WO2017164104A1 - Thermoelectric module power generation evaluation device - Google Patents

Thermoelectric module power generation evaluation device Download PDF

Info

Publication number
WO2017164104A1
WO2017164104A1 PCT/JP2017/010875 JP2017010875W WO2017164104A1 WO 2017164104 A1 WO2017164104 A1 WO 2017164104A1 JP 2017010875 W JP2017010875 W JP 2017010875W WO 2017164104 A1 WO2017164104 A1 WO 2017164104A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric module
power generation
temperature
heating
cooling
Prior art date
Application number
PCT/JP2017/010875
Other languages
French (fr)
Japanese (ja)
Inventor
舟橋 良次
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to CN201780016696.9A priority Critical patent/CN108886086B/en
Priority to JP2018507301A priority patent/JP6820564B2/en
Publication of WO2017164104A1 publication Critical patent/WO2017164104A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • the present invention relates to a thermoelectric module power generation evaluation apparatus.
  • exhaust gas from automobiles, factories, incinerators, etc. has been released.
  • the discharged exhaust gas is high-quality heat energy having a temperature of, for example, 500 ° C. or higher.
  • thermal energy is released in a dilute manner, the total amount is enormous and is said to reach 70% of the primary supply energy.
  • thermoelectric power generation using the Seebeck effect has attracted attention as a technique for effectively using the heat energy released in a dilute manner.
  • Thermoelectric power generation requires the production of thermoelectric modules that increase the voltage by connecting thermoelectric materials that generate voltage due to temperature differences, but most of the conventional thermoelectric modules are metallic materials. It was difficult to use by oxidation at a high temperature of 300 ° C. or higher in the air.
  • thermoelectric modules using thermoelectric materials having oxidation durability even at high temperatures such as oxides and silicides (silicides) are being developed.
  • thermoelectric module for the evaluation of the output of the thermoelectric module, power generation efficiency, long-term durability, etc., non-patented equipment equipped with a heating unit and cooling unit for creating a temperature difference in the thermoelectric module, a measuring instrument for evaluating power generation performance, a personal computer, etc. It is performed by an evaluation apparatus as shown in Documents 1 to 3.
  • Evaluation device manufactured by Kotohira Industries Co., Ltd. ⁇ http://www.kotohira.biz/lineup/heating_equipment.html> Evaluation equipment manufactured by ULVAC, Inc. ⁇ http://www.ulvac-es.co.jp/products/mini-pem/> Evaluation device made by KRI Co., Ltd. ⁇ http://www.kri-inc.jp/ts/dept/pdf/dm2-1.pdf#search %>
  • thermoelectric modules Conventional evaluation devices that evaluate the output, power generation efficiency, long-term durability, etc. of thermoelectric modules measure samples by placing them in a vacuum chamber, etc. due to the low durability of thermoelectric modules in air. Therefore, it was not suitable for performance evaluation under practical conditions. Further, in order to develop a highly durable thermoelectric module, there is a need for an evaluation device that can accurately measure the performance of the thermoelectric module in high temperature and air.
  • an object of the present invention is to provide a thermoelectric module power generation evaluation apparatus that can accurately evaluate the performance of a thermoelectric module.
  • the object of the present invention is a thermoelectric module power generation evaluation apparatus for evaluating the power generation performance of a thermoelectric module, and has a dimension equal to or larger than the dimension of the high temperature surface of the thermoelectric module and is disposed in contact with the high temperature surface.
  • a heating unit having a heating surface
  • a cooling unit having a dimension equal to or greater than the dimension of the low-temperature surface of the thermoelectric module and having a cooling surface arranged in contact with the low-temperature surface, and electric power connected to the thermoelectric module
  • the thermoelectric module power generation evaluation apparatus is characterized in that at least one part of the power extraction line is disposed in close contact with the cooling surface of the cooling unit.
  • the power extraction line is a sheet-like wiring having a predetermined width.
  • the cooling surface of the cooling unit has a larger area than the heating surface of the heating unit.
  • thermoelectric module is disposed between the heating unit and the cooling unit, and further includes a weighting unit that pressurizes the thermoelectric module between the heating unit and the cooling unit.
  • an elastic heat transfer sheet is provided between the cooling surface of the cooling unit and the low temperature surface of the thermoelectric module.
  • This heat transfer sheet preferably further has electrical insulation.
  • the heating unit includes a heating plate body made of an oxidation resistant material having a thermal expansion coefficient of 15 ⁇ 10 ⁇ 6 / K or less and a thermal conductivity of 10 W / mK or more, It is preferable that it is one side of the said heating plate main body.
  • the heating plate body is preferably made of stainless steel, nickel-base superalloy, or ceramics.
  • a cartridge heater and a temperature sensor disposed inside the heating plate main body are provided, and the cartridge heater and the temperature sensor are disposed so as to be biased toward the thermoelectric module with respect to the thickness direction of the heating plate main body. It is preferable that
  • thermoelectric module covers the periphery of the thermoelectric module and covers the cooling surface of the cooling unit.
  • thermoelectric module power generation evaluation apparatus that can accurately evaluate the performance of a thermoelectric module.
  • thermoelectric module power generation evaluation apparatus It is a schematic structure side view showing a thermoelectric module power generation evaluation apparatus according to the present invention.
  • 1A is a plan view of the heating unit included in the thermoelectric module power generation evaluation apparatus shown in FIG. 1
  • FIG. 1B is a side view as viewed from the A direction of FIG. 1A
  • FIG. 2B is a side view of a cooling unit included in the thermoelectric module power generation evaluation apparatus shown in FIG. 1.
  • thermoelectric module power generation evaluation apparatus It is a side view which shows the case where is connected to the electrode end of the module sample at the high temperature side. It is explanatory drawing for demonstrating the thermoelectric module sample large output measured by the thermoelectric module electric power generation evaluation apparatus shown in FIG. It is explanatory drawing for demonstrating the open voltage and internal resistance of the thermoelectric module sample measured by the thermoelectric module electric power generation evaluation apparatus shown in FIG. It is a weighting part with which the thermoelectric module power generation evaluation apparatus shown in FIG. 1 is provided, Comprising: It is explanatory drawing for demonstrating a pneumatic type or a hydraulic type weighting part. It is a modification of the weighting part with which the thermoelectric module power generation evaluation apparatus shown in FIG.
  • thermoelectric module power generation evaluation apparatus 1 is provided, Comprising: It is explanatory drawing for demonstrating the weighting part of a lever type press system. It is a modification of the weighting part with which the thermoelectric module power generation evaluation apparatus shown in FIG. 1 is provided, Comprising: It is explanatory drawing for demonstrating the weighting part of the system using a screw and a spring. It is explanatory drawing for demonstrating the modification of the weighting part shown in FIG. It is a principal part expansion schematic sectional drawing regarding the modification of the thermoelectric module power generation evaluation apparatus shown in FIG. It is a principal part expansion schematic side view regarding the modification of the thermoelectric module power generation evaluation apparatus shown in FIG. FIG.
  • thermoelectric module sample 2 is an example of a plan view of a thermoelectric module sample whose performance is evaluated by the thermoelectric module power generation evaluation apparatus shown in FIG. 1.
  • (A) is the side view seen from the C direction of FIG. 13
  • (b) is the side view seen from the D direction of FIG. 13
  • (c) is the side view seen from the E direction of FIG. 13, (d).
  • FIG. 14 It is the side view seen from the F direction of FIG. It is a perspective view regarding the example of a shape of the thermoelectric element which comprises the thermoelectric module sample shown in FIG.13 and FIG.14.
  • FIG. 15 is a schematic side view showing a modified structure example of the thermoelectric module sample shown in FIGS.
  • FIG. 15 is a schematic side view showing a modified structure example of the thermoelectric module sample shown in FIGS. 13 and 14, in which the thermoelectric module sample is configured by only one of the p-type element and the n-type element.
  • FIG. 13 and FIG. 14 show a modified structure example of the thermoelectric module sample, in which (a) is a plan view thereof, (b) is a side view seen from the C direction in (a), and (c) is The side view seen from D direction in (a), (d) is the side view seen from E direction in (a).
  • FIG. 13 is a modified structure example of the thermoelectric module sample shown in FIG.
  • thermoelectric module power generation evaluation apparatus (a) is a schematic side view showing a case where there are electrically insulating substrates on both the high temperature side and the low temperature side, and (b) is It is a schematic side view which shows the case where there is no electrically insulating board
  • thermoelectric module power generation evaluation apparatus It is explanatory drawing of the heating part used in Example 2 of the thermoelectric module power generation evaluation apparatus which concerns on this invention. It is explanatory drawing which shows the point which performed temperature measurement, when the preset temperature of the cartridge heater of the heating part which concerns on Example 2 shown in FIG. 23 is 800 degreeC. It is explanatory drawing of the cooling part used in Example 2 of the thermoelectric module power generation evaluation apparatus which concerns on this invention. It is explanatory drawing of the heating part used in Example 3 of the thermoelectric module power generation evaluation apparatus which concerns on this invention. It is explanatory drawing which shows the point which performed temperature measurement, when the preset temperature of the cartridge heater of the heating part which concerns on Example 3 shown in FIG. 26 is 600 degreeC. It is explanatory drawing of the cooling part used in Example 3 of the thermoelectric module power generation evaluation apparatus which concerns on this invention.
  • FIG. 1 is a schematic configuration side view showing a thermoelectric module power generation evaluation apparatus 1 according to an embodiment of the present invention.
  • the thermoelectric module power generation evaluation apparatus 1 includes a heating unit 2 and a cooling unit 3 that are arranged so as to sandwich a thermoelectric module sample 100 in the vertical direction.
  • the measurement part and control calculating part 5 which perform the performance evaluation of the thermoelectric module sample 100 are provided.
  • the heating unit 2 is a means for heating the high temperature surface of the thermoelectric module sample 100 sandwiched between the cooling unit 3 and includes a heating plate 21 that can raise the high temperature surface of the thermoelectric module sample 100 to about 1000 ° C., for example. ing.
  • the heating plate 21 includes a heating plate main body 22 and a plurality of cartridge heaters 23 accommodated therein.
  • 2A shows a plan view of the heating plate 21
  • FIG. 2B shows a side view seen from the direction A of FIG. 2A
  • FIG. 2C shows FIG. The side view seen from the B direction of (a) is shown.
  • the lower surface side of the heating plate main body 22 functions as a heating surface for heating the thermoelectric module sample 100, and this heating surface is a surface that can come into contact with the high temperature surface side of the thermoelectric module sample 100 and is formed smoothly.
  • the dimension of the heating surface of the heating plate 21 is set to have a dimension equal to or larger than the dimension of the high temperature surface of the thermoelectric module sample 100.
  • Various shapes can be adopted as the shape of the heating surface. For example, it is preferable to configure the heating surface as a square or rectangle of 50 to 200 mm ⁇ 50 to 200 mm.
  • the heating plate 21 has only to have a thickness that allows one or a plurality of holes 24 having a diameter of about 5.5 to 30 mm to be formed on one side surface, and the cartridge heater 23 can be inserted into the holes 24. In particular, it may have a thickness of about 10 to 20 mm.
  • the cartridge heater 23 accommodated in the heating plate main body 22 is configured such that the diameter thereof is in close contact with the inner peripheral surface of the hole 24 formed in the heating plate main body 22.
  • the diameter is about 5 to 30 mm. Is set to about 30 to 200 mm.
  • the material of the heating plate 21 in order to enable heating in high-temperature air, the material of the heating plate 21 needs to be excellent in heat resistance and oxidation resistance. Furthermore, good thermal contact between the heating surface and the thermoelectric module sample 100 is important in terms of reproducibility of power generation performance and stability in a long-term test, and it is preferable to ensure temperature uniformity within the heating surface. That is, it is preferable that the material of the heating plate 21 has a low thermal expansion coefficient and a high thermal conductivity at high temperatures. Furthermore, the thermal conductivity does not change greatly due to oxidation, and damage such as deformation or cracking due to heat or oxidation. It is preferable that the material is an oxidation-resistant material that is less likely to generate oxidization. As such a material, for example, stainless steel, nickel-base superalloy, or ceramics can be used.
  • the temperature unevenness of the heating surface is within a region where the maximum temperature difference when no load is applied without contacting the thermoelectric module sample 100 is the same as the center of the heating plate 21 and has a length of 80% of each side of the heating plate 21. It is preferable that it becomes 20 degrees C or less in the area
  • the thermoelectric module sample 100 is heated, the maximum difference in temperature within the high temperature surface of the module is the same as that of the heating plate 21 and within a region having a length of 80% of each side of the heating plate 21. It can be made 30 ° C. or lower, and can be made 10 ° C. or lower in a region of 50% or less.
  • a material having a thermal expansion coefficient as low as possible may be used as the material of the high temperature source (heating plate body 22).
  • the size of the heating plate body 22 according to the present invention if a material having a coefficient of thermal expansion of 15 ⁇ 10 ⁇ 6 / k or less at a temperature of 1000 ° C. or less is used, deformation of the heating surface can be prevented.
  • the thermal conductivity of the material is high, and if it is 10 w / mk or more, in-plane temperature non-uniformity can be reduced.
  • the metal material is stainless steel, SUS403, SUS405, SUS430, nickel-base superalloy, Inconel 600, Incoloy 800, ceramics, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc. Can be used.
  • metals such as stainless steel and nickel-base superalloy are preferable to ceramics.
  • the heating plate 21 is a member that inputs thermal energy to the thermoelectric module sample 100, and its heat output is also important.
  • the heat output from the heating plate 21 is determined by the output and the number of cartridge heaters 23.
  • the heat output of the heating plate 21 is not limited as long as a temperature difference is provided to the thermoelectric module sample 100 and a measurable power generation amount can be output.
  • the heat output per cartridge heater 23 is 50 to 50. A thing of about 700W may be used.
  • the intervals between the cartridge heaters 23 are preferably equal, and may be about 10 to 30 mm, although depending on the heater output and the material of the heating plate 21.
  • the temperature of the heating plate 21 may be measured by using a temperature sensor such as a thermocouple or a resistance temperature sensor.
  • a temperature sensor such as a thermocouple or a resistance temperature sensor.
  • a K type or R type thermocouple is preferable, and durability up to 1000 ° C.
  • R type thermocouple is most preferable.
  • a plurality of temperature sensors 25 may be attached inside the heating plate main body 22 as shown in FIG. At that time, in order to minimize the temperature unevenness, the diameter of the hole 26 for the temperature sensor should be as thin as possible, and the length thereof should be set to a length that can measure various portions of the heating plate 21.
  • At least one temperature sensor 25 to the temperature controller of the heater of the heating plate 21 and use it for temperature adjustment. More preferably, a plurality of temperature sensors 25 can be controlled individually. Temperature sensors 25 are arranged, and each is connected to a temperature controller.
  • thermoelectric module sample 100 since both the cartridge heater 23 and the temperature sensor 25 are closer to the thermoelectric module sample 100, the high temperature surface of the thermoelectric module sample 100 can be heated to a high temperature, and accurate temperature measurement can be performed. It is preferable that the cartridge heater 23 and the temperature sensor 25 are biased and installed on the thermoelectric module sample 100 side with respect to the thickness direction of the plate body 22).
  • the cartridge heater 23 in the heating unit 2 is connected to the heater control unit 27, and the power supplied to the cartridge heater 23 is automatically adjusted by the program of the control unit 27, and the temperature, the temperature rising / lowering speed, and the holding time are adjusted. It is controlled. Further, the heater temperature is prevented from being excessively increased by PID control.
  • the cooling unit 3 is a means for cooling the low temperature surface of the thermoelectric module sample 100 sandwiched between the heating unit 2 and as shown in the plan view of FIG. 3A and the side view of FIG. It has a form.
  • the cooling unit 3 includes a metal cooling plate 31. Inside the cooling plate 31, there is formed a flow path 32 through which cooling water can pass, as indicated by a dotted line in the plan view of FIG.
  • a water inlet pipe 33 is connected to the inlet side end of the flow path 32, and a water outlet pipe 34 is connected to the outlet side end of the flow path 32.
  • a cooling water circulation device 37 such as a chiller is connected to the water inlet pipe 33 and the water outlet pipe 34 via pipes 35 and 36, and in the cooling plate 31, for example, at a flow rate of about 5 to 20 liters / minute. It is configured to circulate water at about 10-30 ° C.
  • the cooling capacity of the cooling plate 31 is preferably about 0.05 ° C./W or less, more preferably about 0.03 ° C./W or less in terms of the thermal resistance value.
  • the flow rate of the circulating cooling water is controlled and measured by a flow meter such as a flow meter. Further, temperature sensors 38 and 39 are inserted into the water inlet pipe 33 and the water outlet pipe 34 of the cooling plate 31.
  • the temperature sensors 38 and 39 are not particularly limited as long as they do not interfere with the cooling water flow in the water inlet / outlet pipes (the water inlet pipe 33 and the water outlet pipe 34).
  • an introduction pipe is provided in the water inlet / outlet pipe having an outer shape of about 5 to 20 mm.
  • a thermocouple having a diameter of about 1 to 2 mm, a resistance temperature sensor, etc. can be used. Examples include a K-type thermocouple or a platinum resistance thermometer.
  • the inlet / outlet pipes may be arranged on the same side surface or different side surfaces of the cooling plate 31, and may be on the cooling surface or on the opposite side as long as it does not interfere with the arrangement with the thermoelectric module, the heating plate 21, or the like.
  • the upper surface of the cooling plate 31 shown in FIG. 3 functions as a cooling surface that cools the thermoelectric module sample 100, and this cooling surface is a surface that can come into contact with the low temperature surface side of the thermoelectric module sample 100.
  • the dimension of the cooling surface configured as described above is set to have a dimension equal to or larger than the dimension of the low temperature surface of the thermoelectric module sample 100 to be measured.
  • each side of the cooling plate 31 becomes a dimension longer than each side of the heating surface of the heating plate 21. It is preferable to configure the cooling plate 31 so that the area of the cooling plate 31 is larger than the area of the heating plate 21.
  • the thickness of the cooling plate 31 is not particularly limited, but can be set to about 10 to 80 mm.
  • thermoelectric module power generation evaluation apparatus 1 includes a power extraction line (lead wire 4) connected to the thermoelectric module sample 100.
  • the lead wires 4 are wirings respectively connected to both terminals of the thermoelectric module sample 100 (both ends (both electrode ends) of a pn thermoelectric element group configured in series by electrodes 102).
  • the lead wire 4 becomes high temperature due to heat radiation from the heating surface, and heat generation due to the electric resistance of the lead wire 4 occurs depending on the current value generated.
  • the rise in temperature of the lead wire 4 causes fluctuations in the electrical resistance of the lead wire 4 and temperature non-uniformity in the thermoelectric module due to heat inflow, which hinders accurate measurement. Therefore, for example, as shown in FIG.
  • the cooling plate 31 is configured to be in close contact with the surface and cooled.
  • a thin film such as a polyimide (Kapton (registered trademark)) tape so as not to prevent heat transfer.
  • the lead wire 4 guided from the thermoelectric module sample 100 may be configured to be guided from the low temperature surface side as shown in FIG. 4 (a), or as shown in FIG. 4 (b).
  • the lead wire 4 may be bent so as to be in contact with the cooling surface over a long distance as much as possible. In particular, when the lead wire 4 is led from the high temperature surface side, the lead wire 4 is bent with attention to contact with the thermoelectric element.
  • the heating unit 2 and the cooling unit 3 described above may be arranged in any manner, but if the fixing of the thermoelectric module is taken into consideration, they are arranged up and down as shown in FIG. 1 and FIG. This is preferable because it provides a simpler device structure and facilitates measurement.
  • either the heating unit 2 or the cooling unit 3 may be arranged at the upper part.
  • the heating part 2 is arranged at the upper part.
  • the cooling unit 3 is arranged at the lower part and the thermoelectric module sample 100 is sandwiched between the heating unit 2 and the cooling unit 3 from above and below.
  • the measuring unit is equipped with multiple temperature sensors. More specifically, the temperature sensor 25 (thermocouple, resistance temperature sensor, etc.) used for measuring the temperature of the heating plate 21 and the temperature sensors 38, 39 used for measuring the water temperature at the inlet / outlet of the cooling plate 31. It has. Moreover, the thermoelectric module sample 100 is provided with a temperature sensor that measures the temperature of the high temperature surface, the low temperature surface, and the side surface. Although the measurement method of the sensor for temperature measurement is not specified, a thermocouple or a resistance temperature sensor may be used from the viewpoint of measurement accuracy and convenience. In order to realize measurement in high-temperature air, which is a feature of the present invention, a temperature sensor having high durability under operating conditions may be used.
  • thermocouple using platinum-platinum / rhodium alloy, a K-type thermocouple using alumel-chromel and a platinum resistance thermometer are preferably used for measuring the cooling plate 31 and water temperature.
  • the measuring unit includes a measuring device for converting the temperature of the electric signal from the heating plate 21, the high and low temperature surfaces of the thermoelectric module sample 100, and the temperature measurement sensor for the cooling water.
  • the measurement unit includes a constant current DC power source or an electronic load device for applying an external load resistance to the thermoelectric module sample 100, and further includes a DC voltmeter that can measure the voltage generated by the thermoelectric module sample 100.
  • the measuring method may be performed by the DC four-terminal method, and an electric wire for external load resistance and a voltage measuring wire through which current flows are connected to the end of the lead wire 4 connected to the thermoelectric module sample 100.
  • the control calculation unit 5 is a means having a function of taking in numerical values such as measured temperature, voltage, current, and external load resistance, and performing calculation processing and storage.
  • a general personal computer can be used. Further, it is preferable that the measurement can be controlled by a program such that automatic measurement is possible at regular time intervals.
  • the control calculation unit 5 is configured so that the voltage and the power generation output can be automatically calculated based on the following formulas 1 and 2.
  • control calculation unit 5 is configured to continuously scan the external load resistance, measure the power generation output at different external load resistance values, and calculate the maximum value of the power generation output of the thermoelectric module sample 100. Yes.
  • the power generation output value is calculated from the measured current value and voltage value by (Equation 2), and the current value is plotted on the horizontal axis and the power generation output value is plotted on the vertical axis, as shown in FIG.
  • the maximum output value generated by the thermoelectric module sample 100 is obtained by calculation using a quadratic function approximation.
  • thermoelectric module sample 100 the measured current value and voltage value are plotted on the horizontal axis and the vertical axis, respectively, as shown in FIG.
  • the open circuit voltage that is an intercept and the internal resistance value that is the absolute value of the slope are calculated by the linear approximation.
  • the maximum output value can be calculated in principle from the open-circuit voltage value and the internal resistance value. That is, since the maximum output of the thermoelectric module sample 100 is obtained when the external load resistance value and the internal load value of the module coincide with each other, the maximum output of the thermoelectric module sample 100 may be automatically calculated by the following equation 3. .
  • control calculation unit 5 is configured to be able to calculate the power generation efficiency of the thermoelectric module sample 100.
  • the power generation efficiency is configured to be automatically calculated by the following equation 4.
  • Power generation efficiency (%) Power generation output (W) / (Power generation output (W) + Heat flow into cooling water (W)) x 100 (Equation 4)
  • the amount of heat (W) flowing into the cooling water is calculated by the following equation (5).
  • thermoelectric module power generation evaluation apparatus 1 includes a weighting unit 6 that pressurizes the thermoelectric module sample 100 between the heating unit 2 and the cooling unit 3 as shown in FIG. Since the degree of contact between the hot and cold surfaces of the thermoelectric module sample 100 and the heating plate 21 and the cooling plate 31 is very important in terms of heat input / output and temperature control, the weight during measurement is precise and constant. Is preferably maintained.
  • a specific configuration of the weighting unit 6 that pressurizes (weights) the thermoelectric module sample 100 a pneumatic or hydraulic type using a compressor as shown in FIG. 7 or an insulator principle as shown in FIG. 8 is used.
  • weighting is performed so that the weight is applied in the top-bottom direction. It is preferable to configure the portion 6, and more simply, it is preferable to fix the lower portion and apply a weight from the upper portion.
  • thermoelectric module sample 100 in order to prevent heat from directly flowing into the cooling plate 31 outside the thermoelectric module sample 100 due to heat radiation from the heating plate 21. It is preferable that the thermoelectric module sample 100 is configured to include the heat insulating member 7 that covers the periphery of the thermoelectric module sample 100 and covers the surface of the cooling plate 31 (the cooling surface of the cooling unit 3). When the thin thermoelectric module sample 100 is measured, the heating surface and the cooling surface face each other at a short distance, whereby the cooling water is heated even by thermal energy that does not pass through the thermoelectric module sample 100, and the measurement accuracy of power generation efficiency is improved. May be lowered.
  • the heat insulating member 7 that covers the periphery of the thermoelectric module sample 100 and covers the surface of the cooling plate 31 can effectively suppress such a decrease in measurement accuracy.
  • the heat insulating member 7 for example, glass wool or porous ceramic heat insulating material can be employed.
  • a heat insulating material covering the entire surface of the cooling plate 31 is disposed on the opposite surface (the surface opposite to the side on which the thermoelectric module sample 100 is disposed; the lower surface of the cooling plate 31 in FIG. 11). Is preferred.
  • the thermoelectric module power generation evaluation apparatus 1 includes a safety area 81, an emergency stop button 82, and an alarm indicator lamp 83 as shown in FIG.
  • the safety enclosure 81 is provided to prevent contact with the high-temperature heating plate 21 and impact on the thermoelectric module sample 100 during measurement.
  • the safety plate 81, the thermoelectric module sample 100, and the cooling plate 31 are externally attached. It is preferable to use a punching metal or a heat-resistant wire mesh so that it can be observed.
  • a door for replacing the module sample 100 is provided on at least one side surface of the safety enclosure 81. If this door is opened during measurement, the heater 2 is energized or weighted. It is preferable that the operation of the unit 6 is stopped and the measurement can be stopped in an emergency.
  • At least one temperature sensor is placed in the safety enclosure 81, and the temperature inside the enclosure is controlled. When the temperature exceeds the set value, energization and weighting to the heater in the heating unit 2 is stopped and measurement is made urgently. It may be configured to be able to stop
  • the emergency stop button 82 and the warning indicator lamp 83 are connected to the control calculation unit 5 and operate in conjunction with the control calculation unit 5.
  • the emergency stop button 82 is used when the measurement is immediately stopped due to some trouble, and is set so that the energization to the heater and the operation of the weighting unit 6 can be stopped by pressing the button. .
  • the warning indicator lamp 83 is operated to notify the measurer when the preset heating condition or measurement does not operate according to the program due to some trouble. A green lamp, a yellow lamp when measurement is stopped, and a red lamp are lit when an abnormality occurs.
  • thermoelectric module power generation evaluation apparatus 1 As described above, the heating unit having a heating surface having a dimension equal to or larger than the dimension of the high temperature surface of the thermoelectric module sample 100 and disposed in contact with the high temperature surface. 2 and a cooling unit 3 having a cooling surface 3 having a size equal to or larger than the size of the low-temperature surface of the thermoelectric module sample 100 and having a cooling surface arranged in contact with the low-temperature surface, and further connected to the thermoelectric module sample 100 Since at least a part of the power lead-out line (lead wire 4) is installed in close contact with the cooling surface of the cooling unit 3, the power generation efficiency can be evaluated with high accuracy.
  • the power lead-out line lead-out line
  • the lead wire 4 is generated.
  • the amount of heat related to the heat generated by the electrical resistance can be taken into the cooling water via the cooling surface, and the amount of heat supplied to the lead wire 4 by the heat radiation from the heating surface of the heating unit 2 is also cooled via the cooling surface. More accurate power generation efficiency and the like can be measured.
  • the shape and dimensions of the lead wire 4 are not particularly limited, but various shapes such as a plate shape, a belt shape, a round column shape, and a stranded wire shape can be employed.
  • a sheet-like lead wire 4 having a width of about 0.1 cm to 3 cm and a thickness of about 0.005 cm to 0.2 cm, more preferably a width of 0.5 cm to 1 cm and a thickness of 0.005 cm. It is preferable to employ a sheet-like lead wire 4 of about 0.1 cm.
  • Such a thin sheet-like lead wire 4 (band-like lead wire 4) having a predetermined width is employed, and at least a part of the lead wire 4 having the shape is brought into close contact with the cooling surface of the cooling plate 31.
  • the area of the cooling surface of the cooling plate 31 is larger than the area of the heating surface of the heating plate 21. According to such a configuration, it is possible to protect the peripheral members arranged on the cooling plate 31 side from the high temperature due to the heat transfer from the heating plate 21 and to effectively receive the amount of heat radiated from the heating plate 21. It is possible to measure the power generation efficiency and the like more accurately.
  • thermoelectric module power generation evaluation apparatus 1 As shown in the enlarged side view of the main part of FIG. 12, it is arranged between the cooling surface of the cooling unit 3 and the low temperature surface of the thermoelectric module sample 100.
  • a heat transfer sheet 9 having elasticity is disposed between the cooling surface and the low temperature surface of the thermoelectric module sample 100, even if a temperature sensor is inserted between the heat transfer sheet 9 and the water cooling surface, Since there is no large gap, the temperature of the element on the low temperature surface can be measured with higher accuracy, and the power generation efficiency and the like of the thermoelectric module sample 100 can be measured with higher accuracy.
  • the elastic heat transfer sheet 9 preferably further has electrical insulation.
  • the thermoelectric module sample 100 can be configured by omitting the low temperature side substrate 101 in the thermoelectric module sample 100, and the configuration of the module sample can be simplified. Is possible.
  • a sheet material made of silicone rubber or acrylic rubber can be used as the heat transfer sheet 9 having elasticity.
  • thermoelectric module sample 100 whose performance is evaluated by the thermoelectric module power generation evaluation apparatus 1 according to the present invention preferably has a plate shape as shown in FIGS. 1, 13, and 14. (In FIG. 14, the dimension in the thickness (height) direction is particularly enlarged and displayed). 13 is a plan view of the thermoelectric module sample 100, and FIGS. 14A to 14D are side views seen from the C direction, the D direction, the E direction, and the F direction in FIG. Is shown. As shown in FIGS. 13 and 14, the thermoelectric module sample 100 includes an electrically insulating low-temperature side substrate 101, a plurality of p-type thermoelectric elements, and a plurality of n-type thermoelectric elements.
  • Each p-type thermoelectric element and each n-type thermoelectric element are connected to each other in series, such as p-type, n-type, p-type, n-type,...
  • a part of the electrode 102 is disposed between the low temperature side substrate 101 and the pair of pn-type thermoelectric elements, and the other part of the electrode 102 is a pair of pn-type thermoelectric elements. It is arranged on the upper surface side of the element pair.
  • thermoelectric material, the electrode material, the substrate, and other constituent members used for the thermoelectric module sample 100 are not particularly limited as long as they maintain the shape without being melted, evaporated, crushed or the like at the measurement temperature.
  • shape of the p-type thermoelectric element and the n-type thermoelectric element is not particularly limited, but is preferably a quadrangular prism or a cylinder as shown in FIG.
  • the cross-sectional dimension of the thermoelectric element is not particularly limited, but when the cross-sectional area is large and the number of thermoelectric elements is reduced, the generated current value is increased, so that the heat generation in the lead wire 4 is increased and the voltage value is increased. Therefore, the measurement accuracy may be lowered.
  • thermoelectric module 100 causes a decrease in internal resistance, durability, ease of temperature difference, and accuracy of power generation efficiency.
  • thermoelectric elements From the viewpoint of preventing heat dissipation from the side of the material, it is preferably about 1 to 30 mm, more preferably about 1 to 7 mm.
  • the height H of the p-type and n-type thermoelectric elements may be different, it is preferable that all elements have the same length in consideration of good thermal contact with the heating plate 21 and the cooling plate 31. .
  • thermoelectric elements constituting the thermoelectric module sample 100 and the number of elements constituting one pn pair are not limited.
  • the case where the number of elements constituting a pair of pn thermoelectric element pairs is one for both the p-type and the n-type is shown, for example, as shown in FIG.
  • the number of elements constituting a pair of pn thermoelectric element pairs may be two for both p-type and n-type, or as shown in FIG.
  • the thermoelectric module sample 100 may be configured with only one of the thermoelectric elements.
  • FIGS. 16A to 16C and FIGS. 17A to 17C corresponds to side views viewed from the C direction, the D direction, and the E direction in FIG.
  • thermoelectric elements are connected to each other using the conductive electrode 102.
  • the present invention is not particularly limited to such a configuration.
  • FIG. 18A shows a plan view of the thermoelectric module sample 100
  • FIGS. 18B to 18D are side views of the thermoelectric module sample 100 as viewed from the C direction, the D direction, and the E direction in FIG. The figure is shown.
  • solder or conductive paste can be used, but in order to produce a highly durable module in high-temperature air, silver or platinum, rather than solder that may oxidize or melt, It is preferable to use a conductive paste using a noble metal such as gold.
  • the distance between the elements may be as long as the elements do not come into contact with each other to cause an electrical short, but if it is too wide, the number of elements in the thermoelectric module is reduced, and a high output cannot be obtained. Therefore, the interval between the elements is preferably about 0.1 to 5 mm, more preferably about 0.1 to 1 mm.
  • thermoelectric module sample 100 is configured such that the electrically insulating low temperature side substrate 101 is provided on the low temperature surface side and the substrate is not provided on the high temperature surface side.
  • the thermoelectric module sample 100 in addition to the low temperature side substrate 101, an electrically insulating high temperature side substrate 103 is disposed on the high temperature surface side of the thermoelectric module sample 100. It may be configured.
  • the thermoelectric module sample 100 may be configured by omitting the low temperature side substrate 101.
  • FIGS. 19A and 19B correspond to side views as viewed from the direction D in FIG.
  • thermoelectric module sample 100 is configured so that both or one of the low temperature side substrate 101 and the high temperature side substrate 103 is not provided, and a part of the electrode 102 is exposed.
  • the heating surface of the heating plate 21 and the cooling surface of the cooling plate 31 of the cooling unit 3 have electrical conductivity, the heating surface and cooling surface and the thermoelectric module sample 100 are used to prevent a short circuit between the thermoelectric elements.
  • An electrically insulating substance may be sandwiched between the two. In this case, if the thermal conductivity is low, it becomes difficult to give a temperature difference to the thermoelectric module sample 100. Therefore, it is preferable that the insert has as high a thermal conductivity as possible and a thin thickness.
  • thermoelectric module sample 100 a thin ceramic plate such as alumina or silicon nitride can be disposed between the heating surface and the thermoelectric module sample 100, and a commercially available heat plate can be disposed between the cooling surface and the thermoelectric module sample 100.
  • Conductive grease or polyimide (Kapton (registered trademark)) tape can be provided.
  • thermoelectric module sample 100 it is possible to adopt a cascade module in which a plurality of thermoelectric module samples 100 shown in FIG. 14 or the like are stacked.
  • the sum of the thicknesses of all thermoelectric modules is 50 mm or less. Is preferably about 5 to 20 mm.
  • the outer edge of the high temperature surface of the thermoelectric module sample 100 is 80% or less of the length of one side of the heating plate 21 to be described later, regardless of the presence of the substrate (low temperature side substrate 101, high temperature side substrate 103). More preferably, it is preferably set to 50% or less.
  • thermoelectric module sample 100 By setting in this way, most of the heat quantity of the heating plate 21 can be input to the thermoelectric module sample 100, so that the power generation output is also increased, and a power generation output close to the limit value that the thermoelectric module sample 100 can generate can be obtained. Moreover, even when there is no substrate, the influence of reduction of the thermal contact area due to deformation of the high temperature surface and the low temperature surface can be reduced.
  • thermoelectric module power generation evaluation apparatus 1 The inventor of the present invention created a plurality of examples according to the thermoelectric module power generation evaluation apparatus 1 and conducted performance evaluation tests on various thermoelectric module samples 100, which will be described below.
  • thermoelectric module power generation evaluation apparatus 1 First, the thermoelectric module power generation evaluation apparatus 1 according to Examples 1 to 3 created by the inventors will be described.
  • thermoelectric module power generation evaluation apparatus The configurations of the heating unit 2, the cooling unit 3, the weighting unit 6, and the measurement unit in the thermoelectric module power generation evaluation apparatus according to the first embodiment are as follows.
  • Heating unit 2 65 mm ⁇ 50 mm square, 25 mm thick Inconel 600 made hot plate main body 22 has three sides on the side surface of 4.5 mm from the outer side of the hot plate main body 22, a distance between the outer circumferences of 10 mm, and is further in contact with the thermoelectric module sample 100.
  • a hole 24 having a diameter of 12 mm was formed so as to be 6 mm from the heating surface side, and a cartridge heater 23 was loaded to constitute the heating plate 21 (FIG. 20).
  • the cartridge heater 23 is arranged so that the tip of the cartridge heater 23 reaches a depth of 40 mm from the outer edge of the heating plate 21.
  • On the opposite side surface there are two holes 26 having a diameter of 2 mm so that the distance between the outer periphery of the heating plate body 22 is 20.5 mm, the distance between the outer circumferences is 20 mm, and the heating surface side in contact with the thermoelectric module sample 100 is 11 mm.
  • an R type thermocouple temperature sensor 25
  • the thermocouple was positioned at equal intervals with the two cartridge heaters 23.
  • the tip of the thermocouple is arranged so as to reach a depth of 25 mm from the outer edge of the heating plate 21.
  • thermocouples One of the two thermocouples was connected to the heater temperature controller and used to control the heater temperature.
  • the cartridge heater 23 one that can be used up to a normal temperature of 800 ° C. and a maximum temperature of 1000 ° C. was adopted.
  • the heating amount of the heating plate 21 is two cartridge heaters 23 and the output is a maximum of 1 kW.
  • Table 1 shows the temperature distribution on the heating surface when the heating plate 21 is heated at a setting of 900 ° C. in a no-load state without being brought into contact with the thermoelectric module sample 100.
  • a thermo viewer is used for the measurement, and the measurement points displayed in Table 1 are shown in FIG. There was a tendency for the temperature to be higher when the measurement point was closer to the cartridge heater 23.
  • the maximum temperature difference was 49 ° C.
  • 16 ° C. is the maximum temperature difference. became. Note that the difference between the set temperature and the actually measured value occurs because the measurement was performed with the heating surface exposed in the air.
  • the cooling unit 3 was constituted by a copper cooling plate 31 having an 80 mm ⁇ 80 mm square and a thickness of 20 mm and having a water pipe (flow path 32) therein and a thermal resistance of 0.03 ° C./W or less (FIG. 22).
  • the chiller has a maximum cooling capacity of 1.4 kW and a maximum flow rate of 14 liters.
  • the set temperature is 30 ° C. or less.
  • the load portion 6 was configured by a lever press type using the lever principle (FIG. 8).
  • the weighting unit 6 is configured to suspend a weight of 5 kg at the maximum to the lever and to apply an even weight to the module sample from the upper part of the heating unit 2.
  • the weight can be set in increments of 1 kg.
  • the weight is confirmed by the load cell during measurement, and the weight is manually suspended on the lever to maintain a constant value.
  • the arrangement of the heating unit 2 and the cooling unit 3 is configured such that the heating unit 2 is in the upper part, the cooling unit 3 in the lower part is fixed, and a load is applied from the upper part.
  • the temperature is measured at two locations on the heating plate 21, one location on each of the high and low temperature surfaces of the thermoelectric module sample 100, and two locations on the cooling water temperature.
  • an R type thermocouple was used for the heating plate 21, the module high temperature surface
  • a K type thermocouple was used for the module low temperature surface.
  • a platinum resistance thermometer is used to measure the cooling water temperature.
  • the thermocouple for measurement of the heating plate 21 is inserted into a hole provided on the side surface of the heating plate 21.
  • an R type thermocouple is bonded to the element side surface using silver paste.
  • an alumina plate having a thickness of 0.8 mm was inserted between the heating plate 21 and an R type thermocouple was bonded to the element side using silver paste.
  • a constant current DC power supply capable of supplying a maximum current of 5 A was used, and a DC voltmeter capable of measuring up to 10 V was used as a voltmeter.
  • a digital temperature measuring device corresponding to each temperature center was used.
  • thermoelectric module power generation evaluation apparatus The configurations of the heating unit 2, the cooling unit 3, the weighting unit 6, and the measurement unit in the thermoelectric module power generation evaluation apparatus according to Example 2 are as follows.
  • Heating unit 2 14 mm from the outside of the heating plate 21, 13 mm from the outer periphery of the heating plate 21, and 6 mm from the heating surface side in contact with the thermoelectric module.
  • a heating plate 21 was constructed by opening a hole 24 having a diameter of 12 mm and mounting a cartridge heater 23. (FIG. 23). At this time, the cartridge heater 23 is arranged so that the tip of the cartridge heater 23 reaches a depth of 135 mm from the outer edge of the heating plate 21.
  • each thermocouple is positioned at equal intervals with the two cartridge heaters 23.
  • the tip of the thermocouple is disposed so as to reach a depth of 70 mm from the outer edge of the heating plate 21.
  • One of the two thermocouples close to the center is connected to the heater temperature controller and used to control the heater temperature.
  • the cartridge heater 23 one that can be used up to a normal temperature of 800 ° C. and a maximum temperature of 1000 ° C. was adopted.
  • the heating amount of the heating plate 21 is five cartridge heaters 23, and the output is 2.5 kW at maximum.
  • Table 2 shows the temperature distribution on the heating surface when the heating plate 21 is heated at a setting of 800 ° C. in a no-load state without being brought into contact with the thermoelectric module sample 100.
  • a thermo viewer is used for measurement, and the measurement points displayed in Table 2 are shown in FIG. There was a tendency for the temperature to be higher when the measurement point was closer to the cartridge heater 23.
  • the maximum temperature difference was 48 ° C.
  • 20 ° C. is the maximum temperature difference. became. Note that the difference between the set temperature and the actually measured value occurs because the measurement was performed with the heating surface exposed in the air.
  • the cooling unit 3 was constituted by a copper cooling plate 31 having a 140 mm ⁇ 140 mm square and a thickness of 20 mm and having a water pipe (flow path 32) therein and a thermal resistance of 0.005 ° C./W or less (FIG. 25).
  • the chiller has a maximum cooling capacity of 1.4 kW and a maximum flow rate of 14 liters.
  • the set temperature is 30 ° C. or less.
  • the load portion 6 was configured by a lever press using the lever principle (FIG. 8).
  • the weighting unit 6 is configured to suspend a weight of 10 kg at the maximum to the lever and to apply an even weight to the module sample from the upper part of the heating unit 2.
  • the weight can be set in increments of 1 kg.
  • the weight is confirmed by the load cell during measurement, and the weight is manually suspended on the lever to maintain a constant value.
  • the arrangement of the heating unit 2 and the cooling unit 3 is configured such that the heating unit 2 is in the upper part, the cooling unit 3 in the lower part is fixed, and a load is applied from the upper part.
  • the temperature is measured at four locations on the heating plate 21, two locations on the high and low temperature surfaces of the thermoelectric module sample 100, and two locations on the cooling water temperature.
  • the temperature sensor used was a heating plate 21, an R type thermocouple for the module high temperature surface, and a K type thermocouple for the module low temperature surface.
  • a platinum resistance thermometer is used to measure the cooling water temperature.
  • the thermocouple for measurement of the heating plate 21 is inserted into a hole provided on the side surface of the heating plate 21.
  • an R type thermocouple is bonded to the element side surface using silver paste.
  • an alumina plate having a thickness of 0.8 mm is inserted between the heating plate 21 and an R type thermocouple is bonded to the element side using silver paste.
  • a constant current DC power supply capable of supplying a maximum current of 10 A was used, and a DC voltmeter capable of measuring up to 10 V was used as a voltmeter.
  • a digital temperature measuring device corresponding to each temperature center was used.
  • thermoelectric module power generation evaluation apparatus The configuration of the heating unit 2, the cooling unit 3, the weighting unit 6, and the measurement unit in the thermoelectric module power generation evaluation apparatus according to Example 3 is as follows.
  • Heating unit 2 Heating surface in contact with the thermoelectric module sample 100 at six locations on the side surface of the heating plate body 22 made of Inconel 600 having a size of 160 mm ⁇ 150 mm square and a thickness of 30 mm, 11.5 mm from the outside of the heating plate 21, 15 mm between the outer circumferences.
  • a heating plate 21 was constructed by opening a hole 24 with a diameter of 12 mm so as to be 7 mm from the side and loading a cartridge heater 23 (FIG. 26). At this time, the cartridge heater 23 is arranged so that the tip of the cartridge heater 23 reaches a depth of 155 mm from the outer edge of the heating plate 21.
  • thermocouple temperature sensor 25
  • each thermocouple is positioned at equal intervals with the two cartridge heaters 23.
  • the tip of the thermocouple is arranged so as to reach a depth of 80 mm from the outer edge of the heating plate 21.
  • the central thermocouple is connected to the heater temperature controller and used to control the heater temperature.
  • the cartridge heater 23 one that can be used up to a normal temperature of 800 ° C. and a maximum temperature of 1000 ° C. was adopted.
  • the heating amount of the heating plate 21 is five cartridge heaters 23 and the output is 3 kW at maximum.
  • Table 3 shows the temperature distribution on the heating surface when the heating plate 21 is heated at a setting of 600 ° C. in a no-load state without being brought into contact with the thermoelectric module sample 100.
  • the measurement points displayed in Table 3 are shown in FIG. 27 using a thermo viewer. There was a tendency for the temperature to be higher when the measurement point was closer to the cartridge heater 23.
  • the maximum temperature difference was 19 ° C.
  • 19 ° C. is the maximum temperature difference even in an area having a length of 50% of each side of the heating plate 21 (area surrounded by points (22), (23), (24), (25)). became. Note that the difference between the set temperature and the actually measured value occurs because the measurement was performed with the heating surface exposed in the air.
  • the cooling unit 3 was composed of a copper cooling plate 31 having a 300 mm ⁇ 300 mm square and a thickness of 50 mm and having a water pipe (flow path 32) therein and a thermal resistance of 0.0015 ° C./W or less (FIG. 28).
  • the chiller has a maximum cooling capacity of 3 kW and a maximum flow rate of 27 liters.
  • the set temperature is 30 ° C. or less.
  • the weighting unit 6 was configured by a pneumatic compressor type (FIG. 7).
  • the weighting unit 6 can evenly apply a load to the module sample from the upper part of the heating unit 2 up to 200 kg.
  • the weight can be set in increments of 1 kg.
  • the weight value is confirmed by the load cell even during measurement, and can be automatically adjusted to the set weight.
  • the arrangement of the heating unit 2 and the cooling unit 3 is configured such that the heating unit 2 is in the upper part, the cooling unit 3 in the lower part is fixed, and a load is applied from the upper part.
  • the temperature is measured at five locations on the heating plate 21, at five locations on the high and low temperature surfaces of the thermoelectric module, and at two locations on the cooling water temperature.
  • the temperature sensor used was a heating plate 21, an R type thermocouple for the module high temperature surface, and a K type thermocouple for the module low temperature surface.
  • a platinum resistance thermometer is used to measure the cooling water temperature.
  • the thermocouple for measurement of the heating plate 21 is inserted into a hole provided on the side surface of the heating plate 21.
  • an R type thermocouple is bonded to the surface on the element side using silver paste.
  • an alumina plate having a thickness of 0.8 mm is inserted between the heating plate 21 and an R type thermocouple is bonded to the element side using silver paste.
  • a constant current DC power source capable of supplying a maximum current of 10 A was used, and a DC voltmeter capable of measuring up to 20 V was used as a voltmeter.
  • a digital temperature measuring device corresponding to each temperature center was used.
  • Test Examples 1 to 33 performed by the thermoelectric module power generation evaluation apparatus according to Examples 1 to 3 will be described.
  • Test Examples 8 to 30 were performed by the thermoelectric module power generation evaluation apparatus according to Example 2
  • Test Examples 31 to 33 were performed by the thermoelectric module power generation evaluation apparatus according to Example 3.
  • thermoelectric module samples according to Test Examples 1 to 17, 26, 27, 31, and 33 are thermoelectric modules using oxide-based materials manufactured based on the following [Document 1] to [Document 3].
  • [Reference 1] R. Funahashi, and S. Urata, K. Mizuno, T. Kouuchi, and M. Mikami, Ca2.7Bi0.3Co4O9 / La0.9Bi0.1NiO3 thermoelectrics devices with high output power density, Applied Physics Letters, Vol 85 No. 6, pp.1036-1038 (2004)
  • Reference 2 R. Funahashi, M. Mikami, T. Mihara, S. Urata, and N. Ando, A portable thermoelectric-power-generating module of Composed of oxide devices, Journal of Applied Physics, Vol. 99 No.
  • thermoelectric module samples according to Test Examples 18 to 25, 28 to 30, and 32 are thermoelectric modules using a silicide-based material manufactured based on the following documents 4 and 5.
  • Reference 4 R. Funahashi, Y. Matsumura, H. Tanaka, T. Takeuchi, W. Norimatsu, E. Combe, RO Suzuki, Y. Wang, C. Wan, S. Katsuyama, M. Kusunoki, and K. Koumoto, Thermoelectric Properties of n-type Mn3-xCrxSi4Al2 in Air, Journal of Applied Physics, 112, 073713 (2012)
  • Reference 5 R. Funahashi, Y. Matsumura, T. Barbier, T. Takeuchi, RO Suzuki, S. Katsuyama, A. Yamamoto, H. Takazawa, E. Combe, Durability of silicide-based thermoelectric modules at high temperatures in air, Journal of Electronic Materials, Vol. 44, Issue 8, pp 2946-2952 (2015)
  • thermoelectric module sample 100 whose performance was evaluated in Test Example 1 was composed of p-type Ca 2.7 Bi 0.3 Co 4 O 9 and n-type Ca 0.9 Yb 0.1 MnO 3 , and the cross-sectional dimensions of the element were 3.5 mm ⁇ 3.5 mm. It is 5 mm long and is joined to the silver electrode using a silver paste. There are 8 pairs of elements, and there are one pair of p-type and n-type elements. There is no substrate, the length of the side of the high temperature surface of the thermoelectric module sample 100 is 15.5 mm ⁇ 15.5, and the thickness is 5.2 mm.
  • the lead wire 4 is a silver sheet having a width of 3.5 mm, a thickness of 0.1 mm, and a length of 30 mm, and is connected to the electrode end on the low temperature surface side of the module sample.
  • a polyimide (Kapton (registered trademark)) tape having a thickness of 0.07 mm was wound around the lead wire 4, and was further adhered to the cooling plate 31 with a polyimide (Kapton (registered trademark)) tape.
  • thermoelectric module sample 100 when a heat-dissipating gel sheet (elastic heat transfer sheet 9; trade name: lambda gel) having a thickness of 0.5 mm is inserted between the low-temperature surface of the thermoelectric module sample 100 and the cooling plate 31, heat conduction and electrical insulation are ensured.
  • a K-type thermocouple for low-temperature surface measurement was inserted between the cooling plate 31 and the heat radiation gel sheet.
  • several sheets of glass wool heat insulating material (heat insulating member 7) hollowed to the same size as the high temperature surface of the thermoelectric module sample 100 are stacked to cover the periphery of the thermoelectric module sample 100 and to cover the entire cooling plate 31, Heating by heat dissipation from 21 was prevented.
  • the heating plate temperature was set in the range of 200 to 900 ° C. every 100 ° C., and a weight of 3 kg was hung on the handle lever and loaded.
  • the cooling water temperature set at 20 ° C. was circulated through the cooling plate 31 at a water amount of 5 liters / minute. After the temperature of the heating plate 21 reaches the set value, the external load resistance is scanned, the current value and the voltage value are measured, and the maximum output of the thermoelectric module sample 100 is calculated by the above equation 3 using the numerical values. . Furthermore, the power generation efficiency was calculated using Equation 4 from this maximum output and the amount of heat flowing into the cooling water calculated by Equation 5.
  • thermoelectric module sample 100 The details of the thermoelectric module sample 100 whose performance was evaluated in Test Example 1 are shown in Table 4, and the results concerning the power generation output (W) and the power generation efficiency (%) with respect to each temperature of the heating plate 21 are shown in Table 5.
  • Table 5 the part indicated by “-” indicates that the power generation output (W) and power generation efficiency (%) for each temperature of the heating plate 21 are not measured.
  • thermoelectric module sample 100 different from Test Example 1 was performed under the same conditions as in Test Example 1. Details regarding the thermoelectric module sample 100 whose performance was evaluated in Test Examples 2 to 5 are also shown in Table 4 above, and the results regarding the power generation output (W) and power generation efficiency (%) for each temperature of the heating plate 21 are shown in Table 5 above. Also shown.
  • thermoelectric module sample 100 whose performance was evaluated in Test Example 6 was composed of p-type Ca 2.7 Bi 0.3 Co 4 O 9 and n-type Ca 0.9 Yb 0.1 MnO 3 , and the cross-sectional dimensions of the element were 3.5 mm ⁇ 3.5 mm, It is 5 mm long and is joined to the silver electrode using a silver paste. There are 14 pairs of elements, and there are two pairs of p-type and n-type elements. Alumina having a size of 32 mm ⁇ 34 mm and a thickness of 0.8 mm is used as the substrate on the high temperature side.
  • the length of the side of the low-temperature surface without the substrate is 27.5 mm ⁇ 31.5 mm, and the thickness of the thermoelectric module is 7 mm.
  • the lead wire 4 is a silver sheet having a width of 5 mm, a thickness of 0.1 mm, and a length of 7.5 mm, and is connected to the electrode end on the high temperature surface side of the module sample.
  • a polyimide (Kapton (registered trademark)) tape having a thickness of 0.07 mm was wound around the lead wire 4, and was further adhered to the cooling plate 31 with a polyimide (Kapton (registered trademark)) tape.
  • thermoelectric module sample 100 when a heat-dissipating gel sheet (elastic heat transfer sheet 9; trade name: lambda gel) having a thickness of 0.5 mm is inserted between the low-temperature surface of the thermoelectric module sample 100 and the cooling plate 31, heat conduction and electrical insulation are ensured.
  • a K-type thermocouple for low-temperature surface measurement was inserted between the cooling plate 31 and the heat radiation gel sheet.
  • several sheets of glass wool heat insulating material (heat insulating member 7) hollowed with the same dimensions as the hot surface of the thermoelectric module are stacked to cover the periphery of the thermoelectric module sample 100 and to cover the entire cooling plate 31, and from the heating plate 21. Heating due to heat dissipation was prevented.
  • a weight of 3 kg was hung on the handle lever, and the weight was applied by the heating plate 21 at the top.
  • the heating plate temperature was raised from room temperature to 900 ° C. in 3 hours, and the external load resistance was scanned to measure the maximum output. .
  • heating of the heating plate 21 was stopped and left for 3 hours. Thereby, the heating plate temperature became 100 ° C. or less. Thereafter, heating was started again, the temperature was raised to 900 ° C. in 3 hours, and the maximum output of the thermoelectric module was measured. This test was repeated a total of 6 times to perform a module cycle test.
  • thermoelectric module sample 100 whose performance is evaluated in Test Example 7 includes p-type Ca 2.7 Bi 0.3 Co 4 O 9 and n-type Ca 0.9 Yb 0.1 MnO 3 , and the cross-sectional dimensions of the element are 3.5 mm ⁇ 3.5 mm.
  • the length is 3.5 mm and the silver electrode is used to join the silver electrode.
  • the number of pairs of elements is 10, and the number of pairs of elements is two for p-type and one for n-type.
  • Alumina having a size of 32 mm ⁇ 36 mm and a thickness of 0.8 mm is used as the substrate on the high temperature side.
  • the dimension of the thermoelectric module sample 100 excluding the substrate is 30 mm ⁇ 30 mm.
  • the lead wire 4 is a silver sheet having a width of 5 mm, a thickness of 0.1 mm, and a length of 7.5 mm, and is connected to the electrode end on the high temperature surface side of the module.
  • a polyimide (Kapton (registered trademark)) tape having a thickness of 0.07 mm was wound around the lead wire 4, and was further adhered to the cooling plate 31 with a polyimide (Kapton (registered trademark)) tape.
  • thermoelectric module 9 elastic heat transfer sheet 9; trade name: lambda gel
  • a K type thermocouple for low-temperature surface measurement was inserted between the cooling plate 31 and the heat radiation gel sheet.
  • several sheets of glass wool heat insulating material heat insulating member 7 hollowed to the same size as the high temperature surface of the thermoelectric module sample 100 are stacked to cover the periphery of the thermoelectric module sample 100 and to cover the entire cooling plate 31, Heating by heat dissipation from 21 was prevented.
  • a weight of 3 kg was hung on the handle lever, and the weight was applied by the heating plate 21 at the top.
  • the heating plate temperature was increased from room temperature to 1000 ° C. in 3 hours, the external load resistance was scanned, and the maximum output was measured. .
  • heating of the heating plate 21 was stopped and left for 4 hours. Thereby, the heating plate temperature became 100 ° C. or less. Thereafter, heating was started again, the temperature was increased to 1000 ° C. in 3 hours, and the maximum output of the thermoelectric module sample 100 was measured. This temperature cycle was repeated 53 times in total, and the measurement was performed every time until the 20th time and after 3 to 5 temperature cycles.
  • Table 6 shows the details of the thermoelectric module samples 100 of Test Examples 6 and 7, and Table 7 shows the results of the cycle test. In addition, the cycle test was not performed about the part shown by "-" in Table 7.
  • thermoelectric module sample 100 whose performance was evaluated in Test Example 8 was composed of p-type Ca 2.7 Bi 0.3 Co 4 O 9 and n-type Ca 0.9 Yb 0.1 MnO 3 , and the cross-sectional dimensions of the element were 3.5 mm ⁇ 3.5 mm, It is 5 mm long and is joined to the silver electrode using a silver paste. There are 34 pairs of elements, and there are two pairs of p-type and n-type elements. Alumina of 45 mm x 60 mm and 0.8 mm thickness is used as the substrate on the high temperature side. The side of the low-temperature surface without the substrate is 15.5 mm ⁇ 15.5 mm, and the thickness of the thermoelectric module is 6 mm.
  • the lead wire 4 is a silver sheet having a width of 3.5 mm, a thickness of 0.1 mm, and a length of 30 mm, and is connected to the electrode end on the low temperature side of the module.
  • a polyimide (Kapton (registered trademark)) tape having a thickness of 0.07 mm was wound around the lead wire 4, and was further adhered to the cooling plate 31 with a polyimide (Kapton (registered trademark)) tape.
  • thermoelectric module 9 elastic heat transfer sheet 9; trade name: lambda gel
  • a K type thermocouple for low-temperature surface measurement was inserted between the cooling plate 31 and the heat radiation gel sheet.
  • several sheets of glass wool heat insulating material heat insulating member 7 hollowed with the same dimensions as the hot surface of the thermoelectric module are stacked to cover the periphery of the thermoelectric module sample 100 and to cover the entire cooling plate 31, and from the heating plate 21. Heating due to heat dissipation was prevented.
  • the heating plate temperature was set in the range of 200 to 900 ° C.
  • the cooling water temperature set at 20 ° C. was circulated through the cooling plate 31 at a water amount of 5 liters / minute. After the temperature of the heating plate 21 reached the set value, the external load resistance was scanned to measure the maximum output of the thermoelectric module. Furthermore, the power generation efficiency was also measured using this maximum output.
  • thermoelectric module sample 100 different from Test Example 8 was performed under the same conditions as in Test Example 8. In some test examples, the test was performed such that the upper and lower limits of the set temperature of the heating plate 21 were different from those in Test Example 8.
  • Table 8 shows details of the thermoelectric module sample 100 whose performance was evaluated in Test Examples 8 to 25.
  • Table 9 shows the results regarding the power generation output (W) and the power generation efficiency (%) with respect to each temperature of the heating plate 21. In Table 9, the part indicated by “-” indicates that the power generation output (W) and the power generation efficiency (%) for each temperature of the heating plate 21 are not measured.
  • thermoelectric module sample 100 whose performance was evaluated in Test Example 26 was composed of p-type Ca 2.7 Bi 0.3 Co 4 O 9 and n-type Ca 0.9 Yb 0.1 MnO 3 , and the cross-sectional dimensions of the element were 3.5 mm ⁇ 3.5 mm. It is 5 mm long and is joined to the silver electrode using a silver paste. There are 34 pairs of elements, and there are two pairs of p-type and n-type elements. Alumina having a size of 32 mm ⁇ 34 mm and a thickness of 0.8 mm is used as the substrate on the high temperature side.
  • the length of the side of the low-temperature surface without the substrate is 43.5 mm ⁇ 47.5 mm, and the thickness of the thermoelectric module is 6 mm.
  • the lead wire 4 is a silver sheet having a width of 5 mm, a thickness of 0.1 mm, and a length of 7.5 mm, and is connected to the electrode end on the high temperature surface side of the module.
  • a polyimide (Kapton (registered trademark)) tape having a thickness of 0.07 mm was wound around the lead wire 4, and was further adhered to the cooling plate 31 with a polyimide (Kapton (registered trademark)) tape.
  • thermoelectric module 9 elastic heat transfer sheet 9; trade name: lambda gel
  • a K type thermocouple for low-temperature surface measurement was inserted between the cooling plate 31 and the heat radiation gel sheet.
  • several sheets of glass wool heat insulating material heat insulating member 7 hollowed with the same dimensions as the hot surface of the thermoelectric module are stacked to cover the periphery of the thermoelectric module sample 100 and to cover the entire cooling plate 31, and from the heating plate 21. Heating due to heat dissipation was prevented.
  • a weight of 5 kg was hung on the handle lever, and a weight was applied by the heating plate 21 at the top.
  • the heating plate temperature was raised from room temperature to 900 ° C. in 3 hours, and the external load resistance was scanned to measure the maximum output. .
  • heating of the heating plate 21 was stopped and left for 3 hours. Thereby, the heating plate temperature became 100 ° C. or less. Thereafter, heating was started again, the temperature was raised to 900 ° C. in 3 hours, and the maximum output of the thermoelectric module was measured. This test was repeated a total of 5 times to perform a module cycle test.
  • Test Example 27 was prepared separately with the same configuration as the thermoelectric module sample 100 according to Test Example 26, and the sample was performed under the same conditions as in Test Example 26.
  • Table 10 shows details of the thermoelectric modules of Test Examples 26 and 27.
  • Table 11 shows the results of these cycle tests. Although these two thermoelectric modules have the same composition and the same shape, there is a difference in deterioration phenomenon. This is because the causes of deterioration are different. In Test Example 26, it was found that the electrode portion was peeled off, and in Test Example 27, the n-type element was cracked.
  • thermoelectric module sample 100 whose performance was evaluated in Test Example 28 was composed of p-type MnSi 1.7 and n-type Mn 3 Si 4 Al 2 , and the cross-sectional dimensions of the element were 3.5 mm ⁇ 3.5 mm and the length was 7.5 mm. Then, the silver paste is used to join the silver electrode. There are 7 pairs of elements, and there are two pairs of p-type and n-type elements. Alumina with a thickness of 30 mm ⁇ 20 mm and a thickness of 0.8 mm is used as the substrate on the high temperature side. The length of the side of the low temperature surface without the substrate is 27.5 mm ⁇ 15.5 mm, and the thickness of the thermoelectric module is 8.5 mm.
  • the lead wire 4 is a silver sheet having a width of 5 mm, a thickness of 0.1 mm, and a length of 7.5 mm, and is connected to the electrode end on the high temperature surface side of the module.
  • a polyimide (Kapton (registered trademark)) tape having a thickness of 0.07 mm was wound around the lead wire 4, and was further adhered to the cooling plate 31 with a polyimide (Kapton (registered trademark)) tape.
  • thermoelectric module 9 elastic heat transfer sheet 9; trade name: lambda gel
  • a K type thermocouple for low-temperature surface measurement was inserted between the cooling plate 31 and the heat radiation gel sheet.
  • several sheets of glass wool heat insulating material heat insulating member 7 hollowed with the same dimensions as the hot surface of the thermoelectric module are stacked to cover the periphery of the thermoelectric module sample 100 and to cover the entire cooling plate 31, and from the heating plate 21. Heating due to heat dissipation was prevented.
  • thermoelectric module sample 100 whose performance was evaluated in Test Example 29 was composed of p-type MnSi 1.7 and n-type Mn 2.7 Cr 0.3 Si 4 Al 2 , the cross-sectional dimensions of the element were 3.5 mm ⁇ 3.5 mm, and the length was 7 .5 mm, using silver paste and bonded to the silver electrode. There are 7 pairs of elements, and there are two pairs of p-type and n-type elements. Alumina with a thickness of 30 mm ⁇ 20 mm and a thickness of 0.8 mm is used as the substrate on the high temperature side.
  • the length of the side of the low temperature surface without the substrate is 27.5 mm ⁇ 15.5 mm, and the thickness of the thermoelectric module is 8.5 mm.
  • the lead wire 4 is a silver sheet having a width of 5 mm, a thickness of 0.1 mm, and a length of 7.5 mm, and is connected to the electrode end on the high temperature surface side of the module.
  • a polyimide (Kapton (registered trademark)) tape having a thickness of 0.07 mm was wound around the lead wire 4, and was further adhered to the cooling plate 31 with a polyimide (Kapton (registered trademark)) tape.
  • thermoelectric module 9 elastic heat transfer sheet 9; trade name: lambda gel
  • a K type thermocouple for low-temperature surface measurement was inserted between the cooling plate 31 and the heat radiation gel sheet.
  • several sheets of glass wool heat insulating material heat insulating member 7 hollowed with the same dimensions as the hot surface of the thermoelectric module are stacked to cover the periphery of the thermoelectric module sample 100 and to cover the entire cooling plate 31, and from the heating plate 21. Heating due to heat dissipation was prevented.
  • a weight of 3 kg was hung on the handle lever and applied with a heating plate 21 at the top. While circulating the cooling water temperature set at 20 ° C to the cooling plate 31 at a rate of 5 liters / minute, the heating plate temperature is raised from room temperature to 500 ° C in 2 hours, and the generated current of 1A is constant by the constant current DC power supply.
  • the external load resistance was controlled so as to be maintained at a voltage, and the voltage generated by the thermoelectric module sample 100 was measured by a DC four-terminal method. The power generation output was calculated from this voltage value and current value. After the measurement, the power generation output at the time of 1 A generation was measured over 750 hours every 50 hours while keeping the heating plate temperature at 500 ° C.
  • Table 14 shows the details of the thermoelectric module of Test Example 29, and Table 15 shows the results of the long-term constant current continuous test of Test Example 29.
  • thermoelectric module sample 100 whose performance was evaluated in Test Example 30 was composed of p-type MnSi 1.7 and n-type Mn 2.7 Cr 0.3 Si 4 Al 2 , the cross-sectional dimensions of the element were 3.5 mm ⁇ 3.5 mm, and the length was 7 .5 mm, using silver paste and bonded to the silver electrode. There are 7 pairs of elements, and there are two pairs of p-type and n-type elements. Alumina with a thickness of 30 mm ⁇ 20 mm and a thickness of 0.8 mm is used as the substrate on the high temperature side.
  • the length of the side of the low temperature surface without the substrate is 27.5 mm ⁇ 15.5 mm, and the thickness of the thermoelectric module is 8.5 mm.
  • the lead wire 4 is a silver sheet having a width of 5 mm, a thickness of 0.1 mm, and a length of 7.5 mm, and is connected to the electrode end on the high temperature surface side of the module.
  • a polyimide (Kapton (registered trademark)) tape having a thickness of 0.07 mm was wound around the lead wire 4, and was further adhered to the cooling plate 31 with a polyimide (Kapton (registered trademark)) tape.
  • thermoelectric module 9 elastic heat transfer sheet 9; trade name: lambda gel
  • a K type thermocouple for low-temperature surface measurement was inserted between the cooling plate 31 and the heat radiation gel sheet.
  • several sheets of glass wool heat insulating material heat insulating member 7 hollowed with the same dimensions as the hot surface of the thermoelectric module are stacked to cover the periphery of the thermoelectric module sample 100 and to cover the entire cooling plate 31, and from the heating plate 21. Heating due to heat dissipation was prevented.
  • thermoelectric module sample 100 of Test Example 30 A weight of 3 kg was hung on the handle lever and applied with a heating plate 21 at the top. While circulating the cooling water temperature set to 20 ° C to the cooling plate 31 at a rate of 5 liters / minute, the heating plate temperature is raised from room temperature to 500 ° C in 2 hours, and the generated voltage of 1V is constant by the constant current DC power supply. The external load resistance was controlled so that the temperature was maintained at the current, and the current generated by the thermoelectric module was measured by the DC four-terminal method. The power generation output was calculated from this voltage value and current value. After the measurement, the power generation output when 1 V was generated was measured over 900 hours every 50 hours while keeping the heating plate temperature at 500 ° C. Table 16 shows the details of the thermoelectric module sample 100 of Test Example 30, and Table 17 shows the results of the long-term constant voltage continuous test of Test Example 30.
  • thermoelectric module sample 100 whose performance was evaluated in Test Example 31 is that the elements of the thermoelectric module are p-type Ca 2.7 Bi 0.3 Co 4 O 9 and n-type Ca 0.9 Yb 0.1 MnO 3 , and the cross-sectional dimension of the element is 3.5 mm ⁇ 3 .5 mm, 5 mm in length, and joined to the silver electrode using a silver paste.
  • Alumina having a thickness of 64.5 mm ⁇ 64.5 mm and a thickness of 0.8 mm is used as the substrate on the high temperature side.
  • the length of the side of the low temperature surface without the substrate is 63.5 mm ⁇ 63.5 mm, and the thickness of the thermoelectric module is 6 mm.
  • the lead wire 4 is a silver sheet having a width of 5 mm, a thickness of 0.1 mm, and a length of 7.5 mm, and is connected to the electrode end on the low temperature side of the module.
  • a polyimide (Kapton (registered trademark)) tape having a thickness of 0.07 mm was wound around the lead wire 4, and was further adhered to the cooling plate 31 with a polyimide (Kapton (registered trademark)) tape.
  • thermoelectric module 9 elastic heat transfer sheet 9; trade name: lambda gel
  • a K type thermocouple for low-temperature surface measurement was inserted between the cooling plate 31 and the heat radiation gel sheet.
  • several sheets of glass wool heat insulating material heat insulating member 7 hollowed with the same dimensions as the hot surface of the thermoelectric module are stacked to cover the periphery of the thermoelectric module sample 100 and to cover the entire cooling plate 31, and from the heating plate 21. Heating due to heat dissipation was prevented.
  • the heating plate temperature was set in the range of 200 to 900 ° C.
  • thermoelectric module Every 100 ° C., and a weight of 20 kg was applied from the top with a pneumatic compressor.
  • the cooling water temperature set at 20 ° C. is circulated through the cooling plate 31 at a water amount of 8 liters / minute. After the temperature of the heating plate 21 reached the set value, the external load resistance was scanned to measure the maximum output of the thermoelectric module. Furthermore, the power generation efficiency was also measured using this maximum output.
  • thermoelectric module sample 100 whose performance was evaluated in Test Example 32 was composed of p-type MnSi 1.7 and n-type Mn 2.7 Cr 0.3 Si 4 Al 2 , the cross-sectional dimensions of the element were 3.5 mm ⁇ 3.5 mm, and the length was 7 .5 mm, using silver paste and bonded to the silver electrode. There are 14 pairs of elements, and there are two pairs of p-type and n-type elements. Alumina with a thickness of 30 mm ⁇ 35 mm and a thickness of 0.8 mm is used as the substrate on the high temperature side.
  • the length of the side of the low-temperature surface without the substrate is 27.5 mm ⁇ 31.5 mm, and the thickness of the thermoelectric module is 8.5 mm.
  • the lead wire 4 is a silver sheet having a width of 5 mm, a thickness of 0.1 mm, and a length of 7.5 mm, and is on the high temperature surface side of the module.
  • a polyimide (Kapton (registered trademark)) tape having a thickness of 0.07 mm was wound around the lead wire 4, and was further adhered to the cooling plate 31 with a polyimide (Kapton (registered trademark)) tape.
  • thermoelectric module 9 elastic heat transfer sheet 9; trade name: lambda gel
  • a K type thermocouple for low-temperature surface measurement was inserted between the cooling plate 31 and the heat radiation gel sheet.
  • several sheets of glass wool heat insulating material heat insulating member 7 hollowed with the same dimensions as the hot surface of the thermoelectric module are stacked to cover the periphery of the thermoelectric module sample 100 and to cover the entire cooling plate 31, and from the heating plate 21. Heating due to heat dissipation was prevented.
  • the heating plate temperature was set in the range of 100 to 600 ° C.
  • the cooling water temperature set at 20 ° C. is circulated through the cooling plate 31 at a water amount of 8 liters / minute. After the temperature of the heating plate 21 reached the set value, the external load resistance was scanned to measure the maximum output of the thermoelectric module. Furthermore, the power generation efficiency was also measured using this maximum output.
  • Table 18 shows details of the thermoelectric module samples 100 of Test Examples 31 and 32.
  • Table 19 shows the measurement results.
  • thermoelectric module sample 100 whose performance was evaluated in Test Example 33 was composed of p-type Ca 2.7 Bi 0.3 Co 4 O 9 and n-type CaMn 0.98 Mo 0.02 O 3 , and the cross-sectional dimensions of the element were 3.5 mm ⁇ 3.5 mm. It has a length of 7 mm and is joined to a silver electrode using a silver paste. There are 64 pairs of elements, and there are two pairs of p-type and n-type elements. Alumina having a thickness of 64.5 mm ⁇ 64.5 mm and a thickness of 0.8 mm is used as the substrate on the high temperature side.
  • the side of the low-temperature surface without the substrate is 63.5 mm ⁇ 63.5 mm, and the thickness of the thermoelectric module is 8 mm.
  • the lead wire 4 is a silver sheet having a width of 5 mm, a thickness of 0.1 mm, and a length of 7.5 mm, and is connected to the electrode end on the high temperature surface side of the module.
  • a polyimide (Kapton (registered trademark)) tape having a thickness of 0.07 mm was wound around the lead wire 4, and was further adhered to the cooling plate 31 with a polyimide (Kapton (registered trademark)) tape.
  • thermoelectric module 9 elastic heat transfer sheet 9; trade name: lambda gel
  • a K type thermocouple for low-temperature surface measurement was inserted between the cooling plate 31 and the heat radiation gel sheet.
  • several sheets of glass wool heat insulating material heat insulating member 7 hollowed with the same dimensions as the hot surface of the thermoelectric module are stacked to cover the periphery of the thermoelectric module sample 100 and to cover the entire cooling plate 31, and from the heating plate 21. Heating due to heat dissipation was prevented. It was applied from the top of the weight of 10kg with a pneumatic compressor.
  • the heating plate temperature is increased from room temperature to 500 ° C in 2 hours, and the generated current of 1A is constant by the constant current DC power supply.
  • the external load resistance was controlled so that the voltage was maintained, and the voltage generated by the thermoelectric module was measured by the DC four-terminal method.
  • the power generation output was calculated from this voltage value and current value. After the measurement, the power generation output at the time of 1 A generation was measured over 750 hours every 50 hours while keeping the heating plate temperature at 500 ° C.
  • Table 20 shows details of the thermoelectric module sample 100 of Test Example 33.
  • Table 21 shows the results of the long-term constant current continuous test of Test Example 33.
  • thermoelectric module power generation evaluation apparatus According to the thermoelectric module power generation evaluation apparatus according to the present invention, the performance evaluation of various evaluation items such as the output of the thermoelectric module, the power generation efficiency, the cycle characteristics, and the long-term durability under practical conditions such as high temperature and in air. Can be confirmed.

Abstract

Provided is a thermoelectric module power generation evaluation device with which it is possible to accurately evaluate the performance of a thermoelectric module. The thermoelectric module power generation evaluation device for evaluating the power generation performance of the thermoelectric module is characterized in comprising: a heating unit having dimensions that are at least the dimensions of a high-temperature surface of the thermoelectric module, and having a heating surface arranged in contact with the high-temperature surface; a cooling unit having dimensions that are at least the dimensions of a low-temperature surface of the thermoelectric module, and having a cooling surface arranged in contact with the low-temperature surface of the thermoelectric module; and a power extraction line connected to the thermoelectric module, at least some of the power extraction line is arranged adhered on the cooling surface of the cooling unit.

Description

熱電モジュール発電評価装置Thermoelectric module power generation evaluation device
 本発明は、熱電モジュール発電評価装置に関する。 The present invention relates to a thermoelectric module power generation evaluation apparatus.
 従来から、自動車、工場、焼却場等からの排気ガスが放出されている。この放出される排気ガスは、例えば、500℃以上といった温度をもつ良質な熱エネルギーである。このような熱エネルギーは希薄分散して放出されるが、その総量は莫大で、一次供給エネルギーの70%弱にも達するといわれている。 Conventionally, exhaust gas from automobiles, factories, incinerators, etc. has been released. The discharged exhaust gas is high-quality heat energy having a temperature of, for example, 500 ° C. or higher. Although such thermal energy is released in a dilute manner, the total amount is enormous and is said to reach 70% of the primary supply energy.
 近年、この希薄分散して放出される熱エネルギーを有効利用する技術として、ゼーベック効果を用いた熱電発電が注目されている。熱電発電には温度差により電圧を発生する熱電材料を直列接続し、高電圧化する熱電モジュールの製造が必要であるが、これまでの熱電モジュールの殆どは熱電材料が金属系の材料であるため、300℃以上の高温、空気中では酸化により使用することが困難であった。しかし、最近では酸化物やケイ化物(シリサイド)など高温でも酸化耐久性のある熱電材料を用いた熱電モジュールが開発されつつある。 In recent years, thermoelectric power generation using the Seebeck effect has attracted attention as a technique for effectively using the heat energy released in a dilute manner. Thermoelectric power generation requires the production of thermoelectric modules that increase the voltage by connecting thermoelectric materials that generate voltage due to temperature differences, but most of the conventional thermoelectric modules are metallic materials. It was difficult to use by oxidation at a high temperature of 300 ° C. or higher in the air. However, recently, thermoelectric modules using thermoelectric materials having oxidation durability even at high temperatures such as oxides and silicides (silicides) are being developed.
 ここで、熱電モジュールの出力、発電効率、長期耐久性などの評価には、熱電モジュールに温度差をつけるための加熱部と冷却部、発電性能評価の計測器とパーソナルコンピュータなどを備えた非特許文献1~3に示すような評価装置により行われている。 Here, for the evaluation of the output of the thermoelectric module, power generation efficiency, long-term durability, etc., non-patented equipment equipped with a heating unit and cooling unit for creating a temperature difference in the thermoelectric module, a measuring instrument for evaluating power generation performance, a personal computer, etc. It is performed by an evaluation apparatus as shown in Documents 1 to 3.
 熱電モジュールの出力、発電効率、長期耐久性などの評価を行う従来の評価装置は、熱電モジュールの空気中での耐久性の低さから、試料を真空チャンバーなどに入れて測定を行うものであり、実用化条件での性能評価には適さないものであった。また、耐久性の高い熱電モジュールの開発のためには、高温、空気中での熱電モジュールの性能計測を精度よく行うことが出来る評価装置が求められている。 Conventional evaluation devices that evaluate the output, power generation efficiency, long-term durability, etc. of thermoelectric modules measure samples by placing them in a vacuum chamber, etc. due to the low durability of thermoelectric modules in air. Therefore, it was not suitable for performance evaluation under practical conditions. Further, in order to develop a highly durable thermoelectric module, there is a need for an evaluation device that can accurately measure the performance of the thermoelectric module in high temperature and air.
 本発明は、上述の状況に鑑み、熱電モジュールの性能を精度良く評価可能な熱電モジュール発電評価装置を提供することを目的とする。 In view of the above situation, an object of the present invention is to provide a thermoelectric module power generation evaluation apparatus that can accurately evaluate the performance of a thermoelectric module.
 本発明の前記目的は、熱電モジュールの発電性能を評価する熱電モジュール発電評価装置であって、前記熱電モジュールの高温面の寸法以上の寸法を有し、かつ、前記高温面に接して配置される加熱面を有する加熱部と、前記熱電モジュールの低温面の寸法以上の寸法を有し、かつ、前記低温面に接して配置される冷却面を有する冷却部と、前記熱電モジュールに接続される電力取出し線とを備えており、前記電力取出し線の少なくとも1部は、前記冷却部の冷却面上に密着して配置されることを特徴とする熱電モジュール発電評価装置により達成される。 The object of the present invention is a thermoelectric module power generation evaluation apparatus for evaluating the power generation performance of a thermoelectric module, and has a dimension equal to or larger than the dimension of the high temperature surface of the thermoelectric module and is disposed in contact with the high temperature surface. A heating unit having a heating surface, a cooling unit having a dimension equal to or greater than the dimension of the low-temperature surface of the thermoelectric module and having a cooling surface arranged in contact with the low-temperature surface, and electric power connected to the thermoelectric module The thermoelectric module power generation evaluation apparatus is characterized in that at least one part of the power extraction line is disposed in close contact with the cooling surface of the cooling unit.
 また、上記熱電モジュール発電評価装置において、前記電力取出し線は、所定の幅を有するシート状配線であることであることが好ましい。 Moreover, in the thermoelectric module power generation evaluation apparatus, it is preferable that the power extraction line is a sheet-like wiring having a predetermined width.
 また、前記冷却部の冷却面は、前記加熱部の加熱面よりも大きい面積を備えていることが好ましい。 Moreover, it is preferable that the cooling surface of the cooling unit has a larger area than the heating surface of the heating unit.
 また、前記加熱部と前記冷却部との間に前記熱電モジュールを配置可能に構成され、前記加熱部と前記冷却部との間で前記熱電モジュールを加圧する加重部を更に備えることが好ましい。 Further, it is preferable that the thermoelectric module is disposed between the heating unit and the cooling unit, and further includes a weighting unit that pressurizes the thermoelectric module between the heating unit and the cooling unit.
 また、前記冷却部の冷却面と前記熱電モジュールの低温面との間に配置される弾力性のある伝熱シートを備えていることが好ましい。この伝熱シートは、電気絶縁性を更に備えることが好ましい。 Moreover, it is preferable that an elastic heat transfer sheet is provided between the cooling surface of the cooling unit and the low temperature surface of the thermoelectric module. This heat transfer sheet preferably further has electrical insulation.
 また、前記加熱部は、熱膨張率が15×10-6/K以下、かつ、熱伝導率が10W/mK以上の耐酸化性材料からなる加熱板本体を備えており、前記加熱面は、前記加熱板本体の一方面であることが好ましい。 Further, the heating unit includes a heating plate body made of an oxidation resistant material having a thermal expansion coefficient of 15 × 10 −6 / K or less and a thermal conductivity of 10 W / mK or more, It is preferable that it is one side of the said heating plate main body.
 また、前記加熱板本体は、ステンレス、ニッケル基超合金、又は、セラミックスから形成されていることが好ましい。 The heating plate body is preferably made of stainless steel, nickel-base superalloy, or ceramics.
 また、前記加熱板本体の内部に配置されるカートリッジヒーター及び温度センサーを備えており、前記カートリッジヒーター及び前記温度センサーは、前記加熱板本体の厚み方向に対して、熱電モジュール側に偏らせて設置されていることが好ましい。 In addition, a cartridge heater and a temperature sensor disposed inside the heating plate main body are provided, and the cartridge heater and the temperature sensor are disposed so as to be biased toward the thermoelectric module with respect to the thickness direction of the heating plate main body. It is preferable that
 また、前記熱電モジュールの周囲を覆うと共に、前記冷却部の前記冷却面を被覆する断熱部材を備えることが好ましい。 Moreover, it is preferable to include a heat insulating member that covers the periphery of the thermoelectric module and covers the cooling surface of the cooling unit.
 本発明によれば、熱電モジュールの性能を精度良く評価可能な熱電モジュール発電評価装置を提供することができる。 According to the present invention, it is possible to provide a thermoelectric module power generation evaluation apparatus that can accurately evaluate the performance of a thermoelectric module.
本発明に係る熱電モジュール発電評価装置を示す概略構成側面図である。It is a schematic structure side view showing a thermoelectric module power generation evaluation apparatus according to the present invention. 図1に示す熱電モジュール発電評価装置が備える加熱部に関し、(a)はその平面図であり、(b)は(a)のA方向から見た側面図、(c)は(a)のB方向から見た側面図である。1A is a plan view of the heating unit included in the thermoelectric module power generation evaluation apparatus shown in FIG. 1, FIG. 1B is a side view as viewed from the A direction of FIG. 1A, and FIG. It is the side view seen from the direction. 図1に示す熱電モジュール発電評価装置が備える冷却部に関し、(a)はその平面図であり、(b)はその側面図である。1A is a plan view and FIG. 2B is a side view of a cooling unit included in the thermoelectric module power generation evaluation apparatus shown in FIG. 1. 図1に示す熱電モジュール発電評価装置の要部拡大概略側面図であり、(a)はリード線がモジュール試料の低温側の電極端に接続される場合を示す側面図、(b)はリード線がモジュール試料の高温側の電極端に接続される場合を示す側面図である。It is a principal part expansion schematic side view of the thermoelectric module power generation evaluation apparatus shown in FIG. 1, (a) is a side view which shows the case where a lead wire is connected to the electrode end of the low temperature side of a module sample, (b) is a lead wire. It is a side view which shows the case where is connected to the electrode end of the module sample at the high temperature side. 図1に示す熱電モジュール発電評価装置によって計測される熱電モジュール試料大出力を説明するための説明図である。It is explanatory drawing for demonstrating the thermoelectric module sample large output measured by the thermoelectric module electric power generation evaluation apparatus shown in FIG. 図1に示す熱電モジュール発電評価装置によって計測される熱電モジュール試料の開放電圧、内部抵抗を説明するための説明図である。It is explanatory drawing for demonstrating the open voltage and internal resistance of the thermoelectric module sample measured by the thermoelectric module electric power generation evaluation apparatus shown in FIG. 図1に示す熱電モジュール発電評価装置が備える加重部であって、空圧式あるいは油圧式の加重部を説明するための説明図である。It is a weighting part with which the thermoelectric module power generation evaluation apparatus shown in FIG. 1 is provided, Comprising: It is explanatory drawing for demonstrating a pneumatic type or a hydraulic type weighting part. 図1に示す熱電モジュール発電評価装置が備える加重部の変形例であって、レバー式プレス方式の加重部を説明するための説明図である。It is a modification of the weighting part with which the thermoelectric module power generation evaluation apparatus shown in FIG. 1 is provided, Comprising: It is explanatory drawing for demonstrating the weighting part of a lever type press system. 図1に示す熱電モジュール発電評価装置が備える加重部の変形例であって、ねじとバネを用いた方式の加重部を説明するための説明図である。It is a modification of the weighting part with which the thermoelectric module power generation evaluation apparatus shown in FIG. 1 is provided, Comprising: It is explanatory drawing for demonstrating the weighting part of the system using a screw and a spring. 図9に示す加重部の変形例を説明するための説明図である。It is explanatory drawing for demonstrating the modification of the weighting part shown in FIG. 図1に示す熱電モジュール発電評価装置の変形例に関する要部拡大概略断面図である。It is a principal part expansion schematic sectional drawing regarding the modification of the thermoelectric module power generation evaluation apparatus shown in FIG. 図1に示す熱電モジュール発電評価装置の変形例に関する要部拡大概略側面図である。It is a principal part expansion schematic side view regarding the modification of the thermoelectric module power generation evaluation apparatus shown in FIG. 図1に示す熱電モジュール発電評価装置により性能評価される熱電モジュール試料の平面図の一例である。FIG. 2 is an example of a plan view of a thermoelectric module sample whose performance is evaluated by the thermoelectric module power generation evaluation apparatus shown in FIG. 1. (a)は図13のC方向から見た側面図であり、(b)は図13のD方向から見た側面図、(c)は図13のE方向から見た側面図、(d)は図13のF方向から見た側面図である。(A) is the side view seen from the C direction of FIG. 13, (b) is the side view seen from the D direction of FIG. 13, (c) is the side view seen from the E direction of FIG. 13, (d). [FIG. 14] It is the side view seen from the F direction of FIG. 図13及び図14に示す熱電モジュール試料を構成する熱電素子の形状例に関する斜視図である。It is a perspective view regarding the example of a shape of the thermoelectric element which comprises the thermoelectric module sample shown in FIG.13 and FIG.14. 図13及び図14に示す熱電モジュール試料の変形構造例であって、p-n熱電素子対の一対を構成する素子数がp型、n型共に二個である場合を示す概略側面図である。FIG. 15 is a schematic side view showing a modified structure example of the thermoelectric module sample shown in FIGS. 13 and 14, wherein the number of elements constituting a pair of pn thermoelectric element pairs is both p-type and n-type. . 図13及び図14に示す熱電モジュール試料の変形構造例であって、p型素子あるいはn型素子のどちらか一方の熱電素子のみで熱電モジュール試料を構成した場合を示す概略側面図である。FIG. 15 is a schematic side view showing a modified structure example of the thermoelectric module sample shown in FIGS. 13 and 14, in which the thermoelectric module sample is configured by only one of the p-type element and the n-type element. 図13及び図14に示す熱電モジュール試料の変形構造例であって、(a)はその平面図であり、(b)は、(a)におけるC方向から見た側面図、(c)は、(a)におけるD方向から見た側面図、(d)は、(a)におけるE方向から見た側面図である。FIG. 13 and FIG. 14 show a modified structure example of the thermoelectric module sample, in which (a) is a plan view thereof, (b) is a side view seen from the C direction in (a), and (c) is The side view seen from D direction in (a), (d) is the side view seen from E direction in (a). 図13及び図14に示す熱電モジュール試料の変形構造例であって、(a)は高温側及び低温側の両方に電気絶縁性の基板が有る場合を示す概略側面図であり、(b)は、高温側及び低温側の両方に電気絶縁性の基板が無い場合を示す概略側面図である。FIG. 13 is a modified structure example of the thermoelectric module sample shown in FIG. 13 and FIG. 14, (a) is a schematic side view showing a case where there are electrically insulating substrates on both the high temperature side and the low temperature side, and (b) is It is a schematic side view which shows the case where there is no electrically insulating board | substrate in both a high temperature side and a low temperature side. 本発明に係る熱電モジュール発電評価装置の実施例1で用いる加熱部の説明図である。It is explanatory drawing of the heating part used in Example 1 of the thermoelectric module power generation evaluation apparatus which concerns on this invention. 図20で示す実施例1に係る加熱部のカートリッジヒーターの設定温度を900℃とした場合において、温度計測を行った地点を示す説明図である。It is explanatory drawing which shows the point which performed temperature measurement, when the preset temperature of the cartridge heater of the heating part which concerns on Example 1 shown in FIG. 20 is 900 degreeC. 本発明に係る熱電モジュール発電評価装置の実施例1で用いる冷却部の説明図である。It is explanatory drawing of the cooling part used in Example 1 of the thermoelectric module power generation evaluation apparatus which concerns on this invention. 本発明に係る熱電モジュール発電評価装置の実施例2で用いる加熱部の説明図である。It is explanatory drawing of the heating part used in Example 2 of the thermoelectric module power generation evaluation apparatus which concerns on this invention. 図23で示す実施例2に係る加熱部のカートリッジヒーターの設定温度を800℃とした場合において、温度計測を行った地点を示す説明図である。It is explanatory drawing which shows the point which performed temperature measurement, when the preset temperature of the cartridge heater of the heating part which concerns on Example 2 shown in FIG. 23 is 800 degreeC. 本発明に係る熱電モジュール発電評価装置の実施例2で用いる冷却部の説明図である。It is explanatory drawing of the cooling part used in Example 2 of the thermoelectric module power generation evaluation apparatus which concerns on this invention. 本発明に係る熱電モジュール発電評価装置の実施例3で用いる加熱部の説明図である。It is explanatory drawing of the heating part used in Example 3 of the thermoelectric module power generation evaluation apparatus which concerns on this invention. 図26で示す実施例3に係る加熱部のカートリッジヒーターの設定温度を600℃とした場合において、温度計測を行った地点を示す説明図である。It is explanatory drawing which shows the point which performed temperature measurement, when the preset temperature of the cartridge heater of the heating part which concerns on Example 3 shown in FIG. 26 is 600 degreeC. 本発明に係る熱電モジュール発電評価装置の実施例3で用いる冷却部の説明図である。It is explanatory drawing of the cooling part used in Example 3 of the thermoelectric module power generation evaluation apparatus which concerns on this invention.
 以下、本発明の実施形態について添付図面を参照して説明する。なお、各図は、構成の理解を容易ならしめるために部分的に拡大・縮小している。図1は、本発明の一実施形態にかかる熱電モジュール発電評価装置1を示す概略構成側面図である。この図1に示すように、熱電モジュール発電評価装置1は、熱電モジュール試料100を上下方向に挟持するようにして配置される加熱部2及び冷却部3を備えている。また、熱電モジュール試料100の性能評価を行う計測部及び制御演算部5を備えている。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. Each figure is partially enlarged or reduced in order to facilitate understanding of the configuration. FIG. 1 is a schematic configuration side view showing a thermoelectric module power generation evaluation apparatus 1 according to an embodiment of the present invention. As shown in FIG. 1, the thermoelectric module power generation evaluation apparatus 1 includes a heating unit 2 and a cooling unit 3 that are arranged so as to sandwich a thermoelectric module sample 100 in the vertical direction. Moreover, the measurement part and control calculating part 5 which perform the performance evaluation of the thermoelectric module sample 100 are provided.
 加熱部2は、冷却部3との間で挟まれる熱電モジュール試料100の高温面を加熱する手段であり、熱電モジュール試料100の高温面を例えば1000℃程度まで昇温可能な加熱板21を備えている。この加熱板21は、図2に示すように、加熱板本体22と、その内部に収容される複数のカートリッジヒーター23とを備えている。図2(a)は、加熱板21の平面図を示しており、図2(b)は、図2(a)のA方向から見た側面図を示し、図2(c)は、図2(a)のB方向から見た側面図を示している。加熱板本体22の下面側が熱電モジュール試料100を加熱する加熱面として機能し、この加熱面は、熱電モジュール試料100の高温面側に当接可能な面であり、平滑に形成されている。この加熱板21の加熱面の寸法は、熱電モジュール試料100の高温面の寸法以上の寸法を有するように設定する。加熱面の形状としては、種々採用することができるが、例えば、50~200mm×50~200mmの正方形或いは長方形として構成することが好ましい。加熱板21は、一つの側面に一箇所あるいは複数箇所の直径5.5~30mm程度の孔24を開けて、当該孔24内にカートリッジヒーター23を差し込むことができる厚さがあれば良く、一般的に10~20mm程度の厚みを有していればよい。 The heating unit 2 is a means for heating the high temperature surface of the thermoelectric module sample 100 sandwiched between the cooling unit 3 and includes a heating plate 21 that can raise the high temperature surface of the thermoelectric module sample 100 to about 1000 ° C., for example. ing. As shown in FIG. 2, the heating plate 21 includes a heating plate main body 22 and a plurality of cartridge heaters 23 accommodated therein. 2A shows a plan view of the heating plate 21, FIG. 2B shows a side view seen from the direction A of FIG. 2A, and FIG. 2C shows FIG. The side view seen from the B direction of (a) is shown. The lower surface side of the heating plate main body 22 functions as a heating surface for heating the thermoelectric module sample 100, and this heating surface is a surface that can come into contact with the high temperature surface side of the thermoelectric module sample 100 and is formed smoothly. The dimension of the heating surface of the heating plate 21 is set to have a dimension equal to or larger than the dimension of the high temperature surface of the thermoelectric module sample 100. Various shapes can be adopted as the shape of the heating surface. For example, it is preferable to configure the heating surface as a square or rectangle of 50 to 200 mm × 50 to 200 mm. The heating plate 21 has only to have a thickness that allows one or a plurality of holes 24 having a diameter of about 5.5 to 30 mm to be formed on one side surface, and the cartridge heater 23 can be inserted into the holes 24. In particular, it may have a thickness of about 10 to 20 mm.
 加熱板本体22内に収容されるカートリッジヒーター23は、その直径が、加熱板本体22に形成される孔24の内周面と密着する寸法に構成され、例えば、直径が5~30mm程度、長さが30~200mm程度に設定される。 The cartridge heater 23 accommodated in the heating plate main body 22 is configured such that the diameter thereof is in close contact with the inner peripheral surface of the hole 24 formed in the heating plate main body 22. For example, the diameter is about 5 to 30 mm. Is set to about 30 to 200 mm.
 本出願の評価装置においては、高温空気中での加熱を可能にするため、加熱板21の素材は耐熱、耐酸化性に優れていることが必要である。さらに加熱面と熱電モジュール試料100の良好な熱接触は、発電性能の再現性や長期試験における安定性において重要であり、加熱面内での温度の均一性を確保することが好ましい。つまり、加熱板21の素材は、高温での低い熱膨張係数と高い熱伝導率を有することか好ましく、更に、酸化によって熱伝導率が大きく変化せず、熱や酸化によって変形や割れ等の損傷が発生しにくい耐酸化性材料であることが好ましい。このような素材としては、例えば、ステンレスやニッケル基超合金、セラミックスを用いることができる。 In the evaluation apparatus of the present application, in order to enable heating in high-temperature air, the material of the heating plate 21 needs to be excellent in heat resistance and oxidation resistance. Furthermore, good thermal contact between the heating surface and the thermoelectric module sample 100 is important in terms of reproducibility of power generation performance and stability in a long-term test, and it is preferable to ensure temperature uniformity within the heating surface. That is, it is preferable that the material of the heating plate 21 has a low thermal expansion coefficient and a high thermal conductivity at high temperatures. Furthermore, the thermal conductivity does not change greatly due to oxidation, and damage such as deformation or cracking due to heat or oxidation. It is preferable that the material is an oxidation-resistant material that is less likely to generate oxidization. As such a material, for example, stainless steel, nickel-base superalloy, or ceramics can be used.
 加熱面の温度ムラは、熱電モジュール試料100を接触させない無負荷時での最大の温度差が、加熱板21と中心を同じくし、加熱板21の各辺の80%の長さを有する領域内で50℃以下、同じく50%以下の領域内で20℃以下となることが好ましい。これにより、熱電モジュール試料100を加熱した場合、そのモジュールの高温面内における温度の最大差を加熱板21と中心を同じくし、加熱板21の各辺の80%の長さを有する領域内で30℃以下にすることができ、50%以下の領域内で10℃以下にできる。これを実現するためには、高温時の熱膨張による加熱面の反り・膨らみなどの変形や、カートリッジヒーター23の本数や配置間隔を適宜調整すればよい。加熱面の変形をおさえるためには、高温源(加熱板本体22)の素材として、できるだけ熱膨張率の低い材料を用いればよい。本発明に係る加熱板本体22のサイズでは、1000℃以下の温度において15×10-6 /k以下の熱膨張率を有する材料を用いれば、加熱面の変形を防ぐことができる。さらに、温度不均一を防ぐためには素材の熱伝導率が高い方が好ましく10w/mk以上であれば面内の温度不均一を小さくすることができる。具体的に金属材料がステンレスの場合ならば、SUS403、SUS405、SUS430、ニッケル基超合金の場合ならば、インコネル600、インコロイ800、セラミックスの場合ならば炭化ケイ素、窒化ケイ素、窒化アルミニウム、酸化アルミニウム等を用いることができる。カートリッジヒーター23用の孔24を加工すること、急速加熱や冷却による破損などを考慮すれば、セラミックスよりもステンレスやニッケル基超合金といった金属の方が好ましい。 The temperature unevenness of the heating surface is within a region where the maximum temperature difference when no load is applied without contacting the thermoelectric module sample 100 is the same as the center of the heating plate 21 and has a length of 80% of each side of the heating plate 21. It is preferable that it becomes 20 degrees C or less in the area | region of 50 degrees C or less and 50% or less similarly. As a result, when the thermoelectric module sample 100 is heated, the maximum difference in temperature within the high temperature surface of the module is the same as that of the heating plate 21 and within a region having a length of 80% of each side of the heating plate 21. It can be made 30 ° C. or lower, and can be made 10 ° C. or lower in a region of 50% or less. In order to realize this, it is only necessary to appropriately adjust the deformation of the heating surface due to thermal expansion at a high temperature, such as warping and swelling, and the number and arrangement interval of the cartridge heaters 23. In order to suppress the deformation of the heating surface, a material having a thermal expansion coefficient as low as possible may be used as the material of the high temperature source (heating plate body 22). With the size of the heating plate body 22 according to the present invention, if a material having a coefficient of thermal expansion of 15 × 10 −6 / k or less at a temperature of 1000 ° C. or less is used, deformation of the heating surface can be prevented. Furthermore, in order to prevent temperature non-uniformity, it is preferable that the thermal conductivity of the material is high, and if it is 10 w / mk or more, in-plane temperature non-uniformity can be reduced. Specifically, if the metal material is stainless steel, SUS403, SUS405, SUS430, nickel-base superalloy, Inconel 600, Incoloy 800, ceramics, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc. Can be used. In view of processing the hole 24 for the cartridge heater 23, damage due to rapid heating and cooling, etc., metals such as stainless steel and nickel-base superalloy are preferable to ceramics.
 また、加熱板21は、熱電モジュール試料100に熱エネルギーを入力する部材であり、その熱出力も重要である。加熱板21からの熱出力はカートリッジヒーター23の出力と本数で決まる。加熱板21の熱出力は、熱電モジュール試料100に温度差を付け、計測可能な発電量を出力できる程度であれば良いが、一般的にはカートリッジヒーター23の一本当たりの熱出力が50~700W程度のものを使用すればよい。またカートリッジヒーター23間の間隔は、等間隔であることが好ましく、ヒーター出力と加熱板21の素材にもよるが10~30mm程度の間隔であれば良い。 The heating plate 21 is a member that inputs thermal energy to the thermoelectric module sample 100, and its heat output is also important. The heat output from the heating plate 21 is determined by the output and the number of cartridge heaters 23. The heat output of the heating plate 21 is not limited as long as a temperature difference is provided to the thermoelectric module sample 100 and a measurable power generation amount can be output. Generally, the heat output per cartridge heater 23 is 50 to 50. A thing of about 700W may be used. The intervals between the cartridge heaters 23 are preferably equal, and may be about 10 to 30 mm, although depending on the heater output and the material of the heating plate 21.
 加熱板21の温度計測は、熱電対や測温抵抗センサー等の温度センサーを用いればよく、高温であることを考慮すればKタイプ、あるいはRタイプ熱電対が好ましく、1000℃までの耐久性を考慮すればRタイプ熱電対がもっとも好ましい。また加熱面の温度ムラを計測するため、図2(a)に示すように、複数個の温度センサー25を加熱板本体22の内部に取り付けると良い。そのとき温度ムラを極力小さくするため、温度センサー用の孔26の直径はできるだけ細い方が良く、また、その長さは加熱板21の様々な箇所を測定できる長さに設定すればよい。また、少なくとも一個の温度センサー25を加熱板21のヒーターの温度制御器と接続し、温度調整用に用いることが好ましい、より好ましくは、各々のカートリッジヒーター23を個別に制御できるように、複数個の温度センサー25を配置し、それぞれを温度制御器と接続する。 The temperature of the heating plate 21 may be measured by using a temperature sensor such as a thermocouple or a resistance temperature sensor. In consideration of the high temperature, a K type or R type thermocouple is preferable, and durability up to 1000 ° C. In consideration, R type thermocouple is most preferable. Further, in order to measure temperature unevenness on the heating surface, a plurality of temperature sensors 25 may be attached inside the heating plate main body 22 as shown in FIG. At that time, in order to minimize the temperature unevenness, the diameter of the hole 26 for the temperature sensor should be as thin as possible, and the length thereof should be set to a length that can measure various portions of the heating plate 21. In addition, it is preferable to connect at least one temperature sensor 25 to the temperature controller of the heater of the heating plate 21 and use it for temperature adjustment. More preferably, a plurality of temperature sensors 25 can be controlled individually. Temperature sensors 25 are arranged, and each is connected to a temperature controller.
 また、カートリッジヒーター23、温度センサー25共に熱電モジュール試料100に近い方が該熱電モジュール試料100の高温面を高温まで加熱でき、また、正確な温度計測を行うことができるため、加熱板21(加熱板本体22)の厚さ方向に対して、熱電モジュール試料100側にカートリッジヒーター23および温度センサー25を偏らせて設置することが好ましい。 In addition, since both the cartridge heater 23 and the temperature sensor 25 are closer to the thermoelectric module sample 100, the high temperature surface of the thermoelectric module sample 100 can be heated to a high temperature, and accurate temperature measurement can be performed. It is preferable that the cartridge heater 23 and the temperature sensor 25 are biased and installed on the thermoelectric module sample 100 side with respect to the thickness direction of the plate body 22).
 また、加熱部2におけるカートリッジヒーター23は、ヒーター制御部27に接続されており、この制御部27のプログラムにより、カートリッジヒーター23へ通電する電力を自動調整し、温度、昇降温速度、保持時間が制御されている。また、PID制御によりヒーター温度の過昇温などが抑制されるように構成されている。 Further, the cartridge heater 23 in the heating unit 2 is connected to the heater control unit 27, and the power supplied to the cartridge heater 23 is automatically adjusted by the program of the control unit 27, and the temperature, the temperature rising / lowering speed, and the holding time are adjusted. It is controlled. Further, the heater temperature is prevented from being excessively increased by PID control.
 冷却部3は、加熱部2との間で挟まれる熱電モジュール試料100の低温面を冷却する手段であり、図3(a)の平面図や、図3(b)の側面図に示すように形態を有している。この冷却部3は、金属製の冷却板31を備えている。この冷却板31の内部には、図3(a)の平面図において点線で示すような、冷却水が通過可能な流路32が形成されている。また、流路32の入口側端部には入水管33が接続されており、流路32の出口側端部には出水管34が接続されている。これら入水管33及び出水管34には、配管35,36を介してチラーなどの冷却水循環装置37が接続されており、冷却板31内において、例えば、5~20リットル/分程度の流量で、10~30℃程度の水が循環されるように構成されている。冷却板31の冷却能力は、熱抵抗値 で0.05℃/W程度以下が好ましく、0.03℃/W程度以下がより好ましい。なお、循環する冷却水の流量は、フローメーター等の流量計によって制御、計測されるように構成されている。また、冷却板31の入水管33及び出水管34には、温度センサー38,39が挿入されて配置される。この温度センサー38,39は、入出水管(入水管33及び出水管34)内の冷却水流を妨げないものならば特に限定されず、例えば、外形が5~20mm程度の入出水管に導入管を設け、そこへ挿入配置される直径が1~2mm程度の熱電対、測温抵抗センサー等を用いることができる。例としては、Kタイプ熱電対あるいは白金測温抵抗体を挙げることができる。なお、入出水管の配置は冷却板31の同一側面でも異なる側面でも良く、熱電モジュールや加熱板21等との配置や冷却の障害にならなければ冷却面あるいはその反対面にあっても良い。 The cooling unit 3 is a means for cooling the low temperature surface of the thermoelectric module sample 100 sandwiched between the heating unit 2 and as shown in the plan view of FIG. 3A and the side view of FIG. It has a form. The cooling unit 3 includes a metal cooling plate 31. Inside the cooling plate 31, there is formed a flow path 32 through which cooling water can pass, as indicated by a dotted line in the plan view of FIG. A water inlet pipe 33 is connected to the inlet side end of the flow path 32, and a water outlet pipe 34 is connected to the outlet side end of the flow path 32. A cooling water circulation device 37 such as a chiller is connected to the water inlet pipe 33 and the water outlet pipe 34 via pipes 35 and 36, and in the cooling plate 31, for example, at a flow rate of about 5 to 20 liters / minute. It is configured to circulate water at about 10-30 ° C. The cooling capacity of the cooling plate 31 is preferably about 0.05 ° C./W or less, more preferably about 0.03 ° C./W or less in terms of the thermal resistance value. The flow rate of the circulating cooling water is controlled and measured by a flow meter such as a flow meter. Further, temperature sensors 38 and 39 are inserted into the water inlet pipe 33 and the water outlet pipe 34 of the cooling plate 31. The temperature sensors 38 and 39 are not particularly limited as long as they do not interfere with the cooling water flow in the water inlet / outlet pipes (the water inlet pipe 33 and the water outlet pipe 34). For example, an introduction pipe is provided in the water inlet / outlet pipe having an outer shape of about 5 to 20 mm. A thermocouple having a diameter of about 1 to 2 mm, a resistance temperature sensor, etc. can be used. Examples include a K-type thermocouple or a platinum resistance thermometer. The inlet / outlet pipes may be arranged on the same side surface or different side surfaces of the cooling plate 31, and may be on the cooling surface or on the opposite side as long as it does not interfere with the arrangement with the thermoelectric module, the heating plate 21, or the like.
 また、図3に示す冷却板31の上面が、熱電モジュール試料100を冷却する冷却面として機能し、この冷却面は、熱電モジュール試料100の低温面側に当接可能な面であり、平滑となるように構成されている、この冷却面の寸法は、測定する熱電モジュール試料100の低温面の寸法以上の寸法を有するように設定する。また、加熱板21からの伝熱による高温から、冷却板31側に配置される周辺部材を保護するため、冷却板31の各辺が加熱板21の加熱面の各辺よりも長い寸法となるように構成すること(冷却板31の面積を加熱板21の面積よりも大きく構成すること)が好ましい。また、冷却板31の厚さについては、特に限定しないが10~80mm程度に設定することができる。 Further, the upper surface of the cooling plate 31 shown in FIG. 3 functions as a cooling surface that cools the thermoelectric module sample 100, and this cooling surface is a surface that can come into contact with the low temperature surface side of the thermoelectric module sample 100. The dimension of the cooling surface configured as described above is set to have a dimension equal to or larger than the dimension of the low temperature surface of the thermoelectric module sample 100 to be measured. Moreover, in order to protect the peripheral member arrange | positioned at the cooling plate 31 side from the high temperature by the heat transfer from the heating plate 21, each side of the cooling plate 31 becomes a dimension longer than each side of the heating surface of the heating plate 21. It is preferable to configure the cooling plate 31 so that the area of the cooling plate 31 is larger than the area of the heating plate 21. The thickness of the cooling plate 31 is not particularly limited, but can be set to about 10 to 80 mm.
 また、熱電モジュール発電評価装置1は、熱電モジュール試料100に接続される電力取り出し線(リード線4)を備えている。該リード線4は、熱電モジュール試料100の両端子(電極102によって直列に接続されて構成されるp-n熱電素子群の両端(両電極端))にそれぞれ接続される配線である。このリード線4は、加熱面からの放熱により高温となり、また、発生する電流値によってはリード線4の電気抵抗による発熱が起こる。リード線4の温度上昇は、リード線4の電気抵抗の変動や熱の流入による熱電モジュール内の温度不均一化などを引き起こし、正確な測定の妨げとなる。そこで、例えば、図4(a)に示すように、冷却板31表面に密着させて冷却するように構成する。このとき、リード線4の表面を伝熱を妨げないようにポリイミド(カプトン(登録商標))テープなど薄いフィルムで電気絶縁することが好ましい。これによりリード線4の保護と正確な測定が可能となる。さらに、リード線4において生じた電気抵抗による発熱も冷却水に取り込むことができるため、より正確な発電効率を測定できる。なお、熱電モジュール試料100から導かれるリード線4は、図4(a)に示すように、低温面側から導かれるように構成されていてもよく、或いは、図4(b)に示すように、高温面側から導かれるように構成されていてもよいが、極力長い距離に亘ってリード線4が冷却面に接触するよう屈曲させて設置する。特に、リード線4が、高温面側から導かれている場合には熱電素子との接触に注意して屈曲させる。 In addition, the thermoelectric module power generation evaluation apparatus 1 includes a power extraction line (lead wire 4) connected to the thermoelectric module sample 100. The lead wires 4 are wirings respectively connected to both terminals of the thermoelectric module sample 100 (both ends (both electrode ends) of a pn thermoelectric element group configured in series by electrodes 102). The lead wire 4 becomes high temperature due to heat radiation from the heating surface, and heat generation due to the electric resistance of the lead wire 4 occurs depending on the current value generated. The rise in temperature of the lead wire 4 causes fluctuations in the electrical resistance of the lead wire 4 and temperature non-uniformity in the thermoelectric module due to heat inflow, which hinders accurate measurement. Therefore, for example, as shown in FIG. 4A, the cooling plate 31 is configured to be in close contact with the surface and cooled. At this time, it is preferable to electrically insulate the surface of the lead wire 4 with a thin film such as a polyimide (Kapton (registered trademark)) tape so as not to prevent heat transfer. This enables protection of the lead wire 4 and accurate measurement. Furthermore, since heat generated by the electrical resistance generated in the lead wire 4 can also be taken into the cooling water, more accurate power generation efficiency can be measured. The lead wire 4 guided from the thermoelectric module sample 100 may be configured to be guided from the low temperature surface side as shown in FIG. 4 (a), or as shown in FIG. 4 (b). The lead wire 4 may be bent so as to be in contact with the cooling surface over a long distance as much as possible. In particular, when the lead wire 4 is led from the high temperature surface side, the lead wire 4 is bent with attention to contact with the thermoelectric element.
 ここで、上述の加熱部2と冷却部3とはどのように配置しても良いが、熱電モジュールの固定などを考慮すれば、図1や図4に示すように、それらを上下に配置する方が簡便な装置構造となり、計測も容易となるので好ましい。また、加熱部2と冷却部3とのどちらを上部に配置しても良いが、加熱された空気の対流による冷却面の加熱、水漏れなどの問題を考慮すれば、加熱部2を上部に配置すると共に、冷却部3を下部に配置し、熱電モジュール試料100を加熱部2及び冷却部3で上下方向から挟持するように構成することが好ましい。 Here, the heating unit 2 and the cooling unit 3 described above may be arranged in any manner, but if the fixing of the thermoelectric module is taken into consideration, they are arranged up and down as shown in FIG. 1 and FIG. This is preferable because it provides a simpler device structure and facilitates measurement. In addition, either the heating unit 2 or the cooling unit 3 may be arranged at the upper part. However, in consideration of problems such as heating of the cooling surface by convection of heated air and water leakage, the heating part 2 is arranged at the upper part. It is preferable that the cooling unit 3 is arranged at the lower part and the thermoelectric module sample 100 is sandwiched between the heating unit 2 and the cooling unit 3 from above and below.
 計測部は、複数の温度センサーを備えている。具体的には、加熱板21の温度計測に用いられる上記の温度センサー25(熱電対や測温抵抗センサー等)、及び、冷却板31の入出水口の水温計測に用いられる上記温度センサー38,39を備えている。また、熱電モジュール試料100の高温面、低温面、及び側面の温度を計測する温度センサーを備えている。温度計測用のセンサーの計測方式は特定しないが、計測精度、利便性の観点から熱電対か測温抵抗センサーを用いれば良い。また本発明の特徴である高温空気中での測定を実現するためには、作動条件で耐久性の高い温度センサーを用いれば良く、加熱板21や熱電モジュール試料100の高温面を計測する場合は白金-白金・ロジウム合金を用いたRタイプ熱電対、冷却板31や水温の計測にはアルメル-クロメルを用いたKタイプ熱電対や白金測温抵抗体を使用することが好ましい。 The measuring unit is equipped with multiple temperature sensors. More specifically, the temperature sensor 25 (thermocouple, resistance temperature sensor, etc.) used for measuring the temperature of the heating plate 21 and the temperature sensors 38, 39 used for measuring the water temperature at the inlet / outlet of the cooling plate 31. It has. Moreover, the thermoelectric module sample 100 is provided with a temperature sensor that measures the temperature of the high temperature surface, the low temperature surface, and the side surface. Although the measurement method of the sensor for temperature measurement is not specified, a thermocouple or a resistance temperature sensor may be used from the viewpoint of measurement accuracy and convenience. In order to realize measurement in high-temperature air, which is a feature of the present invention, a temperature sensor having high durability under operating conditions may be used. When measuring the hot surface of the heating plate 21 or the thermoelectric module sample 100, An R-type thermocouple using platinum-platinum / rhodium alloy, a K-type thermocouple using alumel-chromel and a platinum resistance thermometer are preferably used for measuring the cooling plate 31 and water temperature.
 また、計測部は、加熱板21、熱電モジュール試料100の高温面および低温面、さらに冷却水の温度計測用センサーからの電気信号を温度換算する計測器を備えている。また、計測部は、熱電モジュール試料100に外部負荷抵抗をかけるための定電流直流電源或いは電子負荷装置を備えており、更に、熱電モジュール試料100が発生する電圧を計測できる直流電圧計を備えている。計測方法は直流四端子法で行えばよく、電流が流れる外部負荷抵抗用の電線と電圧計測用の電線が、熱電モジュール試料100に接続されるリード線4の端部に接続される。         Further, the measuring unit includes a measuring device for converting the temperature of the electric signal from the heating plate 21, the high and low temperature surfaces of the thermoelectric module sample 100, and the temperature measurement sensor for the cooling water. Further, the measurement unit includes a constant current DC power source or an electronic load device for applying an external load resistance to the thermoelectric module sample 100, and further includes a DC voltmeter that can measure the voltage generated by the thermoelectric module sample 100. . The measuring method may be performed by the DC four-terminal method, and an electric wire for external load resistance and a voltage measuring wire through which current flows are connected to the end of the lead wire 4 connected to the thermoelectric module sample 100.
 制御演算部5は、計測した温度、電圧、電流、外部負荷抵抗等の数値を取り込み、計算処理、保存する機能を有する手段であり、例えば、一般的なパーソナルコンピュータを用いることが出来る。また、一定時間間隔で自動計測が可能などプログラムにより計測制御を行うことが出来るように構成することが好ましい。この制御演算部5においては、下記式1や式2に基づいて、電圧や発電出力を自動で算出できるように構成されている。 The control calculation unit 5 is a means having a function of taking in numerical values such as measured temperature, voltage, current, and external load resistance, and performing calculation processing and storage. For example, a general personal computer can be used. Further, it is preferable that the measurement can be controlled by a program such that automatic measurement is possible at regular time intervals. The control calculation unit 5 is configured so that the voltage and the power generation output can be automatically calculated based on the following formulas 1 and 2.
   電圧 (V) =電流 (A) x 抵抗 (Ω)    (式1)
   発電出力 (W) = 電流 (A) x 電圧 (V)    (式2)
Voltage (V) = Current (A) x Resistance (Ω) (Equation 1)
Power generation output (W) = Current (A) x Voltage (V) (Formula 2)
 また、制御演算部5においては、外部負荷抵抗を連続的に走査して異なる外部負荷抵抗値での発電出力を計測し、熱電モジュール試料100の発電出力の極大値を計算できるように構成されている。この場合、計測した電流値と電圧値から(式2)により発電出力値を計算し、図5に示すように、電流値を横軸、発電出力値を縦軸にプロットし、その頂点を二次関数近似により計算し、熱電モジュール試料100が発生する最大出力値を得るように構成されている。また、熱電モジュール試料100に外部負荷抵抗をかけない時の電圧(開放電圧)と内部抵抗値に関して、図6に示すように、計測した電流値と電圧値をそれぞれ横軸と縦軸にプロットし、その直線近似により、切片である開放電圧と傾きの絶対値である内部抵抗値を計算するように構成されている。なお、最大出力値(発電出力の極大値)は開放電圧値と内部抵抗値からも原理的に計算できる。つまり熱電モジュール試料100の最大出力は外部負荷抵抗値とモジュールの内部負荷値が一致した時に得られるので、下記式3により、熱電モジュール試料100の最大出力を自動計算できるように構成してもよい。 In addition, the control calculation unit 5 is configured to continuously scan the external load resistance, measure the power generation output at different external load resistance values, and calculate the maximum value of the power generation output of the thermoelectric module sample 100. Yes. In this case, the power generation output value is calculated from the measured current value and voltage value by (Equation 2), and the current value is plotted on the horizontal axis and the power generation output value is plotted on the vertical axis, as shown in FIG. The maximum output value generated by the thermoelectric module sample 100 is obtained by calculation using a quadratic function approximation. Further, regarding the voltage (open voltage) and the internal resistance value when the external load resistance is not applied to the thermoelectric module sample 100, the measured current value and voltage value are plotted on the horizontal axis and the vertical axis, respectively, as shown in FIG. The open circuit voltage that is an intercept and the internal resistance value that is the absolute value of the slope are calculated by the linear approximation. The maximum output value (maximum value of power generation output) can be calculated in principle from the open-circuit voltage value and the internal resistance value. That is, since the maximum output of the thermoelectric module sample 100 is obtained when the external load resistance value and the internal load value of the module coincide with each other, the maximum output of the thermoelectric module sample 100 may be automatically calculated by the following equation 3. .
   最大出力 (W) = (開放電圧) / (4×内部抵抗値)    (式3) Maximum output (W) = (open voltage) 2 / (4 x internal resistance) (Equation 3)
 また、制御演算部5においては、熱電モジュール試料100の発電効率を算出できるように構成されている、発電効率は、下記式4により自動計算できるように構成されている。 Further, the control calculation unit 5 is configured to be able to calculate the power generation efficiency of the thermoelectric module sample 100. The power generation efficiency is configured to be automatically calculated by the following equation 4.
 発電効率(%)= 発電出力 (W) / (発電出力 (W)+ 冷却水へ流入した熱量 (W))×100    (式4)
 ここで、冷却水へ流入した熱量 (W)は、下記式5により算出される。
Power generation efficiency (%) = Power generation output (W) / (Power generation output (W) + Heat flow into cooling water (W)) x 100 (Equation 4)
Here, the amount of heat (W) flowing into the cooling water is calculated by the following equation (5).
 冷却水へ流入した熱量(W)=(出水口における水温(℃)-入水口における水温(℃))×循環水量(cm/分)×温度補正した水の密度(g/cm) ×水の比熱(1.0 cal/g・℃) ×単位換算(1.94×10-6 W/分)    (式5) Heat flow into cooling water (W) = (water temperature at outlet (° C.) − Water temperature at inlet (° C.)) × circulated water volume (cm 3 / min) × temperature-corrected water density (g / cm 3 ) × Specific heat of water (1.0 cal / g · ° C) × unit conversion (1.94 × 10 -6 W / min) (Formula 5)
 また、本発明に係る熱電モジュール発電評価装置1は、図1に示すように、加熱部2と冷却部3との間で熱電モジュール試料100を加圧する加重部6を備えている。熱電モジュール試料100の高温面及び低温面と加熱板21及び冷却板31の接触の度合いは、熱入・出力、温度制御の点で非常に重要であることから、計測中の加重は精密且つ一定に保つことが好ましい。熱電モジュール試料100への加圧(加重)を行う加重部6の具体的構成としては、図7に示すようなコンプレッサーを用いた空圧式あるいは油圧式、図8に示すような梃子の原理を使ったレバー式プレスによりレバーに重り61をつり下げて加重する方式や、図9や図10に示すようなねじとバネを用いた方式等を採用できる。また、計測時は熱膨張などにより加重値が変動するため、ロードセルなど加重センサーにより常に加重を計測し、加重値を一定に保つ機構を備える方が好ましい。加重方向に関しては、上下あるいは左右両方からの加重でも、どちらか一方からの加重でも良いが、熱電モジュール試料100の設置と装置構造を簡便にするためには、上下方向に加重をかけるように加重部6を構成する方が好ましく、より簡便には下部を固定し、上部から加重をかける方が好ましい。 Moreover, the thermoelectric module power generation evaluation apparatus 1 according to the present invention includes a weighting unit 6 that pressurizes the thermoelectric module sample 100 between the heating unit 2 and the cooling unit 3 as shown in FIG. Since the degree of contact between the hot and cold surfaces of the thermoelectric module sample 100 and the heating plate 21 and the cooling plate 31 is very important in terms of heat input / output and temperature control, the weight during measurement is precise and constant. Is preferably maintained. As a specific configuration of the weighting unit 6 that pressurizes (weights) the thermoelectric module sample 100, a pneumatic or hydraulic type using a compressor as shown in FIG. 7 or an insulator principle as shown in FIG. 8 is used. It is possible to adopt a method in which the weight 61 is suspended from the lever by a lever-type press and a weight is used, or a method using screws and springs as shown in FIGS. Further, since the weight value fluctuates due to thermal expansion during measurement, it is preferable to provide a mechanism that always measures the weight by a weight sensor such as a load cell and keeps the weight value constant. With regard to the weighting direction, weighting from either the top or bottom or from the left or right may be used. However, in order to simplify the installation of the thermoelectric module sample 100 and the device structure, weighting is performed so that the weight is applied in the top-bottom direction. It is preferable to configure the portion 6, and more simply, it is preferable to fix the lower portion and apply a weight from the upper portion.
 また、本発明に係る熱電モジュール発電評価装置1においては、加熱板21からの放熱によって熱電モジュール試料100外側の冷却板31に熱が直接流入することを抑制するために、図11に示すように、熱電モジュール試料100の周囲を覆うと共に、冷却板31表面(冷却部3の冷却面)を被覆する断熱部材7を備えるように構成することが好ましい。薄い熱電モジュール試料100を計測する場合、加熱面と冷却面が近い距離で対向することになり、これにより熱電モジュール試料100を通過しない熱エネルギーによっても冷却水が加熱され、発電効率の計測精度が低くなるおそれがある。また厚い熱電モジュールの計測時には熱電材料の側面からの熱放散が起こり、やはり発電効率の計測精度が悪化するおそれがある。熱電モジュール試料100の周囲を覆うと共に、冷却板31表面を被覆する断熱部材7は、このような計測精度が低下することを効果的に抑制することができる。断熱部材7としては、例えば、ガラスウールや多孔質セラミックス断熱材を採用することができる。また、冷却板31の反対面(熱電モジュール試料100が配置される側とは反対側の面;図11においては冷却板31の下面)に、当該面の全域を被覆する断熱材を配置することが好ましい。このような構成により、冷却板31の反対面における熱の放散、流入を防ぐことができ、冷却板31に流入する熱量が、熱電モジュールを通過した分とリード線4からの熱量になり、正確な発電効率の計算が可能となる。 Further, in the thermoelectric module power generation evaluation apparatus 1 according to the present invention, as shown in FIG. 11, in order to prevent heat from directly flowing into the cooling plate 31 outside the thermoelectric module sample 100 due to heat radiation from the heating plate 21. It is preferable that the thermoelectric module sample 100 is configured to include the heat insulating member 7 that covers the periphery of the thermoelectric module sample 100 and covers the surface of the cooling plate 31 (the cooling surface of the cooling unit 3). When the thin thermoelectric module sample 100 is measured, the heating surface and the cooling surface face each other at a short distance, whereby the cooling water is heated even by thermal energy that does not pass through the thermoelectric module sample 100, and the measurement accuracy of power generation efficiency is improved. May be lowered. In addition, when measuring a thick thermoelectric module, heat dissipation from the side surface of the thermoelectric material occurs, and the measurement accuracy of the power generation efficiency may also deteriorate. The heat insulating member 7 that covers the periphery of the thermoelectric module sample 100 and covers the surface of the cooling plate 31 can effectively suppress such a decrease in measurement accuracy. As the heat insulating member 7, for example, glass wool or porous ceramic heat insulating material can be employed. Further, a heat insulating material covering the entire surface of the cooling plate 31 is disposed on the opposite surface (the surface opposite to the side on which the thermoelectric module sample 100 is disposed; the lower surface of the cooling plate 31 in FIG. 11). Is preferred. With such a configuration, heat dissipation and inflow on the opposite surface of the cooling plate 31 can be prevented, and the amount of heat flowing into the cooling plate 31 becomes the amount of heat that has passed through the thermoelectric module and the lead wire 4, and is accurate. It is possible to calculate the power generation efficiency.
 また、本発明に係る熱電モジュール発電評価装置1は、図1に示すように、安全囲81、非常停止ボタン82、警報表示灯83を備えている。安全囲81は、計測時に、高温の加熱板21との接触や、熱電モジュール試料100への衝撃などを防ぐために設けられるものであり、加熱板21、熱電モジュール試料100、冷却板31を外部から観察できるようにパンチングメタルあるいは耐熱性金網により構成することが好ましい。なお、安全囲81の少なくとも一つの側面には、モジュール試料100の取り替えのための扉が設けられており、計測中にこの扉が開いた場合には、加熱部2におけるヒーターへの通電や加重部6の作動を停止し、計測を緊急停止することができるように構成することが好ましい。また安全囲81の中には温度センサーを少なくとも一個入れ、囲い内の温度を管理し、設定以上の温度になった場合には、加熱部2におけるヒーターへの通電や加重を止め、計測を緊急停止することができるように構成してもよい The thermoelectric module power generation evaluation apparatus 1 according to the present invention includes a safety area 81, an emergency stop button 82, and an alarm indicator lamp 83 as shown in FIG. The safety enclosure 81 is provided to prevent contact with the high-temperature heating plate 21 and impact on the thermoelectric module sample 100 during measurement. The safety plate 81, the thermoelectric module sample 100, and the cooling plate 31 are externally attached. It is preferable to use a punching metal or a heat-resistant wire mesh so that it can be observed. Note that a door for replacing the module sample 100 is provided on at least one side surface of the safety enclosure 81. If this door is opened during measurement, the heater 2 is energized or weighted. It is preferable that the operation of the unit 6 is stopped and the measurement can be stopped in an emergency. In addition, at least one temperature sensor is placed in the safety enclosure 81, and the temperature inside the enclosure is controlled. When the temperature exceeds the set value, energization and weighting to the heater in the heating unit 2 is stopped and measurement is made urgently. It may be configured to be able to stop
 非常停止ボタン82及び警報表示灯83は、制御演算部5に接続され、該制御演算部5と連動した作動を行う。非常停止ボタン82は、何らかのトラブルにより計測を直ちに止める場合に用いられるものであり、該ボタンの押下により、加熱部2におけるヒーターへの通電と加重部6の作動を停止できるように設定されている。また、警報表示灯83は、予め設定した加熱条件や計測などが何らかのトラブルによりプログラム通りに作動しなかった場合などに、計測者にその旨を知らせるために作動するものであり、通常作動時は緑ランプ、計測停止時は黄ランプ、異常発生時には赤ランプが点灯するように構成されている。 The emergency stop button 82 and the warning indicator lamp 83 are connected to the control calculation unit 5 and operate in conjunction with the control calculation unit 5. The emergency stop button 82 is used when the measurement is immediately stopped due to some trouble, and is set so that the energization to the heater and the operation of the weighting unit 6 can be stopped by pressing the button. . The warning indicator lamp 83 is operated to notify the measurer when the preset heating condition or measurement does not operate according to the program due to some trouble. A green lamp, a yellow lamp when measurement is stopped, and a red lamp are lit when an abnormality occurs.
 本発明に係る熱電モジュール発電評価装置1においては、上述のように、熱電モジュール試料100の高温面の寸法以上の寸法を有し、かつ、高温面に接して配置される加熱面を有する加熱部2と、熱電モジュール試料100の低温面の寸法以上の寸法を有し、かつ、低温面に接して配置される冷却面を有する冷却部3とを備え、更に、熱電モジュール試料100に接続される電力取りだし線(リード線4)の少なくとも一部が、冷却部3の冷却面に密着するように設置されているため、発電効率を精度良く評価できる。特に、熱電モジュール試料100に接続される電力取りだし線(リード線4)の少なくとも一部が、冷却部3の冷却板31の冷却面に密着するように設置されているため、リード線4において生じた電気抵抗による発熱に係る熱量を冷却面を介して冷却水に取り込むことができ、また、加熱部2の加熱面からの放熱によってリード線4に供給された熱量も冷却面を介して冷却水に取り込むことができ、より正確な発電効率等を測定することができる。 In the thermoelectric module power generation evaluation apparatus 1 according to the present invention, as described above, the heating unit having a heating surface having a dimension equal to or larger than the dimension of the high temperature surface of the thermoelectric module sample 100 and disposed in contact with the high temperature surface. 2 and a cooling unit 3 having a cooling surface 3 having a size equal to or larger than the size of the low-temperature surface of the thermoelectric module sample 100 and having a cooling surface arranged in contact with the low-temperature surface, and further connected to the thermoelectric module sample 100 Since at least a part of the power lead-out line (lead wire 4) is installed in close contact with the cooling surface of the cooling unit 3, the power generation efficiency can be evaluated with high accuracy. In particular, since at least a part of the power lead wire (lead wire 4) connected to the thermoelectric module sample 100 is installed in close contact with the cooling surface of the cooling plate 31 of the cooling unit 3, the lead wire 4 is generated. The amount of heat related to the heat generated by the electrical resistance can be taken into the cooling water via the cooling surface, and the amount of heat supplied to the lead wire 4 by the heat radiation from the heating surface of the heating unit 2 is also cooled via the cooling surface. More accurate power generation efficiency and the like can be measured.
 また、リード線4の形状、寸法は特に限定しないが、例えば、板状、帯状、丸柱状、撚り線状等種々の形状のものを採用することができる。リード線4の断面積が大きい方が、電気抵抗が小さくなり、発電出力の損失を小さくできるが、断面積が大きいとリード線4を介して高温側からの熱が放出されやすくなり、リード線4がモジュールの高温側にある場合は熱電変換に関与しない熱が熱源から直接冷却水に流入し、変換効率の計測精度を悪くしてしまう。これを防ぐため、例えば、幅が0.1cm~3cm、厚さが0.005cm~0.2cm程度のシート状のリード線4を採用することが好ましく、より好ましくは幅0.5cm~1cm、厚さ0.005cm~0.1cm程度のシート状のリード線4を採用することが好ましい。このような、所定の幅を有し厚みの薄いシート状のリード線4(帯状のリード線4)を採用し、当該形状のリード線4の少なくとも一部を冷却板31の冷却面に密着するように設置することにより、リード線4と冷却面との接触面積が増大し、リード線4に溜まる熱量を効果的に冷却面を介して冷却水側に移動させることが出来るため、極めて精度よく発電効率等を測定することが可能となる。 Further, the shape and dimensions of the lead wire 4 are not particularly limited, but various shapes such as a plate shape, a belt shape, a round column shape, and a stranded wire shape can be employed. The larger the cross-sectional area of the lead wire 4, the smaller the electric resistance and the power generation output loss can be reduced. However, if the cross-sectional area is large, heat from the high temperature side is easily released via the lead wire 4. When 4 is on the high temperature side of the module, heat that is not involved in thermoelectric conversion flows directly into the cooling water from the heat source, which degrades the conversion efficiency measurement accuracy. In order to prevent this, for example, it is preferable to employ a sheet-like lead wire 4 having a width of about 0.1 cm to 3 cm and a thickness of about 0.005 cm to 0.2 cm, more preferably a width of 0.5 cm to 1 cm and a thickness of 0.005 cm. It is preferable to employ a sheet-like lead wire 4 of about 0.1 cm. Such a thin sheet-like lead wire 4 (band-like lead wire 4) having a predetermined width is employed, and at least a part of the lead wire 4 having the shape is brought into close contact with the cooling surface of the cooling plate 31. By installing in this way, the contact area between the lead wire 4 and the cooling surface is increased, and the amount of heat accumulated in the lead wire 4 can be effectively moved to the cooling water side via the cooling surface. It becomes possible to measure the power generation efficiency and the like.
 また、冷却板31の冷却面の面積を加熱板21の加熱面の面積よりも大きく構成することが好ましい。このような構成によれば、加熱板21からの伝熱による高温から冷却板31側に配置される周辺部材を保護することができると共に、加熱板21から放熱される熱量を効果的に受け取ることができ、より一層正確な発電効率等を測定することが可能となる。 Further, it is preferable that the area of the cooling surface of the cooling plate 31 is larger than the area of the heating surface of the heating plate 21. According to such a configuration, it is possible to protect the peripheral members arranged on the cooling plate 31 side from the high temperature due to the heat transfer from the heating plate 21 and to effectively receive the amount of heat radiated from the heating plate 21. It is possible to measure the power generation efficiency and the like more accurately.
 また、本発明に係る熱電モジュール発電評価装置1においては、図12の要部拡大概略構成側面図に示すように、冷却部3の冷却面と熱電モジュール試料100の低温面との間に配置される弾力性のある伝熱シート9を備えているように構成してもよい。このような弾力性のある伝熱シート9を冷却面と熱電モジュール試料100の低温面との間に配置する場合、伝熱シート9と水冷面との間に測温センサーを挿入しても、大きな隙間ができることがないため、低温面の素子の温度をより精度よく計測することが可能となり、より一層精度よく熱電モジュール試料100の発電効率等を測定することが可能となる。なお、弾力性のある伝熱シート9は、更に電気絶縁性を備えることが好ましい。当該伝熱シート9が電気絶縁性を有する場合には、熱電モジュール試料100における低温側基板101を省略して熱電モジュール試料100を構成することができ、モジュール試料の構成上の簡略化を図ることが可能となる。ここで、弾力性のある伝熱シート9としては、例えば、シリコーン系ゴムやアクリル系ゴムからなるシート材を利用することができる。 Further, in the thermoelectric module power generation evaluation apparatus 1 according to the present invention, as shown in the enlarged side view of the main part of FIG. 12, it is arranged between the cooling surface of the cooling unit 3 and the low temperature surface of the thermoelectric module sample 100. You may comprise so that the heat-transfer sheet | seat 9 which has elasticity may be provided. When such a heat transfer sheet 9 having elasticity is disposed between the cooling surface and the low temperature surface of the thermoelectric module sample 100, even if a temperature sensor is inserted between the heat transfer sheet 9 and the water cooling surface, Since there is no large gap, the temperature of the element on the low temperature surface can be measured with higher accuracy, and the power generation efficiency and the like of the thermoelectric module sample 100 can be measured with higher accuracy. The elastic heat transfer sheet 9 preferably further has electrical insulation. When the heat transfer sheet 9 has electrical insulation, the thermoelectric module sample 100 can be configured by omitting the low temperature side substrate 101 in the thermoelectric module sample 100, and the configuration of the module sample can be simplified. Is possible. Here, as the heat transfer sheet 9 having elasticity, for example, a sheet material made of silicone rubber or acrylic rubber can be used.
 ここで、本発明に係る熱電モジュール発電評価装置1により性能評価される熱電モジュール試料100は、図1、図13、図14において示されるように、板状の形状を有していることが好ましい(図14においては、特に厚み(高さ)方向寸法を拡大して表示している)。なお、図13は、熱電モジュール試料100の平面図であり、図14の(a)~(d)は、図13のC方向、D方向、E方向、F方向のそれぞれからから見た側面図を示している。この熱電モジュール試料100は、図13及び図14に示すように、電気絶縁性の低温側基板101、複数のp型熱電素子及び複数のn型熱電素子を備えている。各p型熱電素子及び各n型熱電素子は、電極102を介して、p型・n型・p型・n型・・・というように、互いに直列に接続されて構成されている。また、電極102の一部は、低温側基板101と、一対のp-n型熱電素子対との間に介在して配置され、電極102の他の一部は、一対のp-n型熱電素子対の上面側に配置されている。 Here, the thermoelectric module sample 100 whose performance is evaluated by the thermoelectric module power generation evaluation apparatus 1 according to the present invention preferably has a plate shape as shown in FIGS. 1, 13, and 14. (In FIG. 14, the dimension in the thickness (height) direction is particularly enlarged and displayed). 13 is a plan view of the thermoelectric module sample 100, and FIGS. 14A to 14D are side views seen from the C direction, the D direction, the E direction, and the F direction in FIG. Is shown. As shown in FIGS. 13 and 14, the thermoelectric module sample 100 includes an electrically insulating low-temperature side substrate 101, a plurality of p-type thermoelectric elements, and a plurality of n-type thermoelectric elements. Each p-type thermoelectric element and each n-type thermoelectric element are connected to each other in series, such as p-type, n-type, p-type, n-type,... A part of the electrode 102 is disposed between the low temperature side substrate 101 and the pair of pn-type thermoelectric elements, and the other part of the electrode 102 is a pair of pn-type thermoelectric elements. It is arranged on the upper surface side of the element pair.
 また、熱電モジュール試料100に用いられる熱電材料、電極材料、基板などの構成部材も計測温度で熔融、蒸発、粉砕など起こらず形状を保つ物であれば、特に限定されない。また、p型熱電素子、n型熱電素子の形状も特に限定されないが、製造の容易さから、図15に示すように、四角柱や円柱形とすることが好ましい。また、熱電素子の断面寸法も特に限定されないが、断面積が大きく、熱電素子数が少なくなると、発生する電流値が大きくなることに起因して、リード線4での発熱が大きくなり、電圧値も低くなるため計測精度が低くなるおそれがある。そのため、一般的には、断面の一辺が1mm~10mm程度の四角柱か、直径が1mm~10mm程度の円柱を用いることが好ましい。また、p型熱電素子の断面形状とn型熱電素子の断面形状とが異なるように構成してもよく、また、p型熱電素子及びn型熱電素子の断面寸法が異なるように構成してもよい。また、p型或いはn型の熱電素子の高さHも特に限定されないが、熱電モジュール試料100の内部抵抗、耐久性、温度差のつけやすさ、さらに発電効率の精度を減少させる原因となる熱電材料側面からの放熱を防ぐ点から、1~30mm程度が好ましく、1~7mm程度がより好ましい。なお、p型とn型熱電素子の高さHは異なっても良いが、加熱板21や冷却板31との良好な熱接触を考慮すれば、全ての素子が同じ長さを有することが好ましい。 Further, the thermoelectric material, the electrode material, the substrate, and other constituent members used for the thermoelectric module sample 100 are not particularly limited as long as they maintain the shape without being melted, evaporated, crushed or the like at the measurement temperature. Further, the shape of the p-type thermoelectric element and the n-type thermoelectric element is not particularly limited, but is preferably a quadrangular prism or a cylinder as shown in FIG. Further, the cross-sectional dimension of the thermoelectric element is not particularly limited, but when the cross-sectional area is large and the number of thermoelectric elements is reduced, the generated current value is increased, so that the heat generation in the lead wire 4 is increased and the voltage value is increased. Therefore, the measurement accuracy may be lowered. Therefore, in general, it is preferable to use a quadrangular column with one side of the cross section of about 1 mm to 10 mm or a cylinder with a diameter of about 1 mm to 10 mm. Further, the cross-sectional shape of the p-type thermoelectric element and the cross-sectional shape of the n-type thermoelectric element may be different, or the cross-sectional dimensions of the p-type thermoelectric element and the n-type thermoelectric element may be different. Good. Also, the height H of the p-type or n-type thermoelectric element is not particularly limited, but the thermoelectric module 100 causes a decrease in internal resistance, durability, ease of temperature difference, and accuracy of power generation efficiency. From the viewpoint of preventing heat dissipation from the side of the material, it is preferably about 1 to 30 mm, more preferably about 1 to 7 mm. Although the height H of the p-type and n-type thermoelectric elements may be different, it is preferable that all elements have the same length in consideration of good thermal contact with the heating plate 21 and the cooling plate 31. .
 また、熱電モジュール試料100を構成する熱電素子数、さらに一つのp-n対を構成する素子数も限定されない。例えば、図13~図14に示す構成においては、p-n熱電素子対の一対を構成する素子数がp型、n型共に一個である場合が示されているが、例えば、図16に示すように、p-n熱電素子対の一対を構成する素子数がp型、n型共に二個となるように構成してもよく、或いは、図17に示すように、p型素子あるいはn型素子のどちらか一方の熱電素子のみで熱電モジュール試料100を構成してもよい。なお、図16(a)~(c)及び図17(a)~(c)のそれぞれは、図14のC方向、D方向、E方向から見た側面図に対応する。 Further, the number of thermoelectric elements constituting the thermoelectric module sample 100 and the number of elements constituting one pn pair are not limited. For example, in the configurations shown in FIGS. 13 to 14, the case where the number of elements constituting a pair of pn thermoelectric element pairs is one for both the p-type and the n-type is shown, for example, as shown in FIG. As shown in FIG. 17, the number of elements constituting a pair of pn thermoelectric element pairs may be two for both p-type and n-type, or as shown in FIG. The thermoelectric module sample 100 may be configured with only one of the thermoelectric elements. Each of FIGS. 16A to 16C and FIGS. 17A to 17C corresponds to side views viewed from the C direction, the D direction, and the E direction in FIG.
 また、図13及び図14の構成においては、熱電素子同士を導電性の電極102を用いて接続しているが、このような構成に特に限定されず、例えば、図18に示すように、p型熱電素子とn型熱電素子とを直接接合するように構成してもよい。図18(a)は、熱電モジュール試料100の平面図を示しており、図18(b)~(d)は、図18(a)のC方向、D方向、E方向から見たそれぞれの側面図を示している。接合を形成する場合、はんだや導電性ペーストなどを用いることができるが、高温空気中で耐久性の高いモジュールを作製するためには酸化や融解が発生するおそれのあるはんだよりも銀や白金、金など貴金属を用いた導電性ペーストを用いる方が好ましい。素子間の間隔も素子同士が接触して電気ショートを起こさなければ良いが、広すぎると熱電モジュール内の素子数が少なくなり、高い出力が得られない。そのため、素子間の間隔は0.1~5mm程度が良く、より好ましくは0.1~1mm程度である。 13 and 14, the thermoelectric elements are connected to each other using the conductive electrode 102. However, the present invention is not particularly limited to such a configuration. For example, as shown in FIG. A type thermoelectric element and an n-type thermoelectric element may be directly joined. FIG. 18A shows a plan view of the thermoelectric module sample 100, and FIGS. 18B to 18D are side views of the thermoelectric module sample 100 as viewed from the C direction, the D direction, and the E direction in FIG. The figure is shown. When forming a bond, solder or conductive paste can be used, but in order to produce a highly durable module in high-temperature air, silver or platinum, rather than solder that may oxidize or melt, It is preferable to use a conductive paste using a noble metal such as gold. The distance between the elements may be as long as the elements do not come into contact with each other to cause an electrical short, but if it is too wide, the number of elements in the thermoelectric module is reduced, and a high output cannot be obtained. Therefore, the interval between the elements is preferably about 0.1 to 5 mm, more preferably about 0.1 to 1 mm.
 また、図13及び図14の構成においては、熱電モジュール試料100の低温面側に電気絶縁性の低温側基板101を設け、高温面側に基板を設けないように構成しているが、このような構成に特に限定されず、例えば、図19(a)に示すように、低温側基板101に加えて、熱電モジュール試料100の高温面側に電気絶縁性の高温側基板103を配置するように構成してもよい。また、図19(b)に示すように、低温側基板101を省略して熱電モジュール試料100を構成してもよい。ここで、図19(a)(b)は、図13におけるD方向から見た側面図に対応する。低温側基板101及び高温側基板103の両方、或いは、いずれか一方を設けないように熱電モジュール試料100を構成し、電極102の一部が露出するような場合であって、後述の加熱部2が有する加熱板21の加熱面や冷却部3が有する冷却板31の冷却面が電気伝導性を有する場合には、熱電素子間のショートを防ぐため、上記加熱面や冷却面と熱電モジュール試料100との間に電気絶縁性の物質を挟めばよい。この場合、熱伝導が低いと熱電モジュール試料100に温度差を付けることが困難となるため、挿入物はできるだけ熱伝導率が高く、厚さが薄い方が好ましい。例えば、加熱面と熱電モジュール試料100との間には、薄いアルミナや窒化ケイ素などのセラミック板を配設することができ、また、冷却面と熱電モジュール試料100との間には、市販の熱伝導性グリースやポリイミド(カプトン(登録商標))テープを配設することができる。 Further, in the configuration of FIGS. 13 and 14, the thermoelectric module sample 100 is configured such that the electrically insulating low temperature side substrate 101 is provided on the low temperature surface side and the substrate is not provided on the high temperature surface side. For example, as shown in FIG. 19A, in addition to the low temperature side substrate 101, an electrically insulating high temperature side substrate 103 is disposed on the high temperature surface side of the thermoelectric module sample 100. It may be configured. Further, as shown in FIG. 19B, the thermoelectric module sample 100 may be configured by omitting the low temperature side substrate 101. Here, FIGS. 19A and 19B correspond to side views as viewed from the direction D in FIG. This is a case where the thermoelectric module sample 100 is configured so that both or one of the low temperature side substrate 101 and the high temperature side substrate 103 is not provided, and a part of the electrode 102 is exposed. When the heating surface of the heating plate 21 and the cooling surface of the cooling plate 31 of the cooling unit 3 have electrical conductivity, the heating surface and cooling surface and the thermoelectric module sample 100 are used to prevent a short circuit between the thermoelectric elements. An electrically insulating substance may be sandwiched between the two. In this case, if the thermal conductivity is low, it becomes difficult to give a temperature difference to the thermoelectric module sample 100. Therefore, it is preferable that the insert has as high a thermal conductivity as possible and a thin thickness. For example, a thin ceramic plate such as alumina or silicon nitride can be disposed between the heating surface and the thermoelectric module sample 100, and a commercially available heat plate can be disposed between the cooling surface and the thermoelectric module sample 100. Conductive grease or polyimide (Kapton (registered trademark)) tape can be provided.
 また、熱電モジュール試料100の形態として、図14等に示す熱電モジュール試料100を複数枚重ねたカスケードモジュールを採用することも可能であるが、その場合、全熱電モジュールの厚さの和が50mm以下になることが好ましく、5~20mm程度がより好ましい。また、熱電モジュール試料100の高温面の外縁は基板(低温側基板101、高温側基板103)の有無に関わらず、その一辺の長さは後述の加熱板21の一辺の長さの80%以下、より好ましくは50%以下に設定することが好ましい。このように設定することにより、加熱板21の熱量の多くを熱電モジュール試料100に入力できるため、発電出力も高くなり、熱電モジュール試料100が発電できる限界値に近い発電出力を得ることができる。また、基板が無い場合もまた高温面および低温面の変形による熱接触面積の低減の影響を小さくできる。 Further, as a form of the thermoelectric module sample 100, it is possible to adopt a cascade module in which a plurality of thermoelectric module samples 100 shown in FIG. 14 or the like are stacked. In this case, the sum of the thicknesses of all thermoelectric modules is 50 mm or less. Is preferably about 5 to 20 mm. Moreover, the outer edge of the high temperature surface of the thermoelectric module sample 100 is 80% or less of the length of one side of the heating plate 21 to be described later, regardless of the presence of the substrate (low temperature side substrate 101, high temperature side substrate 103). More preferably, it is preferably set to 50% or less. By setting in this way, most of the heat quantity of the heating plate 21 can be input to the thermoelectric module sample 100, so that the power generation output is also increased, and a power generation output close to the limit value that the thermoelectric module sample 100 can generate can be obtained. Moreover, even when there is no substrate, the influence of reduction of the thermal contact area due to deformation of the high temperature surface and the low temperature surface can be reduced.
 本発明の発明者は、上記熱電モジュール発電評価装置1に係る実施例を複数作成し、種々の熱電モジュール試料100について、その性能評価試験を行ったのでこれらについて以下説明する。 The inventor of the present invention created a plurality of examples according to the thermoelectric module power generation evaluation apparatus 1 and conducted performance evaluation tests on various thermoelectric module samples 100, which will be described below.
 まず、発明者が作成した実施例1~3に係る熱電モジュール発電評価装置1について説明する。 First, the thermoelectric module power generation evaluation apparatus 1 according to Examples 1 to 3 created by the inventors will be described.
 実施例1に係る熱電モジュール発電評価装置における加熱部2、冷却部3、加重部6、計測部の構成は以下の通りである。
[加熱部2]
 65mm×50mm角、厚さ25mmのインコネル600製の加熱板本体22の側面の3カ所に、該加熱板本体22の外側から4.5mm、外周間の間隔を10mm、さらに熱電モジュール試料100と接する加熱面側から6mmとなるように直径12mmの孔24を開けカートリッジヒーター23を装填して加熱板21を構成した(図20)。この時、カートリッジヒーター23の先端が加熱板21の外縁から40mmの深さに届くように配置する。反対側の側面には直径が2mmの孔26を加熱板本体22の外側から20.5mm、外周間の間隔が20mm、さらに熱電モジュール試料100と接する加熱面側から11mmとなるように2カ所孔を開け、Rタイプ熱電対(温度センサー25)を装填した。この配置にすると熱電対は二本のカートリッジヒーター23と等間隔に位置することになる。また熱電対の先端は加熱板21の外縁から25mmの深さに届くように配置する。二本の熱電対の一本をヒーターの温度制御器と接続し、ヒーター温度の制御に用いた。カートリッジヒーター23としては、常用800℃、最高温度1000℃まで使用できるものを採用した。加熱板21の発熱量は2本のカートリッジヒーター23で出力は最大1kWである。
The configurations of the heating unit 2, the cooling unit 3, the weighting unit 6, and the measurement unit in the thermoelectric module power generation evaluation apparatus according to the first embodiment are as follows.
[Heating unit 2]
65 mm × 50 mm square, 25 mm thick Inconel 600 made hot plate main body 22 has three sides on the side surface of 4.5 mm from the outer side of the hot plate main body 22, a distance between the outer circumferences of 10 mm, and is further in contact with the thermoelectric module sample 100. A hole 24 having a diameter of 12 mm was formed so as to be 6 mm from the heating surface side, and a cartridge heater 23 was loaded to constitute the heating plate 21 (FIG. 20). At this time, the cartridge heater 23 is arranged so that the tip of the cartridge heater 23 reaches a depth of 40 mm from the outer edge of the heating plate 21. On the opposite side surface, there are two holes 26 having a diameter of 2 mm so that the distance between the outer periphery of the heating plate body 22 is 20.5 mm, the distance between the outer circumferences is 20 mm, and the heating surface side in contact with the thermoelectric module sample 100 is 11 mm. And an R type thermocouple (temperature sensor 25) was loaded. With this arrangement, the thermocouple is positioned at equal intervals with the two cartridge heaters 23. The tip of the thermocouple is arranged so as to reach a depth of 25 mm from the outer edge of the heating plate 21. One of the two thermocouples was connected to the heater temperature controller and used to control the heater temperature. As the cartridge heater 23, one that can be used up to a normal temperature of 800 ° C. and a maximum temperature of 1000 ° C. was adopted. The heating amount of the heating plate 21 is two cartridge heaters 23 and the output is a maximum of 1 kW.
 熱電モジュール試料100と接触させず無負荷状態で加熱板21を900℃の設定で加熱したときの、加熱面の温度分布を表1に示す。計測にはサーモビューアーを用い、表1に表示した測定地点を図21に示す。計測地点がカートリッジヒーター23に近い方が高い温度になる傾向が見られた。加熱板21と中心を同じくし、加熱板21の各辺の80%の長さを有する領域内(地点(1)、(7)、(15)、(21)で囲まれた領域)での最大の温度差は49℃であった。一方、加熱板21の各辺の50%の長さを有する領域内(地点(22)、(23)、(24)、(25)で囲まれた領域)では16℃が最大の温度差となった。なお、設定温度と実測値の差は、加熱面を空気中にむき出しにして計測を行ったために発生したものである。 Table 1 shows the temperature distribution on the heating surface when the heating plate 21 is heated at a setting of 900 ° C. in a no-load state without being brought into contact with the thermoelectric module sample 100. A thermo viewer is used for the measurement, and the measurement points displayed in Table 1 are shown in FIG. There was a tendency for the temperature to be higher when the measurement point was closer to the cartridge heater 23. In the same area as the heating plate 21 and having a length of 80% of each side of the heating plate 21 (area surrounded by points (1), (7), (15), (21)) The maximum temperature difference was 49 ° C. On the other hand, in a region having a length of 50% of each side of the heating plate 21 (region surrounded by the points (22), (23), (24), (25)), 16 ° C. is the maximum temperature difference. became. Note that the difference between the set temperature and the actually measured value occurs because the measurement was performed with the heating surface exposed in the air.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[冷却部3]
 冷却部3は80mm×80mm角、厚さ20mmで、内部に水管(流路32)を有する、熱抵抗が0.03℃/W以下の銅製の冷却板31により構成した(図22)。チラーは最大冷却能力が1.4kWで、最大流量は14リットルである。設定温度は30℃以下である。
[Cooling unit 3]
The cooling unit 3 was constituted by a copper cooling plate 31 having an 80 mm × 80 mm square and a thickness of 20 mm and having a water pipe (flow path 32) therein and a thermal resistance of 0.03 ° C./W or less (FIG. 22). The chiller has a maximum cooling capacity of 1.4 kW and a maximum flow rate of 14 liters. The set temperature is 30 ° C. or less.
[加重部6]
 てこの原理を用いたレバープレス式により加重部6を構成した(図8)。この加重部6は、最高で5kgのおもりをレバーにつり下げ、加熱部2上部からモジュール試料に均等に加重をかけるように構成している。加重は1kg刻みで設定可能に構成している。加重値は測定中もロードセルにより確認し、手動でおもりをレバーにつり下げ一定値を保つようにしている。なお、加熱部2と冷却部3の配置は、加熱部2が上部にあり、下部にある冷却部3を固定し、上部から加重をかけるように構成している。
[Weighting unit 6]
The load portion 6 was configured by a lever press type using the lever principle (FIG. 8). The weighting unit 6 is configured to suspend a weight of 5 kg at the maximum to the lever and to apply an even weight to the module sample from the upper part of the heating unit 2. The weight can be set in increments of 1 kg. The weight is confirmed by the load cell during measurement, and the weight is manually suspended on the lever to maintain a constant value. The arrangement of the heating unit 2 and the cooling unit 3 is configured such that the heating unit 2 is in the upper part, the cooling unit 3 in the lower part is fixed, and a load is applied from the upper part.
[計測部]
 温度計測は加熱板21で2箇所、熱電モジュール試料100の高温面及び低温面でそれぞれ1箇所、さらに冷却水温度で2箇所を計測する。温度センサーは、加熱板21、モジュール高温面にはRタイプ熱電対、モジュール低温面にはKタイプ熱電対を使用した。冷却水温度の計測は白金測温抵抗体を使用する。加熱板21の計測用熱電対は加熱板21の側面に設けた孔に熱電対を挿入する。モジュール試料の高温面の計測用熱電対は、高温面にモジュール試料の基板がある場合は、その素子側の面にRタイプ熱電対を、銀ペーストを用い接着する。モジュール試料の基板が無い場合は、加熱板21との間に厚さが0.8mmのアルミナ板を挿入し、その素子側に銀ペーストを用いRタイプ熱電対を接着した。
[Measurement section]
The temperature is measured at two locations on the heating plate 21, one location on each of the high and low temperature surfaces of the thermoelectric module sample 100, and two locations on the cooling water temperature. As the temperature sensor, an R type thermocouple was used for the heating plate 21, the module high temperature surface, and a K type thermocouple was used for the module low temperature surface. A platinum resistance thermometer is used to measure the cooling water temperature. The thermocouple for measurement of the heating plate 21 is inserted into a hole provided on the side surface of the heating plate 21. When there is a module sample substrate on the high temperature surface of the thermocouple for measuring the high temperature surface of the module sample, an R type thermocouple is bonded to the element side surface using silver paste. When there was no module sample substrate, an alumina plate having a thickness of 0.8 mm was inserted between the heating plate 21 and an R type thermocouple was bonded to the element side using silver paste.
 また、電子負荷装置として、最大5Aの電流を通電できる定電流直流電源を用い、電圧計として最大10Vまで測定できる直流電圧計を用いた。また温度計測も各々の温度センターに対応したデジタル温度計測器を用いた。 Also, as the electronic load device, a constant current DC power supply capable of supplying a maximum current of 5 A was used, and a DC voltmeter capable of measuring up to 10 V was used as a voltmeter. For temperature measurement, a digital temperature measuring device corresponding to each temperature center was used.
 実施例2に係る熱電モジュール発電評価装置における加熱部2、冷却部3、加重部6、計測部の構成は以下の通りである。 The configurations of the heating unit 2, the cooling unit 3, the weighting unit 6, and the measurement unit in the thermoelectric module power generation evaluation apparatus according to Example 2 are as follows.
[加熱部2]
 140mm×140mm角、厚さ25mmのインコネル600製の加熱板本体22の側面の5カ所に、加熱板21の外側から14mm、外周間の間隔を13mm、さらに熱電モジュールと接する加熱面側から6mmとなるように直径12mmの孔24を開けカートリッジヒーター23を装填して加熱板21を構成した。(図23)。この時、カートリッジヒーター23の先端が加熱板21の外縁から135mmの深さに届くように配置する。反対側の側面には直径が2mmの孔26を加熱板本体22の外側から31.5mm、外周間の間隔が23mm、さらに熱電モジュール試料100と接する加熱面側から11mmとなるように4カ所孔26を開け、Rタイプ熱電対(温度センサー25)を装填した。この配置にするとそれぞれの熱電対は二本のカートリッジヒーター23と等間隔に位置することになる。また熱電対の先端は加熱板21の外縁から70mmの深さに届くように配置する。中央に近い二本の熱電対の一本をヒーターの温度制御器と接続し、ヒーター温度の制御に用いる。カートリッジヒーター23としては、常用800℃、最高温度1000℃まで使用できるものを採用した。加熱板21の発熱量は5本のカートリッジヒーター23で出力は最大2.5kWである。
[Heating unit 2]
14 mm from the outside of the heating plate 21, 13 mm from the outer periphery of the heating plate 21, and 6 mm from the heating surface side in contact with the thermoelectric module. A heating plate 21 was constructed by opening a hole 24 having a diameter of 12 mm and mounting a cartridge heater 23. (FIG. 23). At this time, the cartridge heater 23 is arranged so that the tip of the cartridge heater 23 reaches a depth of 135 mm from the outer edge of the heating plate 21. On the opposite side surface, there are four holes 26 with a diameter of 2 mm so that the distance between the outer periphery of the heating plate body 22 is 31.5 mm, the distance between the outer circumferences is 23 mm, and the heating surface side in contact with the thermoelectric module sample 100 is 11 mm. 26 was opened and an R type thermocouple (temperature sensor 25) was loaded. With this arrangement, each thermocouple is positioned at equal intervals with the two cartridge heaters 23. The tip of the thermocouple is disposed so as to reach a depth of 70 mm from the outer edge of the heating plate 21. One of the two thermocouples close to the center is connected to the heater temperature controller and used to control the heater temperature. As the cartridge heater 23, one that can be used up to a normal temperature of 800 ° C. and a maximum temperature of 1000 ° C. was adopted. The heating amount of the heating plate 21 is five cartridge heaters 23, and the output is 2.5 kW at maximum.
 熱電モジュール試料100と接触させず無負荷状態で加熱板21を800℃の設定で加熱したときの、加熱面の温度分布を表2に示す。計測にはサーモビューアーを用い、表2に表示した測定地点を図24に示す。計測地点がカートリッジヒーター23に近い方が高い温度になる傾向が見られた。加熱板21と中心を同じくし、加熱板21の各辺の80%の長さを有する領域内(地点(1)、(7)、(15)、(21)で囲まれた領域)での最大の温度差は48℃であった。一方、加熱板21の各辺の50%の長さを有する領域内(地点(22)、(23)、(24)、(25)で囲まれた領域)では20℃が最大の温度差となった。なお、設定温度と実測値の差は、加熱面を空気中にむき出しにして計測を行ったために発生したものである。 Table 2 shows the temperature distribution on the heating surface when the heating plate 21 is heated at a setting of 800 ° C. in a no-load state without being brought into contact with the thermoelectric module sample 100. A thermo viewer is used for measurement, and the measurement points displayed in Table 2 are shown in FIG. There was a tendency for the temperature to be higher when the measurement point was closer to the cartridge heater 23. In the same area as the heating plate 21 and having a length of 80% of each side of the heating plate 21 (area surrounded by points (1), (7), (15), (21)) The maximum temperature difference was 48 ° C. On the other hand, in the region having a length of 50% of each side of the heating plate 21 (region surrounded by the points (22), (23), (24), (25)), 20 ° C. is the maximum temperature difference. became. Note that the difference between the set temperature and the actually measured value occurs because the measurement was performed with the heating surface exposed in the air.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[冷却部3]
 冷却部3は140mm×140mm角、厚さ20mmで、内部に水管(流路32)を有する、熱抵抗が0.005℃/W以下の銅製の冷却板31により構成した(図25)。チラーは最大冷却能力が1.4kWで、最大流量は14リットルである。設定温度は30℃以下である。
[Cooling unit 3]
The cooling unit 3 was constituted by a copper cooling plate 31 having a 140 mm × 140 mm square and a thickness of 20 mm and having a water pipe (flow path 32) therein and a thermal resistance of 0.005 ° C./W or less (FIG. 25). The chiller has a maximum cooling capacity of 1.4 kW and a maximum flow rate of 14 liters. The set temperature is 30 ° C. or less.
[加重部6]
 てこの原理を用いたレバー式プレスによりにより加重部6を構成した(図8)。この加重部6は、最高で10kgのおもりをレバーにつり下げ、加熱部2上部からモジュール試料に均等に加重をかけるように構成している。加重は1kg刻みで設定可能に構成している。加重値は測定中もロードセルにより確認し、手動でおもりをレバーにつり下げ一定値を保つにしている。なお、加熱部2と冷却部3の配置は、加熱部2が上部にあり、下部にある冷却部3を固定し、上部から加重をかけるように構成している。
[Weighting unit 6]
The load portion 6 was configured by a lever press using the lever principle (FIG. 8). The weighting unit 6 is configured to suspend a weight of 10 kg at the maximum to the lever and to apply an even weight to the module sample from the upper part of the heating unit 2. The weight can be set in increments of 1 kg. The weight is confirmed by the load cell during measurement, and the weight is manually suspended on the lever to maintain a constant value. The arrangement of the heating unit 2 and the cooling unit 3 is configured such that the heating unit 2 is in the upper part, the cooling unit 3 in the lower part is fixed, and a load is applied from the upper part.
[計測部]
 温度計測は加熱板21で4箇所、熱電モジュール試料100の高温面及び低温面でそれぞれ2箇所、さらに冷却水温度で2箇所を計測している。温度センサーは加熱板21、モジュール高温面にはRタイプ熱電対、モジュール低温面はKタイプ熱電対を使用した。冷却水温度の計測は白金測温抵抗体を使用する。加熱板21の計測用熱電対は加熱板21の側面に設けた孔に熱電対を挿入する。モジュール試料の高温面の計測用熱電対は、高温面にモジュール試料の基板がある場合は、その素子側の面にRタイプ熱電対を、銀ペーストを用い接着する。モジュール試料の基板が無い場合は、加熱板21との間に厚さが0.8mmのアルミナ板を挿入し、その素子側に銀ペーストを用いRタイプ熱電対を接着する。
[Measurement section]
The temperature is measured at four locations on the heating plate 21, two locations on the high and low temperature surfaces of the thermoelectric module sample 100, and two locations on the cooling water temperature. The temperature sensor used was a heating plate 21, an R type thermocouple for the module high temperature surface, and a K type thermocouple for the module low temperature surface. A platinum resistance thermometer is used to measure the cooling water temperature. The thermocouple for measurement of the heating plate 21 is inserted into a hole provided on the side surface of the heating plate 21. When there is a module sample substrate on the high temperature surface of the thermocouple for measuring the high temperature surface of the module sample, an R type thermocouple is bonded to the element side surface using silver paste. When there is no module sample substrate, an alumina plate having a thickness of 0.8 mm is inserted between the heating plate 21 and an R type thermocouple is bonded to the element side using silver paste.
 また、電子負荷装置として、最大10Aの電流を通電できる定電流直流電源を用い、電圧計として最大10Vまで測定できる直流電圧計を用いた。また温度計測も各々の温度センターに対応したデジタル温度計測器を用いた。 Also, as the electronic load device, a constant current DC power supply capable of supplying a maximum current of 10 A was used, and a DC voltmeter capable of measuring up to 10 V was used as a voltmeter. For temperature measurement, a digital temperature measuring device corresponding to each temperature center was used.
 実施例3に係る熱電モジュール発電評価装置における加熱部2、冷却部3、加重部6、計測部の構成は以下の通りである。 The configuration of the heating unit 2, the cooling unit 3, the weighting unit 6, and the measurement unit in the thermoelectric module power generation evaluation apparatus according to Example 3 is as follows.
[加熱部2]
 160mm×150mm角、厚さ30mmのインコネル600製の加熱板本体22の側面の6カ所に、加熱板21の外側から11.5mm、外周間の間隔を15mm、さらに熱電モジュール試料100と接する加熱面側から7mmとなるように直径12mmの孔24を開けカートリッジヒーター23を装填して加熱板21を構成した(図26)。この時、カートリッジヒーター23の先端が加熱板21の外縁から155mmの深さに届くように配置する。反対側の側面には直径が2mmの孔26を加熱板本体22の外側から25mm、外周間の間隔が27.5mm、さらに熱電モジュール試料100と接する加熱面側から12mmとなるように5カ所孔を開け、Rタイプ熱電対(温度センサー25)を装填した。この配置にするとそれぞれの熱電対は二本のカートリッジヒーター23と等間隔に位置することになる。また熱電対の先端は加熱板21の外縁から80mmの深さに届くように配置する。5本の内、中央の熱電対をヒーターの温度制御器と接続し、ヒーター温度の制御に用いる。カートリッジヒーター23としては、常用800℃、最高温度1000℃まで使用できるものを採用した。加熱板21の発熱量は5本のカートリッジヒーター23で出力は最大3kWである。
[Heating unit 2]
Heating surface in contact with the thermoelectric module sample 100 at six locations on the side surface of the heating plate body 22 made of Inconel 600 having a size of 160 mm × 150 mm square and a thickness of 30 mm, 11.5 mm from the outside of the heating plate 21, 15 mm between the outer circumferences. A heating plate 21 was constructed by opening a hole 24 with a diameter of 12 mm so as to be 7 mm from the side and loading a cartridge heater 23 (FIG. 26). At this time, the cartridge heater 23 is arranged so that the tip of the cartridge heater 23 reaches a depth of 155 mm from the outer edge of the heating plate 21. On the opposite side surface, there are five holes 26 having a diameter of 2 mm so that the distance between the outer periphery of the heating plate body 22 is 25 mm, the distance between the outer circumferences is 27.5 mm, and the heating surface side in contact with the thermoelectric module sample 100 is 12 mm. And an R type thermocouple (temperature sensor 25) was loaded. With this arrangement, each thermocouple is positioned at equal intervals with the two cartridge heaters 23. The tip of the thermocouple is arranged so as to reach a depth of 80 mm from the outer edge of the heating plate 21. Of the five, the central thermocouple is connected to the heater temperature controller and used to control the heater temperature. As the cartridge heater 23, one that can be used up to a normal temperature of 800 ° C. and a maximum temperature of 1000 ° C. was adopted. The heating amount of the heating plate 21 is five cartridge heaters 23 and the output is 3 kW at maximum.
 熱電モジュール試料100と接触させず無負荷状態で加熱板21を600℃の設定で加熱したときの、加熱面の温度分布を表3に示す。計測にはサーモビューアーを用い、表3に表示した測定地点を図27に示す。計測地点がカートリッジヒーター23に近い方が高い温度になる傾向が見られた。加熱板21と中心を同じくし、加熱板21の各辺の80%の長さを有する領域内(地点(1)、(7)、(15)、(21)で囲まれた領域)での最大の温度差は19℃であった。一方、加熱板21の各辺の50%の長さを有する領域内(地点(22)、(23)、(24)、(25)で囲まれた領域)でも19℃が最大の温度差となった。なお、設定温度と実測値の差は、加熱面を空気中にむき出しにして計測を行ったために発生したものである。 Table 3 shows the temperature distribution on the heating surface when the heating plate 21 is heated at a setting of 600 ° C. in a no-load state without being brought into contact with the thermoelectric module sample 100. The measurement points displayed in Table 3 are shown in FIG. 27 using a thermo viewer. There was a tendency for the temperature to be higher when the measurement point was closer to the cartridge heater 23. In the same area as the heating plate 21 and having a length of 80% of each side of the heating plate 21 (area surrounded by points (1), (7), (15), (21)) The maximum temperature difference was 19 ° C. On the other hand, 19 ° C. is the maximum temperature difference even in an area having a length of 50% of each side of the heating plate 21 (area surrounded by points (22), (23), (24), (25)). became. Note that the difference between the set temperature and the actually measured value occurs because the measurement was performed with the heating surface exposed in the air.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[冷却部3]
 冷却部3は300mm×300mm角、厚さ50mmで、内部に水管(流路32)を有する、熱抵抗が0.0015℃/W以下の銅製の冷却板31により構成した(図28)。チラーは最大冷却能力が3kWで、最大流量は27リットルである。設定温度は30℃以下である。
[Cooling unit 3]
The cooling unit 3 was composed of a copper cooling plate 31 having a 300 mm × 300 mm square and a thickness of 50 mm and having a water pipe (flow path 32) therein and a thermal resistance of 0.0015 ° C./W or less (FIG. 28). The chiller has a maximum cooling capacity of 3 kW and a maximum flow rate of 27 liters. The set temperature is 30 ° C. or less.
[加重部6]
 空圧式コンプレッサータイプにより加重部6を構成した(図7)。この加重部6は、最高で200kgまで加熱部2上部からモジュール試料に均等に加重をかけることができる。加重は1kg刻みで設定可能である。加重値は測定中もロードセルにより確認し、自動で設定の加重になるよう調整できるように構成されている。なお、加熱部2と冷却部3の配置は、加熱部2が上部にあり、下部にある冷却部3を固定し、上部から加重をかけるように構成している。
[Weighting unit 6]
The weighting unit 6 was configured by a pneumatic compressor type (FIG. 7). The weighting unit 6 can evenly apply a load to the module sample from the upper part of the heating unit 2 up to 200 kg. The weight can be set in increments of 1 kg. The weight value is confirmed by the load cell even during measurement, and can be automatically adjusted to the set weight. The arrangement of the heating unit 2 and the cooling unit 3 is configured such that the heating unit 2 is in the upper part, the cooling unit 3 in the lower part is fixed, and a load is applied from the upper part.
[計測部]
 温度計測は加熱板21で5箇所、熱電モジュールの高温面及び低温面でそれぞれ5箇所、さらに冷却水温度で2箇所の15箇所を計測している。温度センサーは加熱板21、モジュール高温面にはRタイプ熱電対、モジュール低温面はKタイプ熱電対を使用した。冷却水温度の計測は白金測温抵抗体を使用する。加熱板21の計測用熱電対は加熱板21の側面に設けた孔に熱電対を挿入する。モジュールの高温面の計測用熱電対は、高温面にモジュールの基板がある場合は、その素子側の面にRタイプ熱電対を、銀ペーストを用い接着する。モジュールの基板が無い場合は、加熱板21との間に厚さが0.8mmのアルミナ板を挿入し、その素子側に銀ペーストを用いRタイプ熱電対を接着する。
[Measurement section]
The temperature is measured at five locations on the heating plate 21, at five locations on the high and low temperature surfaces of the thermoelectric module, and at two locations on the cooling water temperature. The temperature sensor used was a heating plate 21, an R type thermocouple for the module high temperature surface, and a K type thermocouple for the module low temperature surface. A platinum resistance thermometer is used to measure the cooling water temperature. The thermocouple for measurement of the heating plate 21 is inserted into a hole provided on the side surface of the heating plate 21. When there is a module substrate on the high temperature surface of the thermocouple for measuring the high temperature surface of the module, an R type thermocouple is bonded to the surface on the element side using silver paste. When there is no module substrate, an alumina plate having a thickness of 0.8 mm is inserted between the heating plate 21 and an R type thermocouple is bonded to the element side using silver paste.
 また、電子負荷装置として、最大10Aの電流を通電できる定電流直流電源を用い、電圧計として最大20Vまで測定できる直流電圧計を用いた。また温度計測も各々の温度センターに対応したデジタル温度計測器を用いた。 Also, as the electronic load device, a constant current DC power source capable of supplying a maximum current of 10 A was used, and a DC voltmeter capable of measuring up to 20 V was used as a voltmeter. For temperature measurement, a digital temperature measuring device corresponding to each temperature center was used.
 次に、上記実施例1~3に係る熱電モジュール発電評価装置によって行った試験例1~33について説明する。なお、試験例1~7は、実施例1に係る熱電モジュール発電評価装置により行った。また、試験例8~30は、実施例2に係る熱電モジュール発電評価装置により、試験例31~33は、実施例3に係る熱電モジュール発電評価装置により行った。 Next, Test Examples 1 to 33 performed by the thermoelectric module power generation evaluation apparatus according to Examples 1 to 3 will be described. Test Examples 1 to 7 were performed using the thermoelectric module power generation evaluation apparatus according to Example 1. In addition, Test Examples 8 to 30 were performed by the thermoelectric module power generation evaluation apparatus according to Example 2, and Test Examples 31 to 33 were performed by the thermoelectric module power generation evaluation apparatus according to Example 3.
 なお、試験例1~17、26,27,31,33に係る熱電モジュール試料は、下記[文献1]~[文献3]に基づいて作製される酸化物系材料を用いた熱電モジュールである。
[文献1] R. Funahashi, and S. Urata, K. Mizuno, T. Kouuchi, and M. Mikami, Ca2.7Bi0.3Co4O9/La0.9Bi0.1NiO3 thermoelectrics devices with high output power density, Applied Physics Letters, Vol. 85 No. 6, pp.1036-1038 (2004)
[文献2] R. Funahashi, M. Mikami, T. Mihara, S. Urata, and N. Ando, A portable thermoelectric-power-generating module of Composed of oxide devices, Journal of Applied Physics, Vol. 99 No. 6, pp. 066117-066119 (2006)
[文献3] S. Urata, R. Funahashi, T. Mihara, A. Kosuga, S. Sodeoka, T. Tanaka, Power generation of a p-type Ca3Co4O9/n-type CaMnO3 module, International Journal of Applied Ceramic Technology, Vol. 4, No. 6, pp. 535-540 (2007)
The thermoelectric module samples according to Test Examples 1 to 17, 26, 27, 31, and 33 are thermoelectric modules using oxide-based materials manufactured based on the following [Document 1] to [Document 3].
[Reference 1] R. Funahashi, and S. Urata, K. Mizuno, T. Kouuchi, and M. Mikami, Ca2.7Bi0.3Co4O9 / La0.9Bi0.1NiO3 thermoelectrics devices with high output power density, Applied Physics Letters, Vol 85 No. 6, pp.1036-1038 (2004)
[Reference 2] R. Funahashi, M. Mikami, T. Mihara, S. Urata, and N. Ando, A portable thermoelectric-power-generating module of Composed of oxide devices, Journal of Applied Physics, Vol. 99 No. 6 , pp. 066117-066119 (2006)
[Reference 3] S. Urata, R. Funahashi, T. Mihara, A. Kosuga, S. Sodeoka, T. Tanaka, Power generation of a p-type Ca3Co4O9 / n-type CaMnO3 module, International Journal of Applied Ceramic Technology, Vol. 4, No. 6, pp. 535-540 (2007)
 また、試験例18~25、28~30、32に係る熱電モジュール試料は、下記文献4及び文献5に基づいて作製されるシリサイド系材料を用いた熱電モジュールである。
[文献4] R. Funahashi, Y. Matsumura, H. Tanaka, T. Takeuchi, W. Norimatsu,E. Combe, R. O. Suzuki, Y. Wang, C. Wan, S. Katsuyama, M. Kusunoki,and K. Koumoto, Thermoelectric Properties of n-type Mn3-xCrxSi4Al2 in Air, Journal of Applied Physics, 112, 073713 (2012)
[文献5] R. Funahashi, Y. Matsumura, T. Barbier, T. Takeuchi, R. O. Suzuki,S. Katsuyama, A. Yamamoto, H. Takazawa, E. Combe, Durability of silicide-based thermoelectric modules at high temperatures in air, Journal of Electronic Materials, Vol. 44, Issue 8, pp 2946-2952 (2015)
Further, the thermoelectric module samples according to Test Examples 18 to 25, 28 to 30, and 32 are thermoelectric modules using a silicide-based material manufactured based on the following documents 4 and 5.
[Reference 4] R. Funahashi, Y. Matsumura, H. Tanaka, T. Takeuchi, W. Norimatsu, E. Combe, RO Suzuki, Y. Wang, C. Wan, S. Katsuyama, M. Kusunoki, and K. Koumoto, Thermoelectric Properties of n-type Mn3-xCrxSi4Al2 in Air, Journal of Applied Physics, 112, 073713 (2012)
[Reference 5] R. Funahashi, Y. Matsumura, T. Barbier, T. Takeuchi, RO Suzuki, S. Katsuyama, A. Yamamoto, H. Takazawa, E. Combe, Durability of silicide-based thermoelectric modules at high temperatures in air, Journal of Electronic Materials, Vol. 44, Issue 8, pp 2946-2952 (2015)
<試験例1~5>
 試験例1において性能評価した熱電モジュール試料100は、その素子がp型Ca2.7Bi0.3Co4O9とn型Ca0.9Yb0.1MnO3で、素子の断面寸法は3.5mm×3.5mm、長さが5mmで、銀ペーストを用い、銀電極と接合されている。素子の対数は8対で、一対の素子数はp、n型どちらも1個ずつである。基板は無く、熱電モジュール試料100の高温面の辺の長さは15.5mm×15.5で、厚さが5.2mmである。リード線4は幅3.5mm、厚さ0.1mm、長さ30mmの銀シートであり、モジュール試料の低温面側の電極端に接続されている。電気絶縁のため、厚さ0.07mmのポリイミド(カプトン(登録商標))テープをリード線4に巻き、更に、冷却板31にポリイミド(カプトン(登録商標))テープで密着させた。また熱電モジュール試料100の低温面と冷却板31の間に厚さ0.5mmの放熱ゲルシート(弾力性のある伝熱シート9;商品名:ラムダゲル)を挿入し、熱伝導と電気絶縁を確保すると同時に、冷却板31と放熱ゲルシート間に低温面計測用Kタイプ熱電対を挿入した。さらに、熱電モジュール試料100の高温面の寸法と同じ寸法でくりぬいたグラスウール断熱材(断熱部材7)を数枚重ね、熱電モジュール試料100の周囲を覆うと共に、冷却板31全体を被覆し、加熱板21からの放熱による加熱を防いだ。加熱板温度を200~900℃の範囲で100℃ごとに設定し、3kgの重りをハンドルレバーにつり下げ加重した。20℃に設定した冷却水温度を冷却板31に5リットル/分の水量で循環した。加熱板21の温度が設定値になった後、外部負荷抵抗を走査し、電流値と電圧値を計測し、それらの数値を用い、上記の式3により熱電モジュール試料100の最大出力を計算した。さらにこの最大出力と式5で計算した冷却水へ流入した熱量から、式4を用い発電効率を計算した。この試験例1において性能評価した熱電モジュール試料100の詳細を表4に示すと共に、加熱板21の各温度に対する発電出力(W)及び発電効率(%)に関する結果を表5に示す。なお、表5において「-」で示す個所は、加熱板21の各温度に対する発電出力(W)及び発電効率(%)が未計測であることを表している。
<Test Examples 1 to 5>
The thermoelectric module sample 100 whose performance was evaluated in Test Example 1 was composed of p-type Ca 2.7 Bi 0.3 Co 4 O 9 and n-type Ca 0.9 Yb 0.1 MnO 3 , and the cross-sectional dimensions of the element were 3.5 mm × 3.5 mm. It is 5 mm long and is joined to the silver electrode using a silver paste. There are 8 pairs of elements, and there are one pair of p-type and n-type elements. There is no substrate, the length of the side of the high temperature surface of the thermoelectric module sample 100 is 15.5 mm × 15.5, and the thickness is 5.2 mm. The lead wire 4 is a silver sheet having a width of 3.5 mm, a thickness of 0.1 mm, and a length of 30 mm, and is connected to the electrode end on the low temperature surface side of the module sample. For electrical insulation, a polyimide (Kapton (registered trademark)) tape having a thickness of 0.07 mm was wound around the lead wire 4, and was further adhered to the cooling plate 31 with a polyimide (Kapton (registered trademark)) tape. In addition, when a heat-dissipating gel sheet (elastic heat transfer sheet 9; trade name: lambda gel) having a thickness of 0.5 mm is inserted between the low-temperature surface of the thermoelectric module sample 100 and the cooling plate 31, heat conduction and electrical insulation are ensured. At the same time, a K-type thermocouple for low-temperature surface measurement was inserted between the cooling plate 31 and the heat radiation gel sheet. Furthermore, several sheets of glass wool heat insulating material (heat insulating member 7) hollowed to the same size as the high temperature surface of the thermoelectric module sample 100 are stacked to cover the periphery of the thermoelectric module sample 100 and to cover the entire cooling plate 31, Heating by heat dissipation from 21 was prevented. The heating plate temperature was set in the range of 200 to 900 ° C. every 100 ° C., and a weight of 3 kg was hung on the handle lever and loaded. The cooling water temperature set at 20 ° C. was circulated through the cooling plate 31 at a water amount of 5 liters / minute. After the temperature of the heating plate 21 reaches the set value, the external load resistance is scanned, the current value and the voltage value are measured, and the maximum output of the thermoelectric module sample 100 is calculated by the above equation 3 using the numerical values. . Furthermore, the power generation efficiency was calculated using Equation 4 from this maximum output and the amount of heat flowing into the cooling water calculated by Equation 5. The details of the thermoelectric module sample 100 whose performance was evaluated in Test Example 1 are shown in Table 4, and the results concerning the power generation output (W) and the power generation efficiency (%) with respect to each temperature of the heating plate 21 are shown in Table 5. In Table 5, the part indicated by “-” indicates that the power generation output (W) and power generation efficiency (%) for each temperature of the heating plate 21 are not measured.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 また、試験例2~5は、試験例1とは異なる熱電モジュール試料100に対する性能評価を、上記試験例1と同一条件にて行った。試験例2~5において性能評価した熱電モジュール試料100に関する詳細を上記表4に併せて示すと共に、加熱板21の各温度に対する発電出力(W)及び発電効率(%)に関する結果を上記表5に併せて示す。 In Test Examples 2 to 5, performance evaluation for the thermoelectric module sample 100 different from Test Example 1 was performed under the same conditions as in Test Example 1. Details regarding the thermoelectric module sample 100 whose performance was evaluated in Test Examples 2 to 5 are also shown in Table 4 above, and the results regarding the power generation output (W) and power generation efficiency (%) for each temperature of the heating plate 21 are shown in Table 5 above. Also shown.
<試験例6>
 試験例6において性能評価した熱電モジュール試料100は、その素子がp型Ca2.7Bi0.3Co4O9とn型Ca0.9Yb0.1MnO3で、素子の断面寸法は3.5mm×3.5mm、長さが5mmで、銀ペーストを用い、銀電極と接合されている。素子の対数は14対で、一対の素子数はp、n型どちらも2個ずつである。高温面側に基板として32mm×34mm、厚さ0.8mmのアルミナを用いる。基板の無い低温面の辺の長さは27.5mm×31.5mmで、熱電モジュールの厚さは7mmである。リード線4は幅5mm、厚さ0.1mm、長さ7.5mmの銀シートであり、モジュール試料の高温面側の電極端に接続されている。電気絶縁のため、厚さ0.07mmのポリイミド(カプトン(登録商標))テープをリード線4に巻き、更に、冷却板31にポリイミド(カプトン(登録商標))テープで密着させた。また熱電モジュール試料100の低温面と冷却板31の間に厚さ0.5mmの放熱ゲルシート(弾力性のある伝熱シート9;商品名:ラムダゲル)を挿入し、熱伝導と電気絶縁を確保すると同時に、冷却板31と放熱ゲルシート間に低温面計測用Kタイプ熱電対を挿入した。さらに、熱電モジュールの高温面の寸法と同じ寸法でくりぬいたグラスウール断熱材(断熱部材7)を数枚重ね、熱電モジュール試料100の周囲を覆うと共に、冷却板31全体を被覆し、加熱板21からの放熱による加熱を防いだ。3kgの重りをハンドルレバーにつり下げ上部にある加熱板21により加重をかけた。20℃に設定した冷却水温度を冷却板31に5リットル/分の水量で循環させながら、加熱板温度を室温から3時間で900℃に上昇させ、外部負荷抵抗を走査させ最大出力を計測した。計測後、加熱板21の加熱を止め、3時間放置した。これにより加熱板温度は100℃以下となった。その後、再び加熱を開始し、3時間で900℃まで上昇させ、熱電モジュールの最大出力を計測した。この試験を合計で6回繰り返し、モジュールのサイクル試験を行った。
<Test Example 6>
The thermoelectric module sample 100 whose performance was evaluated in Test Example 6 was composed of p-type Ca 2.7 Bi 0.3 Co 4 O 9 and n-type Ca 0.9 Yb 0.1 MnO 3 , and the cross-sectional dimensions of the element were 3.5 mm × 3.5 mm, It is 5 mm long and is joined to the silver electrode using a silver paste. There are 14 pairs of elements, and there are two pairs of p-type and n-type elements. Alumina having a size of 32 mm × 34 mm and a thickness of 0.8 mm is used as the substrate on the high temperature side. The length of the side of the low-temperature surface without the substrate is 27.5 mm × 31.5 mm, and the thickness of the thermoelectric module is 7 mm. The lead wire 4 is a silver sheet having a width of 5 mm, a thickness of 0.1 mm, and a length of 7.5 mm, and is connected to the electrode end on the high temperature surface side of the module sample. For electrical insulation, a polyimide (Kapton (registered trademark)) tape having a thickness of 0.07 mm was wound around the lead wire 4, and was further adhered to the cooling plate 31 with a polyimide (Kapton (registered trademark)) tape. In addition, when a heat-dissipating gel sheet (elastic heat transfer sheet 9; trade name: lambda gel) having a thickness of 0.5 mm is inserted between the low-temperature surface of the thermoelectric module sample 100 and the cooling plate 31, heat conduction and electrical insulation are ensured. At the same time, a K-type thermocouple for low-temperature surface measurement was inserted between the cooling plate 31 and the heat radiation gel sheet. Furthermore, several sheets of glass wool heat insulating material (heat insulating member 7) hollowed with the same dimensions as the hot surface of the thermoelectric module are stacked to cover the periphery of the thermoelectric module sample 100 and to cover the entire cooling plate 31, and from the heating plate 21. Heating due to heat dissipation was prevented. A weight of 3 kg was hung on the handle lever, and the weight was applied by the heating plate 21 at the top. While circulating the cooling water temperature set to 20 ° C. to the cooling plate 31 at a rate of 5 liters / minute, the heating plate temperature was raised from room temperature to 900 ° C. in 3 hours, and the external load resistance was scanned to measure the maximum output. . After the measurement, heating of the heating plate 21 was stopped and left for 3 hours. Thereby, the heating plate temperature became 100 ° C. or less. Thereafter, heating was started again, the temperature was raised to 900 ° C. in 3 hours, and the maximum output of the thermoelectric module was measured. This test was repeated a total of 6 times to perform a module cycle test.
<試験例7>
 試験例7において性能評価される熱電モジュール試料100は、その素子がp型Ca2.7Bi0.3Co4O9とn型Ca0.9Yb0.1MnO3で、素子の断面寸法は3.5mm×3.5mm、長さが3.5mmで、銀ペーストを用い、銀電極と接合されている。素子の対数は10対で、一対の素子数はp型が2個、n型が1個である。高温面側に基板として32mm×36mm、厚さ0.8mmのアルミナを用いる。基板を除いた熱電モジュール試料100の寸法は30mm×30mmである。リード線4は幅5mm、厚さ0.1mm、長さ7.5mmの銀シートであり、モジュールの高温面側の電極端に接続されている。電気絶縁のため、厚さ0.07mmのポリイミド(カプトン(登録商標))テープをリード線4に巻き、更に、冷却板31にポリイミド(カプトン(登録商標))テープで密着させた。また熱電モジュールの低温面と冷却板31の間に厚さ0.5mmの放熱ゲルシート(弾力性のある伝熱シート9;商品名:ラムダゲル)を挿入し、熱伝導と電気絶縁を確保すると同時に、冷却板31と放熱ゲルシート間に低温面計測用Kタイプ熱電対を挿入した。さらに、熱電モジュール試料100の高温面の寸法と同じ寸法でくりぬいたグラスウール断熱材(断熱部材7)を数枚重ね、熱電モジュール試料100の周囲を覆うと共に、冷却板31全体を被覆し、加熱板21からの放熱による加熱を防いだ。3kgの重りをハンドルレバーにつり下げ上部にある加熱板21により加重をかけた。20℃に設定した冷却水温度を冷却板31に5リットル/分の水量で循環させながら、加熱板温度を室温から3時間で1000℃に上昇させ、外部負荷抵抗を走査させ最大出力を計測した。計測後、加熱板21の加熱を止め、4時間放置した。これにより加熱板温度は100℃以下となった。その後、再び加熱を開始し、3時間で1000℃まで上昇させ、熱電モジュール試料100の最大出力を計測した。この温度サイクルを合計で53回繰り返し、20回目までは毎回、さらに3~5回の温度サイクル後に計測を行った。
<Test Example 7>
The thermoelectric module sample 100 whose performance is evaluated in Test Example 7 includes p-type Ca 2.7 Bi 0.3 Co 4 O 9 and n-type Ca 0.9 Yb 0.1 MnO 3 , and the cross-sectional dimensions of the element are 3.5 mm × 3.5 mm. The length is 3.5 mm and the silver electrode is used to join the silver electrode. The number of pairs of elements is 10, and the number of pairs of elements is two for p-type and one for n-type. Alumina having a size of 32 mm × 36 mm and a thickness of 0.8 mm is used as the substrate on the high temperature side. The dimension of the thermoelectric module sample 100 excluding the substrate is 30 mm × 30 mm. The lead wire 4 is a silver sheet having a width of 5 mm, a thickness of 0.1 mm, and a length of 7.5 mm, and is connected to the electrode end on the high temperature surface side of the module. For electrical insulation, a polyimide (Kapton (registered trademark)) tape having a thickness of 0.07 mm was wound around the lead wire 4, and was further adhered to the cooling plate 31 with a polyimide (Kapton (registered trademark)) tape. In addition, a 0.5 mm thick heat dissipation gel sheet (elastic heat transfer sheet 9; trade name: lambda gel) is inserted between the low temperature surface of the thermoelectric module and the cooling plate 31 to ensure heat conduction and electrical insulation, A K type thermocouple for low-temperature surface measurement was inserted between the cooling plate 31 and the heat radiation gel sheet. Furthermore, several sheets of glass wool heat insulating material (heat insulating member 7) hollowed to the same size as the high temperature surface of the thermoelectric module sample 100 are stacked to cover the periphery of the thermoelectric module sample 100 and to cover the entire cooling plate 31, Heating by heat dissipation from 21 was prevented. A weight of 3 kg was hung on the handle lever, and the weight was applied by the heating plate 21 at the top. While circulating the cooling water temperature set at 20 ° C. to the cooling plate 31 with a water amount of 5 liters / minute, the heating plate temperature was increased from room temperature to 1000 ° C. in 3 hours, the external load resistance was scanned, and the maximum output was measured. . After the measurement, heating of the heating plate 21 was stopped and left for 4 hours. Thereby, the heating plate temperature became 100 ° C. or less. Thereafter, heating was started again, the temperature was increased to 1000 ° C. in 3 hours, and the maximum output of the thermoelectric module sample 100 was measured. This temperature cycle was repeated 53 times in total, and the measurement was performed every time until the 20th time and after 3 to 5 temperature cycles.
 上記試験例6及び7の熱電モジュール試料100の詳細を表6に、サイクル試験結果を表7に示す。なお、表7において「-」で示す個所については、サイクル試験を行っていない。 Table 6 shows the details of the thermoelectric module samples 100 of Test Examples 6 and 7, and Table 7 shows the results of the cycle test. In addition, the cycle test was not performed about the part shown by "-" in Table 7.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
<試験例8~25>
 試験例8において性能評価した熱電モジュール試料100は、その素子がp型Ca2.7Bi0.3Co4O9とn型Ca0.9Yb0.1MnO3で、素子の断面寸法は3.5mm×3.5mm、長さが5mmで、銀ペーストを用い、銀電極と接合されている。素子の対数は34対で、一対の素子数はp、n型どちらも2個ずつである。高温面側に基板として45 mm x 60 mm、厚さ0.8mmのアルミナを用いる。基板の無い低温面の辺の長さは15.5mm×15.5mmで、熱電モジュールの厚さは6mmである。リード線4は幅3.5mm、厚さ0.1mm、長さ30mmの銀シートであり、モジュールの低温面側の電極端に接続されている。電気絶縁のため、厚さ0.07mmのポリイミド(カプトン(登録商標))テープをリード線4に巻き、更に、冷却板31にポリイミド(カプトン(登録商標))テープで密着させた。また熱電モジュールの低温面と冷却板31の間に厚さ0.5mmの放熱ゲルシート(弾力性のある伝熱シート9;商品名:ラムダゲル)を挿入し、熱伝導と電気絶縁を確保すると同時に、冷却板31と放熱ゲルシート間に低温面計測用Kタイプ熱電対を挿入した。さらに、熱電モジュールの高温面の寸法と同じ寸法でくりぬいたグラスウール断熱材(断熱部材7)を数枚重ね、熱電モジュール試料100の周囲を覆うと共に、冷却板31全体を被覆し、加熱板21からの放熱による加熱を防いだ。加熱板温度を200~900℃の範囲で100℃ごとに設定し、5kgの重りをハンドルレバーにつり下げ加重した。20℃に設定した冷却水温度を冷却板31に5リットル/分の水量で循環した。加熱板21の温度が設定値になった後、外部負荷抵抗を走査して熱電モジュールの最大出力を計測した。さらにこの最大出力を用い発電効率も計測した。
<Test Examples 8 to 25>
The thermoelectric module sample 100 whose performance was evaluated in Test Example 8 was composed of p-type Ca 2.7 Bi 0.3 Co 4 O 9 and n-type Ca 0.9 Yb 0.1 MnO 3 , and the cross-sectional dimensions of the element were 3.5 mm × 3.5 mm, It is 5 mm long and is joined to the silver electrode using a silver paste. There are 34 pairs of elements, and there are two pairs of p-type and n-type elements. Alumina of 45 mm x 60 mm and 0.8 mm thickness is used as the substrate on the high temperature side. The side of the low-temperature surface without the substrate is 15.5 mm × 15.5 mm, and the thickness of the thermoelectric module is 6 mm. The lead wire 4 is a silver sheet having a width of 3.5 mm, a thickness of 0.1 mm, and a length of 30 mm, and is connected to the electrode end on the low temperature side of the module. For electrical insulation, a polyimide (Kapton (registered trademark)) tape having a thickness of 0.07 mm was wound around the lead wire 4, and was further adhered to the cooling plate 31 with a polyimide (Kapton (registered trademark)) tape. In addition, a 0.5 mm thick heat dissipation gel sheet (elastic heat transfer sheet 9; trade name: lambda gel) is inserted between the low temperature surface of the thermoelectric module and the cooling plate 31 to ensure heat conduction and electrical insulation, A K type thermocouple for low-temperature surface measurement was inserted between the cooling plate 31 and the heat radiation gel sheet. Furthermore, several sheets of glass wool heat insulating material (heat insulating member 7) hollowed with the same dimensions as the hot surface of the thermoelectric module are stacked to cover the periphery of the thermoelectric module sample 100 and to cover the entire cooling plate 31, and from the heating plate 21. Heating due to heat dissipation was prevented. The heating plate temperature was set in the range of 200 to 900 ° C. every 100 ° C., and a weight of 5 kg was suspended from the handle lever. The cooling water temperature set at 20 ° C. was circulated through the cooling plate 31 at a water amount of 5 liters / minute. After the temperature of the heating plate 21 reached the set value, the external load resistance was scanned to measure the maximum output of the thermoelectric module. Furthermore, the power generation efficiency was also measured using this maximum output.
 また、試験例9~25は、試験例8とは異なる熱電モジュール試料100に対する性能評価を、上記試験例8と同一の条件で行った。なお、一部の試験例においては、加熱板21設定温度の上限及び下限を試験例8と異なるようにして試験を行った。試験例8~25において性能評価した熱電モジュール試料100に関する詳細を表8に示す。また、加熱板21の各温度に対する発電出力(W)及び発電効率(%)に関する結果を表9に示す。なお、表9において「-」で示す個所は、加熱板21の各温度に対する発電出力(W)及び発電効率(%)が未計測であることを表している。 Also, in Test Examples 9 to 25, performance evaluation for the thermoelectric module sample 100 different from Test Example 8 was performed under the same conditions as in Test Example 8. In some test examples, the test was performed such that the upper and lower limits of the set temperature of the heating plate 21 were different from those in Test Example 8. Table 8 shows details of the thermoelectric module sample 100 whose performance was evaluated in Test Examples 8 to 25. Table 9 shows the results regarding the power generation output (W) and the power generation efficiency (%) with respect to each temperature of the heating plate 21. In Table 9, the part indicated by “-” indicates that the power generation output (W) and the power generation efficiency (%) for each temperature of the heating plate 21 are not measured.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<試験例26及び27>
 試験例26において性能評価した熱電モジュール試料100は、その素子がp型Ca2.7Bi0.3Co4O9とn型Ca0.9Yb0.1MnO3で、素子の断面寸法は3.5mm×3.5mm、長さが5mmで、銀ペーストを用い、銀電極と接合されている。素子の対数は34対で、一対の素子数はp、n型どちらも2個ずつである。高温面側に基板として32mm×34mm、厚さ0.8mmのアルミナを用いる。基板の無い低温面の辺の長さは43.5mm×47.5mmで、熱電モジュールの厚さは6mmである。リード線4は幅5mm、厚さ0.1mm、長さ7.5mmの銀シートであり、モジュールの高温面側の電極端に接続されている。電気絶縁のため、厚さ0.07mmのポリイミド(カプトン(登録商標))テープをリード線4に巻き、更に、冷却板31にポリイミド(カプトン(登録商標))テープで密着させた。また熱電モジュールの低温面と冷却板31の間に厚さ0.5mmの放熱ゲルシート(弾力性のある伝熱シート9;商品名:ラムダゲル)を挿入し、熱伝導と電気絶縁を確保すると同時に、冷却板31と放熱ゲルシート間に低温面計測用Kタイプ熱電対を挿入した。さらに、熱電モジュールの高温面の寸法と同じ寸法でくりぬいたグラスウール断熱材(断熱部材7)を数枚重ね、熱電モジュール試料100の周囲を覆うと共に、冷却板31全体を被覆し、加熱板21からの放熱による加熱を防いだ。5kgの重りをハンドルレバーにつり下げ上部にある加熱板21により加重をかけた。20℃に設定した冷却水温度を冷却板31に5リットル/分の水量で循環させながら、加熱板温度を室温から3時間で900℃に上昇させ、外部負荷抵抗を走査させ最大出力を計測した。計測後、加熱板21の加熱を止め、3時間放置した。これにより加熱板温度は100℃以下となった。その後、再び加熱を開始し、3時間で900℃まで上昇させ、熱電モジュールの最大出力を計測した。この試験を合計で5回繰り返し、モジュールのサイクル試験を行った。
<Test Examples 26 and 27>
The thermoelectric module sample 100 whose performance was evaluated in Test Example 26 was composed of p-type Ca 2.7 Bi 0.3 Co 4 O 9 and n-type Ca 0.9 Yb 0.1 MnO 3 , and the cross-sectional dimensions of the element were 3.5 mm × 3.5 mm. It is 5 mm long and is joined to the silver electrode using a silver paste. There are 34 pairs of elements, and there are two pairs of p-type and n-type elements. Alumina having a size of 32 mm × 34 mm and a thickness of 0.8 mm is used as the substrate on the high temperature side. The length of the side of the low-temperature surface without the substrate is 43.5 mm × 47.5 mm, and the thickness of the thermoelectric module is 6 mm. The lead wire 4 is a silver sheet having a width of 5 mm, a thickness of 0.1 mm, and a length of 7.5 mm, and is connected to the electrode end on the high temperature surface side of the module. For electrical insulation, a polyimide (Kapton (registered trademark)) tape having a thickness of 0.07 mm was wound around the lead wire 4, and was further adhered to the cooling plate 31 with a polyimide (Kapton (registered trademark)) tape. In addition, a 0.5 mm thick heat dissipation gel sheet (elastic heat transfer sheet 9; trade name: lambda gel) is inserted between the low temperature surface of the thermoelectric module and the cooling plate 31 to ensure heat conduction and electrical insulation, A K type thermocouple for low-temperature surface measurement was inserted between the cooling plate 31 and the heat radiation gel sheet. Furthermore, several sheets of glass wool heat insulating material (heat insulating member 7) hollowed with the same dimensions as the hot surface of the thermoelectric module are stacked to cover the periphery of the thermoelectric module sample 100 and to cover the entire cooling plate 31, and from the heating plate 21. Heating due to heat dissipation was prevented. A weight of 5 kg was hung on the handle lever, and a weight was applied by the heating plate 21 at the top. While circulating the cooling water temperature set to 20 ° C. to the cooling plate 31 at a rate of 5 liters / minute, the heating plate temperature was raised from room temperature to 900 ° C. in 3 hours, and the external load resistance was scanned to measure the maximum output. . After the measurement, heating of the heating plate 21 was stopped and left for 3 hours. Thereby, the heating plate temperature became 100 ° C. or less. Thereafter, heating was started again, the temperature was raised to 900 ° C. in 3 hours, and the maximum output of the thermoelectric module was measured. This test was repeated a total of 5 times to perform a module cycle test.
 試験例27は、上記試験例26に係る熱電モジュール試料100と同一構成のものを別途準備し、当該試料を試験例26における条件と同一条件にて行ったものである。表10に試験例26及び27の熱電モジュールの詳細を示す。また、表11にこれらのサイクル試験結果を示す。この二つの熱電モジュールは全く同一組成、同一形状を有するが、劣化現象に違いが見られた。これは、劣化の原因が異なるためであり、試験例26では電極部分に剥離があること、試験例27ではn型素子のひび割れであることがわかった。 Test Example 27 was prepared separately with the same configuration as the thermoelectric module sample 100 according to Test Example 26, and the sample was performed under the same conditions as in Test Example 26. Table 10 shows details of the thermoelectric modules of Test Examples 26 and 27. Table 11 shows the results of these cycle tests. Although these two thermoelectric modules have the same composition and the same shape, there is a difference in deterioration phenomenon. This is because the causes of deterioration are different. In Test Example 26, it was found that the electrode portion was peeled off, and in Test Example 27, the n-type element was cracked.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
<試験例28>
 試験例28において性能評価した熱電モジュール試料100は、その素子がp型MnSi1.7とn型Mn3Si4Al2で、素子の断面寸法は3.5mm×3.5mm、長さが7.5mmで、銀ペーストを用い、銀電極と接合されている。素子の対数は7対で、一対の素子数はp、n型どちらも2個ずつである。高温面側に基板として30mm×20mm、厚さ0.8mmのアルミナを用いる。基板の無い低温面の辺の長さは27.5mm×15.5mmで、熱電モジュールの厚さは8.5mmである。リード線4は幅5mm、厚さ0.1mm、長さ7.5mmの銀シートであり、モジュールの高温面側の電極端に接続されている。電気絶縁のため、厚さ0.07mmのポリイミド(カプトン(登録商標))テープをリード線4に巻き、更に、冷却板31にポリイミド(カプトン(登録商標))テープで密着させた。また熱電モジュールの低温面と冷却板31の間に厚さ0.5mmの放熱ゲルシート(弾力性のある伝熱シート9;商品名:ラムダゲル)を挿入し、熱伝導と電気絶縁を確保すると同時に、冷却板31と放熱ゲルシート間に低温面計測用Kタイプ熱電対を挿入した。さらに、熱電モジュールの高温面の寸法と同じ寸法でくりぬいたグラスウール断熱材(断熱部材7)を数枚重ね、熱電モジュール試料100の周囲を覆うと共に、冷却板31全体を被覆し、加熱板21からの放熱による加熱を防いだ。3kgの重りをハンドルレバーにつり下げ上部にある加熱板21により加重をかけた。20℃に設定した冷却水温度を冷却板31に5リットル/分の水量で循環させながら、加熱板温度を室温から2時間で500℃に上昇させ、外部負荷抵抗を走査させ最大出力と発電効率計測した。計測後も加熱板温度を500℃に保ったまま24時間毎に43日間に亘って最大出力と発電効率を計測した。表12に試験例28の熱電モジュールの詳細を示し、表13に試験例28の長期連続加熱試験結果を示す。
<Test Example 28>
The thermoelectric module sample 100 whose performance was evaluated in Test Example 28 was composed of p-type MnSi 1.7 and n-type Mn 3 Si 4 Al 2 , and the cross-sectional dimensions of the element were 3.5 mm × 3.5 mm and the length was 7.5 mm. Then, the silver paste is used to join the silver electrode. There are 7 pairs of elements, and there are two pairs of p-type and n-type elements. Alumina with a thickness of 30 mm × 20 mm and a thickness of 0.8 mm is used as the substrate on the high temperature side. The length of the side of the low temperature surface without the substrate is 27.5 mm × 15.5 mm, and the thickness of the thermoelectric module is 8.5 mm. The lead wire 4 is a silver sheet having a width of 5 mm, a thickness of 0.1 mm, and a length of 7.5 mm, and is connected to the electrode end on the high temperature surface side of the module. For electrical insulation, a polyimide (Kapton (registered trademark)) tape having a thickness of 0.07 mm was wound around the lead wire 4, and was further adhered to the cooling plate 31 with a polyimide (Kapton (registered trademark)) tape. In addition, a 0.5 mm thick heat dissipation gel sheet (elastic heat transfer sheet 9; trade name: lambda gel) is inserted between the low temperature surface of the thermoelectric module and the cooling plate 31 to ensure heat conduction and electrical insulation, A K type thermocouple for low-temperature surface measurement was inserted between the cooling plate 31 and the heat radiation gel sheet. Furthermore, several sheets of glass wool heat insulating material (heat insulating member 7) hollowed with the same dimensions as the hot surface of the thermoelectric module are stacked to cover the periphery of the thermoelectric module sample 100 and to cover the entire cooling plate 31, and from the heating plate 21. Heating due to heat dissipation was prevented. A weight of 3 kg was hung on the handle lever, and the weight was applied by the heating plate 21 at the top. While circulating the cooling water temperature set to 20 ° C through the cooling plate 31 at a rate of 5 liters / minute, the heating plate temperature is increased from room temperature to 500 ° C in 2 hours, and the external load resistance is scanned to maximize the output and power generation efficiency. Measured. After the measurement, the maximum output and power generation efficiency were measured over 43 days every 24 hours while maintaining the heating plate temperature at 500 ° C. Table 12 shows details of the thermoelectric module of Test Example 28, and Table 13 shows long-term continuous heating test results of Test Example 28.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
<試験例29>
 試験例29において性能評価した熱電モジュール試料100は、その素子がp型MnSi1.7とn型Mn2.7Cr0.3Si4Al2で、素子の断面寸法は3.5mm×3.5mm、長さが7.5mmで、銀ペーストを用い、銀電極と接合されている。素子の対数は7対で、一対の素子数はp、n型どちらも2個ずつである。高温面側に基板として30mm×20mm、厚さ0.8mmのアルミナを用いる。基板の無い低温面の辺の長さは27.5mm×15.5mmで、熱電モジュールの厚さは8.5mmである。リード線4は幅5mm、厚さ0.1mm、長さ7.5mmの銀シートであり、モジュールの高温面側の電極端に接続されている。電気絶縁のため、厚さ0.07mmのポリイミド(カプトン(登録商標))テープをリード線4に巻き、更に、冷却板31にポリイミド(カプトン(登録商標))テープで密着させた。また熱電モジュールの低温面と冷却板31の間に厚さ0.5mmの放熱ゲルシート(弾力性のある伝熱シート9;商品名:ラムダゲル)を挿入し、熱伝導と電気絶縁を確保すると同時に、冷却板31と放熱ゲルシート間に低温面計測用Kタイプ熱電対を挿入した。さらに、熱電モジュールの高温面の寸法と同じ寸法でくりぬいたグラスウール断熱材(断熱部材7)を数枚重ね、熱電モジュール試料100の周囲を覆うと共に、冷却板31全体を被覆し、加熱板21からの放熱による加熱を防いだ。3 kgの重りをハンドルレバーにつり下げ上部にある加熱板21により加重をかけた。20℃に設定した冷却水温度を冷却板31に5リットル/分の水量で循環させながら、加熱板温度を室温から2時間で500℃に上昇させ、定電流直流電源により1Aの発電電流が一定に保たれるよう外部負荷抵抗を制御し、熱電モジュール試料100が発生する電圧を直流四端子法に計測した。この電圧値と電流値から発電出力を計算した。計測後も加熱板温度を500℃に保ったまま50時間毎に750時間に亘って1A発生時の発電出力を計測した。表14に試験例29の熱電モジュールの詳細を示し、表15に試験例29の長期定電流連続試験結果を示す。
<Test Example 29>
The thermoelectric module sample 100 whose performance was evaluated in Test Example 29 was composed of p-type MnSi 1.7 and n-type Mn 2.7 Cr 0.3 Si 4 Al 2 , the cross-sectional dimensions of the element were 3.5 mm × 3.5 mm, and the length was 7 .5 mm, using silver paste and bonded to the silver electrode. There are 7 pairs of elements, and there are two pairs of p-type and n-type elements. Alumina with a thickness of 30 mm × 20 mm and a thickness of 0.8 mm is used as the substrate on the high temperature side. The length of the side of the low temperature surface without the substrate is 27.5 mm × 15.5 mm, and the thickness of the thermoelectric module is 8.5 mm. The lead wire 4 is a silver sheet having a width of 5 mm, a thickness of 0.1 mm, and a length of 7.5 mm, and is connected to the electrode end on the high temperature surface side of the module. For electrical insulation, a polyimide (Kapton (registered trademark)) tape having a thickness of 0.07 mm was wound around the lead wire 4, and was further adhered to the cooling plate 31 with a polyimide (Kapton (registered trademark)) tape. In addition, a 0.5 mm thick heat dissipation gel sheet (elastic heat transfer sheet 9; trade name: lambda gel) is inserted between the low temperature surface of the thermoelectric module and the cooling plate 31 to ensure heat conduction and electrical insulation, A K type thermocouple for low-temperature surface measurement was inserted between the cooling plate 31 and the heat radiation gel sheet. Furthermore, several sheets of glass wool heat insulating material (heat insulating member 7) hollowed with the same dimensions as the hot surface of the thermoelectric module are stacked to cover the periphery of the thermoelectric module sample 100 and to cover the entire cooling plate 31, and from the heating plate 21. Heating due to heat dissipation was prevented. A weight of 3 kg was hung on the handle lever and applied with a heating plate 21 at the top. While circulating the cooling water temperature set at 20 ° C to the cooling plate 31 at a rate of 5 liters / minute, the heating plate temperature is raised from room temperature to 500 ° C in 2 hours, and the generated current of 1A is constant by the constant current DC power supply. The external load resistance was controlled so as to be maintained at a voltage, and the voltage generated by the thermoelectric module sample 100 was measured by a DC four-terminal method. The power generation output was calculated from this voltage value and current value. After the measurement, the power generation output at the time of 1 A generation was measured over 750 hours every 50 hours while keeping the heating plate temperature at 500 ° C. Table 14 shows the details of the thermoelectric module of Test Example 29, and Table 15 shows the results of the long-term constant current continuous test of Test Example 29.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
<試験例30>
 試験例30において性能評価した熱電モジュール試料100は、その素子がp型MnSi1.7とn型Mn2.7Cr0.3Si4Al2で、素子の断面寸法は3.5mm×3.5mm、長さが7.5mmで、銀ペーストを用い、銀電極と接合されている。素子の対数は7対で、一対の素子数はp、n型どちらも2個ずつである。高温面側に基板として30mm×20mm、厚さ0.8mmのアルミナを用いる。基板の無い低温面の辺の長さは27.5mm×15.5mmで、熱電モジュールの厚さは8.5mmである。リード線4は幅5mm、厚さ0.1mm、長さ7.5mmの銀シートであり、モジュールの高温面側の電極端に接続されている。電気絶縁のため、厚さ0.07mmのポリイミド(カプトン(登録商標))テープをリード線4に巻き、更に、冷却板31にポリイミド(カプトン(登録商標))テープで密着させた。また熱電モジュールの低温面と冷却板31の間に厚さ0.5mmの放熱ゲルシート(弾力性のある伝熱シート9;商品名:ラムダゲル)を挿入し、熱伝導と電気絶縁を確保すると同時に、冷却板31と放熱ゲルシート間に低温面計測用Kタイプ熱電対を挿入した。さらに、熱電モジュールの高温面の寸法と同じ寸法でくりぬいたグラスウール断熱材(断熱部材7)を数枚重ね、熱電モジュール試料100の周囲を覆うと共に、冷却板31全体を被覆し、加熱板21からの放熱による加熱を防いだ。3 kgの重りをハンドルレバーにつり下げ上部にある加熱板21により加重をかけた。20℃に設定した冷却水温度を冷却板31に5リットル/分の水量で循環させながら、加熱板温度を室温から2時間で500℃に上昇させ、定電流直流電源により1Vの発電電圧が一定に保たれるよう外部負荷抵抗を制御し、熱電モジュールが発生する電流を直流四端子法に計測した。この電圧値と電流値から発電出力を計算した。計測後も加熱板温度を500℃に保ったまま50時間毎に900時間に亘って1V発生時の発電出力を計測した。表16に試験例30の熱電モジュール試料100の詳細を示し、表17に試験例30の長期定電圧連続試験結果を示す。
<Test Example 30>
The thermoelectric module sample 100 whose performance was evaluated in Test Example 30 was composed of p-type MnSi 1.7 and n-type Mn 2.7 Cr 0.3 Si 4 Al 2 , the cross-sectional dimensions of the element were 3.5 mm × 3.5 mm, and the length was 7 .5 mm, using silver paste and bonded to the silver electrode. There are 7 pairs of elements, and there are two pairs of p-type and n-type elements. Alumina with a thickness of 30 mm × 20 mm and a thickness of 0.8 mm is used as the substrate on the high temperature side. The length of the side of the low temperature surface without the substrate is 27.5 mm × 15.5 mm, and the thickness of the thermoelectric module is 8.5 mm. The lead wire 4 is a silver sheet having a width of 5 mm, a thickness of 0.1 mm, and a length of 7.5 mm, and is connected to the electrode end on the high temperature surface side of the module. For electrical insulation, a polyimide (Kapton (registered trademark)) tape having a thickness of 0.07 mm was wound around the lead wire 4, and was further adhered to the cooling plate 31 with a polyimide (Kapton (registered trademark)) tape. In addition, a 0.5 mm thick heat dissipation gel sheet (elastic heat transfer sheet 9; trade name: lambda gel) is inserted between the low temperature surface of the thermoelectric module and the cooling plate 31 to ensure heat conduction and electrical insulation, A K type thermocouple for low-temperature surface measurement was inserted between the cooling plate 31 and the heat radiation gel sheet. Furthermore, several sheets of glass wool heat insulating material (heat insulating member 7) hollowed with the same dimensions as the hot surface of the thermoelectric module are stacked to cover the periphery of the thermoelectric module sample 100 and to cover the entire cooling plate 31, and from the heating plate 21. Heating due to heat dissipation was prevented. A weight of 3 kg was hung on the handle lever and applied with a heating plate 21 at the top. While circulating the cooling water temperature set to 20 ° C to the cooling plate 31 at a rate of 5 liters / minute, the heating plate temperature is raised from room temperature to 500 ° C in 2 hours, and the generated voltage of 1V is constant by the constant current DC power supply. The external load resistance was controlled so that the temperature was maintained at the current, and the current generated by the thermoelectric module was measured by the DC four-terminal method. The power generation output was calculated from this voltage value and current value. After the measurement, the power generation output when 1 V was generated was measured over 900 hours every 50 hours while keeping the heating plate temperature at 500 ° C. Table 16 shows the details of the thermoelectric module sample 100 of Test Example 30, and Table 17 shows the results of the long-term constant voltage continuous test of Test Example 30.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
<試験例31>
 試験例31において性能評価した熱電モジュール試料100は、その熱電モジュールの素子がp型Ca2.7Bi0.3Co4O9とn型Ca0.9Yb0.1MnO3で、素子の断面寸法は3.5mm×3.5mm、長さが5mmで、銀ペーストを用い、銀電極と接合されている。素子の対数は64対で、一対の素子数はp、n型どちらも2個ずつである。高温面側に基板として64.5mm×64.5mm、厚さ0.8mmのアルミナを用いる。基板の無い低温面の辺の長さは63.5mm×63.5mmで、熱電モジュールの厚さは6mmである。リード線4は幅5mm、厚さ0.1mm、長さ7.5mmの銀シートであり、モジュールの低温面側の電極端に接続されている。電気絶縁のため、厚さ0.07mmのポリイミド(カプトン(登録商標))テープをリード線4に巻き、更に、冷却板31にポリイミド(カプトン(登録商標))テープで密着させた。また熱電モジュールの低温面と冷却板31の間に厚さ0.5mmの放熱ゲルシート(弾力性のある伝熱シート9;商品名:ラムダゲル)を挿入し、熱伝導と電気絶縁を確保すると同時に、冷却板31と放熱ゲルシート間に低温面計測用Kタイプ熱電対を挿入した。さらに、熱電モジュールの高温面の寸法と同じ寸法でくりぬいたグラスウール断熱材(断熱部材7)を数枚重ね、熱電モジュール試料100の周囲を覆うと共に、冷却板31全体を被覆し、加熱板21からの放熱による加熱を防いだ。加熱板温度を200~900℃の範囲で100℃ごとに設定し、空圧式コンプレッサーで20kgの加重を上部からかけた。20℃に設定した冷却水温度を冷却板31に8リットル/分の水量で循環する。加熱板21の温度が設定値になった後、外部負荷抵抗を走査して熱電モジュールの最大出力を計測した。さらにこの最大出力を用い発電効率も計測した。
<Test Example 31>
The thermoelectric module sample 100 whose performance was evaluated in Test Example 31 is that the elements of the thermoelectric module are p-type Ca 2.7 Bi 0.3 Co 4 O 9 and n-type Ca 0.9 Yb 0.1 MnO 3 , and the cross-sectional dimension of the element is 3.5 mm × 3 .5 mm, 5 mm in length, and joined to the silver electrode using a silver paste. There are 64 pairs of elements, and there are two pairs of p-type and n-type elements. Alumina having a thickness of 64.5 mm × 64.5 mm and a thickness of 0.8 mm is used as the substrate on the high temperature side. The length of the side of the low temperature surface without the substrate is 63.5 mm × 63.5 mm, and the thickness of the thermoelectric module is 6 mm. The lead wire 4 is a silver sheet having a width of 5 mm, a thickness of 0.1 mm, and a length of 7.5 mm, and is connected to the electrode end on the low temperature side of the module. For electrical insulation, a polyimide (Kapton (registered trademark)) tape having a thickness of 0.07 mm was wound around the lead wire 4, and was further adhered to the cooling plate 31 with a polyimide (Kapton (registered trademark)) tape. In addition, a 0.5 mm thick heat dissipation gel sheet (elastic heat transfer sheet 9; trade name: lambda gel) is inserted between the low temperature surface of the thermoelectric module and the cooling plate 31 to ensure heat conduction and electrical insulation, A K type thermocouple for low-temperature surface measurement was inserted between the cooling plate 31 and the heat radiation gel sheet. Furthermore, several sheets of glass wool heat insulating material (heat insulating member 7) hollowed with the same dimensions as the hot surface of the thermoelectric module are stacked to cover the periphery of the thermoelectric module sample 100 and to cover the entire cooling plate 31, and from the heating plate 21. Heating due to heat dissipation was prevented. The heating plate temperature was set in the range of 200 to 900 ° C. every 100 ° C., and a weight of 20 kg was applied from the top with a pneumatic compressor. The cooling water temperature set at 20 ° C. is circulated through the cooling plate 31 at a water amount of 8 liters / minute. After the temperature of the heating plate 21 reached the set value, the external load resistance was scanned to measure the maximum output of the thermoelectric module. Furthermore, the power generation efficiency was also measured using this maximum output.
<試験例32>
 試験例32において性能評価した熱電モジュール試料100は、その素子がp型MnSi1.7とn型Mn2.7Cr0.3Si4Al2で、素子の断面寸法は3.5mm×3.5mm、長さが7.5mmで、銀ペーストを用い、銀電極と接合されている。素子の対数は14対で、一対の素子数はp、n型どちらも2個ずつである。高温面側に基板として30mm×35mm、厚さ0.8mmのアルミナを用いる。基板の無い低温面の辺の長さは27.5mm×31.5mmで、熱電モジュールの厚さは8.5mmである。リード線4は幅5mm、厚さ0.1mm、長さ7.5mmの銀シートであり、モジュールの高温面側にある。電気絶縁のため、厚さ0.07mmのポリイミド(カプトン(登録商標))テープをリード線4に巻き、更に、冷却板31にポリイミド(カプトン(登録商標))テープで密着させた。また熱電モジュールの低温面と冷却板31の間に厚さ0.5mmの放熱ゲルシート(弾力性のある伝熱シート9;商品名:ラムダゲル)を挿入し、熱伝導と電気絶縁を確保すると同時に、冷却板31と放熱ゲルシート間に低温面計測用Kタイプ熱電対を挿入した。さらに、熱電モジュールの高温面の寸法と同じ寸法でくりぬいたグラスウール断熱材(断熱部材7)を数枚重ね、熱電モジュール試料100の周囲を覆うと共に、冷却板31全体を被覆し、加熱板21からの放熱による加熱を防いだ。加熱板温度を100~600℃の範囲で100℃ごとに設定し、空圧式コンプレッサーで10 kgの加重上部からかけた。20℃に設定した冷却水温度を冷却板31に8リットル/分の水量で循環する。加熱板21の温度が設定値になった後、外部負荷抵抗を走査して熱電モジュールの最高出力を計測した。さらにこの最大出力を用い発電効率も計測した。
<Test Example 32>
The thermoelectric module sample 100 whose performance was evaluated in Test Example 32 was composed of p-type MnSi 1.7 and n-type Mn 2.7 Cr 0.3 Si 4 Al 2 , the cross-sectional dimensions of the element were 3.5 mm × 3.5 mm, and the length was 7 .5 mm, using silver paste and bonded to the silver electrode. There are 14 pairs of elements, and there are two pairs of p-type and n-type elements. Alumina with a thickness of 30 mm × 35 mm and a thickness of 0.8 mm is used as the substrate on the high temperature side. The length of the side of the low-temperature surface without the substrate is 27.5 mm × 31.5 mm, and the thickness of the thermoelectric module is 8.5 mm. The lead wire 4 is a silver sheet having a width of 5 mm, a thickness of 0.1 mm, and a length of 7.5 mm, and is on the high temperature surface side of the module. For electrical insulation, a polyimide (Kapton (registered trademark)) tape having a thickness of 0.07 mm was wound around the lead wire 4, and was further adhered to the cooling plate 31 with a polyimide (Kapton (registered trademark)) tape. In addition, a 0.5 mm thick heat dissipation gel sheet (elastic heat transfer sheet 9; trade name: lambda gel) is inserted between the low temperature surface of the thermoelectric module and the cooling plate 31 to ensure heat conduction and electrical insulation, A K type thermocouple for low-temperature surface measurement was inserted between the cooling plate 31 and the heat radiation gel sheet. Furthermore, several sheets of glass wool heat insulating material (heat insulating member 7) hollowed with the same dimensions as the hot surface of the thermoelectric module are stacked to cover the periphery of the thermoelectric module sample 100 and to cover the entire cooling plate 31, and from the heating plate 21. Heating due to heat dissipation was prevented. The heating plate temperature was set in the range of 100 to 600 ° C. every 100 ° C., and was applied from the top of the weight of 10 kg with a pneumatic compressor. The cooling water temperature set at 20 ° C. is circulated through the cooling plate 31 at a water amount of 8 liters / minute. After the temperature of the heating plate 21 reached the set value, the external load resistance was scanned to measure the maximum output of the thermoelectric module. Furthermore, the power generation efficiency was also measured using this maximum output.
 表18に試験例31及び32の熱電モジュール試料100の詳細を示す。また、表19に計測結果を示す。 Table 18 shows details of the thermoelectric module samples 100 of Test Examples 31 and 32. Table 19 shows the measurement results.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
<試験例33>
 試験例33において性能評価した熱電モジュール試料100は、その素子がp型Ca2.7Bi0.3Co4O9とn型CaMn0.98Mo0.02O3で、素子の断面寸法は3.5mm×3.5mm、長さが7mmで、銀ペーストを用い、銀電極と接合されている。素子の対数は64対で、一対の素子数はp、n型どちらも2個ずつである。高温面側に基板として64.5mm×64.5mm、厚さ0.8mmのアルミナを用いる。基板の無い低温面の辺の長さは63.5mm×63.5mmで、熱電モジュールの厚さは8mmである。リード線4は幅5mm、厚さ0.1mm、長さ7.5mmの銀シートであり、モジュールの高温面側の電極端に接続されている。電気絶縁のため、厚さ0.07mmのポリイミド(カプトン(登録商標))テープをリード線4に巻き、更に、冷却板31にポリイミド(カプトン(登録商標))テープで密着させた。また熱電モジュールの低温面と冷却板31の間に厚さ0.5mmの放熱ゲルシート(弾力性のある伝熱シート9;商品名:ラムダゲル)を挿入し、熱伝導と電気絶縁を確保すると同時に、冷却板31と放熱ゲルシート間に低温面計測用Kタイプ熱電対を挿入した。さらに、熱電モジュールの高温面の寸法と同じ寸法でくりぬいたグラスウール断熱材(断熱部材7)を数枚重ね、熱電モジュール試料100の周囲を覆うと共に、冷却板31全体を被覆し、加熱板21からの放熱による加熱を防いだ。空圧式コンプレッサーで10kgの加重上部からかけた。20℃に設定した冷却水温度を冷却板31に8リットル/分の水量で循環させながら、加熱板温度を室温から2時間で500℃に上昇させ、定電流直流電源により1Aの発電電流が一定に保たれるよう外部負荷抵抗を制御し、熱電モジュールが発生する電圧を直流四端子法に計測した。この電圧値と電流値から発電出力を計算した。計測後も加熱板温度を500℃に保ったまま50時間毎に750時間に亘って1A発生時の発電出力を計測した。表20に試験例33の熱電モジュール試料100の詳細を示す。また、表21に試験例33の長期定電流連続試験結果を示す。
<Test Example 33>
The thermoelectric module sample 100 whose performance was evaluated in Test Example 33 was composed of p-type Ca 2.7 Bi 0.3 Co 4 O 9 and n-type CaMn 0.98 Mo 0.02 O 3 , and the cross-sectional dimensions of the element were 3.5 mm × 3.5 mm. It has a length of 7 mm and is joined to a silver electrode using a silver paste. There are 64 pairs of elements, and there are two pairs of p-type and n-type elements. Alumina having a thickness of 64.5 mm × 64.5 mm and a thickness of 0.8 mm is used as the substrate on the high temperature side. The side of the low-temperature surface without the substrate is 63.5 mm × 63.5 mm, and the thickness of the thermoelectric module is 8 mm. The lead wire 4 is a silver sheet having a width of 5 mm, a thickness of 0.1 mm, and a length of 7.5 mm, and is connected to the electrode end on the high temperature surface side of the module. For electrical insulation, a polyimide (Kapton (registered trademark)) tape having a thickness of 0.07 mm was wound around the lead wire 4, and was further adhered to the cooling plate 31 with a polyimide (Kapton (registered trademark)) tape. In addition, a 0.5 mm thick heat dissipation gel sheet (elastic heat transfer sheet 9; trade name: lambda gel) is inserted between the low temperature surface of the thermoelectric module and the cooling plate 31 to ensure heat conduction and electrical insulation, A K type thermocouple for low-temperature surface measurement was inserted between the cooling plate 31 and the heat radiation gel sheet. Furthermore, several sheets of glass wool heat insulating material (heat insulating member 7) hollowed with the same dimensions as the hot surface of the thermoelectric module are stacked to cover the periphery of the thermoelectric module sample 100 and to cover the entire cooling plate 31, and from the heating plate 21. Heating due to heat dissipation was prevented. It was applied from the top of the weight of 10kg with a pneumatic compressor. While circulating the cooling water temperature set to 20 ° C to the cooling plate 31 at a rate of 8 liters / minute, the heating plate temperature is increased from room temperature to 500 ° C in 2 hours, and the generated current of 1A is constant by the constant current DC power supply. The external load resistance was controlled so that the voltage was maintained, and the voltage generated by the thermoelectric module was measured by the DC four-terminal method. The power generation output was calculated from this voltage value and current value. After the measurement, the power generation output at the time of 1 A generation was measured over 750 hours every 50 hours while keeping the heating plate temperature at 500 ° C. Table 20 shows details of the thermoelectric module sample 100 of Test Example 33. Table 21 shows the results of the long-term constant current continuous test of Test Example 33.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 上記のように、本発明に係る熱電モジュール発電評価装置によれば、高温、空気中といった実用化条件での熱電モジュールの出力、発電効率、サイクル特性、長期耐久性など様々な評価事項の性能評価を行うことができることが確認できる。 As described above, according to the thermoelectric module power generation evaluation apparatus according to the present invention, the performance evaluation of various evaluation items such as the output of the thermoelectric module, the power generation efficiency, the cycle characteristics, and the long-term durability under practical conditions such as high temperature and in air. Can be confirmed.
1 熱電モジュール発電評価装置
2 加熱部
21 加熱板
22 加熱板本体
23 カートリッジヒーター
25 温度センサー
3 冷却部
32 流路
31 冷却板
33 入水管
34 出水管
37 冷却水循環装置
38,39 温度センサー
4 リード線
5 制御演算部
6 加重部
7 断熱部材
9 伝熱シート
100 熱電モジュール試料
DESCRIPTION OF SYMBOLS 1 Thermoelectric module power generation evaluation apparatus 2 Heating part 21 Heating plate 22 Heating plate main body 23 Cartridge heater 25 Temperature sensor 3 Cooling part 32 Flow path 31 Cooling plate 33 Inlet pipe 34 Outlet pipe 37 Cooling water circulation device 38, 39 Temperature sensor 4 Lead wire 5 Control calculation unit 6 Weighting unit 7 Heat insulation member 9 Heat transfer sheet 100 Thermoelectric module sample

Claims (10)

  1.  熱電モジュールの発電性能を評価する熱電モジュール発電評価装置であって、
     前記熱電モジュールの高温面の寸法以上の寸法を有し、かつ、前記高温面に接して配置される加熱面を有する加熱部と、
     前記熱電モジュールの低温面の寸法以上の寸法を有し、かつ、前記低温面に接して配置される冷却面を有する冷却部と、
     前記熱電モジュールに接続される電力取出し線とを備えており、
     前記電力取出し線の少なくとも1部は、前記冷却部の冷却面上に密着して配置されることを特徴とする熱電モジュール発電評価装置。
    A thermoelectric module power generation evaluation device for evaluating the power generation performance of a thermoelectric module,
    A heating unit having a dimension equal to or greater than the dimension of the high temperature surface of the thermoelectric module, and having a heating surface disposed in contact with the high temperature surface;
    A cooling unit having a dimension equal to or greater than the dimension of the low-temperature surface of the thermoelectric module and having a cooling surface disposed in contact with the low-temperature surface;
    A power extraction line connected to the thermoelectric module;
    The thermoelectric module power generation evaluation apparatus, wherein at least a part of the power lead-out line is disposed in close contact with the cooling surface of the cooling unit.
  2.  前記電力取出し線は、所定の幅を有するシート状配線であることを特徴とする請求項1に記載の熱電モジュール発電評価装置。 The thermoelectric module power generation evaluation apparatus according to claim 1, wherein the power lead-out line is a sheet-like wiring having a predetermined width.
  3.  前記冷却部の冷却面は、前記加熱部の加熱面よりも大きい面積を備えていることを特徴とする請求項1又は請求項2に記載の熱電モジュール発電評価装置。 The thermoelectric module power generation evaluation apparatus according to claim 1 or 2, wherein the cooling surface of the cooling unit has a larger area than the heating surface of the heating unit.
  4.  前記加熱部と前記冷却部との間に前記熱電モジュールを配置可能に構成され、
     前記加熱部と前記冷却部との間で前記熱電モジュールを加圧する加重部を更に備えることを特徴とする請求項1~3のいずれかに記載の熱電モジュール発電評価装置。
    The thermoelectric module can be arranged between the heating unit and the cooling unit,
    The thermoelectric module power generation evaluation apparatus according to any one of claims 1 to 3, further comprising a weighting unit that pressurizes the thermoelectric module between the heating unit and the cooling unit.
  5.  前記冷却部の冷却面と前記熱電モジュールの低温面との間に配置される弾力性のある伝熱シートを備えている請求項1~4のいずれかに記載の熱電モジュール発電評価装置。 The thermoelectric module power generation evaluation apparatus according to any one of claims 1 to 4, further comprising an elastic heat transfer sheet disposed between a cooling surface of the cooling unit and a low temperature surface of the thermoelectric module.
  6.  前記伝熱シートは、電気絶縁性を更に備える請求項5に記載の熱電モジュール発電評価装置。 The thermoelectric module power generation evaluation apparatus according to claim 5, wherein the heat transfer sheet further includes electrical insulation.
  7.  前記加熱部は、熱膨張率が15×10-6/K以下、かつ、熱伝導率が10W/mK以上の耐酸化性材料からなる加熱板本体を備えており、前記加熱面は、前記加熱板本体の一方面であることを特徴とする請求項1~6のいずれかに記載の熱電モジュール発電評価装置。 The heating unit includes a heating plate body made of an oxidation-resistant material having a thermal expansion coefficient of 15 × 10 −6 / K or less and a thermal conductivity of 10 W / mK or more, and the heating surface includes the heating surface The thermoelectric module power generation evaluation apparatus according to any one of claims 1 to 6, wherein the thermoelectric module power generation evaluation apparatus is one side of a plate body.
  8.  前記加熱板本体は、ステンレス、ニッケル基超合金、又は、セラミックスから形成されていることを特徴とする請求項7に記載の熱電モジュール発電評価装置。 The thermoelectric module power generation evaluation apparatus according to claim 7, wherein the heating plate main body is made of stainless steel, nickel-base superalloy, or ceramics.
  9.  前記加熱板本体の内部に配置されるカートリッジヒーター及び温度センサーを備えており、前記カートリッジヒーター及び前記温度センサーは、前記加熱板本体の厚み方向に対して、前記熱電モジュール側に偏らせて設置されていることを特徴とする請求項7又は8に記載の熱電モジュール発電評価装置。 A cartridge heater and a temperature sensor arranged inside the heating plate main body are provided, and the cartridge heater and the temperature sensor are installed biased toward the thermoelectric module with respect to the thickness direction of the heating plate main body. The thermoelectric module power generation evaluation apparatus according to claim 7 or 8, wherein
  10.  前記熱電モジュールの周囲を覆うと共に、前記冷却部の前記冷却面を被覆する断熱部材を備えることを特徴とする請求項1~9のいずれかに記載の熱電モジュール発電評価装置。
     
    10. The thermoelectric module power generation evaluation apparatus according to claim 1, further comprising a heat insulating member that covers the periphery of the thermoelectric module and covers the cooling surface of the cooling unit.
PCT/JP2017/010875 2016-03-23 2017-03-17 Thermoelectric module power generation evaluation device WO2017164104A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780016696.9A CN108886086B (en) 2016-03-23 2017-03-17 Thermoelectric module power generation evaluation device
JP2018507301A JP6820564B2 (en) 2016-03-23 2017-03-17 Thermoelectric module power generation evaluation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016058048 2016-03-23
JP2016-058048 2016-03-23

Publications (1)

Publication Number Publication Date
WO2017164104A1 true WO2017164104A1 (en) 2017-09-28

Family

ID=59900402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010875 WO2017164104A1 (en) 2016-03-23 2017-03-17 Thermoelectric module power generation evaluation device

Country Status (3)

Country Link
JP (1) JP6820564B2 (en)
CN (1) CN108886086B (en)
WO (1) WO2017164104A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111771120A (en) * 2018-02-22 2020-10-13 国立大学法人大阪大学 Chip for substrate evaluation and substrate evaluation device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274578A (en) * 1998-03-19 1999-10-08 Matsushita Electric Ind Co Ltd Method for manufacturing thermoelectric conversion material and thermoelectric conversion module
JP2004296959A (en) * 2003-03-28 2004-10-21 Citizen Watch Co Ltd Thermoelectric element performance evaluating device and method for evaluating performance of thermoelectric element
JP2006073943A (en) * 2004-09-06 2006-03-16 Seiko Instruments Inc Thermoelectric conversion device
JP2008182011A (en) * 2007-01-24 2008-08-07 Toshiba Corp Device and method for evaluating reliability on thermoelectric conversion system
WO2011101900A1 (en) * 2010-02-17 2011-08-25 アルバック理工株式会社 Apparatus and method for evaluating thermoelectric conversion element
JP2011187669A (en) * 2010-03-08 2011-09-22 Techno Sansho:Kk Heat transfer structure of power generation unit
JP2014166079A (en) * 2013-02-26 2014-09-08 Techno-Commons Inc Heat conduction sheet, heat insulation sheet, temperature sensor device, and thermoelectric power generation system

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5395588A (en) * 1977-01-28 1978-08-21 Cit Alcatel Method of producing thermopile
JPS63290949A (en) * 1987-05-23 1988-11-28 Nippon Inter Electronics Corp Instrument for measuring thermal conductivity
JPH0237741A (en) * 1988-07-27 1990-02-07 Nippon Alum Mfg Co Ltd Conduction type discriminator for semiconductor
JPH04249385A (en) * 1991-02-06 1992-09-04 Komatsu Electron Kk Thermoelectric device
JPH09148635A (en) * 1995-11-17 1997-06-06 Matsushita Electric Works Ltd Manufacture of thermoelectric conversion module
EP0885387A1 (en) * 1996-03-08 1998-12-23 Holometrix, Inc. Heat flow meter instruments
JP4015435B2 (en) * 2002-01-08 2007-11-28 雅一 林 Heating and cooling devices using thermoelectric elements
JP2004079883A (en) * 2002-08-21 2004-03-11 Citizen Watch Co Ltd Thermoelement
JP2005072391A (en) * 2003-08-26 2005-03-17 Kyocera Corp N-type thermoelectric material, its manufacturing method and n-type thermoelectric element
JP2005114298A (en) * 2003-10-10 2005-04-28 Citizen Watch Co Ltd Temperature adjusting device
JP2006064365A (en) * 2004-07-29 2006-03-09 Citizen Watch Co Ltd Temperature regulator
JP4576529B2 (en) * 2005-02-17 2010-11-10 国立大学法人北海道大学 Thermoelectric power generation element and use thereof
JP2009094130A (en) * 2007-10-04 2009-04-30 Sony Corp Cooling module
JP5062753B2 (en) * 2008-03-04 2012-10-31 公立大学法人大阪府立大学 Method and apparatus for measuring the Seebeck coefficient and thermal conductivity of thin film samples
JP2010251485A (en) * 2009-04-15 2010-11-04 Sony Corp Thermoelectric device, method for manufacturing the thermoelectric device, control system of the thermoelectric device, and electronic apparatus
JP2013026334A (en) * 2011-07-19 2013-02-04 National Institute Of Advanced Industrial & Technology Stacked thermoelectric conversion module
US9846089B2 (en) * 2012-08-07 2017-12-19 National University Corporation Kyoto Institute Of Technology Calorimeter and method for designing calorimeter
JP6485206B2 (en) * 2014-06-03 2019-03-20 株式会社デンソー Heat flow distribution measuring device
JP6417130B2 (en) * 2014-07-02 2018-10-31 株式会社Kelk Thermoelectric generator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274578A (en) * 1998-03-19 1999-10-08 Matsushita Electric Ind Co Ltd Method for manufacturing thermoelectric conversion material and thermoelectric conversion module
JP2004296959A (en) * 2003-03-28 2004-10-21 Citizen Watch Co Ltd Thermoelectric element performance evaluating device and method for evaluating performance of thermoelectric element
JP2006073943A (en) * 2004-09-06 2006-03-16 Seiko Instruments Inc Thermoelectric conversion device
JP2008182011A (en) * 2007-01-24 2008-08-07 Toshiba Corp Device and method for evaluating reliability on thermoelectric conversion system
WO2011101900A1 (en) * 2010-02-17 2011-08-25 アルバック理工株式会社 Apparatus and method for evaluating thermoelectric conversion element
JP2011187669A (en) * 2010-03-08 2011-09-22 Techno Sansho:Kk Heat transfer structure of power generation unit
JP2014166079A (en) * 2013-02-26 2014-09-08 Techno-Commons Inc Heat conduction sheet, heat insulation sheet, temperature sensor device, and thermoelectric power generation system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKENOBU KAJIKAWA, NETSUDEN HENKAN GIJUTSU HANDBOOK, 20 December 2008 (2008-12-20), pages 430 - 441 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111771120A (en) * 2018-02-22 2020-10-13 国立大学法人大阪大学 Chip for substrate evaluation and substrate evaluation device
CN111771120B (en) * 2018-02-22 2023-09-05 国立大学法人大阪大学 Chip for evaluating substrate and substrate evaluating device

Also Published As

Publication number Publication date
CN108886086B (en) 2022-03-04
CN108886086A (en) 2018-11-23
JPWO2017164104A1 (en) 2019-05-30
JP6820564B2 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
Wang et al. Determination of thermoelectric module efficiency: A survey
KR101302750B1 (en) Apparatus for evaluating a thermoelectric device
JP5062753B2 (en) Method and apparatus for measuring the Seebeck coefficient and thermal conductivity of thin film samples
Martin Protocols for the high temperature measurement of the Seebeck coefficient in thermoelectric materials
US9161392B2 (en) Heating apparatus for X-ray inspection
JP2011185697A (en) Thermoelectric material evaluation device and thermoelectric characteristic evaluation method
JP2011102768A (en) Measuring method of heat characteristic
JP5511941B2 (en) Thermoelectric conversion element evaluation apparatus and evaluation method
JP2004296959A (en) Thermoelectric element performance evaluating device and method for evaluating performance of thermoelectric element
WO2017164104A1 (en) Thermoelectric module power generation evaluation device
US11474060B2 (en) Instruments for measurement of multiple material properties
US10612854B2 (en) Sample holder annealing apparatus using the same
Wang et al. Characterization of a bulk-micromachined membraneless in-plane thermopile
Ahmed et al. Natural convection heat transfer from a heat sink with fins of different configuration
KR101082353B1 (en) Apparatus for evaluating thermoelectric element and Thermoelectric element evaluation system using the same
JP7232513B2 (en) Seebeck coefficient measuring device and its measuring method
Takazawa et al. Efficiency measurement of thermoelectric modules operating in the temperature difference of up to 550K
Ziolkowski et al. Interlaboratory Testing for High‐Temperature Power Generation Characteristics of a Ni‐Based Alloy Thermoelectric Module
KR101991323B1 (en) Estimation Method of Thermoelectric Conversion Efficiency of Thermoelectric Devices Using AC Impedance Spectroscopy
US20190376919A1 (en) Contact combustion type gas sensor and method for manufacturing the same
JPH06300719A (en) Method and apparatus for measuring thermoelectric conversion characteristic
JP4959844B2 (en) X-ray inspection heating device
JP7106073B2 (en) Thermal conductivity measuring device and thermal conductivity measuring method
JP2006040989A (en) Thermoelectric characteristic measuring apparatus for semiconductor element
US20120106594A1 (en) Thermocouples with two tabs spaced apart along a transverse axis and methods

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018507301

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770146

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17770146

Country of ref document: EP

Kind code of ref document: A1