WO2017163790A1 - 作業車両の制御装置、作業車両、及び作業車両の制御方法 - Google Patents

作業車両の制御装置、作業車両、及び作業車両の制御方法 Download PDF

Info

Publication number
WO2017163790A1
WO2017163790A1 PCT/JP2017/008018 JP2017008018W WO2017163790A1 WO 2017163790 A1 WO2017163790 A1 WO 2017163790A1 JP 2017008018 W JP2017008018 W JP 2017008018W WO 2017163790 A1 WO2017163790 A1 WO 2017163790A1
Authority
WO
WIPO (PCT)
Prior art keywords
travel
work vehicle
traveling
dump truck
travel range
Prior art date
Application number
PCT/JP2017/008018
Other languages
English (en)
French (fr)
Inventor
正紀 荻原
龍 山村
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to AU2017237758A priority Critical patent/AU2017237758C1/en
Priority to CN201780002401.2A priority patent/CN107850898A/zh
Priority to JP2017539378A priority patent/JP6259171B1/ja
Priority to PCT/JP2017/008018 priority patent/WO2017163790A1/ja
Priority to CA2988573A priority patent/CA2988573C/en
Priority to US15/577,498 priority patent/US10551848B2/en
Publication of WO2017163790A1 publication Critical patent/WO2017163790A1/ja
Priority to AU2019200000A priority patent/AU2019200000B2/en
Priority to US16/720,246 priority patent/US11327505B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0272Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising means for registering the travel distance, e.g. revolutions of wheels
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/027Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising intertial navigation means, e.g. azimuth detector
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0297Fleet control by controlling means in a control room
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60PVEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
    • B60P1/00Vehicles predominantly for transporting loads and modified to facilitate loading, consolidating the load, or unloading
    • B60P1/04Vehicles predominantly for transporting loads and modified to facilitate loading, consolidating the load, or unloading with a tipping movement of load-transporting element
    • B60P1/16Vehicles predominantly for transporting loads and modified to facilitate loading, consolidating the load, or unloading with a tipping movement of load-transporting element actuated by fluid-operated mechanisms

Definitions

  • the present invention relates to a work vehicle control device, a work vehicle, and a work vehicle control method.
  • unmanned work vehicles are used for transportation work. After the work vehicle is loaded with a loader at the loading site, the work vehicle travels on the conveyance path to the earth discharging site, and discharges the load at the earth discharging site.
  • An aspect of the present invention aims to suppress a decrease in productivity at a work site.
  • a course data obtaining unit that obtains course data indicating a traveling condition of the work vehicle including the traveling route, and a preset traveling width based on the traveling route.
  • the vehicle travels according to the course data, a travel range data acquisition unit that acquires travel range data indicating the travel range of the work vehicle, a detection data acquisition unit that acquires detection data of a detection device that detects the travel direction of the work vehicle, and A prediction unit that predicts a specified position away from the current position of the work vehicle based on the detection data; a determination unit that determines whether or not the specified position is within the travel range; and
  • a control device for a work vehicle comprising: an operation control unit that stops travel of the work vehicle when it is determined that the work vehicle does not exist within the travel range.
  • FIG. 1 is a diagram schematically illustrating an example of a work vehicle management system according to the present embodiment.
  • FIG. 2 is a perspective view of the dump truck according to the present embodiment as viewed from the rear.
  • FIG. 3 is a functional block diagram illustrating an example of a management device and a control device according to the present embodiment.
  • FIG. 4 is a diagram schematically showing course data and travel range data according to the present embodiment.
  • FIG. 5 is a diagram schematically illustrating an example of travel range data in the loading field according to the present embodiment.
  • FIG. 6 is a schematic diagram for explaining the operation of the control device according to the present embodiment.
  • FIG. 7 is a schematic diagram for explaining the operation of the control device according to the present embodiment.
  • FIG. 1 is a diagram schematically illustrating an example of a work vehicle management system according to the present embodiment.
  • FIG. 2 is a perspective view of the dump truck according to the present embodiment as viewed from the rear.
  • FIG. 3 is a functional block diagram illustrating an example of
  • FIG. 8 is a schematic diagram for explaining a method for predicting a specified position according to the present embodiment.
  • FIG. 9 is a schematic diagram for explaining a method for predicting a specified position according to the present embodiment.
  • FIG. 10 is a schematic diagram for explaining a travel width correction method according to the present embodiment.
  • FIG. 11 is a diagram schematically illustrating an example of a travel range after being corrected by the correction unit according to the present embodiment.
  • FIG. 12 is a flowchart illustrating an example of a dump truck control method according to the present embodiment.
  • FIG. 13 is a flowchart illustrating an example of a dump truck control method according to the present embodiment.
  • FIG. 14 is a diagram schematically illustrating an example of travel range data in the loading field according to the present embodiment.
  • FIG. 15 is a diagram schematically illustrating an example of travel range data in the loading field according to the present embodiment.
  • FIG. 1 is a diagram schematically illustrating an example of a management system 1 for a work vehicle 2 according to the present embodiment.
  • the management system 1 performs operation management of the work vehicle 2.
  • the work vehicle 2 is a dump truck 2 that is a transport vehicle capable of traveling in a mine.
  • the dump truck 2 travels at least a part of the mine work area PA and the conveyance path HL leading to the work place PA.
  • the work place PA includes at least one of a loading place LPA and a dumping place DPA.
  • the conveyance path HL includes an intersection IS.
  • the dump truck 2 travels according to the course data CD set in the transport path HL and the work place PA.
  • the loading area LPA is an area where loading work for loading a load onto the dump truck 2 is performed.
  • a loading machine 3 such as a hydraulic excavator is operated.
  • the earth removal site DPA is an area where a discharging operation for discharging the load from the dump truck 2 is performed.
  • a crusher CR is provided in the earth removal site DPA.
  • the management system 1 includes a management device 10 and a communication system 9.
  • the management apparatus 10 includes a computer system and is installed in a control facility 7 provided in the mine.
  • the communication system 9 performs data communication and signal communication between the management device 10 and the dump truck 2.
  • the communication system 9 may include a plurality of repeaters 6 that relay data and signals.
  • the management device 10 and the dump truck 2 communicate wirelessly via the communication system 9.
  • the dump truck 2 is an unmanned dump truck that travels unattended without being operated by the driver.
  • the dump truck 2 travels in the mine based on a command signal from the management device 10.
  • the position of the dump truck 2 is detected using GNSS (Global Navigation Satellite System).
  • the global navigation satellite system includes GPS (Global Positioning System).
  • the GNSS has a plurality of positioning satellites 5.
  • the GNSS detects a position defined by latitude, longitude, and altitude coordinate data.
  • the position detected by GNSS is an absolute position defined in the global coordinate system.
  • the absolute position of the dump truck 2 in the mine is detected by GNSS.
  • FIG. 2 is a perspective view of the dump truck 2 according to the present embodiment as viewed from the rear.
  • the dump truck 2 includes a vehicle body frame 21, a dump body 22 supported by the vehicle body frame 21, a travel device 23 that travels while supporting the vehicle body frame 21, and a control device 40.
  • the traveling device 23 has wheels 25 on which tires 24 are mounted.
  • the wheel 25 includes a front wheel 25F and a rear wheel 25R.
  • the front wheels 25F are steered by the steering device 33.
  • the rear wheel 25R is not steered.
  • the wheel 25 rotates about the rotation axis AX.
  • a direction parallel to the rotation axis AX of the rear wheel 25R is appropriately referred to as a vehicle width direction
  • a traveling direction of the dump truck 2 is appropriately referred to as a front-rear direction
  • each of the vehicle width direction and the front-rear direction is appropriately referred to as the vertical direction.
  • the front wheel 25F is disposed in front of the rear wheel 25R.
  • the front wheels 25F are arranged on both sides in the vehicle width direction.
  • the rear wheels 25R are disposed on both sides in the vehicle width direction.
  • the dump body 22 is disposed above the vehicle body frame 21.
  • the vehicle body frame 21 supports a driving device 31 that generates a driving force for driving the traveling device 23.
  • the dump body 22 is a member on which a load is loaded.
  • the traveling device 23 has a rear axle 26 that transmits the driving force generated by the driving device 31 to the rear wheel 25R.
  • the rear axle 26 includes an axle 27 that supports the rear wheel 25R.
  • the rear axle 26 transmits the driving force generated by the driving device 31 to the rear wheel 25R.
  • the rear wheel 25R rotates around the rotation axis AX by the driving force supplied from the rear axle 26. Thereby, the traveling device 23 travels.
  • the dump truck 2 can move forward and backward.
  • Advancing means driving
  • Reverse travel means traveling with the rear portion 2R of the dump truck 2 facing the traveling direction.
  • the control device 40 controls the dump truck 2.
  • the control device 40 can control the dump truck 2 based on a command signal transmitted from the management device 10.
  • FIG. 3 is a functional block diagram illustrating an example of the management device 10 and the control device 40 according to the present embodiment.
  • the management device 10 is installed in the control facility 7.
  • the control device 40 is mounted on the dump truck 2.
  • the management device 10 and the control device 40 communicate wirelessly via the communication system 9.
  • the management device 10 includes a computer system.
  • the management device 10 includes an arithmetic processing device 11 including a processor such as a CPU (Central Processing Unit), a storage device 12 including a memory and storage such as a ROM (Read Only Memory) or a RAM (Random Access Memory), and an input device. And an output interface 13.
  • arithmetic processing device 11 including a processor such as a CPU (Central Processing Unit), a storage device 12 including a memory and storage such as a ROM (Read Only Memory) or a RAM (Random Access Memory), and an input device.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the management device 10 is connected to the wireless communication device 14.
  • the wireless communication device 14 is disposed in the control facility 7.
  • the management device 10 communicates with the dump truck 2 via the wireless communication device 14 and the communication system 9.
  • the management device 10 is connected to the input device 15 and the output device 16.
  • the input device 15 and the output device 16 are installed in the control facility 7.
  • the input device 15 includes, for example, at least one of a keyboard for a computer, a mouse, and a touch panel.
  • Input data generated by operating the input device 15 is output to the management device 10.
  • the output device 16 includes a display device.
  • the display device includes a flat panel display such as a liquid crystal display (LCD) or an organic EL display (OELD).
  • the output device 16 operates based on display data output from the management device 10.
  • the output device 16 may be a printing device, for example.
  • the arithmetic processing unit 11 includes a course data generation unit 111 and a travel range data generation unit 112.
  • the course data generation unit 111 generates course data CD indicating the traveling conditions of the dump truck 2 traveling in the mine.
  • the traveling condition of the dump truck 2 includes at least one of the traveling route RP, traveling speed V, acceleration, deceleration, and traveling direction of the dump truck 2. Further, the traveling condition of the dump truck 2 includes at least one of a stop position and a departure position of the dump truck 2.
  • the travel range data generation unit 112 generates travel range data AD indicating the travel range TM of the dump truck 2 defined by a preset travel width W with reference to the travel route RP of the dump truck 2.
  • the travel route RP is set linearly.
  • the travel range TM is set in a belt shape along the travel route RP so as to include the travel route RP.
  • the input / output interface 13 outputs the course data CD generated by the course data generation unit 111 to the dump truck 2.
  • the input / output interface 13 outputs the travel range data AD generated by the travel range data generation unit 112 to the dump truck 2.
  • the input / output interface 13 functions as an output unit that outputs the course data CD and the travel range data AD to the dump truck 2.
  • the course data CD and the travel range data AD generated by the arithmetic processing unit 11 are output to the dump truck 2 via the input / output interface 13 and the communication system 9.
  • the control device 40 includes a computer system.
  • the control device 40 includes an arithmetic processing device 41 including a processor such as a CPU (Central Processing Unit), a storage device 42 including a memory and storage such as a ROM (Read Only Memory) or a RAM (Random Access Memory), and an input device. And an output interface 43.
  • arithmetic processing device 41 including a processor such as a CPU (Central Processing Unit), a storage device 42 including a memory and storage such as a ROM (Read Only Memory) or a RAM (Random Access Memory), and an input device.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the control device 40 is connected to the wireless communication device 44.
  • the wireless communication device 44 is disposed on the dump truck 2.
  • the control device 40 communicates with the management device 10 via the wireless communication device 44 and the communication system 9.
  • the control device 40 is connected to the drive device 31, the brake device 32, and the steering device 33.
  • the control device 40 is connected to the position detector 34 and the detection device 35.
  • the drive device 31, the brake device 32, the steering device 33, the position detector 34, and the detection device 35 are mounted on the dump truck 2.
  • the driving device 31 operates to drive the traveling device 23 of the dump truck 2.
  • the driving device 31 generates a driving force for driving the traveling device 23.
  • the driving device 31 generates a driving force for rotating the rear wheel 25R.
  • the drive device 31 includes an internal combustion engine such as a diesel engine.
  • the drive device 31 may include a generator that generates electric power by the operation of the internal combustion engine and an electric motor that operates based on the electric power generated by the generator.
  • the brake device 32 operates to brake the traveling device 23. By the operation of the brake device 32, the travel of the travel device 23 is decelerated or stopped.
  • the steering device 33 operates to steer the traveling device 23 of the dump truck 2.
  • the dump truck 2 is steered by the steering device 33.
  • the steering device 33 steers the front wheel 25F.
  • the position detector 34 detects the absolute position of the dump truck 2.
  • the position detector 34 includes a GPS antenna that receives a GPS signal from the positioning satellite 5 and a GPS calculator that calculates the absolute position of the dump truck 2 based on the GPS signal received by the GPS antenna.
  • the detection device 35 detects the traveling direction of the dump truck 2.
  • the detection device 35 includes a steering angle sensor 35A that detects the steering angle of the dump truck 2 by the steering device 33, and an azimuth angle sensor 35B that detects the azimuth angle of the dump truck 2.
  • the steering angle sensor 35A includes, for example, a rotary encoder provided in the steering device 33.
  • the azimuth sensor 35B includes, for example, a gyro sensor provided on the vehicle body frame 21.
  • the arithmetic processing device 41 includes a course data acquisition unit 411, a travel range data acquisition unit 412, an absolute position data acquisition unit 413, a detection data acquisition unit 414, a prediction unit 415, a determination unit 416, and a correction unit 417. And an operation control unit 418.
  • the course data acquisition unit 411 acquires the course data CD generated by the course data generation unit 111 of the management device 10.
  • the travel range data acquisition unit 412 acquires the travel range data AD generated by the travel range data generation unit 112 of the management device 10.
  • the absolute position data acquisition unit 413 acquires absolute position data indicating the absolute position of the dump truck 2 from the position detector 34.
  • the position detector 34 detects the absolute position of the GPS antenna provided in the dump truck 2.
  • the absolute position data acquisition unit 413 calculates absolute position data indicating the absolute position of the specific part AP of the dump truck 2 based on the absolute position of the GPS antenna detected by the position detector 34.
  • the specific part AP of the dump truck 2 is the central part of the axle 27 in the vehicle width direction.
  • the relative position between the GPS antenna and the specific part AP is known data that can be derived from design data or specification data of the dump truck 2, for example, and is stored in the storage device 42.
  • the absolute position data acquisition unit 413 is based on the absolute position of the GPS antenna detected by the position detector 34 and the relative position between the GPS antenna and the specific part AP stored in the storage device 42. Absolute position data indicating the absolute position of the specific part AP can be calculated.
  • the detection data acquisition unit 414 acquires the detection data of the detection device 35 that has detected the traveling direction of the dump truck 2 from the detection device 35.
  • the detection data includes steering angle data detected by the steering angle sensor 35A and azimuth angle data detected by the azimuth angle sensor 35B.
  • the detection data acquisition unit 414 acquires the steering angle data from the steering angle sensor 35A, and acquires the azimuth angle data from the azimuth angle sensor 35B.
  • the prediction unit 415 predicts a specified position FP away from the current position NP of the dump truck 2 traveling according to the course data CD based on the detection data.
  • the specified position FP of the dump truck 2 refers to the position of the dump truck 2 after the dump truck 2 travels the specified distance L from the current position NP of the dump truck 2 at the time when the detection data is acquired.
  • the specified distance L is 3 [m], for example.
  • the prediction unit 415 predicts the specified position FP of the dump truck 2 after traveling 3 [m] from the current position NP based on the detection data acquired when the dump truck 2 exists at the current position NP.
  • the determination unit 416 determines whether or not the specified position FP of the dump truck 2 is within the travel range TM. That is, the determination unit 416 determines whether the specified position FP of the dump truck 2 predicted by the prediction unit 415 is within the travel range TM specified by the travel range data AD acquired by the travel range data acquisition unit 412. Determine whether.
  • the correction unit 417 corrects the travel width W defined by the travel range data AD based on the azimuth angle data acquired by the detection data acquisition unit 414.
  • the driving control unit 418 outputs a driving control signal for controlling at least one of the drive device 31, the brake device 32, and the steering device 33 of the dump truck 2 based on the course data CD acquired by the course data acquisition unit 411. To do.
  • the driving control signal includes an accelerator signal output to the drive device 31, a brake command signal output to the brake device 32, and a steering command signal output to the steering device 33.
  • the operation control unit 418 stops the traveling of the dump truck 2 when it is determined that the specified position FP of the dump truck 2 predicted by the prediction unit 415 does not exist within the traveling range TM.
  • FIG. 4 is a diagram schematically showing the course data CD and the travel range data AD according to the present embodiment.
  • the course data CD defines the running conditions of the dump truck 2.
  • the traveling condition of the dump truck 2 includes at least one of the traveling route RP, traveling speed V, acceleration, deceleration, and traveling direction of the dump truck 2.
  • the course data CD includes a set of a plurality of course points PI set at a constant interval G.
  • Each of the plurality of course points PI includes the absolute position data of the dump truck 2, the traveling speed data of the dump truck 2 at the position where the course point PI is set, and the traveling of the dump truck 2 at the position where the course point PI is set.
  • Direction data is the absolute position data of the dump truck 2, the traveling speed data of the dump truck 2 at the position where the course point PI is set, and the traveling of the dump truck 2 at the position where the course point PI is set.
  • the travel route RP of the dump truck 2 is defined by the trajectory passing through the plurality of course points PI.
  • the travel route RP is set linearly. Based on the traveling speed data, the traveling speed V of the dump truck 2 at the position where the course point PI is set is defined. Based on the traveling direction data, the traveling direction of the dump truck 2 at the position where the course point PI is set is defined.
  • the travel route RP defined by the course point PI is a target travel route.
  • the traveling speed V of the dump truck 2 defined by the course point PI is a target traveling speed.
  • the traveling direction of the dump truck 2 defined by the course point PI is the target traveling direction.
  • the dump truck 2 travels through the mine according to the course data CD.
  • the dump truck 2 travels in the mine so that the specific part AP of the dump truck 2 moves along the travel route RP.
  • the specific part AP of the dump truck 2 is the central part of the axle 27 in the vehicle width direction.
  • the travel range data AD defines the travel range TM of the dump truck 2 that is defined by a preset travel width W with the travel route RP of the dump truck 2 as a reference.
  • the travel range TM includes a travel route RP and is set in a belt shape along the travel route RP.
  • the travel route RP is defined at the center of the travel range TM. That is, in the width direction of the travel range TM, the distance Wr between the travel route RP and one end Er of the travel range TM and the distance Wl between the travel route RP and the other end El of the travel range TM are substantially Are equal.
  • travel route RP may be defined at a position deviating from the center of travel range TM.
  • the operation control unit 418 controls the traveling device 23 based on the absolute position data detected by the position detector 34 so as to travel in a state where the specific part AP of the dump truck 2 and the traveling route RP coincide with each other.
  • the operation control unit 418 determines based on the absolute position data detected by the position detector 34 that the specific part AP of the dump truck 2 has moved out of the travel route RP and moved outside the travel range TM, The traveling of the dump truck 2 is stopped.
  • the dump truck 2 runs on the rough road surface of the mine.
  • a travel range TM that allows the dump truck 2 to travel even if the specific part AP deviates from the travel route RP is set. Even when the specific part AP deviates from the travel route RP, the operation control unit 418 continues the travel of the dump truck 2 when it is disposed in the travel range TM. On the other hand, when the specific part AP deviating from the travel route RP is disposed outside the travel range TM, it is determined that the dump truck 2 has gone out of the course. When it is determined that the dump truck 2 has gone out of course, the operation control unit 418 stops the traveling of the dump truck 2.
  • the travel range data generation unit 112 can adjust the travel width W of the travel range TM.
  • the travel range data generation unit 112 adjusts the travel width W based on the mine area.
  • the travel range data generation unit 112 sets a large travel width W in an area that is allowed even if the deviation amount between the specific part AP and the travel route RP is large, and sets the deviation amount between the specific part AP and the travel route RP. In an area that needs to be reduced, a small traveling width W is set.
  • the traveling range data generation unit 112 sets the traveling width W based on obstacles existing around the traveling dump truck 2, for example.
  • the course data generation unit 111 sets the traveling speed V of the dump truck 2 based on the allowable travel width W.
  • the travel range data generation unit 112 sets a large travel width W.
  • the course data generation unit 111 increases the travel speed V of the dump truck 2.
  • the travel range data generation unit 112 sets a small travel width W.
  • the traveling speed V of the dump truck 2 is high, there is a high possibility that the deviation amount between the specific part AP and the traveling route RP becomes large. Therefore, when the traveling width W is small, if the traveling speed V of the dump truck 2 is increased, the frequency at which it is determined that the course is out increases, and the productivity of the mine decreases. Accordingly, in the travel range TM in which the small travel range W is set to suppress contact between the dump truck 2 and the obstacle, the course data generation unit 111 decreases the travel speed V of the dump truck 2.
  • FIG. 5 is a diagram schematically illustrating an example of the travel range data AD in the loading area LPA according to the present embodiment.
  • the dump truck 2 switches back and approaches the loader 3.
  • the switchback is an operation in which the advancing dump truck 2 moves backward with a sharp change of the traveling direction.
  • the course data CD defines a switchback point SBP at the loading site LPA.
  • the dump truck 2 that has entered the loading site LPA switches back at the switchback point SBP and approaches the loader 3 while moving backward.
  • the course data CD defines the loading point LPP at the loading site LPA.
  • the loading point LPP is a position where the loading machine 3 can load a load on the dump truck 2.
  • the dump truck 2 moves to the loading point LPP while moving backward. After the dump truck 2 is arranged at the loading point LPP, the load is loaded onto the dump truck 2 by the loader 3.
  • the travel range TM is defined based on the travel route RP.
  • the travel range TM defined in the loading field LPA is defined by a first travel range TM1 defined by the first travel width W1 and a second travel width W2 smaller than the first travel width W1. Second traveling range TM2.
  • the second traveling range TM2 includes a loading point LPP on which a load is loaded on the dump truck 2.
  • the dump truck 2 travels from the first travel range TM1 to the second travel range TM2.
  • the dump truck 2 approaches the loading point LPP set in the second travel range TM2 while moving backward in the first travel range TM1.
  • the loading machine 3 is arranged on the outer side in the width direction of the second traveling range TM2.
  • the second travel width TM2 is set based on the size of the loader 3 that loads the load on the dump truck 2.
  • the loading machine 3 includes a lower traveling body 301, an upper swing body 302 supported by the lower traveling body 301, and a work machine 303 supported by the upper swing body 302 so as to be movable.
  • the work machine 303 includes a boom, an arm, and a bucket.
  • the loading point LPP is set inside the turning radius of the work machine 303.
  • the second travel width W2 is small, even when the specific part AP slightly deviates from the travel route RP, it is determined that the course is out, the travel of the dump truck 2 is frequently stopped, and the mine productivity is lowered.
  • the dump truck 2 moving to the loading point LPP does not come into contact with the upper swing body 302 or the lower traveling body 301 of the loader 3 and the mine productivity is not lowered.
  • the second traveling width W2 is defined.
  • the traveling speed V2 of the dump truck 2 in the second traveling range TM2 is equal to or lower than the traveling speed V1 of the dump truck 2 in the first traveling range TM1.
  • the loader 3 can be regarded as an obstacle of the dump truck 2.
  • the possibility that the dump truck 2 traveling in the first travel range TM1 and the loader 3 are in contact with each other is low. Therefore, by increasing the traveling speed V1 of the dump truck 2 in the first traveling range TM1, a decrease in mine productivity is suppressed. Further, when the traveling speed V1 of the dump truck 2 traveling on the rough road surface of the mine increases, there is a high possibility that the deviation amount between the specific part AP and the traveling route RP increases.
  • the specific portion AP is suppressed from moving outside the first travel range TM1. Thereby, the frequency determined to be course-out is reduced, and the traveling of the dump truck 2 is suppressed from being frequently stopped. Therefore, a decrease in mine productivity is suppressed.
  • the travel range data generation unit 112 decreases the second travel width W2 of the second travel range TM2. Thereby, possibility that the dump truck 2 and the loader 3 will contact is suppressed. Since the second travel width W2 of the second travel range TM2 is small, if the dump truck 2 moves backward at the travel speed V1 in the second travel range TM2, there is a possibility that the specific part AP will be out of the second travel range TM2. Becomes higher.
  • the frequency of being determined to be out of the course increases, the traveling of the dump truck 2 is frequently stopped, and the productivity of the mine is reduced.
  • the second traveling range TM2 defined by the small second traveling width W2 by reducing the traveling speed V2 of the dump truck 2 from the traveling speed V1, the frequency of being determined to be out of course is reduced. It is suppressed that driving
  • FIG. 6 and 7 are schematic diagrams for explaining the operation of the control device 40 according to the present embodiment.
  • the prediction unit 415 predicts the specified position FP of the dump truck 2 that travels according to the course data CD in the loading field LPA based on the detection data of the detection device 35. In the present embodiment, the prediction unit 415 predicts the specified position FP of the specific part AP set in the dump truck 2 that moves backward toward the loading point LPP.
  • the specified position FP of the specific part AP is defined by the dump truck 2 from the current position NP of the specific part AP when the detection data acquisition unit 414 acquires the detection data of the traveling direction of the dump truck 2.
  • the position of the specific part AP after traveling the distance L is said.
  • the specified distance L is 3 [m].
  • the predicting unit 415 performs the operation after the dump truck 2 travels by 3 [m] based on the detection data of the traveling direction of the dump truck 2 acquired when the specific part AP of the dump truck 2 passes the current position NP.
  • the specified position FP of the specific part AP of the dump truck 2 is predicted.
  • the interval G between the course points PI is 1 [m].
  • the predicting unit 415 determines the three courses ahead based on the detection data of the traveling direction of the dump truck 2 acquired when the specific part AP passes the course point PI0 that is the current position NP.
  • the specified position FP of the specific part AP that passes through the point PI3 is predicted.
  • the passage of the specific part AP through the course point PI (PI0, PI3) is not only that the specific part AP and the course point PI completely match, but also in the traveling direction of the dump truck 2. It also includes that the absolute position of the specific part AP substantially matches the absolute position of the course point PI.
  • the predicting unit 415 determines the second travel range TM2 and the specified position FP of the specific part AP based on the detection data of the travel direction of the dump truck 2 acquired when the dump truck 2 travels in the first travel range TM1. Predict the relative position.
  • the determination unit 416 determines whether or not the specified position FP of the specific part AP predicted by the prediction unit 415 is within the second travel range TM2.
  • the course point PI3 is the course point PI closest to the first traveling range TM1 among the plurality of course points PI defined in the second traveling range TM2.
  • the determination unit 416 determines whether or not the specified position FP of the specific part AP predicted based on the detection data acquired when the dump truck 2 is traveling in the first traveling range TM1 is present in the second traveling range TM2. Determine whether.
  • the operation control unit 418 determines that the specified position FP of the specific part AP predicted based on the detection data acquired when the dump truck 2 is traveling in the first travel range TM1 does not exist in the second travel range TM2. When judged, the traveling of the dump truck 2 is stopped.
  • the control device 40 determines whether or not the specific part AP of the dump truck 2 will go out of the second traveling range TM2 in the future. Predict.
  • the second travel width W2 of the second travel range TM2 is smaller than the first travel width W1 of the first travel range TM1. Therefore, as shown in FIG. 6, for example, in a state where the specific part AP is located at the end El in the width direction of the first travel range TM1, when the dump truck 2 moves straight back, the specified position FP of the specific part AP is It is predicted that it is disposed outside the second travel range TM2. In this case, the dump truck 2 approaches the loader 3 and is likely to come into contact with the loader 3.
  • the specified position FP of the specific part AP Is estimated to be arranged outside the second travel range TM2. Also in this case, the dump truck 2 approaches the loader 3 and is likely to come into contact with the loader 3.
  • the dump truck 2 when the dump truck 2 is traveling in the first travel range TM1, it is predicted whether or not the specified position FP exists in the second travel range TM2, and the specified position FP is determined in the second travel range TM1.
  • the traveling of the dump truck 2 is stopped before the specific part AP leaves the first traveling range TM1. Thereby, contact with dump truck 2 and loader 3 is prevented beforehand.
  • the traveling speed V2 of the dump truck 2 in the second traveling range TM2 is equal to or lower than the traveling speed V1 of the dump truck 2 in the first traveling range TM1. Therefore, when it is determined that the specific part AP has gone out of the second traveling range TM2 after the dump truck 2 enters the second traveling range TM2, the traveling of the dump truck 2 stops after the dump truck 2 starts traveling at a low speed. Will be. As a result, the time until it is determined to be out of course is prolonged, and the productivity of the mine is reduced.
  • the traveling of the dump truck 2 is stopped.
  • the traveling of the dump truck 2 is stopped early, so that it is possible to suppress a decrease in mine productivity.
  • FIG. 8 and FIG. 9 are schematic diagrams for explaining the prediction method of the specified position FP according to the present embodiment.
  • the wheel base of the dump truck is l [m]
  • the steering angle is ⁇ [rad]
  • the turning radius of the dump truck 2 with reference to the specific part AP defined at the center part of the axle 27 supporting the rear wheel 25R is R [ m]
  • the turning radius R is calculated based on the equation (1).
  • the change amount dh [rad] in the direction of the specific part AP of the dump truck 2 has the same dimension as the specified distance L with respect to the turning radius R. It is equal to the inner angle when arcing. That is, the change amount dh is calculated based on the equation (2).
  • the longitudinal direction in the vehicle body coordinate system defined for the dump truck 2 is the X-axis direction
  • the vehicle width direction in the vehicle body coordinate system defined for the dump truck 2 is the Y-axis direction
  • the forward direction of the dump truck 2 is the + X direction.
  • the left direction of the dump truck 2 is the + Y direction
  • the change amount dx [m] in the X-axis direction and the change amount dy [ m] is calculated based on the equations (3) and (4), respectively.
  • the left side of the steering angle ⁇ is a positive value.
  • the amount of change dx is a coordinate in the X-axis direction of the specified position FP with reference to the current position NP of the specific part AP
  • the amount of change dy is the Y axis of the specified position FP with reference to the current position NP of the specific part AP. It is a coordinate of direction.
  • the specified position FP of the specific part AP after moving backward by the specified distance L can be calculated as the sum of the linear equations of the angle ⁇ and the steering angle ⁇ .
  • the correction unit 417 corrects the traveling width W based on the azimuth angle ⁇ .
  • FIG. 10 is a schematic diagram for explaining a method of correcting the travel width W according to the present embodiment.
  • the dump truck 2 rotates by an angle ⁇ from the X axis of the vehicle body coordinate system.
  • the dump truck 2 protrudes in the Y axis direction from the state before the rotation by the amount dy k .
  • the protrusion amount dy k is calculated based on the equation (8).
  • l ( ⁇ ) is the Y from the specific part AP when the dump truck 2 is rotated by the angle ⁇ about the specific part AP to the part HP where the dump truck 2 protrudes most in the Y-axis direction. This is the distance in the axial direction, and is calculated based on equation (9).
  • is an angle formed by a straight line connecting the specific portion AP of the dump truck 2 before rotation and the partial HP and the X axis.
  • the distance between the specific part AP and the partial HP is R k
  • the distance R k is calculated based on the equation (11).
  • the protrusion amount dy k is calculated based on the equation (12).
  • the correction unit 417 includes an angle ⁇ indicating the amount of rotation of the dump truck 2 that changes based on the steering angle ⁇ , and dimension data of the dump truck 2 that can be derived from design data or specification data of the dump truck 2. Based on the distance b and the vehicle width w, the protrusion amount dy k is calculated. The correcting unit 417 corrects the traveling width W based on the calculated protrusion amount dy k .
  • FIG. 11 is a diagram schematically illustrating an example of the travel range TM after being corrected by the correction unit 417 according to the present embodiment.
  • the specified position FP changes based on the steering angle ⁇ .
  • the traveling width W changes based on the protrusion amount dy k .
  • the travel range data generation unit 112 generates a first travel range TM1 having a constant first travel width W1 and generates a second travel range TM2 having a constant second travel width W2. .
  • the correcting unit 417 corrects the first traveling width W1 of the first traveling range TM1 generated by the traveling range data generating unit 112 and acquired by the traveling range data acquiring unit 412 based on the protrusion amount dy k . Further, the correction unit 417 corrects the second travel width W2 of the second travel range TM2 generated by the travel range data generation unit 112 and acquired by the travel range data acquisition unit 412 based on the protrusion amount dy k . In the present embodiment, the correction unit 417 performs correction to reduce the protrusion amount dy k from the first travel width W1 of the first travel range TM1 acquired by the travel range data acquisition unit 412.
  • the correction unit 417 performs correction to reduce the protrusion amount dy k from the second travel width W2 of the second travel range TM2 acquired by the travel range data acquisition unit 412. That is, the travel range data acquiring unit 412 first travel width W1 after subtracting the protrusion amount dy k from the first carriage width W1 obtained in is first running the width W1a corrected. Running range data acquiring unit 412 second running width W2 after subtracting the protrusion amount dy k from the second running width W2 acquired by is the second traveling width W2a corrected.
  • the operation control unit 418 controls the traveling of the dump truck 2 based on the first traveling range TM1 and the second traveling range TM2 corrected by the correcting unit 417.
  • the operation control unit 418 stops the travel of the dump truck 2.
  • the determination unit 416 determines whether or not the specified position FP of the specific part AP of the dump truck 2 exists in the second travel range TM2 after being corrected by the correction unit 417.
  • the operation control unit 418 stops the traveling of the dump truck 2 when it is determined that the specified position FP of the specific part AP of the dump truck 2 does not exist in the second traveling range TM2 after being corrected by the correcting unit 417.
  • the contact between the dump truck 2 and the loader 3 is effectively suppressed.
  • the specific part AP exists in the travel range TM, it is not considered that the course has gone out, and the dump truck 2 can move backward.
  • the dump truck 2 does not move backward in a straight line state and moves backward while turning slightly, even when the specific part AP exists in the traveling range TM, at least a part of the dump truck 2 and the loader 3 , The dump truck 2 and the loader 3 may come into contact with each other.
  • the correction unit 417 performs correction for reducing the traveling width W based on the protrusion amount dy k .
  • FIG. 12 is a flowchart illustrating an example of a method for controlling the dump truck 2 according to the present embodiment.
  • a method for controlling the dump truck 2 when moving the dump truck 2 backward and approaching the loading point LPP will be described.
  • the course data generation unit 111 of the management device 10 generates course data CD indicating the traveling conditions of the dump truck 2 including the traveling route RP.
  • the travel range data generation unit 112 of the management device 10 includes the first travel range TM1 and the travel route RP of the dump truck 2 defined by the first preset travel width W1 based on the travel route RP. 2) Travel range data AD indicating the second travel range TM2 of the dump truck 2 defined by the travel width W2 is generated.
  • the course data CD and the travel range data AD generated by the management device 10 are transmitted to the control device 40 of the dump truck 2 via the communication system 9.
  • the course data acquisition unit 411 of the control device 40 acquires the course data CD transmitted from the management device 10.
  • the travel range data acquisition unit 412 of the control device 40 acquires the travel range data AD transmitted from the management device 10 (step S10).
  • the absolute position of the dump truck 2 traveling according to the course data CD is detected by the position detector 34.
  • Absolute position data indicating the absolute position of the specific part AP of the dump truck 2 is acquired by the absolute position data acquisition unit 413 of the control device 40.
  • the driving control unit 418 feedback-controls the steering device 33 based on the absolute position data of the specific part AP so that the dump truck 2 travels while the specific part AP and the travel route RP match.
  • the traveling direction of the dump truck 2 traveling according to the course data CD is detected by the detection device 35.
  • the detection data of the detection device 35 that has detected the traveling direction of the dump truck 2 is acquired by the detection data acquisition unit 414 of the control device 40 (step S20).
  • the detection data of the detection device 35 includes detection data of the steering angle sensor 35A that detects the steering angle ⁇ of the dump truck 2, and detection data of the azimuth angle sensor 35B that detects the azimuth angle ⁇ of the dump truck 2. Based on the detection data of the detection device 35, the operation control unit 418 performs feedback control of the steering device 33 so that the dump truck 2 travels while the specific part AP and the travel route RP match.
  • the driving control unit 418 performs feedback control of the steering device 33 based on the deviation between the specific part AP and the travel route RP.
  • the feedback gain is K
  • the amount of change in the Y-axis direction of the specified position FP of the specific part AP after moving backward from the current position NP by the specified distance L is dy
  • the amount of change in the rotation amount of the dump truck 2 is d ⁇
  • a control amount ⁇ FB for controlling the steering device 33 is calculated based on the equation (13).
  • the prescribed distance L used for prediction in the prediction unit 415 and the prescribed distance L used in equation (13) may be the same value or different values.
  • the specific part AP and the travel route RP can be matched with high accuracy.
  • the prediction unit 415 predicts the specified position FP of the specific part AP set in the dump truck 2 traveling according to the course data CD based on the detection data (step S30).
  • the determination unit 416 determines that the specific part AP of the dump truck 2 moving backward toward the loading point LPP has the prescribed course point PI0 described with reference to FIGS. It is determined whether it has passed (step S40).
  • step S40 when it is determined that the specific part AP of the dump truck 2 going backward does not pass the prescribed course point PI0 (step S40: No), the control device 40 returns to the process of step S10.
  • step S40 when it is determined that the specific part AP of the reverse dump truck 2 has passed the prescribed course point PI0 (step S40: Yes), the determination unit 416 determines the specific part AP predicted by the prediction unit 415. It is determined whether or not the specified position FP exists in the second travel range TM2 (step S50).
  • Step S50 when it is determined that the specified position FP of the specific part AP of the reverse dump truck 2 exists in the second traveling range TM2 (Step S50: Yes), the control device 40 returns to the process of Step S10. That is, when it is determined that the specified position FP of the specific part AP exists in the second travel range TM2, the reverse movement of the dump truck 2 toward the loading point LPP is continued.
  • Step S50 when it is determined that the specified position FP of the specific part AP of the dump truck 2 that moves backward does not exist in the second traveling range TM2 (Step S50: No), the operation control unit 418 performs the traveling of the dump truck 2. Stop (step S60). Thereby, it is suppressed that the dump truck 2 contacts the loader 3.
  • FIG. 13 is a flowchart illustrating an example of a method for controlling the dump truck 2 when resuming the traveling of the dump truck 2 after traveling stop according to the present embodiment.
  • the driver of the loader 3 operates an operation device provided in the loader 3.
  • a command signal for instructing generation of new course data and a command signal for instructing restart of traveling of the dump truck 2 are generated.
  • a command signal generated by operating the operating device is transmitted to the management device 10 via the communication system 9.
  • the course data generation unit 111 of the management apparatus 10 generates new course data CDn. Further, the travel range data generation unit 112 of the management device 10 generates new travel range data ADn.
  • the new course data CDn and the new travel range data ADn generated by the management device 10 are transmitted to the control device 40 of the dump truck 2 via the communication system 9.
  • the course data acquisition unit 411 of the control device 40 acquires new course data CDn transmitted from the management device 10.
  • the travel range data acquisition unit 412 of the control device 40 acquires new travel range data ADn transmitted from the management device 10 (step S70).
  • the course data CD acquired in step S10 is different from the new course data CDn acquired in step S70.
  • the travel range data AD acquired in step S10 is different from the new travel range data ADn acquired in step S70.
  • the new course data CDn includes a new travel route RPn different from the travel route RP defined by the course data CD.
  • the new travel range data ADn includes a new second travel range TM2n different from the second travel range TM2 defined by the travel range data AD.
  • the new second travel range TM2n is set in a belt shape along the new travel route RPn so as to include the new travel route RPn.
  • the second travel width W2 of the second travel range TM2 is equal to the second travel width W2n of the new second travel range TM2n.
  • the operation control unit 418 restarts the traveling of the dump truck 2 based on the new course data CDn acquired by the course data acquisition unit 411.
  • the new course data CDn includes a traveling condition in which the dump truck 2 moves forward after moving forward.
  • the operation control unit 418 once advances the stopped dump truck 2 (step S90).
  • the operation control unit 418 moves the dump truck 2 backward toward the loading point LPP after the dump truck 2 moves forward (step S80).
  • the new travel route RPn when the dump truck 2 defined by the new course data CDn is moved backward is different from the travel route RP when the dump truck 2 defined by the course data CD is moved backward.
  • a new travel route RPn is defined so that the dump truck 2 moves straight back toward the loading point LPP.
  • the loading operation of loading the dump truck 2 with the loader 3 is performed.
  • the dump truck 2 loaded with the load leaves the loading point LPP.
  • the course data acquisition unit 411 that acquires the course data CD that indicates the traveling condition of the dump truck 2 including the traveling route RP, and the preset based on the traveling route RP are set.
  • a detection that acquires detection data of a driving range data acquisition unit 412 that acquires the driving range data AD indicating the driving range TM of the dump truck 2 defined by the driving width W, and a detection device 35 that detects the driving direction of the dump truck 2
  • a data acquisition unit 414, a prediction unit 415 that predicts the specified position FP of the dump truck 2 that travels according to the course data CD based on the detection data, and a determination that determines whether or not the specified position FP exists within the travel range TM
  • Driving that stops the dump truck 2 when it is determined that the part 416 and the specified position FP do not exist within the travel range TM
  • the control unit 418 is provided.
  • the travel range TM includes the first travel range TM1 defined by the first travel width W1 and the second travel range W2 defined by the second travel width W2 smaller than the first travel width W1. Including TM2.
  • the dump truck 2 travels from the first travel range TM1 to the second travel range TM2.
  • the operation control unit 418 determines that the specified position FP predicted based on the detected data does not exist in the second travel range TM2.
  • the traveling of the dump truck 2 is stopped. Thereby, when an obstacle exists around the second travel range TM2, the contact between the dump truck 2 and the obstacle is suppressed.
  • the second traveling range TM2 includes a loading point LPP on which a load is loaded on the dump truck 2. Thereby, contact with dump truck 2 and loader 3 which run toward loading point LPP is controlled.
  • the second traveling width W2 is set based on the size of the loader 3. Thereby, contact with dump truck 2 and loader 3 is controlled effectively. Moreover, since the dump truck 2 arrange
  • the traveling condition of the dump truck 2 defined by the course data CD includes the traveling speed V of the dump truck 2.
  • the traveling speed V2 of the dump truck 2 in the second traveling range TM2 is equal to or lower than the traveling speed V1 of the dump truck 2 in the first traveling range TM1.
  • the possibility that the dump truck 2 traveling in the first travel range TM1 and the loader 3 are in contact with each other is low. Therefore, by increasing the traveling speed V1 of the dump truck 2 in the first traveling range TM1, a decrease in mine productivity is suppressed.
  • the first travel width W1 of the first travel range TM1 is large, even if the travel speed V1 of the dump truck 2 is high, the possibility that the specific portion AP moves outside the first travel range TM1 is suppressed. The Thereby, the frequency determined to be course-out is reduced, and the traveling of the dump truck 2 is suppressed from being frequently stopped.
  • the second travel range TM2 close to the loader 3 there is a high possibility that the dump truck 2 traveling in the second travel range TM2 and the loader 3 are in contact with each other.
  • the dump truck when the deviation amount between the specific part AP of the dump truck 2 and the travel route RP is increased by reducing the second travel width W2 of the second travel range TM2, the dump truck is immediately determined to be out of course. Therefore, the contact between the dump truck 2 and the loader 3 can be prevented. Moreover, if the traveling speed V2 of the dump truck 2 traveling in the second traveling range TM2 is increased, the possibility that the specific part AP moves to the outside of the second traveling range TM2 increases. As a result, the frequency at which it is determined that the course is out increases, and the traveling of the dump truck 2 is frequently stopped. As a result, the productivity of the mine is lowered.
  • the front wheel 25F of the dump truck 2 is steered by the steering device 33, and the center position of the axle 27 that supports the rear wheel 25R of the reverse dump truck 2 is set as the specified position FP of the dump truck 2.
  • the specified position FP of the specified specific site AP is predicted. Thereby, the load of the calculation process in prediction of specific site
  • the traveling width W is corrected based on the protrusion amount dy k calculated from the steering angle ⁇ and the dimensions of the dump truck 2.
  • correction is performed to reduce the protrusion amount dy k from the travel width W of the travel range TM acquired by the travel range data acquisition unit 412. That is, when the protrusion amount dy k is large, the traveling width W is small.
  • the traveling width W is reduced to limit the traveling of the dump truck 2, whereby the contact between the dump truck 2 and the obstacle can be more effectively suppressed.
  • the operation control unit 418 stops the traveling of the dump truck 2 when it is determined that the specified position FP of the reversely traveling dump truck 2 does not exist within the traveling range TM, and the course data acquisition unit Based on the new course data CDn acquired at 411, the traveling of the dump truck 2 is resumed.
  • the new course data CDn includes a traveling condition in which the dump truck 2 is moved forward after being moved forward.
  • the course data CD in which the dump truck 2 has failed to enter the loading point LPP is updated to new course data CDn different from the course data CD.
  • the loader 3 is present on the end El side of the traveling range TM.
  • the traveling range TM including one loading point LPP In the traveling range TM including the other loading point LPP, the loading machine 3 is present on the end Er side.
  • the traveling of the dump truck 2 approaching one loading point LPP is arranged outside the end El
  • the traveling of the dump truck 2 is stopped and approaching the other loading point LPP. Even when loading on both sides is performed by stopping the traveling of the dump truck 2 when it is predicted that the specific part AP of the dump truck 2 to be disposed is outside the end Er, Contact with the inserter 3 is prevented.
  • the first travel width W1 of the first travel range TM1 and the second travel width W2 of the second travel range TM2 generated by the management device 10 are changed in steps.
  • the second travel width W may change in a slope shape at the boundary between the first travel range TM1 and the second travel range TM2 generated by the management device 10.
  • the specified position FP is predicted when the dump truck 2 enters the loading point LPP.
  • the specified position FP may be predicted when the dump truck 2 enters the discharge point where the discharge operation of the dump truck 2 is performed.
  • the second travel range TM2 is set so as to include the discharge point, and the specified position FP predicted based on the detection data acquired when the dump truck 2 travels in the first travel range TM1 toward the discharge point.
  • the traveling of the dump truck 2 may be stopped when it is determined that does not exist in the second traveling range TM2.
  • the prediction unit 415 applies the dump truck 2 after traveling the specified distance L from the current position NP based on the detection data acquired when the dump truck 2 exists at the current position NP.
  • the specified position FP of the set specific part AP was predicted.
  • the specified position FP of the dump truck 2 may be the position of the specific part AP set in the dump truck 2 after a specified time has elapsed from when the detection data is acquired.
  • the prediction unit 415 may predict the specified position FP of the dump truck 2 at a future time point after a specified time has elapsed from the current time point, based on detection data acquired at the current time point.
  • the traveling width W of the traveling range TM may not be corrected by the correcting unit 417.
  • the specific part AP for which the specified position FP is predicted may not be the center part of the axle 27, for example, the center part of the axle supporting the front wheel 25F of the dump truck 2, One part of the body frame 21 of the truck 2 may be used.
  • the traveling speed V2 of the dump truck 2 in the second traveling range TM2 may be lower than the traveling speed V1 of the dump truck 2 in the first traveling range TM1.
  • the traveling range TM includes two traveling ranges TM1 and TM2 having different traveling widths W.
  • the traveling range TM may include three or more traveling ranges TM having different traveling widths W.
  • the traveling width W of the traveling range TM may be a single width.
  • the dump truck 2 is an unmanned dump truck.
  • the dump truck 2 may be a manned dump truck that travels according to an operation of a driver who has boarded the dump truck 2.
  • At least some components of the control device 40 may be provided in the management device 10. That is, part of the functions of the course data acquisition unit 411, the travel range data acquisition unit 412, the absolute position data acquisition unit 413, the detection data acquisition unit 414, the prediction unit 415, the determination unit 416, the correction unit 417, and the operation control unit 418. Alternatively, all may be included in the management device 10 provided in the control facility 7.
  • the detection data of the position detector 34 and the detection device 35 provided in the dump truck 2 is transmitted to the management device 10 via the communication system 9, so that the management device 10 is in accordance with the above-described embodiment.
  • a control signal for controlling the operation of the dump truck 2 can be generated. By transmitting the control signal generated by the management device 10 to the dump truck 2 via the communication system 9, the dump truck 2 can travel according to the above-described embodiment.
  • the work vehicle used in the mine has been described as an example.
  • the component demonstrated by the above-mentioned embodiment may be applied to the work vehicle used in the work site different from a mine.
  • the work vehicle may not be the dump truck 2, and may be a work vehicle capable of performing a loading operation such as a wheel loader.
  • SYMBOLS 1 Management system, 2 ... Dump truck (work vehicle), 2F ... Front part, 2R ... Rear part, 3 ... Loading machine, 5 ... Positioning satellite, 6 ... Repeater, 7 ... Control facility, 9 ... Communication system, 10 DESCRIPTION OF SYMBOLS ... Management device, 11 ... Processing unit, 12 ... Storage device, 13 ... Input / output interface, 14 ... Wireless communication device, 15 ... Input device, 16 ... Output device, 21 ... Body frame, 22 ... Dump body, 23 ... Running Device: 24 ... Tire, 25 ... Wheel, 25F ... Front wheel, 25R ... Rear wheel, 26 ... Rear axle, 27 ...
  • Control device 41 Arithmetic processing device 42 Storage device 43 Input / output interface 44 Wireless device 111 Coaster Data generation unit, 112 ... travel range data generation unit, 301 ... lower traveling body, 302 ... upper turning body, 303 ... work machine, 411 ... course data acquisition unit, 412 ... travel range data acquisition unit, 413 ... absolute position data acquisition 414 ... detection data acquisition unit 415 ... prediction unit 416 ... determination unit 417 ... correction unit 418 ... operation control unit AD ... running range data AP ... specific part CD ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)

Abstract

作業車両の制御装置は、走行経路を含む作業車両の走行条件を示すコースデータを取得するコースデータ取得部と、走行経路を基準とする予め設定された走行幅で規定される作業車両の走行範囲を示す走行範囲データを取得する走行範囲データ取得部と、作業車両の走行方向を検出した検出装置の検出データを取得する検出データ取得部と、コースデータに従って走行する作業車両の現在位置から離れた規定位置を検出データに基づいて予測する予測部と、規定位置が走行範囲内に存在するか否かを判定する判定部と、規定位置が走行範囲内に存在しないと判定されたときに作業車両の走行を停止させる運転制御部と、を備える。

Description

作業車両の制御装置、作業車両、及び作業車両の制御方法
 本発明は、作業車両の制御装置、作業車両、及び作業車両の制御方法に関する。
 鉱山のような広域の作業現場においては、無人で走行する作業車両が運搬作業に使用される。作業車両は、積込場において積込機により積荷を積載された後、搬送路を走行して排土場まで移動し、排土場において積荷を排出する。
特開2012-113429号公報
 走行する作業車両とその作業車両の周辺に存在する障害物とが接触してしまうと、作業現場の生産性が低下する可能性がある。
 本発明の態様は、作業現場の生産性の低下を抑制することを目的とする。
 本発明の第1の態様に従えば、走行経路を含む作業車両の走行条件を示すコースデータを取得するコースデータ取得部と、前記走行経路を基準とする予め設定された走行幅で規定される前記作業車両の走行範囲を示す走行範囲データを取得する走行範囲データ取得部と、前記作業車両の走行方向を検出した検出装置の検出データを取得する検出データ取得部と、前記コースデータに従って走行する前記作業車両の現在位置から離れた規定位置を前記検出データに基づいて予測する予測部と、前記規定位置が前記走行範囲内に存在するか否かを判定する判定部と、前記規定位置が前記走行範囲内に存在しないと判定されたときに前記作業車両の走行を停止させる運転制御部と、を備える作業車両の制御装置が提供される。
 本発明の態様によれば、作業現場の生産性の低下を抑制することができる。
図1は、本実施形態に係る作業車両の管理システムの一例を模式的に示す図である。 図2は、本実施形態に係るダンプトラックを後方から見た斜視図である。 図3は、本実施形態に係る管理装置及び制御装置の一例を示す機能ブロック図である。 図4は、本実施形態に係るコースデータ及び走行範囲データを模式的に示す図である。 図5は、本実施形態に係る積込場における走行範囲データの一例を模式的に示す図である。 図6は、本実施形態に係る制御装置の動作を説明するための模式図である。 図7は、本実施形態に係る制御装置の動作を説明するための模式図である。 図8は、本実施形態に係る規定位置の予測方法を説明するための模式図である。 図9は、本実施形態に係る規定位置の予測方法を説明するための模式図である。 図10は、本実施形態に係る走行幅の補正方法を説明するための模式図である。 図11は、本実施形態に係る補正部により補正された後の走行範囲の一例を模式的に示す図である。 図12は、本実施形態に係るダンプトラックの制御方法の一例を示すフローチャートである。 図13は、本実施形態に係るダンプトラックの制御方法の一例を示すフローチャートである。 図14は、本実施形態に係る積込場における走行範囲データの一例を模式的に示す図である。 図15は、本実施形態に係る積込場における走行範囲データの一例を模式的に示す図である。
 以下、本発明に係る実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。以下で説明する実施形態の構成要素は適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。
[管理システム]
 本実施形態に係る作業車両2の管理システム1について説明する。図1は、本実施形態に係る作業車両2の管理システム1の一例を模式的に示す図である。管理システム1は、作業車両2の運行管理を実施する。本実施形態において、作業車両2は、鉱山を走行可能な運搬車両であるダンプトラック2である。
 図1に示すように、ダンプトラック2は、鉱山の作業場PA及び作業場PAに通じる搬送路HLの少なくとも一部を走行する。作業場PAは、積込場LPA及び排土場DPAの少なくとも一方を含む。搬送路HLは、交差点ISを含む。ダンプトラック2は、搬送路HL及び作業場PAに設定されたコースデータCDに従って走行する。
 積込場LPAは、ダンプトラック2に積荷を積載する積込作業が実施されるエリアである。積込場LPAにおいて、油圧ショベルのような積込機3が稼働する。排土場DPAは、ダンプトラック2から積荷が排出される排出作業が実施されるエリアである。排土場DPAには、例えば破砕機CRが設けられる。
 管理システム1は、管理装置10と、通信システム9とを備える。管理装置10は、コンピュータシステムを含み、鉱山に設けられる管制施設7に設置される。通信システム9は、管理装置10とダンプトラック2との間でデータ通信及び信号通信を実施する。通信システム9は、データ及び信号を中継する中継器6を複数有してもよい。管理装置10とダンプトラック2とは、通信システム9を介して無線通信する。
 本実施形態において、ダンプトラック2は、運転者の操作によらずに無人で走行する無人ダンプトラックである。ダンプトラック2は、管理装置10からの指令信号に基づいて鉱山を走行する。
 本実施形態において、ダンプトラック2の位置が、GNSS(Global Navigation Satellite System:全地球航法衛星システム)を利用して検出される。全地球航法衛星システムは、GPS(Global Positioning System:全地球測位システム)を含む。GNSSは、複数の測位衛星5を有する。GNSSは、緯度、経度、及び高度の座標データで規定される位置を検出する。GNSSにより検出される位置は、グローバル座標系において規定される絶対位置である。GNSSにより、鉱山におけるダンプトラック2の絶対位置が検出される。
[ダンプトラック]
 次に、本実施形態に係るダンプトラック2について説明する。図2は、本実施形態に係るダンプトラック2を後方から見た斜視図である。図2に示すように、ダンプトラック2は、車体フレーム21と、車体フレーム21に支持されるダンプボディ22と、車体フレーム21を支持して走行する走行装置23と、制御装置40とを備える。
 走行装置23は、タイヤ24が装着される車輪25を有する。車輪25は、前輪25Fと後輪25Rとを含む。前輪25Fは、操舵装置33により操舵される。後輪25Rは、操舵されない。車輪25は、回転軸AXを中心に回転する。
 以下の説明においては、後輪25Rの回転軸AXと平行な方向を適宜、車幅方向と称し、ダンプトラック2の進行方向を適宜、前後方向、と称し、車幅方向及び前後方向のそれぞれと直交する方向を適宜、上下方向、と称する。
 前後方向の一方が前方であり、前方の逆方向が後方である。車幅方向の一方が右方であり、右方の逆方向が左方である。上下方向の一方が上方であり、上方の逆方向が下方である。前輪25Fは、後輪25Rよりも前方に配置される。前輪25Fは、車幅方向両側に配置される。後輪25Rは、車幅方向両側に配置される。ダンプボディ22は、車体フレーム21よりも上方に配置される。
 車体フレーム21は、走行装置23を駆動させるための駆動力を発生する駆動装置31を支持する。ダンプボディ22は、積荷が積まれる部材である。
 走行装置23は、駆動装置31で発生した駆動力を後輪25Rに伝達するリアアクスル26を有する。リアアクスル26は、後輪25Rを支持する車軸27を含む。リアアクスル26は、駆動装置31で発生した駆動力を後輪25Rに伝達する。後輪25Rは、リアアクスル26から供給された駆動力により回転軸AXを中心に回転する。これにより、走行装置23は走行する。
 ダンプトラック2は、前進可能及び後進可能である。前進とは、ダンプトラック2の前部2Fが進行方向を向いている状態で走行することをいう。後進とは、ダンプトラック2の後部2Rが進行方向を向いている状態で走行することをいう。
 制御装置40は、ダンプトラック2を制御する。制御装置40は、管理装置10から送信される指令信号に基づいてダンプトラック2を制御することができる。
[管理装置及び制御装置]
 次に、本実施形態に係る管理装置10及び制御装置40について説明する。図3は、本実施形態に係る管理装置10及び制御装置40の一例を示す機能ブロック図である。管理装置10は、管制施設7に設置される。制御装置40は、ダンプトラック2に搭載される。管理装置10と制御装置40とは、通信システム9を介して無線通信する。
 管理装置10は、コンピュータシステムを含む。管理装置10は、CPU(Central Processing Unit)のようなプロセッサを含む演算処理装置11と、ROM(Read Only Memory)又はRAM(Random Access Memory)のようなメモリ及びストレージを含む記憶装置12と、入出力インターフェース13とを有する。
 管理装置10は、無線通信装置14と接続される。無線通信装置14は、管制施設7に配置される。管理装置10は、無線通信装置14及び通信システム9を介して、ダンプトラック2と通信する。
 管理装置10は、入力装置15及び出力装置16と接続される。入力装置15及び出力装置16は、管制施設7に設置される。入力装置15は、例えばコンピュータ用のキーボード、マウス、及びタッチパネルの少なくとも1つを含む。入力装置15が操作されることにより生成された入力データは、管理装置10に出力される。出力装置16は、表示装置を含む。表示装置は、液晶ディスプレイ(Liquid Crystal Display:LCD)又は有機ELディスプレイ(Organic Electroluminescence Display:OELD)のようなフラットパネルディスプレイを含む。出力装置16は、管理装置10から出力される表示データに基づいて作動する。なお、出力装置16は、例えば印刷装置でもよい。
 演算処理装置11は、コースデータ生成部111と、走行範囲データ生成部112とを有する。
 コースデータ生成部111は、鉱山を走行するダンプトラック2の走行条件を示すコースデータCDを生成する。ダンプトラック2の走行条件は、ダンプトラック2の走行経路RP、走行速度V、加速度、減速度、及び走行方向の少なくとも1つを含む。また、ダンプトラック2の走行条件は、ダンプトラック2の停車位置及び発車位置の少なくとも一方を含む。
 走行範囲データ生成部112は、ダンプトラック2の走行経路RPを基準とする予め設定された走行幅Wで規定されるダンプトラック2の走行範囲TMを示す走行範囲データADを生成する。走行経路RPは、線状に設定される。走行範囲TMは、走行経路RPを含むように走行経路RPに沿って帯状に設定される。
 入出力インターフェース13は、コースデータ生成部111で生成されたコースデータCDをダンプトラック2に出力する。また、入出力インターフェース13は、走行範囲データ生成部112で生成された走行範囲データADをダンプトラック2に出力する。入出力インターフェース13は、コースデータCD及び走行範囲データADをダンプトラック2に出力する出力部として機能する。演算処理装置11で生成されたコースデータCD及び走行範囲データADは、入出力インターフェース13及び通信システム9を介してダンプトラック2に出力される。
 制御装置40は、コンピュータシステムを含む。制御装置40は、CPU(Central Processing Unit)のようなプロセッサを含む演算処理装置41と、ROM(Read Only Memory)又はRAM(Random Access Memory)のようなメモリ及びストレージを含む記憶装置42と、入出力インターフェース43とを有する。
 制御装置40は、無線通信装置44と接続される。無線通信装置44は、ダンプトラック2に配置される。制御装置40は、無線通信装置44及び通信システム9を介して、管理装置10と通信する。
 制御装置40は、駆動装置31、ブレーキ装置32、及び操舵装置33と接続される。また、制御装置40は、位置検出器34、及び検出装置35と接続される。駆動装置31、ブレーキ装置32、及び操舵装置33、位置検出器34、及び検出装置35は、ダンプトラック2に搭載される。
 駆動装置31は、ダンプトラック2の走行装置23を駆動するために作動する。駆動装置31は、走行装置23を駆動させるための駆動力を発生する。駆動装置31は、後輪25Rを回転させるための駆動力を発生する。駆動装置31は、例えばディーゼルエンジンのような内燃機関を含む。なお、駆動装置31が、内燃機関の作動により電力を発生する発電機と、発電機で発生した電力に基づいて作動する電動モータとを含んでもよい。
 ブレーキ装置32は、走行装置23を制動するために作動する。ブレーキ装置32の作動により、走行装置23の走行が減速したり停止したりする。
 操舵装置33は、ダンプトラック2の走行装置23を操舵するために作動する。ダンプトラック2は、操舵装置33により操舵される。操舵装置33は、前輪25Fを操舵する。
 位置検出器34は、ダンプトラック2の絶対位置を検出する。位置検出器34は、測位衛星5からのGPS信号を受信するGPSアンテナと、GPSアンテナで受信されたGPS信号に基づいてダンプトラック2の絶対位置を算出するGPS演算器とを含む。
 検出装置35は、ダンプトラック2の走行方向を検出する。検出装置35は、操舵装置33によるダンプトラック2の操舵角を検出する操舵角センサ35Aと、ダンプトラック2の方位角を検出する方位角センサ35Bとを含む。操舵角センサ35Aは、例えば操舵装置33に設けられたロータリーエンコーダを含む。方位角センサ35Bは、例えば車体フレーム21に設けられたジャイロセンサを含む。
 演算処理装置41は、コースデータ取得部411と、走行範囲データ取得部412と、絶対位置データ取得部413と、検出データ取得部414と、予測部415と、判定部416と、補正部417と、運転制御部418とを有する。
 コースデータ取得部411は、管理装置10のコースデータ生成部111で生成されたコースデータCDを取得する。
 走行範囲データ取得部412は、管理装置10の走行範囲データ生成部112で生成された走行範囲データADを取得する。
 絶対位置データ取得部413は、ダンプトラック2の絶対位置を示す絶対位置データを位置検出器34から取得する。本実施形態において、位置検出器34は、ダンプトラック2に設けられているGPSアンテナの絶対位置を検出する。絶対位置データ取得部413は、位置検出器34で検出されたGPSアンテナの絶対位置に基づいて、ダンプトラック2の特定部位APの絶対位置を示す絶対位置データを算出する。本実施形態において、ダンプトラック2の特定部位APは、車幅方向における車軸27の中心部位である。
 GPSアンテナと特定部位APとの相対位置は、例えばダンプトラック2の設計データ又は諸元データから導出可能な既知データであり、記憶装置42に記憶されている。絶対位置データ取得部413は、位置検出器34で検出されたGPSアンテナの絶対位置と、記憶装置42に記憶されているGPSアンテナと特定部位APとの相対位置とに基づいて、ダンプトラック2の特定部位APの絶対位置を示す絶対位置データを算出することができる。
 検出データ取得部414は、ダンプトラック2の走行方向を検出した検出装置35の検出データを検出装置35から取得する。検出データは、操舵角センサ35Aで検出された操舵角データ、及び方位角センサ35Bで検出された方位角データを含む。検出データ取得部414は、操舵角データを操舵角センサ35Aから取得し、方位角データを方位角センサ35Bから取得する。
 予測部415は、コースデータCDに従って走行するダンプトラック2の現在位置NPから離れた規定位置FPを検出データに基づいて予測する。ダンプトラック2の規定位置FPとは、検出データを取得時点のダンプトラック2の現在位置NPからダンプトラック2が規定距離L走行後のダンプトラック2の位置をいう。本実施形態において、規定距離Lは、例えば3[m]である。予測部415は、ダンプトラック2が現在位置NPに存在するときに取得された検出データに基づいて、現在位置NPから3[m]走行後のダンプトラック2の規定位置FPを予測する。
 判定部416は、ダンプトラック2の規定位置FPが走行範囲TM内に存在するか否かを判定する。すなわち、判定部416は、予測部415で予測されたダンプトラック2の規定位置FPが、走行範囲データ取得部412で取得された走行範囲データADで規定される走行範囲TM内に存在するか否かを判定する。
 補正部417は、検出データ取得部414で取得された方位角データに基づいて、走行範囲データADで規定される走行幅Wを補正する。
 運転制御部418は、コースデータ取得部411で取得されたコースデータCDに基づいて、ダンプトラック2の駆動装置31、ブレーキ装置32、及び操舵装置33の少なくとも1つを制御する運転制御信号を出力する。運転制御信号は、駆動装置31に出力されるアクセル信号、ブレーキ装置32に出力されるブレーキ指令信号、及び操舵装置33に出力されるステアリング指令信号を含む。
 運転制御部418は、予測部415で予測されたダンプトラック2の規定位置FPが走行範囲TM内に存在しないと判定されたときにダンプトラック2の走行を停止させる。
[コースデータ及び走行範囲データ]
 次に、本実施形態に係るコースデータCD及び走行範囲データADについて説明する。図4は、本実施形態に係るコースデータCD及び走行範囲データADを模式的に示す図である。
 コースデータCDは、ダンプトラック2の走行条件を規定する。ダンプトラック2の走行条件は、ダンプトラック2の走行経路RP、走行速度V、加速度、減速度、及び走行方向の少なくとも1つを含む。
 図4に示すように、コースデータCDは、一定の間隔Gで設定される複数のコース点PIの集合体を含む。複数のコース点PIのそれぞれは、ダンプトラック2の絶対位置データと、コース点PIが設定された位置におけるダンプトラック2の走行速度データと、コース点PIが設定された位置におけるダンプトラック2の走行方向データとを含む。
 複数のコース点PIを通過する軌跡によって、ダンプトラック2の走行経路RPが規定される。走行経路RPは、線状に設定される。走行速度データに基づいて、そのコース点PIが設定された位置におけるダンプトラック2の走行速度Vが規定される。走行方向データに基づいて、そのコース点PIが設定された位置におけるダンプトラック2の走行方向が規定される。コース点PIによって規定される走行経路RPは、目標走行経路である。コース点PIによって規定されるダンプトラック2の走行速度Vは、目標走行速度である。コース点PIによって規定されるダンプトラック2の走行方向は、目標走行方向である。
 ダンプトラック2は、コースデータCDに従って鉱山を走行する。ダンプトラック2は、ダンプトラック2の特定部位APが走行経路RPに沿って移動するように、鉱山を走行する。本実施形態において、ダンプトラック2の特定部位APは、車幅方向における車軸27の中心部位である。
 走行範囲データADは、ダンプトラック2の走行経路RPを基準とする予め設定された走行幅Wで規定されるダンプトラック2の走行範囲TMを規定する。
 図4に示すように、走行範囲TMは、走行経路RPを含み、走行経路RPに沿って帯状に設定される。走行範囲TMの幅方向において、走行経路RPは、走行範囲TMの中心に規定される。すなわち、走行範囲TMの幅方向において、走行経路RPと走行範囲TMの一方の端部Erとの距離Wrと、走行経路RPと走行範囲TMの他方の端部Elとの距離Wlとは、実質的に等しい。なお、走行範囲TMの幅方向において、走行経路RPは、走行範囲TMの中心から外れた位置に規定されてもよい。
 運転制御部418は、位置検出器34で検出された絶対位置データに基づいて、ダンプトラック2の特定部位APと走行経路RPとが一致した状態で走行するように、走行装置23を制御する。
 また、運転制御部418は、位置検出器34で検出された絶対位置データに基づいて、ダンプトラック2の特定部位APが走行経路RPから外れて走行範囲TMの外側に移動したと判定したとき、ダンプトラック2の走行を停止させる。
 以下の説明においては、ダンプトラック2の特定部位APが走行範囲TMの外側に移動した状態を適宜、コースアウト、と称する。
 ダンプトラック2は、鉱山の荒れた路面を走行する。本実施形態においては、特定部位APが走行経路RPから外れても、ダンプトラック2の走行を許容する走行範囲TMが設定される。特定部位APが走行経路RPから外れても走行範囲TMに配置されているとき、運転制御部418は、ダンプトラック2の走行を継続させる。一方、走行経路RPから外れた特定部位APが走行範囲TMの外側に配置されたとき、ダンプトラック2はコースアウトしたと判定される。ダンプトラック2がコースアウトしたと判定されたとき、運転制御部418は、ダンプトラック2の走行を停止させる。
 走行範囲データ生成部112は、走行範囲TMの走行幅Wを調整可能である。鉱山においては、特定部位APと走行経路RPとのずれ量が大きくても許容されるエリアと、特定部位APと走行経路RPとのずれ量を小さくする必要があるエリアとが存在する。換言すれば、鉱山においては、特定部位APと走行経路RPとの相対距離が大きくても許容されるエリアと、特定部位APと走行経路RPとの相対距離を小さくする必要があるエリアとが存在する。走行範囲データ生成部112は、鉱山のエリアに基づいて走行幅Wを調整する。走行範囲データ生成部112は、特定部位APと走行経路RPとのずれ量が大きくても許容されるエリアにおいては、大きい走行幅Wを設定し、特定部位APと走行経路RPとのずれ量を小さくする必要があるエリアにおいては、小さい走行幅Wを設定する。
 走行範囲データ生成部112は、例えば走行するダンプトラック2の周辺に存在する障害物に基づいて、走行幅Wを設定する。コースデータ生成部111は、走行許容幅Wに基づいて、ダンプトラック2の走行速度Vを設定する。
 例えば、走行経路RPに従って走行するダンプトラック2の周辺に障害物が存在しないエリアの場合、走行幅Wを大きくしても、ダンプトラック2と障害物とが接触する可能性は低い。そのため、ダンプトラック2の周辺に障害物が存在しないエリアの場合、走行範囲データ生成部112は、大きい走行幅Wを設定する。ダンプトラック2と障害物との接触の可能性が低く、大きい走行範囲Wが設定された走行範囲TMにおいては、コースデータ生成部111は、ダンプトラック2の走行速度Vを高める。ダンプトラック2の走行速度Vが高い場合、特定部位APと走行経路RPとのずれ量が大きくなる可能性が高いものの、走行幅Wが大きいため、コースアウトと判定される頻度は低減される。ダンプトラック2の走行速度Vを高めてもコースアウトと判定される頻度が低減されるため、鉱山の生産性の低下が抑制される。
 一方、走行経路RPに従って走行するダンプトラック2の周辺に障害物が存在するエリアの場合、走行幅Wを大きくしてしまうと、ダンプトラック2と障害物とが接触する可能性が高くなる。そのため、ダンプトラック2の周辺に障害物が存在するエリアの場合、走行範囲データ生成部112は、小さい走行幅Wを設定する。ダンプトラック2の走行速度Vが高い場合、特定部位APと走行経路RPとのずれ量が大きくなる可能性が高い。そのため、走行幅Wが小さい場合、ダンプトラック2の走行速度Vを高くすると、コースアウトと判定される頻度が高くなり、鉱山の生産性が低下する。したがって、ダンプトラック2と障害物との接触を抑制するために小さい走行範囲Wが設定された走行範囲TMにおいては、コースデータ生成部111は、ダンプトラック2の走行速度Vを低くする。
[積込場における走行範囲データ]
 次に、本実施形態に係る積込場LPAにおける走行範囲データADについて説明する。図5は、本実施形態に係る積込場LPAにおける走行範囲データADの一例を模式的に示す図である。
 積込場LPAにおいて、ダンプトラック2は、スイッチバックして積込機3に接近する。スイッチバックとは、前進するダンプトラック2が鋭角的に進行方向を転換して後進する動作をいう。図5に示す例では、コースデータCDは、積込場LPAにスイッチバック点SBPを規定する。積込場LPAに進入したダンプトラック2は、スイッチバック点SBPでスイッチバックして、後進しながら積込機3に接近する。
 また、コースデータCDは、積込場LPAに積込点LPPを規定する。積込点LPPは、積込機3がダンプトラック2に積荷を積載可能な位置である。ダンプトラック2は、後進しながら積込点LPPに移動する。ダンプトラック2が積込点LPPに配置された後、積込機3によってダンプトラック2に積荷が積載される。
 積込場LPAにおいても、走行経路RPを基準として走行範囲TMが規定される。本実施形態において、積込場LPAに規定される走行範囲TMは、第1走行幅W1で規定される第1走行範囲TM1と、第1走行幅W1よりも小さい第2走行幅W2で規定される第2走行範囲TM2とを含む。
 図5に示すように、第2走行範囲TM2は、ダンプトラック2に積荷が積載される積込点LPPを含む。ダンプトラック2は、第1走行範囲TM1から第2走行範囲TM2に走行する。ダンプトラック2は、第1走行範囲TM1を後進しながら、第2走行範囲TM2に設定されている積込点LPPに接近する。
 積込機3は、第2走行範囲TM2の幅方向外側に配置される。第2走行幅TM2は、ダンプトラック2に積荷を積載する積込機3のサイズに基づいて設定される。
 積込機3は、下部走行体301と、下部走行体301に支持される上部旋回体302と、上部旋回体302に移動可能に支持される作業機303とを有する。作業機303は、ブームとアームとバケットとを含む。積込点LPPは、作業機303の旋回半径の内側に設定される。第2走行幅W2が大きい場合、例えば上部旋回体302に近い第2走行範囲TM2の端部Elに特定部位APが配置されてしまうと、ダンプトラック2と積込機3とが接触してしまう可能性が高くなる。第2走行幅W2が小さい場合、特定部位APが走行経路RPから僅かに外れた場合でもコースアウトと判定され、ダンプトラック2の走行が頻繁に停止してしまい、鉱山の生産性が低下する。本実施形態においては、積込点LPPに移動するダンプトラック2が積込機3の上部旋回体302又は下部走行体301と接触しないように、且つ、鉱山の生産性が低下しないように、上部旋回体302及び下部走行体301のサイズに基づいて、第2走行幅W2が規定される。特定部位APが第2走行範囲TM2に存在するようにダンプトラック2が走行することにより、ダンプトラック2と積込機3との接触が抑制される。
 本実施形態において、第2走行範囲TM2におけるダンプトラック2の走行速度V2は、第1走行範囲TM1におけるダンプトラック2の走行速度V1以下である。積込機3は、ダンプトラック2の障害物とみなすことができる。積込点LPPから遠い第1走行範囲TM1においては、第1走行範囲TM1を走行するダンプトラック2と積込機3とが接触する可能性は低い。そのため、第1走行範囲TM1におけるダンプトラック2の走行速度V1を高めることにより、鉱山の生産性の低下が抑制される。また、鉱山の荒れた路面を走行するダンプトラック2の走行速度V1が高くなると、特定部位APと走行経路RPとのずれ量が大きくなる可能性が高い。第1走行範囲TM1の第1走行幅W1は大きいので、ダンプトラック2の走行速度V1が高くても、特定部位APが第1走行範囲TM1の外側に移動してしまうことが抑制される。これにより、コースアウトと判定される頻度が低減され、ダンプトラック2の走行が頻繁に停止されることが抑制される。したがって、鉱山の生産性の低下が抑制される。
 一方、積込点LPPを含む第2走行範囲TM2においては、第2走行範囲TM2を走行するダンプトラック2と積込機3とが接触する可能性が高い。そのため、走行範囲データ生成部112は、第2走行範囲TM2の第2走行幅W2を小さくする。これにより、ダンプトラック2と積込機3とが接触する可能性が抑制される。第2走行範囲TM2の第2走行幅W2が小さいので、第2走行範囲TM2においてダンプトラック2が走行速度V1で後進すると、特定部位APが第2走行範囲TM2の外側にコースアウトしてしまう可能性が高くなる。その結果、コースアウトと判定される頻度が高くなり、ダンプトラック2の走行が頻繁に停止され、鉱山の生産性が低下する。小さい第2走行幅W2で規定される第2走行範囲TM2においては、ダンプトラック2の走行速度V2を走行速度V1よりも低減することにより、コースアウトと判定される頻度が低減され、ダンプトラック2の走行が頻繁に停止されることが抑制される。したがって、鉱山の生産性の低下が抑制される。
[規定位置の予測]
 次に、本実施形態に係る制御装置40の動作の一例について説明する。図6及び図7は、本実施形態に係る制御装置40の動作を説明するための模式図である。
 本実施形態において、予測部415は、積込場LPAにおいてコースデータCDに従って走行するダンプトラック2の規定位置FPを、検出装置35の検出データに基づいて予測する。本実施形態において、予測部415は、積込点LPPに向かって後進するダンプトラック2に設定された特定部位APの規定位置FPを予測する。
 図6に示すように、特定部位APの規定位置FPとは、ダンプトラック2の走行方向の検出データを検出データ取得部414が取得したときの特定部位APの現在位置NPからダンプトラック2が規定距離Lだけ走行した後の特定部位APの位置をいう。本実施形態において、規定距離Lは3[m]である。予測部415は、ダンプトラック2の特定部位APが現在位置NPを通過したときに取得されたダンプトラック2の走行方向の検出データに基づいて、ダンプトラック2が3[m]だけ走行した後のダンプトラック2の特定部位APの規定位置FPを予測する。
 本実施形態において、コース点PIの間隔Gは1[m]である。図6に示すように、予測部415は、特定部位APが現在位置NPであるコース点PI0を通過したときに取得されたダンプトラック2の走行方向の検出データに基づいて、3つ先のコース点PI3を通過する特定部位APの規定位置FPを予測する。なお、本実施形態において、特定部位APがコース点PI(PI0,PI3)を通過することは、特定部位APとコース点PIとが完全に一致することのみならず、ダンプトラック2の進行方向における特定部位APの絶対位置とコース点PIの絶対位置とが実質的に一致することも含む。
 予測部415は、ダンプトラック2が第1走行範囲TM1を走行しているときに取得されたダンプトラック2の走行方向の検出データに基づいて、第2走行範囲TM2と特定部位APの規定位置FPとの相対位置を予測する。
 判定部416は、予測部415で予測された特定部位APの規定位置FPが第2走行範囲TM2内に存在するか否かを判定する。本実施形態において、コース点PI3は、第2走行範囲TM2に規定されている複数のコース点PIのうち、第1走行範囲TM1に最も近いコース点PIである。判定部416は、ダンプトラック2が第1走行範囲TM1を走行しているときに取得された検出データに基づいて予測された特定部位APの規定位置FPが第2走行範囲TM2に存在するか否かを判定する。
 運転制御部418は、ダンプトラック2が第1走行範囲TM1を走行しているときに取得された検出データに基づいて予測された特定部位APの規定位置FPが第2走行範囲TM2に存在しないと判定されたときにダンプトラック2の走行を停止させる。
 すなわち、本実施形態において、制御装置40は、ダンプトラック2が第1走行範囲TM1を走行しているとき、ダンプトラック2の特定部位APが将来において第2走行範囲TM2をコースアウトするか否かを予測する。
 第2走行範囲TM2の第2走行幅W2は、第1走行範囲TM1の第1走行幅W1よりも小さい。そのため、図6に示すように、例えば特定部位APが第1走行範囲TM1の幅方向の端部Elに位置する状態において、ダンプトラック2が真っ直ぐに後進した場合、特定部位APの規定位置FPは、第2走行範囲TM2の外側に配置されると予測される。この場合、ダンプトラック2は、積込機3に接近し、積込機3に接触する可能性が高くなる。
 また、図7に示すように、例えば特定部位APが第1走行範囲TM1の幅方向の端部Erに位置する状態において、ダンプトラック2が旋回しながら後進した場合、特定部位APの規定位置FPは、第2走行範囲TM2の外側に配置されると予測される。この場合も、ダンプトラック2は、積込機3に接近し、積込機3に接触する可能性が高くなる。
 本実施形態においては、ダンプトラック2が第1走行範囲TM1を走行しているときに、規定位置FPが第2走行範囲TM2に存在するか否かが予測され、規定位置FPが第2走行範囲TM2に存在しないと予測されたときに、特定部位APが第1走行範囲TM1から出る前に、ダンプトラック2の走行が停止される。これにより、ダンプトラック2と積込機3との接触が未然に防止される。
 上述のように、本実施形態において、第2走行範囲TM2におけるダンプトラック2の走行速度V2は、第1走行範囲TM1におけるダンプトラック2の走行速度V1以下である。そのため、ダンプトラック2が第2走行範囲TM2に入った後に特定部位APが第2走行範囲TM2をコースアウトしたと判定された場合、ダンプトラック2が低速走行を開始した後にダンプトラック2の走行が停止されることとなる。その結果、コースアウトと判定されるまでの時間が長期化し、鉱山の生産性が低下する。
 本実施形態においては、ダンプトラック2が第2走行範囲TM2に入る前に特定部位APが第2走行範囲TM2をコースアウトするか否かが予測される。すなわち、ダンプトラック2が低速走行を開始する前に、特定部位APが第2走行範囲TM2をコースアウトすると予測された場合、ダンプトラック2の走行が停止される。特定部位APが第2走行範囲TM2をコースアウトすると予測された場合、ダンプトラック2の走行が早期に停止されるため、鉱山の生産性の低下を抑制することができる。
[規定位置の予測方法]
 次に、本実施形態に係る規定位置FPの予測方法について説明する。図8及び図9は、本実施形態に係る規定位置FPの予測方法を説明するための模式図である。
 図8を参照しながら、現在位置NPにおける操舵角δから規定距離L[m]だけ後進した後のダンプトラック2に設定された特定部位APの規定位置FPの算出方法について説明する。
 ダンプトラックのホイールベースをl[m]、操舵角をδ[rad]、後輪25Rを支持する車軸27の中心部位に規定された特定部位APを基準とするダンプトラック2の旋回半径をR[m]としたとき、旋回半径Rは、(1)式に基づいて算出される。
Figure JPOXMLDOC01-appb-M000001
 規定距離Lだけ後進する区間において操舵角δは一定であると仮定すると、ダンプトラック2の特定部位APの向きの変化量dh[rad]は、旋回半径Rに対して規定距離Lと同一寸法の弧を張るときの内角と等しい。すなわち、変化量dhは、(2)式に基づいて算出される。
Figure JPOXMLDOC01-appb-M000002
 したがって、ダンプトラック2に規定される車体座標系における前後方向をX軸方向とし、ダンプトラック2に規定される車体座標系における車幅方向をY軸方向とし、ダンプトラック2の前方向を+X方向とし、ダンプトラック2の左方向を+Y方向としたとき、規定距離Lだけ後進した後の特定部位APの規定位置FPのX軸方向の変化量dx[m]及びY軸方向の変化量dy[m]はそれぞれ、(3)式及び(4)式に基づいて算出される。但し、操舵角δは左を正の値とする。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 変化量dxは、特定部位APの現在位置NPを基準とする規定位置FPのX軸方向の座標であり、変化量dyは、特定部位APの現在位置NPを基準とする規定位置FPのY軸方向の座標である。このように、(3)式及び(4)式に基づいて、特定部位APが現在位置NPに存在し、一定の操舵角δで規定距離L[m]だけ後進した後のダンプトラック2の特定部位APの規定位置FPが予測される。
 次に、図9を参照しながら、図8を参照して説明した予測方法により予測された規定位置FPに対して、車体座標系のX軸からダンプトラック2が角度θだけ回転したときのダンプトラック2の特定部位APの規定位置FPの算出方法について説明する。
 回転後の特定部位APの規定位置FPのX軸方向の座標をdx[m]、Y軸方向の座標をdy[m]としたとき、座標dyは、(5)式に基づいて算出される。
Figure JPOXMLDOC01-appb-M000005
 ここで、「x≪1」のとき、2次までのテイラー展開の結果より、(6)式に近似できる。
Figure JPOXMLDOC01-appb-M000006
 「θ≪1」、「δ≪1」と仮定し、「cosθ~1」と近似したとき、座標dyは、(7)式に基づいて算出される。
Figure JPOXMLDOC01-appb-M000007
 このように、規定距離Lだけ後進した後の特定部位APの規定位置FPは、角度θ及び操舵角δの1次式の和として算出可能である。
[はみ出し量に基づく走行幅の補正]
 本実施形態において、補正部417は、方位角θに基づいて走行幅Wを補正する。図10は、本実施形態に係る走行幅Wの補正方法を説明するための模式図である。
 図10に示すように、前輪25Fが操舵されることにより、ダンプトラック2は車体座標系のX軸から角度θだけ回転する。車体座標系のX軸からダンプトラック2が角度θだけ回転したとき、ダンプトラック2は、回転前の状態からY軸方向にはみ出し量dyだけはみ出す。はみ出し量dyは、(8)式に基づいて算出される。
Figure JPOXMLDOC01-appb-M000008
 (8)式において、l(θ)は、特定部位APを中心にダンプトラック2を角度θだけ回転させたときの特定部位APからダンプトラック2がY軸方向に最もはみ出した部分HPまでのY軸方向における距離であり、(9)式に基づいて算出される。
Figure JPOXMLDOC01-appb-M000009
 (8)式において、ηは、回転前のダンプトラック2の特定部位APと部分HPとを結ぶ直線とX軸とがなす角度である。ダンプトラック2の車幅をw、ダンプトラック2の特定部位APと後端部との距離をbとしたとき、角度ηは、(10)式に基づいて算出される。
Figure JPOXMLDOC01-appb-M000010
 また、特定部位APと部分HPとの距離をRとしたとき、距離Rは、(11)式に基づいて算出される。
Figure JPOXMLDOC01-appb-M000011
 以上により、はみ出し量dyは、(12)式に基づいて算出される。
Figure JPOXMLDOC01-appb-M000012
 本実施形態において、補正部417は、操舵角δに基づいて変化するダンプトラック2の回転量を示す角度θと、ダンプトラック2の設計データ又は諸元データから導出可能なダンプトラック2の寸法データである距離b及び車幅wとに基づいて、はみ出し量dyを算出する。補正部417は、算出したはみ出し量dyに基づいて、走行幅Wを補正する。
 図11は、本実施形態に係る補正部417により補正された後の走行範囲TMの一例を模式的に示す図である。図11に示すように、ダンプトラック2が操舵されると、操舵角δに基づいて、規定位置FPが変化する。また、ダンプトラック2が操舵され、はみ出し量dyが変化すると、はみ出し量dyに基づいて、走行幅Wが変化する。走行範囲データ生成部112は、例えば図5に示したように、一定の第1走行幅W1の第1走行範囲TM1を生成し、一定の第2走行幅W2の第2走行範囲TM2を生成する。補正部417は、はみ出し量dyに基づいて、走行範囲データ生成部112で生成され走行範囲データ取得部412で取得された第1走行範囲TM1の第1走行幅W1を補正する。また、補正部417は、はみ出し量dyに基づいて、走行範囲データ生成部112で生成され走行範囲データ取得部412で取得された第2走行範囲TM2の第2走行幅W2を補正する。本実施形態において、補正部417は、走行範囲データ取得部412で取得された第1走行範囲TM1の第1走行幅W1からはみ出し量dyを減じる補正を実施する。また、補正部417は、走行範囲データ取得部412で取得された第2走行範囲TM2の第2走行幅W2からはみ出し量dyを減じる補正を実施する。すなわち、走行範囲データ取得部412で取得された第1走行幅W1からはみ出し量dyを減じた後の第1走行幅W1が補正後の第1走行幅W1aである。走行範囲データ取得部412で取得された第2走行幅W2からはみ出し量dyを減じた後の第2走行幅W2が補正後の第2走行幅W2aである。
 運転制御部418は、補正部417により補正された後の第1走行範囲TM1及び第2走行範囲TM2に基づいて、ダンプトラック2の走行を制御する。補正部417により補正された後の第1走行範囲TM1及び第2走行範囲TM2から特定部位APがコースアウトしたと判定されたとき、運転制御部418は、ダンプトラック2の走行を停止する。また、判定部416は、ダンプトラック2の特定部位APの規定位置FPが補正部417により補正された後の第2走行範囲TM2に存在するか否かを判定する。運転制御部418は、ダンプトラック2の特定部位APの規定位置FPが補正部417により補正された後の第2走行範囲TM2に存在しないと判定されたときにダンプトラック2の走行を停止させる。
 補正部417により走行範囲TMが補正されることにより、ダンプトラック2と積込機3との接触が効果的に抑制される。本実施形態においては、特定部位APが走行範囲TMに存在すれば、コースアウトしたとはみなされず、ダンプトラック2は後進することができる。しかし、例えばダンプトラック2が直進状態で後進せず、僅かに旋回しながら後進したとき、特定部位APが走行範囲TMに存在する場合においても、ダンプトラック2の少なくとも一部と積込機3との距離が短くなり、ダンプトラック2と積込機3とが接触する可能性がある。すなわち、ダンプトラック2が旋回しながら後進すると、特定部位APが走行範囲TMに存在する場合においても、図10を参照して説明したはみ出し量dyに起因して、ダンプトラック2と積込機3とが接触する可能性が高くなる。本実施形態においては、図11を参照して説明したように、補正部417は、はみ出し量dyに基づいて、走行幅Wを減じる補正を実施する。これにより、ダンプトラック2と積込機3とが接触する前に、特定部位APが走行範囲TMからコースアウトするため、ダンプトラック2は早期に停止し、ダンプトラック2と積込機3との接触が抑制される。
[制御方法]
 次に、本実施形態に係るダンプトラック2の制御方法の一例について説明する。図12は、本実施形態に係るダンプトラック2の制御方法の一例を示すフローチャートである。本実施形態においては、ダンプトラック2を後進させながら積込点LPPに接近させるときのダンプトラック2の制御方法について説明する。
 管理装置10のコースデータ生成部111は、走行経路RPを含むダンプトラック2の走行条件を示すコースデータCDを生成する。管理装置10の走行範囲データ生成部112は、走行経路RPを基準とする第1予め設定された走行幅W1で規定されるダンプトラック2の第1走行範囲TM1及び走行経路RPを基準とする第2走行幅W2で規定されるダンプトラック2の第2走行範囲TM2を示す走行範囲データADを生成する。
 管理装置10で生成されたコースデータCD及び走行範囲データADは、通信システム9を介してダンプトラック2の制御装置40に送信される。制御装置40のコースデータ取得部411は、管理装置10から送信されたコースデータCDを取得する。また、制御装置40の走行範囲データ取得部412は、管理装置10から送信された走行範囲データADを取得する(ステップS10)。
 コースデータCDに従って走行するダンプトラック2の絶対位置が位置検出器34によって検出される。ダンプトラック2の特定部位APの絶対位置を示す絶対位置データは、制御装置40の絶対位置データ取得部413に取得される。
 運転制御部418は、特定部位APの絶対位置データに基づいて、特定部位APと走行経路RPとが一致しながらダンプトラック2が走行するように、操舵装置33をフィードバック制御する。
 また、コースデータCDに従って走行するダンプトラック2の走行方向が検出装置35に検出される。ダンプトラック2の走行方向を検出した検出装置35の検出データは、制御装置40の検出データ取得部414に取得される(ステップS20)。
 検出装置35の検出データは、ダンプトラック2の操舵角δを検出する操舵角センサ35Aの検出データ、及びダンプトラック2の方位角θを検出する方位角センサ35Bの検出データを含む。運転制御部418は、検出装置35の検出データに基づいて、特定部位APと走行経路RPとが一致しながらダンプトラック2が走行するように、操舵装置33をフィードバック制御する。
 運転制御部418は、特定部位APと走行経路RPとの偏差に基づいて、操舵装置33をフィードバック制御する。フィードバックのゲインをK、現在位置NPから規定距離Lだけ後進した後の特定部位APの規定位置FPのY軸方向の変化量をdy、ダンプトラック2の回転量の変化量をdθとしたとき、操舵装置33を制御する制御量δFBは、(13)式に基づいて算出される。なお、予測部415における予測に使用される規定距離Lと(13)式で使用される規定距離Lとは、同一の値でもよいし異なる値でもよい。
Figure JPOXMLDOC01-appb-M000013
 なお、ダンプトラック2の走行速度Vの関数をf(v)としたとき、ゲインKは、(14)式で示される。
Figure JPOXMLDOC01-appb-M000014
 (13)式及び(14)式に基づいてフィードバック制御が実施されることにより、特定部位APと走行経路RPとを精度良く一致させることができる。
 予測部415は、コースデータCDに従って走行するダンプトラック2に設定された特定部位APの規定位置FPを検出データに基づいて予測する(ステップS30)。
 判定部416は、ダンプトラック2の絶対位置データに基づいて、積込点LPPに向かって後進するダンプトラック2の特定部位APが図6及び図7を参照して説明した規定のコース点PI0を通過したかを判定する(ステップS40)。
 ステップS40において、後進するダンプトラック2の特定部位APが規定のコース点PI0を通過していないと判定されたとき(ステップS40:No)、制御装置40は、ステップS10の処理に戻る。
 ステップS40において、後進するダンプトラック2の特定部位APが規定のコース点PI0を通過したと判定されたとき(ステップS40:Yes)、判定部416は、予測部415で予測された特定部位APの規定位置FPが第2走行範囲TM2に存在するか否かを判定する(ステップS50)。
 ステップS50において、後進するダンプトラック2の特定部位APの規定位置FPが第2走行範囲TM2に存在すると判定されたとき(ステップS50:Yes)、制御装置40は、ステップS10の処理に戻る。すなわち、特定部位APの規定位置FPが第2走行範囲TM2に存在すると判定されたとき、積込点LPPに向かうダンプトラック2の後進は継続される。
 ステップS50において、後進するダンプトラック2の特定部位APの規定位置FPが第2走行範囲TM2に存在しないと判定されたとき(ステップS50:No)、運転制御部418は、ダンプトラック2の走行を停止させる(ステップS60)。これにより、ダンプトラック2が積込機3に接触することが抑制される。
 次に、ステップS60において走行が停止されたダンプトラック2の走行を再開させるときのダンプトラック2の制御方法の一例について説明する。図13は、本実施形態に係る走行停止後のダンプトラック2の走行を再開させるときのダンプトラック2の制御方法の一例を示すフローチャートである。
 後進するダンプトラック2の走行が停止されたとき、積込機3の運転者は、積込機3に設けられている操作装置を操作する。操作装置が操作されることにより、新規コースデータの生成を指令する指令信号及びダンプトラック2の走行の再開を指令する指令信号が生成される。操作装置が操作されることにより生成された指令信号は、通信システム9を介して管理装置10に送信される。
 管理装置10のコースデータ生成部111は、新規コースデータCDnを生成する。また、管理装置10の走行範囲データ生成部112は、新規走行範囲データADnを生成する。
 管理装置10で生成された新規コースデータCDn及び新規走行範囲データADnは、通信システム9を介してダンプトラック2の制御装置40に送信される。制御装置40のコースデータ取得部411は、管理装置10から送信された新規コースデータCDnを取得する。また、制御装置40の走行範囲データ取得部412は、管理装置10から送信された新規走行範囲データADnを取得する(ステップS70)。
 ステップS10で取得されたコースデータCDと、ステップS70で取得された新規コースデータCDnとは、異なる。また、ステップS10で取得された走行範囲データADと、ステップS70で取得された新規走行範囲データADnとは、異なる。新規コースデータCDnは、コースデータCDで規定される走行経路RPとは異なる新規走行経路RPnを含む。新規走行範囲データADnは、走行範囲データADで規定される第2走行範囲TM2とは異なる新規第2走行範囲TM2nを含む。新規第2走行範囲TM2nは、新規走行経路RPnを含むように新規走行経路RPnに沿って帯状に設定される。なお、第2走行範囲TM2の第2走行幅W2と、新規第2走行範囲TM2nの第2走行幅W2nとは、等しい。
 運転制御部418は、コースデータ取得部411で取得された新規コースデータCDnに基づいて、ダンプトラック2の走行を再開させる。
 新規コースデータCDnは、ダンプトラック2を前進させた後に後進させる走行条件を含む。運転制御部418は、停止状態のダンプトラック2を一旦前進させる(ステップS90)。
 運転制御部418は、ダンプトラック2が前進した後、そのダンプトラック2を積込点LPPに向かって後進させる(ステップS80)。
 本実施形態において、新規コースデータCDnで規定されるダンプトラック2を後進させるときの新規走行経路RPnと、コースデータCDで規定されるダンプトラック2を後進させるときの走行経路RPとは、異なる。新規コースデータCDnにおいては、ダンプトラック2が積込点LPPに向かって真っすぐに後進するように、新規走行経路RPnが規定される。これにより、ダンプトラック2の特定部位APの規定位置FPが新規第2走行範囲TM2nからコースアウトしてしまうことが抑制され、ダンプトラック2は、積込点LPPに移動することができる。
 積込点LPPにダンプトラック2が移動した後、積込機3によりそのダンプトラック2に積荷を積載する積込作業が実施される。積荷が積載されたダンプトラック2は、積込点LPPから退去する。
[効果]
 以上説明したように、本実施形態によれば、走行経路RPを含むダンプトラック2の走行条件を示すコースデータCDを取得するコースデータ取得部411と、走行経路RPを基準とする予め設定された走行幅Wで規定されるダンプトラック2の走行範囲TMを示す走行範囲データADを取得する走行範囲データ取得部412と、ダンプトラック2の走行方向を検出した検出装置35の検出データを取得する検出データ取得部414と、コースデータCDに従って走行するダンプトラック2の規定位置FPを検出データに基づいて予測する予測部415と、規定位置FPが走行範囲TM内に存在するか否かを判定する判定部416と、規定位置FPが走行範囲TM内に存在しないと判定されたときにダンプトラック2の走行を停止させる運転制御部418とが設けられる。これにより、コースデータCDに従って走行するダンプトラック2の走行範囲TMの周辺に障害物が存在するとき、ダンプトラック2と障害物との接触が抑制される。したがって、作業現場の生産性の低下が抑制される。
 また、本実施形態においては、走行範囲TMは、第1走行幅W1で規定される第1走行範囲TM1と、第1走行幅W1よりも小さい第2走行幅W2で規定される第2走行範囲TM2とを含む。ダンプトラック2は、第1走行範囲TM1から第2走行範囲TM2に走行する。運転制御部418は、ダンプトラック2が第1走行範囲TM1のコース点PI0を走行しているときに取得された検出データに基づいて予測された規定位置FPが第2走行範囲TM2に存在しないと判定されたときにダンプトラック2の走行を停止させる。これにより、第2走行範囲TM2の周辺に障害物が存在するとき、ダンプトラック2と障害物との接触が抑制される。
 また、本実施形態においては、第2走行範囲TM2は、ダンプトラック2に積荷が積載される積込点LPPを含む。これにより、積込点LPPに向かって走行するダンプトラック2と積込機3との接触が抑制される。
 また、本実施形態においては、第2走行幅W2は、積込機3のサイズに基づいて設定される。これにより、ダンプトラック2と積込機3との接触は効果的に抑制される。また、積込点LPPに配置されたダンプトラック2は、積込機3による積込作業を実施するために適正な位置に配置されるため、積込作業は円滑に実施される。
 また、本実施形態においては、コースデータCDによって規定されるダンプトラック2の走行条件は、ダンプトラック2の走行速度Vを含む。第2走行範囲TM2におけるダンプトラック2の走行速度V2は、第1走行範囲TM1におけるダンプトラック2の走行速度V1以下である。積込機3から遠い第1走行範囲TM1においては、第1走行範囲TM1を走行するダンプトラック2と積込機3とが接触する可能性は低い。そのため、第1走行範囲TM1におけるダンプトラック2の走行速度V1を高めることにより、鉱山の生産性の低下が抑制される。また、第1走行範囲TM1の第1走行幅W1は大きいので、ダンプトラック2の走行速度V1が高くても、特定部位APが第1走行範囲TM1の外側に移動してしまう可能性は抑制される。これにより、コースアウトと判定される頻度が低減され、ダンプトラック2の走行が頻繁に停止されることが抑制される。一方、積込機3に近い第2走行範囲TM2においては、第2走行範囲TM2を走行するダンプトラック2と積込機3とが接触する可能性が高い。そのため、第2走行範囲TM2の第2走行幅W2を小さくすることにより、ダンプトラック2の特定部位APと走行経路RPとのずれ量が大きくなった場合には、直ちにコースアウトと判定されてダンプトラック2の走行が停止されるため、ダンプトラック2と積込機3との接触を未然に防止することができる。また、第2走行範囲TM2を走行するダンプトラック2の走行速度V2を高めてしまうと、特定部位APが第2走行範囲TM2の外側に移動してしまう可能性が高くなる。その結果、コースアウトと判定される頻度が高くなり、ダンプトラック2の走行が頻繁に停止され、その結果、鉱山の生産性が低下する。小さい第2走行幅W2で規定される第2走行範囲TM2においては、ダンプトラック2の走行速度V2を低減することにより、コースアウトと判定される頻度が低減され、ダンプトラック2の走行が頻繁に停止されることが抑制される。したがって、鉱山の生産性の低下が抑制される。
 また、本実施形態においては、操舵装置33によりダンプトラック2の前輪25Fが操舵され、ダンプトラック2の規定位置FPとして、後進するダンプトラック2の後輪25Rを支持する車軸27の中心部位に設定された特定部位APの規定位置FPが予測される。これにより、特定部位APの予測における演算処理の負荷が軽減される。
 また、本実施形態においては、図11を参照して説明したように、操舵角δ及びダンプトラック2の寸法から算出されるはみ出し量dyに基づいて、走行幅Wが補正される。本実施形態においては、走行範囲データ取得部412で取得された走行範囲TMの走行幅Wからはみ出し量dyを減じる補正が実施される。すなわち、はみ出し量dyが大きい場合、走行幅Wが小さくなる。はみ出し量dyが大きい場合、走行幅Wを小さくして、ダンプトラック2の走行を制限することにより、ダンプトラック2と障害物との接触をより効果的に抑制することができる。
 また、本実施形態においては、運転制御部418は、後進するダンプトラック2の規定位置FPが走行範囲TM内に存在しないと判定されたときにダンプトラック2の走行を停止させ、コースデータ取得部411で取得された新規コースデータCDnに基づいてダンプトラック2の走行を再開させる。新規コースデータCDnは、ダンプトラック2を前進させた後に後進させる走行条件を含む。ダンプトラック2の積込点LPPへの進入が失敗したコースデータCDは、そのコースデータCDとは異なる新規コースデータCDnに更新される。新規コースデータCDnに基づいてダンプトラック2の走行が制御されることにより、ダンプトラック2が積込点LPPに進入する成功率は高まる。
 なお、上述の実施形態においては、走行範囲TMの端部El側に積込機3が存在することとした。図14に示すように、積込機3の両側に積込点LPPが設定される、所謂両側積込み(Double Side Loading)が実施される場合、一方の積込点LPPを含む走行範囲TMにおいては、端部El側に積込機3が存在し、他方の積込点LPPを含む走行範囲TMにおいては、端部Er側に積込機3が存在することとなる。一方の積込点LPPに接近するダンプトラック2の特定部位APが端部Elの外側に配置されると予測されるときにダンプトラック2の走行を停止するとともに、他方の積込点LPPに接近するダンプトラック2の特定部位APが端部Erの外側に配置されると予測されるときにダンプトラック2の走行を停止することにより、両側積込みが実施される場合においても、ダンプトラック2と積込機3との接触が防止される。
 なお、上述の実施形態においては、管理装置10によって生成される第1走行範囲TM1の第1走行幅W1と第2走行範囲TM2の第2走行幅W2とはステップ状に変化することとした。図15に示すように、管理装置10によって生成される第1走行範囲TM1と第2走行範囲TM2との境界において、第2走行幅Wはスロープ状に変化してもよい。
 なお、上述の実施形態においては、ダンプトラック2が積込点LPPに進入するときに規定位置FPが予測されることとした。ダンプトラック2の排出作業が実施される排出点にダンプトラック2が進入するときに規定位置FPが予測されてもよい。排出点を含むように第2走行範囲TM2が設定され、ダンプトラック2が排出点に向かって第1走行範囲TM1を走行しているときに取得された検出データに基づいて予測された規定位置FPが第2走行範囲TM2に存在しないと判定されたときにダンプトラック2の走行が停止されてもよい。
 なお、上述の実施形態においては、予測部415は、ダンプトラック2が現在位置NPに存在するときに取得された検出データに基づいて、現在位置NPから規定距離Lだけ走行後のダンプトラック2に設定された特定部位APの規定位置FPを予測することとした。ダンプトラック2の規定位置FPは、検出データを取得時点から規定時間経過後のダンプトラック2に設定された特定部位APの位置でもよい。予測部415は、現在時点において取得された検出データに基づいて、現在時点から規定時間経過後の将来時点におけるダンプトラック2の規定位置FPを予測してもよい。
 なお、上述の実施形態において、走行範囲TMの走行幅Wは、補正部417によって補正されなくてもよい。
 なお、上述の実施形態において、規定位置FPが予測される特定部位APは、車軸27の中心部位でなくてもよく、例えばダンプトラック2の前輪25Fを支持する車軸の中心部位でもよいし、ダンプトラック2の車体フレーム21の一部位でもよい。
 なお、上述の実施形態において、第2走行範囲TM2におけるダンプトラック2の走行速度V2は、第1走行範囲TM1におけるダンプトラック2の走行速度V1よりも低くてもよい。
 なお、上述の実施形態においては、走行範囲TMが、走行幅Wが異なる2つの走行範囲TM1,TM2を含むこととした。走行範囲TMが、走行幅Wが異なる3つ以上の走行範囲TMを含んでもよい。また、走行範囲TMの走行幅Wが単一の幅でもよい。
 なお、上述の実施形態においては、ダンプトラック2が無人ダンプトラックであることとした。ダンプトラック2は、ダンプトラック2に搭乗した運転者の操作に従って走行する有人ダンプトラックでもよい。
 なお、上述の実施形態において、制御装置40の少なくとも一部の構成要素が管理装置10に設けられてもよい。すなわち、コースデータ取得部411、走行範囲データ取得部412、絶対位置データ取得部413、検出データ取得部414、予測部415、判定部416、補正部417、及び運転制御部418の機能の一部又は全部が、管制施設7に設けられている管理装置10に含まれてもよい。例えば、ダンプトラック2に設けられている位置検出器34及び検出装置35の検出データが、通信システム9を介して管理装置10に送信されることにより、管理装置10は、上述の実施形態に従って、ダンプトラック2の運転を制御する制御信号を生成することができる。管理装置10で生成された制御信号が通信システム9を介してダンプトラック2に送信されることにより、ダンプトラック2は、上述の実施形態に従って走行することができる。
 なお、上述の実施形態においては、鉱山において用いられる作業車両を例に説明した。上述の実施形態で説明した構成要素は、鉱山とは異なる作業現場で用いられる作業車両に適用されてもよい。また、作業車両は、ダンプトラック2でなくてもよく、例えばホイールローダのような積込作業を実施可能な作業車両でもよい。
 1…管理システム、2…ダンプトラック(作業車両)、2F…前部、2R…後部、3…積込機、5…測位衛星、6…中継器、7…管制施設、9…通信システム、10…管理装置、11…演算処理装置、12…記憶装置、13…入出力インターフェース、14…無線通信装置、15…入力装置、16…出力装置、21…車体フレーム、22…ダンプボディ、23…走行装置、24…タイヤ、25…車輪、25F…前輪、25R…後輪、26…リアアクスル、27…車軸、31…駆動装置、32…ブレーキ装置、33…操舵装置、34…位置検出器、35…検出装置、35A…操舵角センサ、35B…方位角センサ、40…制御装置、41…演算処理装置、42…記憶装置、43…入出力インターフェース、44…無線装置、111…コースデータ生成部、112…走行範囲データ生成部、301…下部走行体、302…上部旋回体、303…作業機、411…コースデータ取得部、412…走行範囲データ取得部、413…絶対位置データ取得部、414…検出データ取得部、415…予測部、416…判定部、417…補正部、418…運転制御部、AD…走行範囲データ、AP…特定部位、CD…コースデータ、CR…破砕機、DPA…排土場、Er…端部、El…端部、FP…規定位置、G…間隔、HL…搬送路、IS…交差点、L…規定距離、LPA…積込場、LPP…積込点、PA…作業場、PI…コース点、RP…走行経路、SBP…スイッチバック点、TM…走行範囲、TM1…第1走行範囲、TM2…第2走行範囲、W…走行幅、W1…第1走行幅、W2…第2走行幅。

Claims (8)

  1.  走行経路を含む作業車両の走行条件を示すコースデータを取得するコースデータ取得部と、
     前記走行経路を基準とする予め設定された走行幅で規定される前記作業車両の走行範囲を示す走行範囲データを取得する走行範囲データ取得部と、
     前記作業車両の走行方向を検出した検出装置の検出データを取得する検出データ取得部と、
     前記コースデータに従って走行する前記作業車両の現在位置から離れた規定位置を前記検出データに基づいて予測する予測部と、
     前記規定位置が前記走行範囲内に存在するか否かを判定する判定部と、
     前記規定位置が前記走行範囲内に存在しないと判定されたときに前記作業車両の走行を停止させる運転制御部と、
    を備える作業車両の制御装置。
  2.  前記規定位置は、前記検出データを取得時点から前記作業車両が規定距離走行後の前記作業車両に設定された特定部位の位置、及び前記検出データを取得時点から規定時間経過後の前記作業車両に設定された特定部位の位置の少なくとも一方を含む、
    請求項1に記載の作業車両の制御装置。
  3.  前記走行範囲は、第1走行幅で規定される第1走行範囲と、前記第1走行幅よりも小さい第2走行幅で規定される第2走行範囲とを含み、
     前記作業車両は、前記第1走行範囲から前記第2走行範囲に走行し、
     前記運転制御部は、前記作業車両が前記第1走行範囲を走行しているときに取得された前記検出データに基づいて予測された前記規定位置が前記第2走行範囲内に存在しないと判定されたときに前記作業車両の走行を停止させる、
    請求項1又は請求項2に記載の作業車両の制御装置。
  4.   前記第2走行範囲は、前記運搬車両に積荷が積載される積込点を含み、
     前記第2走行幅は、前記運搬車両に積荷を積載する積込機のサイズに基づいて設定される、
    請求項3に記載の作業車両の制御装置。
  5.  前記作業車両の走行条件は、前記作業車両の走行速度を含み、
     前記第2走行範囲における前記作業車両の走行速度は、前記第1走行範囲における前記作業車両の走行速度以下である、
    請求項3又は請求項4に記載の作業車両の制御装置。
  6.  前記運転制御部は、後進する前記作業車両の前記規定位置が前記走行範囲に存在しないと判定されたときに前記作業車両の走行を停止させ、前記コースデータ取得部で取得された新規コースデータに基づいて前記作業車両の走行を再開させ、
     前記新規コースデータは、前記作業車両を前進させた後に後進させる走行条件を含む、
    請求項1から請求項5のいずれか一項に記載の作業車両の制御装置。
  7.  請求項1から請求項6のいずれか一項に記載の作業車両の制御装置を備える作業車両。
  8.  走行経路を含む作業車両の走行条件を示すコースデータを生成することと、
     前記走行経路を基準とする予め設定された走行幅で規定される前記作業車両の走行範囲を示す走行範囲データを生成することと、
     前記作業車両の走行方向を検出した検出装置の検出データを取得することと、
     前記コースデータに従って走行する前記作業車両の現在位置から離れた規定位置を前記検出データに基づいて予測することと、
     前記規定位置が前記走行範囲内に存在するか否かを判定することと、
     前記規定位置が前記走行範囲内に存在しないと判定されたときに前記作業車両の走行を停止させることと、
    を含む作業車両の制御方法。
PCT/JP2017/008018 2017-02-28 2017-02-28 作業車両の制御装置、作業車両、及び作業車両の制御方法 WO2017163790A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2017237758A AU2017237758C1 (en) 2017-02-28 2017-02-28 Control apparatus of work vehicle, work vehicle, and control method of work vehicle
CN201780002401.2A CN107850898A (zh) 2017-02-28 2017-02-28 作业车辆的控制装置、作业车辆及作业车辆的控制方法
JP2017539378A JP6259171B1 (ja) 2017-02-28 2017-02-28 作業車両の制御装置、作業車両、及び作業車両の制御方法
PCT/JP2017/008018 WO2017163790A1 (ja) 2017-02-28 2017-02-28 作業車両の制御装置、作業車両、及び作業車両の制御方法
CA2988573A CA2988573C (en) 2017-02-28 2017-02-28 Control apparatus of work vehicle, work vehicle, and control method of work vehicle
US15/577,498 US10551848B2 (en) 2017-02-28 2017-02-28 Control apparatus of work vehicle, work vehicle, and control method of work vehicle
AU2019200000A AU2019200000B2 (en) 2017-02-28 2019-01-02 Control apparatus of work vehicle, work vehicle, and control method of work vehicle
US16/720,246 US11327505B2 (en) 2017-02-28 2019-12-19 Control apparatus of work vehicle, work vehicle, and control method of work vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/008018 WO2017163790A1 (ja) 2017-02-28 2017-02-28 作業車両の制御装置、作業車両、及び作業車両の制御方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/577,498 A-371-Of-International US10551848B2 (en) 2017-02-28 2017-02-28 Control apparatus of work vehicle, work vehicle, and control method of work vehicle
US16/720,246 Division US11327505B2 (en) 2017-02-28 2019-12-19 Control apparatus of work vehicle, work vehicle, and control method of work vehicle

Publications (1)

Publication Number Publication Date
WO2017163790A1 true WO2017163790A1 (ja) 2017-09-28

Family

ID=59899947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008018 WO2017163790A1 (ja) 2017-02-28 2017-02-28 作業車両の制御装置、作業車両、及び作業車両の制御方法

Country Status (6)

Country Link
US (2) US10551848B2 (ja)
JP (1) JP6259171B1 (ja)
CN (1) CN107850898A (ja)
AU (2) AU2017237758C1 (ja)
CA (1) CA2988573C (ja)
WO (1) WO2017163790A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179386A1 (ja) * 2019-03-04 2020-09-10 パナソニックIpマネジメント株式会社 移動体制御方法、移動体制御システム、及びプログラム
CN111771175A (zh) * 2018-02-13 2020-10-13 精工爱普生株式会社 搬运车的行驶控制系统、以及搬运车的行驶控制方法
JP7558987B2 (ja) 2019-06-19 2024-10-01 ユニバーサル シティ スタジオズ リミテッド ライアビリティ カンパニー 演出された乗り物システム及び方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11222534B2 (en) * 2013-12-20 2022-01-11 Sfara, Inc. System and method for smartphone communication during vehicle mode
WO2017163790A1 (ja) * 2017-02-28 2017-09-28 株式会社小松製作所 作業車両の制御装置、作業車両、及び作業車両の制御方法
JP7458883B2 (ja) * 2020-04-27 2024-04-01 株式会社小松製作所 運搬車両の管理システム及び運搬車両の管理方法
CN113835425A (zh) * 2020-06-23 2021-12-24 中强光电股份有限公司 路径规划方法
CN111998852B (zh) * 2020-07-17 2021-03-16 无锡卡尔曼导航技术有限公司 一种农机自动调节交接行的方法
CN111912403B (zh) * 2020-08-04 2021-05-14 国以贤智能科技(上海)股份有限公司 一种叉车的定位方法及叉车
CN114779781A (zh) * 2022-04-26 2022-07-22 包头钢铁(集团)有限责任公司 一种露天矿山无人驾驶生产运输安全的检测方法及系统
CN115328171B (zh) * 2022-10-11 2023-02-10 青岛慧拓智能机器有限公司 装载点位置的生成方法、装置、芯片、终端、设备和介质
CN115662151B (zh) * 2022-12-13 2023-05-12 宜宾职业技术学院 一种重载车辆定位控制方法、装置及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1069599A (ja) * 1996-08-28 1998-03-10 Toyota Motor Corp 車両走行管理システム
JPH1165655A (ja) * 1997-08-26 1999-03-09 Minolta Co Ltd 移動体の制御装置
JP2000127931A (ja) * 1998-10-28 2000-05-09 Honda Motor Co Ltd 車両制御装置
JP2000339029A (ja) * 1999-05-31 2000-12-08 Komatsu Ltd 車両の干渉防止装置
WO2016111386A1 (ja) * 2016-03-31 2016-07-14 株式会社小松製作所 作業車両の制御システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998953A (en) 1997-08-22 1999-12-07 Minolta Co., Ltd. Control apparatus of mobile that applies fluid on floor
JP5332034B2 (ja) * 2008-09-22 2013-11-06 株式会社小松製作所 無人車両の走行経路生成方法
JP5140864B2 (ja) 2010-11-22 2013-02-13 株式会社小松製作所 無人車両の走行システムおよび走行経路生成方法
US8655588B2 (en) * 2011-05-26 2014-02-18 Crown Equipment Limited Method and apparatus for providing accurate localization for an industrial vehicle
US9243923B2 (en) * 2013-08-30 2016-01-26 Komatsu Ltd. Mining machine management system and mining machine management method
JP6353322B2 (ja) 2014-09-04 2018-07-04 日立建機株式会社 運搬車両及びその走行制御装置
CA2953477C (en) * 2016-04-28 2020-06-02 Komatsu Ltd. Work machine management apparatus
WO2017163790A1 (ja) * 2017-02-28 2017-09-28 株式会社小松製作所 作業車両の制御装置、作業車両、及び作業車両の制御方法
CA2991840C (en) * 2017-03-31 2019-10-29 Kazuhiro Hashimoto Control system for work vehicle, method for setting trajectory of work implement, and work vehicle
CA2992244C (en) * 2017-03-31 2020-06-30 Komatsu Ltd. Control system for work vehicle, work vehicle, and control method for work vehicle
JP6818696B2 (ja) * 2017-08-08 2021-01-20 株式会社小松製作所 作業車両の制御システム、方法、及び作業車両

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1069599A (ja) * 1996-08-28 1998-03-10 Toyota Motor Corp 車両走行管理システム
JPH1165655A (ja) * 1997-08-26 1999-03-09 Minolta Co Ltd 移動体の制御装置
JP2000127931A (ja) * 1998-10-28 2000-05-09 Honda Motor Co Ltd 車両制御装置
JP2000339029A (ja) * 1999-05-31 2000-12-08 Komatsu Ltd 車両の干渉防止装置
WO2016111386A1 (ja) * 2016-03-31 2016-07-14 株式会社小松製作所 作業車両の制御システム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111771175A (zh) * 2018-02-13 2020-10-13 精工爱普生株式会社 搬运车的行驶控制系统、以及搬运车的行驶控制方法
CN111771175B (zh) * 2018-02-13 2024-01-19 精工爱普生株式会社 搬运车的行驶控制系统、以及搬运车的行驶控制方法
WO2020179386A1 (ja) * 2019-03-04 2020-09-10 パナソニックIpマネジメント株式会社 移動体制御方法、移動体制御システム、及びプログラム
CN113544614A (zh) * 2019-03-04 2021-10-22 松下知识产权经营株式会社 移动体控制方法、移动体控制系统以及程序
CN113544614B (zh) * 2019-03-04 2024-05-24 松下知识产权经营株式会社 移动体控制方法、移动体控制系统
US12084328B2 (en) 2019-03-04 2024-09-10 Panasonic Intellectual Property Management Co., Ltd. Mover control method, mover control system, and program
JP7558987B2 (ja) 2019-06-19 2024-10-01 ユニバーサル シティ スタジオズ リミテッド ライアビリティ カンパニー 演出された乗り物システム及び方法

Also Published As

Publication number Publication date
AU2019200000A1 (en) 2019-01-24
JP6259171B1 (ja) 2018-01-10
US20180246523A1 (en) 2018-08-30
CA2988573A1 (en) 2017-09-28
US10551848B2 (en) 2020-02-04
AU2017237758C1 (en) 2019-08-01
CA2988573C (en) 2020-06-30
US20200142427A1 (en) 2020-05-07
CN107850898A (zh) 2018-03-27
US11327505B2 (en) 2022-05-10
AU2019200000B2 (en) 2020-08-06
JPWO2017163790A1 (ja) 2018-04-12
AU2017237758B2 (en) 2019-01-24
AU2017237758A1 (en) 2018-09-13

Similar Documents

Publication Publication Date Title
JP6259171B1 (ja) 作業車両の制御装置、作業車両、及び作業車両の制御方法
JP6529595B2 (ja) 運搬車両の制御システム、運搬車両、及び運搬車両の制御方法
US11650589B2 (en) Management system for work vehicle and management method for work vehicle
JP6148403B2 (ja) 作業機械の制御システム、作業機械、作業機械の管理システム及び作業機械の制御方法
JP6297228B2 (ja) 作業車両の制御システム、作業車両、及び作業車両の制御方法
JP6709578B2 (ja) 作業車両の管理システム及び作業車両の管理方法
JP2023057144A (ja) 無人車両の制御システム
JP7242209B2 (ja) 無人車両の制御システム、無人車両、及び無人車両の制御方法
WO2022004131A1 (ja) 無人車両の制御システム、無人車両、及び無人車両の制御方法
WO2022024522A1 (ja) 無人車両の制御システム、無人車両、及び無人車両の制御方法
JP2019016414A (ja) 運搬車両の制御システム、及び運搬車両
JP2020074248A (ja) 運搬車両の管理システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017539378

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15577498

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2988573

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2017237758

Country of ref document: AU

Date of ref document: 20170228

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17769835

Country of ref document: EP

Kind code of ref document: A1