WO2022004131A1 - 無人車両の制御システム、無人車両、及び無人車両の制御方法 - Google Patents

無人車両の制御システム、無人車両、及び無人車両の制御方法 Download PDF

Info

Publication number
WO2022004131A1
WO2022004131A1 PCT/JP2021/017713 JP2021017713W WO2022004131A1 WO 2022004131 A1 WO2022004131 A1 WO 2022004131A1 JP 2021017713 W JP2021017713 W JP 2021017713W WO 2022004131 A1 WO2022004131 A1 WO 2022004131A1
Authority
WO
WIPO (PCT)
Prior art keywords
unmanned vehicle
road surface
data
traveling
condition data
Prior art date
Application number
PCT/JP2021/017713
Other languages
English (en)
French (fr)
Inventor
研太 長川
勲 徳
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to AU2021299025A priority Critical patent/AU2021299025A1/en
Priority to CA3186607A priority patent/CA3186607A1/en
Priority to US18/007,832 priority patent/US20230229169A1/en
Publication of WO2022004131A1 publication Critical patent/WO2022004131A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles

Definitions

  • This disclosure relates to an automated guided vehicle control system, an automated guided vehicle, and a method for controlling an automated guided vehicle.
  • an unmanned vehicle that runs unmanned along the running course may be used.
  • Unmanned vehicles are used at the work site. Automated guided vehicles are allowed to travel in the permitted area set ahead in the direction of travel. The traveling speed of the unmanned vehicle is controlled so as to stop at the tip of the permitted area. However, if the unmanned vehicle slips, it may not be possible to stop at the tip of the permitted area.
  • the aspect of this disclosure is to ensure the safety of the work site where the automatic guided vehicle operates and to suppress the decrease in productivity.
  • an unmanned vehicle control system that sets a permission area for permitting traveling for each unmanned vehicle, and an unmanned vehicle data acquisition unit that acquires unmanned vehicle data including the position data of the unmanned vehicle.
  • the unmanned vehicle travels based on the road surface condition data acquisition unit that acquires road surface condition data that can predict the stop accuracy of the travel path on which the unmanned vehicle travels, and the unmanned vehicle data acquired by the unmanned vehicle data acquisition unit.
  • the traveling condition data includes a traveling condition data generation unit that generates data including a permitted area on the road, a stop point in the permitted area, and a target traveling speed for stopping the unmanned vehicle at the stop point.
  • the generation unit is provided with a control system for an unmanned vehicle that sets the permitted area or the stop point based on the road surface condition data in a predetermined area including the stop point acquired by the road surface state data acquisition unit.
  • FIG. 1 is a diagram schematically showing an example of a control system and an automatic guided vehicle according to an embodiment.
  • FIG. 2 is a diagram schematically showing an unmanned vehicle and a traveling path according to an embodiment.
  • FIG. 3 is a functional block diagram showing a control system for an automatic guided vehicle according to an embodiment.
  • FIG. 4 is a diagram schematically showing an example of a permitted area.
  • FIG. 5 is a diagram schematically showing another example of the permission area.
  • FIG. 6 is a flowchart showing a control method of an automatic guided vehicle according to an embodiment.
  • FIG. 7 is a diagram schematically showing an example of setting the permission area.
  • FIG. 8 is a schematic diagram showing an example of the speed limit of an automatic guided vehicle.
  • FIG. 9 is a schematic diagram showing another example of the speed limit of an automatic guided vehicle.
  • FIG. 10 is a block diagram showing an example of a computer system according to an embodiment.
  • FIG. 1 is a diagram schematically showing an example of a control system 1 and an unmanned vehicle 2 according to the present embodiment.
  • FIG. 2 is a diagram schematically showing an automatic guided vehicle 2 and a travel path HL according to an embodiment.
  • FIG. 3 is a functional block diagram showing a control system 1 of an automatic guided vehicle 2 according to an embodiment.
  • the automatic guided vehicle 2 is used at the work site.
  • the unmanned vehicle 2 refers to a work vehicle that travels unmanned based on a control command without being driven by a driver.
  • the work site is, for example, a mine.
  • a mine is a place or place of business where minerals are mined.
  • the cargo carried to the automatic guided vehicle 2 is, for example, ore or earth and sand excavated in a mine.
  • the automatic guided vehicle 2 travels at least a part of the travel path HL leading to the plurality of workshop PAs of the mine.
  • the workshop PA includes at least one of a loading and unloading yard.
  • the runway HL includes the intersection IS.
  • the loading area means an area where loading work for loading a load on an automatic guided vehicle 2 is carried out.
  • a loading machine 7 such as a hydraulic excavator operates.
  • the lumber yard is an area where the discharge work is carried out, in which the cargo is discharged from the automatic guided vehicle 2.
  • a crusher 8 is provided at the lumber yard.
  • the automatic guided vehicle 2 is, for example, a dump truck that travels on a work site and carries a load.
  • the control system 1 is a control system for an unmanned vehicle 2 that sets a permission area AP or a stop point SP that permits traveling for each unmanned vehicle 2.
  • the control system 1 includes a management device 3 and a communication system 4.
  • the management device 3 includes a computer system and is installed in the control facility 5 at the work site. There is an operator in the control facility 5.
  • the communication system 4 carries out communication between the management device 3 and the unmanned vehicle 2.
  • the wireless communication device 6 is connected to the management device 3.
  • the communication system 4 includes a wireless communication device 6.
  • the management device 3 and the unmanned vehicle 2 wirelessly communicate with each other via the communication system 4.
  • the unmanned vehicle 2 outputs the unmanned vehicle data of each unmanned vehicle 2 to the management device 3.
  • the automatic guided vehicle 2 travels on the travel path HL at the work site based on the travel condition data transmitted from the management device 3.
  • the automatic guided vehicle 2 travels according to the travel course CS set in the travel path HL and the work place PA based on the control signal from the management device 3.
  • the automatic vehicle 2 includes a vehicle body 21, a dump body 22 supported by the vehicle body 21, a traveling device 23 supporting the vehicle body 21, a wireless communication device 28, a position sensor 41, and a steering angle sensor 42. It includes an azimuth angle sensor 43, a speed sensor 44, a road surface camera 45, and a control device 10. The control device 10 will be described later.
  • the vehicle body 21 includes the vehicle body frame and supports the dump body 22. Further, the vehicle body 21 has a hydraulic pump (not shown) and a plurality of hydraulic cylinders (not shown) operated by hydraulic oil discharged from the hydraulic pump.
  • the dump body 22 is a member on which a load is loaded.
  • the dump body 22 moves up and down by the operation of the hoist cylinder, which is a hydraulic cylinder.
  • the dump body 22 is adjusted to at least one of the loading posture and the dump posture by the operation of the hoist cylinder.
  • the loading posture is a posture in which the load can be loaded, and the dump body 22 is in a lowered posture.
  • the dump posture is a posture in which the load is discharged, and the dump body 22 is in a raised posture.
  • the traveling device 23 includes the wheels 27 and travels on the traveling path HL.
  • the wheel 27 includes a front wheel 27F and a rear wheel 27R. Tires are mounted on the wheels 27.
  • the traveling device 23 includes a driving device 23A, a braking device 23B, and a steering device 23C.
  • the drive device 23A generates a driving force for accelerating the unmanned vehicle 2.
  • the drive 23A includes an internal combustion engine such as a diesel engine.
  • the drive device 23A may include an electric motor.
  • the driving force generated by the driving device 23A is transmitted to the rear wheels 27R, and the rear wheels 27R rotate.
  • the unmanned vehicle 2 self-propells due to the rotation of the rear wheel 27R.
  • the brake device 23B generates a braking force for decelerating or stopping the unmanned vehicle 2.
  • the steering device 23C can adjust the traveling direction of the unmanned vehicle 2.
  • the traveling direction of the unmanned vehicle 2 includes the direction of the front portion of the vehicle body 21.
  • the steering device 23C adjusts the traveling direction of the unmanned vehicle 2 by steering the front wheels 27F.
  • the steering device 23C has a steering cylinder which is a hydraulic cylinder.
  • the front wheels 27F are steered by the power generated by the steering cylinder.
  • the wireless communication device 28 wirelessly communicates with the wireless communication device 6 connected to the management device 3.
  • Communication system 4 includes a wireless communication device 28.
  • the position sensor 41 detects the position of the unmanned vehicle 2 traveling on the travel path HL.
  • the detection data of the position sensor 41 includes absolute position data indicating the absolute position of the unmanned vehicle 2.
  • the absolute position of the unmanned vehicle 2 is detected using the Global Navigation Satellite System (GNSS).
  • the global navigation satellite system includes a global positioning system (GPS: Global Positioning System).
  • the position sensor 41 includes a GNSS receiver.
  • the global navigation satellite system detects the absolute position of the unmanned vehicle 2 defined by the coordinate data of longitude, latitude, and altitude.
  • the global navigation satellite system detects the absolute position of the automatic guided vehicle 2 defined in the global coordinate system.
  • the global coordinate system is a coordinate system fixed to the earth.
  • the steering angle sensor 42 detects the steering angle of the unmanned vehicle 2 by the steering device 23C.
  • the steering angle sensor 42 includes, for example, a rotary encoder provided in the steering device 23C.
  • the detection data of the steering angle sensor 42 includes steering angle data indicating the steering angle of the unmanned vehicle 2.
  • the azimuth sensor 43 detects the azimuth angle of the unmanned vehicle 2.
  • the azimuth angle of the unmanned vehicle 2 includes the yaw angle of the unmanned vehicle 2.
  • the yaw angle refers to the tilt angle of the unmanned vehicle 2 about the rotation axis extending in the vertical direction of the unmanned vehicle 2.
  • the detection data of the azimuth sensor 43 includes azimuth data indicating the azimuth angle of the unmanned vehicle 2.
  • the orientation of the unmanned vehicle 2 is the traveling direction of the unmanned vehicle 2.
  • the azimuth sensor 43 includes, for example, a gyro sensor.
  • the speed sensor 44 detects the traveling speed of the unmanned vehicle 2.
  • the detection data of the speed sensor 44 includes traveling speed data indicating the traveling speed of the traveling device 23.
  • the road surface camera 45 photographs the road surface of the traveling road HL ahead of the unmanned vehicle 2 in the traveling direction.
  • the road surface camera 45 may be provided on the automatic guided vehicle 2.
  • the data detected by the position sensor 41, the steering angle sensor 42, the azimuth angle sensor 43, and the speed sensor 44 of the unmanned vehicle 2 and the image data taken by the road surface camera 45 are used as the unmanned vehicle data of the unmanned vehicle 2. It is output to the management device 3.
  • control system 1 As shown in FIG. 3, the control system 1 includes a management device 3 and a control device 10.
  • the control system 1 controls the automatic guided vehicle 2 at the work site.
  • the control device 10 can communicate with the management device 3 via the communication system 4.
  • the management device 3 sets the traveling conditions of the unmanned vehicle 2 on the traveling path HL.
  • the unmanned vehicle 2 travels on the travel path HL based on the travel condition data that defines the travel conditions transmitted from the management device 3.
  • the management device 3 includes a computer system.
  • the management device 3 includes an input / output interface 31, an arithmetic processing unit 32 including a processor such as a CPU (Central Processing Unit), and a memory and storage such as a ROM (Read Only Memory) or a RAM (Random Access Memory). It has a storage device 33.
  • arithmetic processing unit 32 including a processor such as a CPU (Central Processing Unit), and a memory and storage such as a ROM (Read Only Memory) or a RAM (Random Access Memory). It has a storage device 33.
  • the input / output interface 31 is connected to each of the input device 35, the output device 36, and the wireless communication device 6. Each of the input device 35, the output device 36, and the wireless communication device 6 is installed in the control facility 5.
  • the input / output interface 31 transmits the traveling condition data to the automatic guided vehicle 2 via the communication system 4.
  • the input / output interface 31 receives the automatic guided vehicle data from the automatic guided vehicle 2 via the communication system 4.
  • the arithmetic processing unit 32 includes an automatic vehicle data acquisition unit 321, a road surface condition data acquisition unit 322, a traveling condition data generation unit 323, and a permission area setting unit 324.
  • the unmanned vehicle data acquisition unit 321 acquires unmanned vehicle data including the position data of the unmanned vehicle 2 at the work site.
  • the automatic vehicle data acquisition unit 321 acquires the automatic vehicle data of the automatic vehicle 2 transmitted from the control device 10 via the input / output interface 31.
  • the unmanned vehicle data refers to data indicating the operating status of the unmanned vehicle 2.
  • the data of the unmanned vehicle 2 includes the detection data of the sensor mounted on the unmanned vehicle 2.
  • the road surface condition data acquisition unit 322 acquires road surface condition data indicating a road surface condition in which the stop accuracy of the traveling road HL on which the unmanned vehicle 2 travels at the work site can be predicted.
  • the road surface condition data acquisition unit 322 acquires road surface condition data indicating the road surface condition of the input traveling road HL via the input / output interface 31.
  • the road surface condition data includes data on the moisture content of the road surface.
  • Moisture data includes data on slip-prone points, such as puddles or mud on the road surface. More specifically, the road surface condition data may include data at a point set by the operator, for example, position data at a point determined by the operator that slip may occur.
  • the road surface condition data includes water sprinkling data including the amount of water sprinkled on the road surface by the sprinkler vehicle, image data of the road surface of the traveling road HL taken by the road surface camera 45 mounted on the unmanned vehicle 2, and other unmanned vehicles. It may include at least one of the traveling data of the vehicle 2. It is possible to recognize a puddle or muddy road surface by image processing the image data. When the traveling data of the other unmanned vehicle 2 indicates that the other unmanned vehicle 2 has slipped, it can be recognized as a slip-prone point.
  • the driving condition data generation unit 323 generates driving condition data that defines the driving conditions of the unmanned vehicle 2. More specifically, the traveling condition data generation unit 323 determines the permitted area AP in the travel path HL of the automatic guided vehicle 2 and the stop point SP in the permitted area AP based on the unmanned vehicle data acquired by the unmanned vehicle data acquisition unit 321. The traveling condition data including the target traveling speed for stopping the unmanned vehicle 2 at the stopping point SP is generated. The traveling condition data generation unit 323 has a function of setting the permission area AP or the stop point SP based on the road surface condition data of a predetermined area including the stop point SP acquired by the road surface condition data acquisition unit 322. The area including the stop point SP is an area around the stop point SP in the permission area AP. The traveling condition data generation unit 323 communicates with each of the input device 35, the output device 36, and the wireless communication device 6 via the input / output interface 31.
  • the running conditions are determined by, for example, an operator existing in the control facility 5.
  • the operator operates the input device 35 connected to the management device 3.
  • the running condition data is generated based on the input data generated by operating the input device 35.
  • the driving condition data includes the target position, the target traveling speed, the target direction, and the traveling course CS of the unmanned vehicle 2. Further, the traveling condition data includes the permission area data of the permission area AP set by the permission area setting unit 324 described later.
  • the traveling condition data includes a plurality of target point PIs set at intervals in the traveling path HL.
  • the interval of the target point PI is set to, for example, 1 [m] or more and 5 [m] or less.
  • the target point PI defines the target position of the automatic guided vehicle 2.
  • the target traveling speed and the target direction are set for each of the plurality of target point PIs.
  • the traveling course CS is defined by a line connecting a plurality of target points PI.
  • the traveling condition data that defines the traveling conditions of the unmanned vehicle 2 includes the plurality of target point PIs indicating the target positions of the unmanned vehicle 2, the target traveling speeds of the unmanned vehicle 2 set in each of the plurality of target point PIs, and the target traveling speeds of the unmanned vehicle 2. Including the target orientation.
  • the target position of the unmanned vehicle 2 means the target position of the unmanned vehicle 2 defined in the global coordinate system. That is, the target position refers to the target position in the coordinate data defined by longitude, latitude, and altitude.
  • the target position includes a target position in longitude (x coordinate) and a target position in latitude (y coordinate).
  • the target position of the unmanned vehicle 2 may be defined in the local coordinate system of the unmanned vehicle 2.
  • the target traveling speed of the unmanned vehicle 2 means the target traveling speed of the unmanned vehicle 2 when traveling (passing) the target point PI.
  • the drive device 23A or the brake device of the unmanned vehicle 2 so that the actual traveling speed of the unmanned vehicle 2 when traveling at the target point PI becomes the target traveling speed. 23B is controlled.
  • the target direction of the unmanned vehicle 2 means the target direction of the unmanned vehicle 2 when traveling (passing) the target point PI.
  • the target azimuth refers to the azimuth angle of the unmanned vehicle 2 with respect to the reference azimuth (for example, north).
  • the target azimuth is the target azimuth at the front of the vehicle body 21, and indicates the target traveling direction of the unmanned vehicle 2.
  • the steering device 23C of the unmanned vehicle 2 is controlled so that the actual direction of the unmanned vehicle 2 when traveling on the target point PI becomes the target direction.
  • FIG. 4 is a diagram schematically showing an example of the permitted area AP.
  • FIG. 5 is a diagram schematically showing another example of the permission area AP.
  • the permission area setting unit 324 is one of the functions of the traveling condition data generation unit 323.
  • the permission area setting unit 324, as one of the functions of the driving condition data generation unit 323, is the permission area AP or the stop according to the road surface condition data of the predetermined area including the stop point SP acquired by the road surface condition data acquisition unit 322. Set the point SP.
  • the permission area setting unit 324 expands the permission area AP forward in the traveling direction from the stop point SP according to the slip amount predicted in the predetermined area including the stop point SP. You may.
  • the permission area setting unit 324 sets the stop point SP as the permission area while keeping the permission area AP as it is, according to the slip amount predicted in the predetermined area including the stop point SP. It may be set to the position moved to the rear end side of the AP.
  • the permission area setting unit 324 sets the permission area AP that permits the traveling of the unmanned vehicle 2.
  • the permitted area AP is an area that prohibits the entry of another unmanned vehicle 2.
  • the permitted area APs of the plurality of unmanned vehicles 2 are set so as not to overlap each other.
  • the permitted area AP is formed in a band shape in front of the unmanned vehicle 2 in the traveling direction, for example, corresponding to the traveling course CS.
  • the permitted area AP has a length of, for example, about several 100 [m] in the traveling direction of the unmanned vehicle 2.
  • the traveling speed of the unmanned vehicle 2 is controlled so that the unmanned vehicle 2 can stop.
  • the permission area setting unit 324 opens the permission area AP that has passed along with the traveling of the unmanned vehicle 2, and extends the permission area AP forward in the traveling direction. By extending the permitted area AP with the traveling of the unmanned vehicle 2, the unmanned vehicle 2 can continuously travel without stopping. When the permitted area AP cannot be extended forward in the traveling direction due to the other unmanned vehicle 2 being stopped, the unmanned vehicle 2 travels to the stop point SP and stops.
  • the permission area data of the permission area AP set by the permission area setting unit 324 is included in the traveling condition data.
  • the permission area setting unit 324 sets an additional permission area BP in front of the permission area AP according to the stopping accuracy of the unmanned vehicle 2 in the predetermined area including the stop point SP. More specifically, the permission area setting unit 324 predicts that when the unmanned vehicle 2 is in a road surface state where the unmanned vehicle 2 is likely to slip in the predetermined area including the stop point SP, in other words, the stop accuracy of the predetermined area including the stop point SP is poor. If so, an additional permission area BP is set in front of the permission area AP to expand the permission area AP forward.
  • Whether or not the road surface condition is likely to slip can be determined from the road surface condition data acquired by the road surface condition data acquisition unit 322. For example, when the position data of a predetermined region including the stop point SP, which is determined by the operator to cause slippage, is acquired as the road surface condition data, it is determined that the road surface condition is likely to slip. For example, when the sprinkling data including the amount of sprinkling water sprinkled on the road surface in a predetermined region including the stop point SP by the sprinkler vehicle is acquired as the road surface condition data, it is determined that the road surface condition is likely to slip.
  • road surface condition data image processing is performed on the image data of the road surface in a predetermined region including the stop point SP, and when a puddle or muddy water generated on the road surface is recognized, it is determined that the road surface condition is likely to slip. ..
  • the traveling data of the other unmanned vehicle 2 indicates that the other unmanned vehicle 2 has slipped in a predetermined region including the stop point SP as the road surface condition data, it is determined that the road surface condition is likely to slip.
  • the additional permission area BP has a length that allows it to stop when the unmanned vehicle 2 slips.
  • the additional permission area BP predicts the slip amount of the unmanned vehicle 2 in the predetermined area including the stop point SP, and sets the length according to the predicted slip amount.
  • the slip amount may be predicted by the operator, for example.
  • the slip amount is stored in a memory as a relational expression or map of the slip amount for a predetermined parameter such as unmanned vehicle data or road surface condition data, and may be calculated using this relational expression or map.
  • the slip amount may be predicted from, for example, the amount of water sprinkled.
  • the slip amount may be predicted from, for example, the size of a puddle or mud recognized from the image data.
  • the slip amount may be predicted from, for example, the traveling data of the other unmanned vehicle 2.
  • the stop point SP is set to the front side, in other words, to the rear end side of the permission area AP by the length according to the slip amount. move.
  • the storage device 33 stores the road surface condition data input via the input device 35.
  • the storage device 33 stores the unmanned vehicle data acquired from the unmanned vehicle 2.
  • the input device 35 generates input data by being operated by the operator of the control facility 5.
  • the input data generated by the input device 35 is output to the management device 3.
  • the management device 3 acquires input data from the input device 35.
  • a contact type input device operated by an operator's hand such as a computer keyboard, a mouse, a touch panel, an operation switch, and an operation button is exemplified.
  • the input device 35 may be a voice input device operated by the voice of the operator.
  • the output device 36 provides output data to the operator of the control facility 5.
  • the output device 36 may be a display device that outputs display data, a printing device that outputs print data, or an audio output device that outputs audio data.
  • Examples of the display device include a flat panel display such as a liquid crystal display (LCD: Liquid Crystal Display) or an organic EL display (OELD: Organic Electroluminescence Display).
  • the control device 10 includes a computer system and is arranged in the vehicle body 21.
  • the control device 10 outputs a control command for controlling the running of the traveling device 23 of the unmanned vehicle 2.
  • the control command output from the control device 10 includes an accelerator command for operating the drive device 23A, a brake command for operating the brake device 23B, and a steering command for operating the steering device 23C.
  • the drive device 23A generates a driving force for accelerating the unmanned vehicle 2 based on the accelerator command output from the control device 10.
  • the brake device 23B generates a braking force for decelerating or stopping the unmanned vehicle 2 based on the brake command output from the control device 10.
  • the steering device 23C generates a turning force for changing the direction of the front wheels 27F in order to drive the unmanned vehicle 2 straight or turn based on the steering command output from the control device 10.
  • the control device 10 has an input / output interface 11, an arithmetic processing device 12 including a processor such as a CPU, and a storage device 13 including a memory and storage such as a ROM or RAM.
  • the control device 10 acquires the traveling condition data transmitted from the management device 3 via the communication system 4.
  • the input / output interface 11 is connected to each of the position sensor 41, the steering angle sensor 42, the azimuth sensor 43, the speed sensor 44, the road surface camera 45, the traveling device 23, and the wireless communication device 28.
  • the input / output interface 11 communicates with each of the position sensor 41, the steering angle sensor 42, the azimuth sensor 43, the speed sensor 44, the road surface camera 45, the traveling device 23, and the wireless communication device 28.
  • the arithmetic processing unit 12 has a traveling condition data acquisition unit 121, a position data acquisition unit 122, a detection data acquisition unit 123, and a travel control unit 124.
  • the traveling condition data acquisition unit 121 acquires the traveling condition data generated by the traveling condition data generation unit 323 of the management device 3.
  • the running condition data acquisition unit 121 acquires the updated running condition data every time the running condition data is updated by the management device 3. More specifically, the traveling condition data acquisition unit 121 acquires the traveling condition data including the updated permitted area data every time the permitted area AP is updated by the management device 3. For example, the traveling condition data acquisition unit 121 acquires the traveling condition data including the permitted area data in which the permitted area AP that has passed is released and the permitted area AP is extended forward in the traveling direction as the unmanned vehicle 2 travels. do.
  • the position data acquisition unit 122 acquires position data indicating the position of the unmanned vehicle 2 from the position sensor 41.
  • the detection data acquisition unit 123 acquires the detection data of the azimuth sensor 43 that has detected the traveling direction of the unmanned vehicle 2 from the azimuth sensor 43.
  • the detection data includes steering angle data detected by the steering angle sensor 42, azimuth angle data detected by the azimuth sensor 43, and speed data detected by the speed sensor 44.
  • the detection data acquisition unit 123 acquires steering angle data from the steering angle sensor 42, azimuth data from the azimuth sensor 43, and speed data from the speed sensor 44.
  • the detection data acquisition unit 123 acquires the image data taken by the road surface camera 45 from the road surface camera 45.
  • the travel control unit 124 outputs a control signal for controlling at least one of the drive device 23A, the brake device 23B, and the steering device 23C of the unmanned vehicle 2 based on the travel course CS acquired by the travel condition data acquisition unit 121. do.
  • the management device 3 outputs the travel course CS generated by the travel condition data generation unit 323 from the input / output interface 11 to the travel control unit 124 of the unmanned vehicle 2.
  • the travel course CS generated by the travel condition data generation unit 323 is transmitted from the input / output interface 11 to the travel control unit 124 of the unmanned vehicle 2.
  • the travel control unit 124 generates a control signal for controlling the travel of the unmanned vehicle 2 based on the travel course CS.
  • the control signal generated by the travel control unit 124 is output from the travel control unit 124 to the travel device 23.
  • the control signal output from the travel control unit 124 includes an accelerator signal output to the drive device 23A, a brake control signal output to the brake device 23B, and a steering control signal output to the steering device 23C.
  • the travel control unit 124 Based on the position data detected by the position sensor 41, the travel control unit 124 rotates the drive device 23A, the brake device 23B, and the steering so that the specific portion of the unmanned vehicle 2 and the travel course CS are aligned with each other. It controls the device 23C.
  • the travel control unit 124 controls the travel of the unmanned vehicle 2 based on the travel condition data.
  • the travel control unit 124 outputs an accelerator command value according to the travel speed to the drive device 23A of the travel device 23.
  • the drive device 23A generates power based on the accelerator command value.
  • the travel control unit 124 outputs an accelerator command value or a brake command value so as to decelerate the travel speed.
  • the traveling control unit 124 controls the traveling of the unmanned vehicle 2 in the permitted area AP based on the permitted area data set by the permitted area setting unit 324.
  • the travel control unit 124 controls the travel speed of the unmanned vehicle 2 so that the unmanned vehicle 2 can stop at the stop point SP of the permitted area AP.
  • the travel control unit 124 travels the unmanned vehicle 2 to the stop point SP when the permitted area data included in the traveling condition data is not updated without being extended to the permitted area AP in the forward direction in the traveling direction. Stop it.
  • the travel control unit 124 continues the traveling of the unmanned vehicle 2 when the permitted region AP is extended forward in the traveling direction and the permitted region data included in the traveling condition data is updated.
  • FIG. 6 is a flowchart showing a control method of the unmanned vehicle 2 according to the present embodiment.
  • FIG. 7 is a diagram schematically showing an example of setting the permission area AP.
  • the arithmetic processing unit 32 of the management device 3 is the unmanned vehicle data transmitted from the control device 10 of the unmanned vehicle 2 at the work site via the input / output interface 31 by the unmanned vehicle data acquisition unit 321. To get.
  • the arithmetic processing unit 32 of the management device 3 acquires the road surface condition data by the road surface condition data acquisition unit 322. Further, the arithmetic processing unit 32 of the management device 3 generates driving condition data that defines the traveling conditions of the unmanned vehicle 2 by the traveling condition data generation unit 323.
  • the processing of the flowchart shown in FIG. 6 is executed for each automatic guided vehicle 2.
  • the arithmetic processing unit 32 of the management device 3 secures a permitted area AP for each automatic guided vehicle 2 (step ST11). More specifically, the permission area setting unit 324 sets the permission area AP that permits the unmanned vehicle 2 to travel. As shown in FIG. 7, the permitted area AP is set in front of the automatic guided vehicle 2 in the traveling direction.
  • the arithmetic processing unit 32 of the management device 3 sets the stop point SP in the permitted area AP of the unmanned vehicle 2 without considering slip (step ST12). More specifically, the permission area setting unit 324 sets the stop point SP at the front end of the permission area AP of the automatic guided vehicle 2. As shown in FIG. 7, the stop point SP is set at the front end of the permitted area AP of the automatic guided vehicle 2.
  • the arithmetic processing unit 32 of the management device 3 predicts the slip amount SL of a predetermined area including the stop point SP, which is a region around the stop point SP (step ST13). More specifically, the permission area setting unit 324 predicts the slip amount SL of the predetermined area including the stop point SP of the unmanned vehicle 2 based on the road surface condition data. When it is determined by the permission area setting unit 324 that the predetermined area including the stop point SP of the automatic guided vehicle 2 is likely to slip based on the road surface condition data acquired by the road surface condition data acquisition unit 322, the slip amount SL is calculated. If it is not determined that the predetermined area including the stop point SP of the unmanned vehicle 2 is likely to slip, the slip amount SL becomes zero. In the example shown in FIG.
  • the slip amount SL in the predetermined region including the predicted stop point SP protrudes in front of the permitted region AP of the automatic guided vehicle 2. In this state, if the automatic guided vehicle 2 slips in a predetermined area including the stop point SP, there is a high possibility that the vehicle cannot stop in the permitted area AP.
  • the arithmetic processing unit 32 of the management device 3 requests to secure an additional permission area BP for the slip amount SL (step ST14). More specifically, the permission area setting unit 324 requests that an additional permission area BP be secured in front of the permission area AP. As shown in FIG. 7, the additional permission area BP is required to secure the additional permission area BP corresponding to the slip amount SL in front of the unmanned vehicle 2 in the traveling direction. The additional permission area BP is set to include the slip amount SL.
  • the arithmetic processing unit 32 of the management device 3 determines whether or not the additional permission area BP has been secured (step ST15). More specifically, for example, when there is no other vehicle or the like in front of the permitted area AP of the unmanned vehicle 2, the additional permitted area BP can be secured. For example, if there is an obstacle such as another unmanned vehicle 2 in front of the permitted area AP of the unmanned vehicle 2, the additional permitted area BP cannot be secured.
  • the process proceeds to step ST16. If the permission area setting unit 324 does not determine that the additional permission area BP has been secured (No in step ST15), the process proceeds to step ST17.
  • step ST15 When it is determined that the additional permission area BP has been secured (Yes in step ST15), the additional permission area BP is secured while the stop point SP remains as it is, and the permission area AP is expanded (step ST16). As shown in FIG. 7, the additional permission area BP secures an area corresponding to the slip amount SL in front of the unmanned vehicle 2 in the traveling direction. The permitted area AP is expanded forward in the traveling direction of the unmanned vehicle 2.
  • step ST15 If it is not determined that the additional permission area BP has been secured (No in step ST15), the stop point SP is moved to the front by the slip amount SL (step ST17). As shown in FIG. 7, the stop point SP is moved toward the front while the permission area AP remains unchanged.
  • the management device 3 transmits the traveling condition data including the permission area data of the permission area AP thus set to the control device 10 of the unmanned vehicle 2 via the input / output interface 31.
  • the unmanned vehicle 2 outputs a control signal to the traveling device 23 so that the unmanned vehicle 2 travels in the permitted area AP based on the traveling condition data acquired from the management device 3 via the input / output interface 11.
  • FIG. 8 is a schematic diagram showing an example of the speed limit of the automatic guided vehicle 2.
  • FIG. 9 is a schematic diagram showing another example of the speed limit of the automatic guided vehicle 2.
  • the control signal is output so that the automatic guided vehicle 2 having the current traveling speed V1 (V1 ⁇ Vmax) in the permitted area AP accelerates to Vmax.
  • a control signal is output so as to decelerate.
  • the vehicle continues to travel at a constant speed without deceleration. If the permitted area AP is expanded as in step ST16, the automatic guided vehicle 2 will be the permitted area AP even if the unmanned vehicle 2 slips and cannot stop at the stop point SP in the predetermined area including the stop point SP. It is suppressed from sticking out.
  • FIG. 9 shows the speed limit when the slip amount SL and the stop point SP are moved toward you as in step ST17.
  • a control signal is output so as to decelerate when the vehicle reaches a position in front of the stop point SP by a predetermined distance so that the traveling speed becomes zero at the position of the stop point SP moved toward the front. If the stop point SP is moved toward you, the unmanned vehicle 2 may protrude from the permitted area AP even if the unmanned vehicle 2 slips and cannot stop at the stop point SP in the predetermined area including the stop point SP. It is suppressed.
  • FIG. 10 is a block diagram showing an example of the computer system 1000.
  • the computer system 1000 includes a processor 1001 such as a CPU, a main memory 1002 including a non-volatile memory such as ROM and a volatile memory such as RAM, a storage 1003, and an interface 1004 including an input / output circuit.
  • the functions of the management device 3 and the functions of the control device 10 described above are stored in the storage 1003 as a program.
  • the processor 1001 reads the program from the storage 1003, expands it into the main memory 1002, and executes the above-mentioned processing according to the program.
  • the program may be distributed to the computer system 1000 via the network.
  • the permitted area AP can be appropriately set based on the road surface condition data of the predetermined area including the stop point SP of the permitted area AP of the unmanned vehicle 2.
  • the permission area AP or the stop point SP can be set according to the change. In this embodiment, the safety of the work site where the automatic guided vehicle 2 operates can be ensured, and the decrease in productivity can be suppressed.
  • the permitted area AP is expanded forward from the stop point SP in accordance with the amount of slip predicted in a predetermined area including the stop point SP of the permitted area AP of the unmanned vehicle 2. According to the present embodiment, even if the unmanned vehicle 2 slips in a predetermined area including the stop point SP, the permitted area AP can be set so that the unmanned vehicle 2 stops in the permitted area AP. According to the present embodiment, since the slipped unmanned vehicle 2 is suppressed from protruding from the permitted area AP, the safety of the vehicles around the unmanned vehicle 2 can be ensured.
  • the stop point SP in the permitted area AP is set according to the slip amount predicted in the predetermined area including the stop point SP of the permitted area AP of the unmanned vehicle 2. According to the present embodiment, even if the unmanned vehicle 2 slips in a predetermined area including the stop point SP, the permission area AP in which the stop point SP is moved so that the unmanned vehicle 2 stops in the permission area AP can be set. According to the present embodiment, since the slipped unmanned vehicle 2 is suppressed from protruding from the permitted area AP, the safety of the vehicles around the unmanned vehicle 2 can be ensured.
  • the road surface condition data includes data on slip-prone points such as puddles or mud generated on the road surface.
  • the stopping accuracy of a predetermined area including the stopping point SP of the permitted area AP of the unmanned vehicle 2 can be appropriately predicted.
  • the present embodiment includes position data of a point determined by the operator that slip may occur.
  • the stopping accuracy of a predetermined area including the stopping point SP of the permitted area AP of the unmanned vehicle 2 can be appropriately predicted.
  • the road surface condition data includes water sprinkling data including the amount of water sprinkled on the road surface by the sprinkler vehicle.
  • the stopping accuracy of a predetermined area including the stopping point SP of the permitted area AP of the unmanned vehicle 2 can be appropriately predicted from the watering data.
  • the road surface condition data includes image data of the road surface taken by a camera that photographs the road surface of the traveling road HL.
  • the stopping accuracy of a predetermined area including the stop point SP of the permitted area AP of the unmanned vehicle 2 can be appropriately predicted from the image data of the road surface.
  • the road surface condition data includes the traveling data of the other unmanned vehicle 2.
  • the stopping accuracy of a predetermined area including the stop point SP of the permitted area AP of the unmanned vehicle 2 can be appropriately predicted from the traveling data of the other unmanned vehicle 2.
  • control device 10 may be provided in the management device 3, or at least a part of the functions of the management device 3 may be provided in the control device 10.
  • the control device 10 of the unmanned vehicle 2 may have the function of the traveling condition data generation unit 323 of the management device 3.
  • the travel control unit 124 of the control device 10 controls the unmanned vehicle 2 based on the generated travel condition data.
  • Input / output interface 32 ... Arithmetic processing device, 321 ... Unmanned vehicle data acquisition unit 322 ... Road surface condition data acquisition unit 323 ... Driving condition data generation unit 324 ... Allowed area setting unit, 33 ... Storage device, 35 ... Input device, 36 ... Output device, 41 ... Position sensor, 42 ... Steering angle sensor, 43 ... Direction angle sensor, 44 ... Speed sensor, 45 ... Road surface camera, AP ... Allowed area, BP ... Additional permitted area, CS ... Driving course, HL ... Driving road, IS ... Crossing, PA ... Workplace , PI ... target point, SL ... slip amount, SP ... stop point.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

無人車両ごとに走行を許可する許可領域を設定する無人車両の制御システム1あって、無人車両の位置データを含む無人車両データを取得する無人車両データ取得部321と、無人車両が走行する走行路の停止精度を予測可能な路面状態データを取得する路面状態データ取得部322と、無人車両データ取得部321が取得した無人車両データに基づいて、無人車両の走行路における許可領域と、許可領域における停止点と、停止点で無人車両が停止するための目標走行速度とを含むデータを生成する走行条件データ生成部323と、を備え、走行条件データ生成部323は、路面状態データ取得部322が取得した停止点を含む所定領域の路面状態データに基づいて、許可領域又は停止点を設定する。

Description

無人車両の制御システム、無人車両、及び無人車両の制御方法
 本開示は、無人車両の制御システム、無人車両、及び無人車両の制御方法に関する。
 鉱山のような広域の作業現場において、走行コースに沿って無人で走行する無人車両が使用される場合がある。
国際公開第2016/139757号
 作業現場においては、複数の無人車両が使用される。無人車両は、進行方向前方に設定された許可領域を走行することが許可されている。無人車両は、許可領域の先端までに停止するように走行速度が制御される。ところが、無人車両がスリップしてしまうと、許可領域の先端までに停止できないおそれがある。
 本開示の態様は、無人車両が稼働する作業現場の安全性を確保し、生産性の低下を抑制することを目的とする。
 本開示の態様に従えば、無人車両ごとに走行を許可する許可領域を設定する無人車両の制御システムあって、前記無人車両の位置データを含む無人車両データを取得する無人車両データ取得部と、前記無人車両が走行する走行路の停止精度を予測可能な路面状態データを取得する路面状態データ取得部と、前記無人車両データ取得部が取得した前記無人車両データに基づいて、前記無人車両の走行路における許可領域と、前記許可領域における停止点と、前記停止点で前記無人車両が停止するための目標走行速度とを含むデータを生成する走行条件データ生成部と、を備え、前記走行条件データ生成部は、前記路面状態データ取得部が取得した前記停止点を含む所定領域の前記路面状態データに基づいて、前記許可領域又は前記停止点を設定する、無人車両の制御システムが提供される。
 本開示の態様によれば、無人車両が稼働する作業現場の安全性を確保し、生産性の低下を抑制することができる。
図1は、実施形態に係る制御システム及び無人車両の一例を模式的に示す図である。 図2は、実施形態に係る無人車両及び走行路を模式的に示す図である。 図3は、実施形態に係る無人車両の制御システムを示す機能ブロック図である。 図4は、許可領域の一例を模式的に示す図である。 図5は、許可領域の他の例を模式的に示す図である。 図6は、実施形態に係る無人車両の制御方法を示すフローチャートである。 図7は、許可領域の設定の一例を模式的に示す図である。 図8は、無人車両の制限速度の一例を示す模式図である。 図9は、無人車両の制限速度の他の例を示す模式図である。 図10は、実施形態に係るコンピュータシステムの一例を示すブロック図である。
 以下、本開示に係る実施形態について図面を参照しながら説明するが、本開示はこれに限定されない。以下で説明する実施形態の構成要素は適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。
 図1は、本実施形態に係る制御システム1及び無人車両2の一例を模式的に示す図である。図2は、実施形態に係る無人車両2及び走行路HLを模式的に示す図である。図3は、実施形態に係る無人車両2の制御システム1を示す機能ブロック図である。本実施形態では、作業現場において、無人車両2が使用される。無人車両2とは、運転者による運転操作によらずに、制御指令に基づいて無人で走行する作業車両をいう。
 作業現場は、例えば鉱山である。鉱山とは、鉱物を採掘する場所又は事業所をいう。無人車両2に運搬される積荷は、例えば鉱山において掘削された鉱石又は土砂である。無人車両2は、鉱山の複数の作業場PAに通じる走行路HLの少なくとも一部を走行する。作業場PAは、積込場及び排土場の少なくとも一方を含む。走行路HLは、交差点ISを含む。積込場とは、無人車両2に積荷を積載する積込作業が実施されるエリアをいう。積込場において、油圧ショベルのような積込機7が稼働する。排土場とは、無人車両2から積荷が排出される排出作業が実施されるエリアをいう。排土場には、例えば破砕機8が設けられる。
 無人車両2は、例えば作業現場を走行して積荷を運搬するダンプトラックなどである。
 制御システム1は、無人車両2ごとに走行を許可する許可領域AP又は停止点SPを設定する無人車両2の制御システムである。制御システム1は、管理装置3と、通信システム4とを備える。管理装置3は、コンピュータシステムを含み、作業現場の管制施設5に設置される。管制施設5にオペレータが存在する。通信システム4は、管理装置3と無人車両2との間で通信を実施する。管理装置3に無線通信機6が接続される。通信システム4は、無線通信機6を含む。管理装置3と無人車両2とは、通信システム4を介して無線通信する。無人車両2は、管理装置3にそれぞれの無人車両2の無人車両データを出力する。無人車両2は、管理装置3から送信された走行条件データに基づいて、作業現場の走行路HLを走行する。無人車両2は、管理装置3からの制御信号に基づいて、走行路HL及び作業場PAに設定された走行コースCSに従って走行する。
[無人車両]
 無人車両2は、車両本体21と、車両本体21に支持されるダンプボディ22と、車両本体21を支持する走行装置23と、無線通信機28と、位置センサ41と、操舵角センサ42と、方位角センサ43と、速度センサ44と、路面用カメラ45と、制御装置10とを備える。制御装置10については後述する。
 車両本体21は、車体フレームを含み、ダンプボディ22を支持する。また、車両本体21は、油圧ポンプ(不図示)と、油圧ポンプから吐出される作動油により作動する複数の油圧シリンダ(不図示)と、を有する。
 ダンプボディ22は、積荷が積み込まれる部材である。ダンプボディ22は、油圧シリンダであるホイストシリンダの作動により昇降する。ダンプボディ22は、ホイストシリンダの作動により、積載姿勢及びダンプ姿勢の少なくとも一方の姿勢に調整される。積載姿勢は、積荷を積み込み可能な姿勢であり、ダンプボディ22が下降している姿勢である。ダンプ姿勢は、積荷を排土する姿勢であり、ダンプボディ22が上昇している姿勢である。
 走行装置23は、車輪27を含み、走行路HLを走行する。車輪27は、前輪27Fと後輪27Rとを含む。車輪27にタイヤが装着される。走行装置23は、駆動装置23Aと、ブレーキ装置23Bと、操舵装置23Cとを有する。
 駆動装置23Aは、無人車両2を加速させるための駆動力を発生する。駆動装置23Aは、ディーゼルエンジンのような内燃機関を含む。なお、駆動装置23Aは、電動機を含んでもよい。駆動装置23Aで発生した駆動力が後輪27Rに伝達され、後輪27Rが回転する。後輪27Rが回転することにより、無人車両2は自走する。
 ブレーキ装置23Bは、無人車両2を減速又は停止させるための制動力を発生する。
 操舵装置23Cは、無人車両2の走行方向を調整可能である。無人車両2の走行方向は、車両本体21の前部の方位を含む。操舵装置23Cは、前輪27Fを操舵することによって、無人車両2の走行方向を調整する。操舵装置23Cは、油圧シリンダであるステアリングシリンダを有する。ステアリングシリンダが発生する動力により、前輪27Fが操舵される。
 無線通信機28は、管理装置3に接続された無線通信機6と無線通信する。通信システム4は、無線通信機28を含む。
 位置センサ41は、走行路HLを走行する無人車両2の位置を検出する。位置センサ41の検出データは、無人車両2の絶対位置を示す絶対位置データを含む。無人車両2の絶対位置は、全地球航法衛星システム(GNSS:Global Navigation Satellite System)を利用して検出される。全地球航法衛星システムは、全地球測位システム(GPS:Global Positioning System)を含む。位置センサ41は、GNSS受信機を含む。全地球航法衛星システムは、経度、緯度、及び高度の座標データで規定される無人車両2の絶対位置を検出する。全地球航法衛星システムにより、グローバル座標系において規定される無人車両2の絶対位置が検出される。グローバル座標系とは、地球に固定された座標系をいう。
 操舵角センサ42は、操舵装置23Cによる無人車両2の操舵角を検出する。操舵角センサ42は、例えば操舵装置23Cに設けられたロータリーエンコーダを含む。操舵角センサ42の検出データは、無人車両2の操舵角を示す操舵角データを含む。
 方位角センサ43は、無人車両2の方位角を検出する。無人車両2の方位角は、無人車両2のヨー角を含む。ヨー角とは、無人車両2の上下方向に延在する回転軸を中心とする無人車両2の傾斜角度をいう。方位角センサ43の検出データは、無人車両2の方位角を示す方位角データを含む。無人車両2の方位は、無人車両2の走行方向である。方位角センサ43は、例えばジャイロセンサを含む。
 速度センサ44は、無人車両2の走行速度を検出する。速度センサ44の検出データは、走行装置23の走行速度を示す走行速度データを含む。
 路面用カメラ45は、無人車両2の進行方向前方の走行路HLの路面を撮影する。路面用カメラ45は、無人車両2に設けられていてもよい。
 無人車両2の位置センサ41、操舵角センサ42、方位角センサ43、及び速度センサ44によって検出されたデータ、及び路面用カメラ45によって撮影された画像データが、無人車両2の無人車両データとして、管理装置3へ出力される。
[制御システム]
 図3に示すように、制御システム1は、管理装置3と制御装置10とを含む。制御システム1は、作業現場において、無人車両2を制御する。制御装置10は、通信システム4を介して管理装置3と通信可能である。
[管理装置]
 管理装置3は、走行路HLにおける無人車両2の走行条件を設定する。無人車両2は、管理装置3から送信された走行条件を規定する走行条件データに基づいて、走行路HLを走行する。
 管理装置3は、コンピュータシステムを含む。管理装置3は、入出力インターフェース31と、CPU(Central Processing Unit)のようなプロセッサを含む演算処理装置32と、ROM(Read Only Memory)又はRAM(Random Access Memory)のようなメモリ及びストレージを含む記憶装置33とを有する。
 入出力インターフェース31は、入力装置35、出力装置36、及び無線通信機6のそれぞれに接続される。入力装置35、出力装置36、及び無線通信機6のそれぞれは、管制施設5に設置される。入出力インターフェース31は、通信システム4を介して、走行条件データを無人車両2に送信する。入出力インターフェース31は、通信システム4を介して、無人車両データを無人車両2から受信する。
 演算処理装置32は、無人車両データ取得部321と、路面状態データ取得部322と、走行条件データ生成部323と、許可領域設定部324とを有する。
 無人車両データ取得部321は、作業現場における無人車両2の位置データを含む無人車両データを取得する。無人車両データ取得部321は、入出力インターフェース31を介して、制御装置10から送信された無人車両2の無人車両データを取得する。無人車両データとは、無人車両2の稼働状況を示すデータをいう。無人車両2のデータは、無人車両2に搭載されているセンサの検出データを含む。
 路面状態データ取得部322は、作業現場における無人車両2が走行する走行路HLの停止精度を予測可能な路面状態を示す路面状態データを取得する。路面状態データ取得部322は、入出力インターフェース31を介して、入力された走行路HLの路面状態を示す路面状態データを取得する。路面状態データは、路面の水分に関するデータを含む。水分に関するデータは、例えば路面に生じた水たまり又はぬかるみなど、スリップしやすい地点のデータを含む。より詳しくは、路面状態データは、オペレータによって設定された地点のデータ、例えばオペレータによってスリップが発生する可能性があると判断した地点の位置データを含んでもよい。また、路面状態データは、散水車によって路面に散水した散水量を含む散水データ、無人車両2に搭載された路面用カメラ45によって撮影された、走行路HLの路面の画像データ、及び他の無人車両2の走行データの少なくともいずれかを含んでもよい。画像データを画像処理して、路面に水たまり又はぬかるみを認識可能である。他の無人車両2の走行データが、他の無人車両2がスリップしたことを示す場合、スリップしやすい地点として認識可能である。
 走行条件データ生成部323は、無人車両2の走行条件を規定する走行条件データを生成する。より詳しくは、走行条件データ生成部323は、無人車両データ取得部321が取得した無人車両データに基づいて、無人車両2の走行路HLにおける許可領域APと、許可領域APにおける停止点SPと、停止点SPで無人車両2が停止するための目標走行速度とを含む走行条件データを生成する。走行条件データ生成部323は、路面状態データ取得部322が取得した、停止点SPを含む所定領域の路面状態データに基づいて、許可領域AP又は停止点SPを設定する機能を有する。停止点SPを含む領域とは、許可領域APにおける停止点SPの周辺の領域である。走行条件データ生成部323は、入出力インターフェース31を介して、入力装置35、出力装置36、及び無線通信機6のそれぞれと通信する。
 走行条件は、例えば管制施設5に存在するオペレータにより決定される。オペレータは、管理装置3に接続されている入力装置35を操作する。入力装置35が操作されることにより生成された入力データに基づいて、走行条件データを生成する。
 走行条件データは、無人車両2の目標位置、目標走行速度、目標方位、及び走行コースCSを含む。さらに、走行条件データは、後述する許可領域設定部324によって設定される許可領域APの許可領域データを含む。
 図2に示すように、走行条件データは、走行路HLに間隔をあけて設定された複数の目標点PIを含む。目標点PIの間隔は、例えば1[m]以上5[m]以下に設定される。目標点PIは、無人車両2の目標位置を規定する。目標走行速度及び目標方位は、複数の目標点PIのそれぞれに設定される。走行コースCSは、複数の目標点PIを結ぶ線によって規定される。すなわち、無人車両2の走行条件を規定する走行条件データは、無人車両2の目標位置を示す複数の目標点PIと、複数の目標点PIのそれぞれに設定された無人車両2の目標走行速度及び目標方位とを含む。
 無人車両2の目標位置とは、グローバル座標系において規定される無人車両2の目標位置をいう。すなわち、目標位置は、経度、緯度、及び高度で規定される座標データにおける目標位置をいう。目標位置は、経度(x座標)における目標位置と、緯度(y座標)における目標位置とを含む。なお、無人車両2の目標位置は、無人車両2のローカル座標系において規定されてもよい。
 無人車両2の目標走行速度とは、目標点PIを走行(通過)するときの無人車両2の目標走行速度をいう。例えば目標点PIにおける目標走行速度が設定されている場合、目標点PIを走行するときの無人車両2の実際の走行速度が目標走行速度になるように、無人車両2の駆動装置23A又はブレーキ装置23Bが制御される。
 無人車両2の目標方位とは、目標点PIを走行(通過)するときの無人車両2の目標方位をいう。また、目標方位とは、基準方位(例えば北)に対する無人車両2の方位角をいう。換言すれば、目標方位は、車両本体21の前部の目標方位であり、無人車両2の目標走行方向を示す。例えば目標点PIにおける目標方位が設定されている場合、目標点PIを走行するときの無人車両2の実際の方位が目標方位になるように、無人車両2の操舵装置23Cが制御される。
 図4、図5を用いて、許可領域設定部324について説明する。図4は、許可領域APの一例を模式的に示す図である。図5は、許可領域APの他の例を模式的に示す図である。許可領域設定部324は、走行条件データ生成部323が有する機能の1つである。許可領域設定部324は、走行条件データ生成部323の機能の1つとして、路面状態データ取得部322が取得した、停止点SPを含む所定領域の路面状態データに応じて、許可領域AP又は停止点SPを設定する。許可領域設定部324は、走行条件データ生成部323の機能の1つとして、停止点SPを含む所定領域において予測されるスリップ量に応じて、許可領域APを停止点SPより進行方向前方に拡大してもよい。許可領域設定部324は、走行条件データ生成部323の機能の1つとして、停止点SPを含む所定領域において予測されるスリップ量に応じて、許可領域APはそのままで、停止点SPを許可領域APの後端側に動かした位置に設定してもよい。
 図4に示すように、許可領域設定部324は、無人車両2の走行を許可する許可領域APを設定する。許可領域APは、他の無人車両2の進入を禁止する領域である。複数の無人車両2の許可領域APは、重ならないように設定される。許可領域APは、無人車両2の進行方向前方に、例えば走行コースCSに対応して帯状に形成される。許可領域APは、無人車両2の進行方向に、例えば数100[m]程度の長さを有する。許可領域APの先端部に設けられた停止点SPにおいて、無人車両2が停車できるように無人車両2の走行速度が制御される。許可領域設定部324は、無人車両2の走行に伴って、通過した許可領域APを開放するとともに、進行方向前方に許可領域APを延ばす。無人車両2の走行に伴って、許可領域APが延びることによって、無人車両2は停止することなく継続して走行可能である。他の無人車両2が停止しているなどして進行方向前方に許可領域APを延ばすことができない場合、無人車両2は、停止点SPまで走行して停止する。許可領域設定部324が設定した許可領域APの許可領域データは、走行条件データに含まれる。
 図5に示すように、許可領域設定部324は、停止点SPを含む所定領域における無人車両2の停止精度に応じて、許可領域APの前方に追加許可領域BPを設定する。より詳しくは、許可領域設定部324は、停止点SPを含む所定領域において無人車両2がスリップしやすい路面状態である場合、言い換えると、停止点SPを含む所定領域の停止精度が悪いことが予測される場合、許可領域APの前方に追加許可領域BPを設定して、許可領域APを前方に拡大する。
 スリップしやすい路面状態であるか否かは、路面状態データ取得部322が取得した路面状態データから判定可能である。例えば、路面状態データとして、オペレータによってスリップが発生する可能性があると判断された、停止点SPを含む所定領域の位置データが取得されている場合、スリップしやすい路面状態であると判定する。例えば、路面状態データとして、散水車によって停止点SPを含む所定領域の路面に散水した散水量を含む散水データが取得されている場合、スリップしやすい路面状態であると判定する。例えば、路面状態データとして、停止点SPを含む所定領域の路面の画像データに画像処理を行って、路面に生じた水たまり又はぬかるみなどが認識された場合、スリップしやすい路面状態であると判定する。例えば、路面状態データとして、他の無人車両2の走行データが、停止点SPを含む所定領域において他の無人車両2がスリップしたことを示す場合、スリップしやすい路面状態であると判定する。
 追加許可領域BPは、無人車両2がスリップした場合に停止可能な程度の長さを有する。追加許可領域BPは、停止点SPを含む所定領域の無人車両2のスリップ量を予測して、予測したスリップ量に応じた長さに設定する。スリップ量は、例えば、オペレータによって予測されてもよい。スリップ量は、無人車両データや路面状況データなどの所定のパラメータに対するスリップ量の関係式またはマップがメモリに記憶されており、この関係式またはマップを使用して算出してもよい。スリップ量は、例えば、散水量から予測してもよい。スリップ量は、例えば、画像データから認識される、水たまり又はぬかるみの大きさから予測してもよい。スリップ量は、例えば、他の無人車両2の走行データから予測してもよい。許可領域設定部324は、スリップ量に応じた長さの追加許可領域BPを確保できない場合、スリップ量に応じた長さ分、停止点SPを手前側、言い換えると許可領域APの後端側に動かす。
 記憶装置33は、入力装置35を介して入力された、路面状態データを記憶する。記憶装置33は、無人車両2から取得した無人車両データを記憶する。
 入力装置35は、管制施設5のオペレータに操作されることにより、入力データを生成する。入力装置35で生成された入力データは、管理装置3に出力される。管理装置3は、入力装置35から入力データを取得する。入力装置35として、コンピュータ用キーボード、マウス、タッチパネル、操作スイッチ、及び操作ボタンのような、オペレータの手によって操作される接触式入力装置が例示される。なお、入力装置35は、オペレータの音声によって操作される音声入力装置でもよい。
 出力装置36は、管制施設5のオペレータに出力データを提供する。出力装置36は、表示データを出力する表示装置でもよいし、印刷データを出力する印刷装置でもよいし、音声データを出力する音声出力装置でもよい。表示装置として、液晶ディスプレイ(LCD:Liquid Crystal Display)又は有機ELディスプレイ(OELD:Organic Electroluminescence Display)のようなフラットパネルディスプレイが例示される。
[制御装置]
 制御装置10は、コンピュータシステムを含み、車両本体21に配置される。制御装置10は、無人車両2の走行装置23の走行を制御する制御指令を出力する。制御装置10から出力される制御指令は、駆動装置23Aを作動するためのアクセル指令、ブレーキ装置23Bを作動するためのブレーキ指令、及び操舵装置23Cを作動するためのステアリング指令を含む。駆動装置23Aは、制御装置10から出力されたアクセル指令に基づいて、無人車両2を加速させるための駆動力を発生する。ブレーキ装置23Bは、制御装置10から出力されたブレーキ指令に基づいて、無人車両2を減速又は停止させるための制動力を発生する。操舵装置23Cは、制御装置10から出力されたステアリング指令に基づいて、無人車両2を直進又は旋回させるために前輪27Fの向きを変えるための旋回力を発生する。
 制御装置10は、入出力インターフェース11と、CPUのようなプロセッサを含む演算処理装置12と、ROM又はRAMのようなメモリ及びストレージを含む記憶装置13とを有する。制御装置10は、通信システム4を介して、管理装置3から送信された走行条件データを取得する。
 入出力インターフェース11は、位置センサ41、操舵角センサ42、方位角センサ43、速度センサ44、路面用カメラ45、走行装置23、及び無線通信機28のそれぞれに接続される。入出力インターフェース11は、位置センサ41、操舵角センサ42、方位角センサ43、速度センサ44、路面用カメラ45、走行装置23、及び無線通信機28のそれぞれと通信する。
 演算処理装置12は、走行条件データ取得部121と、位置データ取得部122と、検出データ取得部123と、走行制御部124とを有する。
 走行条件データ取得部121は、管理装置3の走行条件データ生成部323で生成された走行条件データを取得する。走行条件データ取得部121は、管理装置3によって走行条件データが更新される度に、更新された走行条件データを取得する。より詳しくは、走行条件データ取得部121は、管理装置3によって許可領域APが更新される度に、更新された許可領域データを含む走行条件データを取得する。例えば、走行条件データ取得部121は、無人車両2の走行に伴って、通過した許可領域APが開放されるとともに、進行方向前方に許可領域APを延ばした許可領域データを含む走行条件データを取得する。
 位置データ取得部122は、無人車両2の位置を示す位置データを位置センサ41から取得する。
 検出データ取得部123は、無人車両2の走行方向を検出した方位角センサ43の検出データを方位角センサ43から取得する。検出データは、操舵角センサ42で検出された操舵角データ、方位角センサ43で検出された方位角データ、及び速度センサ44で検出された速度データを含む。検出データ取得部123は、操舵角データを操舵角センサ42から取得し、方位角データを方位角センサ43から取得し、速度データを速度センサ44から取得する。検出データ取得部123は、路面用カメラ45が撮影した画像データを路面用カメラ45から取得する。
 走行制御部124は、走行条件データ取得部121で取得された走行コースCSに基づいて、無人車両2の駆動装置23A、ブレーキ装置23B、及び操舵装置23Cの少なくとも一つを制御する制御信号を出力する。管理装置3は、走行条件データ生成部323で生成された走行コースCSを入出力インターフェース11から無人車両2の走行制御部124に出力する。走行条件データ生成部323で生成された走行コースCSは、入出力インターフェース11から無人車両2の走行制御部124に送信される。
 走行制御部124は、走行コースCSに基づいて、無人車両2の走行を制御する制御信号を生成する。走行制御部124において生成された制御信号は、走行制御部124から走行装置23に出力される。走行制御部124から出力される制御信号は、駆動装置23Aに出力されるアクセル信号、ブレーキ装置23Bに出力されるブレーキ制御信号、及び操舵装置23Cに出力されるステアリング制御信号を含む。走行制御部124は、位置センサ41で検出された位置データに基づいて、無人車両2の特定部位と走行コースCSとが一致した状態で走行するように、駆動装置23A、ブレーキ装置23B、及び操舵装置23Cを制御する。
 走行制御部124は、走行条件データに基づいて、無人車両2の走行を制御する。走行制御部124は、走行装置23の駆動装置23Aに走行速度に応じたアクセル指令値を出力する。駆動装置23Aは、アクセル指令値に基づいて動力を発生する。走行制御部124は、速度条件データに制限速度が含まれる場合、走行速度を減速するようにアクセル指令値又はブレーキ指令値を出力する。
 走行制御部124は、許可領域設定部324が設定した許可領域データに基づいて、許可領域APにおける無人車両2の走行を制御する。走行制御部124は、許可領域APの停止点SPにおいて、無人車両2が停車できるように無人車両2の走行速度を制御する。走行制御部124は、無人車両2の走行時、進行方向前方に許可領域APに延伸されず、走行条件データに含まれる許可領域データが更新されない場合、無人車両2を停止点SPまで走行して停止させる。走行制御部124は、無人車両2の走行時、進行方向前方に許可領域APが延伸され、走行条件データに含まれる許可領域データが更新される場合、無人車両2の走行を継続させる。
[制御方法]
 図6は、本実施形態に係る無人車両2の制御方法を示すフローチャートである。図7は、許可領域APの設定の一例を模式的に示す図である。制御システム1の動作中、管理装置3の演算処理装置32は、無人車両データ取得部321によって、入出力インターフェース31を介して、作業現場の無人車両2の制御装置10から送信された無人車両データを取得する。管理装置3の演算処理装置32は、路面状態データ取得部322によって、路面状態データを取得する。また、管理装置3の演算処理装置32は、走行条件データ生成部323によって、無人車両2の走行条件を規定する走行条件データを生成する。図6に示すフローチャートの処理は、無人車両2ごとに実行される。
 管理装置3の演算処理装置32は、無人車両2ごとに許可領域APを確保する(ステップST11)。より詳しくは、許可領域設定部324によって、無人車両2の走行を許可する許可領域APを設定する。図7に示すように、許可領域APは、無人車両2の進行方向前方に設定される。
 管理装置3の演算処理装置32は、スリップを考慮せずに、無人車両2の許可領域AP内の停止点SPを設定する(ステップST12)。より詳しくは、許可領域設定部324によって、無人車両2の許可領域APの前端部に停止点SPを設定する。図7に示すように、停止点SPは、無人車両2の許可領域APの前端部に設定される。
 管理装置3の演算処理装置32は、停止点SPの周辺の領域である、停止点SP含む所定領域のスリップ量SLを予測する(ステップST13)。より詳しくは、許可領域設定部324によって、路面状態データに基づいて、無人車両2の停止点SPを含む所定領域のスリップ量SLを予測する。許可領域設定部324によって、路面状態データ取得部322が取得した路面状態データに基づいて、無人車両2の停止点SPを含む所定領域がスリップしやすいと判断される場合、スリップ量SLが算出され、無人車両2の停止点SPを含む所定領域がスリップしやすいと判断されない場合、スリップ量SLがゼロになる。図7に示す例では、予測された停止点SPを含む所定領域のスリップ量SLは、無人車両2の許可領域APの前方にはみ出している。この状態では、無人車両2が停止点SPを含む所定領域でスリップした場合、許可領域AP内で停止できない可能性が高い。
 管理装置3の演算処理装置32は、スリップ量SL分の追加許可領域BPの確保を要求する(ステップST14)。より詳しくは、許可領域設定部324によって、許可領域APの前方に追加許可領域BPを確保することを要求する。図7に示すように、追加許可領域BPは、無人車両2の進行方向前方にスリップ量SLに対応する追加許可領域BPを確保することを要求する。追加許可領域BPは、スリップ量SLを含むように設定される。
 管理装置3の演算処理装置32は、追加許可領域BPが確保できたか否かを判定する(ステップST15)。より詳しくは、例えば、無人車両2の許可領域APの前方に他の車両などが存在しない場合、追加許可領域BPは確保できる。例えば、無人車両2の許可領域APの前方に他の無人車両2などの障害物が存在する場合、追加許可領域BPは確保できない。許可領域設定部324によって、追加許可領域BPが確保できたと判定する場合(ステップST15でYes)、ステップST16へ進む。許可領域設定部324によって、追加許可領域BPが確保できたと判定しない場合(ステップST15でNo)、ステップST17へ進む。
 追加許可領域BPが確保できたと判定する場合(ステップST15でYes)、停止点SPはそのままとして追加許可領域BPを確保して、許可領域APを拡大する(ステップST16)。図7に示すように、追加許可領域BPは、無人車両2の進行方向前方にスリップ量SLに対応する領域を確保する。許可領域APが無人車両2の進行方向前方に拡大される。
 追加許可領域BPが確保できたと判定しない場合(ステップST15でNo)、スリップ量SL分、停止点SPを手前に移動する(ステップST17)。図7に示すように、許可領域APは、そのままで、停止点SPが手前に移動される。
 管理装置3は、入出力インターフェース31を介して、このようにして設定された許可領域APの許可領域データを含む走行条件データを、無人車両2の制御装置10に送信する。
 無人車両2では、入出力インターフェース11を介して、管理装置3から取得した走行条件データに基づいて、無人車両2が許可領域APを走行するように、走行装置23に制御信号を出力する。
 図8、図9を用いて、許可領域APにおける走行速度の制御を説明する。図8は、無人車両2の制限速度の一例を示す模式図である。図9は、無人車両2の制限速度の他の例を示す模式図である。図8に示すように、許可領域APの制限速度がVmaxであるとする。この場合、許可領域APでの現在の走行速度V1(V1<Vmax)の無人車両2は、Vmaxまで加速するよう制御信号が出力される。そして、停止点SPの位置で走行速度がゼロになるように、停止点SPの所定距離だけ手前の位置に到達すると、減速するように制御信号が出力される。停止点SPの所定距離だけ手前の位置に到達するまでに、許可領域APが更新されて延伸されている場合、減速されずに一定速度での走行が継続される。ステップST16のように、許可領域APが拡大されていれば、停止点SPを含む所定領域において、無人車両2がスリップして停止点SPで停止できなかったとしても、無人車両2が許可領域APからはみ出すことが抑制される。
 図9は、ステップST17のように、スリップ量SL分、停止点SPが手前に移動された場合の制限速度が示されている。この場合、手前に動かした停止点SPの位置で走行速度がゼロになるように、停止点SPの所定距離だけ手前の位置に到達すると、減速するように制御信号が出力される。停止点SPが手前に移動されていれば、停止点SPを含む所定領域において、無人車両2がスリップして停止点SPで停止できなかったとしても、無人車両2が許可領域APからはみ出すことが抑制される。
[コンピュータシステム]
 図10は、コンピュータシステム1000の一例を示すブロック図である。上述の管理装置3及び制御装置10のそれぞれは、コンピュータシステム1000を含む。コンピュータシステム1000は、CPUのようなプロセッサ1001と、ROMのような不揮発性メモリ及びRAMのような揮発性メモリを含むメインメモリ1002と、ストレージ1003と、入出力回路を含むインターフェース1004とを有する。上述の管理装置3の機能及び制御装置10の機能は、プログラムとしてストレージ1003に記憶されている。プロセッサ1001は、プログラムをストレージ1003から読み出してメインメモリ1002に展開し、プログラムに従って上述の処理を実行する。なお、プログラムは、ネットワークを介してコンピュータシステム1000に配信されてもよい。
[効果]
 以上説明したように、本実施形態は、無人車両2の許可領域APの停止点SPを含む所定領域の路面状態データに基づいて、許可領域APを適切に設定できる。本実施形態によれば、路面状態が変化した場合、それに合わせた許可領域AP又は停止点SPを設定できる。本実施形態は、無人車両2が稼働する作業現場の安全性を確保し、生産性の低下を抑制することができる。
 本実施形態は、無人車両2の許可領域APの停止点SPを含む所定領域において予測されるスリップ量に応じて、許可領域APを停止点SPより進行方向前方に拡大する。本実施形態によれば、停止点SPを含む所定領域において無人車両2がスリップした場合でも、無人車両2が許可領域AP内で停止するように許可領域APを設定できる。本実施形態によれば、スリップした無人車両2が許可領域APからはみ出すことが抑制されるので、無人車両2の周辺の車両の安全も確保できる。
 本実施形態は、無人車両2の許可領域APの停止点SPを含む所定領域において予測されるスリップ量に応じて、許可領域AP内の停止点SPを設定する。本実施形態によれば、停止点SPを含む所定領域において無人車両2がスリップした場合でも、無人車両2が許可領域AP内で停止するように停止点SPを動かした許可領域APを設定できる。本実施形態によれば、スリップした無人車両2が許可領域APからはみ出すことが抑制されるので、無人車両2の周辺の車両の安全も確保できる。
 本実施形態は、路面状態データは、路面に生じた水たまり又はぬかるみなど、スリップしやすい地点のデータを含む。本実施形態は、無人車両2の許可領域APの停止点SPを含む所定領域の停止精度を適切に予測できる。
 本実施形態は、オペレータによってスリップが発生する可能性があると判断した地点の位置データを含む。本実施形態は、無人車両2の許可領域APの停止点SPを含む所定領域の停止精度を適切に予測できる。
 本実施形態は、路面状態データは、散水車によって路面に散水した散水量を含む散水データを含む。本実施形態は、散水データから、無人車両2の許可領域APの停止点SPを含む所定領域の停止精度を適切に予測できる。
 本実施形態は、路面状態データは、走行路HLの路面を撮影するカメラによって撮影された路面の画像データを含む。本実施形態は、路面の画像データから、無人車両2の許可領域APの停止点SPを含む所定領域の停止精度を適切に予測できる。
 本実施形態は、路面状態データは、他の無人車両2の走行データを含む。本実施形態では、他の無人車両2の走行データから、無人車両2の許可領域APの停止点SPを含む所定領域の停止精度を適切に予測できる。
[他の実施形態]
 上述の実施形態において、制御装置10の機能の少なくとも一部が管理装置3に設けられてもよいし、管理装置3の機能の少なくとも一部が制御装置10に設けられてもよい。例えば、上述の実施形態において、無人車両2の制御装置10が、管理装置3の走行条件データ生成部323の機能を有してもよい。制御装置10の走行制御部124は、生成した走行条件データに基づいて、無人車両2を制御する。
 1…制御システム、2…無人車両、3…管理装置、4…通信システム、6…無線通信機、7…積込機、8…破砕機、10…制御装置、11…入出力インターフェース、12…演算処理装置、121…走行条件データ取得部、122…位置データ取得部、123…検出データ取得部、124…走行制御部、13…記憶装置、21…車両本体、22…ダンプボディ、23…走行装置、23A…駆動装置、23B…ブレーキ装置、23C…操舵装置、27…車輪、27F…前輪、27R…後輪、28…無線通信機、31…入出力インターフェース、32…演算処理装置、321…無人車両データ取得部、322…路面状態データ取得部、323…走行条件データ生成部、324…許可領域設定部、33…記憶装置、35…入力装置、36…出力装置、41…位置センサ、42…操舵角センサ、43…方位角センサ、44…速度センサ、45…路面用カメラ、AP…許可領域、BP…追加許可領域、CS…走行コース、HL…走行路、IS…交差点、PA…作業場、PI…目標点、SL…スリップ量、SP…停止点。

Claims (10)

  1.  無人車両ごとに走行を許可する許可領域を設定する無人車両の制御システムあって、
     前記無人車両の位置データを含む無人車両データを取得する無人車両データ取得部と、
     前記無人車両が走行する走行路の停止精度を予測可能な路面状態データを取得する路面状態データ取得部と、
     前記無人車両データ取得部が取得した前記無人車両データに基づいて、前記無人車両の走行路における許可領域と、前記許可領域における停止点と、前記停止点で前記無人車両が停止するための目標走行速度とを含むデータを生成する走行条件データ生成部と、
     を備え、
     前記走行条件データ生成部は、前記路面状態データ取得部が取得した前記停止点を含む所定領域の前記路面状態データに基づいて、前記許可領域又は前記停止点を設定する、
     無人車両の制御システム。
  2.  前記走行条件データ生成部は、前記停止点を含む所定領域において予測されるスリップ量に応じて、前記許可領域を前記停止点より進行方向前方に拡大する、
     請求項1に記載の無人車両の制御システム。
  3.  前記走行条件データ生成部は、前記停止点を含む所定領域において予測されるスリップ量に応じて、前記停止点を前記許可領域の後端側に動かした位置に設定する、
     請求項1に記載の無人車両の制御システム。
  4.  前記路面状態データは、路面の水分に関するデータを含む、
     請求項1から請求項3のいずれか一項に記載の無人車両の制御システム。
  5.  前記路面状態データは、オペレータによって設定された地点の位置データを含む、
     請求項4に記載の無人車両の制御システム。
  6.  前記路面状態データは、散水車によって路面に散水した散水量を含む散水データを含む、
     請求項4または請求項5に記載の無人車両の制御システム。
  7.  前記路面状態データは、走行路の路面を撮影するカメラによって撮影された路面の画像データを含む、
     請求項4から請求項6のいずれか一項に記載の無人車両の制御システム。
  8.  前記路面状態データは、他の無人車両の走行データを含む、
     請求項4から請求項7のいずれか一項に記載の無人車両の制御システム。
  9.  請求項1から請求項8のいずれか一項に記載の無人車両の制御システムによって制御される無人車両。
  10.  無人車両ごとに走行を許可する許可領域を設定する無人車両の制御方法であって、
     前記無人車両の位置データを含む無人車両データを取得することと、
     前記無人車両が走行する走行路の路面状態データを取得することと、
     取得した前記無人車両データに基づいて、前記無人車両の走行路における許可領域と、前記許可領域における停止点と、前記停止点で前記無人車両が停止するための目標走行速度とを含むデータを生成することと、
     を含み、
     前記停止点を含む所定領域の前記路面状態データに基づいて、前記許可領域を設定する、
     無人車両の制御方法。
PCT/JP2021/017713 2020-06-30 2021-05-10 無人車両の制御システム、無人車両、及び無人車両の制御方法 WO2022004131A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2021299025A AU2021299025A1 (en) 2020-06-30 2021-05-10 Unmanned vehicle control system, unmanned vehicle, and unmanned vehicle control method
CA3186607A CA3186607A1 (en) 2020-06-30 2021-05-10 Unmanned vehicle control system, unmanned vehicle, and unmanned vehicle control method
US18/007,832 US20230229169A1 (en) 2020-06-30 2021-05-10 Unmanned vehicle control system, unmanned vehicle, and unmanned vehicle control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020112596A JP2022011448A (ja) 2020-06-30 2020-06-30 無人車両の制御システム、無人車両、及び無人車両の制御方法
JP2020-112596 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022004131A1 true WO2022004131A1 (ja) 2022-01-06

Family

ID=79315192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017713 WO2022004131A1 (ja) 2020-06-30 2021-05-10 無人車両の制御システム、無人車両、及び無人車両の制御方法

Country Status (5)

Country Link
US (1) US20230229169A1 (ja)
JP (1) JP2022011448A (ja)
AU (1) AU2021299025A1 (ja)
CA (1) CA3186607A1 (ja)
WO (1) WO2022004131A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51116942U (ja) * 1975-03-17 1976-09-22
JPH04123113A (ja) * 1990-09-13 1992-04-23 Daifuku Co Ltd 移動車の停止制御装置
JP2001082966A (ja) * 1999-05-06 2001-03-30 Nissan Motor Co Ltd 車両用報知装置
US20100152946A1 (en) * 2008-12-17 2010-06-17 Caterpillar Inc. Slippage condition response system
WO2013136588A1 (ja) * 2012-03-15 2013-09-19 株式会社小松製作所 鉱山機械の運行管理システム及び鉱山機械の運行管理方法
JP2016170615A (ja) * 2015-03-12 2016-09-23 日立建機株式会社 車載端末装置及び交通管制システム
JP2018169826A (ja) * 2017-03-30 2018-11-01 ヤンマー株式会社 農用作業車両

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51116942U (ja) * 1975-03-17 1976-09-22
JPH04123113A (ja) * 1990-09-13 1992-04-23 Daifuku Co Ltd 移動車の停止制御装置
JP2001082966A (ja) * 1999-05-06 2001-03-30 Nissan Motor Co Ltd 車両用報知装置
US20100152946A1 (en) * 2008-12-17 2010-06-17 Caterpillar Inc. Slippage condition response system
WO2013136588A1 (ja) * 2012-03-15 2013-09-19 株式会社小松製作所 鉱山機械の運行管理システム及び鉱山機械の運行管理方法
JP2016170615A (ja) * 2015-03-12 2016-09-23 日立建機株式会社 車載端末装置及び交通管制システム
JP2018169826A (ja) * 2017-03-30 2018-11-01 ヤンマー株式会社 農用作業車両

Also Published As

Publication number Publication date
CA3186607A1 (en) 2022-01-06
AU2021299025A1 (en) 2023-01-19
JP2022011448A (ja) 2022-01-17
US20230229169A1 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
WO2017163790A1 (ja) 作業車両の制御装置、作業車両、及び作業車両の制御方法
WO2017168895A1 (ja) 作業機械の管理システム及び作業機械の管理方法
JP7436718B2 (ja) 無人車両の制御システム
JP6709578B2 (ja) 作業車両の管理システム及び作業車両の管理方法
WO2017168894A1 (ja) 作業機械の管理システム
JP7246218B2 (ja) 作業現場の管理システム及び作業現場の管理方法
JP7208804B2 (ja) 無人車両の制御システム及び無人車両の制御方法
WO2022004131A1 (ja) 無人車両の制御システム、無人車両、及び無人車両の制御方法
WO2022080422A1 (ja) 無人車両の制御システム、無人車両、及び無人車両の制御方法
WO2021256118A1 (ja) 無人車両の制御システム、無人車両、及び無人車両の制御方法
WO2022024522A1 (ja) 無人車両の制御システム、無人車両、及び無人車両の制御方法
WO2022080326A1 (ja) 無人車両の制御システム、無人車両、及び無人車両の制御方法
JP7242209B2 (ja) 無人車両の制御システム、無人車両、及び無人車両の制御方法
JP7329363B2 (ja) 無人車両の制御システム及び無人車両の制御方法
WO2020246319A1 (ja) 作業現場の管理システム及び作業現場の管理方法
AU2024204117A1 (en) Unmanned vehicle control system, unmanned vehicle, and unmanned vehicle control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3186607

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021299025

Country of ref document: AU

Date of ref document: 20210510

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21832161

Country of ref document: EP

Kind code of ref document: A1