WO2017164449A1 - 굴절률 정합 박막 - Google Patents

굴절률 정합 박막 Download PDF

Info

Publication number
WO2017164449A1
WO2017164449A1 PCT/KR2016/003159 KR2016003159W WO2017164449A1 WO 2017164449 A1 WO2017164449 A1 WO 2017164449A1 KR 2016003159 W KR2016003159 W KR 2016003159W WO 2017164449 A1 WO2017164449 A1 WO 2017164449A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
thin film
film
index matching
matching thin
Prior art date
Application number
PCT/KR2016/003159
Other languages
English (en)
French (fr)
Inventor
윤동신
김상민
Original Assignee
(주)유니드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)유니드 filed Critical (주)유니드
Priority to JP2018522921A priority Critical patent/JP2019501408A/ja
Priority to US15/771,697 priority patent/US10684395B2/en
Publication of WO2017164449A1 publication Critical patent/WO2017164449A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/214Al2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/216ZnO
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/445Organic continuous phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/78Coatings specially designed to be durable, e.g. scratch-resistant
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses

Definitions

  • the present invention relates to a refractive index matching thin film in which an inorganic material thin film has a matching layer having heterogeneous refractive indices formed on a surface of a substrate, and more particularly, to a surface of a substrate composed of a polymer, a ceramic, a metal, or a composite material thereof.
  • the present invention relates to a refractive index matching thin film capable of protecting a surface of a flexible display for curved and bandable smartphones having a matching layer formed with an inorganic material thin film having one or more different refractive indices.
  • the optical properties are over 90 ⁇ 92% of total transmittance, the haze of 1 ⁇ 2% or less, and the physical properties of the pencil hardness of 4 ⁇ 6 H or more.
  • a material that satisfies is required.
  • the film layers having different refractive indices such as polarizing film, retardation film, and transparent conductive film are laminated or laminated
  • optical interference such as rainbow phenomenon, Newton ring, and interface reflection occurs due to refractive index mismatch.
  • refractive index matching is required.
  • materials having various refractive indices are required to match their refractive indices, and thus, a coating composition that satisfies the above-described optical and physical properties is required.
  • the present invention has been made to solve the above problems, it is possible to prevent the surface scratches of the thin film, to match their refractive index according to the manufacturer's production method of the display can be applied to a flexible display (Flexible Display), heat dissipation It is also more effective than conventional glass, it is lighter because it is lighter in weight. It is easy to cut and cut, and even when the film thickness is high, no crack occurs, and manufacturing cost can be lowered through an inexpensive production process.
  • An object of the present invention is to provide a refractive index matching thin film applicable to display protection members of electronic products, flexible substrates, building glass, bulletproof glass, or low dielectric constant insulating layers of PCB substrates.
  • the refractive index matching thin film the substrate; A first film formed on one side or both sides of the substrate and having a first refractive index; And a second film formed on the surface of the first film, the second film having a second refractive index; Includes, wherein the first refractive index is smaller than the second refractive index.
  • the first film may include an inorganic material
  • the second film may include an organic material
  • the refractive index (nD25) of the first film may be 1.41 or more and 1.96 or less
  • the refractive index (nD25) of a film is 1.39 or more and 1.47 or less.
  • the refractive index matching thin film according to the present invention As described above, the refractive index matching thin film according to the present invention
  • the refractive index can be matched according to the manufacturer's production method of the display, so it can be applied to various flexible displays.
  • the heat dissipation effect is also superior to that of conventional glass, and it is lighter because it is lighter in weight. It is easy, and even if the film thickness is high, no crack occurs, and manufacturing cost can be lowered through an inexpensive production process, and as a result, it is more suitably applied to a flexible display, thereby providing an effect of protecting such a display. .
  • FIG. 1 is a schematic diagram of a refractive index matching thin film according to the present invention.
  • the same reference numerals in particular, the tens and ones digits, or the same digits, tens, ones, and alphabets refer to members having the same or similar functions, and unless otherwise specified, each member in the figures The member referred to by the reference numeral may be regarded as a member conforming to these criteria.
  • the refractive index matching thin film according to the present invention includes a substrate and a matching layer formed of an inorganic film and a polymer film coated on the substrate and having different refractive indices.
  • the refractive index matching thin film according to the present invention is provided with a substrate, and the substrate may be applied to all optical and industrial films and sheets such as PET, TAC, PI, Colorless PI, PC, PMMA, PES, PEN, and the like.
  • the refractive index of the material required for the refractive index matching layer should be applied differently.
  • the matching layer is coated on one or both surfaces of the substrate.
  • the matching layer includes inorganic particles, and an inorganic film layer coated with a plurality of inorganic films having different refractive indices, and a polymer film layer coated on the inorganic film layer and having a different refractive index than the inorganic film layer.
  • the 'inorganic film layer (first film)' is a layer containing inorganic particles and includes an inorganic hybrid layer including other materials
  • the 'polymer film layer (second film)' includes organic (polymer) particles.
  • the layer also includes an organic hybrid layer containing other materials.
  • Inorganic particles are included in the inorganic film layer, and the inorganic particles may include one or more of Al 2 O 3, ZnO, TiO 2, SiO 2, AlN, SiC, ALON, CNT, graphene, and the like.
  • Al2O3, AlN, SiC, ALON, and CNT improve transparency, flexibility, surface scratching and heat dissipation characteristics
  • ZnO improves transparency, flexibility, surface scratching and dielectric constant, and TiO2.
  • Using improves the transparency, flexibility, surface scratches and UV protection properties, and when using SiO2 or graphene has the effect of lowering transparency, flexibility, surface scratches, and reflectance.
  • the content of the inorganic particles 22 in the inorganic film layer 20 is preferably 21 vol% or more and 100 vol% or less, more preferably 30 vol% or more and 100 vol% or less. Most preferably, at least 50 vol% and at most 100 vol%, heat dissipation performance and dielectric constant are also improved. And it is preferable that the residual amount of the hydroxyl group which exists in the inorganic particle surface in this inorganic film layer is 50% or less.
  • the refractive indexes of the inorganic film layer and the polymer film layer of the matching layer are different, optical interference between them may occur.
  • a structure for reducing the refractive index from the substrate to the film surface layer was designed to prevent optical interference due to their high / low difference in refractive index.
  • the refractive index of the inorganic film layer of the matching layer is made of 1.41 or more and 1.96 or less, preferably 1.62 or more and 1.96 or less, and the refractive index of the polymer film layer coated on the inorganic film layer is 1.39 or more and 1.61 or less. It is made but more preferably 1.39 to 1.47 or less.
  • optical loss occurs due to interlayer reflection when laminating or laminating with the low refractive matching layer, and when it is 1.96 or more, reflection phenomenon occurs at a specific wavelength due to a refractive index mismatch between the base film and the matching layer. This appears because optical loss occurs.
  • the refractive index of the polymer film layer is 1.61 or more
  • the light path difference occurs as the light is transmitted from the dense medium (the surface of the matching layer) to the small medium (the air layer), thereby causing the problem of the light interference phenomenon to increase remarkably.
  • the matching layer is coated on the substrate a plurality of times, it is possible to form a multi-layer structure.
  • the interface reflection caused by the refractive index mismatch between the matching layer and the substrate layer may be minimized, and the coating composition required for the refractive index matching may be determined according to the display device structure.
  • the difference in refractive index when the difference in refractive index is large, optical loss occurs due to the interfacial reflection between layers.
  • minimizing the difference in interlayer refractive index can reduce the optical loss.
  • optical interference is generated at the interface, resulting in the interference effect of light. Accordingly, in order to reduce the interference effect of light, the interference effect of light can be reduced by minimizing the inter-layer refractive index.
  • each coating composition may vary the thickness of the wet film thickness depending on the volume of the coating bar irregularities.
  • the applied humidity film can be dried for 1 minute at 40 ⁇ 100 °C ( ⁇ 2 °C), preferably at 50 ⁇ 80 °C ( ⁇ 2 °C) for 1 minute more preferably 60 ⁇ 80 °C ( ⁇ 2 °C) by drying for 1 minute to form a dry film (Dry Film Thickness) can be manufactured by coating the coating through UV curing.
  • UV curing machine can selectively use Metal Halide and High Pressure Mercury Type Lamp as the light source and use LITZEN's LZ-UVC-F402-CMD (HN2) Model. It was measured using UV Power Puck II) and the amount of light used for evaluation was 0.5 to 2.5 J / cm 2.
  • the refractive index of the material produced by this manufacturing process is shown in the following [Table 1].
  • the matching layer is configured as shown in FIG. 2 so that the refractive index gradually decreases toward the film surface to prevent optical interference.
  • the photocurable resin and the nanoparticle filler were prepared with a coating solution having a volume ratio of 0.07 (vol%).
  • the volume ratio of the nanoparticle filler (0.07 vol%) refers to the volume ratio in the coating film measured after the final curing of the coating solution.
  • Organic / inorganic hybrid having a solid content of 35 wt% after stirring at 1,000 RPM for 1 hour using a stirring rod of Mechanical Stirrer and Dissolver Type at room temperature (23 °C ⁇ 3 °C) for homogeneous mixing of the composition in a possible batch reaction tank A coating was prepared. After coating the coating on the PET film and dried at 80 °C, using a high-pressure mercury lamp (1J / cm 2) to irradiate with ultraviolet rays in the air to cure to prepare an organic / inorganic hybrid coating thin film.
  • the photocurable resin was 30 parts by weight of Water Dispersion Urethane Acrlate, and 1 part of 1-hydroxycyclohexyl phenyl ketone as a photoinitiator in the coating solution, 3 parts by weight of BYK as a smoothing agent.
  • BYK as a smoothing agent.
  • UV3500 2 parts by weight of UV3500 in the coating solution and 65 parts by weight of the organic solvent methyl ethyl ketone to prevent homogeneous mixing of the composition in a UV-blockable batch reaction tank to prevent photopolymerization from external light sources.
  • the refractive index was measured at an wavelength of 633 nm using an optimal custom analysis method using a dispersion equation as an elliptic method.
  • Total light transmittance and total haze were measured using a spectrophotometer (NIPPON DENSHOKU, NDH300A, Japan).
  • Pencil hardness was measured using a pencil hardness tester, ASTM D3502 measuring method.
  • the opposite side was affixed on the glass plate of the thickness of 5 mm which affixed the double-sided tape on the matching layer of the organic / inorganic hybrid thin film film obtained by the Example and the comparative example on the outside.
  • 100 grid-shaped incisions penetrating the matching layer and reaching the base film were inserted using cutter guides having a gap of 2 mm between the gaps.
  • an adhesive tape (Nits. No. 405, width 24mm) was affixed on the grid-shaped cut surface. The air remaining at the interface was pressed with an eraser at the time of sticking, and after completely adhering, the adhesive tape was strongly peeled off vertically, and the adhesiveness was visually determined from the following equation. In addition, the part which separated partially in one grid was added to the number which fell.
  • Adhesiveness (%) (1-grids fallen / 100) ⁇ 100
  • Adhesiveness (%) is 90-100% ⁇
  • Adhesiveness (%) made 0 to 79% x.
  • the photocurable resin and the nanoparticle filler were prepared with a coating solution having a volume ratio of 0.61 as the nanoparticle filler.
  • Table 3 shows the experimental conditions and the experimental results shown through the comparative example according to the embodiment.
  • the refractive index is improved according to the type and volume ratio of the photocurable resin and the nanoparticles, thereby forming a high refractive coating layer having various refractive indices, and additionally, the volume ratio of the nanoparticles.
  • the increase of the pencil hardness can be inferred.
  • the photoinitiator is 2-hydroxyl-2-methyl-1-phenyl propanone, n-butylamine, triethylamine, 2-hydroxyl-1- (4 -(2-hydroxyethoxy) phenyl) -2-methylpropanone, 1-hydroxycyclohexyl phenylmethanone, 2,2 ??-dimethoxy-1,2-diphenylethanone, diphenylphosphoryl Mesityl methanone, phenylphosphorylbis (methylmethanone), (s) -2-benzyl-2- (dimethylamino) -1- (4-merpolynophenyl) butanone, 2-methyl-2- It is characterized by at least one member selected from the group consisting of (4- (methylthio) phenyl) -2-merpolynopropanone.
  • the leveling agent is characterized in that at least one selected from the group BYK UV-3500, 3505, 3530, 3535, 3570, 3575, 3576.
  • the dispersion is preferably 11 to 14 parts by weight, most preferably 11.4 parts by weight. This is because the pencil hardness increase effect is reduced when the dispersion weight part is less than 11, and the optical property is decreased due to the increase of Haze.
  • the refractive index matching thin film according to the present invention can be applied to various applications such as glass substrates, films and devices for displays, protective films, electronic products, plastic substrates, and automobile products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Signal Processing (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

본 발명은 무기 소재 결정 박막이 기재 표면에 이종 굴절률을 갖는 정합층이 형성되는 굴절률 정합 박막에 관한 것으로서, 보다 상세하게는 폴리머, 세라믹, 금속 혹은 이 들의 복합소재로 구성된 기재(Substrate)의 표면에 한 개 층 이상의 서로 다른 굴절률을 갖는 무기소재 박막이 형성된 정합층이 형성된 구조로, 커브드, 밴더블과 같은 유연 디스플레이 형태의 표면을 보호할 수 있는 결정 박막에 관한 것이다.

Description

굴절률 정합 박막
본 발명은 무기 소재 결정 박막이 기재 표면에 이종 굴절률을 갖는 정합층이 형성되는 굴절률 정합 박막에 관한 것으로서, 보다 상세하게는 폴리머, 세라믹, 금속 혹은 이 들의 복합소재로 구성된 기재(Substrate)의 표면에 한 개 층 이상의 서로 다른 굴절률을 갖는 무기소재 박막이 형성된 정합층이 형성된 구조로, 커브드 및 밴더블 스마트폰용 유연 디스플레이 형태의 표면을 보호할 수 있는 굴절률 정합 박막에 관한 것이다.
종래의 스마트폰은 Rigid Display 형태를 채용하여 제품이 생산되고 있으며, Display의 표면을 보호하기 위해 화학적 강화유리가 사용되고 있다. 그러나 최근 Curved, Bendable과 같은 새로운 유연 디스플레이 형태가 스마트폰에 채용됨에 따라 Flexible Display의 표면 보호를 위한 Cover Window의 개발이 필요한 상황이다.
따라서 Cover Window에 적용하기 위해 광학적 특성은 총투과율(Total Transmittance)이 90 ~ 92 % 이상이고, 탁도(Haze)는 1 ~ 2 % 이하이며, 물리적 특성은 표면의 연필경도가 4 ~ 6 H 이상을 동시에 만족시키는 소재가 요구된다.
이와 더불어 Display를 구성하는 다양한 소재 중 편광필름과 위상차필름 그리고 투명전도막과 같이 굴절률이 서로 다른 필름층을 적층하거나 합지시킨 경우 굴절률 부정합에 따른 Rainbow 현상이나 Newton Ring, 계면 반사와 같은 광학적 간섭이 발생하여 이를 최소하기 위해 굴절률 정합이 요구된다. 또한 각기 다른 Display 제조사 생산방식에 따라 이들의 굴절률을 일치시키기 위해 다양한 굴절률을 갖는 물질들이 요구되며 이에 따라 상기 기술한 광학적, 물리적 특성을 만족시키는 코팅조성물이 필요한 실정이다.
따라서 본 발명은 상기 문제를 해결하기 위해 안출한 것으로서, 박막의 표면 긁힘을 방지하고, 디스플레이의 제조사 생산방식에 따라 이들의 굴절률을 일치시킬 수 있어 플렉서블 디스플레이(Flexible Display)에도 적용 가능하며, 열 방출 효과 또한 기존 유리보다 우수하고, 무게가 가벼워 경량화도 가능하며, 절단 및 재단 작업이 용이하며, 막의 두께가 높은 경우에도 크랙이 발생하지 않고, 저렴한 생산공정을 통하여 제조단가 등을 낮출 수 있으며, 각종 전자제품의 디스플레이 보호부재, 플렉서블 기판, 건축용 유리, 방탄유리 또는 PCB 기판의 저유전율 절연층 등에 적용할 수 있는 굴절률 정합 박막을 제공함을 목적으로 한다.
상기와 같은 목적을 달성하기 위하여, 본 발명에 따른 굴절률 정합 박막은, 기재; 상기 기재의 일측면 또는 양측면에 형성되며, 제 1 굴절률을 갖는 제 1 필름; 및 상기 제 1 필름 표면에 형성되며, 제 2 굴절률을 갖는 제 2 필름; 을 포함하고, 상기 제 1 굴절률은 상기 제 2 굴절률보다 작은 것을 특징으로 한다.
나아가 상기 제 1 필름은 무기(inorganic) 물질을 포함하고, 상기 제 2 필름은 유기(organic) 물질을 포함할 수 있고, 상기 제 1 필름의 굴절률(nD25)은 1.41 이상 1.96 이하 이며, 상기 제 2 필름의 굴절률(nD25)은 1.39 이상 1.47 이하 인 것이 바람직하다.
이상과 같이 본 발명에 따른 굴절률 정합 박막은
디스플레이의 제조사 생산방식에 따라 이들의 굴절률을 일치시킬 수 있어 다양한 플렉서블 디스플레이(Flexible Display)에도 적용 가능하며, 열 방출 효과 또한 기존 유리보다 우수하고, 무게가 가벼워 경량화도 가능하며, 절단 및 재단 작업이 용이하며, 막의 두께가 높은 경우에도 크랙이 발생하지 않고, 저렴한 생산공정을 통하여 제조단가 등을 낮출 수 있어, 결과적으로 플렉서블 디스플레이에 보다 적합하게 적용되어, 이러한 디스플레이를 보호할 수 있는 효과를 제공한다.
도 1은 본 발명에 따른 굴절률 정합 박막의 개략도
도 2는 본 발명에 따른 굴절률 정합 박막의 실시도
*도면의 주요 부분에 대한 부호의 설명*
10 : 기재층 20 : 정합층
21 : 무기필름 층 23 : 폴리머 필름 층
이하 첨부된 도면을 참고하여 본 발명을 상세히 설명하도록 한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 구현예(態樣, aspect)(또는 실시예)들을 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
각 도면에서 동일한 참조부호, 특히 십의 자리 및 일의 자리 수, 또는 십의 자리, 일의 자리 및 알파벳이 동일한 참조부호는 동일 또는 유사한 기능을 갖는 부재를 나타내고, 특별한 언급이 없을 경우 도면의 각 참조부호가 지칭하는 부재는 이러한 기준에 준하는 부재로 파악하면 된다.
또 각 도면에서 구성요소들은 이해의 편의 등을 고려하여 크기나 두께를 과장되게 크거나(또는 두껍게) 작게(또는 얇게) 표현하거나, 단순화하여 표현하고 있으나 이에 의하여 본 발명의 보호범위가 제한적으로 해석되어서는 안 된다.
본 명세서에서 사용한 용어는 단지 특정한 구현예(태양, 態樣, aspect)(또는 실시예)를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, ~포함하다~ 또는 ~이루어진다~ 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
먼저 본 발명에 따른 굴절률 정합 박막은 도 1에 도시된 바와 같이, 기재와, 상기 기재에 코팅되며, 서로 다른 굴절률의 무기 필름 및 폴리머 필름으로 구성되는 정합층으로 이루어져 있다.
먼저 본 발명에 따른 굴절률 정합 박막은 기재가 구비되고, 상기 기재는 PET, TAC, PI, Colorless PI, PC, PMMA, PES, PEN 등과 같이 모든 광학용 및 산업용 필름과 시트가 적용 될 수 있으며 기재의 굴절률에 따라 굴절률 정합층에 요구되는 물질의 굴절률이 달리 적용되어야 한다.
나아가 상기 기재의 일면 또는 양면에 정합층이 코팅되게 된다. 먼저 상기 정합층은 무기 입자를 포함하되, 서로 다른 굴절률의 무기 필름이 복수번 코팅되는 무기필름 층과, 상기 무기필름 층에 코팅되며, 상기 무기필름 층과 다른 굴절률을 갖는 폴리머필름 층으로 이루어진다. 여기서 '무기필름 층(제 1 필름)'은 무기입자를 포함하는 층으로 다른 물질이 포함된 무기 하이브리드 층을 포함하며, '폴리머필름 층(제 2 필름)'은 유기(폴리머) 입자를 포함하는 층으로 역시 다른 물질이 포함된 유기 하이브리드 층을 포함한다.
이러한 무기필름 층에는 무기입자가 포함되어 있는데, 상기 무기입자는, Al2O3, ZnO, TiO2, SiO2, AlN, SiC, ALON, CNT, 그래핀 등 하나 이상을 포함할 수 있다. 이 중, Al2O3, AlN, SiC, ALON, CNT를 사용하면 투명성, 유연성, 표면 긁힘 및 열 방출 특성이 향상되고, ZnO를 사용하면 투명성, 유연성, 표면 긁힘 및 유전율이 낮아지는 특성이 향상되며, TiO2를 사용하면 투명성, 유연성, 표면 긁힘 및 자외선 차단 특성이 향상되고, SiO2나 그래핀을 사용할 경우 투명성, 유연성, 표면 긁힘 및, 반사율이 낮아지는 효과가 있다.
그리고 상기 무기 필름 층(20)에서 무기입자(22)의 함량은 21 vol% 이상 100 vol% 이하인 것이 바람직하고, 더 바람직하게는 30 vol% 이상, 100 vol% 이하인 것이 경도 측면에서 우수하다. 가장 바람직하게는 50 vol% 이상, 100 vol% 이하일 경우 열방출 성능 및 유전율 등도 향상된다. 그리고 이 무기 필름 층에서 무기 입자 표면에 존재하는 수산화기의 잔류량이 50% 이하인 것이 바람직하다.
나아가 상기 정합층의 각각의 무기필름 층 및 폴리머필름 층의 굴절률이 차이가 있는 경우에는 이들간의 광학적 간섭이 발생할 수 있다.
따라서, 이들의 굴절률 고(高)/저(低) 차이에 의한 광학적 간섭을 방지하기 위해 기재로부터 필름 표면층으로 굴절률을 감소시키는 구조를 설계하였다.
구체적으로는 상기 정합층의 무기필름 층의 굴절률은 1.41 이상1.96 이하로 이루어지되, 바람직하게는 1.62 이상1.96 이하로 이루어지며, 상기 무기필름 층에 코팅되는 폴리머필름 층의 굴절률은 1.39 이상 1.61 이하로 이루어지되 더욱 바람직하게는 1.39 이상 1.47 이하로 이루어진다.
이는 상기 무기필름 층의 굴절률이 1.62 이하인 경우에는 저굴절 정합층과 적층이나 합지시 층간 반사에 의한 광학적 손실이 발생하고, 1.96 이상인 경우에는 기재필름과 정합층간의 굴절률 불일치로 인해 특정 파장에서 반사 현상이 나타나 광학적 손실이 발생하기 때문이다.
또한 상기 폴리머필름 층의 굴절률이 1.61 이상인 경우, 밀한 매질(정합층 표면)에서 소한 매질(공기층)로 빛의 투과됨에 따라 광 경로차가 발생하여 빛의 간섭현상이 현저하기 증가하는 문제점이 발생한다.
아울러 도 2에 도시된 바와 같이, 기재에 상기 정합층이 복수번 코팅되어, 다층 구조를 형성하는 것도 가능하다.
이렇든 정합층이 복수번 코팅됨에 따라, 정합층 및 기재층간의 굴절률 부정합으로 인해 발생되는 계면 반사를 최소화할 수 있으며 Display Device 구조에 따라 굴절률 정합에 필요한 코팅조성물이 결정할 수 있다.
일반적으로 굴절률 차가 큰 경우 층간 계면 반사로 인해 광학손실이 발생하는데, 기재필름으로부터 굴절률 정합층을 거쳐 공기층으로 빛이 투과 될 때 층간 굴절률 차이를 최소화하는 것이 광학 손실을 줄일 수 있으며 굴절률이 큰 층에서 낮은 층으로 빛이 투과 될 때 계면에서 광학적 간섭이 크게 나타나 빛의 간섭효과가 발생하고, 이에 따라 빛의 간섭효과를 줄이기 위해서 층간 굴절률을 최소화하여 빛의 간섭효과를 저감시킬 수 있다.
먼저 광경화성 수지와 나노입자 필러를 사용하여 다양한 굴절률을 갖는 정합층을 Wet Coating 방식으로 제조가 가능하고 각각의 코팅 조성물은 코팅바 요철의 부피에 따라 습도막(Wet Film Thickness)의 두께를 달리하여 형성할 수 있으며 도포된 습도막은 40 ~ 100 ℃ (± 2℃)에서 1분간 건조가 가능하고 바람직하게는 50 ~ 80 ℃ (± 2℃)에서 1분간 더 바람직하게는 60 ~ 80 ℃ (± 2℃)에서 1분간 건조시켜 건조막(Dry Film Thickness)을 형성하여 UV 경화를 통해 코팅막을 제조 할 수 있다. UV 경화기는 광원이 Metal Halide와 High Pressure Mercury Type의 Lamp를 선택적으로 사용할 수 있으며 리트젠社의 LZ-UVC-F402-CMD(HN2) Model을 이용하였고, 광량은 평가 시 마다 광량계(EIT社, UV Power Puck II)를 사용하여 측정하였고 평가에 사용된 광량은 0.5 ~ 2.5 J/cm2 이다. 이러한 제조공정에 의해 만들어진 물질의 굴절률은 하기 [표1]과 같다.
표 1
Figure PCTKR2016003159-appb-T000001
또한 앞서 설명한 바와 같이, 점차적으로 굴절률이 필름 표면으로 갈수록 감소하도록 정합층을 도 2와 같이 구성하여 광학적 간섭을 방지할 수 있도록 한다.
이하 본 발명에 따른 무기소재 결정 박막에 대하여 실시예를 통하여 보다 상세하게 설명하도록 한다.
광경화성 수지와 나노입자 필러를 [표2]에 나타난 바와 같이 나노입자 필러의 부피비가 0.07(vol%)을 갖는 코팅용액을 다음과 같이 제조하였다. 여기서 나노입자 필러의 부피비(0.07vol%)는 코팅액을 최종 경화시킨 후 측정한 코팅막 내의 부피비를 말한다.
알루미나 나노입자 분산액(BYK社, NANOBYK-3602)을 코팅액 중 13.5 중량부, 광경화성 수지인 Water Dispersion Urethane Acrlate를30 중량부, 광 개시제인 1-히드록시시클로헥실페닐케톤(1-Hydroxycyclohexyl phenyl ketone)을 코팅액 중 3 중량부, 평활제인 BYK-UV3500을 코팅액 중 2 중량부 및 유기용매인 메틸에틸케톤(Methyl ethyl ketone)을 51.5 중량부를 첨가하여 외부의 광원으로부터 광중합이 되는 것을 방지하기 위해 자외선차단이 가능한 회분식 반응조안에서 조성물의 균질한 혼합을 위하여 상온(23 ℃ ± 3℃)에서 Mechanical Stirrer와 Dissolver Type의 교반봉을 사용하여 1,000 RPM으로 1 시간 동안 교반 후 고형분 함량 35 wt%를 갖는 유/무기 하이브리드 코팅제를 제조하였다. PET 필름 위에 상기 코팅제를 도포하여 80℃에서 건조 후, 고압 수은 램프(1J/cm2)를 사용하여 공기 중에서 자외선을 조사하여 경화시켜 유/무기 하이브리드 코팅 박막을 제조하였다.
[실시예 2 내지 4]
표1과 2에서 제시한 광경화성 수지를 사용한 것 외 실시예 1과 동일하게 제조하였다.
[비교예 1]
광경화성 수지를 [표2]에 나타난 바와 같이, Water Dispersion Urethane Acrlate를 30 중량부, 광 개시제인 1-히드록시시클로헥실페닐케톤(1-Hydroxycyclohexyl phenyl ketone)을 코팅액 중 3 중량부, 평활제인 BYK-UV3500을 코팅액 중 2 중량부 및 유기용매인 메틸에틸케톤(Methyl ethyl ketone)을 65 중량부를 첨가하여 외부의 광원으로부터 광중합이 되는 것을 방지하기 위해 자외선차단이 가능한 회분식 반응조안에서 조성물의 균질한 혼합을 위하여 상온(23 ℃ ± 3℃)에서 Mechanical Stirrer와 Dissolver Type의 교반봉을 사용하여 1,000 RPM으로 1 시간동안 교반 후 고형분 함량 35 wt%를 갖는 코팅제를 제조하였다. PET 필름 위에 상기 코팅제를 도포하여 80℃에서 건조 후, 고압 수은 램프(1J/cm2)를 사용하여 공기 중에서 자외선을 조사하여 경화시켜 유기 코팅 박막을 제조하였다.
[비교예2 및 3]
표1과 2에서 제시한 광경화성 수지를 사용한 것 외 비교예 1과 동일하게 제조하였다
1) 굴절률 측정
엘립소메터(㈜엘립소테크놀러지, Elli-SE)를 이용하여 타원법 측정법으로 분산식을 이용한 최적 맞춤분석 방법을 이용하여 측정 파장 633nm 파장으로 굴절률을 측정하였다.
2) 광 투과율 및 탁도
분광광도계(일본, 주식회사 NIPPON DENSHOKU, NDH300A)를 이용하여 전광선 투과율(Total Transmittance)과 탁도(Haze)를 측정하였다.
3) 연필 경도
ASTM D3502 측정법인 연필경도시험기를 사용하여 750g 하중을 걸고 연필경도를 측정하였다.
4) 접착성
양면 테이프를 첩부한 두께 5 ㎜의 유리판에, 실시예 및 비교예에서 얻어진 유/무기하이브리드 박막 필름의 정합층을 겉쪽으로 하여, 반대면을 첩부하였다. 이어서, 정합층을 관통하여, 기재 필름에 도달 하는 100개의 모눈형상의 절개선을, 극간 간격 2 ㎜의 커터 가이드를 사용해서 넣었다. 이어서, 점착 테이프(니치반사제, 405번; 폭 24 ㎜)를 모눈형상의 절개면에 첩부하였다. 첩부시에 계면에 남은 공기를 지우개로 눌러, 완전히 접착시킨 후, 점착 테이프를 힘차게 수직으로 떼어내어 아래 식으로부터 접착성을 육안으로 구하였다. 또한, 1개의 모눈 내에서 부분적으로 떨어져 있는 것도, 떨어진 개수에 합하였다.
접착성( %) =( 1-모눈의 떨어진 개수/ 100개) × 100
접착성( %) 이 90~100%를 ◎
접착성( %) 이 80~89%를 ○
접착성( %) 이 0~79%를 ×로 하였다.
이상의 실험조건과 실험결과를 표로 정리하면 하기 [표2]와 같다.
표 2
Figure PCTKR2016003159-appb-T000002
이 실험결과로부터 각각의 코팅 조성물에 알루미나 나노입자 혹은 Polysiloxane의 부피비를 0.07로 상승시킨 경우, 실시예(1 내지4) 비교예(1 내지3)에서 보듯이 굴절률과 연필경도가 향상되는 것을 확인하였고 나노입자의 부피비가 0.07 이하를 갖는 경우 저(低)굴절률 정합층이 형성되는 것을 확인하였다.
[실시예 5]
광경화성 수지와 나노입자 필러를 [표3]에 나타난 바와 같이 나노입자 필러의 부피비가 0.61을 갖는 코팅용액을 다음과 같이 제조하였다. 알루미나 나노입자 분산액(BYK社, NANOBYK-3602)을 코팅액 중 11.4 중량부, 광경화성 수지인 트리스 (2-히드록시에틸)이소이아누레이트 다이아크릴레이트(Tris(2-hydroxy Ethyl)isocyanurate diacrylate)을 25.8 중량부, 광 개시제인 1-히드록시시클로헥실페닐케톤(1-Hydroxycyclohexyl phenyl ketone)을 코팅액 중 3 중량부, 평활제인 BYK-UV3500을 코팅액 중 2 중량부 및 유기용매인 메틸에틸케톤(Methyl ethyl ketone)을 57.8 중량부를 첨가하여 외부의 광원으로부터 광중합이 되는 것을 방지하기 위해 자외선차단이 가능한 회분식 반응조안에서 조성물의 균질한 혼합을 위하여 상온(23 ℃ ± 3℃)에서 Mechanical Stirrer와 Dissolver Type의 교반봉을 사용하여 1,000 RPM으로 1 시간동안 교반 후 고형분 함량 35 wt%를 갖는 유/무기 하이브리드 코팅제를 제조하였다. PET 필름 위에 상기 코팅제를 도포하여 80℃에서 건조 후, 고압 수은 램프(1J/cm2)를 사용하여 공기 중에서 자외선을 조사하여 경화시켜 유/무기 하이브리드 코팅 박막을 제조하였다.
[실시예 6 내지 8]
표1과 3에서 제시한 광경화성 수지와 나노입자의 부피비를 달리 사용한 것 외 실시예 5과 동일하게 제조하였다.
[실시예 9]
표1과 3에서 제시한 광경화성 수지 및 ZnO 나노입자의 부피비를 달리 사용한 것 외 실시예 5과 동일하게 제조하였다.
[비교예4]
광경화성 수지를 [표2]에 나타난 바와 같이, 트리스 (2-히드록시에틸)이소이아누레이트 다이아크릴레이트(Tris(2-hydroxy Ethyl)isocyanurate diacrylate)를 30 중량부, 광 개시제인 1-히드록시시클로헥실페닐케톤(1-Hydroxycyclohexyl phenyl ketone)을 코팅액 중 3 중량부, 평활제인 BYK-UV3500을 코팅액 중 2 중량부 및 유기용매인 메틸에틸케톤(Methyl ethyl ketone)을 65 중량부를 첨가하여 외부의 광원으로부터 광중합이 되는 것을 방지하기 위해 자외선차단이 가능한 회분식 반응조안에서 조성물의 균질한 혼합을 위하여 상온(23 ℃ ± 3℃)에서 Mechanical Stirrer와 Dissolver Type의 교반봉을 사용하여 1,000 RPM으로 1 시간동안 교반 후 고형분 함량 35 wt%를 갖는 코팅제를 제조하였다. PET 필름 위에 상기 코팅제를 도포하여 80℃에서 건조 후, 고압 수은 램프(1J/cm2)를 사용하여 공기 중에서 자외선을 조사하여 경화시켜 유기 코팅 박막을 제조하였다.
[비교예5]
표1과 3에서 제시한 광경화성 수지를 사용한 것 외 비교예 4과 동일하게 제조하였다.
하기 [표3]은 상기 실시예에 따른 비교예를 통하여 나타낸 실험조건 및 실험 결과를 나타낸 것이다.
표 3
Figure PCTKR2016003159-appb-T000003
상기 [표3]에 나타난 바와 같이, 광경화성 수지와 나노입자의 종류 및 부피비에 따라 굴절률이 향상되는 특징을 갖으며 이에 따라 다양한 굴절률을 갖는 고굴절코팅층을 형성시킬 수 있고 부가적으로 나노입자의 부피비가 증가함에 따라 연필경도가 향상되는 효과를 유추할 수 있다.
상기 실시예에 나타난 바와 같이, 상기 코팅 조성물에 있어서, 상기 광개시제는 2-하이드록실-2-메틸-1-페닐 프로판온, n-부틸아민, 트리에틸아민, 2-하이드록실-1-(4-(2-하이드록시에토시)페닐)-2-메틸프로판온, 1-하이드록시시클로헥실 페닐 메탄온, 2,2??-디메톡시-1,2-디페닐에탄온, 디페닐포스포릴메시틸 메탄온, 펜닐포스포릴비스(메시틸메탄온), (s)-2-벤질-2-(디메틸아미노)-1-(4-머폴리노펜닐)부탄온, 2-메틸-2-(4-(메틸시오)페닐)-2-머폴리노프로판온으로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 한다.
또한 상기 평활제는 BYK UV-3500, 3505, 3530, 3535, 3570, 3575, 3576 군에서 선택되는 1종 이상인 것을 특징으로 한다.
위 실시예에서 분산액은 11~14 중량부인 것이 바람직하고, 11.4 중량부인 것이 가장 바람직하다. 분산액 중량부가 11 미만인 경우 연필경도 상승 효과가 감소하고, 14 초과인 경우 Haze 상승으로 인한 광학적 특성 감소하는 문제점이 있기 때문이다.
나아가 본 발명에 따르는 굴절률 정합 박막은, 유리 기판, 디스플레이용 필름 및 소자, 보호 필름, 전자 제품, 플라스틱 기판, 자동차 제품 등 다양한 용도에 적용될 수 있다.
또 이상에서 본 발명을 설명함에 있어 첨부된 도면을 참조하여 특정 형상과 구조 및 구성을 갖는 무기소재 결정 박막을 위주로 설명하였으나 본 발명은 당업자에 의하여 다양한 수정, 변경 및 치환이 가능하고, 이러한 수정, 변경 및 치환은 본 발명의 보호범위에 속하는 것으로 해석되어야 한다.

Claims (18)

  1. 기재;
    상기 기재의 일측면 또는 양측면에 형성되며, 제 1 굴절률을 갖는 제 1 필름; 및
    상기 제 1 필름 표면에 형성되며, 제 2 굴절률을 갖는 제 2 필름;
    을 포함하고,
    상기 제 1 굴절률은 상기 제 2 굴절률보다 작은 것을 특징으로 하는 굴절률 정합 박막.
  2. 청구항 1에 있어서,
    상기 제 1 필름은 무기(inorganic) 물질을 포함하고,
    상기 제 2 필름은 유기(organic) 물질을 포함하는 것을 특징으로 하는 굴절률 정합 박막.
  3. 청구항 2에 있어서,
    상기 제 1 필름의 굴절률(nD25)은 1.41 이상 1.96 이하 인 것을 특징으로 하는 굴절률 정합 박막.
  4. 청구항 2에 있어서,
    상기 제 2 필름의 굴절률(nD25)은 1.39 이상 1.47 이하 인 것을 특징으로 하는 굴절률 정합 박막.
  5. 청구항 1에 있어서,
    상기 기재로 이루어지는 기재층은 PET, TAC, PI, Colorless PI, PC, PMMA, PES, PEN Film 중 어느 하나 인 것을 특징으로 하는 굴절률 정합 박막.
  6. 청구항 2에 있어서,
    상기 제 1 필름은,
    Al2O3, ZnO, TiO2, SiO2, AlN, SiC, ALON, CNT, 그래핀 중 하나 이상의 나노입자를 포함하는 것을 특징으로 하는 굴절률 정합 박막.
  7. 청구항 1에 있어서,
    상기 제 1 필름에는 나노 입자가 포함되고,
    상기 나노 입자의 부피비는 0.07 이상 0.78 이하인 것을 특징으로 하는 굴절률 정합 박막.
  8. 청구항 7에 있어서,
    상기 나노 입자의 부피비는 0.61 이상 0.78 이하인 것을 특징으로 하는 굴절률 정합 박막.
  9. 청구항 8에 있어서,
    상기 제 1 필름층은,
    상기 나노 입자가 분산된 분산액 11 ~ 14 중량부, 및;
    광반응성 아크릴레이트인 트리스 (2-히드록시에틸)이소이아누레이트 다이아크릴레이트(Tris(2-hydroxy Ethyl)isocyanurate diacrylate)을 25 ~ 26 중량부
    를 포함하는 것을 특징으로 하는 굴절률 정합 박막.
  10. 청구항 9에 있어서,
    상기 제 1 필름층은,
    광개시제 3 중량부, 평활제 2 중량부 및 유기용매 57.8 중량부를 더 포함하는 것을 특징으로 하는 굴절률 정합 박막.
  11. 청구항 1에 있어서,
    상기 제 1 필름층은
    알루미나 나노입자 분산액 13.5 중량부, 광경화성 수지인 Water Dispersion Urethane Acrlate 30 중량부, 광개시제 1-히드록시시클로헥실페닐케톤(1-Hydroxycyclohexyl phenyl ketone) 3 중량부, 평활제인 BYK-UV3500 2 중량부 및 유기용매 메틸에틸케톤(Methyl ethyl ketone) 51.5 중량부를 포함하는 것을 특징으로 하는 굴절률 정합 박막.
  12. 청구항 11에 있어서,
    상기 광 개시제는
    2-하이드록실-2-메틸-1-페닐 프로판온, n-부틸아민, 트리에틸아민, 2-하이드록실-1-(4-(2-하이드록시에토시)페닐)-2-메틸프로판온, 1-하이드록시시클로헥실 페닐 메탄온, 2,2??-디메톡시-1,2-디페닐에탄온, 디페닐포스포릴메시틸 메탄온, 펜닐포스포릴비스(메시틸메탄온), (s)-2-벤질-2-(디메틸아미노)-1-(4-머폴리노펜닐)부탄온, 2-메틸-2-(4-(메틸시오)페닐)-2-머폴리노프로판온으로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 굴절률 정합 박막.
  13. 청구항 1 내지 12 중 어느 한 항에 기재된 굴절률 정합 박막을 포함하는 유리 기판.
  14. 청구항 1 내지 12 중 어느 한 항에 기재된 굴절률 정합 박막을 포함하는 디스플레이용 필름 및 소자.
  15. 청구항 1 내지 12 중 어느 한 항에 기재된 굴절률 정합 박막을 포함하는 보호 필름.
  16. 청구항 1 내지 12 중 어느 한 항에 기재된 굴절률 정합 박막을 포함하는 전자 제품.
  17. 청구항 1 내지 12 중 어느 한 항에 기재된 굴절률 정합 박막을 포함하는 플라스틱 기판.
  18. 청구항 1 내지 12 중 어느 한 항에 기재된 굴절률 정합 박막을 포함하는 자동차 제품.
PCT/KR2016/003159 2016-03-24 2016-03-28 굴절률 정합 박막 WO2017164449A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018522921A JP2019501408A (ja) 2016-03-24 2016-03-28 屈折率整合薄膜
US15/771,697 US10684395B2 (en) 2016-03-24 2016-03-28 Refractive-index-matching thin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160035010A KR101899575B1 (ko) 2016-03-24 2016-03-24 굴절률 정합 박막
KR10-2016-0035010 2016-03-24

Publications (1)

Publication Number Publication Date
WO2017164449A1 true WO2017164449A1 (ko) 2017-09-28

Family

ID=59900514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003159 WO2017164449A1 (ko) 2016-03-24 2016-03-28 굴절률 정합 박막

Country Status (4)

Country Link
US (1) US10684395B2 (ko)
JP (1) JP2019501408A (ko)
KR (1) KR101899575B1 (ko)
WO (1) WO2017164449A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11038143B2 (en) * 2018-12-06 2021-06-15 Samsung Display Co., Ltd. Display device and electronic device having the same
WO2021075304A1 (ja) * 2019-10-18 2021-04-22 富士フイルム株式会社 透明積層体、画像表示装置
CN112048198A (zh) * 2020-08-19 2020-12-08 浙江工业大学 一种船舶散热涂料及其制备方法
CN112048200A (zh) * 2020-08-19 2020-12-08 浙江工业大学 一种建筑墙体背阴面散热涂料及其制备方法
CN112048197A (zh) * 2020-08-19 2020-12-08 浙江工业大学 一种炉体均温辐射涂料及其制备方法
CN112048199A (zh) * 2020-08-19 2020-12-08 浙江工业大学 一种电脑主板散热涂料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122504A (ja) * 1994-10-24 1996-05-17 Dainippon Printing Co Ltd 反射防止フィルム及びその製造方法
KR20110006141A (ko) * 2009-07-13 2011-01-20 이노베이션 앤드 인피니티 글로벌 코포레이션 광학 필름 구조 및 그 표시장치
JP5559486B2 (ja) * 2009-03-23 2014-07-23 株式会社ブリヂストン 熱線遮蔽ガラス、及びこれを用いた複層ガラス
JP2014186279A (ja) * 2013-03-25 2014-10-02 Sekisui Nano Coat Technology Co Ltd 光透過性導電性フィルム及びそれを有するタッチパネル
JP2015114531A (ja) * 2013-12-12 2015-06-22 大日本印刷株式会社 表示装置用前面板およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070010029A (ko) * 2004-04-22 2007-01-19 제이에스알 가부시끼가이샤 저굴절률 코팅 조성물
KR20070048217A (ko) * 2004-08-27 2007-05-08 후지필름 가부시키가이샤 반사방지 필름 및 이를 포함하는 편광판 및 영상 표시장치
JP4429862B2 (ja) * 2004-10-06 2010-03-10 日東電工株式会社 ハードコートフィルム、反射防止ハードコートフィルム、光学素子および画像表示装置
WO2008126563A1 (ja) * 2007-03-30 2008-10-23 Konica Minolta Opto, Inc. 防眩性フィルム、その製造方法、防眩性フィルムを用いた偏光板、及び表示装置
WO2009117029A2 (en) * 2007-12-19 2009-09-24 E. I. Du Pont De Nemours And Company Bilayer anti-reflective films containing nanoparticles in both layers
JP2010102157A (ja) * 2008-10-24 2010-05-06 Seiko Epson Corp 光学物品およびその製造方法
JP2013142817A (ja) 2012-01-11 2013-07-22 Dainippon Printing Co Ltd 反射防止フィルム、偏光板及び画像表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122504A (ja) * 1994-10-24 1996-05-17 Dainippon Printing Co Ltd 反射防止フィルム及びその製造方法
JP5559486B2 (ja) * 2009-03-23 2014-07-23 株式会社ブリヂストン 熱線遮蔽ガラス、及びこれを用いた複層ガラス
KR20110006141A (ko) * 2009-07-13 2011-01-20 이노베이션 앤드 인피니티 글로벌 코포레이션 광학 필름 구조 및 그 표시장치
JP2014186279A (ja) * 2013-03-25 2014-10-02 Sekisui Nano Coat Technology Co Ltd 光透過性導電性フィルム及びそれを有するタッチパネル
JP2015114531A (ja) * 2013-12-12 2015-06-22 大日本印刷株式会社 表示装置用前面板およびその製造方法

Also Published As

Publication number Publication date
US10684395B2 (en) 2020-06-16
US20190064397A1 (en) 2019-02-28
KR20170110793A (ko) 2017-10-12
JP2019501408A (ja) 2019-01-17
KR101899575B1 (ko) 2018-09-17

Similar Documents

Publication Publication Date Title
WO2017164449A1 (ko) 굴절률 정합 박막
WO2017164451A1 (ko) 유무기 복합소재의 박막기판 및 이의 제조방법
JP4920513B2 (ja) フィルム積層体及びその製造方法
WO2014109471A1 (ko) 투명 수지 적층체 및 이를 포함하는 터치 스크린 패널
WO2018143554A1 (ko) 하드코팅 필름 및 이를 구비한 터치센서를 포함하는 플렉서블 디스플레이 윈도우
WO2013191340A1 (ko) Uv경화형 고무를 포함하는 점착제 조성물 및 이를 사용하는 보호필름
WO2016060476A1 (ko) 광학 필름 코팅용 조성물 및 이를 포함하는 광학 필름
WO2015152559A1 (ko) 저굴절 조성물, 이의 제조방법, 및 투명 도전성 필름
CN1378089A (zh) 光学用膜
WO2014035018A1 (ko) 고굴절층 코팅용 조성물 및 이를 포함하는 투명 도전성 필름
KR20160079679A (ko) 폴리이미드 필름 적층체
WO2014092344A1 (ko) 저굴절층 코팅용 조성물 및 이를 포함하는 투명 도전성 필름
KR20170075343A (ko) 하드코팅 조성물 및 이를 이용한 하드코팅 필름
WO2014061976A1 (ko) 시인성이 개선된 투명 도전성 필름 및 이의 제조방법
TWI696554B (zh) 透明導電膜積層用薄膜及其製造方法以及透明導電性薄膜
WO2020022855A1 (ko) 적외선 반사 필름
KR102436845B1 (ko) 하드코팅 조성물 및 이를 이용한 하드코팅 필름
EP2630189A2 (en) Polymerizable composition and optical sheet comprising cured resin layer formed therefrom
WO2011028075A2 (ko) 하드 코팅 조성물 및 이의 제조 방법 및 상기 하드 코팅 조성물을 이용하여 형성된 하드 코팅 필름
CN117480412A (zh) 硬涂膜、光学构件及图像显示装置
KR20180036502A (ko) 하드코팅 조성물 및 이를 이용한 하드코팅 필름
WO2012053837A2 (en) Polymerizable composition and optical sheet comprising cured resin layer formed therefrom
WO2014073788A1 (ko) 저굴절층 코팅용 조성물 및 이를 포함하는 투명 도전성 필름
JP5758672B2 (ja) 光反射防止シートとその製造方法およびその光反射防止シートを用いたタッチパネルおよびディスプレイ
JP6364860B2 (ja) ハードコートフィルム、並びに、これを用いた透明導電性フィルム及びタッチパネル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018522921

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895577

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895577

Country of ref document: EP

Kind code of ref document: A1