエンドミルでは、仕上げ面の算術平均粗さRaを1.0μm以下にすることができなかった。先端逃げ面及びすくい面の算術平均粗さRaが0.01μm以下である比較例5、最大高さ粗さRzが0.1μm以下である比較例4,6のボールエンドミルで加工した場合には、仕上げ面の算術平均粗さRaは数100nmに低減できたが、良好な光沢を有する仕上げ面は得られなかった。
 本発明のボールエンドミルによれば、良好な平滑性を有する仕上げ面が得られる。
 1…ボールエンドミル、2…エンドミル本体、7…すくい面、8…先端逃げ面、9…底刃、O…軸線、Ra…算術平均粗さ、Rz…最大高さ粗さ

Claims (2)

  1.  軸線周りに回転するエンドミル本体と、
     前記エンドミル本体の軸線方向の一方の端部に設けられた側面視弧状の底刃と、
     少なくとも前記底刃の表面に形成されたコーティング膜と、
     を備え、
     前記底刃の先端逃げ面の算術平均粗さRaが0.01μm以下かつ最大高さ粗さRzが0.1μm以下であり、前記底刃のすくい面の算術平均粗さRaが0.01μm以下かつ最大高さ粗さRzが0.1μm以下である、ボールエンドミル。
  2.  前記先端逃げ面の最大高さ粗さRzが0.06μm未満である、請求項1に記載のボールエンドミル。
PCT/JP2017/013009 2016-04-01 2017-03-29 ボールエンドミル WO2017170739A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016074723A JP6627618B2 (ja) 2016-04-01 2016-04-01 ボールエンドミル
JP2016-074723 2016-04-01

Publications (1)

Publication Number Publication Date
WO2017170739A1 true WO2017170739A1 (ja) 2017-10-05

Family

ID=59964651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013009 WO2017170739A1 (ja) 2016-04-01 2017-03-29 ボールエンドミル

Country Status (2)

Country Link
JP (1) JP6627618B2 (ja)
WO (1) WO2017170739A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7131000B2 (ja) * 2018-03-14 2022-09-06 三菱マテリアル株式会社 ボールエンドミル

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005313287A (ja) * 2004-04-30 2005-11-10 Allied Material Corp 切屑処理機能を有する回転切削工具
JP2011088264A (ja) * 2009-10-26 2011-05-06 Sumitomo Electric Ind Ltd ダイヤモンド切削工具及びその製造方法
JP2012006135A (ja) * 2010-06-28 2012-01-12 Mitsubishi Materials Corp エンドミルおよびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539574A (ja) * 1991-08-01 1993-02-19 Kobe Steel Ltd 硬質薄膜被覆部材の製造方法及び切削工具
JP5124790B2 (ja) * 2009-11-10 2013-01-23 住友電工ハードメタル株式会社 ダイヤモンド被覆切削工具

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005313287A (ja) * 2004-04-30 2005-11-10 Allied Material Corp 切屑処理機能を有する回転切削工具
JP2011088264A (ja) * 2009-10-26 2011-05-06 Sumitomo Electric Ind Ltd ダイヤモンド切削工具及びその製造方法
JP2012006135A (ja) * 2010-06-28 2012-01-12 Mitsubishi Materials Corp エンドミルおよびその製造方法

Also Published As

Publication number Publication date
JP2017185564A (ja) 2017-10-12
JP6627618B2 (ja) 2020-01-08

Similar Documents

Publication Publication Date Title
JP5764181B2 (ja) 硬質皮膜被覆切削工具
CN109641293B (zh) 切削刀片及可转位刀片式旋转切削工具
JP5614511B2 (ja) ボールエンドミル及びインサート
CN108290231B (zh) 可转位刀片式旋转切削工具及刀片
JP6828824B2 (ja) 小径ドリルおよび小径ドリルの製造方法
JP2005528988A (ja) ワイパ丸み部を有するフライスカッタ
CN110167702B (zh) 模具加工用立铣刀
JP2012000720A (ja) 総形カッターの製造方法および総形カッターの研削工具
JP6318579B2 (ja) インサート及びインサートを装着した刃先交換式ボールエンドミル
WO2019003965A1 (ja) ボールエンドミル
JP2021516629A (ja) Cnc旋盤のための回転方法
JP2010162677A (ja) 小径cbnボールエンドミル
JP5939208B2 (ja) ボールエンドミル
WO2017170739A1 (ja) ボールエンドミル
CN109414771B (zh) 切削刀片及可转位刀片式旋转切削工具
WO2018074542A1 (ja) 切削インサート及び刃先交換式回転切削工具
JP2014087891A (ja) ボールエンドミル
JP6179165B2 (ja) ラジアスエンドミル
JP2019141916A (ja) スクエアエンドミル
CN111670081B (zh) 立铣刀及加工方法
JP2011212836A (ja) ボールエンドミル及びその製造方法
JP6278170B1 (ja) 切削インサート及び刃先交換式回転切削工具
JP7453566B2 (ja) 切削インサート及び刃先交換式回転切削工具
JP2021516628A (ja) Cnc機械のための回転工具および回転方法
JP5906838B2 (ja) スクエアエンドミル

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775273

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775273

Country of ref document: EP

Kind code of ref document: A1