JP7106073B2 - Thermal conductivity measuring device and thermal conductivity measuring method - Google Patents

Thermal conductivity measuring device and thermal conductivity measuring method Download PDF

Info

Publication number
JP7106073B2
JP7106073B2 JP2018243071A JP2018243071A JP7106073B2 JP 7106073 B2 JP7106073 B2 JP 7106073B2 JP 2018243071 A JP2018243071 A JP 2018243071A JP 2018243071 A JP2018243071 A JP 2018243071A JP 7106073 B2 JP7106073 B2 JP 7106073B2
Authority
JP
Japan
Prior art keywords
hot plate
thermal conductivity
protective
test piece
backflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018243071A
Other languages
Japanese (ja)
Other versions
JP2020106307A (en
Inventor
隆博 筒本
浩治 長谷川
雄太 羽原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima Prefecture
Original Assignee
Hiroshima Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima Prefecture filed Critical Hiroshima Prefecture
Priority to JP2018243071A priority Critical patent/JP7106073B2/en
Publication of JP2020106307A publication Critical patent/JP2020106307A/en
Application granted granted Critical
Publication of JP7106073B2 publication Critical patent/JP7106073B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、熱絶縁材等の熱伝導率の測定をする熱伝導率測定装置及び熱伝導率測定方法に関する。 TECHNICAL FIELD The present invention relates to a thermal conductivity measuring device and a thermal conductivity measuring method for measuring the thermal conductivity of a thermal insulating material or the like.

特許文献1には、試験体が、試験体の中央部分を加温する主熱板と当該主熱板を囲むように配置された保護熱板とを有する熱板と、冷却板とに挟持され、前記熱板には、試験体の中央部分を第一の温度で加温する中央側高温側ヒーターと試験体の周辺部分を第一の温度で加温する周辺側高温側ヒーターを有し、冷却板には、当該試験体を当該第一の温度より低い第二の温度で加温する低温側ヒーターを有し、前記試験体、熱板及び冷却板の外周を囲むように配置された外周ヒーターを有して、熱板の試験体側とは反対側に第一の断熱材が配設され、前記第一の断熱材の熱板側と反対側に第二の断熱材が配置され、前記第二の断熱材内に補償ヒーターを有している熱伝導率測定装置が開示されている。 In Patent Document 1, a specimen is sandwiched between a hot plate having a main hot plate that heats the central portion of the specimen and a protective hot plate that surrounds the main hot plate, and a cooling plate. , the hot plate has a central high temperature side heater for heating the central portion of the test piece at a first temperature and a peripheral high temperature side heater for heating the peripheral portion of the test piece at a first temperature; The cooling plate has a low-temperature side heater that heats the test piece at a second temperature lower than the first temperature, and an outer circumference arranged to surround the outer circumference of the test piece, the hot plate, and the cooling plate A heater is provided, a first heat insulating material is disposed on the side of the hot plate opposite to the test body side, a second heat insulating material is disposed on the side opposite to the hot plate side of the first heat insulating material, and A thermal conductivity measurement device is disclosed having a compensating heater within the secondary insulation.

非特許文献1には、熱絶縁材料の熱抵抗及び熱伝導率の測定方法として、JISの「4 原理」の項に、温度の異なる2枚の等温面をもつ平行平板によって挟まれた平板状の試験片の内部が、定常状態の一次元熱流となるように温度制御し、試験片の厚さ方向に熱抵抗、熱伝導率などの伝熱特性を測定する方法が開示されている。そして、JISの「5 測定装置」の「5.2 装置の形状」の項には、試験片2枚方式と試験片1枚方式があり、測定装置の熱板(主熱板と保護熱板)及び冷却熱板の形状は、直径が0.2m~1mの円形又は1辺が0.2m~1mの正方形とし、その中で直径が0.3mの円形又は1辺が0.3mの正方形を標準寸法と規定している。そして、JISの「6 試験片」の「6.3 寸法及び厚さ」の項には試験片は熱版を完全に覆う大きさとすると規定されている。加温手段は、冷却熱板、主熱板、保護熱板、逆流防止用熱板の4か所に設けられている。 In Non-Patent Document 1, as a method for measuring the thermal resistance and thermal conductivity of a thermal insulating material, a flat plate sandwiched between two parallel plates having isothermal surfaces with different temperatures is described in the section "4 Principles" of JIS. A method is disclosed in which the temperature is controlled so that the inside of the test piece is in a steady state one-dimensional heat flow, and heat transfer characteristics such as thermal resistance and thermal conductivity are measured in the thickness direction of the test piece. In addition, in the section "5.2 Apparatus shape" of "5 Measuring apparatus" of JIS, there are two test piece method and one test piece method, and the hot plate (main hot plate and protective hot plate) of the measuring device ) and the shape of the cooling hot plate shall be a circle with a diameter of 0.2 m to 1 m or a square with a side of 0.2 m to 1 m, of which a circle with a diameter of 0.3 m or a square with a side of 0.3 m are defined as standard dimensions. In addition, the section "6.3 Dimensions and thickness" of "6 Test piece" of JIS stipulates that the test piece should be sized to completely cover the thermal plate. The heating means are provided at four locations: a cooling hot plate, a main hot plate, a protective hot plate, and a backflow preventing hot plate.

特開2013-11563号公報JP 2013-11563 A

日本工業規格JIS A1412-1 保護熱板法(GHP法)Japanese Industrial Standards JIS A1412-1 Protective hot plate method (GHP method)

近年、電気自動車開発が加速するなか、車内の快適さを省電力で実現する課題が指摘されている。このため自動車部品に利用される部品の素材の断熱性、すなわち素材の熱伝導率の評価が重要となっている。JIS A 1412-1(保護熱板法)の測定装置は、一般的に市場に流通している大きさは標準寸法である1辺が0.3mの正方形であり、これに使用する試験片の大きさは前記標準寸法以上であることが規定されていることから、1辺が0.3m以上の正方形が規定されている。このため、建材自体の大きさが大きい建築分野で断熱材の評価方法として広く使用されている。ところが、自動車部品開発に使用される部品の場合は、1辺の長さが0.1mの正方形の試験片の場合がある。このため、流通している測定装置では測定できないという問題があった。 In recent years, as the development of electric vehicles accelerates, the issue of realizing comfort inside the vehicle while saving power has been pointed out. For this reason, it is important to evaluate the thermal insulation properties of the materials used in automobile parts, that is, the thermal conductivity of the materials. The JIS A 1412-1 (protected hot plate method) measuring device is a square with a side of 0.3 m, which is the standard size generally distributed in the market. Since it is stipulated that the size should be equal to or larger than the standard size, a square having a side of 0.3 m or longer is stipulated. For this reason, it is widely used as an evaluation method for heat insulating materials in the construction field, where building materials themselves are large in size. However, in the case of parts used in the development of automobile parts, there are cases where the test piece is a square with a side length of 0.1 m. For this reason, there was a problem that it was impossible to measure with measuring devices that were distributed.

ここで、試験片は熱板を完全に覆う大きさとすると規定しているJIS規定を無視して、熱板より大きさが小さい試験片で測定した場合の問題を説明する。熱板より大きさが小さい試験片で測定した場合、試験片周辺が試験片と同じ熱伝導率でない空気と接するため、周辺部の熱流が測定で必要となる一次元熱流から外れてくる。この熱流の乱れが、主熱板に密着している試験片部分まで到達すると、測定誤差が生ずる原因となり正確な測定を阻害する。この現象は試験片の板厚が厚くなるほど顕著になる。 Ignoring the JIS standard, which stipulates that the test piece must be of a size that completely covers the hot plate, a problem when a test piece smaller than the hot plate is used for measurement will be explained here. When a test piece smaller than the hot plate is used for measurement, the periphery of the test piece comes into contact with air that does not have the same thermal conductivity as the test piece, so the heat flow in the peripheral area deviates from the one-dimensional heat flow required for measurement. When this turbulent heat flow reaches the portion of the test piece that is in close contact with the main hot plate, it causes a measurement error and hinders accurate measurement. This phenomenon becomes more pronounced as the thickness of the test piece increases.

特許文献1の発明は、特許文献1の段落[0006]に記載された「試験体のサイズが小さい場合(熱の流れる面積が小さい場合)には、厚さ方向に伝播する熱流に対する、当該試験体の外周端を介した熱流(幅方向の熱流)の影響が大き
くなるため、測定誤差が大きくなっていた。」という問題に対応するために、ヒーターを高温側ヒーター(中央部と周辺部の2ケ所)、低温側ヒーター、外周ヒーター及び補償ヒーターの合計5カ所にヒーターなる加温手段を設けることを要しており、装置が複雑になり高価になるという問題と、前記5カ所のヒーターにより冷却板や主熱板等の5カ所の温度制御をしなければならないという問題があった。
The invention of Patent Document 1 is based on the description in paragraph [0006] of Patent Document 1, "When the size of the specimen is small (when the area where heat flows is small), the test for the heat flow propagating in the thickness direction Because the influence of the heat flow (heat flow in the width direction) through the outer peripheral edge of the body increases, the measurement error increases." 2), a low-temperature side heater, a peripheral heater, and a compensating heater. There was a problem of having to control the temperature of five places such as the cooling plate and the main hot plate.

また、非特許文献1に準じた装置について、例えば1辺が0.3mの正方形である標準サイズの装置を1/3の大きさにすべて縮小化するには、ヒーターを内設した保護熱板等の部品を1/3に縮小化しなければならないため、部品加工の製作が難しくなるという問題があった。 In addition, regarding the device according to Non-Patent Document 1, for example, in order to reduce the size of a standard size device having a square of 0.3 m on one side to 1/3 the size, a protective hot plate with a heater built in There was a problem that the manufacturing of the parts would be difficult because the parts such as the parts had to be reduced to 1/3.

また、非特許文献1の装置は、ヒーター等の加温手段を、主熱板、保護熱板、逆流防止用熱板、冷却熱板の4か所に設けなければならなかった。そのため、前記4か所のヒーター等の加温手段の温度制御をしなければならないという問題があった。 In addition, in the apparatus of Non-Patent Document 1, heating means such as heaters had to be provided at four locations: the main hot plate, the protective hot plate, the backflow preventing hot plate, and the cooling hot plate. Therefore, there is a problem that the temperature of the heating means such as heaters at the four locations must be controlled.

本発明はこうした問題に鑑み創案されたもので、1辺の長さが0.2m未満の正方形の試験片の測定が可能で、小型化が容易で構造が簡素で温度制御が簡素で安価な熱伝導率測定装置及び熱伝導率測定方法を提供することを課題とする。 The present invention was invented in view of these problems. An object of the present invention is to provide a thermal conductivity measuring device and a thermal conductivity measuring method.

本発明において、一方向側とはすべて同一の方向を意味し、他方向側とはすべて前記一方向側の反対方向であってかつ同一の方向を意味する。 In the present invention, "one direction side" means the same direction, and "other direction side" means the opposite direction to the one direction side and the same direction.

請求項1に記載の熱伝導率測定装置は、平板状で両面が平行平面を有する試験片の熱伝導率を求める熱伝導率測定装置であって、前記試験片の一方向側の面に密着可能な冷却熱板と、前記冷却熱板と平行に配設され、前記試験片の前記一方向側と反対側の他方向側の面の中央部域に密着可能な主熱板と、前記主熱板の他方向側の面と接触状態を形成する平板状の断熱材と、一方向側の周縁部域が前記試験片の他方向側の面の周縁部域に密着可能でかつ一方向側の中央部域が前記断熱材の他方向側の面と接触状態を形成する保護兼逆流防止熱板と、を備え、前記保護兼逆流防止熱板の一方向側の中央部域に前記主熱板及び前記断熱材を嵌設する凹部を形成し、前記試験片の前記主熱板側表面から前記冷却熱板側表面への厚さ方向における熱流量を測定可能とする温度測定手段を設けたことを特徴とする。 The thermal conductivity measuring device according to claim 1 is a thermal conductivity measuring device for determining the thermal conductivity of a flat plate-shaped test piece having parallel planes on both sides. a main hot plate disposed parallel to the hot cooling plate and capable of closely contacting a central region of the surface of the test piece on the other side opposite to the one direction side; A flat plate-shaped heat insulating material that forms a contact state with the surface of the hot plate on the other direction side, and a peripheral edge area on the one direction side that can be in close contact with the peripheral edge area on the surface on the other side of the test piece and on the one direction side a protective and backflow-preventing hot plate having a central region in contact with the surface of the heat insulating material on the other side, and the main heat A temperature measuring means is provided in which a concave portion is formed in which the plate and the heat insulating material are fitted, and the heat flow in the thickness direction from the main hot plate side surface of the test piece to the cooling hot plate side surface can be measured. It is characterized by

請求項2に記載の熱伝導率測定装置は、請求項1において、前記凹部の内周壁面は前記主熱板及び前記断熱材を囲繞し、前記凹部の内周壁面と前記主熱板の外周側面との間に熱抵抗体を介在させ、前記凹部の内周壁面と前記断熱材の外周側面とは接触又は非接触の対向状態を形成し、前記凹部の底面は前記断熱材の他方向側の面と接触状態を形成させたことを特徴とする。 The thermal conductivity measuring apparatus according to claim 2 is characterized in that in claim 1, the inner peripheral wall surface of the recess surrounds the main hot plate and the heat insulating material, and the inner peripheral wall surface of the recess and the outer periphery of the main hot plate A thermal resistor is interposed between the side surface and the inner peripheral wall surface of the recess and the outer peripheral side surface of the heat insulating material forms a contact or non-contact facing state, and the bottom surface of the recess is the other direction side of the heat insulating material. characterized by forming a contact state with the surface of

請求項3に記載の熱伝導率測定装置は、請求項1又は2において、前記保護兼逆流防止熱板の大きさが、1辺の長さが0.05m以上~0.2m未満の正方形又は直径が0.05m以上~0.2m未満の円形であることを特徴とする。 The thermal conductivity measuring device according to claim 3 is the thermal conductivity measuring device according to claim 1 or 2, wherein the size of the protective and anti-backflow hot plate is a square with a side length of 0.05 m or more and less than 0.2 m It is characterized by being circular with a diameter of 0.05 m or more and less than 0.2 m.

請求項4に記載の熱伝導率測定装置は、請求項1~3のいずれかにおいて、加温手段を、前記冷却熱板、前記主熱板及び前記保護兼逆流防止熱板の3か所に限定して設けたことを特徴とする。 A fourth aspect of the present invention is a thermal conductivity measuring apparatus according to any one of the first to third aspects, wherein the heating means are provided at three locations: the cooling hot plate, the main hot plate, and the protective and anti-backflow hot plate. It is characterized in that it is provided in a limited manner.

請求項5に記載の熱伝導率測定装置は、請求項1~4のいずれかにおいて、前記保護兼逆流防止熱板の一方向側の面であって前記試験片と密着可能範囲に、熱伝導率の低いシート状の熱抵抗部材を貼設したことを特徴とする。 The thermal conductivity measuring device according to claim 5 is the thermal conductivity measuring device according to any one of claims 1 to 4, wherein the surface on the one side of the protective and anti-backflow hot plate has a thermal conductivity It is characterized by pasting a sheet-like heat resistance member with a low modulus.

請求項6に記載の熱伝導率測定装置は、請求項1~5のいずれかにおいて、前記冷却熱板、前記主熱板、前記断熱材、前記保護兼逆流防止熱板の前記一方向側から前記他方向側への配設順が、上方から下方に、下方から上方に、左方から右方に、又は、右方から左方のいずれかであることを特徴とする。 The thermal conductivity measuring apparatus according to claim 6 is the thermal conductivity measuring apparatus according to any one of claims 1 to 5, wherein from the one direction side of the cooling hot plate, the main hot plate, the heat insulating material, and the protective and anti-backflow hot plate The arrangement order in the other direction is from top to bottom, from bottom to top, from left to right, or from right to left.

請求項7に記載の熱伝導率測定方法は、平板状で両面が平行平面を有する試験片の熱伝導率を求める熱伝導率測定方法であって、前記試験片を、前記試験片の一方向側の面に密着可能な冷却熱板と、前記試験片の前記一方向側と反対側の他方向側の面の中央部域に密着可能な主熱板、及び、前記試験片の他方向側の面の周縁部域に密着可能な保護兼逆流防止熱板とで挟み、前記主熱板の他方向側の面に平板状の断熱材を接触させ、前記保護兼逆流防止熱板の一方向側の面に、積層させた前記主熱板及び前記断熱材を嵌設する凹部を形成させて、前記凹部の内周壁面と前記主熱板の外周側面とは全周に亘り熱抵抗体を介在させ、前記凹部の内周壁面と前記断熱材の外周側面とは全周に亘り接触又は非接触の対向状態を形成させ、前記凹部の底面と前記断熱材の他方向側の面と接触状態にさせ、前記主熱板と前記保護兼逆流防止熱板間を断熱状態にさせて、前記主熱板と前記保護兼逆流防止熱板との温度差をなくす温度制御を行い、前記冷却熱板の冷温を前記主熱板の高温より低い温度となる制御を行い、前記試験片の前記主熱板側表面から前記冷却熱板側表面への厚さ方向における熱流量を測定することを特徴とする。 The thermal conductivity measuring method according to claim 7 is a thermal conductivity measuring method for determining the thermal conductivity of a flat plate-shaped test piece having parallel planes on both sides, wherein the test piece is measured in one direction. a cooling hot plate that can be in close contact with the side surface of the test piece; It is sandwiched between a protective and backflow prevention hot plate that can be in close contact with the peripheral area of the surface of the main hot plate, and a flat heat insulating material is brought into contact with the surface on the other side of the main hot plate, and the one direction of the protective and backflow prevention hot plate The inner peripheral wall surface of the recess and the outer peripheral side surface of the main hot plate are provided with a heat resistor over the entire circumference. The inner peripheral wall surface of the recess and the outer peripheral side surface of the heat insulating material form a facing state of contact or non-contact over the entire circumference, and the bottom surface of the recess and the surface of the heat insulating material on the other side are in contact with each other. the main hot plate and the protective and backflow-preventing hot plate are insulated to eliminate the temperature difference between the main hot plate and the protective and backflow-preventing hot plate, and the cooling hot plate is The cold temperature of the test piece is controlled to be lower than the high temperature of the main hot plate, and the heat flow in the thickness direction from the main hot plate side surface to the cooling hot plate side surface of the test piece is measured. do.

請求項8に記載の熱伝導率測定方法は、請求項7において、前記保護兼逆流防止熱板の一方向側の面であって前記試験片と密着可能範囲に、熱伝導率の低いシート状の熱抵抗部材を貼設し、前記保護兼逆流防止熱板から前記試験片への熱移動を抑制することを特徴とする。 The method for measuring thermal conductivity according to claim 8 is characterized in that, in claim 7, a sheet-like sheet having a low thermal conductivity is applied to a surface on one side of the protective and anti-backflow hot plate in a range where it can be closely attached to the test piece. is attached to suppress heat transfer from the protective and backflow preventing hot plate to the test piece.

請求項1又は7に記載の発明は、前記主熱板の温度と前記保護兼逆流防止熱板の温度差をなくすことによって、前記主熱板と前記保護兼逆流防止熱板とを熱的平衡を保つことができ、前記主熱板から前記保護兼逆流防止熱板側への熱移動を生じないようにすることができる。これにより、前記試験片内において前記試験片の厚さ方向である前記主熱板側表面から前記冷却熱板側表面に向けての定常状態の一次元熱流を流すことができ、この一次元熱流の熱流量を測定して、熱伝導率の低い材質の熱伝導率を、JIS A 1412-1(保護熱板法)の熱伝導率測定値と同じレベルの正確性で求めることができる。 In the invention according to claim 1 or 7, by eliminating the temperature difference between the main hot plate and the protective and anti-backflow hot plate, the main hot plate and the protective and anti-backflow hot plate are brought into thermal equilibrium. can be maintained, and heat transfer from the main hot plate to the protective and anti-backflow hot plate side can be prevented. As a result, a steady-state one-dimensional heat flow can flow in the test piece from the main hot plate side surface in the thickness direction of the test piece toward the cooling hot plate side surface. can be used to determine the thermal conductivity of materials with low thermal conductivity with the same level of accuracy as the thermal conductivity measurements of JIS A 1412-1 (protected hot plate method).

また、JIS A 1412-1(保護熱板法)においては冷却熱板や主熱板を囲繞した保護熱板の大きさは、直径が0.2m~1mの円形又は1辺の長さが0.2m~1mの正方形とし、その中で直径が0.3mの円形又は1辺の長さが0.3mの正方形を標準寸法と規定しているが、本発明は冷却熱板や主熱板を囲繞する保護兼逆流防止熱板の大きさを、1辺の長さが0.2m未満の長さの正方形又は直径が0.2m未満の円形が実現できるまでに縮小化させることができた。よって、熱伝導率測定装置の小型化と構造簡素化を実現させることができた。 In addition, in JIS A 1412-1 (protective hot plate method), the size of the protective hot plate surrounding the cooling hot plate and the main hot plate is a circle with a diameter of 0.2 m to 1 m or a length of 0 on one side. A square of 2 m to 1 m is defined as a standard size, and a circle with a diameter of 0.3 m or a square with a side length of 0.3 m is defined as the standard size. It was possible to reduce the size of the protective and anti-backflow hot plate surrounding the . Therefore, the size reduction and structural simplification of the thermal conductivity measuring device could be realized.

請求項2又は7に記載の発明は、主熱板から保護兼逆流防止熱板への熱移動をなくすことができる。 The invention according to claim 2 or 7 can eliminate heat transfer from the main hot plate to the protective and anti-backflow hot plate.

請求項3に記載の発明は、冷却熱板や主熱板を囲繞した保護兼逆流防止熱板の大きさを、1辺の長さが0.05m以上~0.2m未満の正方形又は直径が0.05m以上~0.2m未満の円形まで縮小化させることができた。よって、従来は1辺の長さが0.2m未満の正方形の試験片又は直径が0.2m未満の円形の試験片の熱伝導率を測定ができなかったが、本発明によって1辺の長さが0.2m未満の正方形の試験片又は直径が0.2m未満の円形の試験片の熱伝導率を測定することができるようになった。 In the invention according to claim 3, the size of the protective and backflow prevention hot plate surrounding the cooling hot plate and the main hot plate is a square with a side length of 0.05 m or more and less than 0.2 m or a diameter of It could be reduced to a circular size of 0.05 m or more and less than 0.2 m. Therefore, conventionally, it was not possible to measure the thermal conductivity of a square test piece with a side length of less than 0.2 m or a circular test piece with a diameter of less than 0.2 m. It is now possible to measure the thermal conductivity of square specimens with a length of less than 0.2 m or circular specimens with a diameter of less than 0.2 m.

請求項4に記載の発明は、加温手段の数を、特許文献1の5カ所や非特許文献1の4か所に比較して3カ所に減じることができ、温度制御の簡素化、熱伝導率測定装置の大きさの小型化、及び製作コストの安価化を実現させることができた。 According to the fourth aspect of the invention, the number of heating means can be reduced to three compared to the five in Patent Document 1 and the four in Non-Patent Document 1, thereby simplifying temperature control and heating. We were able to reduce the size of the conductivity measuring device and reduce the manufacturing cost.

請求項5又は8に記載の発明は、主熱板と保護兼逆流防止熱板のそれぞれの試験片側の表面温度差をなくすことができ、より理想的な測定状態をつくり出すことができるという効果を奏する。 The invention according to claim 5 or 8 can eliminate the surface temperature difference between the test piece sides of the main hot plate and the protective and anti-backflow hot plate, and has the effect of creating a more ideal measurement condition. Play.

請求項6に記載の発明は、熱伝導率測定装置の構成部品である冷却熱板、主熱板及び保護兼逆流防止熱板の配設方向を自在に選択できるという効果を奏する。 According to the sixth aspect of the present invention, it is possible to freely select the arrangement direction of the cooling hot plate, the main hot plate, and the protective and anti-backflow hot plate, which are components of the thermal conductivity measuring device.

本発明である熱伝導率測定装置の基本的構成を説明する構成説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a structure explanatory drawing explaining the basic structure of the thermal conductivity measuring apparatus which is this invention. 図1における低温の恒温水槽を氷温の恒温水槽に変えた熱伝導率測定装置の基本的構成を説明する構成説明図である。FIG. 2 is a configuration explanatory diagram for explaining the basic configuration of a thermal conductivity measuring apparatus in which the low-temperature constant-temperature water bath in FIG. 1 is replaced with an ice-temperature constant-temperature water bath; JIS A1412-1 保護熱板法の熱伝導率測定装置の基本的構成を説明する構成説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration explanatory diagram for explaining the basic configuration of a thermal conductivity measuring device according to JIS A1412-1 protective hot plate method. 本発明である熱伝導率測定装置の温度測定手段の構成を説明する説明図である。FIG. 2 is an explanatory diagram for explaining the configuration of temperature measuring means of the thermal conductivity measuring device of the present invention; 主熱板に埋設した熱電対の設置状態の説明図で、(a)が平面視での主熱板とヒーターと主熱板熱電対との配置状況の説明図で、(b)がG矢視からの保護兼逆流防止熱板と主熱板熱電対の配置状況の説明図である。It is an explanatory diagram of the installation state of the thermocouple embedded in the main hot plate, (a) is an explanatory diagram of the arrangement of the main hot plate, the heater, and the main hot plate thermocouple in a plan view, and (b) is a G arrow. FIG. 3 is an explanatory diagram of the arrangement of the protective and backflow prevention hot plate and the main hot plate thermocouple from the naked eye. JIS A1412-1 保護熱板法の熱伝導率測定装置の温度測定手段の構成を説明する説明図である。FIG. 2 is an explanatory diagram for explaining the configuration of a temperature measuring means of a thermal conductivity measuring device according to JIS A1412-1 protective hot plate method. 本発明の熱伝導率測定装置の各種熱板等の構成を説明する説明図である。It is an explanatory view explaining composition of various heat plates etc. of a thermal conductivity measuring device of the present invention. 本発明の熱伝導率測定装置の各種熱板等の構成要素を説明する説明図で、(a)が主熱板と断熱材の説明図で、(b)が保護兼逆流防止熱板の説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram for explaining components such as various hot plates of the thermal conductivity measuring apparatus of the present invention, where (a) is an explanatory diagram of the main hot plate and the heat insulating material, and (b) is an explanation of the protective and backflow preventing hot plate; It is a diagram. 断熱材に設けたサーモパイルの配線状態の説明図で、(a)が断熱材の断面構造で配線状態を示す配線説明図で、(b)が断熱材の平面視で配線経路を示す説明図であり、(c)が(b)とは異なる配線経路を示す説明図である。It is explanatory drawing of the wiring state of the thermopile provided in the heat insulating material, (a) is wiring explanatory drawing which shows a wiring state by the cross-sectional structure of heat insulating material, (b) is explanatory drawing which shows a wiring route by planar view of heat insulating material. It is explanatory drawing which shows the wiring route with which (c) differs from (b). 保護兼逆流防止熱板と主熱板の表面温度を測定するための熱電対の設置方法の説明図である。FIG. 4 is an explanatory diagram of a method of installing thermocouples for measuring the surface temperatures of the protective and anti-backflow hot plate and the main hot plate. 保護兼逆流防止熱板上への熱抵抗部材であるテープの貼付け状態の説明図である。FIG. 4 is an explanatory diagram of a state in which a tape, which is a heat resistance member, is stuck on a protective and backflow preventing hot plate; JIS A1412-1 保護熱板法の熱伝導率測定装置と本発明の熱伝導率測定装置との熱伝導率測定結果を示す図である。FIG. 2 is a diagram showing thermal conductivity measurement results of a thermal conductivity measuring device according to JIS A1412-1 protective hot plate method and a thermal conductivity measuring device of the present invention. 本発明において断熱部材内に主熱板と保護兼逆流防止熱板の表面温度差を測定する1つの熱電対を設けた場合と熱電対を10個直列接続させたサーモパイルを設けた場合において、熱伝導率測定装置作動開始時からの時間経過における主熱板と保護兼逆流防止熱板との温度差を示す図である。In the present invention, in the case where one thermocouple for measuring the surface temperature difference between the main hot plate and the protective and backflow preventing hot plate is provided in the heat insulating member, and in the case where a thermopile in which ten thermocouples are connected in series is provided, the heat FIG. 4 is a diagram showing the temperature difference between the main hot plate and the protective and backflow prevention hot plate over time from the start of operation of the conductivity measuring device. 従来の熱伝導率測定装置と本発明の熱伝導率測定装置において、熱伝導率測定装置作動開始時からの時間経過における熱伝導率の測定値を示した図である。FIG. 5 is a diagram showing measured values of thermal conductivity over time from the start of operation of the thermal conductivity measuring device in the conventional thermal conductivity measuring device and the thermal conductivity measuring device of the present invention. 主熱板の消費電力を変化させた場合において、保護兼逆流防止熱板上に熱抵抗部材であるテープを貼付けた場合と貼付けない場合の主熱板と保護兼逆流防止熱板との表面温度差を示す図である。When the power consumption of the main heating plate is changed, the surface temperature of the main heating plate and the protective and backflow prevention hot plate with and without the tape, which is a heat resistance member, attached on the protection and backflow prevention hot plate. FIG. 10 is a diagram showing the difference; 冷却熱板と主熱板間を離隔させた状態の説明図である。FIG. 4 is an explanatory diagram of a state in which the cooling hot plate and the main hot plate are separated from each other; 冷却熱板を下降させ冷却熱板と主熱板間に試験片を挟んで上下で密着させた状態の説明図である。FIG. 10 is an explanatory diagram of a state in which the hot cooling plate is lowered and the test piece is sandwiched between the hot cooling plate and the main hot plate and brought into close contact with each other at the top and bottom;

本発明は熱伝導率を求めるための技術であり、熱伝導率を求める方法として一般的には、例えばJIS A1412-1 保護熱板法などが知られている。保護熱板法は、図3に示すように、温度の異なる2枚の等温面をもつ平行平板によって挟まれた平板状の試験片101の内部が、定常状態の一次元熱流となるように温度制御し、試験片101の厚さ方向における熱抵抗、熱伝導率などの伝熱特性を測定する方法であり、定常状態において、測定領域内を流れる熱流量を測定し、前記熱流量、伝熱面積、試験片温度差、試験片101の厚さをもとに計算して熱伝導率を算出する方法である。 The present invention is a technique for determining thermal conductivity, and generally known methods for determining thermal conductivity include, for example, JIS A1412-1 protective hot plate method. In the protected hot plate method, as shown in FIG. 3, the inside of a flat plate-shaped test piece 101 sandwiched between two parallel plates having isothermal surfaces with different temperatures is heated so that it becomes a one-dimensional heat flow in a steady state. It is a method of controlling and measuring heat transfer characteristics such as thermal resistance and thermal conductivity in the thickness direction of the test piece 101. In a steady state, the heat flow flowing in the measurement area is measured, and the heat flow and heat transfer are measured. In this method, the thermal conductivity is calculated based on the area, the temperature difference of the test piece, and the thickness of the test piece 101 .

前記保護熱板法に基づく従来の熱伝導率測定装置100の構成を説明する。図3に示すように、例えば冷却熱板102や試験片101の形状が正方形の場合は、正方形状で平板状の試験片101の上面に密着可能に正方形状で平板状の冷却熱板102が配設され、前記試験片101の下面に密着可能に正方形状で平板状の主熱板103が配設され、前記主熱板103の外周面とギャップ104を設けて前記主熱板103を囲繞するように平板形状からなる平面視で四角枠状の保護熱板105が配設され、前記主熱板103と前記保護熱板105の下側には前記主熱板103と前記保護熱板105の下面に上面を接触させた平板状の断熱材106が配設され、前記断熱材106の下側には前記断熱材106の下面に上面を接触させた逆流防止用熱板107が配設されている。なお、前記冷却熱板102や前記逆流防止用熱板107の加温手段については図示していない。 A configuration of a conventional thermal conductivity measuring device 100 based on the protective hot plate method will be described. As shown in FIG. 3, for example, when the shape of the cooling hot plate 102 and the test piece 101 is square, the square flat cooling hot plate 102 can be attached to the upper surface of the square flat test piece 101. A square and flat plate-shaped main hot plate 103 is provided so as to be in close contact with the lower surface of the test piece 101, and a gap 104 is provided between the outer peripheral surface of the main hot plate 103 and the main hot plate 103 to surround the main hot plate 103. A protective hot plate 105 having a rectangular frame shape in plan view is arranged so as to form a flat plate, and the main hot plate 103 and the protective hot plate 105 are disposed below the main hot plate 103 and the protective hot plate 105. A flat plate-shaped heat insulating material 106 is arranged with its upper surface in contact with the lower surface, and a backflow prevention heat plate 107 is arranged with its upper surface in contact with the lower surface of the heat insulating material 106 below the heat insulating material 106 . ing. Note that the heating means for the cooling hot plate 102 and the backflow preventing hot plate 107 are not shown.

そして、図6に示すように、従来の熱伝導率測定装置100の温度測定手段は、冷却熱板102の温度を測定する熱電対111、主熱板103の温度を測定する熱電対112、主熱板103と保護熱板105との温度差を測定する示差熱電対113、主熱板103と逆流防止用熱板107との温度差を測定する示差熱電対114を設けている。また、主熱板103の内部には加温用の主熱板ヒーター121、保護熱板105の内部には加温用の保護熱板ヒーター122が設けられている。 As shown in FIG. 6, the temperature measuring means of the conventional thermal conductivity measuring device 100 includes a thermocouple 111 for measuring the temperature of the cooling hot plate 102, a thermocouple 112 for measuring the temperature of the main hot plate 103, A differential thermocouple 113 for measuring the temperature difference between the hot plate 103 and the protective hot plate 105 and a differential thermocouple 114 for measuring the temperature difference between the main hot plate 103 and the backflow preventing hot plate 107 are provided. A main hot plate heater 121 for heating is provided inside the main hot plate 103 , and a protective hot plate heater 122 for warming is provided inside the protective hot plate 105 .

従来からの熱伝導率測定装置100は試験片の大きさが正方形の場合は一辺が0.2m以上の大きさに規制されていたことから、発明者は1辺の長さが0.2m未満の正方形の試験片が主熱板103及び保護熱板105を完全に覆うことができる熱伝導率測定装置の小型化に取り組み本発明を想到した。 Since the conventional thermal conductivity measuring device 100 was restricted to a size of 0.2 m or more on one side when the size of the test piece was square, the inventors decided that the length of one side should be less than 0.2 m. The present invention was conceived by working on miniaturization of a thermal conductivity measuring device in which a square test piece can completely cover the main hot plate 103 and the protective hot plate 105 .

本発明の熱伝導率測定装置1は、図1、図2、図4、図8に示すように、平板状で両面が平行平面を有する試験片2の熱伝導率を求める熱伝導率測定装置1であって、前記試験片2の一方向側の面に密着可能な冷却熱板3と、前記冷却熱板3と平行に配設され、前記試験片2の前記一方向側と反対側の他方向側の面の中央部域に密着可能な主熱板4と、前記主熱板4の他方向側の面と接触状態を形成する平板状の断熱材5と、一方向側の周縁部域が前記試験片2の他方向側の面の周縁部域に密着可能でかつ一方向側の中央部域が前記断熱材5の他方向側の面と接触状態を形成する保護兼逆流防止熱板6と、を備え、前記保護兼逆流防止熱板6の一方向側の中央部域に前記主熱板4及び前記断熱材5を嵌設する凹部30を形成し、前記試験片2の前記主熱板4側表面から前記冷却熱板3側表面への厚さ方向における熱流量を測定可能とする温度測定手段を設けた。前記温度測定手段は、主熱板熱電対13及び冷却熱板熱電対14が該当する。なお、図1等の図では配線を省略し図示していない。 As shown in FIGS. 1, 2, 4 and 8, the thermal conductivity measuring device 1 of the present invention is a thermal conductivity measuring device for determining the thermal conductivity of a flat test piece 2 having parallel planes on both sides. 1, a cooling hot plate 3 that can be in close contact with the surface of the test piece 2 on one side, A main hot plate 4 that can be brought into close contact with the central region of the surface on the other direction side, a flat heat insulating material 5 that forms a state of contact with the surface on the other direction side of the main hot plate 4, and a peripheral edge portion on the one direction side. The protective and anti-backflow heat region can be in close contact with the peripheral edge region of the other side surface of the test piece 2, and the central region on the one side side forms a contact state with the other side surface of the heat insulating material 5. a plate 6, wherein a concave portion 30 for fitting the main hot plate 4 and the heat insulating material 5 is formed in a central region on one side of the protective and backflow preventing hot plate 6; A temperature measuring means is provided for measuring the heat flow in the thickness direction from the surface on the side of the main hot plate 4 to the surface on the side of the cooling hot plate 3 . The main hot plate thermocouple 13 and the cooling hot plate thermocouple 14 correspond to the temperature measuring means. Note that wiring is omitted and not shown in the drawings such as FIG.

前記熱伝導率測定装置1には加温手段が設けられ、前記加温手段を、前記冷却熱板3内を流動させる低温水を加熱させるヒーター25、前記主熱板4内に埋設したヒーター15、及び前記保護兼逆流防止熱板6内を流動させる高温水を加熱させるヒーター21の3か所に限定して設けている。 The thermal conductivity measuring device 1 is provided with heating means, and the heating means includes a heater 25 for heating the low-temperature water flowing in the cooling hot plate 3 and a heater 15 embedded in the main hot plate 4. , and a heater 21 for heating the high-temperature water flowing in the hot plate 6 for protection and backflow prevention.

そして、前記熱伝導率測定装置1には温度測定手段を具備しており、前記温度測定手段を、図4に示すように、前記冷却熱板3の前記試験片2側の温度を測定する冷却熱板熱電対14、前記主熱板4の前記試験片2側の温度を測定する主熱板熱電対13、及び、前記主熱板4と前記保護兼逆流防止熱板6との間の温度差を測定するサーモパイル40の3か所に設けている。また、前記冷却熱板3や前記保護兼逆流防止熱板6の温度をヒーターでなく低温水や高温水を流動させることによって加温させる場合には、高温水を前記保護兼逆流防止熱板6内に流動させる形態の場合には恒温水槽22内に高温水の温度測定手段52を、冷温水を前記冷却熱板3内に流動させる形態の場合には恒温水槽26内に低温水の温度測定手段51を設ける。 The thermal conductivity measuring device 1 is equipped with a temperature measuring means, and the temperature measuring means is a cooling device for measuring the temperature of the test piece 2 side of the cooling hot plate 3 as shown in FIG. A hot plate thermocouple 14, a main hot plate thermocouple 13 for measuring the temperature of the main hot plate 4 on the side of the test piece 2, and the temperature between the main hot plate 4 and the protective and anti-backflow hot plate 6. They are provided at three locations on the thermopile 40 for measuring the difference. Further, when the temperature of the cooling hot plate 3 or the protective and backflow preventing hot plate 6 is not heated by a heater but by flowing low temperature water or high temperature water, the high temperature water is heated by the protecting and backflow preventing hot plate 6. In the case of the configuration in which the hot and cold water flows in the constant temperature water tank 22, the temperature measurement means 52 for the high temperature water is provided in the constant temperature water tank 22, and in the case of the configuration in which the cold and hot water flows in the cooling hot plate 3, the temperature measurement means 52 for the low temperature water is provided in the constant temperature water tank 26. Means 51 are provided.

前記熱伝導率測定装置1は、例えば、図16、17に示すように、ベース52上に保護兼逆流防止熱板6が配設され、前記ベース52に立設した支柱兼ガイド54のガイドに沿って、冷却熱板3を含む昇降部53がツマミ51の回動により自在に昇降する形態である。前記冷却熱板3には恒温水槽26からの低温水が流動する配管18が接続され、前記保護兼逆流防止熱板6には恒温水槽22からの高温水が流動する配管19が接続されている。そして、図16に示すように前記昇降部53を上昇させた状態で試験片2をセットし、図17に示すように前記昇降部53を下降させて試験片2を冷却熱板3と主熱板4及び保護兼逆流防止熱板6とにより挟み密着させる。 For example, as shown in FIGS. 16 and 17, the thermal conductivity measuring device 1 has a protective and backflow preventing hot plate 6 disposed on a base 52, and a supporting post/guide 54 erected on the base 52. Along the line, an elevating unit 53 including the cooling hot plate 3 can be freely elevated by rotating the knob 51 . A piping 18 through which low-temperature water flows from a constant temperature water tank 26 is connected to the cooling hot plate 3, and a piping 19 through which high-temperature water flows from a constant temperature water tank 22 is connected to the protection and backflow prevention hot plate 6. . Then, as shown in FIG. 16, the test piece 2 is set while the elevating unit 53 is raised, and as shown in FIG. It is sandwiched between the plate 4 and the heat plate 6 for protection and backflow prevention and brought into close contact.

また、前記熱伝導率測定装置1を構成する要素である前記冷却熱板3、前記主熱板4、前記断熱材5、前記保護兼逆流防止熱板6の前記一方向側から前記他方向側への配設順が、上方から下方に、下方から上方に、左方から右方に、又は、右方から左方のいずれかでもよい。なお、前記熱伝導率測定装置1又は熱伝導率測定方法についての説明を、前記配設順が上方から下方の場合であり、熱板4から試験片2の厚み方向で冷却熱板3側に流れる熱流が上向きの形態の場合で以下に説明する。 Further, the cooling hot plate 3, the main hot plate 4, the heat insulating material 5, and the protective and backflow preventing hot plate 6, which are the elements constituting the thermal conductivity measuring device 1, are measured from the one direction side to the other direction side. The arrangement order may be from top to bottom, from bottom to top, from left to right, or from right to left. The description of the thermal conductivity measuring device 1 or the thermal conductivity measuring method is based on the case where the arrangement order is from top to bottom, and from the hot plate 4 to the cooling hot plate 3 side in the thickness direction of the test piece 2. A case in which the heat flow is directed upward will be described below.

また、前記試験片2は、両面が平行平板を有し、かつ前記冷却熱板3、前記主熱板4及び前記保護兼逆流防止熱板6と密着可能に上下両面の表面を平滑に仕上げる。そして、前記冷却熱板3の前記試験片2に密着させる側の表面、及び、前記主熱板4及び前記保護兼逆流防止熱板6の前記試験片2に密着させる側の表面も平滑に仕上げる。 The test piece 2 has parallel flat plates on both sides, and the upper and lower surfaces of the test piece 2 are finished smooth so as to be able to adhere to the cooling hot plate 3 , the main hot plate 4 and the protective and backflow preventing hot plate 6 . Then, the surfaces of the cooling hot plate 3 on the side to be brought into close contact with the test piece 2 and the surfaces of the main hot plate 4 and the protective and backflow preventing hot plate 6 on the side to be brought into close contact with the test piece 2 are finished smooth. .

前記主熱板4は、図1、図7、図8(a)に示すように、平面視で1辺の長さが例えば0.1mの正方形の前記保護兼逆流防止熱板6に囲繞されて、前記保護兼逆流防止熱板6よりも小さい大きさであり、内部には図4に示すように主熱板4を加温するヒーター15及び主熱板4の温度を測定する主熱板熱電対13が埋設され、本体部12は熱伝導率が大きい金属、例えば銅で作られる。 As shown in FIGS. 1, 7, and 8(a), the main hot plate 4 is surrounded by the protective and anti-backflow hot plate 6, which is square in plan view and has a side length of, for example, 0.1 m. , which is smaller in size than the protective and backflow prevention hot plate 6. As shown in FIG. A thermocouple 13 is embedded, and the main body 12 is made of a metal with high thermal conductivity, such as copper.

前記ヒーター15と前記主熱板熱電対13の配設の形態は、図5(a)に示すように、例えば平面視で真ん中に前記主熱板熱電対13が配設され、前記ヒーター15を構成する給電線15aと電圧測定線15bが前記主熱板熱電対13と接触しないように、かつ主熱板4の全域に亘って均一な温度となるように配線する。そして、図5(b)に示すように、例えば側面視で前記保護兼逆流防止熱板6に切欠き部35を形成し、該切欠き部35に、前記主熱板熱電対13、前記ヒーター15及び前記サーモパイル40の配線を挿通させている。 As for the mode of arrangement of the heater 15 and the main hot plate thermocouple 13, as shown in FIG. The power supply line 15a and the voltage measurement line 15b are wired so that they do not come into contact with the main hot plate thermocouple 13 and the main hot plate 4 has a uniform temperature over the entire area. Then, as shown in FIG. 5B, for example, a cutout portion 35 is formed in the protective and backflow prevention hot plate 6 in side view, and the cutout portion 35 is provided with the main hot plate thermocouple 13 and the heater. 15 and the wiring of the thermopile 40 are inserted.

前記保護兼逆流防止熱板6は、図7や図8(b)に示すように、一方向側に開口部を有する凹部30を形成した、平面視の外郭形状が正方形の四角柱体の形態である。平面視における大きさや形状は、前記保護兼逆流防止熱板の大きさが、1辺の長さが0.05m以上~0.2m未満の正方形又は直径が0.05m以上~0.2m未満の円形である。より好ましくは、1辺の長さが0.07m以上~0.15m未満の正方形又は直径が0.07m以上~0.15m未満の円形であり、さらに好ましくは、1辺の長さが0.1mの正方形又は直径が0.1mの円形である。これにより、1辺の長さが0.05m以上~0.2m未満の正方形又は直径が0.05m以上~0.2m未満の円形の試験片の熱伝導率測定が可能となった。1辺の長さが0.05m未満の正方形又は直径が0.05m未満の円形の場合は製作が極めて困難であり、1辺の長さが0.2m以上の正方形又は直径が0.2m以上の円形の場合は本発明の装置の小型化の目的に反するので望ましくない。 As shown in FIGS. 7 and 8B, the protective and backflow-preventing hot plate 6 is in the form of a quadrangular prism having a square outer shape in plan view, with a concave portion 30 having an opening in one direction. is. The size and shape of the protective and backflow-preventing hot plate in plan view is a square with a side length of 0.05 m or more and less than 0.2 m or a diameter of 0.05 m or more and less than 0.2 m. circular. More preferably, it is a square with a side length of 0.07 m or more and less than 0.15 m or a circle with a diameter of 0.07 m or more and less than 0.15 m. A 1 m square or a circle with a diameter of 0.1 m. This made it possible to measure the thermal conductivity of square test pieces with a side length of 0.05 m or more and less than 0.2 m or circular test pieces with a diameter of 0.05 m or more and less than 0.2 m. A square with a side length of less than 0.05 m or a circle with a diameter of less than 0.05 m is extremely difficult to manufacture, and a square with a side length of 0.2 m or more or a diameter of 0.2 m or more A circular shape is not desirable because it goes against the purpose of miniaturizing the apparatus of the present invention.

また、前記保護兼逆流防止熱板6は、前記主熱板4と同一の材質で作られ、図1に示すように、前記試験片2の他方向側である下面に対して前記主熱板4の一方向側である上面と同時に前記保護兼逆流防止熱板6の一方向側である上面が接触するように前記保護兼逆流防止熱板6の上面が形成され、前記保護兼逆流防止熱板6の内部に形成した流路(図示なし)に、ヒーター21等の加温手段や温度計等の温度測定手段52を設けた高温の恒温水槽22内の高温水をポンプ23で送給し循環させている。なお、加温手段としては、前記高温水を前記保護兼逆流防止熱板6内に流動させる形態の他に、前記保護兼逆流防止熱板6内にヒーター(図示なし)を内設させる形態でもよい。 The protective and backflow prevention hot plate 6 is made of the same material as the main hot plate 4, and as shown in FIG. The upper surface of the protective and anti-backflow hot plate 6 is formed so that the upper surface of the protective and anti-backflow hot plate 6 is in contact with the upper surface of the protective and anti-backflow hot plate 6 at the same time as the upper surface of the protective and anti-backflow hot plate 4 . A high-temperature constant temperature water tank 22 is provided with a heating means such as a heater 21 and a temperature measuring means 52 such as a thermometer in a channel (not shown) formed inside the plate 6, and the high-temperature water in the constant temperature water tank 22 is fed by a pump 23. circulating. As a heating means, in addition to the mode in which the high-temperature water flows into the protective and backflow-preventing hot plate 6, a mode in which a heater (not shown) is provided inside the protective and backflow-preventing hot plate 6 is also available. good.

そして、図1、図4、図6、図7、図8(b)に示すように、一方向側の上部に凹部30を形成し前記凹部30に前記主熱板4と断熱材5を積層させて嵌設させている。前記凹部30の内周壁面31は積層された前記主熱板4及び前記断熱材5を囲繞し、前記凹部30の内周壁面31と前記主熱板4の外周側面との間に熱抵抗体7を介在させ、前記凹部30の内周壁面31と前記断熱材5の外周側面とは接触又は非接触の対向状態を形成し、前記凹部30の底面32は前記断熱材5の他方向側の面と接触状態を形成させている。 Then, as shown in FIGS. 1, 4, 6, 7 and 8(b), a concave portion 30 is formed in the upper portion of one direction side, and the main hot plate 4 and the heat insulating material 5 are laminated in the concave portion 30. It is made to fit. The inner peripheral wall surface 31 of the recess 30 surrounds the laminated main hot plate 4 and the heat insulating material 5, and a heat resistor is provided between the inner peripheral wall surface 31 of the recess 30 and the outer peripheral side surface of the main hot plate 4. 7 are interposed, the inner peripheral wall surface 31 of the recess 30 and the outer peripheral side surface of the heat insulating material 5 form a facing state of contact or non-contact, and the bottom surface 32 of the recess 30 is on the other side of the heat insulating material 5. It forms a contact state with the surface.

前記主熱板4の一方向側の上面は前記保護兼逆流防止熱板6の一方向側の上面とともに前記試験片2の他方向側の表面に密着可能とし、前記主熱板4の側面全域と前記保護兼逆流防止熱板6の凹部30の内周壁面31とは均一の幅を有する熱抵抗体7を形成させている。前記熱抵抗体7としては、前記主熱板4から前記保護兼逆流防止熱板6への熱移動をなくす目的を達成させるものであればよく、すなわち断熱効果を有するものであればよく、例えば空気を介在させる隙間の形態、又は、発泡樹脂等の断熱材を介在させる形態でもよい。なお図1や図8(b)において、前記熱抵抗体7の例として隙間の場合を示している。 The upper surface on the one side of the main hot plate 4 can be brought into close contact with the surface on the other side of the test piece 2 together with the upper surface on the one side of the protective and backflow preventing hot plate 6, and the entire side surface of the main hot plate 4 can be attached. and the inner peripheral wall surface 31 of the concave portion 30 of the protective and backflow preventing hot plate 6 form a thermal resistor 7 having a uniform width. The heat resistor 7 may be any one that achieves the purpose of eliminating heat transfer from the main hot plate 4 to the protective and anti-backflow hot plate 6, that is, has a heat insulation effect. It may be in the form of a gap in which air is interposed, or in the form of interposing a heat insulating material such as foamed resin. Note that FIGS. 1 and 8B show the case of a gap as an example of the thermal resistor 7. FIG.

前記保護兼逆流防止熱板6を熱伝導率が大きい金属例えば銅で作ること、前記保護兼逆流防止熱板6を小型化していること及び前記保護兼逆流防止熱板6の内部に加温手段として高温水の流路(図示なし)を全体が均一温度になるように設けることにより前記保護兼逆流防止熱板6全体を容易に高温の均一な温度にすることができる。なお、加温手段としては、前記高温水を流動させる形態であっても、ヒーター(図示なし)を前記保護兼逆流防止熱板6内に内設させた形態であってもよい。 The protective and backflow-preventing hot plate 6 is made of a metal with high thermal conductivity such as copper, the protective and backflow-preventing hot plate 6 is miniaturized, and a heating means is provided inside the protective and backflow-preventing hot plate 6. By providing a high-temperature water flow path (not shown) so that the entire temperature is uniform, the entire protective and backflow-preventing hot plate 6 can be easily maintained at a uniform high temperature. The heating means may be of a form in which the high-temperature water flows, or a form in which a heater (not shown) is provided inside the protective and anti-backflow hot plate 6 .

前記断熱材5は、主熱板4から熱の移動をなくすものであればよく、例えば発泡樹脂で作られる。前記断熱材5は、図7や図8に示すように、前記保護兼逆流防止熱板6の凹部30に嵌設され、一方向側である上面を前記主熱板4の他方向側である下面と接触状態に形成され、他方向側である下面は前記保護兼逆流防止熱板6の凹部30の底面32と接触状態に、側面は前記保護兼逆流防止熱板6の凹部30の内周壁面31と接触又は非接触の対向状態を形成している。そして、図9(a)に示すように、前記主熱板4と前記保護兼逆流防止熱板6との温度差を測定して熱起電力を出力するサーモパイル40を前記断熱材5に設けた貫通孔44と前記断熱材5の表面に形成した溝に埋設している。 The heat insulating material 5 may be any material as long as it prevents heat transfer from the main hot plate 4, and is made of foamed resin, for example. As shown in FIGS. 7 and 8, the heat insulating material 5 is fitted in the concave portion 30 of the protective and backflow preventing hot plate 6, and the upper surface, which is one side, is the other side of the main hot plate 4. Formed in contact with the lower surface, the lower surface on the other side is in contact with the bottom surface 32 of the recessed portion 30 of the protective and backflow-preventing hot plate 6, and the side surface is the inner periphery of the recessed portion 30 of the protective and backflow-preventing hot plate 6. A facing state of contact or non-contact with the wall surface 31 is formed. Then, as shown in FIG. 9(a), a thermopile 40 for measuring the temperature difference between the main hot plate 4 and the protective and anti-backflow hot plate 6 and outputting a thermoelectromotive force is provided on the heat insulating material 5. It is embedded in the through hole 44 and the groove formed on the surface of the heat insulating material 5 .

前記主熱板4と前記保護兼逆流防止熱板6との前記温度差の温度測定手段が、前記断熱材5の一方向側の面に前記主熱板4との接点45c、45d、45eを、かつ前記断熱材5の他方向側の面に前記保護兼逆流防止熱板6との接点45a、45bを設けた熱電対41を複数直列接続したサーモパイル40である。 The temperature measuring means for measuring the temperature difference between the main hot plate 4 and the protective and backflow preventing hot plate 6 has contact points 45c, 45d and 45e with the main hot plate 4 on the surface of the heat insulating material 5 on one side. and a thermopile 40 in which a plurality of thermocouples 41 having contact points 45a and 45b with the protective and backflow preventing hot plate 6 are provided on the other side surface of the heat insulating material 5 and connected in series.

前記冷却熱板3は前記主熱板4に対して一方向側と他方向側の両方向である例えば上下方向で昇降可能であり、図16に示すように前記冷却熱板3を上昇させて前記試験片2をセットし、図17に示すように前記冷却熱板3を下降させて前記冷却熱板3の下面を前記試験片2の上面に密着させる。また、前記冷却熱板3の大きさは平面視で前記保護兼逆流防止熱板6の外郭と同じ大きさとし、図1に示すように、前記冷却熱板3の内部に形成した流路(図示なし)に、ヒーター25等の加温手段や温度計等の温度測定手段51を設けた低温の恒温水槽26内の低温水をポンプ27で送給し循環させている。また、図4に示すように、前記冷却熱板3には前記冷却熱板3の前記試験片2側の温度を測定する冷却熱板熱電対14が埋設されている。前記埋設形態としては、図4に示すように、前記冷却熱板熱電対14を厚さ方向の孔に挿設する形態や、前記冷却熱板3の試験片2に密着させる側の表面に形成した溝に埋設する形態(図示なし)があるが、冷却熱板3の試験片2側の温度を測定可能であればいずれの形態でもよい。 The cooling hot plate 3 can be moved up and down in both directions of one direction and the other direction with respect to the main hot plate 4, for example, in the vertical direction. As shown in FIG. The test piece 2 is set, and the cooling hot plate 3 is lowered as shown in FIG. The size of the cooling hot plate 3 is the same as the outer shell of the protective and backflow preventing hot plate 6 in plan view, and as shown in FIG. (none), a low-temperature constant temperature water tank 26 provided with a heating means such as a heater 25 and a temperature measuring means 51 such as a thermometer is fed by a pump 27 and circulated. Further, as shown in FIG. 4, a cooling hot plate thermocouple 14 for measuring the temperature of the cooling hot plate 3 on the side of the test piece 2 is embedded in the cooling hot plate 3 . As the embedded form, as shown in FIG. 4, the cooling hot plate thermocouple 14 is inserted into a hole in the thickness direction, or formed on the surface of the cooling hot plate 3 on the side to be brought into close contact with the test piece 2. Although there is a form (not shown) in which the test piece is embedded in a groove formed in the cooling plate 3, any form may be used as long as the temperature of the cooling hot plate 3 on the side of the test piece 2 can be measured.

そして、前記冷却熱板3の温度が、前記主熱板4及び前記保護兼逆流防止熱板6の温度より低温となるように、前記冷却熱板3に埋設した配管内を流動させる低温水の温度を制御することにより低温を維持させている。まず低温水の温度を、前記保護兼逆流防止熱板6内を流動させる高温水の設定温度より低くなるように所定の温度を予め設定する。 Then, low-temperature water is caused to flow through the piping embedded in the cooling hot plate 3 so that the temperature of the cooling hot plate 3 is lower than the temperature of the main hot plate 4 and the protective and backflow preventing hot plate 6. A low temperature is maintained by controlling the temperature. First, the temperature of the low-temperature water is set in advance so that it is lower than the set temperature of the high-temperature water flowing in the protective and anti-backflow hot plate 6 .

そして、恒温水槽26内の温度測定手段51で測定した低温水の温度が予め設定した温度となるようにヒーター25の電流値を調整する温度制御手段10により低温水の温度を制御する。前記低温水はポンプ27で前記恒温水槽26と前記冷却熱板3を循環しているので前記冷却熱板3の温度は全域に亘って前記低温水の温度で均一に維持される。 Then, the temperature of the low-temperature water is controlled by the temperature control means 10 for adjusting the current value of the heater 25 so that the temperature of the low-temperature water measured by the temperature measuring means 51 in the constant temperature water tank 26 becomes a preset temperature. Since the low temperature water is circulated through the constant temperature water tank 26 and the cooling hot plate 3 by the pump 27, the temperature of the cooling hot plate 3 is maintained uniformly at the temperature of the low temperature water over the entire area.

試験片2の上面は前記冷却熱板3の下面と密着可能にしている。なお、加温手段としては、前記低温水を前記冷却熱板3内に流動させる形態の他に、前記冷却熱板3内にヒーター(図示なし)を内設させる形態でもよい。 The upper surface of the test piece 2 can be brought into close contact with the lower surface of the cooling hot plate 3 . As the heating means, a heater (not shown) may be installed inside the cooling hot plate 3 instead of flowing the low-temperature water in the cooling hot plate 3 .

前記低温の恒温水槽26内の恒温水内に、図2に示すように、氷28を投入して前記恒温水を氷水にし、前記氷水を前記冷却熱板3内の流路(図示なし)に流動させ、前記氷水を前記恒温水槽26と前記冷却熱板3内の流路に循環させる形態の場合は、前記冷却熱板3の温度を約0℃で維持できるので前記恒温水槽26の温度を制御するための温度測定手段51や温度制御手段10が不要になるという効果を奏する。 As shown in FIG. 2, ice 28 is put into the constant temperature water in the low temperature constant temperature water tank 26 to turn the constant temperature water into ice water, and the ice water is passed through the flow path (not shown) in the cooling heat plate 3. In the case of the configuration in which the ice water is made to flow and circulated through the channels in the constant temperature water tank 26 and the cooling hot plate 3, the temperature of the cooling hot plate 3 can be maintained at about 0° C., so the temperature of the constant temperature water tank 26 is reduced. There is an effect that the temperature measurement means 51 and the temperature control means 10 for controlling become unnecessary.

また、前記冷却熱板3の平面視における外郭の形状や大きさは、平面視で前記保護兼逆流防止熱板6の外郭形状と同じ形状や大きさとする。 Further, the shape and size of the outer shell of the cooling hot plate 3 in plan view are the same shape and size as the outer shape and size of the protective and backflow preventing hot plate 6 in plan view.

次に、本発明の熱伝導率測定装置1の温度制御について説明する。まず、高温水の温度と低温水の温度を設定する。前記低温水の温度は高温水の温度より低い温度に設定する。 Next, temperature control of the thermal conductivity measuring device 1 of the present invention will be described. First, set the temperature of the hot water and the temperature of the cold water. The temperature of the low temperature water is set lower than the temperature of the high temperature water.

そして、前記保護兼逆流防止熱板6内の流路(図示なし)に流動させる高温水の温度を予め設定した高温の温度で安定させるために、温度制御手段11が、恒温水槽22に設置した温度測定手段52で測定した温度が予め設定した高温の温度になるようにヒーター21の電流値を制御する。前記高温水を恒温水槽22と前記保護兼逆流防止熱板6内の流路にポンプ23で常時循環させる。 In order to stabilize the temperature of the high-temperature water flowing in the flow path (not shown) in the protective and backflow prevention hot plate 6 at a preset high temperature, the temperature control means 11 is installed in the constant temperature water tank 22. The current value of the heater 21 is controlled so that the temperature measured by the temperature measuring means 52 becomes a preset high temperature. The high-temperature water is constantly circulated through the constant temperature water tank 22 and the flow paths in the protective and backflow preventing hot plate 6 by means of a pump 23 .

そして、前記冷却熱板3内の流路(図示なし)に流動させる低温水の温度を前記高温水の温度より低い温度に設定する。そして、予め設定した低温の温度で安定させるために、温度制御手段10が、恒温水槽26に設置した温度測定手段51で測定した温度が予め設定した低温の温度になるようにヒーター25の電流値を制御する。前記低温水を恒温水槽26と前記冷却熱板3内の流路にポンプ27で常時循環させる。 Then, the temperature of the low-temperature water flowing through the flow path (not shown) in the cooling hot plate 3 is set lower than the temperature of the high-temperature water. In order to stabilize the preset low temperature, the temperature control means 10 adjusts the current value of the heater 25 so that the temperature measured by the temperature measuring means 51 installed in the constant temperature water bath 26 becomes the preset low temperature. to control. The low-temperature water is constantly circulated through the constant temperature water tank 26 and the flow paths in the cooling hot plate 3 by means of a pump 27 .

そして、前記主熱板4と前記保護兼逆流防止熱板6との温度差を測定する前記サーモパイル40の温度差情報をもとに、温度制御手段9が、前記温度差をなくすように、前記主熱板4のヒーター15の電流値を制御する。これにより、前記主熱板4と前記保護兼逆流防止熱板6との温度差がなくなる。そして、試験片2の内部に前記主熱板4側から前記冷却熱板3側に向けて一次元熱流が流れる。 Then, based on the temperature difference information of the thermopile 40 that measures the temperature difference between the main hot plate 4 and the protective and backflow preventing hot plate 6, the temperature control means 9 adjusts the temperature so as to eliminate the temperature difference. The current value of the heater 15 of the main hot plate 4 is controlled. As a result, the temperature difference between the main hot plate 4 and the protective and backflow preventing hot plate 6 is eliminated. Then, a one-dimensional heat flow flows inside the test piece 2 from the main hot plate 4 side toward the cooling hot plate 3 side.

次に、前記主熱板熱電対13で主熱板4の試験片2側の温度を測定し、前記冷却熱板熱電対14で前記冷却熱板3の試験片2側の温度を測定し、試験片2内を流れる一次元熱流の熱流量(Ф)を測定し、伝熱面積(A)、試験片温度差(ΔT)、試験片厚み(d)を得て、熱伝導率λ=(熱流量Ф×試験片厚さd)/(伝熱面積A×試験片温度差ΔT)なる式を用いて、熱伝導率を求める。 Next, the temperature of the test piece 2 side of the main hot plate 4 is measured with the main hot plate thermocouple 13, the temperature of the test piece 2 side of the cooling hot plate 3 is measured with the cooling hot plate thermocouple 14, The heat flow rate (Φ) of the one-dimensional heat flow flowing through the test piece 2 is measured, the heat transfer area (A), the test piece temperature difference (ΔT), the test piece thickness (d) is obtained, and the thermal conductivity λ = ( Thermal conductivity is obtained using the following formula: heat flow rate Φ×test piece thickness d)/(heat transfer area A×test piece temperature difference ΔT).

従来の熱伝導率測定装置100と本発明の熱伝導率測定装置1との温度が測定可能になるまでの温度に安定するまでの時間を、表1に示すように、試験片を建築用断熱材、試験片厚さを7mm、試験片の上下面の表面を平滑に仕上げ、冷却熱板の温度を0℃維持、主熱板の温度は従来の熱伝導率測定装置100は35℃維持で本発明の熱伝導率測定装置1は33℃維持する温度制御を行い、サンプリングは1秒ごとに測定し64秒で移動平均させた条件で求めた。なお、前記熱伝導率測定装置100の主熱板と保護熱板間の温度差測定手段は熱電対とし主熱板と逆流防止熱板間の温度差測定手段は熱電対であり、前記熱伝導率測定装置1の主熱板4と保護兼逆流防止熱板6間の温度差測定手段は熱電対を10個直列接続させたサーモパイル40である。また、前記保護兼逆流防止熱板の大きさは1辺の長さが0.1mの正方形である。試験片の大きさは1辺の長さが0.1mの正方形である。 As shown in Table 1, the time until the temperature of the conventional thermal conductivity measuring device 100 and the thermal conductivity measuring device 1 of the present invention stabilizes to a measurable temperature. The material, the thickness of the test piece is 7 mm, the upper and lower surfaces of the test piece are finished smooth, the temperature of the cooling hot plate is maintained at 0°C, and the temperature of the main hot plate is maintained at 35°C in the conventional thermal conductivity measuring device 100. The thermal conductivity measuring apparatus 1 of the present invention was controlled to maintain the temperature at 33° C., and the sampling was performed under the condition that the measurement was performed every second and the moving average was obtained in 64 seconds. The temperature difference measuring means between the main hot plate and the protective hot plate of the thermal conductivity measuring device 100 is a thermocouple, and the temperature difference measuring means between the main hot plate and the backflow prevention hot plate is a thermocouple. A means for measuring the temperature difference between the main hot plate 4 and the protective and anti-backflow hot plate 6 of the rate measuring device 1 is a thermopile 40 in which ten thermocouples are connected in series. In addition, the size of the protective and anti-backflow hot plate is a square with a side length of 0.1 m. The size of the test piece is a square with a side length of 0.1 m.

Figure 0007106073000001
Figure 0007106073000001

表1の条件の結果を図14に示す。図14から、従来の熱伝導率測定装置100の温度変化グラフKでは温度が安定するまで約8分要するのに対して、本発明の熱伝導率測定装置1の温度変化グラフHでは温度が安定するまで約3分に短縮されることが示された。これにより、本発明は従来装置に比較し半分以下の時間で迅速な熱伝導率測定ができるという顕著な効果を奏する。 The results for the conditions in Table 1 are shown in FIG. From FIG. 14, it takes about 8 minutes for the temperature to stabilize in the temperature change graph K of the conventional thermal conductivity measuring device 100, whereas the temperature in the temperature change graph H of the thermal conductivity measuring device 1 of the present invention stabilizes. was shown to be shortened to about 3 minutes. As a result, the present invention has the remarkable effect of being able to quickly measure thermal conductivity in less than half the time of conventional devices.

本発明は、従来の熱伝導率測定装置1における、保護熱板105と逆流防止用熱板107の2つの部品点数の1つの部品点数化、保護熱板105のヒーター122の不要化、保護熱板105と主熱板103との示差温度測定手段113の不要化などの部品点数を減じることができ、装置の小型化、構造の簡素化、製作コストの安価化を実現できた。 In the conventional thermal conductivity measuring device 1, the present invention reduces the number of two parts, the protective hot plate 105 and the backflow preventing hot plate 107, to one, eliminates the need for the heater 122 of the protective hot plate 105, and protects the heat. The number of parts can be reduced by eliminating the need for the differential temperature measuring means 113 between the plate 105 and the main hot plate 103, and the device can be downsized, the structure can be simplified, and the manufacturing cost can be reduced.

また、主熱板4と保護兼逆流防止熱板6との温度差を測定する前記サーモパイル40には、予め定めた数の熱電対41を直列に接続させているので、前記温度差を直列に接続した数の倍率をかけた数値で温度差を把握でき、温度差ゼロに向けてより細かい数値レベルでの温度調整を実施することが可能になった。 In addition, since a predetermined number of thermocouples 41 are connected in series to the thermopile 40 for measuring the temperature difference between the main hot plate 4 and the protective and backflow preventing hot plate 6, the temperature difference is measured in series. The temperature difference can be grasped by the value obtained by multiplying the number of connected devices, and it has become possible to adjust the temperature at a finer numerical level toward zero temperature difference.

前記熱電対41は、2種類の均質な金属導体で回路を作っており、例えば、図9(a)に示すように、線径0.1mmアルメル線42を-極側として線径0.1mmクロメル線43を+極側として接続する。前記線径は0.2mm以下であればよい。また、熱電対41の直列接続方法としては、例えば、図9(b)に示すように、前記断熱材5の平面視で外周縁全周の近傍に、前記断熱材5の上面側で前記主熱板4の下面と接触させ、前記断熱材5の下面側で前記保護兼逆流防止熱板6の上面とそれぞれ複数個所で接触させるように、例えば10個の熱電対41を直列に接続させる。この場合は、前記主熱板4と前記保護兼逆流防止熱板6との温度差を10倍大きくでき、言い換えると前記温度差に比例した熱起電力(出力電圧)を10倍大きくすることができ、これにより1個の熱電対41より10分の1レベルの数値での温度制御を可能にした。 The thermocouple 41 has a circuit made of two kinds of homogeneous metal conductors. For example, as shown in FIG. The chromel wire 43 is connected as the + pole side. The wire diameter should be 0.2 mm or less. Moreover, as a method of connecting the thermocouples 41 in series, for example, as shown in FIG. For example, 10 thermocouples 41 are connected in series so that they are in contact with the lower surface of the hot plate 4 and the lower surface of the heat insulating material 5 is in contact with the upper surface of the protective and backflow-preventing hot plate 6 at a plurality of points. In this case, the temperature difference between the main hot plate 4 and the protective and backflow-preventing hot plate 6 can be increased by 10 times, in other words, the thermoelectromotive force (output voltage) proportional to the temperature difference can be increased by 10 times. This made it possible to control the temperature at a numerical value one tenth of that of a single thermocouple 41 .

前記熱電対41の直列接続方法は、前記断熱材5の上面側で前記主熱板4の下面と接触させ、前記断熱材5の下面側で前記保護兼逆流防止熱板6の上面とそれぞれ複数個所で接触させるものであれば、例えば図9(c)に示すような経路でもよく、いかなる経路を形成してもよい。また、熱電対41の数は、熱電対41の数が複数であればその複数分だけの倍率で、前記主熱板4と前記保護兼逆流防止熱板6との温度差を把握できるので、温度差を把握したい倍率の数に相当する数の熱電対41の数を設ける。 The method of connecting the thermocouples 41 in series is such that the upper surface side of the heat insulating material 5 is brought into contact with the lower surface of the main hot plate 4 , and the lower surface side of the heat insulating material 5 is connected to the upper surface of the protective and backflow prevention hot plate 6 . Any path, such as the path shown in FIG. 9(c), may be used as long as the contact is made at a point. Further, if the number of thermocouples 41 is plural, the temperature difference between the main hot plate 4 and the protective and anti-backflow preventing hot plate 6 can be grasped by a magnification corresponding to the number of the thermocouples 41. The number of thermocouples 41 corresponding to the number of magnifications desired to grasp the temperature difference is provided.

前記主熱板4及び前記保護兼逆流防止熱板6は、熱伝導率の大きい同一の金属、例えば銅で作ることから、接点45aと接点45bとの間での短絡、接点45cと接点45dと接点45eとの間での短絡を防止するため、例えば前記断熱材5の上下面にはそれぞれ絶縁膜(図示なし)を貼設する。 Since the main hot plate 4 and the protective and anti-backflow hot plate 6 are made of the same metal with high thermal conductivity, such as copper, a short circuit between the contacts 45a and 45b and between the contacts 45c and 45d will occur. In order to prevent a short circuit with the contact 45e, for example, insulating films (not shown) are pasted on the upper and lower surfaces of the heat insulating material 5, respectively.

本発明の熱伝導率測定装置1から求められる熱伝導率と従来法である保護熱板法に準じた熱伝導率測定装置100から求められる熱伝導率とを比較すると、図12に示すように、試験片A(商品名ネオマフォーム、旭化成建材(株)、熱伝導率0.02W/mK)、試験片B(商品名オトクイ5、リックス(株)、熱伝導率0.0526W/mK)のいずれも熱伝導率がほぼ同じである。このことから、本発明の熱伝導率測定装置1から求められる熱伝導率は従来法から求められる熱伝導率と同じ数字を示すことが証明された。 Comparing the thermal conductivity obtained by the thermal conductivity measuring device 1 of the present invention with the thermal conductivity obtained by the thermal conductivity measuring device 100 according to the conventional protected hot plate method, as shown in FIG. , test piece A (trade name Neomafoam, Asahi Kasei Construction Materials Co., Ltd., thermal conductivity 0.02 W / mK), test piece B (trade name Otokui 5, Rix Co., Ltd., thermal conductivity 0.0526 W / mK) have almost the same thermal conductivity. From this, it was proved that the thermal conductivity obtained from the thermal conductivity measuring device 1 of the present invention shows the same numerical value as the thermal conductivity obtained from the conventional method.

また、試験片C(シリコンゴム、信越化学(株)、熱伝導率0.2W/mK)のカタログ値の熱伝導率と、本発明の熱伝導率測定装置1を使用し測定して求めた試験片Cの熱伝導率とは、熱伝導率0.2W/mKで略同じ値となった。これにより、本発明の熱伝導率測定装置1から求められる熱伝導率は従来法から求められる熱伝導率と同じ数字を示すことが証明された。 In addition, the thermal conductivity of the catalog value of the test piece C (silicon rubber, Shin-Etsu Chemical Co., Ltd., thermal conductivity 0.2 W / mK) and the thermal conductivity measurement device 1 of the present invention were measured and obtained. The thermal conductivity of the test piece C was approximately the same value at 0.2 W/mK. This proves that the thermal conductivity obtained from the thermal conductivity measuring apparatus 1 of the present invention is the same number as the thermal conductivity obtained from the conventional method.

次に、本発明において、主熱板4と保護兼逆流防止熱板6との温度差を測定する手段として、10個の熱電対41を直列接続させた前記サーモパイル40と、熱電対41が1個の場合の温度差が安定するまでの時間を比較した。なお、図13は、縦軸に主熱板4と保護兼逆流防止熱板6の温度差を、横軸に熱伝導率測定装置1測定開始時間からの経過時間を表している。 Next, in the present invention, as a means for measuring the temperature difference between the main hot plate 4 and the protective and anti-backflow hot plate 6, the thermopile 40 in which ten thermocouples 41 are connected in series and one thermocouple 41 The time required for the temperature difference to stabilize was compared in each case. In FIG. 13, the vertical axis represents the temperature difference between the main hot plate 4 and the protective/backflow-preventing hot plate 6, and the horizontal axis represents the elapsed time from the measurement start time of the thermal conductivity measuring apparatus 1. As shown in FIG.

図13に示すように、サーモパイルを使用せずに熱電対が1個の場合は、温度差が安定するまでの時間は温度差を表すグラフFをみると、最初約-0.8℃の温度差が1.1℃まで行きすぎ約12分後に約-0.5℃~-0.7℃で安定した。一方、熱電対10個直列に接続させたサーモパイル40使用の場合は、温度差が安定するまでの時間は温度差を表すグラフSをみると、最初約0.1℃であったのが約5分後に0.1℃~0.2℃で安定した。これから、1個の熱電対よりも10個の熱電対を直列接続させたサーモパイルの方が、迅速に温度差が0℃に近い値で安定化することが示された。 As shown in FIG. 13, when the thermopile is not used and there is only one thermocouple, the time until the temperature difference stabilizes is the temperature difference graph F, which shows that the temperature is about -0.8°C at first. The difference overshot to 1.1°C and stabilized at about -0.5°C to -0.7°C after about 12 minutes. On the other hand, when using the thermopile 40 in which ten thermocouples are connected in series, the time required for the temperature difference to stabilize is about 5°C from about 0.1°C at first. It stabilized at 0.1°C to 0.2°C after minutes. From this, it was shown that the thermopile in which ten thermocouples are connected in series stabilizes the temperature difference at a value close to 0° C. more quickly than in the case of one thermocouple.

次に、本発明の熱伝導率測定装置1は、前記保護兼逆流防止熱板6の一方向側の面であって前記試験片2と密着可能範囲に、前記主熱板4の加温手段であるヒーター15の消費電力を変えて前記主熱板4と前記保護兼逆流防止熱板6の試験片2側の表面温度の温度差をなくす材質からなる、熱伝導率の低いシート状の熱抵抗部材60を貼設している。 Next, in the thermal conductivity measuring apparatus 1 of the present invention, the heating means of the main hot plate 4 is placed on the surface of the protective and anti-backflow hot plate 6 in one direction and in the range where the test piece 2 can be closely contacted. A sheet-like heat with low thermal conductivity made of a material that eliminates the temperature difference between the surface temperatures of the main hot plate 4 and the protective and backflow preventing hot plate 6 on the side of the test piece 2 by changing the power consumption of the heater 15. A resistance member 60 is attached.

図10に示すように、主熱板4の表面温度を測定する熱電対62と、保護兼逆流防止熱板6の表面温度を測定する熱電対61を設置して、前記主熱板4の表面温度と前記保護兼逆流防止熱板6の表面温度を比較した。その結果は、図15に示すように、主熱板4のヒーター15の消費電力が大きくなると、温度差推移グラフMが示すように主熱板4と保護兼逆流防止熱板6との間の温度差が急激に低下する傾向にあり、主熱板4の消費電力が1Wを超えるところで主熱板4と試験片2との境界の温度差が最大1.4℃ほど主熱板4側の温度が低くなることが示された。 As shown in FIG. 10, a thermocouple 62 for measuring the surface temperature of the main hot plate 4 and a thermocouple 61 for measuring the surface temperature of the protective and anti-backflow hot plate 6 are installed. The temperature and the surface temperature of the protective and anti-backflow hot plate 6 were compared. As a result, as shown in FIG. 15, when the power consumption of the heater 15 of the main hot plate 4 increases, the temperature difference between the main hot plate 4 and the protective and backflow prevention hot plate 6 increases as indicated by the temperature difference transition graph M. The temperature difference tends to drop sharply, and when the power consumption of the main hot plate 4 exceeds 1 W, the temperature difference at the boundary between the main hot plate 4 and the test piece 2 reaches a maximum of 1.4°C. It was shown that the temperature decreased.

そこで、試験片2の熱伝導率測定の正確な測定を実現させるためには、主熱板4と保護兼逆流防止熱板6の表面温度の差をできる限り少なくすることが必要になる。このため、前記1.4℃の差をなくすために、図11に示すように、前記保護兼逆流防止熱板6の上面であって前記試験片2と密着可能範囲に、前記主熱板のヒーター15の消費電力を変えて前記主熱板と前記保護兼逆流防止熱板の試験片側の表面温度の温度差をなくす材質からなる、熱伝導率の低い、平面視四角枠状であってマスキングテープ等のシート状の熱抵抗部材60を貼設した。 Therefore, in order to accurately measure the thermal conductivity of the test piece 2, it is necessary to minimize the difference in surface temperature between the main hot plate 4 and the protective and anti-backflow hot plate 6 as much as possible. Therefore, in order to eliminate the difference of 1.4° C., as shown in FIG. The masking is made of a material having a low thermal conductivity and having a rectangular frame shape in a plan view, which is made of a material that eliminates the difference in surface temperature between the test piece side of the main heating plate and the protective and backflow prevention heating plate by changing the power consumption of the heater 15. A sheet-like heat resistance member 60 such as a tape is attached.

その結果を図15に示す。前記熱抵抗部材60として、青色ビニールテープと黄色マスキングテープを実験した。その結果を青色ビニールテープの場合はグラフTで示し、黄色マスキングテープの場合はグラフYで示した。青色ビニールテープの場合は主熱板4のヒーター15の消費電力が1Wになると前記主熱板4と前記保護兼逆流防止熱板6の試験片2側の表面温度の温度差が約-0.3℃に改善され、黄色マスキングテープの場合は主熱板4のヒーター15の消費電力が1Wになっても前記主熱板4と前記保護兼逆流防止熱板6の試験片2側の表面温度の温度差が生じないという際立つ効果が確認された。このことは、材質を選択することにより、前記主熱板4のヒーター15の消費電力の変化にかかわらず前記主熱板4と前記保護兼逆流防止熱板6の試験片側の表面温度の温度差をなくすことができることを示唆している。 The results are shown in FIG. As the heat resistance member 60, a blue vinyl tape and a yellow masking tape were tested. The results are shown in graph T for the blue vinyl tape and graph Y for the yellow masking tape. In the case of the blue vinyl tape, when the power consumption of the heater 15 of the main hot plate 4 becomes 1 W, the temperature difference between the surface temperatures of the main hot plate 4 and the protective and backflow preventing hot plate 6 on the side of the test piece 2 is about -0. 3 ° C., and in the case of yellow masking tape, even if the power consumption of the heater 15 of the main hot plate 4 is 1 W, the surface temperature of the test piece 2 side of the main hot plate 4 and the protective and backflow prevention hot plate 6 It was confirmed that there is no temperature difference between the two. This means that the difference in surface temperature between the main hot plate 4 and the protective and backflow-preventing hot plate 6 on the side of the test piece can be reduced regardless of changes in the power consumption of the heater 15 of the main hot plate 4 by selecting the material. suggests that it is possible to eliminate

次に、本発明の熱伝導率測定方法を説明する。前記熱伝導率測定方法は、平板状で両面が平行平面を有する試験片2の熱伝導率を求める熱伝導率測定方法であって、前記試験片2を、前記試験片2の一方向側の面に密着可能な冷却熱板3と、前記試験片2の前記一方向側と反対側の他方向側の面の中央部域に密着可能な主熱板4と、及び、前記試験片2の他方向側の面の周縁部域に密着可能な保護兼逆流防止熱板6とで挟み、前記主熱板4の他方向側の面に平板状の断熱材5を接触させ、前記保護兼逆流防止熱板6の一方向側の面に、積層させた前記主熱板4及び前記断熱材5を嵌設する凹部30を形成させて、前記主熱板4と前記保護兼逆流防止熱板6との温度差をなくす温度制御を行い、前記冷却熱板3の冷温を前記主熱板4の高温より低い温度となる制御を行い、前記試験片2の前記主熱板4側表面から前記冷却熱板3側表面への厚さ方向における熱流量を測定する。 Next, the thermal conductivity measuring method of the present invention will be explained. The thermal conductivity measuring method is a thermal conductivity measuring method for determining the thermal conductivity of a flat plate-shaped test piece 2 having parallel planes on both sides. A cooling hot plate 3 that can be in close contact with the surface, a main hot plate 4 that can be in close contact with the central region of the surface of the test piece 2 on the other side opposite to the one direction side, and the test piece 2. It is sandwiched between a protective and backflow prevention hot plate 6 that can be in close contact with the peripheral area of the surface on the other side, and a flat heat insulating material 5 is brought into contact with the surface on the other side of the main hot plate 4 to protect and backflow. A concave portion 30 for fitting the laminated main hot plate 4 and the heat insulating material 5 is formed on the surface of the preventing hot plate 6 on one side, so that the main hot plate 4 and the protective and backflow preventing hot plate 6 are formed. and control the cold temperature of the cooling hot plate 3 to be lower than the high temperature of the main hot plate 4, and the cooling from the main hot plate 4 side surface of the test piece 2 The heat flow in the thickness direction to the hot plate 3 side surface is measured.

そして、前記凹部30の内周壁面31と前記主熱板4の外周側面とは全周に亘り熱抵抗体7を介在させ、前記凹部30の内周壁面31と前記断熱材5の外周側面とは全周に亘り接触又は非接触の対向状態を形成させ、前記凹部30の底面32と前記断熱材5の他方向側の面と接触状態にさせ、前記主熱板4と前記保護兼逆流防止熱板6間を断熱状態にさせる。 The inner peripheral wall surface 31 of the recess 30 and the outer peripheral side surface of the main hot plate 4 are interposed with the heat resistor 7 over the entire circumference, and the inner peripheral wall surface 31 of the recessed portion 30 and the outer peripheral side surface of the heat insulating material 5 are interposed. forms a contact or non-contact opposing state over the entire circumference, and is brought into contact with the bottom surface 32 of the recess 30 and the surface of the heat insulating material 5 on the other direction side, and the main hot plate 4 and the protection and backflow prevention The space between the hot plates 6 is insulated.

また、前記温度差をなくす温度制御が、前記断熱材5の一方向側の面に前記主熱板4の他方向側の表面との接点45を、前記断熱材5の他方向側の面に前記保護兼逆流防止熱板6の一方向側の表面との接点45を設けた熱電対41を複数直列に接続したサーモパイル40により、前記温度差を前記直列させた熱電対41の数の倍率にして温度制御を行う。 Further, the temperature control for eliminating the temperature difference is such that the contact point 45 with the surface of the main hot plate 4 on the other side is formed on the surface on the one side of the heat insulating material 5 and on the surface on the other side of the heat insulating material 5. The temperature difference is multiplied by the number of the thermocouples 41 connected in series by a thermopile 40 in which a plurality of thermocouples 41 having contact points 45 with the surface on one side of the protective and backflow prevention hot plate 6 are connected in series. temperature control.

そして、前記保護兼逆流防止熱板6の一方向側の面であって前記試験片2と密着可能範囲に、前記主熱板の消費電力を変えて前記主熱板と前記保護兼逆流防止熱板の試験片側の表面温度の温度差をなくす材質からなる、熱伝導率の低いシート状の熱抵抗部材60を貼設し、前記保護兼逆流防止熱板6から前記試験片2への熱移動を抑制している。 Then, the power consumption of the main hot plate is changed so that the protective and anti-backflow heat plate and the protective and backflow-preventive heat are changed to the one-direction side surface of the protective and backflow-preventing hot plate 6 within a range where the test piece 2 can be closely contacted. A sheet-like heat resistance member 60 made of a material that eliminates the temperature difference in the surface temperature of the test piece side of the plate and having a low thermal conductivity is pasted, and heat is transferred from the protective and backflow prevention hot plate 6 to the test piece 2. is suppressed.

1 熱伝導率測定装置
2 試験片
3 冷却熱板
4 主熱板
5 断熱材
6 保護兼逆流防止熱板
7 熱抵抗体
9 温度制御手段
10 温度制御手段
11 温度制御手段
12 本体部
13 主熱板熱電対
14 冷却熱板熱電対
15 ヒーター
15a 電圧計測線
15b 給電線
18 配管
19 配管
21 ヒーター
22 恒温水槽
23 ポンプ
25 ヒーター
26 恒温水槽
27 ポンプ
28 氷
30 凹部
31 内周壁面
32 底面
35 切欠き部
40 サーモパイル
41 熱電対
44 貫通孔
45 接点
51 温度測定手段
52 温度測定手段
60 熱抵抗部材
REFERENCE SIGNS LIST 1 thermal conductivity measuring device 2 test piece 3 cooling hot plate 4 main hot plate 5 heat insulating material 6 protective and backflow preventing hot plate 7 thermal resistor 9 temperature control means 10 temperature control means 11 temperature control means 12 main body 13 main hot plate Thermocouple 14 Cooling hot plate thermocouple 15 Heater 15a Voltage measurement line 15b Feeder line 18 Piping 19 Piping 21 Heater 22 Constant temperature water tank 23 Pump 25 Heater 26 Constant temperature water tank 27 Pump 28 Ice 30 Recess 31 Inner peripheral wall surface 32 Bottom surface 35 Notch 40 Thermopile 41 Thermocouple 44 Through hole 45 Contact 51 Temperature measurement means 52 Temperature measurement means 60 Thermal resistance member

Claims (8)

平板状で両面が平行平面を有する試験片の熱伝導率を求める熱伝導率測定装置であって、
前記試験片の一方向側の面に密着可能な冷却熱板と、前記冷却熱板と平行に配設され、前記試験片の前記一方向側と反対側の他方向側の面の中央部域に密着可能な主熱板と、前記主熱板の他方向側の面と接触状態を形成する平板状の断熱材と、一方向側の周縁部域が前記試験片の他方向側の面の周縁部域に密着可能でかつ一方向側の中央部域が前記断熱材の他方向側の面と接触状態を形成する保護兼逆流防止熱板と、を備え、
前記保護兼逆流防止熱板の一方向側の中央部域に前記主熱板及び前記断熱材を嵌設する凹部を形成し、
前記試験片の前記主熱板側表面から前記冷却熱板側表面への厚さ方向における熱流量を測定可能とする温度測定手段を設けたことを特徴とする熱伝導率測定装置。
A thermal conductivity measuring device for determining the thermal conductivity of a flat plate-shaped test piece having parallel planes on both sides,
a cooling hot plate that can be brought into close contact with the surface of the test piece on one side; a main hot plate that can be brought into close contact with the other side of the main hot plate; a protective and anti-backflow hot plate that can be brought into close contact with the peripheral area and whose center area on one side is in contact with the surface of the heat insulating material on the other side;
forming a concave portion in which the main hot plate and the heat insulating material are fitted in a central region on one side of the protective and anti-backflow hot plate;
A thermal conductivity measuring apparatus comprising temperature measuring means capable of measuring a heat flow in a thickness direction from the main hot plate side surface of the test piece to the cooling hot plate side surface thereof.
前記凹部の内周壁面は前記主熱板及び前記断熱材を囲繞し、前記凹部の内周壁面と前記主熱板の外周側面との間に熱抵抗体を介在させ、前記凹部の内周壁面と前記断熱材の外周側面とは接触又は非接触の対向状態を形成し、前記凹部の底面は前記断熱材の他方向側の面と接触状態を形成させたことを特徴とする請求項1に記載の熱伝導率測定装置。 The inner peripheral wall surface of the recess surrounds the main hot plate and the heat insulating material, a heat resistor is interposed between the inner peripheral wall surface of the recess and the outer peripheral side surface of the main hot plate, and the inner peripheral wall surface of the recess is and the outer peripheral side surface of the heat insulating material form a facing state of contact or non-contact, and the bottom surface of the recess forms a contact state with the surface of the heat insulating material on the other direction side. A thermal conductivity measuring device as described. 前記保護兼逆流防止熱板の大きさが、1辺の長さが0.05m以上~0.2m未満の正方形又は直径が0.05m以上~0.2m未満の円形であることを特徴とする請求項1又は2に記載の熱伝導率測定装置。 The size of the protective and anti-backflow hot plate is a square with a side length of 0.05 m or more and less than 0.2 m or a circle with a diameter of 0.05 m or more and less than 0.2 m. The thermal conductivity measuring device according to claim 1 or 2. 加温手段を、前記冷却熱板、前記主熱板及び前記保護兼逆流防止熱板の3か所に限定して設けたことを特徴とする請求項1~3のいずれかに記載の熱伝導率測定装置。 4. The heat conduction according to any one of claims 1 to 3, characterized in that the heating means are provided only at three locations, namely, the cooling hot plate, the main hot plate, and the protective and anti-backflow hot plate. Rate measuring device. 前記保護兼逆流防止熱板の一方向側の面であって前記試験片と密着可能範囲に、熱伝導率の低いシート状の熱抵抗部材を貼設したことを特徴とする請求項1~4のいずれかに記載の熱伝導率測定装置。 Claims 1 to 4, characterized in that a sheet-like heat resistance member having a low thermal conductivity is pasted on a surface on one side of the protective and backflow-preventing hot plate in a region where the test piece can be brought into close contact. The thermal conductivity measuring device according to any one of 1. 前記冷却熱板、前記主熱板、前記断熱材、前記保護兼逆流防止熱板の前記一方向側から前記他方向側への配設順が、上方から下方に、下方から上方に、左方から右方に、又は、右方から左方のいずれかであることを特徴とする請求項1~5のいずれかに記載の熱伝導率測定装置。 The order of arrangement of the cooling hot plate, the main hot plate, the heat insulating material, and the protective and backflow preventing hot plate from the one direction side to the other direction side is from top to bottom, from bottom to top, and leftward. 6. The thermal conductivity measuring device according to any one of claims 1 to 5, wherein the direction is either from right to left or from right to left. 平板状で両面が平行平面を有する試験片の熱伝導率を求める熱伝導率測定方法であって、
前記試験片を、前記試験片の一方向側の面に密着可能な冷却熱板と、前記試験片の前記一方向側と反対側の他方向側の面の中央部域に密着可能な主熱板、及び、前記試験片の他方向側の面の周縁部域に密着可能な保護兼逆流防止熱板とで挟み、前記主熱板の他方向側の面に平板状の断熱材を接触させ、
前記保護兼逆流防止熱板の一方向側の面に、積層させた前記主熱板及び前記断熱材を嵌設する凹部を形成させて、
前記凹部の内周壁面と前記主熱板の外周側面とは全周に亘り熱抵抗体を介在させ、前記凹部の内周壁面と前記断熱材の外周側面とは全周に亘り接触又は非接触の対向状態を形成させ、前記凹部の底面と前記断熱材の他方向側の面と接触状態にさせ、前記主熱板と前記保護兼逆流防止熱板間を断熱状態にさせて、
前記主熱板と前記保護兼逆流防止熱板との温度差をなくす温度制御を行い、
前記冷却熱板の冷温を前記主熱板の高温より低い温度となる制御を行い、
前記試験片の前記主熱板側表面から前記冷却熱板側表面への厚さ方向における熱流量を測定することを特徴とする熱伝導率測定方法。
A thermal conductivity measuring method for determining the thermal conductivity of a flat plate-shaped test piece having parallel planes on both sides,
A cooling hot plate capable of adhering the test piece to one side surface of the test piece, and a main heat plate capable of being brought into close contact with the central region of the other side surface of the test piece opposite to the one direction side. It is sandwiched between a plate and a protective and backflow prevention hot plate that can be in close contact with the peripheral area of the surface on the other side of the test piece, and a flat heat insulating material is brought into contact with the surface on the other side of the main hot plate. ,
Forming a concave portion in which the laminated main hot plate and the heat insulating material are fitted on the one-side surface of the protective and backflow-preventing hot plate,
A heat resistor is interposed over the entire periphery between the inner peripheral wall surface of the recess and the outer peripheral side surface of the main hot plate, and the inner peripheral wall surface of the recess and the outer peripheral side surface of the heat insulating material are in contact or non-contact over the entire periphery. so that the bottom surface of the recess and the surface of the heat insulating material on the other side are in contact with each other, and the main hot plate and the protective and anti-backflow hot plate are in a heat insulating state,
performing temperature control to eliminate the temperature difference between the main hot plate and the protective and backflow prevention hot plate;
controlling the cold temperature of the cooling hot plate to be lower than the high temperature of the main hot plate;
A thermal conductivity measuring method, comprising measuring a heat flow in a thickness direction from the main hot plate side surface of the test piece to the cooling hot plate side surface.
前記保護兼逆流防止熱板の一方向側の面であって前記試験片と密着可能範囲に、熱伝導率の低いシート状の熱抵抗部材を貼設し、前記保護兼逆流防止熱板から前記試験片への熱移動を抑制することを特徴とする請求項7に記載の熱伝導率測定方法。 A sheet-like heat resistance member with low thermal conductivity is pasted on a surface on one side of the protective and backflow-preventing hot plate in a range where it can be closely attached to the test piece, and the protective and backflow-preventing hot plate is connected to the 8. The method of measuring thermal conductivity according to claim 7, wherein heat transfer to the test piece is suppressed.
JP2018243071A 2018-12-26 2018-12-26 Thermal conductivity measuring device and thermal conductivity measuring method Active JP7106073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018243071A JP7106073B2 (en) 2018-12-26 2018-12-26 Thermal conductivity measuring device and thermal conductivity measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018243071A JP7106073B2 (en) 2018-12-26 2018-12-26 Thermal conductivity measuring device and thermal conductivity measuring method

Publications (2)

Publication Number Publication Date
JP2020106307A JP2020106307A (en) 2020-07-09
JP7106073B2 true JP7106073B2 (en) 2022-07-26

Family

ID=71450702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018243071A Active JP7106073B2 (en) 2018-12-26 2018-12-26 Thermal conductivity measuring device and thermal conductivity measuring method

Country Status (1)

Country Link
JP (1) JP7106073B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153618A (en) 2004-11-29 2006-06-15 Japan Synthetic Textile Inspection Inst Foundation Method and apparatus for testing heat characteristics of temperature regulating material
US7540656B1 (en) 2006-01-26 2009-06-02 Sierra Lobo, Inc. Apparatus for direct measurement of insulation thermal performance at cryogenic temperatures
JP5637034B2 (en) 2011-03-24 2014-12-10 株式会社Jvcケンウッド Receiving apparatus and receiving method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52165680U (en) * 1976-06-10 1977-12-15
JPS5910590Y2 (en) * 1979-08-30 1984-04-03 昭和電工株式会社 Constant heat flow generator
JP4855004B2 (en) * 2005-08-02 2012-01-18 一般財団法人カケンテストセンター Thermal property test evaluation method and test apparatus for fabric fiber material
JP5827097B2 (en) * 2011-10-17 2015-12-02 ニチアス株式会社 Thermal conductivity measurement method
JP2015068788A (en) * 2013-09-30 2015-04-13 ニチアス株式会社 Method and device for measuring thermal diffusivity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153618A (en) 2004-11-29 2006-06-15 Japan Synthetic Textile Inspection Inst Foundation Method and apparatus for testing heat characteristics of temperature regulating material
US7540656B1 (en) 2006-01-26 2009-06-02 Sierra Lobo, Inc. Apparatus for direct measurement of insulation thermal performance at cryogenic temperatures
JP5637034B2 (en) 2011-03-24 2014-12-10 株式会社Jvcケンウッド Receiving apparatus and receiving method

Also Published As

Publication number Publication date
JP2020106307A (en) 2020-07-09

Similar Documents

Publication Publication Date Title
Wang et al. Determination of thermoelectric module efficiency: A survey
KR101302750B1 (en) Apparatus for evaluating a thermoelectric device
US5260668A (en) Semiconductor surface resistivity probe with semiconductor temperature control
CN107389206B (en) Thermopile sensor and control method thereof
US9500698B2 (en) High and low temperature test equipment
KR101276659B1 (en) Method for evaluating a thermoelectric figure-of-merit of thermoelectric device
Webster et al. Measurement of inhomogeneities in MIMS thermocouples using a linear-gradient furnace and dual heat-pipe scanner
JP2011102768A (en) Measuring method of heat characteristic
Pavlasek et al. Hysteresis effects and strain-induced homogeneity effects in base metal thermocouples
US2800793A (en) Calorimeters
Buliński et al. Application of the ASTM D5470 standard test method for thermal conductivity measurements of high thermal conductive materials
Hotra et al. Analysis of the characteristics of bimetallic and semiconductor heat flux sensors for in-situ measurements of envelope element thermal resistance
JP7106073B2 (en) Thermal conductivity measuring device and thermal conductivity measuring method
CN108333502B (en) Method for measuring action temperature of miniature circuit breaker
JP6198534B2 (en) Heating test equipment
JP6820564B2 (en) Thermoelectric module power generation evaluation device
KR100814414B1 (en) Apparatus and method for measuring heat dissipation
KR101230492B1 (en) System and method for controlling temperature in thermoelectric element evaluation apparatus
Heylen Figure of Merit determination of Thermo-electric Modules
Ruther et al. Dependence of the temperature distribution in micro hotplates on heater geometry and heating mode
RU2780703C2 (en) Method for control of polarity of thermoelectrodes
US11977006B2 (en) Test system for evaluating thermal performance of a heatsink
RU2797313C1 (en) Method for measuring thermal conductivity of solids under conditions of heat exchange with the environment and device for its implementation
JPH0143903B2 (en)
Milošević et al. Measurements of thermophysical properties of solids at the Institute VINČA

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210726

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220705

R150 Certificate of patent or registration of utility model

Ref document number: 7106073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150