WO2017169154A1 - 研磨用組成物セット、前研磨用組成物、及びシリコンウェーハの研磨方法 - Google Patents

研磨用組成物セット、前研磨用組成物、及びシリコンウェーハの研磨方法 Download PDF

Info

Publication number
WO2017169154A1
WO2017169154A1 PCT/JP2017/004630 JP2017004630W WO2017169154A1 WO 2017169154 A1 WO2017169154 A1 WO 2017169154A1 JP 2017004630 W JP2017004630 W JP 2017004630W WO 2017169154 A1 WO2017169154 A1 WO 2017169154A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
silicon wafer
composition
polishing composition
final
Prior art date
Application number
PCT/JP2017/004630
Other languages
English (en)
French (fr)
Inventor
公亮 土屋
真希 浅田
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Priority to JP2018508509A priority Critical patent/JP6761025B2/ja
Publication of WO2017169154A1 publication Critical patent/WO2017169154A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a polishing composition set, a pre-polishing composition, and a method for polishing a silicon wafer.
  • a polishing composition set includes a final polishing composition used in a final polishing process for performing final polishing of a silicon wafer, and one stage before the final polishing process.
  • a polishing composition set comprising a pre-polishing composition used in the pre-polishing step which is a polishing step, wherein the hydrophilic parameter P1 of the pre-polishing composition determined in the standard test 1 is less than 100,
  • the gist is that the finishing accuracy parameter P2 of the pre-polishing composition obtained in the standard test 2 is 1000 or less, and the polishing processability parameter F1 of the finishing polishing composition obtained in the standard test 3 is 80 or less.
  • the pre-polishing composition according to another aspect of the present invention is a pre-polishing composition used in a pre-polishing step that is a polishing step one step before a final polishing step for performing final polishing of a silicon wafer.
  • the gist is that the hydrophilicity parameter P1 obtained in the standard test 1 is less than 100 and the finishing accuracy parameter P2 obtained in the standard test 2 is 1000 or less.
  • the silicon wafer polishing method includes a final polishing process for performing final polishing of the silicon wafer, and a pre-polishing process that is a polishing process one stage before the final polishing process.
  • the gist is to perform the polishing step.
  • the surface to be polished after completion of the pre-polishing step needs to have an appropriate surface protection and a surface of good quality (low haze). That is, if the pre-polishing is performed so that the surface to be polished after the pre-polishing step has an appropriate surface protective property and a surface of good quality, the surface protective property is not excessively high and already good to some extent.
  • the finish polishing can be performed by using the finish polishing composition that can reduce the load in the finish polishing process, and can produce a highly accurate polished surface with low workability. As a result, a high-quality polished surface with low haze can be realized.
  • the polished surface after the pre-polishing step is preferably of higher quality.
  • the pre-polishing composition the final polishing composition, and the polishing composition set of the present embodiment will be described in detail.
  • the various operations and physical property measurements described below were performed under conditions of room temperature (20 ° C. to 25 ° C.) and relative humidity of 40% to 50% unless otherwise specified.
  • the hydrophilicity parameter P1 is obtained in the standard test 1 in which the following steps a1, a2, a3, and a4 are performed in this order.
  • the polishing conditions for polishing the silicon test piece are, for example, a polishing load of 16 kPa, a platen rotation speed of 30 rpm, a carrier rotation speed of 30 rpm, a polishing time of 2 min, a pre-polishing composition supply speed of 30 mL / min, and a pre-polishing composition.
  • the temperature can be 20 ° C.
  • a silicon wafer test piece made of the same material as the silicon wafer that is the object to be polished is polished.
  • a polishing machine PNX-332B manufactured by Okamoto Machine Tool Co., Ltd., or a polishing pad POLYPAS27NX manufactured by Fujibow Co., Ltd. can be used.
  • the polishing conditions for polishing the silicon wafer specimen are, for example, a polishing load of 15 kPa, a platen rotation speed of 30 rpm, a carrier rotation speed of 30 rpm, a polishing time of 2 min, a standard polishing composition supply speed of 2 L / min, and a standard polishing composition.
  • the temperature of the object can be 20 ° C
  • the temperature of the surface plate cooling water can be 20 ° C.
  • silica is preferred.
  • Specific examples of the silica include silica particles selected from colloidal silica, fumed silica, and sol-gel silica.
  • silica particles it is preferable to use silica particles selected from colloidal silica and fumed silica, particularly colloidal silica, from the viewpoint of reducing scratches generated on the polished surface of the silicon wafer.
  • Abrasive grains may be used alone or in combination of two or more.
  • the average primary particle diameter of the abrasive grains used in the pre-polishing composition is preferably 5 nm or more, more preferably 10 nm or more, still more preferably 15 nm or more, and particularly preferably 20 nm or more.
  • the polishing rate of the silicon wafer is improved.
  • the average primary particle diameter of the abrasive grain used for the composition for pre-polishing is 100 nm or less, More preferably, it is 60 nm or less, More preferably, it is 50 nm or less.
  • the smoothness of the surface to be polished is improved by reducing the average primary particle size of the abrasive grains.
  • the average secondary particle diameter of the abrasive grains used in the finish polishing composition is preferably 10 nm or more, more preferably 20 nm or more. By increasing the average secondary particle diameter of the abrasive grains, the polishing rate of the silicon wafer is improved. Moreover, it is preferable that the average secondary particle diameter of the abrasive grain used for the composition for final polishing is 100 nm or less, More preferably, it is 80 nm or less, More preferably, it is 70 nm or less, Especially preferably, it is 60 nm or less. The smoothness of the surface to be polished is improved by reducing the average secondary particle diameter of the abrasive grains.
  • the average secondary particle size of the abrasive grains used in the pre-polishing composition and the final polishing composition can be measured, for example, by a dynamic light scattering method using UPA-UT151 manufactured by Nikkiso Co., Ltd. .
  • the content of abrasive grains in the pre-polishing composition is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and still more preferably 0.10% by mass or more. When the content of the abrasive grains is within the above range, the polishing rate of the silicon wafer is excellent.
  • the content of abrasive grains in the pre-polishing composition is preferably 3% by mass or less, more preferably 1% by mass or less, and still more preferably 0.5% by mass or less. When the content of the abrasive grains is within the above range, the dispersion stability of the pre-polishing composition is improved.
  • the weight average molecular weight of the water-soluble polymer used in the pre-polishing composition is preferably 2 million or less, more preferably 1.5 million or less, still more preferably 1.2 million or less, and even more preferably 1 million or less. And particularly preferably 700,000 or less. A decrease in the weight average molecular weight of the water-soluble polymer tends to maintain the stability of the pre-polishing composition. In addition, the haze level of the polished surface of the silicon wafer tends to be reduced.
  • the weight average molecular weight of the surfactant is preferably 200 or more, more preferably 250 or more, and further preferably 300 or more. By increasing the weight average molecular weight of the surfactant, the polishing rate of the silicon wafer is improved.
  • the weight average molecular weight of the surfactant is preferably less than 10,000, and more preferably 9500 or less. By reducing the weight average molecular weight of the surfactant, the smoothness of the surface to be polished is improved.
  • chelating agents include carboxylic acid chelating agents such as gluconic acid, amine chelating agents such as ethylenediamine, diethylenetriamine, and trimethyltetraamine, ethylenediaminetetraacetic acid, nitrilotriacetic acid, hydroxyethylethylenediaminetriacetic acid, triethylenetetramine hexa Polyaminopolycarboxylic acid chelating agents such as acetic acid and diethylenetriaminepentaacetic acid, 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), diethylenetriamine Penta (methylenephosphonic acid), ethane-1,1-diphosphonic acid, ethane-1,1,2-triphosphonic acid, methanehydroxyphosphonic acid, 1-phosphonobutane-2,3,4 Organic phosphonic acid chelates,
  • the final polishing composition and the pre-polishing composition do not substantially contain an oxidizing agent means that at least intentionally no oxidizing agent is contained. Therefore, a trace amount (for example, the molar concentration of the oxidizing agent in the final polishing composition and the pre-polishing composition is 0.0005 mol / L or less, preferably 0.0001 mol or less, derived from the raw materials, the manufacturing method, and the like.
  • a polishing composition (finish polishing composition, pre-polishing composition) preferably containing 0.00001 mol / L or less, particularly preferably 0.000001 mol / L or less) is inevitable.
  • the concept of the polishing composition substantially free of an oxidizing agent as used herein can be included.
  • the physical action due to friction (abrasion between the polishing cloth and the polishing composition (finish polishing composition, pre-polishing composition) and the friction between the silicon wafer) and the final polishing composition
  • the silicon wafer is polished by the chemical action of the pre-polishing composition on the silicon wafer.
  • polishing cloth various materials such as polyurethane, non-woven fabric, and suede can be used. In addition to the difference in materials, materials having various physical properties such as hardness and thickness can be used. Further, any of those containing abrasive grains and those not containing abrasive grains can be used, but those containing no abrasive grains are preferably used. Further, a liquid finish polishing composition or a pre-polishing composition that has been grooved so as to accumulate can be used.
  • the polishing load (pressure applied to the silicon wafer) is not particularly limited among the polishing conditions, but may be 5 kPa or more and 50 kPa or less, and preferably 8 kPa or more and 30 kPa or less. More preferably, it is 10 kPa or more and 20 kPa or less.
  • the polishing load is within this range, a sufficient polishing rate is exhibited, and it is possible to suppress damage of the silicon wafer due to the load and occurrence of defects such as scratches on the surface of the silicon wafer.
  • the supply amount of the final polishing composition and the pre-polishing composition among the polishing conditions varies depending on the type of silicon wafer, the type of polishing apparatus, and the polishing conditions, but the finish is between the silicon wafer and the polishing cloth.
  • the amount of the polishing composition and the pre-polishing composition may be sufficient to be supplied to the entire surface without unevenness.
  • the supply amount of the final polishing composition and the pre-polishing composition is small, the final polishing composition and the pre-polishing composition may not be supplied to the entire silicon wafer, or the final polishing composition and the pre-polishing composition Objects can dry and solidify, causing defects on the surface of the silicon wafer.
  • the supply amount of the final polishing composition and the pre-polishing composition is large, it is not economical and friction is hindered by an excessive final polishing composition and the pre-polishing composition (especially water). Polishing may be hindered.
  • the final polishing composition and the pre-polishing composition of the present embodiment can be recovered after being used for polishing a silicon wafer and reused for polishing a silicon wafer.
  • the final polishing composition and the pre-polishing composition discharged from the polishing apparatus are collected in a tank and circulated into the polishing apparatus again. And a method used for polishing. If the final polishing composition and the pre-polishing composition are used in a circulating manner, the amount of the final polishing composition and the pre-polishing composition discharged as waste liquid can be reduced, so that the environmental load can be reduced. .
  • the quantity of the composition for final polishing and the composition for pre-polishing to be used can be reduced, the manufacturing cost required for grinding
  • the abrasive grains consumed, lost due to use in polishing, water-soluble polymers, basic compounds, additives, etc. A part or all of them may be reused after being added as a composition modifier.
  • a composition regulator what mixed abrasive grain, water-soluble polymer, a basic compound, an additive, etc. by arbitrary mixing ratios can be used.
  • the composition for final polishing and the composition for pre-polishing are adjusted to be suitable for reuse and suitable polishing can be performed.
  • the concentrations of the abrasive grains, water-soluble polymer, basic compound, and other additives contained in the composition modifier are arbitrary and are not particularly limited, and may be appropriately adjusted according to the tank size and polishing conditions. .
  • this embodiment shows an example of this invention and this invention is not limited to this embodiment.
  • various changes or improvements can be added to the present embodiment, and forms to which such changes or improvements are added can also be included in the present invention.
  • the finish polishing composition and the pre-polishing composition of the present embodiment may be a one-pack type, or any or all of the components of the finish polishing composition and the pre-polishing composition may be arbitrarily selected.
  • a multi-component type such as a two-component type mixed at a ratio may be used.
  • the final polishing composition and the pre-polishing composition stock solution of the present embodiment may be used for polishing, but the stock solution is diluted with a diluent such as water, for example, 10 times or more. Polishing may be carried out using a final polishing composition diluted to 1 or a diluted pre-polishing composition.
  • a pretreatment composition obtained by mixing abrasive grains made of colloidal silica having an average primary particle size of 12 nm, 25 nm, or 35 nm, a basic compound, a water-soluble polymer, a surfactant, and pure water, A standard polishing composition, pre-polishing compositions a, b, c, d, and h and finish polishing compositions e, f, g, and i were produced.
  • the contents of abrasive grains, basic compound, water-soluble polymer, and surfactant in each composition are as shown in Table 1, with the balance being pure water.
  • the kind of basic compound used is ammonia (NH 3 ) or potassium hydroxide (KOH).
  • the types of water-soluble polymers used and the weight average molecular weight are as shown in Table 1.
  • HEC hydroxyethyl cellulose
  • PVP polyvinylpyrrolidone.
  • the surfactant used is a block copolymer (PEO-PPO) composed of ethylene oxide (EO) and propylene oxide (PO), or polyoxyethylene decyl ether (C-PEO).
  • the test piece for obtaining each parameter or the material thereof is not the same as the silicon wafer that is the polishing object, but the same material as the silicon wafer that is the polishing object. Although a wafer is used, it is needless to say that the same silicon wafer as the object to be polished may be used as a test piece.
  • the hydrophilicity parameter P1 is obtained by the standard test 1 in which the following steps X1 to X6 are performed in this order.
  • Standard test 1 (X1) A pre-treatment is performed on a silicon wafer having the same material as the silicon wafer to be polished (in this embodiment, a silicon wafer having a diameter of 300 mm, a conductive P type, a crystal orientation ⁇ 100>, and no crystal defects). Apply. That is, after polishing using a pretreatment composition on a silicon wafer, polishing using a standard polishing composition is performed, followed by washing and drying.
  • a polishing machine PNX-332B manufactured by Okamoto Machine Tool Co., Ltd. and a polishing pad FP55 manufactured by Fujibow Co., Ltd. were used.
  • the polishing conditions were a polishing load of 20 kPa and a platen rotation. The speed is 20 rpm, the carrier rotation speed is 20 rpm, the polishing time is 2 minutes, the pretreatment composition supply speed is 1 L / min, the pretreatment composition temperature is 20 ° C., and the surface plate cooling water temperature is 20 ° C.
  • a polishing machine PNX-332B manufactured by Okamoto Machine Tool Co., Ltd. and a polishing pad POLYPAS27NX manufactured by Fujibow Co., Ltd. were used.
  • the polishing conditions were a polishing load of 15 kPa, a fixed value.
  • the plate rotation speed is 30 rpm
  • the carrier rotation speed is 30 rpm
  • the polishing time is 2 min
  • the standard polishing composition supply rate is 2 L / min
  • the standard polishing composition temperature is 20 ° C.
  • the surface plate cooling water temperature is 20 ° C.
  • the pretreatment composition contains 0.95% by mass of colloidal silica having an average primary particle size of 35 nm, 0.065% by mass of potassium hydroxide, and the balance is pure water.
  • the standard polishing composition comprises 0.46% by mass of colloidal silica having an average primary particle diameter of 35 nm, 0.009% by mass of ammonia, 0.017% by mass of hydroxyethyl cellulose having a weight average molecular weight of 250,000, polyethylene oxide and polypropylene oxide.
  • the copolymer contains 0.002% by mass, and the balance is pure water.
  • the silicon chip test piece cleaned with pure water in the X2 step is polished.
  • a table polishing machine EJ-380IN manufactured by Nippon Engis Co., Ltd. and a polishing pad POLYPAS27NX manufactured by Fujibow Co., Ltd. were used for polishing this silicon chip test piece.
  • the polishing conditions were a polishing load of 16 kPa, a platen rotation speed of 30 rpm, The carrier rotation speed is 30 rpm, the polishing time is 2 minutes, the supply speed of the pre-polishing composition is 30 mL / min, and the temperature of the pre-polishing composition is 20 ° C.
  • the surface of the silicon chip test piece polished in the step X3 is washed with pure water to wash away the pre-polishing composition.
  • the silicon chip test piece cleaned with pure water in the X4 step is allowed to stand for 30 seconds in a posture in which one diagonal line of the silicon chip test piece is along the vertical direction, and the surface of the silicon chip test piece of the diagonal line is The length of the region not wetted with pure water is measured, and the length is defined as the water repellent distance.
  • the hydrophilicity parameter P1 of the pre-polishing composition is calculated based on the following formula.
  • Hydrophilic parameter P1 ⁇ (Diagonal length of silicon chip test piece [mm]) ⁇ (Water repellent distance [mm]) ⁇ / (Diagonal length of silicon chip [mm]) ⁇ 100
  • the finishing accuracy parameter P2 is obtained by the standard test 2 in which the following Y1 process to Y5 process are performed in this order.
  • the silicon wafer test piece pretreated in the Y1 step is polished again.
  • a polishing machine PNX-332B manufactured by Okamoto Machine Tool Co., Ltd. and a polishing pad FP55 manufactured by Fujibow Co., Ltd. were used.
  • the polishing conditions were polishing load 20 kPa, platen rotation speed 20 rpm, carrier rotation speed 20 rpm.
  • the polishing time is 2 min, the supply rate of the pretreatment composition is 1 L / min, the temperature of the pretreatment composition is 20 ° C., and the temperature of the surface plate cooling water is 20 ° C.
  • the silicon wafer test piece subjected to the polishing in the Y2 step is polished.
  • a polishing machine PNX-332B manufactured by Okamoto Machine Tool Co., Ltd. and a polishing pad POLYPAS27NX manufactured by Fujibow Co., Ltd. are used for polishing the silicon wafer specimen.
  • the polishing conditions for polishing this silicon wafer test piece were polishing load 15 kPa, surface plate rotation speed 30 rpm, carrier rotation speed 30 rpm, polishing time 2 min, pre-polishing composition supply rate 2 L / min, pre-polishing composition.
  • the temperature of the platen cooling water is 20 ° C.
  • the silicon wafer test piece subjected to the polishing in the Y2 step is polished.
  • a polishing machine PNX-332B manufactured by Okamoto Machine Tool Co., Ltd. and a polishing pad POLYPAS27NX manufactured by Fujibow Co., Ltd. are used for polishing the silicon wafer specimen.
  • the polishing conditions for polishing this silicon wafer test piece were: polishing load 15 kPa, platen rotation speed 30 rpm, carrier rotation speed 30 rpm, polishing time 2 min, standard polishing composition supply rate 2 L / min, standard polishing composition
  • the temperature of the platen cooling water is 20 ° C.
  • the polishing processability parameter F1 is obtained by the standard test 3 in which the following Z1 to Z6 steps are performed in this order.
  • Standard test 3 (Z1)
  • a silicon wafer test piece of the same material as the silicon wafer that is the object to be polished in this example, a silicon wafer test piece having a diameter of 200 mm, a conductive P type, a crystal orientation ⁇ 100>, and no crystal defects
  • Pre-treatment is performed. That is, the silicon wafer test piece is polished using the pretreatment composition, then polished using the standard polishing composition, and further subjected to SC-1 cleaning and drying.
  • a polishing machine PNX-322 manufactured by Okamoto Machine Tool Co., Ltd. and a polishing pad FP55 manufactured by Fujibow Co., Ltd. were used.
  • the polishing conditions were a polishing load of 15 kPa and a platen rotation.
  • the speed is 30 rpm
  • the carrier rotation speed is 30 rpm
  • the polishing time is 3 minutes
  • the pretreatment composition supply speed is 0.55 L / min
  • the pretreatment composition temperature is 20 ° C.
  • the surface plate cooling water temperature is 20 ° C.
  • a polishing machine PNX-322 manufactured by Okamoto Machine Tool Co., Ltd. and a polishing pad POLYPAS27NX manufactured by Fujibow Co., Ltd. were used.
  • the polishing conditions were a polishing load of 15 kPa, a fixed value.
  • the plate rotation speed is 30 rpm
  • the carrier rotation speed is 30 rpm
  • the polishing time is 4 min
  • the standard polishing composition supply rate is 0.4 L / min
  • the standard polishing composition temperature is 20 ° C.
  • the surface plate cooling water temperature is 20 ° C.
  • the silicon wafer test piece cleaned with pure water in the Z2 step is polished.
  • a polishing machine PNX-322 manufactured by Okamoto Machine Tool Co., Ltd. and a polishing pad POLYPAS27NX manufactured by Fujibow Co., Ltd. are used for polishing the silicon wafer specimen.
  • the polishing conditions for polishing this silicon wafer specimen are polishing load 15 kPa, platen rotation speed 30 rpm, carrier rotation speed 30 rpm, polishing time 15 min, finish polishing composition supply rate 0.4 L / min, and finish polishing.
  • the temperature of the composition is 20 ° C.
  • the temperature of the surface plate cooling water is 20 ° C.
  • a silicon wafer test piece cleaned with pure water in the Z2 step is polished.
  • a polishing machine PNX-322 manufactured by Okamoto Machine Tool Co., Ltd. and a polishing pad POLYPAS27NX manufactured by Fujibow Co., Ltd. are used for polishing the silicon wafer specimen.
  • the polishing conditions for polishing this silicon wafer test piece were polishing load 15 kPa, platen rotation speed 30 rpm, carrier rotation speed 30 rpm, polishing time 15 min, standard polishing composition supply rate 0.4 L / min, standard polishing
  • the temperature of the composition is 20 ° C.
  • the temperature of the surface plate cooling water is 20 ° C.
  • polishing processability parameter F1 R / ⁇ ⁇ 100
  • the method for polishing a silicon wafer includes a primary polishing step of polishing using a pretreatment composition, a prepolishing step of polishing using a prepolishing composition (secondary polishing step), and finish polishing. And a final polishing step in which polishing is performed using the working composition.
  • a method for polishing a silicon wafer and a method for measuring haze will be specifically described.
  • pretreatment is performed on a silicon wafer having a diameter of 300 mm, a conductivity type P type, a crystal orientation ⁇ 100>, and no crystal defects in the same manner as the X1 step of the standard test 1. That is, the silicon wafer is polished using the pretreatment composition, then polished using the standard polishing composition, and further subjected to SC-1 cleaning and drying.
  • the silicon wafer that has been pretreated in the step (1) is polished again using the pretreatment composition.
  • the polishing apparatus and the polishing pad used for polishing this silicon wafer are the same as those in the Y2 step of the standard test 2.
  • the polishing conditions for polishing the silicon wafer are the same as those in the Y2 step of the standard test 2.
  • the silicon wafer polished again using the pre-treatment composition in the step (2) is further polished.
  • the polishing apparatus and the polishing pad used for polishing this silicon wafer are the same as those in the Y3 step of the standard test 2.
  • the polishing conditions for polishing the silicon wafer are the same as in the Y3 step of the standard test 2.
  • the silicon wafer polished using the pre-polishing composition in the step (3) is further polished.
  • the polishing apparatus and the polishing pad used for polishing this silicon wafer are the same as those in the Y3 step of the standard test 2.
  • the polishing conditions for polishing the silicon wafer are the same as in the Y3 step of the standard test 2.
  • a surface foreign matter inspection apparatus SURFSCAN SP2 manufactured by KLA-Tencor Corporation is used. Used to measure the haze of the silicon wafer surface in DWO mode.
  • Table 2 shows the measurement results of haze.
  • the silicon wafers polished using the polishing composition sets of Examples 1 to 4 have a hydrophilic parameter P1 of the pre-polishing composition of less than 100 and a finishing accuracy parameter P2 of the pre-polishing composition of 1000 or less. Since the polishing processability parameter F1 of the final polishing composition is 80 or less, the haze of the surface of the silicon wafer after the final polishing is low, and a high-quality polished surface is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

ヘイズを低減して高品位な被研磨面を実現可能な研磨用組成物セットを提供する。研磨用組成物セットは、シリコンウェーハの仕上げ研磨を行う仕上げ研磨工程で使用される仕上げ研磨用組成物と、仕上げ研磨工程の1段階前の研磨工程である前研磨工程で使用される前研磨用組成物と、を備える。標準試験1で求められる前研磨用組成物の親水性パラメータP1が100未満で、標準試験2で求められる前研磨用組成物の仕上げ精度パラメータP2が1000以下で、標準試験3で求められる仕上げ研磨用組成物の研磨加工性パラメータF1が80以下である。

Description

研磨用組成物セット、前研磨用組成物、及びシリコンウェーハの研磨方法
 本発明は、研磨用組成物セット、前研磨用組成物、及びシリコンウェーハの研磨方法に関する。
 シリコンウェーハの表面のヘイズを低減するために、研磨用組成物や研磨方法に関する技術が種々提案されている(例えば特許文献1、2を参照)。しかしながら、近年においては、シリコンウェーハの表面品質に関する要求レベルが益々高くなっているため、これらの技術にはさらなる改良が求められていた。
日本国特許公報 第5204960号 日本国特許公開公報 2015年第185672号
 本発明は上記のような従来技術が有する問題点を解決し、ヘイズを低減して高品位な被研磨面を実現可能な研磨用組成物セット、前研磨用組成物、及びシリコンウェーハの研磨方法を提供することを課題とする。
 前記課題を解決するため、本発明の一態様に係る研磨用組成物セットは、シリコンウェーハの仕上げ研磨を行う仕上げ研磨工程で使用される仕上げ研磨用組成物と、仕上げ研磨工程の1段階前の研磨工程である前研磨工程で使用される前研磨用組成物と、を備える研磨用組成物セットであって、標準試験1で求められる前研磨用組成物の親水性パラメータP1が100未満で、標準試験2で求められる前研磨用組成物の仕上げ精度パラメータP2が1000以下で、標準試験3で求められる仕上げ研磨用組成物の研磨加工性パラメータF1が80以下であることを要旨とする。
 また、本発明の他の態様に係る前研磨用組成物は、シリコンウェーハの仕上げ研磨を行う仕上げ研磨工程の1段階前の研磨工程である前研磨工程で使用される前研磨用組成物であって、標準試験1で求められる親水性パラメータP1が100未満で、標準試験2で求められる仕上げ精度パラメータP2が1000以下であることを要旨とする。
 さらに、本発明の他の態様に係るシリコンウェーハの研磨方法は、シリコンウェーハの仕上げ研磨を行う仕上げ研磨工程と、仕上げ研磨工程の1段階前の研磨工程である前研磨工程と、を備えるシリコンウェーハの研磨方法であって、上記一態様に係る研磨用組成物セットを使用して仕上げ研磨工程及び前研磨工程を行うこと、又は、上記他の態様に係る前研磨用組成物を使用して前研磨工程を行うことを要旨とする。
 本発明によれば、ヘイズを低減して高品位な被研磨面を実現可能である。
 本発明の一実施形態について詳細に説明する。本実施形態の研磨用組成物セットは、シリコンウェーハの仕上げ研磨を行う仕上げ研磨工程で使用される仕上げ研磨用組成物と、仕上げ研磨工程の1段階前の研磨工程である前研磨工程で使用される前研磨用組成物と、を備える。そして、標準試験1で求められる前研磨用組成物の親水性パラメータP1が100未満で、標準試験2で求められる前研磨用組成物の仕上げ精度パラメータP2が1000以下で、標準試験3で求められる仕上げ研磨用組成物の研磨加工性パラメータF1が80以下である。
 また、本実施形態の前研磨用組成物は、シリコンウェーハの仕上げ研磨を行う仕上げ研磨工程の1段階前の研磨工程である前研磨工程で使用される研磨用組成物である。そして、標準試験1で求められる親水性パラメータP1が100未満で、標準試験2で求められる仕上げ精度パラメータP2が1000以下である。
 このような本実施形態の研磨用組成物セット及び前研磨用組成物は、単体シリコン、シリコン化合物、金属、セラミック等の種々の研磨対象物の研磨に対して好適に使用可能であり、ヘイズが低い高品位な被研磨面を実現可能である。また、微小欠陥の少ない被研磨面も実現可能である。特に、本実施形態の研磨用組成物セット又は前研磨用組成物をシリコンウェーハの研磨に使用すれば、ヘイズが低い高品位な表面を有するシリコン単結晶ウェーハ等のシリコンウェーハを製造することができる。
 詳述すると、ヘイズが低い高品位な被研磨面を実現するためには、加工性が低く高精度の被研磨面を作ることができる仕上げ研磨用組成物を用いてシリコンウェーハの仕上げ研磨を行うことが重要である。そのためには、前研磨工程終了後の被研磨面が適度な表面保護性を有し且つ良好な品位(ヘイズが低い)の表面である必要がある。すなわち、前研磨工程終了後の被研磨面が適度な表面保護性を有し且つ良好な品位の表面となるように前研磨を行えば、表面保護性が過度に高くなく且つ既にある程度良好な品位の表面となっているので、仕上げ研磨工程での負荷が軽減され、加工性が低く高精度の被研磨面を作ることができる仕上げ研磨用組成物を用いて仕上げ研磨を行うことができる。これにより、ヘイズが低い高品位な被研磨面が実現可能となる。前研磨工程終了後の被研磨面は、より高品位であることが好ましい。
 以上のような理由から、前研磨用組成物には、前研磨工程終了後の被研磨面が適度な親水性を有し且つ良好な品位の表面となるような研磨を行うことができる性能が求められる。前研磨工程終了後の被研磨面の親水性が親水性パラメータP1で表現され、この親水性パラメータP1は標準試験1で求めることができる。また、前研磨用組成物の研磨性能が仕上げ精度パラメータP2で表現され、この仕上げ精度パラメータP2は標準試験2で求めることができる。
 また、仕上げ研磨用組成物には、被研磨面を高精度に仕上げることが求められるので、その加工性は低く抑えられている。仕上げ研磨用組成物の研磨加工性が研磨加工性パラメータF1で表現され、この研磨加工性パラメータF1は標準試験3で求めることができる。
 親水性パラメータP1、仕上げ精度パラメータP2、研磨加工性パラメータF1を求める標準試験1、2、3については、後に詳述する。
 なお、本発明における前研磨工程とは、シリコンウェーハの研磨方法が備える複数の研磨工程のうち仕上げ研磨工程の1段階前の研磨工程を意味する。よって、シリコンウェーハの研磨方法が、例えば予備研磨工程である1次研磨工程、2次研磨工程と仕上げ研磨工程との3つの研磨工程を備える場合には、2次研磨工程が前研磨工程に相当する。また、シリコンウェーハの研磨方法が、例えば予備研磨工程である1次研磨工程と仕上げ研磨工程との2つの研磨工程を備える場合には、1次研磨工程が前研磨工程に相当する。
 以下に、本実施形態の前研磨用組成物、仕上げ研磨用組成物、及び研磨用組成物セットについて詳細に説明する。なお、以下に説明する種々の操作や物性の測定は、特に断りがない限り、室温(20℃以上25℃以下)、相対湿度40%以上50%以下の条件下で行われたものである。
1.前研磨用組成物について
 シリコンウェーハの前研磨工程で使用される前研磨用組成物は、標準試験1で求められる親水性パラメータP1が100未満で、標準試験2で求められる仕上げ精度パラメータP2が1000以下である。以下に、標準試験1、2について説明する。
1-1 標準試験1について
 親水性パラメータP1は、下記のa1工程、a2工程、a3工程、及びa4工程をこの順に行う標準試験1で求められる。
 〔標準試験1〕
 (a1)前研磨用組成物を使用して、研磨対象物であるシリコンウェーハと同材質のシリコン試験片を研磨する。シリコン試験片には、円形のウェーハを用いてもよいし、四角形に切断したチップを用いてもよい。このシリコン試験片の研磨には、例えば、日本エンギス株式会社製の卓上研磨機EJ-380IN、フジボウ株式会社製の研磨パッドPOLYPAS27NXを使用することができる。また、シリコン試験片の研磨の研磨条件は、例えば、研磨荷重16kPa、定盤回転速度30rpm、キャリア回転速度30rpm、研磨時間2min、前研磨用組成物の供給速度30mL/min、前研磨用組成物の温度20℃とすることができる。
 (a2)シリコン試験片の研磨された表面を純水で洗浄して、前研磨用組成物を洗い流す。
 (a3)純水洗浄したシリコン試験片を、該シリコン試験片が円形の場合は直径が鉛直方向に沿うような姿勢で、また、該シリコン試験片が四角形の場合は一方の対角線が鉛直方向に沿うような姿勢で30秒間静置し、直径又は対角線のうちシリコン試験片の表面が純水で濡れていない領域の長さを測定し、その長さを撥水距離とする。
 (a4)測定した撥水距離から、下記式に基づいて前研磨用組成物の親水性パラメータP1を算出する。
    親水性パラメータP1={(シリコン試験片の直径又は対角線の長さ[mm])-(撥水距離[mm])}/(シリコン試験片の直径又は対角線の長さ[mm])×100
1-2 標準試験2について
 仕上げ精度パラメータP2は、下記のb1工程、b2工程、及びb3工程をこの順に行う標準試験2で求められる。
 〔標準試験2〕
 (b1)前研磨用組成物を使用して、研磨対象物であるシリコンウェーハと同材質のシリコンウェーハ試験片(すなわちパラメータ測定用シリコンウェーハ)を研磨する。このシリコンウェーハ試験片の研磨には、例えば、株式会社岡本工作機械製作所製の研磨機PNX-332B、フジボウ株式会社製の研磨パッドPOLYPAS27NXを使用することができる。また、シリコンウェーハ試験片の研磨の研磨条件は、例えば、研磨荷重15kPa、定盤回転速度30rpm、キャリア回転速度30rpm、研磨時間2min、前研磨用組成物の供給速度2L/min、前研磨用組成物の温度20℃、定盤冷却水の温度20℃とすることができる。
 (b2)標準研磨用組成物を使用して、研磨対象物であるシリコンウェーハと同材質のシリコンウェーハ試験片を研磨する。このシリコンウェーハ試験片の研磨には、例えば、株式会社岡本工作機械製作所製の研磨機PNX-332B、フジボウ株式会社製の研磨パッドPOLYPAS27NXを使用することができる。また、シリコンウェーハ試験片の研磨の研磨条件は、例えば、研磨荷重15kPa、定盤回転速度30rpm、キャリア回転速度30rpm、研磨時間2min、標準研磨用組成物の供給速度2L/min、標準研磨用組成物の温度20℃、定盤冷却水の温度20℃とすることができる。
 標準研磨用組成物は、平均一次粒子径35nmのコロイダルシリカ0.46質量%、アンモニア0.009質量%、重量平均分子量25万のヒドロキシエチルセルロース0.017質量%、ポリエチレンオキシドとポリプロピレンオキシドとからなる共重合体0.002質量%を含有し、残部は水である。
 (b3)b1工程で研磨したシリコンウェーハ試験片のヘイズh2と、b2工程で研磨したシリコンウェーハ試験片のヘイズαとを測定し、下記式に基づいて前研磨用組成物の仕上げ精度パラメータP2を算出する。
    仕上げ精度パラメータP2=h2/α×100
2.仕上げ研磨用組成物について
 シリコンウェーハの仕上げ研磨工程で使用される仕上げ研磨用組成物は、標準試験3で求められる研磨加工性パラメータF1が80以下である。研磨加工性パラメータF1は、下記のc1工程、c2工程、及びc3工程をこの順に行う標準試験3で求められる。
 〔標準試験3〕
 (c1)仕上げ研磨用組成物を使用して、研磨対象物であるシリコンウェーハと同材質のシリコンウェーハ試験片を研磨する。このシリコンウェーハ試験片の研磨には、例えば、株式会社岡本工作機械製作所製の研磨機PNX-322、フジボウ株式会社製の研磨パッドPOLYPAS27NXを使用することができる。また、このシリコンウェーハ試験片の研磨の研磨条件は、例えば、研磨荷重15kPa、定盤回転速度30rpm、キャリア回転速度30rpm、研磨時間15min、仕上げ研磨用組成物の供給速度0.4L/min、仕上げ研磨用組成物の温度20℃、定盤冷却水の温度20℃とすることができる。
 (c2)標準試験2の標準研磨用組成物を使用して、研磨対象物であるシリコンウェーハと同材質のシリコンウェーハ試験片を研磨する。このシリコンウェーハ試験片の研磨には、例えば、株式会社岡本工作機械製作所製の研磨機PNX-322、フジボウ株式会社製の研磨パッドPOLYPAS27NXを使用することができる。また、このシリコンウェーハ試験片の研磨の研磨条件は、例えば、研磨荷重15kPa、定盤回転速度30rpm、キャリア回転速度30rpm、研磨時間15min、標準研磨用組成物の供給速度0.4L/min、標準研磨用組成物の温度20℃、定盤冷却水の温度20℃とすることができる。
 (c3)c1工程の研磨前後のシリコンウェーハ試験片の質量差から、c1工程の研磨の研磨速度Rを算出するとともに、c2工程の研磨前後のシリコンウェーハ試験片の質量差から、c2工程の研磨の研磨速度βを算出する。そして、下記式に基づいて仕上げ研磨用組成物の研磨加工性パラメータF1を算出する。
    研磨加工性パラメータF1=R/β×100
3.研磨用組成物セットについて
 本実施形態の研磨用組成物セットは、前研磨用組成物と仕上げ研磨用組成物を備えているので、2つ以上の研磨工程を備えるシリコンウェーハの研磨方法に使用することができる。例えば、予備研磨工程である1次研磨工程と仕上げ研磨工程との2つの研磨工程を備えるシリコンウェーハの研磨方法に使用することもできるし、予備研磨工程である1次研磨工程、2次研磨工程と仕上げ研磨工程との3つの研磨工程を備えるシリコンウェーハの研磨方法に使用することもできる。
 3つ以上の研磨工程を備えるシリコンウェーハの研磨方法に本実施形態の研磨用組成物セットを使用する場合には、仕上げ研磨工程には本実施形態の仕上げ研磨用組成物を、仕上げ研磨工程の1段階前の研磨工程である前研磨工程には本実施形態の前研磨用組成物を使用し、それ以外の各研磨工程には、その研磨工程に好適な研磨用組成物をそれぞれ適宜選択して使用すればよい。
 次に、本実施形態の仕上げ研磨用組成物及び前研磨用組成物を構成する成分について説明する。本実施形態の仕上げ研磨用組成物及び前研磨用組成物はいずれも、砥粒、塩基性化合物、水溶性高分子、及び水を含有する組成物である。所望により、各種添加剤を含有していてもよい。
4.砥粒について
 砥粒は、シリコンウェーハの表面を物理的に研磨する働きをする。砥粒の種類は特に限定されるものではないが、シリカ粒子、アルミナ粒子、酸化セリウム粒子、酸化クロム粒子、二酸化チタン粒子、酸化ジルコニウム粒子、酸化マグネシウム粒子、二酸化マンガン粒子、酸化亜鉛粒子、ベンガラ粒子等の酸化物粒子や、窒化ケイ素粒子、窒化ホウ素粒子等の窒化物粒子や、炭化ケイ素粒子、炭化ホウ素粒子等の炭化物粒子や、炭酸カルシウム、炭酸バリウム等の炭酸塩や、ダイヤモンド粒子等が挙げられる。
 これらの具体例の中でもシリカが好ましい。シリカの具体例としては、コロイダルシリカ、フュームドシリカ、及びゾルゲル法シリカから選ばれるシリカ粒子が挙げられる。これらシリカ粒子の中でも、シリコンウェーハの被研磨面に生じるスクラッチを減少させるという観点において、コロイダルシリカ及びフュームドシリカから選ばれるシリカ粒子、特にコロイダルシリカを用いることが好ましい。砥粒は、これらのうち一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 前研磨用組成物に用いる砥粒の平均一次粒子径は5nm以上であることが好ましく、より好ましくは10nm以上、さらに好ましくは15nm以上、特に好ましくは20nm以上である。砥粒の平均一次粒子径の増大によって、シリコンウェーハの研磨速度が向上する。また、前研磨用組成物に用いる砥粒の平均一次粒子径は100nm以下であることが好ましく、より好ましくは60nm以下、さらに好ましくは50nm以下である。砥粒の平均一次粒子径の低減によって、被研磨面の平滑性が向上する。
 仕上げ研磨用組成物に用いる砥粒の平均一次粒子径は5nm以上であることが好ましく、より好ましくは10nm以上である。砥粒の平均一次粒子径の増大によって、シリコンウェーハの研磨速度が向上する。また、仕上げ研磨用組成物に用いる砥粒の平均一次粒子径は100nm以下であることが好ましく、より好ましくは60nm以下、さらに好ましくは50nm以下、特に好ましくは40nm以下である。砥粒の平均一次粒子径の低減によって、被研磨面の平滑性が向上する。
 なお、前研磨用組成物や仕上げ研磨用組成物に用いる砥粒の平均一次粒子径の値は、BET法で測定される砥粒の比表面積に基づいて計算することができる。砥粒の比表面積は、例えばマイクロメリテックス社製の型式「FlowSorbII 2300」を用いて測定することができる。
 前研磨用組成物に用いる砥粒の平均二次粒子径は10nm以上であることが好ましく、より好ましくは20nm以上、さらに好ましくは30nm以上、特に好ましくは40nm以上である。砥粒の平均二次粒子径の増大によって、シリコンウェーハの研磨速度が向上する。また、前研磨用組成物に用いる砥粒の平均二次粒子径は150nm以下であることが好ましく、より好ましくは100nm以下、さらに好ましくは80nm以下、特に好ましくは70nm以下である。砥粒の平均二次粒子径の低減によって、被研磨面の平滑性が向上する。
 仕上げ研磨用組成物に用いる砥粒の平均二次粒子径は10nm以上であることが好ましく、より好ましくは20nm以上である。砥粒の平均二次粒子径の増大によって、シリコンウェーハの研磨速度が向上する。また、仕上げ研磨用組成物に用いる砥粒の平均二次粒子径は100nm以下であることが好ましく、より好ましくは80nm以下、さらに好ましくは70nm以下、特に好ましくは60nm以下である。砥粒の平均二次粒子径の低減によって、被研磨面の平滑性が向上する。
 なお、前研磨用組成物や仕上げ研磨用組成物に用いる砥粒の平均二次粒子径の値は、例えば日機装株式会社製のUPA-UT151を用いた動的光散乱法により測定することができる。
 前研磨用組成物中の砥粒の含有量は0.01質量%以上であることが好ましく、より好ましくは0.05質量%以上、さらに好ましくは0.10質量%以上である。砥粒の含有量が上記の範囲内にある場合、シリコンウェーハの研磨速度が優れている。
 前研磨用組成物中の砥粒の含有量は3質量%以下であることが好ましく、より好ましくは1質量%以下であり、さらに好ましくは0.5質量%以下である。砥粒の含有量が上記の範囲内にある場合、前研磨用組成物の分散安定性が向上する。
 仕上げ研磨用組成物中の砥粒の含有量は0.01質量%以上であることが好ましく、より好ましくは0.05質量%以上、さらに好ましくは0.10質量%以上である。砥粒の含有量が上記の範囲内にある場合、シリコンウェーハの研磨速度が優れている。
 仕上げ研磨用組成物中の砥粒の含有量は3質量%以下であることが好ましく、より好ましくは1質量%以下であり、さらに好ましくは0.5質量%以下であり、特に好ましくは0.3質量%以下である。砥粒の含有量が上記の範囲内にある場合、仕上げ研磨用組成物の分散安定性が向上する。
5.塩基性化合物について
 仕上げ研磨用組成物及び前研磨用組成物は、塩基性化合物を含有する。塩基性化合物は、シリコンウェーハの被研磨面に対して、化学的な作用を与えて化学的に研磨する(ケミカルエッチング)。これにより、シリコンウェーハを研磨する際の研磨速度を向上させることが容易となる。
 塩基性化合物の具体例としては、無機の塩基性化合物、アルカリ金属又はアルカリ土類金属の水酸化物又は塩、水酸化第四級アンモニウム又はその塩、アンモニア、アミン等が挙げられる。アルカリ金属の具体例としては、カリウム、ナトリウム等が挙げられる。塩の具体例としては、炭酸塩、炭酸水素塩、硫酸塩、酢酸塩等が挙げられる。第四級アンモニウムの具体例としては、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラブチルアンモニウム等が挙げられる。アルカリ金属の水酸化物又は塩の具体例としては、水酸化カリウム、炭酸カリウム、炭酸水素カリウム、硫酸カリウム、酢酸カリウム、塩化カリウム等が挙げられる。
 水酸化第四級アンモニウム又はその塩の具体例としては、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム等が挙げられる。アミンの具体例としては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、モノエタノールアミン、N-(β-アミノエチル)エタノールアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、無水ピペラジン、ピペラジン六水和物、1-(2-アミノエチル)ピペラジン、N-メチルピペラジン、グアニジン、イミダゾールやトリアゾール等のアゾール類等が挙げられる。これらの塩基性化合物は、一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 塩基性化合物の中でも、アンモニア、アンモニウム塩、アルカリ金属水酸化物、アルカリ金属塩、及び第四級アンモニウム水酸化物から選ばれる少なくとも一種が好ましい。塩基性化合物の中でも、アンモニア、水酸化カリウム、水酸化ナトリウム、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、炭酸水素アンモニウム、炭酸アンモニウム、炭酸水素カリウム、炭酸カリウム、炭酸水素ナトリウム、及び炭酸ナトリウムから選ばれる少なくとも一種がより好ましい。塩基性化合物の中でも、アンモニア、水酸化カリウム、水酸化ナトリウム、水酸化テトラメチルアンモニウム、及び水酸化テトラエチルアンモニウムから選ばれる少なくとも一種がさらに好ましく、より一層好ましくはアンモニア及び水酸化テトラメチルアンモニウムの少なくとも一方であり、最も好ましくはアンモニアである。
 前研磨用組成物中の塩基性化合物の含有量は、好ましくは0.0001質量%以上であり、より好ましくは0.001質量%以上であり、さらに好ましくは0.005質量%以上であり、特に好ましくは0.01質量%以上である。前研磨用組成物中における塩基性化合物の含有量の増大によって、シリコンウェーハの研磨速度が向上する傾向となる。
 前研磨用組成物中の塩基性化合物の含有量は、好ましくは0.5質量%以下であり、より好ましくは0.1質量%以下であり、さらに好ましくは0.05質量%以下である。前研磨用組成物中における塩基性化合物の含有量の減少によって、研磨後のシリコンウェーハの表面の平滑性が向上する傾向となる。
 仕上げ研磨用組成物中の塩基性化合物の含有量は、好ましくは0.0001質量%以上であり、より好ましくは0.0005質量%以上であり、さらに好ましくは0.001質量%以上である。仕上げ研磨用組成物中における塩基性化合物の含有量の増大によって、シリコンウェーハの研磨速度が向上する傾向となる。
 仕上げ研磨用組成物中の塩基性化合物の含有量は、好ましくは0.5質量%以下であり、より好ましくは0.1質量%以下であり、さらに好ましくは0.05質量%以下であり、特に好ましくは0.02質量%以下である。仕上げ研磨用組成物中における塩基性化合物の含有量の減少によって、研磨後のシリコンウェーハの表面の平滑性が向上する傾向となる。
6.水溶性高分子について
 水溶性高分子は、研磨時やリンス処理時等のシリコンウェーハの表面処理時において、シリコンウェーハの被研磨面の濡れ性を高める。仕上げ研磨用組成物及び前研磨用組成物は、水溶性高分子として、仕上げ研磨用組成物及び前研磨用組成物の調製時に固体又は固形の状態で水に投入される固体原料の水溶性高分子を含有する。
 固体原料とは、水に溶解する前の原料の状態において、温度23℃、相対湿度50%、及び1気圧の環境下にて目視で固体又は固形の状態のものを意味する。また、水溶性高分子は、水、又は水とアルコール、ケトン等の水系有機溶剤との混合溶剤中において単量体から合成されるものもあるが、その溶液状態のままの水系液形態のもの、あるいは、揮発性溶剤を留去した水溶液形態のものも含む。なお、これ以下では「固体原料の水溶性高分子」、「水系形態の水溶性高分子」、「水溶液形態の水溶性高分子」を、単に「水溶性高分子」と記す。
 水溶性高分子としては、分子中に、カチオン基、アニオン基、及びノニオン基から選ばれる少なくとも一種の官能基を有するもの、具体的には、分子中に水酸基、カルボキシ基、アシルオキシ基、スルホ基、アミド基、アミジノ基、イミノ基、イミド基、第四級窒素構造、前記官能基単位を含む複素環構造、ビニル構造、ポリオキシアルキレン構造等を含むもののいずれも使用することができる。
 具体例としては、セルロース誘導体、ポリビニルアルコール、ポリ(メタ)アクリル酸、ポリ(メタ)アクリルアミドアルキルスルホン酸、ポリイソプレンスルホン酸、ポリビニルスルホン酸、ポリアリルスルホン酸、ポリイソアミレンスルホン酸、ポリスチレンスルホン酸塩、ポリ(メタ)アクリルアミド、ポリアルキルアミノアルキル(メタ)アクリルアミド、ポリビニルピロリドン、ポリビニルピロリドンを構造の一部に含む共重合体、ポリビニルカプロラクタム、ポリビニルカプロラクタムを構造の一部に含む共重合体、ポリアルコキシアルキル(メタ)アクリルアミド、ポリヒドロキシアルキル(メタ)アクリルアミド、ポリ(メタ)アクリルロイルモルホリン、ポリアミジン、ポリエチレンイミン、親水化ポリイミド、各種ポリアミノ酸、ポリ(N-アシルアルキレンイミン)等のイミン誘導体、ポリビニルアルコールの水酸基部分の一部を第四級窒素構造に置換したポリビニルアルコール誘導体、ポリオキシエチレン、ポリオキシアルキレン構造を有する重合体、これらのジブロック型やトリブロック型、ランダム型、交互型といった複数種の構造を有する重合体等が挙げられる。なお、ポリ(メタ)アクリル酸の表記は、アクリル酸及び/又はメタクリル酸を意味し、他の化合物についても同様である。
 水溶性高分子の中でも、シリコンウェーハの被研磨面の濡れ性の向上、パーティクルの付着の抑制、及び表面粗さの低減等の観点から、セルロース誘導体、ポリビニルアルコール、ポリビニルピロリドン、ポリヒドロキシアルキル(メタ)アクリルアミド、ポリ(メタ)アクリルロイルモルホリン、又はポリオキシアルキレン構造を有する重合体が好適である。セルロース誘導体の具体例としては、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルセルロース等が挙げられる。
 セルロース誘導体の中でも、シリコンウェーハの被研磨面に濡れ性を与える能力が高く、良好な洗浄性を有する点から、ヒドロキシエチルセルロースが特に好ましい。また、水溶性高分子は、一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 前研磨用組成物に用いる水溶性高分子の重量平均分子量は、好ましくは10000以上であり、より好ましくは20000以上であり、さらに好ましくは30000以上である。水溶性高分子の重量平均分子量の増大によって、シリコンウェーハの研磨速度が向上する傾向となる。
 前研磨用組成物に用いる水溶性高分子の重量平均分子量は、好ましくは200万以下であり、より好ましくは150万以下であり、さらに好ましくは120万以下であり、より一層好ましくは100万以下であり、特に好ましくは70万以下である。水溶性高分子の重量平均分子量の減少によって、前研磨用組成物の安定性がより保たれる傾向となる。また、シリコンウェーハの被研磨面のヘイズレベルが低減する傾向となる。
 仕上げ研磨用組成物に用いる水溶性高分子の重量平均分子量は、好ましくは10000以上であり、より好ましくは20000以上であり、さらに好ましくは30000以上である。水溶性高分子の重量平均分子量の増大によって、シリコンウェーハの研磨速度が向上する傾向となる。
 仕上げ研磨用組成物に用いる水溶性高分子の重量平均分子量は、好ましくは200万以下であり、より好ましくは150万以下であり、さらに好ましくは120万以下であり、より一層好ましくは100万以下であり、さらに一層好ましくは80万以下であり、特に好ましくは60万以下であり、最も好ましくは30万以下である。水溶性高分子の重量平均分子量の減少によって、仕上げ研磨用組成物の安定性がより保たれる傾向となる。また、シリコンウェーハの被研磨面のヘイズレベルが低減する傾向となる。
 前研磨用組成物中の水溶性高分子の含有量は、好ましくは0.0001質量%以上であり、より好ましくは0.0005質量%以上であり、さらに好ましくは0.001質量%以上である。前研磨用組成物中の水溶性高分子の含有量の増大によって、シリコンウェーハの被研磨面の濡れ性がより向上する傾向となる。
 前研磨用組成物中の水溶性高分子の含有量は、好ましくは0.5質量%以下であり、より好ましくは0.1質量%以下であり、さらに好ましくは0.05質量%以下であり、より一層好ましくは0.01質量%以下であり、特に好ましくは0.005質量%以下である。前研磨用組成物中の水溶性高分子の含有量の減少によって、前研磨用組成物の安定性がより保たれる傾向となる。
 仕上げ研磨用組成物中の水溶性高分子の含有量は、好ましくは0.0001質量%以上であり、より好ましくは0.0005質量%以上であり、さらに好ましくは0.001質量%以上であり、特に好ましくは0.005質量%以上である。仕上げ研磨用組成物中の水溶性高分子の含有量の増大によって、シリコンウェーハの被研磨面の濡れ性がより向上する傾向となる。
 仕上げ研磨用組成物中の水溶性高分子の含有量は、好ましくは0.5質量%以下であり、より好ましくは0.1質量%以下であり、さらに好ましくは0.05質量%以下であり、より一層好ましくは0.01質量%以下である。仕上げ研磨用組成物中の水溶性高分子の含有量の減少によって、仕上げ研磨用組成物の安定性がより保たれる傾向となる。
 仕上げ研磨用組成物及び前研磨用組成物中の砥粒、水溶性高分子、及び塩基性化合物の含有量の質量比は、50~99:0.5~20:0.5~30としてもよい。含有量の質量比をこの範囲にすることによって、仕上げ研磨用組成物及び前研磨用組成物の分散安定性が向上し、且つ洗浄後のシリコンウェーハの清浄性が向上する。
7.仕上げ研磨用組成物及び前研磨用組成物のpHについて
 前研磨用組成物のpHは特に限定されるものではないが、好ましくは9.0以上であり、より好ましくは9.5以上であり、さらに好ましくは10.0以上である。pHの上昇によって、シリコンウェーハの研磨速度が向上する傾向となる。
 前研磨用組成物のpHは、好ましくは11.5以下であり、より好ましくは11.0以下であり、さらに好ましくは10.8以下である。pHの低下によって、シリコンウェーハの面精度が向上する傾向となる。
 仕上げ研磨用組成物のpHは特に限定されるものではないが、好ましくは9.0以上であり、より好ましくは9.5以上であり、さらに好ましくは9.8以上である。pHの上昇によって、シリコンウェーハの研磨速度が向上する傾向となる。
 仕上げ研磨用組成物のpHは、好ましくは11.5以下であり、より好ましくは11.0以下であり、さらに好ましくは10.5以下である。pHの低下によって、シリコンウェーハの面精度が向上する傾向となる。仕上げ研磨用組成物及び前研磨用組成物のpHは、例えば後述するpH調整剤を添加することにより調整することができる。
8.水について
 水は、砥粒、塩基性化合物、水溶性高分子等の他の成分の分散媒又は溶媒となる。水は、仕上げ研磨用組成物及び前研磨用組成物に含有される他の成分の働きが阻害されることを極力回避するため、例えば遷移金属イオンの合計の含有量が100ppb以下とされることが好ましい。例えば、イオン交換樹脂を用いる不純物イオンの除去、フィルターによる粒子の除去、蒸留等の操作によって、水の純度を高めることができる。具体的には、イオン交換水、純水、超純水、蒸留水等を用いることが好ましい。
9.添加剤について
 本実施形態の仕上げ研磨用組成物及び前研磨用組成物には、その性能を向上させるために、必要に応じてpH調整剤、界面活性剤、キレート剤、防黴剤等の各種添加剤を添加してもよい。ただし、酸化剤は実質的に含有しないことが好ましい。
9-1 pH調整剤について
 本実施形態の仕上げ研磨用組成物及び前研磨用組成物のpHの値は、pH調整剤の添加により調整することができる。仕上げ研磨用組成物及び前研磨用組成物のpHの調整により、研磨対象物の研磨速度や砥粒の分散性等を制御することができる。pH調整剤の添加量は特に限定されるものではなく、仕上げ研磨用組成物及び前研磨用組成物が所望のpHとなるように適宜調整すればよい。
 pH調整剤の具体例としては、無機酸や、カルボン酸、有機硫酸等の有機酸があげられる。無機酸の具体例としては、塩酸、硫酸、硝酸、フッ酸、ホウ酸、炭酸、次亜リン酸、亜リン酸、リン酸等があげられる。また、カルボン酸の具体例としては、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2-メチル酪酸、n-ヘキサン酸、3,3-ジメチル酪酸、2-エチル酪酸、4-メチルペンタン酸、n-ヘプタン酸、2-メチルヘキサン酸、n-オクタン酸、2-エチルヘキサン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸、乳酸、ジグリコール酸、2-フランカルボン酸、2,5-フランジカルボン酸、3-フランカルボン酸、2-テトラヒドロフランカルボン酸、メトキシ酢酸、メトキシフェニル酢酸、フェノキシ酢酸等があげられる。さらに、有機硫酸の具体例としては、メタンスルホン酸、エタンスルホン酸、イセチオン酸等があげられる。これらの酸は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
9-2 界面活性剤について
 本実施形態の仕上げ研磨用組成物及び前研磨用組成物には、界面活性剤を添加してもよい。界面活性剤の例としては、アニオン性又はノニオン性の界面活性剤があげられ、その中でもノニオン性界面活性剤が好適である。
 例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のオキシアルキレン重合体や、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルアミン、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレングリセリルエーテル脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル等のポリオキシアルキレン付加物や、複数種のオキシアルキレンの共重合体(ジブロック型、トリブロック型、ランダム型、交互型)等のノニオン性の界面活性剤が挙げられる。
 ノニオン性界面活性剤の具体例としては、オキシエチレン(EO)とオキシプロピレン(PO)とのブロック共重合体(ジブロック体、PEO-PPO-PEO型トリブロック体、PPO-PEO-PPO型トリブロック体等)、EOとPOとのランダム共重合体、ポリオキシエチレングリコール、ポリオキシエチレンプロピルエーテル、ポリオキシエチレンブチルエーテル、ポリオキシエチレンペンチルエーテル、ポリオキシエチレンヘキシルエーテル、ポリオキシエチレンオクチルエーテル、ポリオキシエチレン-2-エチルヘキシルエーテル、ポリオキシエチレンノニルエーテル、ポリオキシエチレンデシルエーテル、ポリオキシエチレンイソデシルエーテル、ポリオキシエチレントリデシルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンイソステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテル、ポリオキシエチレンスチレン化フェニルエーテル、ポリオキシエチレンラウリルアミン、ポリオキシエチレンステアリルアミン、ポリオキシエチレンオレイルアミン、ポリオキシエチレンステアリルアミド、ポリオキシエチレンオレイルアミド、ポリオキシエチレンモノラウリン酸エステル、ポリオキシエチレンモノステアリン酸エステル、ポリオキシエチレンジステアリン酸エステル、ポリオキシエチレンモノオレイン酸エステル、ポリオキシエチレンジオレイン酸エステル、モノラウリン酸ポリオキシエチレンソルビタン、モノパルチミン酸ポリオキシエチレンソルビタン、モノステアリン酸ポリオキシエチレンソルビタン、モノオレイン酸ポリオキシエチレンソルビタン、トリオレイン酸ポリオキシエチレンソルビタン、テトラオレイン酸ポリオキシエチレンソルビット、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油等が挙げられる。これらの中でも好ましい界面活性剤として、EOとPOとのブロック共重合体(特に、PEO-PPO-PEO型のトリブロック体)、EOとPOとのランダム共重合体、及びポリオキシエチレンアルキルエーテル(例えばポリオキシエチレンデシルエーテル)が挙げられる。
 また、アニオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテルの硫酸エステル及びその塩、スルホン酸及びその塩、カルボン酸及びその塩、並びにリン酸エステル及びその塩が挙げられる。
 アニオン性界面活性剤の具体例としては、ポリオキシエチレンラウリルエーテル硫酸、ポリオキシエチレンミリスチルエーテル硫酸、ポリオキシエチレンパルミチルエーテル硫酸;ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ポリオキシエチレンラウリルエーテル硫酸アンモニウム、ポリオキシエチレンラウリルエーテル硫酸トリエタノールアミン、ポリオキシエチレンミリスチルエーテル硫酸ナトリウム、ポリオキシエチレンミリスチルエーテル硫酸アンモニウム、ポリオキシエチレンミリスチルエーテル硫酸トリエタノールアミン、ポリオキシエチレンパルミチルエーテル硫酸ナトリウム、ポリオキシエチレンパルミチルエーテル硫酸アミン、ポリオキシエチレンパルミチルエーテル硫酸トリエタノールアミン、ポリオキシエチレンオクチルスルホン酸、ポリオキシエチレンドデシルスルホン酸、ポリオキシエチレンセチルスルホン酸、ポリオキシエチレンオクチルベンゼンスルホン酸、ポリオキシエチレンドデシルベンゼンスルホン酸;ポリオキシエチレンオクチルスルホン酸ナトリウム、ポリオキシエチレンドデシルスルホン酸ナトリウム、ポリオキシエチレンセチルスルホン酸ナトリウム、ポリオキシエチレンラウリルエーテル酢酸、ポリオキシエチレントリデシルエーテル酢酸、ポリオキシエチレンオクチルエーテル酢酸;ポリオキシエチレンラウリルエーテル酢酸ナトリウム、ポリオキシエチレンラウリルエーテル酢酸アンモニウム、ポリオキシエチレントリデシルエーテル酢酸ナトリウム、ポリオキシエチレントリデシルエーテル酢酸アンモニウム、ポリオキシエチレンオクチルエーテル酢酸ナトリウム、ポリオキシエチレンオクチルエーテル酢酸アンモニウム、ポリオキシエチレンラウリルエーテルリン酸、ポリオキシエチレンアルキル(12-15)エーテルリン酸;ポリオキシエチレンラウリルエーテルリン酸ナトリウム、ポリオキシエチレンオレイルエーテルリン酸ナトリウム、ポリオキシエチレンセチルエーテルリン酸ナトリウム、ポリオキシエチレンアルキル(12-15)エーテルリン酸カリウム、ポリオキシエチレンラウリルスルホコハク酸二ナトリウム塩、スルホコハク酸ポリオキシエチレンラウロイルエタノールアミド二ナトリウム塩等が挙げられる。
 界面活性剤の重量平均分子量は、好ましくは200以上であり、より好ましくは250以上であり、さらに好ましくは300以上である。界面活性剤の重量平均分子量の増大によって、シリコンウェーハの研磨速度が向上する。
 界面活性剤の重量平均分子量は、好ましくは10000未満であり、より好ましくは9500以下である。界面活性剤の重量平均分子量の減少によって、被研磨面の平滑性が向上する。
9-3 キレート剤について
 本実施形態の仕上げ研磨用組成物及び前研磨用組成物には、キレート剤を添加してもよい。キレート剤は、研磨系中の金属不純物成分を捕捉して錯体を形成することによって、シリコン基板の金属汚染(特にニッケル、銅による汚染)を抑制する。
 キレート剤の具体例としては、グルコン酸等のカルボン酸系キレート剤、エチレンジアミン、ジエチレントリアミン、トリメチルテトラアミン等のアミン系キレート剤、エチレンジアミン四酢酸、ニトリロ三酢酸、ヒドロキシエチルエチレンジアミン三酢酸、トリエチレンテトラミン六酢酸、ジエチレントリアミン五酢酸等のポリアミノポリカルボン酸系キレート剤、2-アミノエチルホスホン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラキス(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン-1,1-ジホスホン酸、エタン-1,1,2-トリホスホン酸、メタンヒドロキシホスホン酸、1-ホスホノブタン-2,3,4-トリカルボン酸等の有機ホスホン酸系キレート剤、フェノール誘導体、1,3-ジケトン等があげられる。これらのキレート剤の中でも、有機ホスホン酸系キレート剤、特にエチレンジアミンテトラキス(メチレンホスホン酸)が好ましい。これらのキレート剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
9-4 防黴剤について
 本実施形態の仕上げ研磨用組成物及び前研磨用組成物には、防黴剤を添加してもよい。防黴剤の具体例としては、オキサゾリジン-2,5-ジオン等のオキサゾリン等があげられる。
9-5 酸化剤について
 本実施形態の仕上げ研磨用組成物及び前研磨用組成物は、酸化剤を実質的に含まないことが好ましい。仕上げ研磨用組成物及び前研磨用組成物中に酸化剤が含まれていると、当該研磨用組成物が研磨対象物(例えばシリコンウェーハ)に供給されることで該研磨対象物の表面が酸化されて酸化膜が生じ、これにより所要研磨時間が長くなってしまうためである。ここでいう酸化剤の具体例としては、過酸化水素(H)、過硫酸ナトリウム、過硫酸アンモニウム、過マンガン酸カリウム、ジクロロイソシアヌル酸ナトリウム等があげられる。
 なお、仕上げ研磨用組成物及び前研磨用組成物が酸化剤を実質的に含まないとは、少なくとも意図的には酸化剤を含有させないことをいう。したがって、原料や製法等に由来して微量(例えば、仕上げ研磨用組成物及び前研磨用組成物中における酸化剤のモル濃度が0.0005モル/L以下、好ましくは0.0001モル以下、より好ましくは0.00001モル/L以下、特に好ましくは0.000001モル/L以下)の酸化剤が不可避的に含まれている研磨用組成物(仕上げ研磨用組成物、前研磨用組成物)は、ここでいう酸化剤を実質的に含有しない研磨用組成物の概念に包含され得る。
10.シリコンウェーハの研磨方法について
 本実施形態の仕上げ研磨用組成物及び前研磨用組成物を用いたシリコンウェーハの研磨は、通常の研磨に用いられる研磨装置や研磨条件により行うことができる。例えば片面研磨装置や両面研磨装置を使用することができる。
 例えば、片面研磨装置を用いてシリコンウェーハを研磨する場合には、キャリアと呼ばれる保持具を用いてシリコンウェーハを保持し、研磨布が貼付された定盤をシリコンウェーハの片面に押しつけて本実施形態の仕上げ研磨用組成物又は前研磨用組成物を供給しながら定盤を回転させることにより、シリコンウェーハの片面を研磨する。
 また、両面研磨装置を用いてシリコンウェーハを研磨する場合には、キャリアと呼ばれる保持具を用いてシリコンウェーハを保持し、研磨布が貼付された定盤をシリコンウェーハの両側からシリコンウェーハの両面にそれぞれ押しつけて、本実施形態の仕上げ研磨用組成物又は前研磨用組成物を供給しながら両側の定盤を回転させることにより、シリコンウェーハの両面を研磨する。
 いずれの研磨装置を用いた場合でも、摩擦(研磨布及び研磨用組成物(仕上げ研磨用組成物、前研磨用組成物)と、シリコンウェーハとの摩擦)による物理的作用と、仕上げ研磨用組成物、前研磨用組成物がシリコンウェーハにもたらす化学的作用とによってシリコンウェーハが研磨される。
 研磨布としては、ポリウレタン、不織布、スウェード等の種々の素材のものを用いることができる。また、素材の違いの他、硬度や厚さ等の物性が種々異なるものを用いることができる。さらに、砥粒を含むもの、砥粒を含まないもののいずれも用いることができるが、砥粒を含まないものを使用することが好ましい。さらに、液状の仕上げ研磨用組成物、前研磨用組成物が溜まるような溝加工が施されているものを使用することができる。
 さらに、仕上げ研磨工程、前研磨工程いずれにおいても、研磨条件のうち研磨荷重(シリコンウェーハに負荷する圧力)については特に限定されないが、5kPa以上50kPa以下としてもよく、好ましくは8kPa以上30kPa以下であり、より好ましくは10kPa以上20kPa以下である。研磨荷重がこの範囲内であれば、十分な研磨速度が発揮され、荷重によりシリコンウェーハが破損したり、シリコンウェーハの表面に傷等の欠陥が発生したりすることを抑制することができる。
 また、研磨条件のうち、研磨に用いられる研磨布とシリコンウェーハとの相対速度(線速度)は特に限定されないが、10m/分以上300m/分以下としてもよく、好ましくは30m/分以上200m/分以下である。研磨布とシリコンウェーハとの相対速度がこの範囲内であれば、十分な研磨速度が得られる。また、シリコンウェーハの摩擦による研磨布の破損を抑制でき、さらにシリコンウェーハへ摩擦が十分に伝わり、いわゆるシリコンウェーハが滑る状態を抑制することができ、十分に研磨することができる。
 さらに、研磨条件のうち仕上げ研磨用組成物及び前研磨用組成物の供給量については、シリコンウェーハの種類、研磨装置の種類、研磨条件によっても異なるが、シリコンウェーハと研磨布との間に仕上げ研磨用組成物、前研磨用組成物がムラ無く全面に供給されるのに十分な量であればよい。仕上げ研磨用組成物、前研磨用組成物の供給量が少ない場合は、仕上げ研磨用組成物、前研磨用組成物がシリコンウェーハ全体に供給されないことや、仕上げ研磨用組成物、前研磨用組成物が乾燥凝固しシリコンウェーハの表面に欠陥を生じさせることがある。逆に仕上げ研磨用組成物、前研磨用組成物の供給量が多い場合は、経済的でないことの他、過剰な仕上げ研磨用組成物、前研磨用組成物(特に水)により摩擦が妨げられて研磨が阻害されるおそれがある。
 さらに、本実施形態の仕上げ研磨用組成物、前研磨用組成物は、シリコンウェーハの研磨に使用された後に回収し、シリコンウェーハの研磨に再使用することができる。仕上げ研磨用組成物、前研磨用組成物を再使用する方法の一例としては、研磨装置から排出された仕上げ研磨用組成物、前研磨用組成物をタンクに回収し、再度研磨装置内へ循環させて研磨に使用する方法があげられる。仕上げ研磨用組成物、前研磨用組成物を循環使用すれば、廃液として排出される仕上げ研磨用組成物、前研磨用組成物の量を減らすことができるので、環境負荷を低減することができる。また、使用する仕上げ研磨用組成物、前研磨用組成物の量を減らすことができるので、シリコンウェーハの研磨に要する製造コストを抑制することができる。
 本実施形態の仕上げ研磨用組成物、前研磨用組成物を再使用する際には、研磨に使用したことにより消費、損失された砥粒、水溶性高分子、塩基性化合物、添加剤等の一部又は全部を、組成調整剤として添加した上で再使用するとよい。組成調整剤としては、砥粒、水溶性高分子、塩基性化合物、添加剤等を任意の混合比率で混合したものを用いることができる。組成調整剤を追加で添加することにより、仕上げ研磨用組成物、前研磨用組成物が再使用されるのに好適な組成に調整され、好適な研磨を行うことができる。組成調整剤に含有される砥粒、水溶性高分子、塩基性化合物、及びその他の添加剤の濃度は任意であり、特に限定されず、タンクの大きさや研磨条件に応じて適宜調整すればよい。
 なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。例えば、本実施形態の仕上げ研磨用組成物、前研磨用組成物は、一液型であってもよいし、仕上げ研磨用組成物、前研磨用組成物の成分の一部又は全部を任意の比率で混合した二液型等の多液型であってもよい。また、シリコンウェーハの研磨においては、本実施形態の仕上げ研磨用組成物、前研磨用組成物の原液をそのまま用いて研磨を行ってもよいが、原液を水等の希釈液で例えば10倍以上に希釈した仕上げ研磨用組成物、前研磨用組成物の希釈物を用いて研磨を行ってもよい。
〔実施例〕
 以下に実施例及び比較例を示し、表1、2を参照しながら本発明をさらに具体的に説明する。
 平均一次粒子径が12nm、25nm、又は35nmのコロイダルシリカからなる砥粒と、塩基性化合物と、水溶性高分子と、界面活性剤と、純水とを混合して、前処理用組成物、標準研磨用組成物、前研磨用組成物a、b、c、d、h、及び仕上げ研磨用組成物e、f、g、iを製造した。各組成物中の砥粒、塩基性化合物、水溶性高分子、及び界面活性剤の含有量は、表1に記載の通りであり、残部は純水である。
 使用した塩基性化合物の種類は、アンモニア(NH)又は水酸化カリウム(KOH)である。また、使用した水溶性高分子の種類と重量平均分子量は、表1に示す通りである。なお、表1に記載の「HEC」はヒドロキシエチルセルロースを意味し、「PVP」はポリビニルピロリドンを意味する。さらに、使用した界面活性剤は、エチレンオキシド(EO)とプロピレンオキシド(PO)とからなるブロック共重合体(PEO-PPO)、又は、ポリオキシエチレンデシルエーテル(C-PEO)である。
Figure JPOXMLDOC01-appb-T000001
 次に、前研磨用組成物a、b、c、d、hの親水性パラメータP1及び仕上げ精度パラメータP2と、仕上げ研磨用組成物e、f、g、iの研磨加工性パラメータF1を求めた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 親水性パラメータP1を求める標準試験1、仕上げ精度パラメータP2を求める標準試験2、及び研磨加工性パラメータF1を求める標準試験3の内容を以下に説明する。なお、標準試験1、2、3において各パラメータを求めるために使用する試験片の材質は、前研磨用組成物a、b、c、d、h及び仕上げ研磨用組成物e、f、g、iを使用した研磨を施す研磨対象物であるシリコンウェーハと同材質である。
 また、標準試験1、2、3においては、各パラメータを求めるための試験片又はその材料として、研磨対象物であるシリコンウェーハと同一物ではなく、研磨対象物であるシリコンウェーハと同材質のシリコンウェーハを使用するが、研磨対象物であるシリコンウェーハと同一物を試験片として使用してもよいことは勿論である。
 親水性パラメータP1は、下記のX1工程~X6工程をこの順に行う標準試験1で求められる。
 〔標準試験1〕
 (X1)研磨対象物であるシリコンウェーハと同材質のシリコンウェーハ(本実施例では、直径300mm、伝導型P型、結晶方位<100>、結晶欠陥なしのシリコンウェーハ)に対して、前処理を施す。すなわち、シリコンウェーハに対して、前処理用組成物を使用する研磨を行った後に、標準研磨用組成物を使用する研磨を行い、さらに洗浄及び乾燥を行う。
 洗浄は、濃度29質量%のアンモニア水、濃度31質量%の過酸化水素水、脱イオン水(DIW)を体積比1:3:30で混合した洗浄液を用いて行った。より具体的には、周波数950kHzの超音波発振器を取り付けた洗浄槽を2つ用意し、それら第1及び第2の洗浄槽の各々に上記洗浄液を収容して60℃に保持した。そして、研磨後のシリコンウェーハを第1の洗浄槽に上記超音波発振器を作動させた状態で6分間浸漬した後に、超純水を収容したリンス槽に超音波発振器を作動させた状態で浸漬してリンスし、さらに第2の洗浄槽に上記超音波発振器を作動させた状態で6分間浸漬した。以下、このような洗浄工程をSC-1洗浄と記す。
 前処理用組成物を使用する研磨には、株式会社岡本工作機械製作所製の研磨機PNX-332B、フジボウ株式会社製の研磨パッドFP55を使用し、その研磨条件は、研磨荷重20kPa、定盤回転速度20rpm、キャリア回転速度20rpm、研磨時間2min、前処理用組成物の供給速度1L/min、前処理用組成物の温度20℃、定盤冷却水の温度20℃である。
 また、標準研磨用組成物を使用する研磨には、株式会社岡本工作機械製作所製の研磨機PNX-332B、フジボウ株式会社製の研磨パッドPOLYPAS27NXを使用し、その研磨条件は、研磨荷重15kPa、定盤回転速度30rpm、キャリア回転速度30rpm、研磨時間2min、標準研磨用組成物の供給速度2L/min、標準研磨用組成物の温度20℃、定盤冷却水の温度20℃である。
 前処理用組成物は、平均一次粒子径35nmのコロイダルシリカ0.95質量%、水酸化カリウム0.065質量%を含有し、残部は純水である。
 標準研磨用組成物は、平均一次粒子径35nmのコロイダルシリカ0.46質量%、アンモニア0.009質量%、重量平均分子量25万のヒドロキシエチルセルロース0.017質量%、ポリエチレンオキシドとポリプロピレンオキシドとからなる共重合体0.002質量%を含有し、残部は純水である。
 (X2)前処理を施したシリコンウェーハを切断して、一辺の長さが60mmの正方形のシリコンチップ試験片を作製する。このシリコンチップ試験片を濃度3質量%のフッ化水素水溶液に浸漬した後、純水で洗浄する。
 (X3)前研磨用組成物を使用して、X2工程で純水洗浄したシリコンチップ試験片を研磨する。このシリコンチップ試験片の研磨には、日本エンギス株式会社製の卓上研磨機EJ-380IN、フジボウ株式会社製の研磨パッドPOLYPAS27NXを使用し、その研磨条件は、研磨荷重16kPa、定盤回転速度30rpm、キャリア回転速度30rpm、研磨時間2min、前研磨用組成物の供給速度30mL/min、前研磨用組成物の温度20℃である。
 (X4)X3工程で研磨されたシリコンチップ試験片の表面を純水で洗浄して、前研磨用組成物を洗い流す。
 (X5)X4工程で純水洗浄したシリコンチップ試験片を、該シリコンチップ試験片の一方の対角線が鉛直方向に沿うような姿勢で30秒間静置し、対角線のうちシリコンチップ試験片の表面が純水で濡れていない領域の長さを測定し、その長さを撥水距離とする。
 (X6)測定した撥水距離から、下記式に基づいて前研磨用組成物の親水性パラメータP1を算出する。
    親水性パラメータP1={(シリコンチップ試験片の対角線の長さ[mm])-(撥水距離[mm])}/(シリコンチップの対角線の長さ[mm])×100
 仕上げ精度パラメータP2は、下記のY1工程~Y5工程をこの順に行う標準試験2で求められる。
 〔標準試験2〕
 (Y1)研磨対象物であるシリコンウェーハと同材質のシリコンウェーハ試験片(本実施例では、直径300mm、伝導型P型、結晶方位<100>、結晶欠陥なしのシリコンウェーハ試験片)に対して、標準試験1のX1工程と同様に前処理を施す。すなわち、シリコンウェーハ試験片に対して、前処理用組成物を使用する研磨を行った後に、標準研磨用組成物を使用する研磨を行い、さらにSC-1洗浄及び乾燥を行う前処理を施す。
 (Y2)前処理用組成物を使用して、Y1工程で前処理を施したシリコンウェーハ試験片を再度研磨する。この研磨には、株式会社岡本工作機械製作所製の研磨機PNX-332B、フジボウ株式会社製の研磨パッドFP55を使用し、その研磨条件は、研磨荷重20kPa、定盤回転速度20rpm、キャリア回転速度20rpm、研磨時間2min、前処理用組成物の供給速度1L/min、前処理用組成物の温度20℃、定盤冷却水の温度20℃である。
 (Y3)前研磨用組成物を使用して、Y2工程の研磨を施したシリコンウェーハ試験片を研磨する。このシリコンウェーハ試験片の研磨には、株式会社岡本工作機械製作所製の研磨機PNX-332B、フジボウ株式会社製の研磨パッドPOLYPAS27NXを使用する。また、このシリコンウェーハ試験片の研磨の研磨条件は、研磨荷重15kPa、定盤回転速度30rpm、キャリア回転速度30rpm、研磨時間2min、前研磨用組成物の供給速度2L/min、前研磨用組成物の温度20℃、定盤冷却水の温度20℃である。
 (Y4)標準研磨用組成物を使用して、Y2工程の研磨を施したシリコンウェーハ試験片を研磨する。このシリコンウェーハ試験片の研磨には、株式会社岡本工作機械製作所製の研磨機PNX-332B、フジボウ株式会社製の研磨パッドPOLYPAS27NXを使用する。また、このシリコンウェーハ試験片の研磨の研磨条件は、研磨荷重15kPa、定盤回転速度30rpm、キャリア回転速度30rpm、研磨時間2min、標準研磨用組成物の供給速度2L/min、標準研磨用組成物の温度20℃、定盤冷却水の温度20℃である。
 (Y5)Y3工程で研磨したシリコンウェーハ試験片とY4工程で研磨したシリコンウェーハ試験片について、それぞれSC-1洗浄及び乾燥を行った後に、ケーエルエー・テンコール社製の表面異物検査装置SURFSCAN SP2を用いて、DWOモードで各シリコンウェーハ試験片の表面のヘイズを測定する。Y3工程で研磨したシリコンウェーハ試験片のヘイズh2と、Y4工程で研磨したシリコンウェーハ試験片のヘイズαとから、下記式に基づいて前研磨用組成物の仕上げ精度パラメータP2を算出する。
    仕上げ精度パラメータP2=h2/α×100
 研磨加工性パラメータF1は、下記のZ1工程~Z6工程をこの順に行う標準試験3で求められる。
 〔標準試験3〕
 (Z1)研磨対象物であるシリコンウェーハと同材質のシリコンウェーハ試験片(本実施例では、直径200mm、伝導型P型、結晶方位<100>、結晶欠陥なしのシリコンウェーハ試験片)に対して、前処理を施す。すなわち、シリコンウェーハ試験片に対して、前処理用組成物を使用する研磨を行った後に、標準研磨用組成物を使用する研磨を行い、さらにSC-1洗浄及び乾燥を行う。
 前処理用組成物を使用する研磨には、株式会社岡本工作機械製作所製の研磨機PNX-322、フジボウ株式会社製の研磨パッドFP55を使用し、その研磨条件は、研磨荷重15kPa、定盤回転速度30rpm、キャリア回転速度30rpm、研磨時間3min、前処理用組成物の供給速度0.55L/min、前処理用組成物の温度20℃、定盤冷却水の温度20℃である。
 また、標準研磨用組成物を使用する研磨には、株式会社岡本工作機械製作所製の研磨機PNX-322、フジボウ株式会社製の研磨パッドPOLYPAS27NXを使用し、その研磨条件は、研磨荷重15kPa、定盤回転速度30rpm、キャリア回転速度30rpm、研磨時間4min、標準研磨用組成物の供給速度0.4L/min、標準研磨用組成物の温度20℃、定盤冷却水の温度20℃である。
 (Z2)Z1工程で前処理を施したシリコンウェーハ試験片の質量を測定する。そして、シリコンウェーハ試験片を濃度3質量%のフッ化水素水溶液に浸漬した後、純水で洗浄する。
 (Z3)仕上げ研磨用組成物を使用して、Z2工程で純水洗浄したシリコンウェーハ試験片を研磨する。このシリコンウェーハ試験片の研磨には、株式会社岡本工作機械製作所製の研磨機PNX-322、フジボウ株式会社製の研磨パッドPOLYPAS27NXを使用する。また、このシリコンウェーハ試験片の研磨の研磨条件は、研磨荷重15kPa、定盤回転速度30rpm、キャリア回転速度30rpm、研磨時間15min、仕上げ研磨用組成物の供給速度0.4L/min、仕上げ研磨用組成物の温度20℃、定盤冷却水の温度20℃である。
 (Z4)標準研磨用組成物を使用して、Z2工程で純水洗浄したシリコンウェーハ試験片を研磨する。このシリコンウェーハ試験片の研磨には、株式会社岡本工作機械製作所製の研磨機PNX-322、フジボウ株式会社製の研磨パッドPOLYPAS27NXを使用する。また、このシリコンウェーハ試験片の研磨の研磨条件は、研磨荷重15kPa、定盤回転速度30rpm、キャリア回転速度30rpm、研磨時間15min、標準研磨用組成物の供給速度0.4L/min、標準研磨用組成物の温度20℃、定盤冷却水の温度20℃である。
 (Z5)Z3工程で研磨したシリコンウェーハ試験片とZ4工程で研磨したシリコンウェーハ試験片について、それぞれSC-1洗浄及び乾燥を行った後に、質量を測定する。
 (Z6)Z2工程で測定したシリコンウェーハ試験片の質量とZ5工程で測定したシリコンウェーハ試験片の質量との差から、Z3工程の研磨の研磨速度RとZ4工程の研磨の研磨速度βとをそれぞれ算出する。そして、下記式に基づいて仕上げ研磨用組成物の研磨加工性パラメータF1を算出する。
    研磨加工性パラメータF1=R/β×100
 このような前研磨用組成物a、b、c、d、hと仕上げ研磨用組成物e、f、g、iとを適宜組み合わせて、実施例1~4及び比較例1~4の研磨用組成物セットを作製した(表2を参照)。そして、これらの研磨用組成物セットを用いて研磨対象物であるシリコンウェーハの研磨を行って、研磨後のシリコンウェーハの表面のヘイズを測定した。シリコンウェーハの研磨方法は、前処理用組成物を使用して研磨を行う1次研磨工程と、前研磨用組成物を使用して研磨を行う前研磨工程(2次研磨工程)と、仕上げ研磨用組成物を使用して研磨を行う仕上げ研磨工程と、を備える方法とした。
 シリコンウェーハの研磨方法及びヘイズの測定方法について、具体的に説明する。
(1)まず、直径300mm、伝導型P型、結晶方位<100>、結晶欠陥なしのシリコンウェーハに対して、標準試験1のX1工程と同様に前処理を施す。すなわち、シリコンウェーハに対して、前処理用組成物を使用する研磨を行った後に、標準研磨用組成物を使用する研磨を行い、さらにSC-1洗浄及び乾燥を行う前処理を施す。
(2)続いて、前処理用組成物を使用して、(1)の工程で前処理を施したシリコンウェーハを再度研磨する。このシリコンウェーハの研磨の際に使用する研磨装置及び研磨パッドは、標準試験2のY2工程と同様である。また、このシリコンウェーハの研磨の研磨条件は、標準試験2のY2工程と同様である。
(3)次に、研磨用組成物セットの前研磨用組成物を使用して、(2)の工程で前処理用組成物を使用して再度研磨したシリコンウェーハをさらに研磨する。このシリコンウェーハの研磨の際に使用する研磨装置及び研磨パッドは、標準試験2のY3工程と同様である。また、このシリコンウェーハの研磨の研磨条件は、標準試験2のY3工程と同様である。
(4)さらに、研磨用組成物セットの仕上げ研磨用組成物を使用して、(3)の工程で前研磨用組成物を使用して研磨したシリコンウェーハをさらに研磨する。このシリコンウェーハの研磨の際に使用する研磨装置及び研磨パッドは、標準試験2のY3工程と同様である。また、このシリコンウェーハの研磨の研磨条件は、標準試験2のY3工程と同様である。
(5)そして、(4)の工程で仕上げ研磨用組成物を使用して研磨したシリコンウェーハについて、SC-1洗浄及び乾燥を行った後に、ケーエルエー・テンコール社製の表面異物検査装置SURFSCAN SP2を用いて、DWOモードでシリコンウェーハの表面のヘイズを測定する。
 ヘイズの測定結果を表2に示す。実施例1~4の研磨用組成物セットを使用して研磨したシリコンウェーハは、前研磨用組成物の親水性パラメータP1が100未満で、前研磨用組成物の仕上げ精度パラメータP2が1000以下で、仕上げ研磨用組成物の研磨加工性パラメータF1が80以下であるため、仕上げ研磨後のシリコンウェーハの表面のヘイズが低く、高品位な被研磨面が得られた。
 これに対して、比較例1~4の研磨用組成物セットを使用して研磨したシリコンウェーハは、前研磨用組成物の親水性パラメータP1、前研磨用組成物の仕上げ精度パラメータP2、及び仕上げ研磨用組成物の研磨加工性パラメータF1のいずれかが必要な要件を満たしていないので、仕上げ研磨後のシリコンウェーハの表面のヘイズが高かった。

Claims (8)

  1.  シリコンウェーハの仕上げ研磨を行う仕上げ研磨工程で使用される仕上げ研磨用組成物と、前記仕上げ研磨工程の1段階前の研磨工程である前研磨工程で使用される前研磨用組成物と、を備える研磨用組成物セットであって、
     標準試験1で求められる前記前研磨用組成物の親水性パラメータP1が100未満で、標準試験2で求められる前記前研磨用組成物の仕上げ精度パラメータP2が1000以下で、標準試験3で求められる前記仕上げ研磨用組成物の研磨加工性パラメータF1が80以下である研磨用組成物セット。
  2.  前記仕上げ研磨用組成物及び前記前研磨用組成物はいずれも砥粒と塩基性化合物と水溶性高分子とを含有する組成物である請求項1に記載の研磨用組成物セット。
  3.  シリコンウェーハの仕上げ研磨を行う仕上げ研磨工程の1段階前の研磨工程である前研磨工程で使用される前研磨用組成物であって、
     標準試験1で求められる親水性パラメータP1が100未満で、標準試験2で求められる仕上げ精度パラメータP2が1000以下である前研磨用組成物。
  4.  砥粒と塩基性化合物と水溶性高分子とを含有する請求項3に記載の前研磨用組成物。
  5.  シリコンウェーハの仕上げ研磨を行う仕上げ研磨工程と、前記仕上げ研磨工程の1段階前の研磨工程である前研磨工程と、を備えるシリコンウェーハの研磨方法であって、請求項1又は請求項2に記載の研磨用組成物セットを使用して前記仕上げ研磨工程及び前記前研磨工程を行うシリコンウェーハの研磨方法。
  6.  シリコンウェーハの仕上げ研磨を行う仕上げ研磨工程と、前記仕上げ研磨工程の1段階前の研磨工程である前研磨工程と、を備えるシリコンウェーハの研磨方法であって、請求項3又は請求項4に記載の前研磨用組成物を使用して前記前研磨工程を行うシリコンウェーハの研磨方法。
  7.  シリコンウェーハの仕上げ研磨を行う仕上げ研磨工程と、前記仕上げ研磨工程の1段階前の研磨工程である前研磨工程と、を備えるシリコンウェーハの研磨方法の前記仕上げ研磨工程で使用される仕上げ研磨用組成物であって、
     標準試験3で求められる研磨加工性パラメータF1が80以下である仕上げ研磨用組成物。
  8.  砥粒と塩基性化合物と水溶性高分子とを含有する請求項7に記載の仕上げ研磨用組成物。
PCT/JP2017/004630 2016-03-30 2017-02-08 研磨用組成物セット、前研磨用組成物、及びシリコンウェーハの研磨方法 WO2017169154A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018508509A JP6761025B2 (ja) 2016-03-30 2017-02-08 研磨用組成物セット、前研磨用組成物、及びシリコンウェーハの研磨方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-067868 2016-03-30
JP2016067868 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017169154A1 true WO2017169154A1 (ja) 2017-10-05

Family

ID=59963830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004630 WO2017169154A1 (ja) 2016-03-30 2017-02-08 研磨用組成物セット、前研磨用組成物、及びシリコンウェーハの研磨方法

Country Status (3)

Country Link
JP (1) JP6761025B2 (ja)
TW (1) TWI724117B (ja)
WO (1) WO2017169154A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021100085A (ja) * 2019-12-24 2021-07-01 ニッタ・デュポン株式会社 研磨用組成物
WO2021182278A1 (ja) * 2020-03-13 2021-09-16 株式会社フジミインコーポレーテッド 研磨用組成物および研磨方法
WO2021182155A1 (ja) * 2020-03-13 2021-09-16 株式会社フジミインコーポレーテッド 研磨用組成物および研磨方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005518668A (ja) * 2002-02-21 2005-06-23 ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド 研磨組成物
WO2012039390A1 (ja) * 2010-09-24 2012-03-29 株式会社 フジミインコーポレーテッド 研磨用組成物およびリンス用組成物
JP2016004953A (ja) * 2014-06-18 2016-01-12 株式会社フジミインコーポレーテッド シリコンウェーハの研磨方法、研磨用組成物および研磨用組成物セット

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005518668A (ja) * 2002-02-21 2005-06-23 ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド 研磨組成物
WO2012039390A1 (ja) * 2010-09-24 2012-03-29 株式会社 フジミインコーポレーテッド 研磨用組成物およびリンス用組成物
JP2016004953A (ja) * 2014-06-18 2016-01-12 株式会社フジミインコーポレーテッド シリコンウェーハの研磨方法、研磨用組成物および研磨用組成物セット

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021100085A (ja) * 2019-12-24 2021-07-01 ニッタ・デュポン株式会社 研磨用組成物
WO2021182278A1 (ja) * 2020-03-13 2021-09-16 株式会社フジミインコーポレーテッド 研磨用組成物および研磨方法
WO2021182155A1 (ja) * 2020-03-13 2021-09-16 株式会社フジミインコーポレーテッド 研磨用組成物および研磨方法

Also Published As

Publication number Publication date
TW201742138A (zh) 2017-12-01
TWI724117B (zh) 2021-04-11
JP6761025B2 (ja) 2020-09-23
JPWO2017169154A1 (ja) 2019-02-07

Similar Documents

Publication Publication Date Title
JP6193959B2 (ja) リンス用組成物及びリンス方法
JP7148506B2 (ja) 研磨用組成物およびこれを用いた研磨方法
KR102645587B1 (ko) 연마용 조성물 및 이것을 사용한 연마 방법
EP3406684B1 (en) Polishing composition and method for polishing silicon substrate
CN106663619B (zh) 硅晶圆研磨用组合物
KR102520942B1 (ko) 실리콘 웨이퍼의 연마 방법 및 표면 처리 조성물
KR102617007B1 (ko) 기판의 연마 방법 및 연마용 조성물 세트
JP2017183359A (ja) シリコン基板の研磨方法および研磨用組成物セット
JP6761025B2 (ja) 研磨用組成物セット、前研磨用組成物、及びシリコンウェーハの研磨方法
JP7330676B2 (ja) シリコンウェーハ研磨用組成物
JP6377656B2 (ja) シリコン基板の研磨方法および研磨用組成物セット
JP2017183478A (ja) シリコンウェーハの研磨方法及び研磨用組成物セット
TW202220046A (zh) 研磨用組成物及其利用
JP2016207875A (ja) 研磨方法
JPWO2018088370A1 (ja) 研磨用組成物及びシリコンウェーハの研磨方法
WO2023063027A1 (ja) 研磨用組成物
WO2022209758A1 (ja) 研磨方法、研磨用組成物セット
WO2024071086A1 (ja) 研磨用組成物の製造方法および研磨用組成物
WO2024070831A1 (ja) 研磨用組成物
WO2022113986A1 (ja) シリコンウェーハ用研磨用組成物およびその利用
TW202219234A (zh) 研磨用組成物及其利用
WO2019187969A1 (ja) 研磨用組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018508509

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773702

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773702

Country of ref document: EP

Kind code of ref document: A1