WO2017164034A1 - 状態監視システム及びそれを備える風力発電装置 - Google Patents

状態監視システム及びそれを備える風力発電装置 Download PDF

Info

Publication number
WO2017164034A1
WO2017164034A1 PCT/JP2017/010398 JP2017010398W WO2017164034A1 WO 2017164034 A1 WO2017164034 A1 WO 2017164034A1 JP 2017010398 W JP2017010398 W JP 2017010398W WO 2017164034 A1 WO2017164034 A1 WO 2017164034A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
signal
vibration sensor
bearing
noise
Prior art date
Application number
PCT/JP2017/010398
Other languages
English (en)
French (fr)
Inventor
鈴木 洋介
高橋 亨
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to US16/087,508 priority Critical patent/US10975849B2/en
Priority to CN201780018774.9A priority patent/CN108885158B/zh
Publication of WO2017164034A1 publication Critical patent/WO2017164034A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • G01M13/045Acoustic or vibration analysis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/334Vibration measurements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/807Accelerometers

Definitions

  • the present invention relates to a state monitoring system that monitors the state of a wind turbine generator and a wind turbine generator including the same.
  • CMS Condition Monitoring System
  • Patent Document 1 describes an abnormality diagnosis device for diagnosing an abnormality of a bearing provided in a wind turbine generator for such a state monitoring system.
  • the vibration waveform of the bearing is measured using a vibration sensor.
  • the effective value of the measured vibration waveform is calculated, and the envelope waveform of the vibration waveform is generated by performing envelope processing on the measured vibration waveform, and the effective value of the vibration waveform and the AC component of the envelope waveform are A bearing abnormality is diagnosed based on the effective value.
  • this abnormality diagnosis apparatus accurate abnormality diagnosis can be realized (see Patent Document 1).
  • the wind turbine generator is provided with an inverter for converting the electric power generated by the generator, an electromagnetic contactor for switching between energization and interruption of the electric power, various hydraulic pumps, and the like. Electromagnetic noise) is superimposed on the output signal of the vibration sensor.
  • the wind power generator since the wind power generator is generally installed at a high place outdoors, it receives various radio waves that fluctuate every moment as noise. With vibration data including noise, it is difficult to accurately estimate or predict the state or damage of a monitored machine body.
  • the present invention has been made to solve such a problem, and an object thereof is to obtain vibration measurement data in which noise is sufficiently reduced in a state monitoring system for monitoring the state of a wind turbine generator.
  • the state monitoring system is a state monitoring system that monitors the state of the wind turbine generator, and includes first and second vibration sensors and a control device.
  • a 1st vibration sensor is installed in the machine body used as a vibration source in a wind power generator, and measures the vibration of a machine body.
  • the second vibration sensor is for measuring noise (background noise) received by the first vibration sensor, and is installed so as not to receive vibration of the mechanical body in the wind turbine generator.
  • the control device receives the first signal that is the measurement signal of the first vibration sensor and the second signal that is the measurement signal of the second vibration sensor, and subtracts the second signal from the first signal. It includes a first process of outputting the obtained third signal as data indicating the vibration of the machine body.
  • the control device when the magnitude of the second signal is equal to or greater than a first predetermined value indicating that the noise is excessive, the control device does not execute the first process and the magnitude of the second signal Is smaller than the first predetermined value, the first process is executed.
  • the control device outputs the first signal as data indicating the vibration of the mechanical body when the magnitude of the second signal is smaller than a second predetermined value indicating that the noise is minute.
  • a second process is further included. Then, when the magnitude of the second signal is greater than or equal to the second predetermined value, the control device executes the first process.
  • control device does not execute the first and second processes when the magnitude of the second signal is equal to or greater than a third predetermined value indicating that the noise is excessive.
  • the wind turbine generator includes any one of the state monitoring systems described above.
  • a second vibration sensor for measuring noise (background noise) received by the first vibration sensor for measuring the vibration of the machine body is provided.
  • the third signal obtained by subtracting the second signal, which is the measurement signal of the second vibration sensor, from the first signal, which is the measurement signal of the first vibration sensor causes the vibration of the mechanical body. Is output as data.
  • vibration measurement data not including noise (background noise) received by the first vibration sensor can be obtained. Therefore, according to the present invention, vibration measurement data in which noise is sufficiently reduced can be obtained in the state monitoring system that monitors the state of the wind turbine generator.
  • FIG. 1 is a diagram schematically showing a configuration of a wind turbine generator to which a state monitoring system according to Embodiment 1 of the present invention is applied.
  • the wind power generator 10 includes a main shaft 20, a blade 30, a speed increaser 40, a generator 50, a control panel 52, and a power transmission line 54.
  • the wind power generator 10 further includes a main shaft bearing (hereinafter simply referred to as a “bearing”) 60, a vibration detection unit 70, and a data processing device 80.
  • the speed increaser 40, the generator 50, the control panel 52, the bearing 60, the vibration detection unit 70, and the data processing device 80 are stored in the nacelle 90, and the nacelle 90 is supported by the tower 100.
  • the main shaft 20 enters the nacelle 90 and is connected to the input shaft of the speed increaser 40 and is rotatably supported by the bearing 60.
  • the main shaft 20 transmits the rotational torque generated by the blade 30 receiving the wind force to the input shaft of the speed increaser 40.
  • the blade 30 is provided at the tip of the main shaft 20 and converts wind force into rotational torque and transmits it to the main shaft 20.
  • the bearing 60 is fixed in the nacelle 90 and supports the main shaft 20 in a freely rotatable manner.
  • the bearing 60 is composed of a rolling bearing, and is composed of, for example, a self-aligning roller bearing, a tapered roller bearing, a cylindrical roller bearing, or a ball bearing. These bearings may be single row or double row.
  • the vibration detector 70 is installed on the bearing 60.
  • the vibration detector 70 detects the vibration of the bearing 60 by a vibration sensor fixed to the bearing 60, detects the background noise received by the vibration sensor, and detects the detected values of the vibration of the bearing 60 and the background noise.
  • the data is output to the data processing device 80. A specific configuration of the vibration detection unit 70 will be described in detail later.
  • the speed increaser 40 is provided between the main shaft 20 and the generator 50, and increases the rotational speed of the main shaft 20 to output to the generator 50.
  • the speed increaser 40 is configured by a gear speed increasing mechanism including a planetary gear, an intermediate shaft, a high speed shaft, and the like.
  • the generator 50 is connected to the output shaft of the speed increaser 40, and generates power by the rotational torque received from the speed increaser 40.
  • the generator 50 is constituted by, for example, an induction generator.
  • the control panel 52 includes an inverter and an electromagnetic contactor (both not shown).
  • the inverter converts the electric power generated by the generator 50 into a system voltage and frequency and outputs it to the power transmission line 54 connected to the system.
  • the magnetic contactor is connected between the inverter and the power transmission line 54, and switches between energization and interruption of power output from the inverter.
  • the inverter generates noise (electromagnetic noise) associated with the switching operation
  • the electromagnetic contactor generates noise (electromagnetic noise) when switching between energization / cutoff of power. That is, the inverter and the magnetic contactor are noise sources for the vibration sensor provided in the vibration detection unit 70.
  • the data processing device 80 includes a CPU (Central Processing Unit), a ROM (Read Only Memory) for storing processing programs, a RAM (Random Access Memory) for temporarily storing data, and an input / output for inputting / outputting various signals. Ports and the like (none of them are shown).
  • the data processing device 80 receives each detection value of the vibration of the bearing 60 and the background noise from the vibration detection unit 70, and executes data processing by a method described later in accordance with a program stored in the ROM. Note that the processing executed by the data processing device 80 is not limited to processing by software, and processing by dedicated hardware (electronic circuit) is also possible.
  • the vibration of the bearing 60 is detected by the vibration detector 70, and the data processor 80 executes a process for removing noise. Then, vibration measurement data from which noise has been removed is transmitted to an external server (not shown), and vibration analysis is performed in the server.
  • an inverter and an electromagnetic contactor included in the control panel 52 various hydraulic pumps (not shown) (for example, a hydraulic pump for braking the main shaft 20, a hydraulic pump for changing the pitch angle of the blade 30), etc. It becomes a noise source (electromagnetic noise source) for the vibration detection unit 70, and noise generated from these devices is superimposed on the output signal of the vibration detection unit 70.
  • the wind power generator 10 since the wind power generator 10 is installed in the high place of the outdoors, it receives various radio waves etc. which fluctuate every moment as noise. When the vibration measurement data includes such noise, it is difficult to accurately estimate or predict the state or damage of the monitored bearing 60.
  • a signal in a specific frequency band including a noise component can be attenuated by providing various filters (high-pass filter, low-pass filter, band-pass filter) with respect to the output signal of the vibration sensor in hardware or software. It is done.
  • filters high-pass filter, low-pass filter, band-pass filter
  • the vibration detector 70 measures the background noise received by the first vibration sensor together with the vibration sensor (first vibration sensor) that measures the vibration of the bearing 60.
  • a vibration sensor (second vibration sensor) is provided.
  • the third signal obtained by subtracting the second signal that is the measurement signal of the second vibration sensor from the first signal that is the measurement signal of the first vibration sensor is data indicating the vibration of the bearing 60. Output as (vibration measurement data). Thereby, vibration measurement data not including the background noise received by the first vibration sensor can be obtained.
  • FIG. 2 is a diagram illustrating a configuration of the vibration detection unit 70.
  • vibration detection unit 70 includes a first vibration sensor 110, a second vibration sensor 120, a metal base 114, and fixing members 130 and 132.
  • the first vibration sensor 110 is installed on the bearing 60 via the metal base 114.
  • the first vibration sensor 110 detects the vibration of the bearing 60 through the metal base 114 and outputs the detected value to the data processing device 80 through the signal line 112.
  • the first vibration sensor 110 is constituted by, for example, an acceleration sensor using a piezoelectric element.
  • the metal base 114 is for securing the installation surface of the first vibration sensor 110. When the first vibration sensor 110 can be installed in close contact with the surface of the bearing 60, the metal base 114 is omitted. Is possible.
  • the second vibration sensor 120 is a sensor for measuring background noise received by the first vibration sensor 110.
  • the second vibration sensor 120 is provided separately from the bearing 60 so as not to receive the vibration of the bearing 60.
  • the second vibration sensor 120 is the same as the first vibration sensor 110, and the first vibration sensor is used. It is preferable to arrange in the vicinity of 110.
  • the second vibration sensor 120 is fixed to the first vibration sensor 110 using fixing members 130 and 132 such as an insulation lock. Then, the second vibration sensor 120 outputs a detection signal to the data processing device 80 through the signal line 122.
  • FIG. 3 is a functional block diagram functionally showing the configuration of the data processing device 80.
  • data processing device 80 includes filter units 210 and 220, data processing unit 230, and transmission unit 240.
  • the filter unit 210 receives the detection signal of the first vibration sensor 110, passes the component of a predetermined specific frequency band, and attenuates the other frequency band component of the received detection signal.
  • the filter unit 220 receives the detection signal of the second vibration sensor 120, passes the component of a predetermined specific frequency band, and attenuates the component of the other frequency band with respect to the received detection signal.
  • the filter units 210 and 220 are configured to include a high-pass filter that passes a signal component higher than a predetermined frequency and blocks a low-frequency component.
  • the filter parts 210 and 220 are not an essential element in this invention.
  • the data processing unit 230 receives the output signal of the filter unit 210 (hereinafter referred to as “measurement signal A”) and the output signal of the filter unit 220 (hereinafter referred to as “measurement signal B”). That is, the measurement signal A is a measurement signal of the first vibration sensor 110 that detects vibration of the bearing 60, and the measurement signal B is a measurement signal of the second vibration sensor 120 that measures background noise. Then, the data processing unit 230 calculates vibration measurement data C for performing vibration analysis of the bearing 60 by subtracting the measurement signal B from the measurement signal A, and transmits the calculated vibration measurement data C to the transmission unit 240. Output.
  • the transmission unit 240 wirelessly transmits the vibration measurement data C received from the data processing unit 230 to a state analysis server (not shown) provided on the ground. Thereby, the vibration analysis of the bearing 60 can be performed based on the vibration measurement data C in the server. Although not specifically shown, the vibration analysis of the bearing 60 based on the vibration measurement data C may be performed in the data processing device 80.
  • FIG. 4 is a flowchart for explaining a procedure of processing executed by the data processing device 80. The process shown in this flowchart is called from the main routine and executed every predetermined time or when a predetermined condition is satisfied.
  • the data processing device 80 acquires the measurement signal A of the first vibration sensor 110 and the measurement signal B of the second vibration sensor 120 (step S10).
  • the data processing device 80 calculates vibration measurement data C by subtracting the measurement signal B of the second vibration sensor 120 from the measurement signal A of the first vibration sensor 110 (step S20).
  • vibration measurement data C that does not include background noise received by the first vibration sensor 110 that measures the vibration of the bearing 60 is obtained.
  • the data processing device 80 transmits the calculated vibration measurement data C to an external server (vibration analysis server) (step S30).
  • the second vibration sensor 120 for measuring the background noise received by the first vibration sensor 110 for measuring the vibration of the bearing 60 is provided.
  • a signal obtained by subtracting the measurement signal B of the second vibration sensor 120 from the measurement signal A of the first vibration sensor 110 is output as vibration measurement data C indicating the vibration of the bearing 60.
  • the overall configuration of the wind turbine generator 10 according to the second embodiment is the same as that of the first embodiment shown in FIG.
  • FIG. 5 is a flowchart for explaining a procedure of processing executed by the data processing device 80 according to the second embodiment. The process shown in this flowchart is also called and executed from the main routine at predetermined time intervals or when a predetermined condition is satisfied.
  • the data processing device 80 acquires the measurement signal A of the first vibration sensor 110 and the measurement signal B of the second vibration sensor 120 (step S110). Next, the data processing device 80 determines whether or not the measurement signal B is greater than or equal to a predetermined threshold value Sth1 (step S120).
  • This threshold value Sth1 is a value for determining whether or not the background noise is excessive, and is appropriately set by collecting and evaluating data in advance with an actual machine.
  • step S120 If it is determined in step S120 that the measurement signal B is smaller than the threshold value Sth1 (NO in step S120), the data processing device 80 shifts the processing to step S130.
  • Steps S130 and S140 are the same as steps S20 and S30 in the flowchart shown in FIG.
  • step S120 determines whether the measurement signal B is equal to or greater than the threshold value Sth1 (YES in step S120). If it is determined in step S120 that the measurement signal B is equal to or greater than the threshold value Sth1 (YES in step S120), the data processing device 80 performs a return process without executing the processes in steps S130 and S140. To migrate. That is, in this case, it is determined that the background noise is excessive, and the vibration measurement data C is not calculated and transmitted to the server.
  • the second vibration sensor 120 when the background noise detected by the second vibration sensor 120 is excessive, the calculation of the vibration measurement data C and the transmission to the server are not performed. It is possible to perform highly accurate vibration analysis using data with a small influence of.
  • the measurement signal A from the first vibration sensor 110 is used as it is as vibration measurement data C indicating the vibration of the bearing 60. It is done.
  • the overall configuration of the wind turbine generator 10 according to the third embodiment is also the same as that of the first embodiment shown in FIG.
  • FIG. 6 is a flowchart for explaining a procedure of processing executed by the data processing device 80 according to the third embodiment. The process shown in this flowchart is also called and executed from the main routine at predetermined time intervals or when a predetermined condition is satisfied.
  • the data processing device 80 acquires the measurement signal A of the first vibration sensor 110 and the measurement signal B of the second vibration sensor 120 (step S210). Next, the data processing device 80 determines whether or not the measurement signal B is equal to or greater than a predetermined threshold value Sth2 (Sth2 ⁇ Sth1) (step S220).
  • the threshold value Sth2 is a value for determining whether or not the background noise is small enough to be ignored, and is appropriately set by collecting and evaluating data in advance with an actual machine.
  • step S220 If measurement signal B is greater than or equal to threshold value Sth2 (YES in step S220), data processing device 80 shifts the process to step S230. Note that step S230 and subsequent step S250 are the same as steps S20 and S30 in the flowchart shown in FIG. 4, and thus description thereof will not be repeated.
  • step S220 when it is determined in step S220 that measurement signal B is smaller than threshold value Sth2 (NO in step S220), data processing device 80 uses measurement signal A of first vibration sensor 110 as vibration measurement data C. (Step S240). That is, when the background noise detected by the second vibration sensor 120 is very small, the measurement signal A from the first vibration sensor 110 is used as the vibration measurement data C as it is.
  • the process of subtracting the measurement signal B of the second vibration sensor 120 from the measurement signal A of the first vibration sensor 110 is executed. Therefore, it is possible to prevent the above processing from being performed unnecessarily.
  • the fourth embodiment corresponds to a combination of the second and third embodiments. That is, in the fourth embodiment, when the background noise detected by the second vibration sensor 120 is excessive, calculation of the vibration measurement data C and transmission to the server are not performed. When the background noise is very small, the measurement signal A from the first vibration sensor 110 is used as it is as the vibration measurement data C. When the background noise is neither small nor excessive, the measurement signal A is measured from the measurement signal A. A signal obtained by subtracting B is calculated as vibration measurement data C.
  • the overall configuration of the wind turbine generator 10 according to the fourth embodiment is also the same as that of the first embodiment shown in FIG.
  • FIG. 7 is a flowchart for explaining a procedure of processing executed by the data processing device 80 according to the fourth embodiment. The process shown in this flowchart is also called and executed from the main routine at predetermined time intervals or when a predetermined condition is satisfied.
  • steps S310 and S330 to S360 are the same processes as steps S210 to S250 shown in FIG.
  • the data processing apparatus 80 determines that the measurement signal B is a predetermined threshold. It is determined whether or not the value is greater than or equal to value Sth1 (step S320).
  • step S320 If it is determined in step S320 that measurement signal B is equal to or greater than threshold value Sth1 (YES in step S320), data processing device 80 shifts the process to return without executing a series of subsequent processes. . That is, in this case, it is determined that the background noise is excessive, and the vibration measurement data C is not calculated and transmitted to the server.
  • step S320 when it is determined in step S320 that the measurement signal B is smaller than the threshold value Sth1 (NO in step S320), the data processing device 80 shifts the processing to step S330.
  • step S330 and subsequent steps are the same as step S220 and subsequent steps shown in FIG. 6, and therefore description thereof will not be repeated.
  • the second vibration sensor 120 is provided separately from the bearing 60 so as not to receive the vibration of the bearing 60 from the bearing 60, and the second vibration sensor 120 uses the fixing members 130 and 132 such as an insulation lock. 1 It was supposed to be fixed to the vibration sensor 110 (FIG. 2).
  • the installation method of the second vibration sensor 120 is not limited to this.
  • the second vibration sensor 120 may be installed on the bearing 60 to be measured via a member that absorbs vibration of the bearing 60.
  • FIG. 8 is a diagram showing a configuration of the vibration detection unit 70 # in this modification.
  • second vibration sensor 120 for measuring background noise received by first vibration sensor 110 is installed on bearing 60 via vibration absorber 140.
  • the vibration absorbing material 140 is a member for absorbing the vibration of the bearing 60 and is made of a member such as rubber or elastomer.
  • the vibration detection unit 70 measures the vibration of the bearing 60.
  • the mechanical body to be measured for vibration is not limited to the bearing 60.
  • the speed machine 40 or the generator 50 may be used, or a bearing different from the bearing 60 may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Acoustics & Sound (AREA)
  • Wind Motors (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

第1振動センサ(110)は、軸受(60)の振動を測定する。第2振動センサ(120)は、第1振動センサ(110)が受けるバックグラウンドノイズを測定するためのものであり、軸受(60)の振動を受けないように設置される。データ収集装置(80)は、第1振動センサ(110)の測定信号である第1の信号及び第2振動センサ(120)の測定信号である第2の信号を受け、第1の信号から第2の信号を差引くことによって得られる第3の信号を軸受(60)の振動を示すデータとして出力する。

Description

状態監視システム及びそれを備える風力発電装置
 この発明は、風力発電装置の状態を監視する状態監視システム、及びそれを備える風力発電装置に関する。
 風力発電装置において、主軸の軸受や増速機等の機械体の振動を振動センサによって測定し、当該機械体の状態を監視する状態監視システム(CMS:Condition Monitoring System)が知られている。
 たとえば、特開2011-154020号公報(特許文献1)には、そのような状態監視システムについて、風力発電装置に設けられる軸受の異常を診断する異常診断装置が記載されている。この異常診断装置では、振動センサを用いて軸受の振動波形が測定される。そして、測定された振動波形の実効値が算出されるとともに、測定された振動波形にエンベロープ処理を行なうことによって振動波形のエンベロープ波形が生成され、振動波形の実効値と、エンベロープ波形の交流成分の実効値とに基づいて軸受の異常が診断される。この異常診断装置によれば、正確な異常診断を実現することができる(特許文献1参照)。
特開2011-154020号公報
 風力発電装置には、発電機によって発電された電力を変換するためのインバータや、電力の通電及び遮断を切替える電磁接触器、各種油圧ポンプ等が設けられており、これらの機器から生じるノイズ(主に電磁ノイズ)が振動センサの出力信号に重畳する。また、風力発電装置は、一般的に屋外の高所に設置されるので、時々刻々と変動する種々の電波等もノイズとして受ける。ノイズを含む振動データでは、監視対象の機械体の状態や損傷等を正確に推定したり予知したりすることは難しい。
 従来より、振動センサの出力信号に対して各種フィルタ(ハイパスフィルタ、ローパスフィルタ、バンドパスフィルタ等)をハード的又はソフト的に設けることによって、ノイズ成分を含む特定の周波数帯域の信号を減衰させることが行なわれている。しかしながら、屋外の高所に設置される風力発電装置においては、受け得るノイズも様々であり、特定の周波数帯域の信号を減衰させるフィルタだけでは、ノイズを十分に除去することは難しい。
 この発明は、かかる問題を解決するためになされたものであり、その目的は、風力発電装置の状態を監視する状態監視システムにおいて、ノイズが十分に低減された振動測定データを得ることである。
 この発明によれば、状態監視システムは、風力発電装置の状態を監視する状態監視システムであって、第1及び第2の振動センサと、制御装置とを備える。第1の振動センサは、風力発電装置において振動源となる機械体に設置され、機械体の振動を測定する。第2の振動センサは、第1の振動センサが受けるノイズ(バックグラウンドノイズ)を測定するためのものであり、風力発電装置において機械体の振動を受けないように設置される。制御装置は、第1の振動センサの測定信号である第1の信号及び第2の振動センサの測定信号である第2の信号を受け、第1の信号から第2の信号を差引くことによって得られる第3の信号を機械体の振動を示すデータとして出力する第1の処理を含む。
 好ましくは、制御装置は、第2の信号の大きさが、ノイズが過大であることを示す第1の所定値以上である場合に、第1の処理を非実行とし、第2の信号の大きさが第1の所定値よりも小さい場合に、第1の処理を実行する。
 好ましくは、制御装置は、第2の信号の大きさが、ノイズが微小であることを示す第2の所定値よりも小さい場合に、第1の信号を機械体の振動を示すデータとして出力する第2の処理をさらに含む。そして、制御装置は、第2の信号の大きさが第2の所定値以上の場合には、第1の処理を実行する。
 さらに好ましくは、制御装置は、第2の信号の大きさが、ノイズが過大であることを示す第3の所定値以上である場合に、第1及び第2の処理を非実行とする。
 また、この発明によれば、風力発電装置は、上述したいずれかの状態監視システムを備える。
 この発明においては、機械体の振動を測定する第1の振動センサが受けるノイズ(バックグラウンドノイズ)を測定するための第2の振動センサが設けられる。そして、第1の振動センサの測定信号である第1の信号から、第2の振動センサの測定信号である第2の信号を差引くことによって得られる第3の信号が、機械体の振動を示すデータとして出力される。これにより、第1の振動センサが受けるノイズ(バックグラウンドノイズ)を含まない振動測定データを得ることができる。したがって、この発明によれば、風力発電装置の状態を監視する状態監視システムにおいて、ノイズが十分に低減された振動測定データを得ることができる。
この発明の実施の形態1に従う状態監視システムが適用される風力発電装置の構成を概略的に示した図である。 振動検出部の構成を示した図である。 データ処理装置の構成を機能的に示す機能ブロック図である。 データ処理装置により実行される処理の手順を説明するフローチャートである。 実施の形態2におけるデータ処理装置により実行される処理の手順を説明するフローチャートである。 実施の形態3におけるデータ処理装置により実行される処理の手順を説明するフローチャートである。 実施の形態4におけるデータ処理装置により実行される処理の手順を説明するフローチャートである。 変形例における振動検出部の構成を示した図である。
 以下、図面を参照しつつ、本発明の実施の形態について説明する。なお、以下の説明では、同一又は対応する要素には同一の符号を付して、それらについての詳細な説明は繰り返さない。
 [実施の形態1]
 図1は、この発明の実施の形態1に従う状態監視システムが適用される風力発電装置の構成を概略的に示した図である。図1を参照して、風力発電装置10は、主軸20と、ブレード30と、増速機40と、発電機50と、制御盤52と、送電線54とを備える。また、風力発電装置10は、主軸用軸受(以下、単に「軸受」と称する。)60と、振動検出部70と、データ処理装置80とをさらに備える。増速機40、発電機50、制御盤52、軸受60、振動検出部70及びデータ処理装置80は、ナセル90に格納され、ナセル90は、タワー100によって支持される。
 主軸20は、ナセル90内に進入して増速機40の入力軸に接続され、軸受60によって回転自在に支持される。そして、主軸20は、風力を受けたブレード30により発生する回転トルクを増速機40の入力軸へ伝達する。ブレード30は、主軸20の先端に設けられ、風力を回転トルクに変換して主軸20に伝達する。
 軸受60は、ナセル90内において固設され、主軸20を回転自在に支持する。軸受60は、転がり軸受によって構成され、たとえば、自動調芯ころ軸受や円すいころ軸受、円筒ころ軸受、玉軸受等によって構成される。なお、これらの軸受は、単列のものでも複列のものでもよい。
 振動検出部70は、軸受60に設置される。振動検出部70は、軸受60に固設される振動センサによって軸受60の振動を検出するとともに、その振動センサが受けるバックグラウンドノイズを検出し、軸受60の振動及びバックグラウンドノイズの各検出値をデータ処理装置80へ出力する。振動検出部70の具体的な構成については、後ほど詳しく説明する。
 増速機40は、主軸20と発電機50との間に設けられ、主軸20の回転速度を増速して発電機50へ出力する。一例として、増速機40は、遊星ギヤや中間軸、高速軸等を含む歯車増速機構によって構成される。発電機50は、増速機40の出力軸に接続され、増速機40から受ける回転トルクによって発電する。発電機50は、たとえば、誘導発電機によって構成される。
 制御盤52は、インバータ及び電磁接触器を含んで構成される(いずれも図示せず)。インバータは、発電機50による発電電力を系統の電圧及び周波数に変換し、系統に接続される送電線54へ出力する。電磁接触器は、インバータと送電線54との間に接続され、インバータから出力される電力の通電及び遮断を切替える。インバータは、スイッチング操作に伴ないノイズ(電磁ノイズ)を発生し、電磁接触器は、電力の通電/遮断の切替時にノイズ(電磁ノイズ)を発生する。すなわち、このインバータ及び電磁接触器は、振動検出部70に設けられる振動センサに対してノイズ源となるものである。
 データ処理装置80は、CPU(Central Processing Unit)、処理プログラム等を記憶するROM(Read Only Memory)、データを一時的に記憶するRAM(Random Access Memory)、各種信号を入出力するための入出力ポート等を含む(いずれも図示せず)。データ処理装置80は、軸受60の振動及びバックグラウンドノイズの各検出値を振動検出部70から受け、ROMに記憶されたプログラムに従って、後述の方法によるデータ処理を実行する。なお、データ処理装置80により実行される処理については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
 この風力発電装置10においては、振動検出部70において軸受60の振動が検出され、データ処理装置80においてノイズを除去するための処理が実行される。そして、ノイズが除去された振動測定データが外部のサーバ(図示せず)へ送信され、サーバにおいて振動解析が行なわれる。
 ここで、制御盤52に含まれるインバータ及び電磁接触器や、図示しない種々の油圧ポンプ(たとえば、主軸20のブレーキ用の油圧ポンプや、ブレード30のピッチ角変更用の油圧ポンプ等)等は、振動検出部70に対してノイズ源(電磁ノイズ源)となり、これらの機器から生じるノイズが振動検出部70の出力信号に重畳する。また、風力発電装置10は、屋外の高所に設置されるので、時々刻々と変動する種々の電波等もノイズとして受ける。振動測定データがこのようなノイズを含む場合、監視対象の軸受60の状態や損傷等を正確に推定したり予知したりすることは難しい。
 従来より、振動センサの出力信号に対して各種フィルタ(ハイパスフィルタ、ローパスフィルタ、バンドパスフィルタ)をハード的又はソフト的に設けることによって、ノイズ成分を含む特定の周波数帯域の信号を減衰させることが行なわれている。しかしながら、屋外の高所に設置される風力発電装置10においては、受け得るノイズも様々であり、特定の周波数帯域の信号を減衰させるフィルタだけでは、ノイズを十分に除去することは難しい。
 そこで、この実施の形態1に従う状態監視システムでは、振動検出部70において、軸受60の振動を測定する振動センサ(第1振動センサ)とともに、第1振動センサが受けるバックグラウンドノイズを測定するための振動センサ(第2振動センサ)が設けられる。そして、第1振動センサの測定信号である第1の信号から、第2振動センサの測定信号である第2の信号を差引くことによって得られる第3の信号が、軸受60の振動を示すデータ(振動測定データ)として出力される。これにより、第1振動センサが受けるバックグラウンドノイズを含まない振動測定データを得ることができる。
 図2は、振動検出部70の構成を示した図である。図2を参照して、振動検出部70は、第1振動センサ110と、第2振動センサ120と、金属ベース114と、固定部材130,132とを含む。
 第1振動センサ110は、金属ベース114を介して軸受60に設置される。そして、第1振動センサ110は、金属ベース114を介して軸受60の振動を検出し、その検出値を信号線112を通じてデータ処理装置80へ出力する。第1振動センサ110は、たとえば、圧電素子を用いた加速度センサによって構成される。なお、金属ベース114は、第1振動センサ110の設置面を確保するためのものであり、第1振動センサ110を軸受60の表面にしっかりと密着させて設置できるときは、金属ベース114は省略可能である。
 第2振動センサ120は、第1振動センサ110が受けるバックグラウンドノイズを測定するためのセンサである。第2振動センサ120は、軸受60の振動を受けないように軸受60から離隔して設けられる。第1振動センサ110が受けるバックグラウンドノイズを第2振動センサ120によってできるだけ精度よく検出するために、第2振動センサ120は、第1振動センサ110と同じものを採用し、かつ、第1振動センサ110の近傍に配置するのが好ましい。この実施の形態1では、第2振動センサ120は、インシュロック等の固定部材130,132を用いて第1振動センサ110に固定される。そして、第2振動センサ120は、信号線122を通じて検出信号をデータ処理装置80へ出力する。
 図3は、データ処理装置80の構成を機能的に示す機能ブロック図である。図3を参照して、データ処理装置80は、フィルタ部210,220と、データ処理部230と、送信部240とを含む。
 フィルタ部210は、第1振動センサ110の検出信号を受け、その受けた検出信号について、予め定められた特定の周波数帯域の成分を通過させ、その他の周波数帯域の成分を減衰させる。フィルタ部220は、第2振動センサ120の検出信号を受け、その受けた検出信号について、予め定められた特定の周波数帯域の成分を通過させ、その他の周波数帯域の成分を減衰させる。一例として、フィルタ部210,220は、予め定められた周波数よりも高い信号成分を通過させ、低周波成分を遮断するハイパスフィルタを含んで構成される。なお、ノイズ低減効果を有するフィルタ部210,220を設けることは好ましいが、フィルタ部210,220は、この発明においては必須の要素ではない。
 データ処理部230は、フィルタ部210の出力信号(以下「測定信号A」と称する。)及びフィルタ部220の出力信号(以下「測定信号B」と称する。)を受ける。すなわち、測定信号Aは、軸受60の振動を検出する第1振動センサ110の測定信号であり、測定信号Bは、バックグラウンドノイズを測定する第2振動センサ120の測定信号である。そして、データ処理部230は、測定信号Aから測定信号Bを差引くことによって、軸受60の振動解析を行なうための振動測定データCを算出し、算出された振動測定データCを送信部240へ出力する。
 送信部240は、データ処理部230から受ける振動測定データCを、地上に設けられる状態解析用のサーバ(図示せず)へ無線により送信する。これにより、サーバにおいて、振動測定データCに基づいて軸受60の振動解析を行なうことができる。なお、特に図示しないが、振動測定データCに基づく軸受60の振動解析は、このデータ処理装置80において行なってもよい。
 図4は、データ処理装置80により実行される処理の手順を説明するフローチャートである。なお、このフローチャートに示される処理は、所定時間毎又は所定条件の成立時にメインルーチンから呼び出されて実行される。
 図4を参照して、データ処理装置80は、第1振動センサ110の測定信号A、及び第2振動センサ120の測定信号Bを取得する(ステップS10)。次いで、データ処理装置80は、第1振動センサ110の測定信号Aから第2振動センサ120の測定信号Bを差引くことによって振動測定データCを算出する(ステップS20)。これにより、軸受60の振動を測定する第1振動センサ110が受けるバックグラウンドノイズを含まない振動測定データCが得られる。そして、データ処理装置80は、算出された振動測定データCを外部のサーバ(振動解析用サーバ)へ送信する(ステップS30)。
 以上のように、この実施の形態1においては、軸受60の振動を測定する第1振動センサ110が受けるバックグラウンドノイズを測定するための第2振動センサ120が設けられる。そして、第1振動センサ110の測定信号Aから、第2振動センサ120の測定信号Bを差引くことによって得られる信号が、軸受60の振動を示す振動測定データCとして出力される。これにより、第1振動センサ110が受けるバックグラウンドノイズを含まない振動測定データを得ることができる。したがって、この実施の形態1によれば、ノイズが十分に低減された振動測定データを得ることができる。
 [実施の形態2]
 実施の形態1では、理論的には、第1振動センサ110が受けるバックグラウンドノイズを含まない振動測定データを得ることができるが、実際には、第1振動センサ110と第2振動センサ120との性能誤差や設置状況等により完全にノイズを除去することは難しい。この実施の形態2では、第2振動センサ120によって検出されるバックグラウンドノイズが過大である場合には、振動測定データCの算出及びサーバへの送信が非実施とされる。
 この実施の形態2における風力発電装置10の全体構成は、図1に示した実施の形態1と同じである。
 図5は、実施の形態2におけるデータ処理装置80により実行される処理の手順を説明するフローチャートである。なお、このフローチャートに示される処理も、所定時間毎又は所定条件の成立時にメインルーチンから呼び出されて実行される。
 図5を参照して、データ処理装置80は、第1振動センサ110の測定信号A、及び第2振動センサ120の測定信号Bを取得する(ステップS110)。次いで、データ処理装置80は、測定信号Bが所定のしきい値Sth1以上であるか否かを判定する(ステップS120)。このしきい値Sth1は、バックグラウンドノイズが過大であるか否かを判定するための値であり、実機でデータを事前に収集し評価する等して適宜設定される。
 ステップS120において測定信号Bがしきい値Sth1よりも小さいと判定されると(ステップS120においてNO)、データ処理装置80は、ステップS130へ処理を移行する。なお、ステップS130,S140は、図4に示したフローチャートのステップS20,S30と同じであるので、説明を繰り返さない。
 一方、ステップS120において測定信号Bがしきい値Sth1以上であると判定されると(ステップS120においてYES)、データ処理装置80は、ステップS130,S140の処理を実行することなく、リターンへと処理を移行する。すなわち、この場合は、バックグラウンドノイズが過大であると判断され、振動測定データCの算出及びサーバへの送信は実施されない。
 以上のように、この実施の形態2によれば、第2振動センサ120によって検出されるバックグラウンドノイズが過大である場合は、振動測定データCの算出及びサーバへの送信を実施しないので、ノイズの影響が小さいデータを用いて高精度の振動解析を行なうことができる。
 [実施の形態3]
 実施の形態3では、第2振動センサ120によって検出されるバックグラウンドノイズが微小である場合には、第1振動センサ110による測定信号Aが、軸受60の振動を示す振動測定データCとしてそのまま用いられる。
 この実施の形態3における風力発電装置10の全体構成も、図1に示した実施の形態1と同じである。
 図6は、実施の形態3におけるデータ処理装置80により実行される処理の手順を説明するフローチャートである。なお、このフローチャートに示される処理も、所定時間毎又は所定条件の成立時にメインルーチンから呼び出されて実行される。
 図6を参照して、データ処理装置80は、第1振動センサ110の測定信号A、及び第2振動センサ120の測定信号Bを取得する(ステップS210)。次いで、データ処理装置80は、測定信号Bが所定のしきい値Sth2(Sth2<Sth1)以上であるか否かを判定する(ステップS220)。このしきい値Sth2は、バックグラウンドノイズが無視できる程度に小さいか否かを判定するための値であり、実機でデータを事前に収集し評価する等して適宜設定される。
 測定信号Bがしきい値Sth2以上である場合は(ステップS220においてYES)、データ処理装置80は、ステップS230へ処理を移行する。なお、ステップS230及びその後のステップS250は、図4に示したフローチャートのステップS20,S30とそれぞれ同じであるので、説明を繰り返さない。
 一方、ステップS220において測定信号Bがしきい値Sth2よりも小さいと判定されると(ステップS220においてNO)、データ処理装置80は、第1振動センサ110の測定信号Aを振動測定データCとする(ステップS240)。すなわち、第2振動センサ120によって検出されるバックグラウンドノイズが微小である場合には、第1振動センサ110による測定信号Aが振動測定データCとしてそのまま用いられる。
 以上のように、この実施の形態3によれば、バックグラウンドノイズが微小である場合には、第1振動センサ110の測定信号Aから第2振動センサ120の測定信号Bを差引く処理は実行されないので、不必要に上記の処理が実行されるのを防止することができる。
 [実施の形態4]
 この実施の形態4は、上記の実施の形態2,3を組合わせたものに相当する。すなわち、この実施の形態4では、第2振動センサ120によって検出されるバックグラウンドノイズが過大である場合には、振動測定データCの算出及びサーバへの送信が非実施とされる。そして、バックグラウンドノイズが微小である場合には、第1振動センサ110による測定信号Aが振動測定データCとしてそのまま用いられ、バックグラウンドノイズが微小でも過大でもない場合に、測定信号Aから測定信号Bを差引くことによって得られる信号が振動測定データCとして算出される。
 この実施の形態4における風力発電装置10の全体構成も、図1に示した実施の形態1と同じである。
 図7は、実施の形態4におけるデータ処理装置80により実行される処理の手順を説明するフローチャートである。なお、このフローチャートに示される処理も、所定時間毎又は所定条件の成立時にメインルーチンから呼び出されて実行される。
 図7を参照して、ステップS310,S330~S360は、それぞれ図6に示したステップS210~S250と同じ処理である。そして、このフローチャートでは、ステップS310において、第1振動センサ110の測定信号A、及び第2振動センサ120の測定信号Bが取得されると、データ処理装置80は、測定信号Bが所定のしきい値Sth1以上であるか否かを判定する(ステップS320)。
 ステップS320において測定信号Bがしきい値Sth1以上であると判定されると(ステップS320においてYES)、データ処理装置80は、以降の一連の処理を実行することなく、リターンへと処理を移行する。すなわち、この場合は、バックグラウンドノイズが過大であると判断され、振動測定データCの算出及びサーバへの送信は実施されない。
 一方、ステップS320において測定信号Bはしきい値Sth1よりも小さいと判定されると(ステップS320においてNO)、データ処理装置80は、ステップS330へ処理を移行する。上述のように、ステップS330以降は、図6に示したステップS220以降と同じであるので、説明を繰り返さない。
 以上のように、この実施の形態4によれば、実施の形態2及び実施の形態3と同様の効果が得られる。
 [変形例]
 上記の各実施の形態においては、第2振動センサ120は、軸受60の振動を軸受60から受けないように、軸受60から離隔して設けられ、インシュロック等の固定部材130,132を用いて第1振動センサ110に固定されるものとした(図2)。しかしながら、第2振動センサ120の設置方法は、このようなものに限定されるものではない。たとえば、軸受60の振動を吸収する部材を介して測定対象の軸受60に第2振動センサ120を設置してもよい。
 図8は、この変形例における振動検出部70#の構成を示した図である。図8を参照して、振動検出部70#では、第1振動センサ110が受けるバックグラウンドノイズを測定するための第2振動センサ120は、振動吸収材140を介して軸受60に設置される。振動吸収材140は、軸受60の振動を吸収するための部材であり、たとえば、ゴムやエラストマー等の部材によって構成される。
 なお、上記の各実施の形態及び変形例では、振動検出部70において軸受60の振動を測定するものとしたが、振動の測定対象の機械体は、軸受60に限定されるものではなく、増速機40や発電機50であってもよいし、軸受60とは別の軸受であってもよい。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 10 風力発電装置、20 主軸、30 ブレード、40 増速機、50 発電機、52 制御盤、54 送電線、60 軸受、70,70# 振動検出部、80 データ処理装置、90 ナセル、100 タワー、110 第1振動センサ、112,122 信号線、120 第2振動センサ、114 金属ベース、130,132 固定部材、140 振動吸収材、210,220 フィルタ部、230 データ処理部、240 送信部。

Claims (5)

  1.  風力発電装置の状態を監視する状態監視システムであって、
     前記風力発電装置において振動源となる機械体に設置され、前記機械体の振動を測定するための第1の振動センサと、
     前記風力発電装置において前記機械体の振動を受けないように設置され、前記第1の振動センサが受けるノイズを測定するための第2の振動センサと、
     前記第1の振動センサの測定信号である第1の信号及び前記第2の振動センサの測定信号である第2の信号を受け、前記第1の信号から前記第2の信号を差引くことによって得られる第3の信号を前記機械体の振動を示すデータとして出力する第1の処理を含む制御装置とを備える状態監視システム。
  2.  前記制御装置は、
     前記第2の信号の大きさが、前記ノイズが過大であることを示す第1の所定値以上である場合に、前記第1の処理を非実行とし、
     前記第2の信号の大きさが前記第1の所定値よりも小さい場合に、前記第1の処理を実行する、請求項1に記載の状態監視システム。
  3.  前記制御装置は、前記第2の信号の大きさが、前記ノイズが微小であることを示す第2の所定値よりも小さい場合に、前記第1の信号を前記データとして出力する第2の処理をさらに含み、
     前記制御装置は、前記第2の信号の大きさが前記第2の所定値以上の場合に、前記第1の処理を実行する、請求項1に記載の状態監視システム。
  4.  前記制御装置は、前記第2の信号の大きさが、前記ノイズが過大であることを示す第3の所定値以上である場合に、前記第1及び第2の処理を非実行とする、請求項3に記載の状態監視システム。
  5.  請求項1から請求項4のいずれか1項に記載の状態監視システムを備える風力発電装置。
PCT/JP2017/010398 2016-03-23 2017-03-15 状態監視システム及びそれを備える風力発電装置 WO2017164034A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/087,508 US10975849B2 (en) 2016-03-23 2017-03-15 Condition monitoring system and wind turbine including the same
CN201780018774.9A CN108885158B (zh) 2016-03-23 2017-03-15 状态监视系统和包括该系统的风力发电装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-058148 2016-03-23
JP2016058148A JP2017173076A (ja) 2016-03-23 2016-03-23 状態監視システム及びそれを備える風力発電装置

Publications (1)

Publication Number Publication Date
WO2017164034A1 true WO2017164034A1 (ja) 2017-09-28

Family

ID=59900354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010398 WO2017164034A1 (ja) 2016-03-23 2017-03-15 状態監視システム及びそれを備える風力発電装置

Country Status (4)

Country Link
US (1) US10975849B2 (ja)
JP (1) JP2017173076A (ja)
CN (1) CN108885158B (ja)
WO (1) WO2017164034A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3489641B1 (en) * 2017-11-27 2024-04-17 Goodrich Actuation Systems Limited Improved system for detecting a mechanical fault in a rotating shaft

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3951167B1 (en) * 2019-03-28 2024-01-31 NTN Corporation Condition monitoring system
CN110067709A (zh) * 2019-05-23 2019-07-30 赛诺微滤科技(深圳)有限公司 一种风机多功能在线监测系统
JP7464105B2 (ja) 2020-02-19 2024-04-09 日本電気株式会社 異常推定装置、異常推定方法、及びプログラム
CN114320767A (zh) * 2020-09-29 2022-04-12 新疆金风科技股份有限公司 变桨系统制动装置的故障预警方法、装置、控制器和介质
US20220176509A1 (en) * 2020-12-08 2022-06-09 National Formosa University Method for inspecting normality of a spindle of a machine tool
US11747362B2 (en) * 2020-12-21 2023-09-05 Tdk Corporation Method and system for determining vibrations generated by a device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437178U (ja) * 1977-08-19 1979-03-10
JPH0573578U (ja) * 1992-03-11 1993-10-08 日新電機株式会社 ガス絶縁電気機器用異常検出装置
US6158286A (en) * 1997-09-15 2000-12-12 Total Raffianage Distribution S.A. Process and devices for the determination of the vibrations of the rotor of a rotary machine
JP2006113002A (ja) * 2004-10-18 2006-04-27 Nsk Ltd 機械設備の異常診断システム
JP2014152624A (ja) * 2013-02-05 2014-08-25 Mitsubishi Electric Corp 圧縮機検査装置
JP2015031626A (ja) * 2013-08-05 2015-02-16 Ntn株式会社 転がり軸受の状態監視装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4631683A (en) * 1984-08-29 1986-12-23 General Electric Company Acoustic detection of contact between cutting tool and workpiece
JPH03140834A (ja) * 1989-10-27 1991-06-14 Toshiba Corp 振動計測装置
US7640139B2 (en) 2004-10-18 2009-12-29 Nsk Ltd. Abnormality diagnosing system for mechanical equipment
DE102006004941B4 (de) * 2006-02-03 2008-01-10 Areva Np Gmbh Verfahren und Einrichtung zur Detektion des Ortes einer impulsartigen mechanischen Einwirkung auf ein Anlagenteil
NZ554049A (en) * 2007-03-22 2008-03-28 Commtest Instr Ltd Method and system for vibration signal processing
EP2072975A1 (en) * 2007-12-19 2009-06-24 Siemens Aktiengesellschaft Method and apparatus for vibration-based automatic condition monitoring of a wind turbine
FR2933513B1 (fr) * 2008-07-07 2010-08-27 Airbus France Procede et dispositif d'analyse frequentielle de donnees
GB0916369D0 (en) * 2009-09-18 2009-10-28 Schrader Electronics Ltd Tracking filter apparatus for wheel monitoring systems
JP5725833B2 (ja) 2010-01-04 2015-05-27 Ntn株式会社 転がり軸受の異常診断装置、風力発電装置および異常診断システム
CN102042166B (zh) * 2010-11-25 2012-12-26 华锐风电科技(集团)股份有限公司 风电机组振动检测装置及方法
DK2535579T3 (da) * 2011-06-14 2020-04-14 Siemens Gamesa Renewable Energy As Fremgangsmåde til akustisk overvågning af en vindmølle, akustisk overvågningssystem til en vindmølle og efterudrustningskit
US9683554B2 (en) * 2011-08-16 2017-06-20 Vestas Wind Systems A/S Acoustic noise monitoring system for a wind turbine
JP5680526B2 (ja) 2011-12-28 2015-03-04 三菱重工業株式会社 風力発電用風車の衝撃荷重監視システム及び衝撃荷重監視方法
WO2015015987A1 (ja) 2013-08-01 2015-02-05 Ntn株式会社 軸受装置の振動解析方法、軸受装置の振動解析装置、および転がり軸受の状態監視装置
US9528914B2 (en) * 2013-09-27 2016-12-27 Rosemount, Inc. Non-intrusive sensor system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437178U (ja) * 1977-08-19 1979-03-10
JPH0573578U (ja) * 1992-03-11 1993-10-08 日新電機株式会社 ガス絶縁電気機器用異常検出装置
US6158286A (en) * 1997-09-15 2000-12-12 Total Raffianage Distribution S.A. Process and devices for the determination of the vibrations of the rotor of a rotary machine
JP2006113002A (ja) * 2004-10-18 2006-04-27 Nsk Ltd 機械設備の異常診断システム
JP2014152624A (ja) * 2013-02-05 2014-08-25 Mitsubishi Electric Corp 圧縮機検査装置
JP2015031626A (ja) * 2013-08-05 2015-02-16 Ntn株式会社 転がり軸受の状態監視装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3489641B1 (en) * 2017-11-27 2024-04-17 Goodrich Actuation Systems Limited Improved system for detecting a mechanical fault in a rotating shaft

Also Published As

Publication number Publication date
US20190101104A1 (en) 2019-04-04
US10975849B2 (en) 2021-04-13
CN108885158B (zh) 2021-07-20
JP2017173076A (ja) 2017-09-28
CN108885158A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
WO2017164034A1 (ja) 状態監視システム及びそれを備える風力発電装置
EP3631205B1 (en) Wind turbine fault detection using acoustic, vibration, and electrical signals
US9541606B2 (en) Fault detection system and associated method
US9645046B2 (en) Fault detection system and associated method
US9423290B2 (en) Abnormality diagnostic device for rolling bearing, wind turbine generation apparatus and abnormality diagnostic system
US11441940B2 (en) Condition monitoring apparatus, condition monitoring system, and condition monitoring method
JP6250345B2 (ja) 監視システムおよび監視方法
WO2015012124A1 (ja) 風力発電装置の異常診断装置および異常診断方法
JP4935165B2 (ja) 異常診断装置及び異常診断方法
WO2017163839A1 (ja) 状態監視装置およびそれを搭載する風力発電設備、ならびに電気的ノイズ除去方法
JP2009020090A (ja) 異常診断装置、及び異常診断方法
WO2018142986A1 (ja) 状態監視システムおよび風力発電装置
JP2018155494A (ja) 軸受異常診断システム及び軸受異常診断方法
JP2009115537A (ja) 振動測定方法
JP2007285874A (ja) 異常診断装置及び異常診断方法
JP2017122635A (ja) 風力発電設備の異常診断装置
JP4730166B2 (ja) 機械設備の異常診断装置及び異常診断方法
JP6714844B2 (ja) 異常診断方法
JP2017181267A (ja) 転がり軸受診断装置
JP6897064B2 (ja) 軸受異常診断方法および診断システム
JP6577394B2 (ja) 風力発電設備の異常診断装置
JP2019128179A (ja) 振動センサの脱落検知方法及び異常診断装置
JP6910835B2 (ja) 状態監視システム及びそれを備える風力発電装置
JP2017181283A (ja) シングルピニオン式の遊星歯車装置の歯数特定装置および歯数特定方法
JP2007331860A (ja) エスカレーター診断装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770077

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17770077

Country of ref document: EP

Kind code of ref document: A1