WO2014115974A1 - 저굴절층 코팅용 조성물 및 이의 제조방법 - Google Patents

저굴절층 코팅용 조성물 및 이의 제조방법 Download PDF

Info

Publication number
WO2014115974A1
WO2014115974A1 PCT/KR2013/012386 KR2013012386W WO2014115974A1 WO 2014115974 A1 WO2014115974 A1 WO 2014115974A1 KR 2013012386 W KR2013012386 W KR 2013012386W WO 2014115974 A1 WO2014115974 A1 WO 2014115974A1
Authority
WO
WIPO (PCT)
Prior art keywords
low refractive
refractive index
siloxane compound
group
compound
Prior art date
Application number
PCT/KR2013/012386
Other languages
English (en)
French (fr)
Inventor
김헌조
류무선
서지연
김원국
Original Assignee
(주)엘지하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지하우시스 filed Critical (주)엘지하우시스
Publication of WO2014115974A1 publication Critical patent/WO2014115974A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes

Definitions

  • It relates to a low refractive index coating composition and a method for producing the same.
  • the touch panel includes an optical method, an ultrasonic method, a capacitive method, a resistive film method, and the like according to the method of position detection.
  • the resistive touch panel has a structure in which a transparent conductive film and glass with a transparent conductor layer are disposed to face each other through a spacer, and a current is passed through the transparent conductive film to measure the voltage in the glass with the transparent conductor layer. It is.
  • the capacitive touch panel has a basic structure having a transparent conductive layer on a base material, is characterized by no moving parts, and has high durability and high transmittance, and thus has been applied in automotive applications.
  • the capacitive transparent conductive film applied to the touch panel may include an undercoating layer, such as a high refractive index layer or a low refractive layer, in addition to the conductive layer, and reduce interference of transmitted light of the display for a touch panel screen according to the undercoating layer. It is possible to increase the conductivity. Accordingly, research on the undercoat layer and the composition for forming the undercoat layer continues.
  • an undercoating layer such as a high refractive index layer or a low refractive layer
  • One embodiment of the present invention includes a siloxane compound to provide a composition for coating a low refractive index layer does not change the physical properties during acid treatment.
  • Another embodiment of the present invention provides a method for preparing the composition for coating the low refractive index layer.
  • Another embodiment of the present invention provides a low refractive film formed from the composition for coating the low refractive index layer.
  • composition for coating a low refractive index layer comprising a siloxane compound and a low refractive film formed comprising the same.
  • the siloxane compound may be an alkoxy silane compound; And a functional silane compound substituted with at least one selected from the group consisting of an alkyl group having 1 to 18 carbon atoms, an acryl group, a glycidyl group, and a combination thereof. It can be formed by mixing.
  • the molar ratio of the alkoxy silane compound / functional silane compound may be about 1 to about 50.
  • the siloxane compound may include a polymer siloxane compound having a network structure formed by sol-gel reaction.
  • the molecular weight of the polymeric siloxane compound may be about 2000 to about 50,000.
  • the polymer siloxane compound may include about 0.1% to about 100% by weight based on 100% in total.
  • the reaction may be performed at a temperature of about 20 ° C to about 60 ° C.
  • the reaction may be performed for a time of about 3 hours to about 72 hours.
  • it provides a low refractive film comprising the composition for coating the low refractive index layer.
  • the low refractive film may have a thickness of about 15 nm to about 100 nm.
  • the refractive index of the low refractive film may be about 1.35 to about 1.55.
  • the low-refractive coating layer composition to overcome the instability to the acid, it can maintain a uniform optical properties before and after the pattern formation of the transparent conductive film applied later.
  • the low refractive film may form an ITO layer having a predetermined crystallinity on the low refractive film, and may provide a transparent conductive film having a low resistance value.
  • FIG. 1 is a graph showing changes in transmittance before and after etching a low refractive film according to Examples 1 to 3 of the present invention.
  • FIG. 2 is a graph showing the change in reflectance before and after etching the low refractive film according to Examples 1 to 3 of the present invention.
  • Figure 3 is a graph showing the change in transmittance before and after etching of the low refractive film according to Example 1, Examples 4 to 10 of the present invention.
  • Example 4 is a graph showing reflectance changes before and after etching of the low refractive film according to Example 1 and Examples 4 to 10 of the present invention.
  • composition for coating a low refractive index layer comprising a siloxane compound.
  • a high refractive index layer and a low refractive index layer have been used to increase the transmittance of a display for a touch screen panel.
  • a transparent conductive film that suppresses interference with transmitted light and has high conductivity.
  • the low refractive layer is a layer in contact with the conductive layer, the conductivity of the low refractive layer has a great effect on the shape of the surface of the low refractive layer and the state of the interface between the low refractive layer and the conductive layer. As it turned out, research on the composition for coating the low refractive index layer has been continued.
  • the composition for coating the low refractive index layer includes a siloxane compound, so that the change in the interference phenomenon and the change in physical properties of the conductive and transmitted light after the pattern formation of the conductive layer may not be large.
  • physical properties do not change in the acid treatment for forming the pattern of the conductive layer, and a useful interface can be formed with the conductive layer in order to secure a low resistance of the transparent conductive film.
  • the siloxane compound may include formula (1).
  • [Formula 1] is (R1) n-Si- (O-R2) 4-n, wherein R1 is an alkyl group having 1 to 18 carbon atoms, a vinyl group, an allyl group, an epoxy group or an acrylic group, wherein R2 is 1 to 6 carbon atoms It is an alkyl group or acetoxy group which has the said n is an integer of 0 ⁇ n ⁇ 4.
  • the siloxane compound is an alkoxy silane compound; And a functional silane compound substituted with at least one selected from the group consisting of an alkyl group having 1 to 18 carbon atoms, an acryl group, a glycidyl group, and a combination thereof.
  • the silane compound refers to a compound containing a chemical formula of SinH2n + 2 (n is an integer of 1 or more), wherein the alkoxy silane compound refers to a silane compound in which any one of hydrogen atoms of the chemical formula is substituted with an alkoxy group, and the functional silane
  • the compound is any one of the hydrogen atoms of the formula is substituted with at least one selected from the group consisting of an alkyl group having 1 to 18 carbon atoms, acrylic group, glycidyl group and combinations thereof, except for the substituted portion is substituted with alkoxy silane Means a compound.
  • the molar ratio of the alkoxy silane compound / functional silane compound may be 1 to 50.
  • the molar ratio means the number of moles of the alkoxy silane compound to the number of moles of the functional silane compound.
  • the molar ratio may include about 1 mole to about 50 moles of the alkoxy silane compound with respect to 1 mole of the functional silane compound. .
  • the molar ratio of the alkoxy silane compound and the functional silane compound may be adjusted, and the low siloxane film having a constant refractive index may be formed by including the siloxane compound thus formed in the low refractive layer coating composition. Moreover, the effect of etching stability can be easily exhibited by maintaining the said molar ratio.
  • the composition for coating the low refractive index layer may include a polymer siloxane compound having a network structure formed by sol-gel reaction of the siloxane compound.
  • a network structure refers to a three-dimensional skeletal structure by sharing the vertices, edges, faces, etc. of a planar net-shaped structure or a specific polyhedron in which a specific polygon is connected.
  • the polymer siloxane compound of the network structure is -Si-O-Si-
  • the siloxane bond of can be made into a frame
  • the molecular weight of the polymer siloxane compound may be about 2,000 to about 50,000.
  • the said molecular weight is a weight average molecular weight, and refers to the average molecular weight obtained by averaging the molecular weight of the high molecular compound with molecular weight distribution by a weight fraction.
  • the polymer siloxane compound is formed by the sol-gel reaction of the siloxane compound including [Formula 1], the polymer siloxane compound has excellent coating properties when coating the composition for coating the low refractive index layer by maintaining the range of the molecular weight, and cured When the composition can be easily implemented the effect of increasing the curing density.
  • the polymer siloxane compound may include about 0.1% to about 100% by weight based on 100% by weight of the total composition for coating the low refractive index layer.
  • the refractive index of the low refractive film formed of the coating composition for low refractive index can be lowered, and the effect of improving the reaction during curing and improved solvent resistance and adhesion easily Can be implemented.
  • an alkoxy silane compound in another embodiment of the invention, an alkoxy silane compound; And forming a siloxane compound by mixing a functional silane compound substituted with at least one selected from the group consisting of an alkyl group having 1 to 18 carbon atoms, an acryl group, a glycidyl group, and a combination thereof.
  • Sol-gel reacting the formed siloxane compound to form a polymer siloxane compound having a network structure; And it provides a method for producing a composition for coating a low refractive index layer comprising the step of aging the polymer siloxane compound formed.
  • the alkoxy silane compound and a functional silane compound substituted with at least one selected from the group consisting of an alkyl group having 1 to 18 carbon atoms, an acryl group, a glycidyl group, and a combination thereof may be mixed and a siloxane compound may be formed through a hydrolysis condensation reaction.
  • the formed siloxane compound may be sol-gel reacted to form a polymer siloxane compound having a network structure.
  • the polymer siloxane compound may be formed by a known method, and the manufacturing method is not limited.
  • the polymer siloxane compound may be formed by a sol-gel reaction of the siloxane compound.
  • the sol-gel reaction is formed by agglomeration and condensation of colloidal particles in a sol in which silica fine particles obtained by flame hydrolysis of a sol in which dozens or hundreds of nm colloidal particles obtained by hydrolysis or dehydration are dispersed in a liquid are dispersed in a liquid. It refers to a reaction in which the fluidity of the sol is lost to form a porous gel.
  • a polymer silonic acid compound may be formed by a sol-gel reaction of the siloxane compound.
  • a siloxane compound including Chemical Formula 1 is mixed with water and ethanol to synthesize a silica sol, and the synthesized sol
  • the polymer siloxane compound of the inorganic network can be prepared by converting it into a liquid network.
  • the reaction may be performed at a temperature of about 20 ° C to about 60 ° C. By reacting at a temperature in the above range it is possible to reduce the occurrence of unreacted material and to easily implement the hydrolysis and condensation reaction.
  • the reaction may be performed for a time of about 3 hours to about 72 hours. It is advantageous in that the reaction can be performed within the above range of time to synthesize a polymer siloxane compound having a desired molecular weight through hydrolysis and condensation.
  • the method for preparing the composition for coating the low refractive index layer may include aging the polymer siloxane compound formed by the reaction.
  • the siloxane compound may be aged at about 40 ° C. for about 0 hour to about 24 hours to have an O—Si—O bond structure.
  • a low refractive film comprising a composition for coating a low refractive index layer containing a siloxane compound.
  • the thickness of the low refractive film may be about 15nm to about 100nm.
  • the transmittance and pattern visibility can be improved by keeping the thickness of the low refractive film within the above range, and when the low refractive film becomes a transparent conductive film later, an appropriate stress with a high refractive film to be formed under the low refractive film This can be maintained to ensure adhesion and crack and curl generation can be reduced.
  • the refractive index of the low refractive film may be about 1.35 to about 1.55.
  • the refractive index is adjustable from about 1.35 to about 1.55, and the overall visibility and transmittance of the transparent conductive film in which the low refractive film is to be used may be improved. have.
  • TEOS tetra-ethoxy orthosilicate
  • the solid content of the synthesized polymer siloxane compound was measured and diluted with methyl ethyl ketone (MEK) to prepare a polymer siloxane compound having a total solid content of 10%, and the prepared polymer siloxane compound was diluted with methyl ethyl ketone (MEK) to make a total
  • MEK methyl ethyl ketone
  • Example 1 except that (3-glycidoxy) methyldiethoxysilane (C11H24O4Si) comprising the siloxane compound of the above-described Formula 1 in place of tetra-ethoxyorthosilicate (TEOS) was used. In the same manner to prepare a composition for coating a low refractive index layer.
  • TEOS tetra-ethoxyorthosilicate
  • Example 1 except that trimethoxy (methyl) silane (CH 3 Si (OCH 3) 3) containing a siloxane compound of the above-described formula [1] in place of tetra-ethoxy orthosilicate (TEOS) was used. In the same manner to prepare a composition for coating a low refractive index layer.
  • trimethoxy (methyl) silane CH 3 Si (OCH 3) 3
  • TEOS tetra-ethoxy orthosilicate
  • a composition for coating a low refractive index layer was prepared in the same manner as in Example 1, except that the molar amount of tetra-ethoxy orthosilicate (TEOS) was contained per 1 mole of trimethoxy (methyl) silane. It was.
  • TEOS tetra-ethoxy orthosilicate
  • composition for coating the low refractive index layer of the above example was applied so that the dry film thickness is 20nm, and cured for 1 minute in 150 °C oven to form a low refractive film having a refractive index of 1.42. At this time, the properties of the low refractive film were measured, and the results are shown in Table 3 below.
  • Etching stability Apply the etching paste of hyperEtch 18S T10 (Merck) using the silk screen patterned on the low refractive film, and dried at 130 °C for 6 minutes, and then wash the applied portion with distilled water Visual observation evaluated whether the low refractive film was damaged by the etching paste.
  • the low refractive film formed of the low refractive index coating composition of Examples 1 to 3 through the measurement results of Table 3 has no damage to the acid, thereby confirming that the transmission change rate and the reflection change rate are almost zero.
  • the low-refractive layer coating composition of Examples 1 to 3 includes a siloxane compound, whereby the etching stability can be improved, and it can be seen that there is almost no difference in transmittance reflectance before and after etching.
  • FIG. 1 is a graph showing changes in transmittance before and after etching of the low refractive films according to Examples 1 to 3 of the present invention
  • FIG. 2 is a graph showing changes in reflectance before and after etching of the low refractive films according to Examples 1 to 3; It can be seen that there is almost no difference in transmittance and reflectance before and after etching.
  • the molar ratio of the alkoxy silane compound and the functional silane compound is maintained at about 1 to about 50, and the difference in transmittance and reflectance before and after etching of the low refractive film formed within the molar ratio range is determined. Almost none were confirmed.

Abstract

실록산 화합물을 포함하는 저굴절층 코팅용 조성물 및 이를 포함하여 형성된 저굴절필름을 제공한다. 또한, 알콕시 실란 화합물 및 탄소수 1 내지 18의 알킬기, 아크릴기, 글리시딜기 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나로 치환된 기능성 실란 화합물을 혼합하여 실록산 화합물을 형성하는 단계; 상기 형성된 실록산 화합물을 졸-겔 반응시켜 망상구조의 고분자 실록산 화합물을 형성하는 단계; 및 상기 형성된 고분자 실록산 화합물을 숙성시키는 단계를 포함하는 저굴절층 코팅용 조성물 제조방법을 제공한다.

Description

저굴절층 코팅용 조성물 및 이의 제조방법
저굴절용 코팅용 조성물 및 이의 제조방법에 관한 것이다.
터치 패널에는, 위치 검출의 방법에 따라 광학 방식, 초음파 방식, 정전 용량 방식, 저항막 방식 등이 있다. 저항막 방식의 터치 패널은, 투명 도전성 필름과 투명 도전체층이 부착된 유리가 스페이서를 개재하여 대향배치되어 있고, 투명 도전성 필름에 전류를 흘려 투명 도전체층이 부착된 유리에서의 전압을 계측하는 구조로 되어 있다. 한편, 정전 용량 방식의 터치 패널은, 기재 상에 투명 도전층을 갖는 것을 기본적 구성으로 하고, 가동 부분이 없는 것이 특징이며, 고내구성, 고투과율을 갖기 때문에, 차재 용도 등에 있어서 적용되고 있다.
상기 터치 패널에 적용되는 정전용량 방식의 투명 도전성 필름은 도전층 이외에 고굴절층 또는 저굴절층 등의 언더코팅층을 포함할 수 있고, 언더코팅층에 따라 터치패널스크린용 디스플레이의 투과광에 대한 간섭현상을 낮출 수 있고, 도전성을 높게 할 수 있다. 이에 언더코팅층 및 언더코팅층 형성용 조성물에 대한 연구가 계속되고 있다.
본 발명의 일 구현예는 실록산 화합물을 포함함으로써 산 처리시 물성이 변하지 않는 저굴절층 코팅용 조성물을 제공한다.
본 발명의 다른 구현예는 상기 저굴절층 코팅용 조성물의 제조방법을 제공한다.
본 발명의 또 다른 구현예는 상기 저굴절층 코팅용 조성물로 형성된 저굴절필름을 제공한다.
본 발명의 일 구현예에서, 실록산 화합물을 포함하는 저굴절층 코팅용 조성물 및 이를 포함하여 형성된 저굴절필름을 제공한다.
상기 실록산 화합물은 알콕시 실란 화합물; 및 탄소수 1 내지 18의 알킬기, 아크릴기, 글리시딜기 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나로 치환된 기능성 실란 화합물; 의 혼합으로 형성될 수 있다.
상기 알콕시 실란 화합물/기능성 실란 화합물의 몰비율이 약 1 내지 약 50일 수 있다.
상기 실록산 화합물이 졸겔반응하여 형성된 망상구조의 고분자 실록산 화합물을 포함할 수 있다.
상기 고분자 실록산 화합물의 분자량이 약 2000 내지 약 50,000일 수 있다.
상기 고분자 실록산 화합물은 총 100%에 대하여 약 0.1중량% 내지 약 100중량%를 포함할 수 있다.
본 발명의 다른 구현예에서, 알콕시 실란 화합물 및 탄소수 1 내지 18의 알킬기, 아크릴기, 글리시딜기 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나로 치환된 기능성 실란 화합물을 혼합하여 실록산 화합물을 형성하는 단계; 상기 형성된 실록산 화합물을 졸-겔 반응시켜 망상구조의 고분자 실록산 화합물을 형성하는 단계; 및 상기 형성된 고분자 실록산 화합물을 숙성시키는 단계를 포함하는 저굴절층 코팅용 조성물 제조방법을 제공한다.
상기 고분자 실록산 화합물을 형성하는 단계에서 상기 반응은 약 20℃ 내지 약 60℃의 온도에서 수행될 수 있다.
상기 고분자 실록산 화합물을 형성하는 단계에서 상기 반응은 약 3시간 내지 약 72시간의 시간동안 수행될 수 있다.
본 발명의 또다른 구현예에서, 상기 저굴절층 코팅용 조성물을 포함하는 저굴절필름을 제공한다.
상기 저굴절필름의 두께는 약 15nm 내지 약 100nm일 수 있다.
상기 저굴절필름의 굴절율은 약 1.35 내지 약 1.55일 수 있다.
상기 저굴절 코팅층 조성물은 산에 대한 불안정성을 극복한 것으로, 추후 적용된 투명 도전성 필름의 패턴 형성 전후에 균일한 광특성을 유지할 수 있다.
상기 저굴절층 코팅용 조성물 제조방법을 사용함으로써, 시간과 비용 대비시 보다 경제적인 저굴절 코팅층 조성물을 제공할 수 있다.
상기 저굴절필름은 균일한 계면을 형성함으로써, 상기 저굴절필름 상부에 일정한 결정성을 갖는 ITO층을 형성할 수 있고, 낮은 저항값을 갖는 투명 도전성 필름을 제공할 수 있다.
도 1은 본 발명의 실시예 1 내지 3에 따른 저굴절필름의 에칭 전, 후의 투과율 변화를 그래프로 나타낸 것이다.
도 2는 본 발명의 실시예 1 내지 3에 따른 저굴절필름의 에칭전, 후의 반사율 변화를 그래프로 나타낸 것이다.
도 3은 본 발명의 실시예 1, 실시예 4 내지 10에 따른 저굴절 필름의 에칭 전, 후의 투과율 변화를 그래프로 나타낸 것이다.
도 4는 본 발명의 실시예 1, 실시예 4 내지 10에 따른 저굴절 필름의 에칭 전, 후의 반사율 변화를 그래프로 나타낸 것이다.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다.
저굴절층 코팅용 조성물 및 이의 제조방법
본 발명의 일 구현예에서, 실록산 화합물을 포함하는 저굴절층 코팅용 조성물을 제공한다.
통상적으로 터치스크린 패널용 디스플레이의 투과도를 높이기 위해 굴절률이 조절된 고굴절층 및 저굴절층이 사용되어왔다. 그러나, 우수한 시인성을 갖는 터치스크린 패널용 디스플레이를 얻기 위해서 투과광에 대한 간섭현상을 억제하고 높은 도전성을 갖는 투명 도전성 필름의 필요성이 대두 되고 있다. 또한, 저굴절층은 도전층과 맞닿아 있는 층으로 저굴절층 표면의 형태와 저굴절층과 도전층의 계면의 상태에 따라 전도성에 큰 영향을 주기 때문에, 저굴절층의 확보가 중요한 요인으로 파악되었는바, 상기 저굴절층 코팅용 조성물에 대한 연구가 계속되어 왔다.
이에, 상기 저굴절층 코팅용 조성물은 실록산 화합물을 포함함으로써, 도전층의 패턴 형성후 도전성 및 투과광에 대한 간섭현상의 변화 및 물성 변화가 크지 않을 수 있다. 또한, 도전층의 패턴을 형성하기 위한 산처리에 물성이 변화지 않고, 투명 도전성 필름의 낮은 저항을 확보하기 위해 도전층과 유용한 계면을 형성할 수 있다.
상기 실록산 화합물은 화학식 1을 포함할 수 있다. [화학식1]은 (R1)n-Si-(O-R2)4-n이며, 상기 R1은 탄소수 1 내지 18의 알킬기, 비닐기, 알릴기, 에폭시기 또는 아크릴기, 상기 R2는 탄소수 1 내지 6을 갖는 알킬기 또는 아세톡시기이고, 상기 n은 0<n<4의 정수이다.
상기 화학식 1은 테트라에톡시실란(Si(OC2H5)4), 테트라메톡시실란(Si(OCH3)4), 트리에톡시(에틸)실란(C2H5Si(OC2H5)3), 트리메톡시(메틸)실란(CH3Si(OCH3)3), 트리아세톡시(메틸)실란(CH3CO2)3SiCH3), 트리아세톡시(비닐)실란(CH3CO2)3SiCH=CH2), 트리스(2-메톡시에톡시)(비닐)실란(CH3OCH2CH2O)3SiCH=CH2), 트리메톡시(옥틸) 실란(CH3(CH2)7Si(OC2H5)3), 트리메톡시[2-(7-옥사비시클로[4.1.0]헵(hept)-3-일)에틸]실란(C11H22O4Si), 트리메톡시(프로필)실란(CH3CH2CH2Si(OCH3)3), 트리메톡시(옥실)실란(CH3(CH2)7Si(OCH3)3), 트리메톡시(옥타데실)실란 (CH3(CH2)17Si(OCH3)3), 이소부틸(트리메톡시)실란(CH3)2CHCH2Si(OCH3)3, 트리에톡시(이소부틸)실란((CH3)2CHCH2Si(OC2H5)3), 트리메톡시(7-옥텐-1-일)실란 (H2C=CH(CH2)6Si(OCH3)3), 트리메톡시(2-페닐에틸)실란(C6H5CH2CH2Si(OCH3)3), 디메톡시-메틸(3,3,3-트리플로오로프로필)실란(C6H13F3O2Si), 디메톡시(디메틸)실란 (C2H6Si(OC2H6)2), 트리에톡시(1-페닐에테닐)실란((C2H5O)3SiC(CH2)C6H5), 트리에톡시[4-(트리플루오로메틸)페닐]실란(CF3C6H4Si(OC2H5)2), 트리에톡시(4-메톡시페닐)실란((C2H5O)3SiC6H4OCH3), 3-(트리메톡시실일)프로필 메타아크릴레이트(H2C=C(CH3)CO2(CH2)3Si(OCH3)3), (3-글라이시독시) 메틸디에톡시실란(C11H24O4Si), 3-(트리에톡시실일)프로필이소시아네이트 (C2H5O)3Si(CH2)3NCO), 이소부틸트리에톡시실란(CH3)2CHCH2Si(OC2H5)3) 및 이들의 조합으로 이루어진 군으로부터 선택된 어느 하나 일 수 있다.
구체적으로, 상기 실록산 화합물은 알콕시 실란 화합물; 및 탄소수 1 내지 18의 알킬기, 아크릴기, 글리시딜기 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나로 치환된 기능성 실란 화합물;의 혼합으로 형성될 수 있다. 실란 화합물은 SinH2n+2(n은 1이상의 정수)의 화학식을 포함하는 화합물을 일컫는바, 상기 알콕시 실란 화합물은 상기 화학식의 수소원자 중 어느 하나가 알콕시기로 치환된 실란 화합물을 의미하며, 상기 기능성 실란 화합물은 상기 화학식의 수소원자 중 어느 하나가 탄소수 1 내지 18의 알킬기, 아크릴기, 글리시딜기 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나로 치환되고, 상기 치환된 부분을 제외한 나머지는 알콕시 실란으로 치환된 화합물을 의미한다.
구체적으로, 상기 알콕시 실란 화합물/기능성 실란 화합물의 몰비율이 1 내지 50일 수 있다. 상기 몰비율(molar ratio)은 기능성 실란 화합물 몰수 대비 알콕시 실란 화합물의 몰수를 의미하는바, 구체적으로 상기 기능성 실란 화합물 1몰에 대해서 상기 알콕시 실란 화합물을 약 1몰 내지 약 50몰을 포함할 수 있다.
상기 실록산 화합물을 형성하기 위하여 상기 알콕시 실란 화합물 및 기능성 실란 화합물의 몰비율을 조절할 수 있고, 이로 인해 형성된 실록산 화합물을 저굴절층 코팅용 조성물에 포함시킴으로써 일정한 굴절율을 나타내는 저굴절필름을 형성할 수 있다. 또한, 상기 몰비율을 유지함으로써 에칭 안정성의 효과를 용이하게 나타낼 수 있다.
상기 저굴절층 코팅용 조성물은 상기 실록산 화합물이 졸겔반응하여 형성된 망상구조의 고분자 실록산 화합물을 포함할 수 있다. 망상구조는 어떤 특정한 다각형이 이어진 평면 그물 모양의 구조 또는 특정한 다면체의 정점, 모서리, 면 등을 공유하여 3차원 골격구조를 의미하는바, 상기 망상구조의 고분자 실록산 화합물은 -Si-O-Si-의 실록산 결합을 골격으로 하고, 예를 들어, 하기 [화학식 2]로 나타낼 수 있다.
[화학식 2]
Figure PCTKR2013012386-appb-I000001
구체적으로, 상기 고분자 실록산 화합물의 분자량은 약 2,000 내지 약 50,000일 수 있다. 상기 분자량은 중량평균 분자량으로, 분자량 분포가 있는 고분자 화합물의 분자량을 중량 분율로 평균하여 얻어지는 평균 분자량을 일컫는다. 상기 고분자 실록산 화합물은 [화학식 1]을 포함하는 실록산 화합물의 졸겔반응에 의해 형성되는 것으로, 상기 고분자 실록산 화합물이 상기 분자량의 범위를 유지함으로써 저굴절층 코팅용 조성물 코팅시 우수한 코팅성을 가지며, 경화시 상기 조성물의 경화 밀도 증대의 효과를 용이하게 구현할 수 있다.
보다 구체적으로, 상기 고분자 실록산 화합물은 저굴절층 코팅용 조성물 총 100중량%에 대하여 약 0.1중량% 내지 약 100중량%를 포함할 수 있다. 상기 고분자 실록산 화합물을 총 100중량%에 대하여 상기 범위로 포함함으로써 저굴절용 코팅용 조성물로 형성되는 저굴절필름의 굴절률을 낮출 수 있고, 경화시 반응 향상과 내 용제성 및 밀착성이 향상되는 효과를 용이하게 구현할 수 있다.
본 발명의 다른 구현예에서는 알콕시 실란 화합물; 및 탄소수 1 내지 18의 알킬기, 아크릴기, 글리시딜기 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나로 치환된 기능성 실란 화합물을 혼합하여 실록산 화합물을 형성하는 단계; 상기 형성된 실록산 화합물을 졸-겔 반응시켜 망상구조의 고분자 실록산 화합물을 형성하는 단계; 및 상기 형성된 고분자 실록산 화합물을 숙성시키는 단계를 포함하는 저굴절층 코팅용 조성물 제조방법을 제공한다.
알콕시 실란 화합물 및 탄소수 1 내지 18의 알킬기, 아크릴기, 글리시딜기 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나로 치환된 기능성 실란 화합물을 혼합하고 가수분해 축합반응을 통해 실록산 화합물을 형성할 수 있다.
상기 형성된 실록산 화합물을 졸-겔 반응시켜 망상구조의 고분자 실록산 화합물을 형성할 수 있다. 상기 고분자 실록산 화합물은 공지의 방법에 의하여 형성될 수 있고, 제조방법에 한정이 있는 것은 아니다.
예를 들어, 상기 고분자 실록산 화합물은 상기 실록산 화합물의 졸-겔 반응으로 형성될 수 있다. 졸-겔 반응은 가수분해 또는 탈수축합에 의해서 얻어진 수십, 수백nm의 콜로이드 입자가 액체중에 분산된 졸의 화염가수분해에서 얻어진 실리카 미립자 등을 액체에 분산시킨 졸에서 콜로이드 입자의 응집, 응결에 의해 졸의 유동성이 손실되어 다공체의 겔을 형성하는 반응을 일컫는다.
상기 실록산 화합물의 졸-겔 반응으로 고분자 실론산 화합물이 형성될 수 있고, 예를 들어, 상기 화학식1을 포함하는 실록산 화합물을 물 및 에탄올과 혼합하여 반응시켜 실리카 졸을 합성하고, 합성된 졸을 액체상의 망상 조직으로 변환시켜 무기질 망상 조직의 고분자 실록산 화합물을 제조할 수 있다.
상기 고분자 실록산 화합물을 형성하는 단계에서 상기 반응은 약 20℃ 내지 약 60℃의 온도에서 수행될 수 있다. 상기 범위의 온도에서 반응함으로써 미반응 물질의 발생을 감소시킬 수 있고 가수분해 및 축합반응을 용이하게 구현할 수 있다.
상기 고분자 실록산 화합물을 형성하는 단계에서 상기 반응은 약 3시간 내지 약 72시간의 시간동안 수행될 수 있다. 상기 범위의 시간 내에 반응이 수행됨으로써 가수분해 및 축합반응을 통해 목표하고자 하는 분자량을 가진 고분자 실록산 화합물을 합성할 수 있다라는 점에서 유리하다.
상기 저굴절층 코팅용 조성물 제조방법은 상기 반응에 의해 형성된 고분자 실록산 화합물을 숙성시키는 단계를 포함할 수 있다. 예를 들어, 상기 실록산 화합물을 약 40℃에서 약 0시간 내지 약 24시간 숙성시킴으로써, O-Si-O 결합 구조를 가질 수 있다.
저굴절필름
본 발명의 또다른 구현예에서, 실록산 화합물을 포함하는 저굴절층 코팅용 조성물을 포함하는 저굴절필름을 제공한다.
실록산 화합물은 상기 전술한 바와 같으며, 상기 저굴절 필름의 두께는 약 15nm 내지 약 100nm일 수 있다. 상기 저굴절 필름의 두께가 상기 범위를 유지함으로써 투과율 및 패턴 시인성이 개선될 수 있고, 추후 저굴절 필름이 투명 도전성 필름의 구성이 되는 경우, 상기 저굴절 필름 하부에 형성될 고굴절 필름 등과의 적절한 응력이 유지되어 밀착성이 확보되고 크랙 및 컬 발생이 저하될 수 있다.
상기 저굴절 필름의 굴절율은 약 1.35 내지 약 1.55일 수 있다. 상기 저굴절필름 형성에 실록산 화합물을 포함하는 저굴절층 코팅용 조성물을 이용한 결과 굴절률이 약 1.35 내지 약 1.55로 조절가능하며, 상기 저굴절필름이 사용될 투명 전도성 필름의 전체적인 시인성 및 투과율이 향상될 수 있다.
이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되어서는 아니된다.
<실시예>
실시예 1
트리메톡시(메틸)실란 1몰에 대해서 테트라-에톡시오르소실리케이트(TEOS) 50몰을 물, 에탄올과 1:2:2로 혼합하고, 질산 0.1mol용액을 투입하여 24시간 동안 반응시켜 굴절률 1.43을 갖는 망상구조의 고분자 실록산 화합물을 합성하였다. 상기 합성된 고분자 실록산 화합물의 고형분을 측정하고 메틸에틸케톤(MEK)로 희석하여, 전체 고형분 10%의 고분자 실록산 화합물을 제조하였고, 상기 제조된 고분자 실록산 화합물을 메틸에틸케톤(MEK)으로 희석하여 전체 고형분 5%의 저굴절층 코팅용 조성물을 제조하였다.
실시예 2
테트라-에톡시오르소실리케이트(TEOS)를 대체하여 전술한 [화학식 1]의 실록산 화합물을 포함하는 (3-글라이시독시)메틸디에톡시실란(C11H24O4Si)을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 저굴절층 코팅용 조성물을 제조하였다.
실시예 3
테트라-에톡시오르소실리케이트(TEOS)를 대체하여 전술한 [화학식 1]의 실록산 화합물을 포함하는 트리메톡시(메틸)실란(CH3Si(OCH3)3)를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 저굴절층 코팅용 조성물을 제조하였다.
실시예 4 내지 10
트리메톡시(메틸)실란 1몰에 대하여 테트라-에톡시오르소실리케이트(TEOS) 함유 몰량을 하기 표 2와 같이 한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 저굴절층 코팅용 조성물을 제조하였다.
표 1
Figure PCTKR2013012386-appb-T000001
표 2
Figure PCTKR2013012386-appb-T000002
<실험예> 저굴절층 코팅용 조성물의 에칭 안정성 확인을 위한 에칭안정성 테스트
상기 실시예의 저굴절층 코팅용 조성물을 이용하여 건조막 두께가 20nm가 되도록 도포하고, 150℃ 오븐에서 1분 동안 경화시켜 굴절율이 1.42인 저굴절필름을 형성했다. 이때, 상기 저굴절필름의 물성들을 측정하였고, 그 결과를 하기 표 3에 기재하였다.
1) 에칭 안정성: 상기 저굴절필름에 패턴화 되어 있는 실크 스크린을 이용하여 hyperEtch 18S T10(Merck)의 에칭페이스트를 도포하고, 130℃에서 6분간 건조한 후, 증류수를 이용하여 도포된 부분을 씻어내고 육안 관찰을 통하여 저굴절필름이 에칭페이스트에 의해 손상되었는지 여부를 평가하였다.
2) 투과율, 반사율: CM-5(Konica minolta사)를 이용해 상기 저굴절필름의 에칭전 및 에칭 후의 투과율 및 반사율을 측정하였고, 에칭 전 및 에칭 후의 투과 변화율, 에칭 전 및 에칭 후의 반사 변화율을 측정하였다.
표 3
Figure PCTKR2013012386-appb-T000003
상기 표 3의 측정결과를 통해 실시예 1 내지 3의 저굴절층 코팅용 조성물로 형성된 저굴절필름은 산에 대한 손상이 없으며, 이로 인하여 투과 변화율 및 반사 변화율이 거의 0에 가까움을 확인하였다. 상기 실시예 1 내지 3의 저굴절층 코팅용 조성물은 실록산 화합물을 포함하는바, 이로 인하여 에칭 안정성이 향상될 수 있고, 에칭 전, 후의 투과율 반사율의 차이가 거의 없음을 알 수 있었다.
도 1은 본 발명의 실시예 1 내지 3에 따른 저굴절필름의 에칭 전, 후의 투과율 변화를, 도 2는 실시예 1 내지 3에 따른 저굴절필름의 에칭전, 후의 반사율 변화를 그래프로 나타낸 것으로, 에칭 전 후의 투과율 및 반사율의 차이가 거의 없음을 확인할 수 있다.
또한, 알콕시 실란 화합물 및 기능성 실란 화합물의 몰 비율을 변화시킨 실시예1, 실시예 4 내지 10의 저굴절층 코팅용 조성물로 형성된 저굴절 필름의 에칭 안정성을 확인하였는바, 도 3은 본 발명의 실시예 1, 실시예 4 내지 10에 따른 저굴절 필름의 에칭 전, 후의 투과율 변화를, 도 4는 본 발명의 실시예 1, 실시예 4 내지 10에 따른 저굴절 필름의 에칭 전, 후의 반사율 변화를 그래프로 나타낸 것이다.
도 3 및 도 4를 참조하면, 알콕시 실란 화합물 및 기능성 실란 화합물의 몰 비율은 약 1 내지 약 50을 유지하는바, 상기 몰비율 범위 내에서 형성된 저굴절 필름의 에칭 전 후의 투과율 및 반사율의 차이가 거의 없음을 확인하였다.

Claims (12)

  1. 화학식 1의 실록산 화합물을 포함하는 저굴절층 코팅용 조성물.
    [화학식1]
    (R1)n-Si-(O-R2)4-n
    상기 R1은 탄소수 1 내지 18의 알킬기, 비닐기, 알릴기, 에폭시기 또는 아크릴기, 상기 R2는 탄소수 1 내지 6을 갖는 알킬기 또는 아세톡시기이고, 상기 n은 0<n<4의 정수이다.
  2. 제 1항에 있어서,
    상기 실록산 화합물은
    알콕시 실란 화합물; 및
    탄소수 1 내지 18의 알킬기, 아크릴기, 글리시딜기 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나로 치환된 기능성 실란 화합물;
    의 혼합으로 형성된 저굴절층 코팅용 조성물.
  3. 제 2항에 있어서,
    상기 알콕시 실란 화합물/기능성 실란 화합물의 몰비율이 1 내지 50인
    저굴절층 코팅용 조성물.
  4. 제 1항에 있어서,
    상기 실록산 화합물이 졸겔반응하여 형성된 망상구조의 고분자 실록산 화합물을 포함하는
    저굴절층 코팅용 조성물.
  5. 제 4항에 있어서,
    상기 고분자 실록산 화합물의 분자량이 2000 내지 50,000인
    저굴절층 코팅용 조성물.
  6. 제 4항에 있어서,
    상기 고분자 실록산 화합물은 총 100%에 대하여 0.1중량% 내지 100중량%를 포함하는
    저굴절층 코팅용 조성물.
  7. 알콕시 실란 화합물 및 탄소수 1 내지 18의 알킬기, 아크릴기, 글리시딜기 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나로 치환된 기능성 실란 화합물을 혼합하여 실록산 화합물을 형성하는 단계;
    상기 형성된 실록산 화합물을 졸-겔 반응시켜 망상구조의 고분자 실록산 화합물을 형성하는 단계; 및
    상기 형성된 고분자 실록산 화합물을 숙성시키는 단계를 포함하는
    저굴절층 코팅용 조성물 제조방법.
  8. 제 7항에 있어서,
    상기 고분자 실록산 화합물을 형성하는 단계에서 상기 반응은 20℃ 내지 60℃의 온도에서 수행되는
    저굴절층 코팅용 조성물 제조방법.
  9. 제 7항에 있어서,
    상기 고분자 실록산 화합물을 형성하는 단계에서 상기 반응은 3시간 내지 72시간의 시간동안 수행되는
    저굴절층 코팅용 조성물 제조방법.
  10. 제 1항에 기재된 저굴절층 코팅용 조성물을 포함하는 저굴절필름.
  11. 제 10항에 있어서,
    상기 저굴절필름의 두께는 15nm 내지 100nm인 저굴절필름.
  12. 제 10항에 있어서,
    상기 저굴절필름의 굴절율은 1.35 내지 1.55인 저굴절필름.
PCT/KR2013/012386 2013-01-23 2013-12-30 저굴절층 코팅용 조성물 및 이의 제조방법 WO2014115974A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0007619 2013-01-23
KR20130007619A KR20140094939A (ko) 2013-01-23 2013-01-23 저굴절층 코팅용 조성물 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2014115974A1 true WO2014115974A1 (ko) 2014-07-31

Family

ID=51227740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/012386 WO2014115974A1 (ko) 2013-01-23 2013-12-30 저굴절층 코팅용 조성물 및 이의 제조방법

Country Status (3)

Country Link
KR (1) KR20140094939A (ko)
TW (1) TWI531626B (ko)
WO (1) WO2014115974A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3597710A1 (en) * 2018-07-18 2020-01-22 Inkron OY Novel polysiloxane compositions and uses thereof
CN114181644A (zh) * 2021-12-15 2022-03-15 上海精珅新材料有限公司 Uv胶带及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040070225A (ko) * 2001-12-14 2004-08-06 아사히 가세이 가부시키가이샤 저굴절률 박막 형성용 코팅 조성물
KR20090043397A (ko) * 2007-10-29 2009-05-06 에스케이씨 주식회사 알콕시 실란계 중합체 용액과 이를 이용한 저굴절 코팅조성물, 고굴절 대전방지 하드코팅 조성물 및 이들을 사용한 반사방지 코팅 필름
KR20090118724A (ko) * 2008-05-14 2009-11-18 도레이새한 주식회사 내찰상성 및 표면 슬립성이 우수한 반사방지필름
KR100947720B1 (ko) * 2006-10-18 2010-03-16 주식회사 엘지화학 내마모성, 투명성 및 염색성이 우수한 실록산계 피복조성물, 그 제조 방법 및 그 조성물이 피복된 광학렌즈
KR101121207B1 (ko) * 2011-05-03 2012-03-22 윤택진 내식성이 우수한 저굴절 특성의 반사 방지 코팅 조성물, 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040070225A (ko) * 2001-12-14 2004-08-06 아사히 가세이 가부시키가이샤 저굴절률 박막 형성용 코팅 조성물
KR100947720B1 (ko) * 2006-10-18 2010-03-16 주식회사 엘지화학 내마모성, 투명성 및 염색성이 우수한 실록산계 피복조성물, 그 제조 방법 및 그 조성물이 피복된 광학렌즈
KR20090043397A (ko) * 2007-10-29 2009-05-06 에스케이씨 주식회사 알콕시 실란계 중합체 용액과 이를 이용한 저굴절 코팅조성물, 고굴절 대전방지 하드코팅 조성물 및 이들을 사용한 반사방지 코팅 필름
KR20090118724A (ko) * 2008-05-14 2009-11-18 도레이새한 주식회사 내찰상성 및 표면 슬립성이 우수한 반사방지필름
KR101121207B1 (ko) * 2011-05-03 2012-03-22 윤택진 내식성이 우수한 저굴절 특성의 반사 방지 코팅 조성물, 및 이의 제조방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3597710A1 (en) * 2018-07-18 2020-01-22 Inkron OY Novel polysiloxane compositions and uses thereof
CN114181644A (zh) * 2021-12-15 2022-03-15 上海精珅新材料有限公司 Uv胶带及其制备方法

Also Published As

Publication number Publication date
TW201430076A (zh) 2014-08-01
KR20140094939A (ko) 2014-07-31
TWI531626B (zh) 2016-05-01

Similar Documents

Publication Publication Date Title
CN107254054B (zh) 一种溶剂型疏水疏油性纳米杂化氟硅树脂的制备方法及其应用
KR100516085B1 (ko) 전도성 유기-무기 복합 재료
US4694040A (en) Liquid composition for forming a coating film of organopolysiloxane and method for the preparation thereof
CN104845523B (zh) 一种含多官能度含氟硅氧烷树脂的组合物及其制备方法
KR101919305B1 (ko) 저굴절율 막 형성용 조성물, 저굴절율 막의 형성 방법, 및 당해 형성 방법에 의해 형성된 저굴절율 막 및 반사 방지 막
CN107163254A (zh) 一种溶剂型疏水疏油性氟烃基硅树脂的制备方法及其应用
CN101638517B (zh) 一种有机硅树脂组合物
WO2014038760A1 (ko) 실록산 화합물을 포함하는 반사 방지 코팅 조성물, 이를 이용한 반사 방지 필름
CN104694004A (zh) 一种无溶剂防污闪有机硅涂料及其制备方法
WO2008107331A1 (de) Schichten aus heterosubstituierten silsesquioxanen
CN103788122A (zh) 一种硅烷偶联剂及硅酮密封胶组合物的制备方法
WO2014115974A1 (ko) 저굴절층 코팅용 조성물 및 이의 제조방법
CN102732151A (zh) 拒油涂布材料组合物
WO2014073815A1 (ko) 실록산 화합물을 포함하는 초친수성 반사방지 코팅 조성물, 이를 이용한 초친수성 반사방지 필름 및 이의 제조방법
CN102964983B (zh) 一种硅杂化复合涂覆电子胶及其制备方法
CN110036318A (zh) 黑矩阵用组合物、黑矩阵、以及黑矩阵的制造方法
CN107189745A (zh) 环保型硅烷改性聚醚披覆胶及其制备方法
CN107641466B (zh) 一种有机硅无溶剂浸渍漆及其制备方法
WO2014092344A1 (ko) 저굴절층 코팅용 조성물 및 이를 포함하는 투명 도전성 필름
JP2001152050A (ja) 有機ケイ素化合物処理顔料、その製造方法及び化粧料
CN105102559B (zh) 包含双硅烷化合物的涂覆组合物
WO2022131414A1 (ko) 초소수성 나노 실리카 입자 합성 및 이를 응용한 넌스틱 도료 제조방법
WO2014073788A1 (ko) 저굴절층 코팅용 조성물 및 이를 포함하는 투명 도전성 필름
JP3681582B2 (ja) エポキシ基含有シリコーン樹脂
US6652976B2 (en) Conductive, highly abrasion-resistant coatings, a process for their production and their use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13872379

Country of ref document: EP

Kind code of ref document: A1