WO2014073788A1 - 저굴절층 코팅용 조성물 및 이를 포함하는 투명 도전성 필름 - Google Patents

저굴절층 코팅용 조성물 및 이를 포함하는 투명 도전성 필름 Download PDF

Info

Publication number
WO2014073788A1
WO2014073788A1 PCT/KR2013/008718 KR2013008718W WO2014073788A1 WO 2014073788 A1 WO2014073788 A1 WO 2014073788A1 KR 2013008718 W KR2013008718 W KR 2013008718W WO 2014073788 A1 WO2014073788 A1 WO 2014073788A1
Authority
WO
WIPO (PCT)
Prior art keywords
low refractive
layer
refractive index
conductive film
transparent conductive
Prior art date
Application number
PCT/KR2013/008718
Other languages
English (en)
French (fr)
Inventor
홍진기
김원국
Original Assignee
(주)엘지하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지하우시스 filed Critical (주)엘지하우시스
Priority to US14/438,081 priority Critical patent/US20150291845A1/en
Priority to CN201380058361.5A priority patent/CN104812855A/zh
Priority to JP2015540590A priority patent/JP2016504426A/ja
Publication of WO2014073788A1 publication Critical patent/WO2014073788A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/02Polysilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/006Anti-reflective coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/08Homopolymers or copolymers of acrylic acid esters

Definitions

  • the touch panel includes an optical method, an ultrasonic method, a capacitive method, a resistive film method, and the like according to the method of position detection.
  • the resistive touch panel has a structure in which a transparent conductive film and glass with a transparent conductor layer are disposed to face each other through a spacer, and a current is passed through the transparent conductive film to measure the voltage in the glass with the transparent conductor layer. It is.
  • the capacitive touch panel has a basic structure having a transparent conductive layer on a base material, is characterized by no moving parts, and has high durability and high transmittance, and thus has been applied in automotive applications.
  • the capacitive transparent conductive film applied to the touch panel includes a conductive layer, and the conductive layer undergoes a patterning process.
  • a method of coating the photoresist on the transparent conductive layer and etching the conductive layer through a developing process is used.
  • the method of the present invention relates to a transparent conductive film for securing production speed and production efficiency during the patterning process. Research is ongoing.
  • One embodiment of the present invention provides a coating composition for low refractive index comprising a siloxane compound and a photoacid generator.
  • Another embodiment of the present invention provides a transparent conductive film including a low refractive layer formed of the low refractive index coating composition.
  • composition for coating a low refractive index layer comprising a siloxane compound and a photoacid generator.
  • the siloxane compound may comprise a siloxane polymer formed from formula (1).
  • R 1 is an alkyl group having 1 to 18 carbon atoms, a vinyl group, an allyl group, an epoxy group or an acryl group
  • R 2 is an alkyl group having 1 to 6 carbon atoms or an acetoxy group
  • n is an integer of 0 ⁇ n ⁇ 4.
  • the molecular weight of the siloxane polymer may be about 500 to about 50,000.
  • the siloxane compound may comprise from about 5% to about 100% by weight relative to 100% by weight in total.
  • the siloxane compound may be formed by a sol-gel reaction.
  • the photoacid generator may be active in UV light irradiation having a wavelength of about 300 nm to about 400 nm.
  • the photoacid generator may be any one selected from among an ionic photoacid generator, a nonionic photoacid generator, and a polymer-based photoacid generator.
  • the photoacid generator may include about 1% to about 30% by weight based on 100% by weight of the total.
  • it provides a transparent conductive film comprising a low refractive index layer formed using the composition for coating the low refractive index layer.
  • the transparent conductive film may have a laminated structure of a transparent substrate, the high refractive layer, the low refractive layer and the conductive layer.
  • the refractive index of the low refractive layer may be about 1.4 to about 1.5.
  • the low refractive layer may have a thickness of about 5 nm to about 100 nm.
  • the high refractive index layer may have a thickness of about 20 nm to about 150 nm.
  • the transparent substrate is polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polycarbonate (PC), polypropylene (PP), polyvinyl chloride (PVC), polyethylene (PE), poly It may be a single or laminated film including any one selected from the group consisting of methyl methacrylate (PMMA), ethylene vinyl alcohol (EVA), polyvinyl alcohol (PVA), and combinations thereof.
  • the conductive layer may include indium tin oxide (ITO) or fluorine-doped tin oxide (FTO).
  • ITO indium tin oxide
  • FTO fluorine-doped tin oxide
  • a hard coating layer may be further included on one or both surfaces of the transparent substrate.
  • the transparent conductive layer patterning process which is an essential step in the capacitive transparent conductive film, can be efficiently improved.
  • the improved patterning process of the transparent conductive layer makes it possible to produce the transparent conductive film more efficiently in a simple and short time.
  • FIG. 1 schematically illustrates a cross section of a transparent conductive film according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a transparent conductive film according to another embodiment of the present invention.
  • any configuration is formed on the “top (or bottom)" of the substrate or “top (or bottom)” of the substrate means that any configuration is formed in contact with the top (or bottom) of the substrate.
  • it is not limited to not including other configurations between the substrate and any configuration formed on (or under) the substrate.
  • composition for coating a low refractive index layer comprising a siloxane compound and a photoacid generator.
  • the conductive layer is subjected to a patterning process.
  • a method of coating a photoresist on the transparent conductive layer and etching the transparent conductive layer through a developing process is mainly used. Due to the slow production rate, it was difficult to efficiently manufacture the patterned transparent conductive layer.
  • the acid is generated when the photoacid generator is irradiated with UV, the generated acid is the low refractive index
  • the conductive layer deposited on the layer it is possible to efficiently improve the patterning process of the conductive layer during the etching of the conductive layer.
  • the improved conductive layer patterning process makes it possible to produce the transparent conductive film more economically in a relatively short time.
  • the siloxane compound may comprise a siloxane polymer formed from formula (1).
  • Formula 1 is (R 1 ) n-Si- (OR 2 ) 4-n , wherein R 1 is an alkyl group having 1 to 18 carbon atoms, a vinyl group, an allyl group, an epoxy group or an acryl group, and R 2 is 1 carbon atom. It is an alkyl group or acetoxy group which has -6, and said n is an integer of 0 ⁇ n ⁇ 4.
  • the molecular weight of the siloxane polymer may be about 500 to about 50,000.
  • the said molecular weight is a weight average molecular weight, and refers to the average molecular weight obtained by averaging the molecular weight of the high molecular compound with molecular weight distribution by a weight fraction.
  • the siloxane polymer is formed from Formula 1, the siloxane polymer has excellent coating properties when coating the composition for coating the low refractive index layer by maintaining the range of the molecular weight, it is easy to implement the effect of increasing the curing density of the composition during curing Can be.
  • the siloxane compound is a compound comprising a siloxane polymer formed from Chemical Formula 1, and the general chemical formula of the siloxane polymer is based on a siloxane bond of -Si-O-Si-, for example, It can be represented by the formula (2).
  • the siloxane compound may comprise about 5% to about 100% by weight relative to 100% by weight of the total composition.
  • the siloxane compound in the above range relative to a total of 100% by weight of the siloxane compound can reduce the refractive index of the low refractive index layer formed of the coating composition for low refractive index, the effect of improving the reaction during curing and improved solvent resistance and adhesion Can be easily implemented.
  • the siloxane compound may be formed by a known method, but is not limited to the production method.
  • the siloxane compound may be formed by a sol-gel reaction.
  • the sol-gel reaction is formed by agglomeration and condensation of colloidal particles in a sol in which silica fine particles obtained by flame hydrolysis of a sol in which dozens or hundreds of nm colloidal particles obtained by hydrolysis or dehydration are dispersed in a liquid are dispersed in a liquid. It refers to a reaction in which the fluidity of the sol is lost to form a porous gel.
  • the siloxane compound may be formed by a sol-gel reaction.
  • a siloxane polymer formed from Chemical Formula 1 may be reacted by mixing with water and ethanol to synthesize a silica sol, and a photoacid generator is mixed with the synthesized sol.
  • the sol can be converted into a liquid network to prepare a siloxane compound of an inorganic network.
  • the photoacid generator is a compound in which an acid is generated by UV light irradiation to form a low refractive layer with a composition for coating a low refractive index layer containing the photoacid generator, and UV is applied to the low refractive layer.
  • acid is generated by the photoacid generator, and the generated acid affects the conductive layer formed on the low refractive layer, thereby making it possible to efficiently pattern the conductive layer.
  • the photoacid generator may be activated to UV light irradiation of about 300nm to about 400nm wavelength. Decomposition of the photoacid generator occurs by UV light irradiation in the wavelength range of about 300 nm to about 400 nm, and as a result, acid is generated, which may advantageously etch the conductive layer, that is, pattern the conductive layer. UV light irradiation at a wavelength in the above range can be economically advantageous in that it can utilize a general UV irradiation apparatus that is most widely used.
  • the photoacid generator may be any one selected from an ionic photoacid generator, a nonionic photoacid generator, and a polymeric photoacid generator, and the ionic photoacid generator may be a sulfonium salt compound, an iodonium salt compound, or the like.
  • the nonionic photoacid generator may include, but is not limited to, a nitrobenzyl sulfonate compound, an azonaphthoquinone compound, and the like.
  • one or more photoacid generators selected from the group consisting of Irgacure PAG 103, Irgacure PAG 121, CGI 725, CGI 1907, Irgacure 250, Irgacure PAG 290, GSID26-1, and combinations thereof may be used.
  • the photoacid generator may include about 1% to about 30% by weight in a total weight of 100%.
  • the content of the photo-acid generator in the content can be easily formed in the conductive layer, it is possible to provide a transparent conductive film capable of fine UV patterning without lowering the properties of the low refractive layer formed by the low refractive coating composition have.
  • a transparent conductive film including a low refractive index layer formed using a composition for coating a low refractive index layer comprising a siloxane compound and a photoacid generator.
  • the transparent conductive film 10 is a laminated structure of a transparent substrate 1, a hard coating layer 2, a high refractive layer 3, a low refractive layer 4, and a conductive layer 5.
  • the transparent substrate 1 may include a film having excellent transparency and strength.
  • the transparent substrate 1 is polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polycarbonate (PC), polypropylene (PP), polyvinyl chloride (PVC), It may be in the form of a single or laminated film comprising any one selected from the group consisting of polyethylene (PE), polymethyl methacrylate (PMMA), ethylene vinyl alcohol (EVA), polyvinyl alcohol (PVA), and combinations thereof. have.
  • the high refractive index layer 3 and the low refractive index layer 4 serve to improve insulation properties and transmittance between the transparent substrate 1 and the conductive layer 5, wherein the low refractive layer is the low refractive layer described above. It may be formed including a coating composition.
  • the refractive index of the low refractive index layer 4 may be about 1.4 to about 1.5.
  • the refractive index is adjustable to about 1.4 to about 1.5, and the overall visibility and total light transmittance of the transparent conductive film may be improved. .
  • the low refractive index layer 4 may have a thickness of about 5 nm to about 100 nm.
  • the transmittance and pattern visibility may be improved by keeping the thickness of the low refractive layer within the above range, and appropriate stress may be maintained with the high refractive layer to ensure adhesion and crack and curl generation may be reduced.
  • the high refractive index layer 3 may have a thickness of about 20 nm to about 150 nm. By maintaining the thickness of the high refractive layer 3, it is possible to avoid the possibility that the thickness is formed so thin that the transmittance and visibility improvement effect is insufficient, and the occurrence of cracks and curls due to stress can be reduced. have.
  • the conductive layer 5 is formed on the low refractive layer 4 and may include indium tin oxide (ITO) or fluorine-doped tin oxide (FTO). Specifically, the thickness of the conductive layer 5 may be about 5nm to about 50nm, by maintaining the thickness of the conductive layer in the above range can have a low sheet resistance, excellent optical properties such as high transmittance and low reflectance Can be secured.
  • ITO indium tin oxide
  • FTO fluorine-doped tin oxide
  • FIG. 2 schematically illustrates a cross section of a transparent conductive film according to another embodiment of the present invention.
  • a hard coating layer 2 is further formed below the transparent substrate 1.
  • the hard coating layer 2 serves to improve surface hardness, and may be used without limitation as long as it is used for forming a hard coating such as an acrylic compound.
  • the hard coating layer 2 may be formed only on one surface of the transparent substrate 1 as shown in FIG. 1, but may be formed on both sides of the transparent substrate 1 as shown in FIG. 2.
  • Tetraethoxysilane (tetra-ethoxyorthosilicate, TEOS) was mixed with water and ethanol at 1: 2: 2, and reacted for 24 hours by adding 0.1 mol of nitric acid to synthesize a silica sol having a refractive index of 1.43. . Solid content of the synthesized silica sol was measured and diluted with methyl ethyl ketone (MEK) to prepare a siloxane compound having a total solid content of 10%.
  • MEK methyl ethyl ketone
  • a photoacid generator as shown in Table 1 was mixed with the siloxane compound prepared above, and diluted with methyl ethyl ketone (MEK) to prepare a composition for coating a low refractive index layer having a total solid content of 5%.
  • MEK methyl ethyl ketone
  • the hard coat layer composition of Preparation Example 2 was applied on a 125 ⁇ m PET film using a Meyer bar to have a dry film thickness of 1.5 ⁇ m, and cured by irradiating 300mJ UV light with 180W high pressure mercury or the like to prepare a hard coat film.
  • the hard coat layer composition of Preparation Example 2 was applied and cured to a dry film thickness of 1.5 ⁇ m on the opposite side of the produced film in the same manner to prepare a film including the hard coat layer on both sides.
  • a transparent conductive film was prepared in the same manner as in Example 1, except that Preparation Example 1-2 was applied to the composition for coating the low refractive index layer, and the low refractive layer thickness was coated at 40 nm.
  • Example 1-3 was applied to the composition for coating the low refractive index, and a transparent conductive film was prepared in the same manner as in Example 1 except that the low refractive layer thickness was coated at 50 nm.
  • a transparent conductive film was prepared in the same manner as in Example 1, except that Preparation Example 1-4 was applied to the composition for coating the low refractive index layer, and the low refractive layer thickness was coated at 60 nm.
  • a transparent conductive film was prepared in the same manner as in Example 1, except that Preparation Example 1-5 was applied to the composition for coating the low refractive index layer, and the thickness of the low refractive layer was coated at 80 nm.
  • a transparent conductive film was prepared in the same manner as in Example 1, except that Preparation Example 1-6 was applied to the composition for coating the low refractive index layer, and the thickness of the low refractive layer was coated at 100 nm.
  • Pencil hardness Measured according to JIS K 5600-5-4.
  • Adhesiveness Cut
  • the transparent conductive films of Examples 1 to 5 were found to have a hardness and adhesiveness of a certain level or higher and a patterning evaluation also showed a level higher than normal.
  • Examples 1 to 3 including a low refractive layer formed of a composition for coating a low refractive index layer containing a certain amount of photoacid generator the square pattern was weakly recognized, and the portion that was not patterned when measuring the surface resistance was surfaced. The resistance was measured at about 150 ⁇ / square, whereas the pattern area was found not to be measured, and it was confirmed that it was patterned by UV.
  • the low refractive index layer is not stable, and thus the conductive layer is peeled off, making it difficult to check the patterning.
  • the patterning evaluation it was confirmed that the average level was generally maintained.
  • the resistance was equally 150 ⁇ on all surfaces of the transparent conductive film. It was confirmed that the measurement by the / / level, UV patterning is not carried out.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)

Abstract

실록산 화합물 및 광산발생제를 포함하는 저굴절층 코팅용 조성물을 제공한다. 또한, 상기 저굴절층 코팅용 조성물을 이용하여 형성된 저굴절층을 포함하는 투명 도전성 필름을 제공한다.

Description

저굴절층 코팅용 조성물 및 이를 포함하는 투명 도전성 필름
저굴절층 코팅용 조성물 및 이를 포함하는 투명 도전성 필름을 제공한다.
터치 패널에는, 위치 검출의 방법에 따라 광학 방식, 초음파 방식, 정전 용량 방식, 저항막 방식 등이 있다. 저항막 방식의 터치 패널은, 투명 도전성 필름과 투명 도전체층이 부착된 유리가 스페이서를 개재하여 대향배치되어 있고, 투명 도전성 필름에 전류를 흘려 투명 도전체층이 부착된 유리에서의 전압을 계측하는 구조로 되어 있다. 한편, 정전 용량 방식의 터치 패널은, 기재 상에 투명 도전층을 갖는 것을 기본적 구성으로 하고, 가동 부분이 없는 것이 특징이며, 고내구성, 고투과율을 갖기 때문에, 차재 용도 등에 있어서 적용되고 있다.
상기 터치 패널에 적용되는 정전용량 방식의 투명 도전성 필름은 도전층을 포함하고, 상기 도전층은 패터닝 공정을 거친다. 통상의 경우, 감광제를 투명 도전층 상부에 코팅하고 현상 공정을 거쳐 도전층을 식각하여 패터닝을 진행하는 방식이 주로 사용되고 있으나, 패터닝 공정 중 생산 속도 및 생산 효율 등의 확보를 위한 투명 도전성 필름에 관한 연구가 계속되고 있다.
본 발명의 일 구현예는 실록산 화합물 및 광산발생제를 포함하는 저굴절용 코팅용 조성물을 제공한다.
본 발명의 다른 구현예는 상기 저굴절용 코팅용 조성물로 형성된 저굴절층을 포함하는 투명 도전성 필름을 제공한다.
본 발명의 일 구현예에서, 실록산 화합물 및 광산발생제를 포함하는 저굴절층 코팅용 조성물을 제공한다.
상기 실록산 화합물은 화학식 1로부터 형성된 실록산 중합체를 포함할 수 있다.
[화학식1]
(R1)n-Si-(O-R2)4-n
상기 R1은 탄소수 1 내지 18의 알킬기, 비닐기, 알릴기, 에폭시기 또는 아크릴기, 상기 R2는 탄소수 1 내지 6을 갖는 알킬기 또는 아세톡시기이고, 상기 n은 0<n<4의 정수이다.
상기 실록산 중합체의 분자량이 약 500 내지 약 50,000일 수 있다.
상기 실록산 화합물은 총 100중량%에 대하여 약 5중량% 내지 약 100중량%를 포함할 수 있다.
상기 실록산 화합물은 졸-겔 반응으로 형성될 수 있다.
상기 광산발생제는 약 300nm 내지 약 400nm 파장의 UV 광조사에 활성이 있을 수 있다.
상기 광산발생제는 이온성 광산발생제, 비이온성 광산발생제 및 고분자계 광산발생제 중 선택된 어느 하나일 수 있다.
상기 광산발생제는 총 100중량%에 대하여 약 1중량% 내지 약 30중량%를 포함할 수 있다.
본 발명의 다른 구현예에서, 상기 저굴절층 코팅용 조성물을 이용하여 형성된 저굴절층을 포함하는 투명 도전성 필름을 제공한다.
상기 투명 도전성 필름은 투명기재, 상기 고굴절층, 저굴절층 및 도전층의 적층구조일 수 있다.
상기 저굴절층의 굴절율은 약 1.4 내지 약 1.5일 수 있다.
상기 저굴절층의 두께는 약 5nm 내지 약 100nm일 수 있다.
상기 고굴절층의 두께는 약 20nm 내지 약 150nm일 수 있다.
상기 투명 기재는 폴리에틸렌테레프탈레이트(PET), 폴리에틸렌나프탈레이트 (PEN), 폴리에테르설폰(PES), 폴리카보네이트(PC), 폴리프로필렌(PP), 폴리비닐 클로라이드(PVC), 폴리에틸렌(PE), 폴리메틸메타아크릴레이트(PMMA), 에틸렌 비닐 알코올(EVA), 폴리비닐알콜(PVA) 및 이들의 조합으로 이루어진 군으로부터 선택된 어느 하나를 포함하는 단일 또는 적층 필름일 수 있다.
상기 도전층은 ITO(Indium Tin Oxide) 또는 FTO(Fluorine-doped Tin Oxide)를 포함할 수 있다.
상기 투명 기재의 일면 또는 양면에 하드코팅층을 더 포함할 수 있다.
상기 저굴절층 코팅용 조성물을 사용함으로써 정전용량 방식 투명 도전성 필름에서 필수적인 공정인 투명 도전층 패터닝 공정을 효율적으로 개선할 수 있다.
개선된 투명 도전층의 패터닝 공정으로 간단하고 짧은 시간에 투명 도전성 필름을 보다 효율적으로 제조할 수 있다.
도 1은 본 발명의 일실시예에 따른 투명 전도성 필름의 단면을 개략적으로 나타낸 것이다.
도 2는 본 발명의 다른 일실시예에 따른 투명 전도성 필름의 단면을 개략적으로 나타낸 것이다.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를
붙이도록 한다.
도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장
되게 나타내었다.
이하에서 기재의 “상부 (또는 하부)” 또는 기재의 “상 (또는 하)”에 임의의 구성이 형성된다는 것은, 임의의 구성이 상기 기재의 상면 (또는 하면)에 접하여 형성되는 것을 의미할 뿐만 아니라, 상기 기재와 기재 상에 (또는 하에) 형성된 임의의 구성 사이에 다른 구성을 포함하지 않는 것으로 한정하는 것은 아니다.
저굴절층 코팅용 조성물
본 발명의 일 구현예에서, 실록산 화합물 및 광산발생제를 포함하는 저굴절층 코팅용 조성물을 제공한다.
정전용량 방식의 투명 도전성 필름을 터치 패널에 적용할 때 도전층은 패터닝 공정을 거친다. 통상의 경우, 상기 투명 도전층의 패터닝 공정에 있어서, 감광제를 투명 도전층 상부에 코팅하고 현상 공정을 거쳐 투명도전층을 식각하여 진행하는 방식이 주로 사용되었으나, 이는 공정수가 많고, 많은 공정수로 인하여 생산 속도가 느려 패터닝된 투명 도전층을 효율적으로 제조하는 데에는 어려움이 있었다.
이에, 투명 도전성 필름이 포함하는 저굴절층을 실록산 화합물 및 광산발생제를 포함하는 저굴절층 코팅용 조성물을 사용하여 제조함으로써, 광산 발생제에 UV 조사시 산이 발생하고, 발생된 산이 상기 저굴절층 상부에 증착되는 도전층에 영향을 주어 상기 도전층 에칭시 도전층의 패터닝 공정을 효율적으로 개선할 수 있다. 또한, 개선된 도전층의 패터닝 공정으로 비교적 짧은 시간에 투명 도전성 필름을 보다 경제적으로 제조할 수 있다.
상기 실록산 화합물은 화학식 1로부터 형성된 실록산 중합체를 포함할 수 있다. 상기 화학식 1은 (R1)n-Si-(O-R2)4-n이며, 상기 R1은 탄소수 1 내지 18을 갖는 알킬기, 비닐기, 알릴기, 에폭시기 또는 아크릴기, 상기 R2는 탄소수 1 내지 6을 갖는 알킬기 또는 아세톡시기이고, 상기 n은 0<n<4의 정수이다.
상기 실록산 중합체의 분자량은 약 500 내지 약 50,000일 수 있다. 상기 분자량은 중량평균 분자량으로, 분자량 분포가 있는 고분자 화합물의 분자량을 중량 분율로 평균하여 얻어지는 평균 분자량을 일컫는다. 상기 실록산 중합체는 화학식 1로부터 형성되는 것으로, 상기 실록산 중합체가 상기 분자량의 범위를 유지함으로써 저굴절층 코팅용 조성물 코팅시 우수한 코팅성을 가지며, 경화시 상기 조성물의 경화 밀도 증대의 효과를 용이하게 구현할 수 있다.
상기 실록산 화합물은 화학식 1로부터 형성된 실록산 중합체를 일컫는바, 상기 화학식 1은 테트라에톡시실란(Si(OC2H5)4), 테트라메톡시실란(Si(OCH3)4), 트리에톡시(에틸)실란(C2H5Si(OC2H5)3), 트리메톡시(메틸)실란(CH3Si(OCH3)3), 트리아세톡시(메틸)실란(CH3CO2)3SiCH3), 트리아세톡시(비닐)실란(CH3CO2)3SiCH=CH2), 트리스(2-메톡시에톡시)(비닐)실란(CH3OCH2CH2O)3SiCH=CH2), 트리메톡시(옥틸) 실란(CH3(CH2)7Si(OC2H5)3), 트리메톡시[2-(7-옥사비시클로[4.1.0]헵(hept)-3-일)에틸]실란(C11H22O4Si), 트리메톡시(프로필)실란(CH3CH2CH2Si(OCH3)3), 트리메톡시(옥실)실란(CH3(CH2)7Si(OCH3)3), 트리메톡시(옥타데실)실란 (CH3(CH2)17Si(OCH3)3), 이소부틸(트리메톡시)실란(CH3)2CHCH2Si(OCH3)3, 트리에톡시(이소부틸)실란((CH3)2CHCH2Si(OC2H5)3), 트리메톡시(7-옥텐-1-일)실란 (H2C=CH(CH2)6Si(OCH3)3), 트리메톡시(2-페닐에틸)실란(C6H5CH2CH2Si(OCH3)3), 디메톡시-메틸(3,3,3-트리플로오로프로필)실란(C6H13F3O2Si), 디메톡시(디메틸)실란 (C2H6Si(OC2H6)2), 트리에톡시(1-페닐에테닐)실란((C2H5O)3SiC(CH2)C6H5), 트리에톡시[4-(트리플루오로메틸)페닐]실란(CF3C6H4Si(OC2H5)2), 트리에톡시(4-메톡시페닐)실란((C2H5O)3SiC6H4OCH3), 3-(트리메톡시실일)프로필 메타아크릴레이트(H2C=C(CH3)CO2(CH2)3Si(OCH3)3), (3-글라이시독시) 메틸디에톡시실란(C11H24O4Si), 3-(트리에톡시실일)프로필이소시아네이트 (C2H5O)3Si(CH2)3NCO), 이소부틸트리에톡시실란(CH3)2CHCH2Si(OC2H5)3) 및 이들의 조합으로 이루어진 군으로부터 선택된 어느 하나 일 수 있다.
구체적으로, 상기 실록산 화합물은 상기 화학식1로부터 형성된 실록산 중합체를 포함하는 화합물로써, 상기 실록산 중합체의 개략적인 화학식은 -Si-O-Si-의 실록산 결합을 골격으로 하는바, 예를 들어, 하기 [화학식 2]로 나타낼 수 있다.
[화학식 2]
Figure PCTKR2013008718-appb-I000001
보다 구체적으로, 상기 실록산 화합물은 총 조성물 100중량%에 대하여 약 5중량% 내지 약 100중량%를 포함할 수 있다. 상기 실록산 화합물을 총 100중량%에 대하여 상기 범위의 실록산 화합물을 포함함으로써 저굴절용 코팅용 조성물로 형성되는 저굴절층의 굴절률을 낮출 수 있고, 경화시 반응 향상과 내 용제성 및 밀착성이 향상되는 효과를 용이하게 구현할 수 있다.
상기 실록산 화합물은 공지의 방법에 의하여 형성될 수 있고, 제조방법에 한정이 있는 것은 아니다. 예를 들어, 상기 실록산 화합물은 졸-겔 반응으로 형성될 수 있다. 졸-겔 반응은 가수분해 또는 탈수축합에 의해서 얻어진 수십, 수백nm의 콜로이드 입자가 액체중에 분산된 졸의 화염가수분해에서 얻어진 실리카 미립자 등을 액체에 분산시킨 졸에서 콜로이드 입자의 응집, 응결에 의해 졸의 유동성이 손실되어 다공체의 겔을 형성하는 반응을 일컫는다. 상기 실록산 화합물은 졸-겔 반응으로 형성될 수 있고, 예를 들어, 상기 화학식1로부터 형성된 실록산 중합체를 물 및 에탄올과 혼합하여 반응시켜 실리카 졸을 합성하고, 상기 합성된 졸에 광산발생제를 혼합하여 졸을 액체상의 망상 조직으로 변환시켜 무기질 망상 조직의 실록산 화합물을 제조할 수 있다.
상기 광산발생제(Photoacid generator: PAG)는 UV광 조사에 의해 산이 발생되는 화합물로써, 상기 광산발생제를 포함하는 저굴절층 코팅용 조성물로 저굴절층을 형성하고, 상기 저굴절층에 UV를 조사하는 경우 광산발생제에 의해 산이 발생하고, 발생된 산이 저굴절층 상부에 형성된 도전층에 영향을 미침으로써, 도전층의 패터닝을 효율적으로 이루어지게 할 수 있다.
상기 광산발생제는 약 300nm 내지 약 400nm 파장의 UV 광조사에 활성 될 수 있다. 약 300nm 내지 약 400nm 파장의 UV 광조사에 의해 광산발생제의 분해가 발생하고 이로 인해 산이 발생하면서 도전층의 식각, 즉 도전층의 패터닝을 유리하게 할 수 있다. 상기 범위의 파장에서 UV 광조사가 이루어지는 것이 가장 광범위하게 사용되는 일반적인 UV 조사장치를 활용할 수 있다는 점에서 경제적으로 유리할 수 있다.
상기 광산발생제는 이온성 광산발생제, 비이온성 광산발생제 및 고분자계 광산발생제 중 선택된 어느 하나일 수 있고, 상기 이온성 광산발생제로는 술포늄염계 화합물, 요오드늄염계 화합물 등을 사용할 수 있으며, 상기 비이온성 광산발생제로는 니트로벤질설포네이트류 화합물, 아조나프토퀴논류 화합물 등을 사용할 수 있으나, 이에 제한 되는 것은 아니다.
구체적으로, BASF사의 Irgacure PAG 103, Irgacure PAG 121, CGI 725, CGI 1907, Irgacure 250, Irgacure PAG 290, GSID26-1 및 이들의 조합으로 이루어진 군으로부터 선택된 하나 이상의 광산발생제를 사용할 수 있다.
보다 구체적으로, 상기 광산발생제는 총 중량 100%에서 약 1중량% 내지 약 30중량%를 포함할 수 있다. 상기 함유 함량의 광산발생제를 포함함으로써 도전층에 패턴 형성이 용이해 질 수 있고, 저굴절 코팅 조성물에 의해 형성된 저굴절층의 물성을 저하시키지 않아 미세한 UV 패터닝이 가능한 투명 도전성 필름을 제공할 수 있다.
투명 도전성 필름
본 발명의 다른 구현예에서, 실록산 화합물 및 광산발생제를 포함하는 저굴절층 코팅용 조성물을 이용하여 형성된 저굴절층을 포함하는 투명 도전성 필름을 제공한다.
도 1은 본 발명의 일실시예에 따른 투명 전도성 필름의 단면을 개략적으로 나타낸 것이다. 도 1을 참조하면, 상기 투명 도전성 필름(10)은 투명기재(1), 하드코팅층(2), 고굴절층(3), 저굴절층(4) 및 도전층(5)의 적층구조이다.
투명기재(1)는 투명성과 강도가 우수한 필름을 포함할 수 있다. 구체적으로, 상기 투명기재(1)는 폴리에틸렌테레프탈레이트(PET), 폴리에틸렌 나프탈레이트(PEN), 폴리에테르설폰(PES), 폴리카보네이트(PC), 폴리프로필렌(PP), 폴리비닐클로라이드(PVC), 폴리에틸렌(PE), 폴리메틸메타아크릴레이트(PMMA), 에틸렌 비닐 알코올(EVA), 폴리비닐알콜(PVA) 및 이들의 조합으로 이루어진 군으로부터 선택된 어느 하나를 포함하는 단일 또는 적층 필름의 형태가 될 수 있다.
상기 고굴절층(3) 및 저굴절층(4)은 투명기재(1)와 도전층(5) 사이에 절연특성 및 투과도를 향상시키는 역할을 하는바, 이 때 저굴절층은 전술한 저굴절층 코팅용 조성물을 포함하여 형성될 수 있다.
상기 저굴절층(4)의 굴절률은 약 1.4 내지 약 1.5일 수 있다. 상기 저굴절층 형성에 실록산 화합물 및 광산발생제를 포함하는 저굴절층 코팅용 조성물을 이용한 결과 굴절률이 약 1.4 내지 약 1.5로 조절가능하며, 투명 전도성 필름 전체적인 시인성 및 전광성 투과율이 향상될 수 있다.
상기 저굴절층(4)의 두께는 약 5nm 내지 약 100nm 일 수 있다. 상기 저굴절층의 두께가 상기 범위를 유지함으로써 투과율 및 패턴 시인성이 개선될 수 있고, 고굴절층 등과의 적절한 응력이 유지되어 밀착성이 확보되고 크랙 및 컬 발생이 저하될 수 있다.
상기 고굴절층(3)의 두께는 약 20nm 내지 약 150nm 일 수 있다. 상기 고굴절층(3)의 두께를 유지함으로써, 두께가 너무 얇게 형성되어 투과율 및 시인성 향상 효과가 불충분할 우려를 피할 수 있고, 응력으로 인한 크랙(Crack) 및 컬(Curl)의 발생을 저하시킬 수 있다.
상기 도전층(5)은 상기 저굴절층(4) 상부에 형성되는 것으로, ITO(Indium Tin Oxide) 또는 FTO(Fluorine-doped Tin Oxide)를 포함할 수 있다. 구체적으로, 상기 도전층(5)의 두께는 약 5nm 내지 약 50nm일 수 있는바, 상기 도전층의 두께를 상기 범위로 유지함으로써 낮은 면저항을 가질 수 있고, 높은 투과율 및 낮은 반사율 등의 우수한 광학 특성을 확보할 수 있다.
도 2는 본 발명의 다른 일실시예에 따른 투명 전도성 필름의 단면을 개략적으로 나타낸 것으로, 도 2에서는 투명기재(1)의 하부에 하드코팅층(2)이 더 형성되어 있다. 하드코팅층(2)은 표면 경도를 향상시키는 역할을 하며, 아크릴계 화합물 등 하드 코팅 형성을 위하여 이용되는 것이라면 제한없이 이용될 수 있다.
상기 하드코팅층(2)은 도 1에서와 같이 투명기재(1)의 일면에만 형성될 수 있으나, 도 2에서와 같이 투명기재(1)의 양면에 형성될 수도 있다.
이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되어서는 아니된다.
<제조예>
제조예 1 - 저굴절층 코팅용 조성물
테트라에톡시실란(테트라-에톡시오르소실리케이트, TEOS)를 물, 에탄올과 1:2:2로 혼합하고, 질산 0.1mol용액을 투입하여 24시간 동안 반응시켜 굴절률 1.43을 갖는 실리카 졸을 합성하였다. 상기 합성된 실리카 졸의 고형분을 측정하고 메틸에틸케톤(MEK)로 희석하여, 전체 고형분 10%의 실록산 화합물을 제조하였다.
상기 제조된 실록산 화합물에 하기 표1과 같은 광산발생제를 혼합하고, 메틸에틸케톤(MEK)으로 희석하여 전체 고형분 5%의 저굴절층 코팅용 조성물을 제조하였다.
표 1
Figure PCTKR2013008718-appb-T000001
제조예 2 - 하드코팅층 코팅용 조성물
총 고형분 100 중량부에 대하여 디펜타에리스리톨헥사 아크릴레이트 20 중량부, 자외선 경화형 아크릴레이트 (상품명 HX-920UV, Kyoeisha) 60 중량부, 실리카 미립자 15 중량부(상품명 XBA-ST, 일산 화학), 광중합 개시제 Irgacure-184 5 중량부(Ciba사)를 혼합하고 희석용제 메틸에틸케톤(MEK)으로 희석하여 고형분 45%의 하드코팅층 조성물(굴절률 1.52)을 제조하였다.
제조예 3 - 고굴절층 코팅용 조성물
총 고형분 100 중량부에 대하여 자외선 경화형 아크릴레이트 (상품명 HX-920UV, Kyoeisha) 36 중량부, 고굴절 나노입자 60 중량부(ZrO2 나노입자), 광중합 개시제 4 중량부(상품명 Irgacure-184, BASF)를 혼합하고 희석용제 메틸에틸케톤(MEK)으로 희석하여 고형분 5%의 고굴절층 코팅용 조성물(굴절률 1.64)을 제조하였다.
<실시예 및 비교예>
실시예 1
제조예 2의 하드코팅층 조성물을 Meyer bar를 이용해 125㎛ PET필름 상에, 건조막 두께가 1.5㎛이 되도록 도포하고, 180W 고압수은 등으로 300mJ의 자외선을 조사하여 경화시켜 하드코팅필름을 제작했다. 상기 제작한 필름의 반대면에 동일한 방법으로 제조예 2의 하드코팅층 조성물을 건조막 두께 1.5㎛이 되도록 도포하고 경화시켜 양면에 하드코팅층을 포함하는 필름을 제작했다.
그 후, 양면에 하드코팅층을 포함하는 필름의 한 면에 제조예 3으로 제조된 고굴절층 코팅용 조성물을 이용해 건조막 두께가 50nm가 되도록 도포하고, 180W 고압수은등으로 300mJ의 자외선을 조사하여 경화시켜 고굴절층을 형성하였다.
그 후 상기 고굴절층에 제조예 1-1로 제조된 저굴절층 코팅용 조성물을 이용하여 건조막 두께가 20nm가 되도록 도포하고, 150°C 오븐에서 1분 동안 경화시켜 저굴절층을 형성했다. 이 때, 인듐:주석 = 95:5의 ITO 타겟을 이용하여 저굴절층에 막두께 20nm의 ITO층을 형성하여 투명 도전성 필름을 제작하였다.
실시예 2
저굴절층 코팅용 조성물을 제조예 1-2를 적용하고, 저굴절층 두께를 40nm로 코팅한 것 이외에는 상기 실시예 1과 동일한 방법으로 투명 도전성 필름을 제작하였다.
실시예 3
저굴절층 코팅용 조성물을 제조예 1-3를 적용하고, 저굴절층 두께를 50nm로 코팅한 것 이외에는 상기 실시예 1과 동일한 방법으로 투명 도전성 필름을 제작하였다.
실시예 4
저굴절층 코팅용 조성물을 제조예 1-4를 적용하고, 저굴절층 두께를 60nm로 코팅한 것 이외에는 상기 실시예 1과 동일한 방법으로 투명 도전성 필름을 제작하였다.
실시예 5
저굴절층 코팅용 조성물을 제조예 1-5를 적용하고, 저굴절층 두께를 80nm로 코팅한 것 이외에는 상기 실시예 1과 동일한 방법으로 투명 도전성 필름을 제작하였다.
비교예
저굴절층 코팅용 조성물을 제조예 1-6를 적용하고, 저굴절층 두께를 100nm로 코팅한 것 이외에는 상기 실시예 1과 동일한 방법으로 투명 도전성 필름을 제작하였다.
<실험예> 투명 도전성 필름의 물리적 특성
상기 실시예 및 비교예의 투명 도전성 필름을 이용하여 하기 물성들을 측정하였고, 그 결과를 하기 표 2에 기재하였다.
1) 투명 도전성 필름의 패터닝 평가: 크롬(Cr) 증착된 유리(glass)에 50mmX50mm 크기의 정사각형 패턴이 그려져 있는 포토-마스트(photo-mask)를 상기 실시예 및 비교예로 제작한 투명 도전성 필름상에 100㎛거리로 근접시킨 후, 365nm의 파장을 가지는 고압수은램프를 사용하여 1,000mJ/㎠의 UV 에너지를 조사했다. 그 후, 포토-마스크(photo-mask)를 제거한 후, 투명 도전성 필름 도전층을 증류수로 씻어냄으로써 패턴이 형성된 투명 도전성 필름을 얻었다. 패터닝된 정사각형 부분을 육안으로 확인하여 패터닝 됨을 확인하였고, 패턴부의 표면 저항을 측정하였다.
2) 연필 경도: JIS K 5600-5-4에 준하여 측정하였다.
3) 밀착성: 투명 도전성 필름 표면에 커터를 이용하여 1mm 간격으로 10mmx10mm 가로X세로의 바둑판 모양으로 컷팅하고, 셀로판테이프(Nichiban사)를 이용하여 박리 시험을 하였다. 동일한 부위를 테이프를 이용해 3회 박리 시험하였고, 평가 후 밀착되어 있는 숫자를 /100으로 표기하였다.
표 2
Figure PCTKR2013008718-appb-T000002
상기 표 2의 측정결과를 통해 실시예 1 내지 5의 투명 도전성 필름의 경우 일정수준이상의 경도 및 밀착성을 가지고 패터닝 평가 또한 보통이상을 수준을 나타냄을 알 수 있었다. 구체적으로, 일정량의 광산발생제를 포함하는 저굴절층 코팅용 조성물로 형성된 저굴절층을 포함하는 실시예 1 내지 3의 경우, 정사각형 패턴이 약하게 시인되었으며, 표면 저항 측정시 패터닝 되지 않은 부분은 표면저항이 약 150Ω/□으로 측정되고, 그 반면에, 패턴 부위는 표면저항이 측정되지 않는 것으로 보아, UV에 의해 패터닝이 된 것을 확인하였다.
구체적으로, 저굴절층 코팅용 조성물이 광산발생제를 실시예 1 내지 3에 비해 과량 포함한 실시예 4 및 5의 경우 저굴절층이 안정하지 않아 도전층이 벗겨져서 패터닝 여부를 확인하기 어려운 점이 있기는 하였으나, 패터닝 평가시 대체적으로 보통정도의 수준을 유지함을 확인하였다. 그러나, 상기 실시예 1 내지 5와 대조적으로, 광산발생제를 포함하지 않은 저굴절층 코팅용 조성물로 형성된 저굴절층을 포함하는 비교예의 경우에는 투명 도전성 필름의 모든 표면에서 동일하게 저항이 150 Ω/□ 수준으로 측정되는 것으로 보아, UV에 의한 패터닝이 실시되지 않음을 확인할 수 있었다.

Claims (16)

  1. 실록산 화합물 및 광산발생제를 포함하는
    저굴절층 코팅용 조성물.
  2. 제 1항에 있어서,
    상기 실록산 화합물은 화학식 1로부터 형성된 실록산 중합체를 포함하는
    저굴절층 코팅용 조성물.
    [화학식1]
    (R1)n-Si-(O-R2)4-n
    상기 R1은 탄소수 1 내지 18의 알킬기, 비닐기, 알릴기, 에폭시기 또는 아크릴기, 상기 R2는 탄소수 1 내지 6을 갖는 알킬기 또는 아세톡시기이고, 상기 n은 0<n<4의 정수이다.
  3. 제 2항에 있어서,
    상기 실록산 중합체의 분자량이 500 내지 50,000인
    저굴절층 코팅용 조성물.
  4. 제 1항에 있어서,
    상기 실록산 화합물은 총 100중량%에 대하여 5중량% 내지 100중량%를 포함하는
    저굴절층 코팅용 조성물.
  5. 제 1항에 있어서,
    상기 실록산 화합물은 졸-겔 반응으로 형성된
    저굴절층 코팅용 조성물.
  6. 제 1항에 있어서,
    상기 광산발생제는 300nm 내지 400nm 파장의 UV 광조사에 활성이 있는
    저굴절층 코팅용 조성물.
  7. 제 1항에 있어서,
    상기 광산발생제는 이온성 광산발생제, 비이온성 광산발생제 및 고분자계 광산발생제 중 선택된 어느 하나인
    저굴절층 코팅용 조성물.
  8. 제 1항에 있어서,
    상기 광산발생제는 총 100중량%에 대하여 1중량% 내지 30중량%를 포함하는
    저굴절층 코팅용 조성물.
  9. 제 1항의 저굴절층 코팅용 조성물을 이용하여 형성된 저굴절층을 포함하는
    투명 도전성 필름.
  10. 제 9항에 있어서,
    상기 투명 도전성 필름은 투명기재, 상기 고굴절층, 저굴절층 및 도전층의 적층구조인
    투명 도전성 필름.
  11. 제 9항에 있어서,
    상기 저굴절층의 굴절율은 1.4 내지 1.5인
    투명 도전성 필름.
  12. 제 9항에 있어서,
    상기 저굴절층의 두께는 5nm 내지 100nm인
    투명 도전성 필름.
  13. 제 10항에 있어서,
    상기 고굴절층의 두께는 20nm 내지 150nm인
    투명 도전성 필름
  14. 제 10항에 있어서,
    상기 투명 기재는 폴리에틸렌테레프탈레이트(PET), 폴리에틸렌나프탈레이트 (PEN), 폴리에테르설폰(PES), 폴리카보네이트(PC), 폴리프로필렌(PP), 폴리비닐 클로라이드(PVC), 폴리에틸렌(PE), 폴리메틸메타아크릴레이트(PMMA), 에틸렌 비닐 알코올(EVA), 폴리비닐알콜(PVA) 및 이들의 조합으로 이루어진 군으로부터 선택된 어느 하나를 포함하는 단일 또는 적층 필름인
    투명 전도성 필름.
  15. 제 10항에 있어서,
    상기 도전층은 ITO(Indium Tin Oxide) 또는 FTO(Fluorine-doped Tin Oxide)를 포함하는
    투명 전도성 필름.
  16. 제 10항에 있어서,
    상기 투명 기재의 일면 또는 양면에 하드코팅층을 더 포함하는
    투명 전도성 필름.
PCT/KR2013/008718 2012-11-07 2013-09-30 저굴절층 코팅용 조성물 및 이를 포함하는 투명 도전성 필름 WO2014073788A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/438,081 US20150291845A1 (en) 2012-11-07 2013-09-30 Composition for coating low-refractive layer, and transparent electrically-conductive film comprising same
CN201380058361.5A CN104812855A (zh) 2012-11-07 2013-09-30 低折射层涂敷用组合物及包含该组合物的透明导电性膜
JP2015540590A JP2016504426A (ja) 2012-11-07 2013-09-30 低屈折層コーティング用組成物およびそれを含む透明導電性フィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120125460A KR101541954B1 (ko) 2012-11-07 2012-11-07 저굴절층 코팅용 조성물 및 이를 포함하는 투명 도전성 필름
KR10-2012-0125460 2012-11-07

Publications (1)

Publication Number Publication Date
WO2014073788A1 true WO2014073788A1 (ko) 2014-05-15

Family

ID=50684844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008718 WO2014073788A1 (ko) 2012-11-07 2013-09-30 저굴절층 코팅용 조성물 및 이를 포함하는 투명 도전성 필름

Country Status (6)

Country Link
US (1) US20150291845A1 (ko)
JP (1) JP2016504426A (ko)
KR (1) KR101541954B1 (ko)
CN (1) CN104812855A (ko)
TW (1) TW201418383A (ko)
WO (1) WO2014073788A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6931526B2 (ja) * 2016-11-25 2021-09-08 株式会社ダイセル ハードコートフィルム
KR102198801B1 (ko) 2017-12-07 2021-01-05 삼성에스디아이 주식회사 색 변환 패널 및 색 변환 패널의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003305791A (ja) * 2002-04-15 2003-10-28 Teijin Ltd 透明導電性フィルム
US20050053790A1 (en) * 2003-09-03 2005-03-10 Fuji Photo Film Co., Ltd. Film-forming composition, anti-reflection film, polarizing plate, image display apparatus, anti-pollution coating composition and anti-pollution article
US20090105360A1 (en) * 2005-10-28 2009-04-23 Toray Industries, Inc. Siloxane resin composition and production method thereof
US20100203320A1 (en) * 2009-02-09 2010-08-12 Shin-Etsu Chemical Co., Ltd. Photocurable coating composition, film forming method, and coated article
WO2011142622A2 (ko) * 2010-05-13 2011-11-17 (주)Lg화학 다층구조의 투명 전도성 필름 및 이의 제조방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7308691B2 (en) * 2003-05-28 2007-12-11 Funai Electric Co., Ltd. Disk apparatus with guide mechanism
CN100510961C (zh) * 2003-10-07 2009-07-08 日立化成工业株式会社 放射线固化性组合物、其保存方法、固化膜形成方法、图案形成方法、图案使用方法、电子元件及光波导
JP2007046008A (ja) * 2005-08-12 2007-02-22 Mitsubishi Rayon Co Ltd 活性エネルギー線硬化性低屈折率コーティング用組成物および成形品
JP4949692B2 (ja) * 2006-02-07 2012-06-13 東京応化工業株式会社 低屈折率シリカ系被膜形成用組成物
JP5729133B2 (ja) * 2010-07-16 2015-06-03 Jsr株式会社 感放射線性組成物、保護膜、層間絶縁膜、及びそれらの形成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003305791A (ja) * 2002-04-15 2003-10-28 Teijin Ltd 透明導電性フィルム
US20050053790A1 (en) * 2003-09-03 2005-03-10 Fuji Photo Film Co., Ltd. Film-forming composition, anti-reflection film, polarizing plate, image display apparatus, anti-pollution coating composition and anti-pollution article
US20090105360A1 (en) * 2005-10-28 2009-04-23 Toray Industries, Inc. Siloxane resin composition and production method thereof
US20100203320A1 (en) * 2009-02-09 2010-08-12 Shin-Etsu Chemical Co., Ltd. Photocurable coating composition, film forming method, and coated article
WO2011142622A2 (ko) * 2010-05-13 2011-11-17 (주)Lg화학 다층구조의 투명 전도성 필름 및 이의 제조방법

Also Published As

Publication number Publication date
TW201418383A (zh) 2014-05-16
US20150291845A1 (en) 2015-10-15
KR20140058956A (ko) 2014-05-15
JP2016504426A (ja) 2016-02-12
CN104812855A (zh) 2015-07-29
KR101541954B1 (ko) 2015-08-04

Similar Documents

Publication Publication Date Title
WO2012036453A2 (ko) 반사방지층이 코팅된 투명도전성 시트 및 이의 제조 방법
KR101760365B1 (ko) 전사 필름, 정전 용량형 입력 장치의 제조 방법 및 정전 용량형 입력 장치, 및 이것을 구비한 화상 표시 장치
WO2016064159A2 (ko) 디스플레이 필름 및 이를 포함하는 디스플레이 장치
WO2010098636A2 (ko) 내마모성 및 내오염성이 우수한 코팅 조성물 및 코팅 필름
WO2010123265A2 (ko) 탄소나노튜브 도전막 및 그 제조 방법
WO2013176422A1 (ko) 하이브리드 언더코팅층을 갖는 투명 도전성 필름 및 이의 제조방법, 이를 이용한 터치패널
WO2014137111A1 (ko) 투명 전극 및 이의 제조 방법
WO2017164449A1 (ko) 굴절률 정합 박막
WO2013094832A1 (ko) 도전성 필름용 조성물, 이로부터 형성된 도전성 필름 및 이를 포함하는 광학 표시 장치
WO2011037338A2 (ko) 전도성 바닥재 및 이의 제조방법
WO2015152559A1 (ko) 저굴절 조성물, 이의 제조방법, 및 투명 도전성 필름
WO2017022987A1 (ko) 윈도우 필름용 조성물, 이로부터 형성된 플렉시블 윈도우 필름 및 이를 포함하는 플렉시블 디스플레이 장치
WO2014092344A1 (ko) 저굴절층 코팅용 조성물 및 이를 포함하는 투명 도전성 필름
WO2014073788A1 (ko) 저굴절층 코팅용 조성물 및 이를 포함하는 투명 도전성 필름
WO2016039037A1 (ja) 加飾用着色組成物、加飾材、加飾材付き基材、転写材料、タッチパネル、及び、情報表示装置
WO2014035018A1 (ko) 고굴절층 코팅용 조성물 및 이를 포함하는 투명 도전성 필름
WO2019177319A1 (ko) 매립형 투명 전극 기판 및 이의 제조방법
TW201900769A (zh) 透明樹脂組成物、透明被膜及被覆透明樹脂之玻璃基板
WO2014061976A1 (ko) 시인성이 개선된 투명 도전성 필름 및 이의 제조방법
EP3239111B1 (en) Curable composition, transfer film, front plate of image display device, front plate-integrated sensor, image display device, and manufacturing method for front plate of image display device
JP2016047878A (ja) 熱硬化性樹脂組成物、加飾材、加飾材付き基材、転写材料、タッチパネル、及び、情報表示装置
WO2014115974A1 (ko) 저굴절층 코팅용 조성물 및 이의 제조방법
WO2011129613A2 (ko) 탄소나노튜브 필름 제조 방법
WO2010151013A2 (ko) 탄소나노튜브 도전막 및 이의 제조 방법
WO2015020318A1 (ko) 투명 도전성 필름 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854080

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14438081

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015540590

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13854080

Country of ref document: EP

Kind code of ref document: A1