WO2017163585A1 - 燃料電池システム、燃料電池システムの異常検知方法、及びコンピュータプログラム - Google Patents

燃料電池システム、燃料電池システムの異常検知方法、及びコンピュータプログラム Download PDF

Info

Publication number
WO2017163585A1
WO2017163585A1 PCT/JP2017/002443 JP2017002443W WO2017163585A1 WO 2017163585 A1 WO2017163585 A1 WO 2017163585A1 JP 2017002443 W JP2017002443 W JP 2017002443W WO 2017163585 A1 WO2017163585 A1 WO 2017163585A1
Authority
WO
WIPO (PCT)
Prior art keywords
ventilation
hydrogen
anode
concentration
fuel cell
Prior art date
Application number
PCT/JP2017/002443
Other languages
English (en)
French (fr)
Inventor
康人 尾出
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Publication of WO2017163585A1 publication Critical patent/WO2017163585A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present technology relates to a fuel cell system including a control unit that executes an abnormality detection process for a hydrogen sensor and a ventilation unit, an abnormality detection method for the fuel cell system, and a computer program for causing a computer to execute an abnormality detection process.
  • the fuel cell power generation system described in Patent Document 1 includes a ventilation fan that ventilates the inside of the package and a ventilation sensor that detects the operating state of the ventilation fan.
  • the presence or absence of abnormality of the ventilation fan or the ventilation sensor is determined by detecting the output of the ventilation sensor by changing the operating state of the ventilation fan.
  • the fuel cell power generation system described in Patent Literature 1 includes a combustible gas sensor that detects the concentration of combustible gas inside the package.
  • Patent Document 2 proposes a determination device that supplies an anode off-gas discharged from the anode of a fuel cell to a detection unit of a hydrogen detection unit at a predetermined timing to determine abnormality of the hydrogen detection unit.
  • Embodiments of the present disclosure have been made to solve the above-described problems, and provide a fuel cell system, a fuel cell system abnormality detection method, and a computer program that can reduce the number of sensors. Objective.
  • a fuel cell system includes a fuel cell main body, a housing that houses the fuel cell main body and has a ventilation outlet, and an anode off-gas discharged from the fuel cell main body is directed to the ventilation outlet.
  • An anode offgas pipe having an anode offgas outlet, an on / off valve for opening and closing the anode offgas pipe, and an anode offgas sent by the anode offgas pipe by opening the on / off valve from the ventilation outlet.
  • a ventilation unit that discharges to the outside of the housing, the ventilation unit including at least a ventilation fan, a hydrogen sensor that is disposed between the anode offgas outlet and the ventilation outlet, and detects a hydrogen concentration in the housing;
  • a control unit that controls the on-off valve and the ventilation fan, and the control unit opens the on-off valve. Is determined based on the hydrogen concentration or a concentration detection time determined by a detection signal from the hydrogen sensor, and an abnormality occurs in the ventilation unit.
  • the concentration detection time is a time during which the hydrogen concentration is equal to or greater than a first concentration threshold value.
  • An abnormality detection method includes a fuel cell main body, a housing that houses the fuel cell main body and has a ventilation outlet, and an anode off-gas discharged from the fuel cell main body is directed to the ventilation outlet.
  • An anode offgas pipe having an anode offgas outlet, an on / off valve for opening and closing the anode offgas pipe, and an anode offgas sent by the anode offgas pipe by opening the on / off valve from the ventilation outlet.
  • a ventilation unit that discharges to the outside of the housing, the ventilation unit including at least a ventilation fan, a hydrogen sensor that is disposed between the anode offgas outlet and the ventilation outlet, and detects a hydrogen concentration in the housing;
  • An abnormality detection method for a fuel cell system comprising: the on-off valve; and a control unit that controls the ventilation fan. Determining whether or not an abnormality has occurred in the hydrogen sensor based on the hydrogen concentration or a concentration detection time determined by a detection signal from the hydrogen sensor when the on-off valve is opened. It is determined whether an abnormality has occurred in the ventilation unit, and the concentration detection time is a time during which the hydrogen concentration is equal to or greater than a first concentration threshold.
  • a computer program includes a fuel cell main body, a housing that houses the fuel cell main body and has a ventilation outlet, and an anode off-gas discharged from the fuel cell main body toward the ventilation outlet.
  • An anode offgas pipe having an anode offgas outlet for delivery, an on / off valve for opening and closing the anode offgas pipe, and an anode offgas delivered by the anode offgas pipe by opening the on / off valve from the ventilation outlet.
  • a ventilation unit that discharges to the outside of the body, including a ventilation unit including at least a ventilation fan, a hydrogen sensor that is disposed between the anode offgas outlet and the ventilation outlet, and detects a hydrogen concentration in the housing;
  • An on-off valve and a control unit for controlling the ventilation fan are controlled.
  • the on-off valve is opened in the computer, it is determined whether or not an abnormality has occurred in the hydrogen sensor based on the hydrogen concentration or a concentration detection time determined by a detection signal from the hydrogen sensor.
  • a process for determining whether or not an abnormality has occurred in the ventilation unit is executed, and the concentration detection time is a time during which the hydrogen concentration is equal to or greater than a first concentration threshold.
  • the abnormality of the hydrogen sensor and the ventilation unit can be detected based on the hydrogen concentration detected by the hydrogen sensor or the concentration detection time determined by the detection signal from the hydrogen sensor. For this reason, a dedicated sensor for detecting an abnormality of the ventilation unit can be omitted.
  • the fuel cell system 1 includes a housing 2.
  • the housing 2 contains a fuel cell main body 3 and includes a ventilation inlet 4 and a ventilation outlet 5 on the side surface.
  • the fuel cell main body 3 includes a polymer electrolyte fuel cell stack inside.
  • hydrogen is supplied from a hydrogen supply device (not shown) to the anode electrode of the fuel cell stack, and air containing oxygen is supplied to the cathode electrode of the fuel cell stack by an air supply device such as a compressor (not shown).
  • an air supply device such as a compressor (not shown).
  • an electrochemical reaction occurs between the two electrodes, and an electromotive force is generated. Since the hydrogen supply device and the air supply device are known from Patent Document 2 and the like, detailed description thereof is omitted.
  • the fuel cell system 1 includes a ventilation fan 6.
  • a ventilation fan 6 By driving the ventilation fan 6, air is introduced from the outside through the ventilation inlet 4, air is discharged to the outside through the ventilation outlet 5, and the inside of the housing 2 is ventilated.
  • the ventilation fan 6 By ventilating the inside of the housing 2, each part in the fuel cell system 1 is cooled.
  • the ventilation fan 6 is configured to safely discharge the hydrogen to the outside.
  • the ventilation inlet 4 and the ventilation outlet 5 are respectively arranged on the opposite side surfaces of the housing 2.
  • the ventilation inlet 4 and the ventilation outlet 5 are preferably arranged at positions as far as possible from each other so that the inside of the housing 2 can be efficiently ventilated. Further, since the specific gravity of hydrogen is lighter than that of air, the ventilation outlet 5 is preferably arranged at a position as high as possible on the side surface of the housing 2.
  • a ventilation filter 7 is disposed at the ventilation inlet 4.
  • the ventilation fan 6 and the ventilation filter 7 form a ventilation unit 60.
  • the ventilation filter 7 is disposed so as to cover the opening of the ventilation inlet 4.
  • the ventilation filter 7 removes foreign matters contained in the air sucked from the ventilation inlet 4.
  • the ventilation filter 7 is preferably configured to be replaceable or cleanable by the user.
  • a dilution chamber 8 is provided upstream of the ventilation outlet 5 in the air flow direction in the housing 2.
  • the air that has passed through the housing 2 by the ventilation fan 6 passes through the dilution chamber 8 and is discharged to the outside from the ventilation outlet 5.
  • the dilution chamber 8 includes an inlet and an outlet.
  • a ventilation fan 6 is disposed at the inlet of the dilution chamber 8, and the outlet of the dilution chamber 8 is connected to the ventilation outlet 5.
  • the ventilation fan 6 is disposed at the entrance of the dilution chamber 8.
  • the ventilation fan 6 may be disposed so as to ventilate the inside of the housing 2, for example, near the ventilation inlet 4 or the vicinity of the ventilation outlet 5. May be arranged.
  • the fuel cell system 1 is a hydrogen circulation type fuel cell.
  • the fuel cell body 3 includes an anode offgas pipe 9 through which an anode offgas containing hydrogen flows.
  • the anode offgas pipe 9 includes an on-off valve 10 and an anode offgas outlet 11 from which the anode offgas is discharged. Since the hydrogen circulation type fuel cell is known from Patent Document 2 and the like, detailed description thereof is omitted.
  • the anode off gas outlet 11 is disposed in the dilution chamber 8.
  • a hydrogen sensor 12 that detects hydrogen is disposed in the dilution chamber 8.
  • the hydrogen sensor 12 is disposed between the anode offgas outlet 11 and the ventilation outlet 5. Further, since the specific gravity of hydrogen is lighter than that of air, the hydrogen sensor 12 is preferably arranged at a position as high as possible in the dilution chamber 8.
  • the fuel cell system 1 includes a control unit 20 and a notification unit 21.
  • the control unit 20 is connected to the fuel cell main body 3, the ventilation fan 6, the on-off valve 10, the hydrogen sensor 12, and the notification unit 21 via electric wiring.
  • the control unit 20 controls the operations of the ventilation fan 6 and the on-off valve 10.
  • the connection between the control unit 20 and each component is shown only in a necessary part in the description of the present embodiment.
  • FIG. 2 is a configuration diagram showing the configuration of the control unit 20.
  • the control unit 20 includes a CPU (Central Processing Unit) 22 that controls the operation of each component of the control unit 20, and a ROM 23, a RAM 24, and a time measuring unit 25 are connected to the CPU 22 via a bus.
  • the ROM 23 is a nonvolatile memory such as an EEPROM (ElectricallyrErasable Programmable ROM), and stores an operation program 26 of the fuel cell system 1 and an abnormality detection program 27 in the present embodiment.
  • EEPROM ElectricallyrErasable Programmable ROM
  • the abnormality detection program 27 is a portable media recorded in a computer-readable manner such as CD (Compact Disc) -ROM, DVD (Digital Versatile Disc) -ROM, BD (Blu-ray (registered trademark) Disc), It is recorded on a recording medium such as a hard disk drive or a solid state drive, and the CPU 22 may read the abnormality detection program 27 from the recording medium and store it in the ROM 23.
  • the abnormality detection program 27 in the present embodiment may be acquired from an external computer (not shown) connected to the communication network and stored in the ROM 23.
  • the RAM 24 is a memory such as DRAM (Dynamic RAM), SRAM (Static RAM), and the like.
  • the RAM 24 is operated by the operation program 26, the abnormality detection program 27, and the CPU 22 read out from the ROM 23 when the CPU 22 executes the arithmetic processing. Temporarily store various data generated.
  • the timer unit 25 measures the hydrogen sensor reaction time and the hydrogen sensor ON time as will be described later.
  • the hydrogen sensor 12 transmits a detection signal corresponding to the detected hydrogen concentration to the CPU 22.
  • the hydrogen sensor 12 transmits an S1 signal, which is a first signal, to the CPU 22 when the detected hydrogen concentration is equal to or higher than the threshold B, and when the detected hydrogen concentration is equal to or higher than the threshold A, the second sensor An S2 signal, which is a signal, is transmitted to the CPU 22, and an OFF signal is transmitted to the CPU 22 when the detected hydrogen concentration is less than the threshold value B.
  • the threshold value A is a value for monitoring the hydrogen concentration contained in the air discharged from the ventilation outlet 5 so that there is no danger of explosion.
  • the threshold A is a value below the lower explosion limit of hydrogen.
  • the threshold value B is lower than the threshold value A, and is determined in advance by experiments or the like in consideration of the hydrogen concentration contained in the anode off gas.
  • the CPU 22 opens the on-off valve 10 to discharge the anode off-gas from the anode off-gas outlet 11 (hereinafter referred to as hydrogen purge).
  • the anode off gas is diluted to a predetermined hydrogen concentration in the dilution chamber 8 by the air sucked from the ventilation inlet 4 by the ventilation fan 6 and discharged from the ventilation outlet 5.
  • the CPU 22 performs a hydrogen purge every predetermined time according to the power generation state of the fuel cell system 1. Further, the CPU 22 may execute the hydrogen purge when an instruction to start the hydrogen purge is received from the user through a switch or the like (not shown).
  • the CPU 22 reads the operation program 26 and executes the power generation of the fuel cell system 1.
  • the abnormality detection process of the hydrogen sensor 12, the ventilation fan 6, and the ventilation filter 7 according to the abnormality detection program 27 of the fuel cell system 1 will be described.
  • the hydrogen purge is periodically performed during operation of the fuel cell system 1, the anode off gas is discharged, and the anode off gas diluted in the dilution chamber 8 passes through the hydrogen sensor 12.
  • the detection signal transmitted from the hydrogen sensor 12 it is determined whether the hydrogen sensor 12, the ventilation fan 6, and the ventilation filter 7 are normal.
  • the CPU 22 of the control unit 20 reads the abnormality detection program 27 from the ROM 23 and executes hydrogen leakage detection processing and abnormality detection processing.
  • FIG. 3 is a flowchart showing hydrogen leakage detection processing in the first embodiment.
  • the CPU 22 executes hydrogen leakage detection processing during power generation and standby in the fuel cell system 1.
  • the CPU 22 determines whether or not an S2 signal has been received from the hydrogen sensor 12 (S1).
  • the CPU 22 determines that the S2 signal has been received from the hydrogen sensor 12 (S1: YES)
  • the CPU 22 determines that the hydrogen leak (abnormal mode C), notifies the abnormality by the notification unit 21 (S2), and determines the fuel cell system 1 Stop (S3) and end the hydrogen leak detection process.
  • the CPU 22 immediately stops the fuel cell system 1 when the hydrogen concentration contained in the air discharged from the ventilation outlet 5 becomes equal to or higher than the threshold value A.
  • the CPU 22 always monitors the presence or absence of hydrogen leakage during power generation and standby of the fuel cell system 1.
  • step S1 the CPU 22 determines whether or not the S1 signal is received from the hydrogen sensor 12 (S4).
  • CPU22 returns a process to step S1, when it is judged that the S1 signal is not received from the hydrogen sensor 12 (S4: NO).
  • step S5 determines whether or not the abnormality detection executing flag is “1” (S5).
  • the CPU 22 determines that the abnormality detection executing flag is “1” (S5: YES)
  • the CPU 22 returns the process to step S1. If the CPU 22 determines that the abnormality detection in-execution flag is not “1” (S5: NO), the process proceeds to step S2.
  • the CPU 22 does not determine that there is a hydrogen leak while executing an abnormality detection process described later. The detection process is continued, and when the abnormality detection process is not executed, it is determined that hydrogen leaks and the fuel cell system 1 is stopped.
  • ⁇ Abnormality detection> 4 and 5 are flowcharts showing the abnormality detection process in the hydrogen purge process of the first embodiment.
  • the CPU 22 executes an abnormality detection process when the hydrogen purge is executed. Note that the CPU 22 executes the hydrogen leak detection process while executing the abnormality detection process.
  • the CPU 22 assigns “1” to the abnormality detection executing flag (S11).
  • the CPU 22 opens the on-off valve 10 (S12), and causes the time measuring unit 25 to start measuring the hydrogen sensor reaction time (S13).
  • the hydrogen sensor reaction time is an elapsed time after the on-off valve 10 is opened.
  • CPU22 judges whether S1 signal was received from the hydrogen sensor 12 (S14). When determining that the S1 signal is not received from the hydrogen sensor 12 (S14: NO), the CPU 22 determines whether or not the hydrogen sensor reaction time has passed a predetermined time (S15). CPU22 returns a process to step S14, when it is judged that hydrogen sensor reaction time has not passed predetermined time (S15: NO).
  • the CPU 22 determines that the hydrogen sensor reaction time has passed the predetermined time (S15: YES), the CPU 22 determines that the hydrogen sensor 12 is abnormal (abnormal mode B), and notifies the abnormality by the notification unit 21 (S16).
  • the valve 10 is closed (S17), the fuel cell system 1 is stopped (S18), "0" is substituted for the abnormality detection execution flag (S19), and the abnormality detection process is terminated. That is, if the hydrogen sensor 12 does not detect a hydrogen concentration equal to or higher than the threshold value B and the S1 signal is not transmitted even after a predetermined time has elapsed after the opening / closing valve 10 is opened, it is determined that the hydrogen sensor 12 is abnormal. it can.
  • the predetermined time here is determined in advance by an experiment or the like in consideration of the time until the anode off gas reaches the hydrogen sensor 12 from the on-off valve 10 depending on the positional relationship between the on-off valve 10 and the hydrogen sensor 12.
  • the timer unit 25 ends the measurement of the hydrogen sensor reaction time and starts the measurement of the hydrogen sensor ON time (S20).
  • the hydrogen sensor ON time is a duration time from when the hydrogen concentration detected by the hydrogen sensor 12 becomes equal to or higher than the threshold value B.
  • the CPU 22 waits for a specified purge time (S21). After the specified purge time has elapsed, the CPU 22 closes the on-off valve 10 (S22).
  • the specified purge time is the time during which the on-off valve 10 is open.
  • the specified purge time is determined in advance by experiments or the like in consideration of the volume of the hydrogen path in the fuel cell main body 3. In the present embodiment, the specified purge time is 20 seconds.
  • CPU22 judges whether the OFF signal was received from the hydrogen sensor 12 (S23). When determining that the OFF signal has not been received from the hydrogen sensor 12 (S23: NO), the CPU 22 determines whether the hydrogen sensor ON time has passed the threshold value D (S24). CPU22 returns a process to step S23, when it is judged that hydrogen sensor ON time has not passed the threshold value D (S24: NO).
  • the CPU 22 determines that the hydrogen sensor ON time has passed the threshold value D (S24: YES), the CPU 22 determines that the ventilation air volume is decreasing (fan deterioration mode), and notifies the air volume decrease alarm by the notification unit 21. (S25).
  • the threshold D is a time shorter than a threshold C described later, but longer than a normal hydrogen sensor ON time. That is, it is assumed that the fan deterioration mode is not a state in which the system is immediately stopped, but the deterioration of the ventilation fan 6 or the ventilation filter 7 is progressing.
  • the notification unit 21 notifies the air volume drop alarm, and can prompt the user to replace or clean the ventilation fan 6 or the ventilation filter 7.
  • the CPU 22 determines whether or not the hydrogen sensor ON time has exceeded the threshold value C (S26). CPU22 returns a process to step S23, when it is judged that hydrogen sensor ON time has not passed the threshold value C (S26: NO).
  • the CPU 22 determines that the hydrogen sensor ON time has passed the threshold value C (S26: YES) and notifies the abnormality by the notification unit 21 (S27). That is, even after the on-off valve 10 is closed, since the hydrogen sensor ON time measured by the time measuring unit 25 has exceeded the threshold value C, the ventilation fan 6 or the ventilation filter 7 is abnormal and is operating normally. It can be judged that ventilation is not done.
  • the threshold value C is determined in advance by an experiment or the like in consideration of the time until the anode off gas discharged from the anode off gas outlet 11 is sufficiently ventilated by the ventilation fan 6.
  • the CPU 22 determines whether or not the acquired rotation speed is within a predetermined range (S29). When the acquired rotation speed is not within the predetermined range (S29: NO), the CPU 22 advances the process to step S18 and stops the fuel cell system 1. When the acquired rotation speed is within the predetermined range (S29: YES), the CPU 22 determines that the ventilation filter 7 is abnormal (S30), advances the process to step S18, and stops the fuel cell system 1.
  • the rotational speed of the ventilation fan 6 the rotational speed output from the ventilation fan 6 may be acquired, or a sensor for acquiring the rotational speed may be used.
  • the predetermined range here is a value determined in consideration of an error from a rotation command value from the CPU 22 to the ventilation fan 6. That is, when the ventilation fan 6 is driven at a normal rotation speed but the ventilation air volume is insufficient, it is assumed that an abnormality such as clogging has occurred in the ventilation filter 7.
  • CPU22 advances a process to step S19, when it is judged in step S23 that the OFF signal was received from the hydrogen sensor 12 (S23: YES).
  • the timer unit 25 can measure the hydrogen sensor reaction time and the hydrogen sensor ON time more accurately. Can do.
  • FIG. 6 is a time chart showing a normal operation in the abnormality detection process of the first embodiment.
  • FIG. 6 shows transitions relating to the S1 signal, the S2 signal, and the OFF signal in the hydrogen sensor detection signal, transitions of the hydrogen concentration, and transitions relating to the ON / OFF signal commands of the on-off valve 10.
  • the CPU 22 transmits an ON signal to the on-off valve 10 to open the on-off valve 10.
  • the anode off gas is discharged into the dilution chamber 8, and the hydrogen concentration in the dilution chamber 8 increases.
  • the hydrogen sensor 12 transmits an S1 signal to the CPU 22.
  • the CPU 22 transmits an OFF signal to the opening / closing valve 10 to close the opening / closing valve 10.
  • the on-off valve 10 is closed, the anode off-gas discharge is stopped, the ventilation fan 6 is ventilated, and the hydrogen concentration in the dilution chamber 8 is lowered.
  • the hydrogen sensor 12 transmits an OFF signal to the control unit 20.
  • the hydrogen sensor ON time is within the threshold value D, it can be determined that ventilation has been performed normally. From the above, it can be determined that the hydrogen sensor 12 is normal based on the hydrogen concentration detected by the hydrogen sensor 12, and the ventilation fan 6 and the ventilation filter 7 can be determined normal based on the hydrogen sensor ON time.
  • FIG. 7 is a time chart showing an abnormality mode A in the abnormality detection process of the first embodiment.
  • FIG. 7 shows transitions relating to the S1 signal, the S2 signal, and the OFF signal in the hydrogen sensor detection signal, transitions of the hydrogen concentration, and transitions relating to the ON / OFF signal commands of the on-off valve 10.
  • the abnormal mode A is the same as the normal operation from the start of the hydrogen purge process until the on-off valve 10 is closed, and thus the description thereof is omitted.
  • the on-off valve 10 When the on-off valve 10 is closed, the anode off-gas discharge stops. However, even if the hydrogen sensor ON time has passed the threshold C, the hydrogen concentration detected by the hydrogen sensor 12 does not become lower than the threshold B, and an OFF signal is not transmitted from the hydrogen sensor 12, so that it is determined that ventilation is not normally performed. it can. From the above, it can be determined that the ventilation unit 60 including the ventilation fan 6 and the ventilation filter 7 is abnormal based on the hydrogen sensor ON time.
  • the CPU 22 determines that the ventilation unit 60 is abnormal, the CPU 22 notifies the abnormality by the notification unit 21 and promptly stops the fuel cell system 1.
  • the abnormal mode A is a state in which ventilation is insufficient and the anode off gas stays in the dilution chamber 8, the ventilation fan 6 is preferably operated continuously.
  • FIG. 8 is a time chart showing the abnormality mode B in the abnormality detection process of the first embodiment.
  • FIG. 8 shows transitions related to the S1 signal, the S2 signal, and the OFF signal in the hydrogen sensor detection signal, transitions of the estimated hydrogen concentration, and transitions related to the ON / OFF signal commands of the on-off valve 10. ing.
  • the CPU 22 transmits an ON signal to the on-off valve 10 to open the on-off valve 10.
  • the anode off gas is discharged into the dilution chamber 8, and the hydrogen concentration in the dilution chamber 8 increases.
  • the abnormal mode B even if it is estimated that a predetermined time has elapsed since the opening / closing valve 10 is opened and the hydrogen concentration in the dilution chamber 8 is equal to or higher than the threshold value B, hydrogen The sensor 12 does not detect the hydrogen concentration equal to or higher than the threshold B, and the S1 signal is not transmitted from the hydrogen sensor 12. If the S1 signal is not transmitted from the hydrogen sensor 12 even after a predetermined time has elapsed since the on-off valve 10 is opened, it can be determined that the hydrogen sensor 12 is abnormal.
  • the CPU 22 determines that the hydrogen sensor 12 is abnormal, the CPU 22 notifies the abnormality by the notification unit 21 and promptly stops the fuel cell system 1.
  • FIG. 9 is a time chart showing an abnormal mode C in the hydrogen leakage detection process of the first embodiment.
  • FIG. 9 shows transitions relating to the S1 signal, S2 signal, and OFF signal in the hydrogen sensor detection signal, transitions of the hydrogen concentration, and transitions related to the ON / OFF signal commands of the on-off valve 10.
  • the hydrogen sensor 12 transmits an S2 signal to the CPU 22 when the detected hydrogen concentration reaches or exceeds the threshold value A.
  • CPU22 judges that it is hydrogen leak, when S2 signal is received from the hydrogen sensor 12.
  • FIG. In this case, it is assumed that hydrogen leaks from any location in the fuel cell system 1.
  • the notification unit 21 When the CPU 22 determines that there is a hydrogen leak, the notification unit 21 notifies the abnormality and promptly stops the fuel cell system 1. However, in the abnormal mode C, hydrogen may leak from any part in the fuel cell system 1, and therefore the ventilation fan 6 is preferably operated continuously.
  • FIG. 10 is a time chart showing a fan deterioration mode in the abnormality detection process of the first embodiment.
  • FIG. 10 shows transitions related to the S1 signal, S2 signal, and OFF signal in the hydrogen sensor detection signal, transitions of the hydrogen concentration, and transitions related to the ON signal and OFF signal commands of the on-off valve 10. Since the fan deterioration mode is the same as the normal operation from the start of the hydrogen purge process until the on-off valve 10 is closed, description thereof is omitted.
  • the CPU 22 may be configured to estimate the next replacement time of the ventilation filter 7 in accordance with the length of the hydrogen sensor ON time and notify the next replacement time by the notification unit 21.
  • the fuel cell system 1 configured as described above, by detecting the anode off-gas discharged during the hydrogen purge, the hydrogen concentration detected by the hydrogen sensor 12 and the detection signal transmitted from the hydrogen sensor 12 are detected. Based on the determined hydrogen sensor ON time, the presence / absence of abnormality of the hydrogen sensor 12, the ventilation fan 6, and the ventilation filter 7 can be determined. For this reason, it is not necessary to provide a dedicated sensor for determining whether the ventilation fan 6 and the ventilation filter 7 are abnormal.
  • the second embodiment is different from the first embodiment in the form of a detection signal transmitted from the hydrogen sensor 12 to the control unit 20 and the point that the CPU 22 makes an abnormality determination based on the hydrogen concentration detected by the hydrogen sensor 12.
  • the configuration of the fuel cell system 1 excluding the form of the detection signal transmitted from the hydrogen sensor 12 to the control unit 20 and the operation excluding the point where the CPU 22 makes an abnormality determination based on the hydrogen concentration detected by the hydrogen sensor 12 are as follows. Since it is the same as that of the above-mentioned 1st Embodiment, detailed description is abbreviate
  • the hydrogen sensor 12 transmits the detected hydrogen concentration value to the CPU 22.
  • FIG. 11 is a flowchart showing a hydrogen leak detection process in the second embodiment.
  • the CPU 22 executes hydrogen leakage detection processing during power generation and standby in the fuel cell system 1.
  • the CPU 22 acquires the hydrogen concentration detected and transmitted by the hydrogen sensor 12, and determines whether or not the hydrogen concentration is equal to or higher than the threshold A (S51).
  • the CPU 22 determines that the hydrogen concentration detected by the hydrogen sensor 12 is greater than or equal to the threshold A (S51: YES)
  • the CPU 22 determines that hydrogen leaks (abnormal mode C) and notifies the abnormality by the notification unit 21 (S52).
  • the fuel cell system 1 is stopped (S53), and the hydrogen leak detection process is terminated.
  • the CPU 22 always monitors the presence or absence of hydrogen leakage during power generation and standby of the fuel cell system 1.
  • step S51 When the CPU 22 determines in step S51 that the hydrogen concentration detected by the hydrogen sensor 12 is not equal to or higher than the threshold A (S51: NO), the CPU 22 determines whether or not the hydrogen concentration detected by the hydrogen sensor 12 is equal to or higher than the threshold B. (S54). CPU22 returns a process to step S51, when it is judged that the hydrogen concentration detected by the hydrogen sensor 12 is not more than the threshold value B (S54: NO).
  • step S54 determines whether or not the abnormality detection execution flag is “1” (S55). ). When the CPU 22 determines that the abnormality detection execution flag is “1” (S55: YES), the CPU 22 returns the process to step S51. If the CPU 22 determines that the abnormality detection executing flag is not “1” (S55: NO), the process proceeds to step S52.
  • FIG. 12 is a flowchart showing an abnormality detection process in the hydrogen purge process of the second embodiment.
  • the CPU 22 executes an abnormality detection process when the hydrogen purge is executed. Note that the CPU 22 executes the hydrogen leakage detection process even while the abnormality detection process is being executed.
  • the CPU 22 assigns “1” to the abnormality detection executing flag (S101).
  • the CPU 22 opens the on-off valve 10 (S102) and waits for the first reaction time (S103).
  • the first reaction time is a time required from when the on-off valve 10 is opened until the anode off-gas reaches the hydrogen sensor 12 and the hydrogen sensor 12 can correctly detect the hydrogen concentration. In consideration of the positional relationship between the valve 10 and the hydrogen sensor 12, it is determined in advance through experiments or the like.
  • the CPU 22 determines whether or not the hydrogen concentration detected by the hydrogen sensor 12 is greater than or equal to the threshold value B (S104).
  • the CPU 22 determines that the hydrogen concentration detected by the hydrogen sensor 12 is not greater than or equal to the threshold B (S104: NO)
  • the CPU 22 determines that the hydrogen sensor 12 is abnormal (abnormal mode B), and notifies the abnormality by the notification unit 21 ( (S105), the on-off valve 10 is closed (S106), the fuel cell system 1 is stopped (S107), "0" is substituted for the abnormality detection execution flag (S108), and the abnormality detection process is terminated. That is, if the hydrogen sensor 12 does not detect a hydrogen concentration greater than or equal to the threshold B when the first reaction time has elapsed since the opening / closing valve 10 was opened, it can be determined that the hydrogen sensor 12 is abnormal.
  • the CPU 22 determines in step S104 that the hydrogen concentration detected by the hydrogen sensor 12 is greater than or equal to the threshold B (S104: YES), the CPU 22 waits for a specified purge time (S109) and closes the on-off valve 10 (S110).
  • the specified purge time is the time during which the on-off valve 10 is open.
  • the specified purge time is determined in advance by experiments or the like in consideration of the volume of the hydrogen path in the fuel cell main body 3. In the present embodiment, the specified purge time is 20 seconds.
  • the CPU 22 waits for the second reaction time after closing the on-off valve 10 (S111).
  • the second reaction time is a time required from when the on-off valve 10 is closed until the anode off-gas is sufficiently discharged from the ventilation outlet 5, and the on-off valve 10, the hydrogen sensor 12, the exhaust outlet 5, Is determined in advance by experiments or the like.
  • the CPU 22 determines whether or not the hydrogen concentration detected by the hydrogen sensor 12 is less than the threshold value B (S112). When the CPU 22 determines that the hydrogen concentration detected by the hydrogen sensor 12 is not less than the threshold B (S112: NO), the CPU 22 determines that the air volume is insufficient (abnormal mode A), and notifies the abnormality by the notification unit 21 (S114). The process proceeds to step S107, and the fuel cell system 1 is stopped. That is, even after the on-off valve 10 is closed and the second reaction time has elapsed, the hydrogen concentration in the dilution chamber 8 is equal to or higher than the threshold value B, and ventilation is not performed normally. 7 can be determined to be abnormal.
  • the CPU 22 determines whether the hydrogen concentration detected by the hydrogen sensor 12 is less than the threshold B (S112: YES).
  • the CPU 22 determines that the hydrogen concentration detected by the hydrogen sensor 12 is less than the threshold value E (S113: YES)
  • the CPU 22 advances the process to step S108. That is, it can be determined that the ventilation fan 6 and the ventilation filter 7 are normal.
  • the threshold value E is a value sufficiently lower than the threshold value B, and is determined in advance by experiments or the like in consideration of the hydrogen concentration in the housing 2 during normal operation of the combustion battery system 1.
  • the CPU 22 determines that the hydrogen concentration detected by the hydrogen sensor 12 is not less than the threshold value E (S113: NO), the CPU 22 determines that the ventilation air volume is decreasing (fan deterioration mode), and the notification unit 21 decreases the air volume. An alarm is notified (S115), and the process proceeds to step S108.
  • the hydrogen concentration in the dilution chamber 8 has decreased below the threshold value B, but it is assumed that the anode off gas remains slightly. The That is, although the system is not immediately stopped, it is assumed that the ventilation fan 6 or the ventilation filter 7 is being deteriorated.
  • the notification unit 21 notifies the air volume drop alarm, and can prompt the user to replace or clean the ventilation fan 6 or the ventilation filter 7.
  • FIG. 13 is a time chart illustrating a normal operation in the abnormality detection process of the second embodiment.
  • FIG. 13 shows the transition of the hydrogen concentration detected by the hydrogen sensor and the transition related to the ON / OFF signal command of the on-off valve 10.
  • the CPU 22 transmits an ON signal to the on-off valve 10 to open the on-off valve 10.
  • the anode off gas is discharged into the dilution chamber 8, and the hydrogen concentration in the dilution chamber 8 increases.
  • the CPU 22 acquires the value of the hydrogen concentration detected by the hydrogen sensor 12 when the first reaction time has elapsed after opening the on-off valve 10.
  • the value of the hydrogen concentration detected by the hydrogen sensor 12 is not less than the threshold value B and less than the threshold value A, it can be determined that the hydrogen sensor 12 is operating normally.
  • the CPU 22 transmits an OFF signal to the opening / closing valve 10 to close the opening / closing valve 10.
  • the on-off valve 10 is closed, the anode off-gas discharge is stopped, the ventilation fan 6 is ventilated, and the hydrogen concentration in the dilution chamber 8 is lowered.
  • the CPU 22 acquires the value of the hydrogen concentration detected by the hydrogen sensor 12 when the second reaction time has elapsed since the on-off valve 10 was closed.
  • the value of the hydrogen concentration detected by the hydrogen sensor 12 is less than the threshold value E, it can be determined that ventilation has been performed normally. From the above, based on the hydrogen concentration detected by the hydrogen sensor 12, it can be determined that the ventilation unit 60 including the hydrogen sensor 12, the ventilation fan 6, and the ventilation filter 7 is normal.
  • FIG. 14 is a time chart showing an abnormal mode A in the abnormality detection process of the second embodiment.
  • FIG. 14 shows the transition of the hydrogen concentration detected by the hydrogen sensor and the transition related to the ON / OFF signal command of the on-off valve 10.
  • the abnormal mode A is the same as the normal operation from the start of the hydrogen purge process until the on-off valve 10 is closed, and thus the description thereof is omitted.
  • the on-off valve 10 When the on-off valve 10 is closed, the anode off-gas discharge stops. However, since the hydrogen concentration detected by the hydrogen sensor 12 does not become less than the threshold value B when the second reaction time has elapsed, it can be determined that ventilation is not normally performed. As described above, based on the hydrogen concentration detected by the hydrogen sensor 12, it can be determined that the ventilation unit 60 including the ventilation fan 6 and the ventilation filter 7 is abnormal.
  • the CPU 22 determines that the ventilation unit 60 is abnormal, the CPU 22 notifies the abnormality by the notification unit 21 and promptly stops the fuel cell system 1.
  • the abnormal mode A is a state in which ventilation is insufficient and the anode off gas stays in the dilution chamber 8, the ventilation fan 6 is preferably operated continuously.
  • FIG. 15 is a time chart showing an abnormality mode B in the abnormality detection process of the second embodiment.
  • FIG. 15 shows the transition of the hydrogen concentration detected by the hydrogen sensor and the transition relating to the ON / OFF signal command of the on-off valve 10.
  • the CPU 22 transmits an ON signal to the on-off valve 10 to open the on-off valve 10.
  • the anode off gas is discharged into the dilution chamber 8, and the hydrogen concentration in the dilution chamber 8 increases.
  • the hydrogen sensor 12 does not detect a hydrogen concentration greater than or equal to the threshold value B. In this case, it can be determined that the hydrogen sensor 12 is abnormal.
  • the CPU 22 determines that the hydrogen sensor 12 is abnormal, the CPU 22 notifies the abnormality by the notification unit 21 and promptly stops the fuel cell system 1.
  • FIG. 16 is a time chart showing a fan deterioration mode in the abnormality detection process of the second embodiment.
  • FIG. 16 shows the transition of the hydrogen concentration detected by the hydrogen sensor and the transition related to the ON / OFF signal command of the on-off valve 10. Since the fan deterioration mode is the same as the normal operation from the start of the hydrogen purge process until the on-off valve 10 is closed, description thereof is omitted.
  • the value of the hydrogen concentration detected by the hydrogen sensor 12 is equal to or lower than the threshold value B, but higher than that during normal operation and equal to or higher than the threshold value E. is there. For this reason, it is assumed that although the fuel cell system 1 is not stopped immediately, the ventilation amount is in a reduced state. From the above, it can be determined that the ventilation unit 60 including the ventilation fan 6 and the ventilation filter 7 is deteriorated based on the hydrogen concentration detected by the hydrogen sensor 12.
  • the CPU 22 it is desirable for the CPU 22 to notify the air volume drop alarm by the notification unit 21 and to urge the user to replace or clean the ventilation fan 6 or the ventilation filter 7. Further, the CPU 22 is configured to estimate the next replacement time of the ventilation filter 7 according to the hydrogen concentration detected by the hydrogen sensor 12 after the second reaction time has elapsed, and to notify the next replacement time by the notification unit 21. Also good.
  • the CPU 22 can determine whether or not an abnormality has occurred in the hydrogen sensor 12 and the ventilation unit 60 based on the value of the hydrogen concentration detected by the hydrogen sensor 12. For this reason, it is not necessary to provide a dedicated sensor for determining whether the ventilation fan 6 and the ventilation filter 7 are abnormal.
  • control part 20 differs from 1st Embodiment. Since the configuration and operation of the fuel cell system 1 excluding the configuration of the control unit 20 are the same as those in the first embodiment, detailed description thereof will be omitted.
  • FIG. 17 is a configuration diagram showing the control unit 20 provided in the fuel cell system 1 of the third embodiment.
  • the control unit 20 according to the third embodiment includes a storage unit 201 connected to the CPU 22 via a bus instead of the ROM 23.
  • the storage unit 201 includes a nonvolatile memory such as an EEPROM, a flash memory, and an HDD (Hard Disk Drive), and stores the operation program 26 of the fuel cell system 1.
  • the abnormality detection program 27 is recorded on a portable recording medium 202 and can be provided to the control unit 20 via the recording medium 202.
  • the control unit 20 includes a recording medium reading device (not shown).
  • the recording medium 202 is inserted into the recording medium reading device, the abnormality detection program 27 is read from the recording medium 202 and installed in the storage unit 201.
  • the installed abnormality detection program 27 is loaded into the RAM 24 and executed. Thereby, the fuel cell system 1 according to the third embodiment performs the same operation as in the first embodiment.
  • the recording medium 202 is, for example, a tape such as a CD-ROM, a magnetic tape and a cassette tape, a magnetic disk such as a flexible disk and a hard disk, and a card such as an IC card (including a memory card) / optical card.
  • a tape such as a CD-ROM, a magnetic tape and a cassette tape
  • a magnetic disk such as a flexible disk and a hard disk
  • a card such as an IC card (including a memory card) / optical card.
  • the control unit 20 acquires the abnormality detection program 27 in the present embodiment from a computer that can communicate with the control unit 20 or a server computer connected to the control unit 20 via a communication network, and stores the abnormality detection program 27 in the storage unit 201. You may decide.
  • the same operation as that of the second embodiment may be performed with the same configuration as that of the third embodiment.
  • the hydrogen sensor ON time of this embodiment is an example of the concentration detection time in the claims.
  • the threshold value C in the present embodiment is an example of a time threshold value in the claims.
  • the threshold A in the present embodiment is the second density threshold in the claims.
  • the threshold value B in the present embodiment is the first concentration threshold value in the claims.
  • the hydrogen sensor 12 transmits a detection signal corresponding to the detected hydrogen concentration to the CPU 22, whereas in the modification of the first embodiment, the hydrogen sensor 12 detects the detected hydrogen concentration value. May be transmitted to the CPU 22.
  • the CPU 22 may make an abnormality determination based on the value of the hydrogen concentration transmitted from the hydrogen sensor 12.
  • the CPU 22 determines the hydrogen concentration at the time when the first reaction time has elapsed after opening the on-off valve 10 and the hydrogen concentration at the time when the second reaction time has elapsed after closing the on-off valve 10.
  • the CPU 22 detects the hydrogen concentration detected by the hydrogen sensor 12 during the abnormality detection process. An abnormality may be detected based on the maximum value. It can be determined that the ventilation unit 60 is deteriorated as the maximum value of the hydrogen concentration detected by the hydrogen sensor 12 increases.
  • a fuel cell system includes a fuel cell main body, a housing that houses the fuel cell main body and has a ventilation outlet, and an anode off-gas discharged from the fuel cell main body is directed to the ventilation outlet.
  • An anode offgas pipe having an anode offgas outlet, an on / off valve for opening and closing the anode offgas pipe, and an anode offgas sent by the anode offgas pipe by opening the on / off valve from the ventilation outlet.
  • a ventilation unit that discharges to the outside of the housing, the ventilation unit including at least a ventilation fan, a hydrogen sensor that is disposed between the anode offgas outlet and the ventilation outlet, and detects a hydrogen concentration in the housing;
  • a control unit that controls the on-off valve and the ventilation fan, and the control unit opens the on-off valve. Is determined based on the hydrogen concentration or a concentration detection time determined by a detection signal from the hydrogen sensor, and an abnormality occurs in the ventilation unit.
  • the concentration detection time is a time during which the hydrogen concentration is equal to or greater than a first concentration threshold value.
  • the hydrogen sensor and the ventilation unit it is possible to detect abnormality of the hydrogen sensor and the ventilation unit based on the hydrogen concentration detected by the hydrogen sensor or the concentration detection time determined by the detection signal from the hydrogen sensor. For this reason, a dedicated sensor for detecting an abnormality of the ventilation unit can be omitted.
  • a fuel cell system is the above-described fuel cell system, and further, the control unit is configured to execute a time measurement process for measuring the concentration detection time in the abnormality detection process. And the said control part judges that it is abnormal of the said ventilation unit, when the time measured in the said time measuring process is more than a time threshold value.
  • the concentration detection time when the concentration detection time is equal to or greater than the time threshold, it can be determined that the ventilation unit is abnormal. For this reason, a dedicated sensor for detecting an abnormality of the ventilation unit can be omitted.
  • a fuel cell system is the fuel cell system described above, and further, in the abnormality detection process, the control unit until a predetermined time elapses from when the on-off valve is opened. During this period, when it is not detected that the hydrogen sensor is equal to or higher than the first concentration threshold, it is determined that the hydrogen sensor is abnormal.
  • the hydrogen sensor if the hydrogen sensor does not detect a hydrogen concentration greater than or equal to the first concentration threshold during a predetermined time, it can be determined that the hydrogen sensor is abnormal.
  • a fuel cell system is the above-described fuel cell system, and further, the control unit starts from the time when the hydrogen concentration becomes equal to or higher than the first concentration threshold in the abnormality detection process. When the time until it becomes less than the first concentration threshold is less than the time threshold, it is determined that the hydrogen sensor and the ventilation unit are normal.
  • the concentration detection time determined by the detection signal from the hydrogen sensor is less than the time threshold, it can be determined that the hydrogen sensor and the ventilation unit are normal. For this reason, a dedicated sensor for detecting an abnormality of the ventilation unit can be omitted.
  • a fuel cell system is the above-described fuel cell system, wherein the ventilation unit further includes a ventilation filter, and the control unit is a rotation signal corresponding to the rotation speed of the ventilation fan.
  • the ventilation filter is abnormal among the abnormalities of the ventilation unit based on the rotation speed of the ventilation fan. For this reason, a dedicated sensor for detecting an abnormality of the ventilation filter can be omitted.
  • a fuel cell system is the above-described fuel cell system, and the control unit further includes a case where the hydrogen concentration detected by the hydrogen sensor is greater than or equal to the first concentration threshold.
  • the determination process for determining that hydrogen is leaking in the housing and the abnormality detection process are prohibited, the determination process is prohibited from being executed, and the abnormality detection process is not performed.
  • a judgment control process that allows the judgment process to be executed is executed.
  • a fuel cell system is the above-described fuel cell system, and further, the hydrogen sensor detects the concentration of hydrogen when the detected hydrogen concentration is equal to or higher than the first concentration threshold. 1 signal is transmitted, and when the detected hydrogen concentration is equal to or higher than a second concentration threshold value greater than the first concentration threshold value, a second signal is transmitted to the control unit, and the control unit transmits the hydrogen sensor When the second signal is received from the camera, it is determined that hydrogen is leaking in the housing.
  • An abnormality detection method includes a fuel cell main body, a housing that houses the fuel cell main body and has a ventilation outlet, and an anode off-gas discharged from the fuel cell main body is directed to the ventilation outlet.
  • An anode offgas pipe having an anode offgas outlet, an on / off valve for opening and closing the anode offgas pipe, and an anode offgas sent by the anode offgas pipe by opening the on / off valve from the ventilation outlet.
  • a ventilation unit that discharges to the outside of the housing, the ventilation unit including at least a ventilation fan, a hydrogen sensor that is disposed between the anode offgas outlet and the ventilation outlet, and detects a hydrogen concentration in the housing;
  • An abnormality detection method for a fuel cell system comprising: the on-off valve; and a control unit that controls the ventilation fan. Determining whether or not an abnormality has occurred in the hydrogen sensor based on the hydrogen concentration or a concentration detection time determined by a detection signal from the hydrogen sensor when the on-off valve is opened. It is determined whether an abnormality has occurred in the ventilation unit, and the concentration detection time is a time during which the hydrogen concentration is equal to or greater than a first concentration threshold.
  • the hydrogen sensor and the ventilation unit it is possible to detect abnormality of the hydrogen sensor and the ventilation unit based on the hydrogen concentration detected by the hydrogen sensor or the concentration detection time determined by the detection signal from the hydrogen sensor. For this reason, a dedicated sensor for detecting an abnormality of the ventilation unit can be omitted.
  • a computer program includes a fuel cell main body, a housing that houses the fuel cell main body and has a ventilation outlet, and an anode off-gas discharged from the fuel cell main body toward the ventilation outlet.
  • An anode offgas pipe having an anode offgas outlet for delivery, an on / off valve for opening and closing the anode offgas pipe, and an anode offgas delivered by the anode offgas pipe by opening the on / off valve from the ventilation outlet.
  • a ventilation unit that discharges to the outside of the body, including a ventilation unit including at least a ventilation fan, a hydrogen sensor that is disposed between the anode offgas outlet and the ventilation outlet, and detects a hydrogen concentration in the housing;
  • An on-off valve and a control unit for controlling the ventilation fan are controlled.
  • the on-off valve is opened in the computer, it is determined whether or not an abnormality has occurred in the hydrogen sensor based on the hydrogen concentration or a concentration detection time determined by a detection signal from the hydrogen sensor.
  • a process for determining whether or not an abnormality has occurred in the ventilation unit is executed, and the concentration detection time is a time during which the hydrogen concentration is equal to or greater than a first concentration threshold.
  • the hydrogen sensor and the ventilation unit it is possible to detect abnormality of the hydrogen sensor and the ventilation unit based on the hydrogen concentration detected by the hydrogen sensor or the concentration detection time determined by the detection signal from the hydrogen sensor. For this reason, a dedicated sensor for detecting an abnormality of the ventilation unit can be omitted.

Abstract

燃料電池システムは、燃料電池本体から排出されるアノードオフガスを換気出口に向けて送出し、アノードオフガス出口を有するアノードオフガス配管と、アノードオフガス配管を開閉する開閉弁と、開閉弁が開放されることによりアノードオフガス配管により送出されるアノードオフガスを換気出口から筐体の外部へ排出し、少なくとも換気ファンを含む換気ユニットと、アノードオフガス出口と換気出口との間に配置され、筐体内の水素濃度を検出する水素センサと、開閉弁と、換気ファンとを制御する制御部と、を備える。制御部は、開閉弁が開放される際に、水素濃度、または水素センサからの検出信号によって定められる濃度検出時間に基づき、水素センサに異常が発生しているか否かを判断すると共に、換気ユニットに異常が発生しているか否かを判断する異常検知処理を実行する。濃度検出時間は、水素濃度が第1濃度閾値以上である時間である。

Description

燃料電池システム、燃料電池システムの異常検知方法、及びコンピュータプログラム
 本技術は、水素センサ及び換気ユニットの異常検知処理を実行する制御部を備える燃料電池システム、燃料電池システムの異常検知方法、及びコンピュータに異常検知処理を実行させるためのコンピュータプログラムに関する。
 従来の燃料電池システムの一例として、特許文献1に記載の燃料電池発電システムには、パッケージ内部を換気する換気ファンと、換気ファンの動作状態を検知する換気センサとが備えられている。このシステムにおいて、換気ファンの動作状態を変えて換気センサの出力を検知することにより、換気ファンまたは換気センサの異常の有無が判断される。また、特許文献1に記載の燃料電池発電システムには、パッケージ内部の可燃ガスの濃度を検知する可燃ガスセンサが備えられている。
 また、特許文献2には、燃料電池のアノードから排出されるアノードオフガスを所定のタイミングで水素検出手段の検出部に供給し、水素検出手段の異常判定を行う判定装置が提案されている。
特開2009-70747号公報 特開2003-302362号公報
 しかしながら、装置に様々なセンサを搭載して異常検知をすれば安全性は高まるが、センサの種類を増やすことにより装置のコストアップの要因となってしまうという問題がある。コストアップを防ぐ為には、異常検知の機能は維持しつつ、なるべくセンサの数を減らす必要がある。
 本開示の実施形態は、上述した問題点を解決するためになされたものであり、センサの数を減らすことができる燃料電池システム、燃料電池システムの異常検知方法、及びコンピュータプログラムを提供することを目的とする。
 本開示の一実施形態に係る燃料電池システムは、燃料電池本体と、前記燃料電池本体を収納し、換気出口を有する筐体と、前記燃料電池本体から排出されるアノードオフガスを前記換気出口に向けて送出し、アノードオフガス出口を有するアノードオフガス配管と、前記アノードオフガス配管を開閉する開閉弁と、前記開閉弁が開放されることにより前記アノードオフガス配管により送出されるアノードオフガスを前記換気出口から前記筐体の外部へ排出する換気ユニットであって、少なくとも換気ファンを含む換気ユニットと、前記アノードオフガス出口と前記換気出口との間に配置され、前記筐体内の水素濃度を検出する水素センサと、前記開閉弁と、前記換気ファンとを制御する制御部と、を備え、前記制御部は、前記開閉弁が開放される際に、前記水素濃度、または前記水素センサからの検出信号によって定められる濃度検出時間に基づき、前記水素センサに異常が発生しているか否かを判断すると共に、前記換気ユニットに異常が発生しているか否かを判断する異常検知処理を実行するように構成されており、前記濃度検出時間は、前記水素濃度が第1濃度閾値以上である時間であることを特徴とする。
 本開示の一実施形態に係る異常検知方法は、燃料電池本体と、前記燃料電池本体を収納し、換気出口を有する筐体と、前記燃料電池本体から排出されるアノードオフガスを前記換気出口に向けて送出し、アノードオフガス出口を有するアノードオフガス配管と、前記アノードオフガス配管を開閉する開閉弁と、前記開閉弁が開放されることにより前記アノードオフガス配管により送出されるアノードオフガスを前記換気出口から前記筐体の外部へ排出する換気ユニットであって、少なくとも換気ファンを含む換気ユニットと、前記アノードオフガス出口と前記換気出口との間に配置され、前記筐体内の水素濃度を検出する水素センサと、前記開閉弁と、前記換気ファンとを制御する制御部と、を備える燃料電池システムの異常検知方法であって、前記開閉弁が開放される際に、前記水素濃度、または前記水素センサからの検出信号によって定められる濃度検出時間に基づき、前記水素センサに異常が発生しているか否かを判断すると共に、前記換気ユニットに異常が発生しているか否かを判断し、前記濃度検出時間は、前記水素濃度が第1濃度閾値以上である時間であることを特徴とする。
 本開示の一実施形態に係るコンピュータプログラムは、燃料電池本体と、前記燃料電池本体を収納し、換気出口を有する筐体と、前記燃料電池本体から排出されるアノードオフガスを前記換気出口に向けて送出し、アノードオフガス出口を有するアノードオフガス配管と、前記アノードオフガス配管を開閉する開閉弁と、前記開閉弁が開放されることにより前記アノードオフガス配管により送出されるアノードオフガスを前記換気出口から前記筐体の外部へ排出する換気ユニットであって、少なくとも換気ファンを含む換気ユニットと、前記アノードオフガス出口と前記換気出口との間に配置され、前記筐体内の水素濃度を検出する水素センサと、前記開閉弁と、前記換気ファンとを制御する制御部と、を備える燃料電池システムを制御するコンピュータに、前記開閉弁が開放される際に、前記水素濃度、または前記水素センサからの検出信号によって定められる濃度検出時間に基づき、前記水素センサに異常が発生しているか否かを判断すると共に、前記換気ユニットに異常が発生しているか否かを判断する処理を実行させ、前記濃度検出時間は、前記水素濃度が第1濃度閾値以上である時間であることを特徴とする。
 本開示の実施形態によれば、水素センサにより検出される水素濃度、または水素センサからの検出信号によって定められる濃度検出時間に基づき、水素センサ及び換気ユニットの異常を検知できる。このため、換気ユニットの異常を検知するための専用センサを省略することができる。
第1実施形態における燃料電池システムを示す構成図である。 第1実施形態における制御部を示す構成図である。 第1実施形態における水素漏洩検知処理を示すフローチャートである。 第1実施形態の水素パージ工程における異常検知処理を示すフローチャートである。 第1実施形態の水素パージ工程における異常検知処理を示すフローチャートである。 第1実施形態の異常検知処理における正常動作を示すタイムチャートである。 第1実施形態の異常検知処理における異常モードAを示すタイムチャートである。 第1実施形態の異常検知処理における異常モードBを示すタイムチャートである。 第1実施形態の水素漏洩検知処理における異常モードCを示すタイムチャートである。 第1実施形態の異常検知処理におけるファン劣化モードを示すタイムチャートである。 第2実施形態における水素漏洩検知処理を示すフローチャートである。 第2実施形態の水素パージ工程における異常検知処理を示すフローチャートである。 第2実施形態の異常検知処理における正常動作を示すタイムチャートである。 第2実施形態の異常検知処理における異常モードAを示すタイムチャートである。 第2実施形態の異常検知処理における異常モードBを示すタイムチャートである。 第2実施形態の異常検知処理におけるファン劣化モードを示すタイムチャートである。 第3実施形態における制御部を示す構成図である。
[第1実施形態]
 以下、本発明の第1実施形態について図面を参照して説明する。
 図1に示すように、燃料電池システム1は筐体2を備える。筐体2は燃料電池本体3を内蔵し、側面に換気入口4と換気出口5とを備える。
 燃料電池本体3は、内部に固体高分子型の燃料電池スタックを備える。燃料電池本体3においては、図示しない水素供給装置から燃料電池スタックのアノード極に水素が供給され、同じく図示しないコンプレッサ等の空気供給装置により燃料電池スタックのカソード極に酸素を含む空気が供給される。燃料電池本体3に水素と酸素とが供給されることにより、両極間で電気化学反応が生じ、起電力が発生する。水素供給装置及び空気供給装置については特許文献2等により公知であるので、詳細な説明は省略する。
 燃料電池システム1は、換気ファン6を備える。換気ファン6の駆動によって、換気入口4を通して外部から空気が導入され、換気出口5を通して外部に空気が排出され、筐体2内部が換気される。筐体2内部が換気されることにより、燃料電池システム1内の各部が冷却される。また、万が一燃料電池システム1内のいずれかの箇所から水素が漏洩した場合であっても、換気ファン6によって水素は安全に外部へ排出されるように構成されている。
 換気入口4と換気出口5とは、それぞれ筐体2の反対側の側面に配置される。換気入口4と換気出口5とは、筐体2内を効率良く換気できるよう、互いになるべく離れた位置に配置されることが好ましい。また、水素の比重は空気よりも軽い為、換気出口5は筐体2の側面においてなるべく高い位置に配置されることが好ましい。
 換気入口4には、換気フィルタ7が配置される。換気ファン6及び換気フィルタ7は、換気ユニット60を形成している。換気フィルタ7は、換気入口4の開口部を覆うように配置される。換気フィルタ7は、換気入口4から吸入される空気に含まれる異物を除去する。換気フィルタ7は、使用者により交換または清掃可能な構成であることが好ましい。
 筐体2内における空気の流れ方向において、換気出口5の上流側には、希釈室8が設けられる。換気ファン6によって筐体2内を通過した空気は、希釈室8内を通過して換気出口5から外部に排出される。希釈室8は入口と出口とを備え、希釈室8の入口には換気ファン6が配置され、希釈室8の出口は換気出口5に接続される。本実施形態では換気ファン6は希釈室8の入口に配置されるが、換気ファン6は筐体2内を換気できるように配置されていれば良く、例えば換気入口4付近、または換気出口5付近に配置されていても良い。
 燃料電池システム1は水素循環型の燃料電池である。燃料電池本体3は、水素を含むアノードオフガスが通流するアノードオフガス配管9を備える。アノードオフガス配管9は、開閉弁10と、アノードオフガスが排出されるアノードオフガス出口11とを備える。水素循環型の燃料電池については特許文献2等により公知であるので、詳細な説明は省略する。
 アノードオフガス出口11は、希釈室8内に配置される。希釈室8内には、水素を検出する水素センサ12が配置される。水素センサ12は、アノードオフガス出口11と換気出口5との間に配置される。また、水素の比重は空気よりも軽い為、水素センサ12は、希釈室8内のなるべく高い位置に配置されることが好ましい。
 燃料電池システム1は、制御部20と報知部21とを備える。制御部20は電気配線を介して、燃料電池本体3、換気ファン6、開閉弁10、水素センサ12、及び報知部21に接続される。制御部20は換気ファン6及び開閉弁10の動作を制御する。なお、制御部20と各構成部との接続は、本実施形態の説明において必要な部分のみ示している。
 図2は、制御部20の構成を示す構成図である。制御部20は、制御部20の各構成部の動作を制御するCPU(Central Processing Unit)22を備え、CPU22には、バスを介して、ROM23、RAM24、及び計時部25が接続される。ROM23は、EEPROM(Electrically Erasable Programmable ROM)等の不揮発性メモリであり、燃料電池システム1の運転プログラム26と、本実施形態における異常検知プログラム27とを記憶している。
 また、異常検知プログラム27が、コンピュータで読み取り可能に記録された可搬式メディアであるCD(Compact Disc)-ROM、DVD(Digital Versatile Disc)-ROM、BD(Blu-ray(登録商標) Disc)、ハードディスクドライブ又はソリッドステートドライブ等の記録媒体に記録されており、CPU22が記録媒体から、異常検知プログラム27を読み出し、ROM23に記憶させてもよい。さらに、通信網に接続されている図示しない外部コンピュータから本実施形態における異常検知プログラム27を取得し、ROM23に記憶させることにしてもよい。
 RAM24は、DRAM(Dynamic RAM)、SRAM(Static RAM)等のメモリであり、CPU22の演算処理を実行する際にROM23から読み出された運転プログラム26、異常検知プログラム27、及びCPU22の演算処理によって生ずる各種データを一時記憶する。計時部25は、後述するように水素センサ反応時間と水素センサON時間とを計測する。
 水素センサ12は、検出される水素濃度に応じた検出信号をCPU22に送信する。水素センサ12は、検出される水素濃度が閾値B以上である場合に、第1の信号であるS1信号をCPU22に送信し、検出される水素濃度が閾値A以上である場合に、第2の信号であるS2信号をCPU22に送信し、検出される水素濃度が閾値B未満である場合に、OFF信号をCPU22に送信する。
 ここで、閾値Aは、換気出口5から排出される空気に含まれる水素濃度を、爆発の危険が無いように監視するための値である。閾値Aは、水素の爆発下限界以下の値である。また、閾値Bは、閾値Aより低い値であり、アノードオフガスに含まれる水素濃度を考慮して、事前に実験等により定められる。
<水素パージ>
 燃料電池システム1の発電時において、CPU22により開閉弁10が開放されることで、アノードオフガス出口11からアノードオフガスが排出される(以下、水素パージと呼ぶ)。アノードオフガスは換気ファン6によって換気入口4から吸引される空気により、希釈室8内で所定の水素濃度に希釈され、換気出口5から排出される。CPU22は、燃料電池システム1の発電状態に応じて、所定の時間毎に水素パージを実行する。また、CPU22は、図示しないスイッチ等により使用者から水素パージ開始の指示を受け付けた場合に、水素パージを実行するようにしても良い。
 以上のように構成された燃料電池システム1においては、CPU22が運転プログラム26を読み出して、燃料電池システム1の発電を実行する。以下、燃料電池システム1の異常検知プログラム27に係る水素センサ12、換気ファン6、及び換気フィルタ7の異常検知処理を説明する。本実施形態においては、燃料電池システム1の運転中に定期的に水素パージが実行されることによってアノードオフガスが排出され、希釈室8内で希釈されたアノードオフガスが水素センサ12を通過したときの、水素センサ12から送信される検出信号に基づいて、水素センサ12、換気ファン6、及び換気フィルタ7が正常であるか否かが判断されるようにした。
<水素漏洩検知>
 制御部20のCPU22はROM23から異常検知プログラム27を読み出して、水素漏洩検知処理及び異常検知処理を実行する。
 図3は、第1実施形態における水素漏洩検知処理を示すフローチャートである。CPU22は、燃料電池システム1の発電中及び待機中において水素漏洩検知処理を実行する。まず、CPU22は、水素センサ12からS2信号を受信したか否かを判断する(S1)。CPU22は、水素センサ12からS2信号を受信したと判断した場合(S1:YES)、水素漏洩(異常モードC)と判断し、報知部21により異常を報知し(S2)、燃料電池システム1を停止させ(S3)、水素漏洩検知処理を終了する。
 つまり、CPU22は、換気出口5から排出される空気に含まれる水素濃度が閾値A以上となった場合には、速やかに燃料電池システム1を停止する。CPU22は、燃料電池システム1の発電中及び待機中において常に水素漏洩の有無を監視する。
 CPU22は、ステップS1において水素センサ12からS2信号を受信していないと判断した場合(S1:NO)、水素センサ12からS1信号を受信したか否かを判断する(S4)。CPU22は、水素センサ12からS1信号を受信していないと判断した場合(S4:NO)、処理をステップS1に戻す。
 CPU22は、ステップS4において水素センサ12からS1信号を受信したと判断した場合(S4:YES)、異常検知実行中フラグが「1」であるか否かを判断する(S5)。CPU22は、異常検知実行中フラグが「1」であると判断した場合(S5:YES)、処理をステップS1に戻す。CPU22は、異常検知実行中フラグが「1」でないと判断した場合(S5:NO)、処理をステップS2に進める。
 つまり、水素センサ12により検出される水素濃度が閾値B以上であり、かつ閾値A未満である場合、CPU22は、後述する異常検知処理を実行している間は水素漏洩とは判断せずに異常検知処理を続行し、異常検知処理を実行していないときには水素漏洩と判断し燃料電池システム1を停止する。
<異常検知>
 図4及び図5は、第1実施形態の水素パージ工程における異常検知処理を示すフローチャートである。CPU22は、水素パージが実行されるときに、異常検知処理を実行する。尚、CPU22は、異常検知処理を実行している間も水素漏洩検知処理を実行する。
 まずCPU22は、異常検知実行中フラグに「1」を代入する(S11)。CPU22は、開閉弁10を開放し(S12)、計時部25に水素センサ反応時間の計測を開始させる(S13)。ここで、水素センサ反応時間とは、開閉弁10が開放されてからの経過時間である。
 CPU22は、水素センサ12からS1信号を受信したか否かを判断する(S14)。CPU22は、水素センサ12からS1信号を受信していないと判断した場合(S14:NO)、水素センサ反応時間が所定時間を経過したか否かを判断する(S15)。CPU22は、水素センサ反応時間が所定時間を経過していないと判断した場合(S15:NO)、処理をステップS14に戻す。
 CPU22は、水素センサ反応時間が所定時間を経過したと判断した場合(S15:YES)、水素センサ12の異常(異常モードB)と判断し、報知部21により異常を報知し(S16)、開閉弁10を閉止し(S17)、燃料電池システム1を停止させ(S18)、異常検知実行中フラグに「0」を代入し(S19)、異常検知処理を終了する。つまり、開閉弁10が開放されてから、所定時間が経過しても、水素センサ12が閾値B以上の水素濃度を検出せず、S1信号が送信されない場合には、水素センサ12の異常と判断できる。ここでの所定時間は、開閉弁10と水素センサ12との位置関係によって、アノードオフガスが開閉弁10から水素センサ12に到達するまでの時間を考慮し、予め実験等により定められる。
 CPU22は、ステップS14において水素センサ12からS1信号を受信したと判断した場合(S14:YES)、計時部25に水素センサ反応時間の計測を終了させ、水素センサON時間の計測を開始させる(S20)。ここで、水素センサON時間とは、水素センサ12により検出される水素濃度が閾値B以上となった時からの継続時間である。
 CPU22は、規定パージ時間待機する(S21)。規定パージ時間が経過した後、CPU22は、開閉弁10を閉止する(S22)。ここで規定パージ時間とは、開閉弁10を開放している間の時間である。規定パージ時間は、燃料電池本体3内の水素経路の容積を考慮し、予め実験等により定められる。本実施形態では、規定パージ時間は20秒間とする。
 CPU22は、水素センサ12からOFF信号を受信したか否かを判断する(S23)。CPU22は、水素センサ12からOFF信号を受信していないと判断した場合(S23:NO)、水素センサON時間が閾値Dを経過したか否かを判断する(S24)。CPU22は、水素センサON時間が閾値Dを経過していないと判断した場合(S24:NO)、処理をステップS23に戻す。
 CPU22は、水素センサON時間が閾値Dを経過したと判断した場合(S24:YES)、換気の風量が低下している(ファン劣化モード)と判断し、報知部21により風量低下アラームを報知する(S25)。ここで閾値Dとは、後述する閾値Cよりは短いが、正常な水素センサON時間よりは長い時間である。つまり、ファン劣化モードは、直ちにシステムを停止させるほどの状態ではないが、換気ファン6または換気フィルタ7の劣化が進んでいる状態と想定される。CPU22は、ファン劣化モードと判断した場合、報知部21により風量低下アラームを報知し、使用者に対して換気ファン6または換気フィルタ7の交換や清掃等を促すことができる。
 CPU22は、水素センサON時間が閾値Cを経過したか否かを判断する(S26)。CPU22は、水素センサON時間が閾値Cを経過していないと判断した場合(S26:NO)、処理をステップS23に戻す。
 CPU22は、水素センサON時間が閾値Cを経過したと判断した場合(S26:YES)、風量不足(異常モードA)と判断し、報知部21により異常を報知する(S27)。つまり、開閉弁10が閉止された後であっても、計時部25により計時される水素センサON時間が閾値Cを経過しているので、換気ファン6または換気フィルタ7は異常であり、正常に換気がなされていないと判断できる。ここで閾値Cは、換気ファン6によってアノードオフガス出口11から排出されるアノードオフガスが充分に換気されるまでの時間を考慮し、予め実験等により定められる。
 CPU22は、異常モードAまたはファン劣化モードであると判断した場合(S27)、換気ファン6の回転数を取得する(S28)。CPU22は、取得した回転数が所定の範囲内であるか否かを判断する(S29)。CPU22は、取得した回転数が所定の範囲内でない場合(S29:NO)、処理をステップS18に進め、燃料電池システム1を停止させる。CPU22は、取得した回転数が所定の範囲内である場合(S29:YES)には、換気フィルタ7の異常と判断し(S30)、処理をステップS18に進め、燃料電池システム1を停止させる。換気ファン6の回転数は、換気ファン6が出力する回転数出力を取得しても良いし、別途回転数を取得するセンサを用いても良い。ここでの所定の範囲は、CPU22から換気ファン6への回転指令値から、誤差を考慮して定められる値である。つまり、換気ファン6は正常な回転数で駆動しているにも関わらず換気風量が不足している場合は、換気フィルタ7に目詰まり等の異常が発生していると想定される。
 CPU22は、ステップS23において、水素センサ12からOFF信号を受信したと判断した場合(S23:YES)、処理をステップS19に進める。
 尚、CPU22は、換気ファン6の回転数を任意の固定値に保つように制御して異常検知処理を実行すると、計時部25はより精度よく水素センサ反応時間及び水素センサON時間を計測することができる。
<正常動作>
 図6は、第1実施形態の異常検知処理における正常動作を示すタイムチャートである。図6には、水素センサ検出信号におけるS1信号、S2信号及びOFF信号に係る推移と、水素濃度の推移と、開閉弁10のON信号及びOFF信号の指令に係る推移とが示されている。水素パージ工程が開始されると、まずCPU22は、開閉弁10にON信号を送信し、開閉弁10を開放する。開閉弁10が開放されることにより、希釈室8内にアノードオフガスが排出され、希釈室8内の水素濃度が上昇する。希釈室8内に配置された水素センサ12により検出される水素濃度が閾値B以上になると、水素センサ12はCPU22にS1信号を送信する。ここで、水素センサ12は正常に動作していると判断できる。
 開閉弁10が開放されてから規定パージ時間が経過すると、CPU22は開閉弁10にOFF信号を送信し、開閉弁10を閉止する。開閉弁10が閉止されることによりアノードオフガス排出が止まり、換気ファン6によって換気がなされ、希釈室8内の水素濃度が下がる。希釈室8内に配置された水素センサ12により検出される水素濃度が閾値B未満になると、水素センサ12は制御部20にOFF信号を送信する。水素センサON時間が閾値D以内である場合、正常に換気がなされたと判断できる。以上により、水素センサ12により検出される水素濃度に基づいて、水素センサ12は正常であると判断でき、水素センサON時間に基づいて、換気ファン6及び換気フィルタ7は正常であると判断できる。
<異常モードA>
 図7は、第1実施形態の異常検知処理における異常モードAを示すタイムチャートである。図7には、水素センサ検出信号におけるS1信号、S2信号及びOFF信号に係る推移と、水素濃度の推移と、開閉弁10のON信号及びOFF信号の指令に係る推移とが示されている。異常モードAは、水素パージ工程開始から開閉弁10が閉止されるまでは正常動作と同様であるので説明は省略する。
 開閉弁10が閉止されることによりアノードオフガス排出が止まる。しかしながら水素センサON時間が閾値Cを経過しても水素センサ12により検出される水素濃度が閾値B未満にならず、水素センサ12からOFF信号が送信されないため、正常に換気がなされていないと判断できる。以上により、水素センサON時間に基づいて、換気ファン6及び換気フィルタ7を含む換気ユニット60が異常であると判断できる。
 CPU22は、換気ユニット60が異常であると判断した場合、報知部21によって異常報知を行うとともに、速やかに燃料電池システム1を停止させる。ただし異常モードAは、換気が不十分であり希釈室8内にアノードオフガスが滞留している状態であるので、換気ファン6は継続して動作させることが好ましい。
<異常モードB>
 図8は、第1実施形態の異常検知処理における異常モードBを示すタイムチャートである。図8には、水素センサ検出信号におけるS1信号、S2信号及びOFF信号に係る推移と、推定される水素濃度の推移と、開閉弁10のON信号及びOFF信号の指令に係る推移とが示されている。まず、水素パージ工程が開始されると、CPU22は、開閉弁10にON信号を送信し、開閉弁10を開放する。開閉弁10が開放されることにより、希釈室8内にアノードオフガスが排出され、希釈室8内の水素濃度が上昇する。しかしながら、異常モードBにおいては、開閉弁10が開放されてから所定時間が経過しており、希釈室8内の水素濃度が閾値B以上になっていると推定される場合であっても、水素センサ12が閾値B以上の水素濃度を検出せず、水素センサ12からS1信号が送信されない。開閉弁10が開放されてから所定時間が経過しても水素センサ12からS1信号が送信されない場合には、水素センサ12が異常であると判断できる。
 CPU22は、水素センサ12が異常であると判断した場合、報知部21によって異常報知を行うとともに、速やかに燃料電池システム1を停止させる。
<異常モードC>
 図9は、第1実施形態の水素漏洩検知処理における異常モードCを示すタイムチャートである。図9には、水素センサ検出信号におけるS1信号、S2信号及びOFF信号に係る推移と、水素濃度の推移と、開閉弁10のON信号及びOFF信号の指令に係る推移とが示されている。水素センサ12は、検出される水素濃度が閾値A以上になると、CPU22にS2信号を送信する。CPU22は、水素センサ12からS2信号を受信した場合に、水素漏洩と判断する。この場合、燃料電池システム1内のいずれかの箇所から、水素が漏洩していることが想定される。
 CPU22は、水素漏洩であると判断した場合、報知部21によって異常報知を行うとともに、速やかに燃料電池システム1を停止させる。ただし異常モードCは、燃料電池システム1内のいずれかの箇所から水素が漏洩している可能性があるので、換気ファン6は継続して動作させることが好ましい。
<ファン劣化モード>
 図10は、第1実施形態の異常検知処理におけるファン劣化モードを示すタイムチャートである。図10には、水素センサ検出信号におけるS1信号、S2信号及びOFF信号に係る推移と、水素濃度の推移と、開閉弁10のON信号及びOFF信号の指令に係る推移とが示されている。ファン劣化モードは、水素パージ工程開始から開閉弁10が閉止されるまでは正常動作と同様であるので説明は省略する。
 開閉弁10が閉止されることによりアノードオフガス排出が止まる。しかしながら水素センサON時間が閾値Cを経過していないが閾値Dを経過しており、正常動作に比べて長い。このため、直ちに燃料電池システム1を停止させるほどではないが、換気量が低下している状態であると想定される。以上により、水素センサON時間に基づいて、換気ファン6及び換気フィルタ7を含む換気ユニット60が劣化していると判断できる。この場合、CPU22は、報知部21により風量低下アラームを報知し、使用者に対して換気ファン6または換気フィルタ7の交換、清掃等を促すことが望ましい。また、CPU22は、水素センサON時間の長さに応じて、次回の換気フィルタ7の交換時期を推定し、報知部21により次回交換時期を報知する構成であってもよい。
 以上のように構成された燃料電池システム1によれば、水素パージ時に排出されるアノードオフガスを検知することにより、水素センサ12により検出される水素濃度と、水素センサ12から送信される検出信号によって定められる水素センサON時間とに基づいて、水素センサ12、換気ファン6、及び換気フィルタ7の異常の有無を判断できる。このため、換気ファン6及び換気フィルタ7の異常の有無を判断する専用センサを設ける必要がなく、簡易な構成となり、コストダウンできる。
[第2実施形態]
 次に、本発明の第2実施形態について図11~16を参照して説明する。第2実施形態では、水素センサ12が制御部20に送信する検出信号の形態と、CPU22が水素センサ12により検出される水素濃度に基づき異常判断する点が、第1実施形態とは異なる。尚、水素センサ12が制御部20に送信する検出信号の形態を除く燃料電池システム1の構成と、CPU22が水素センサ12により検出される水素濃度に基づき異常判断する点を除く動作とについては、上述の第1実施形態と同様なので、詳細な説明は省略する。
 水素センサ12は、検出される水素濃度の値をCPU22に送信する。
<水素漏洩検知>
 図11は、第2実施形態における水素漏洩検知処理を示すフローチャートである。CPU22は、燃料電池システム1の発電中及び待機中において水素漏洩検知処理を実行する。まず、CPU22は、水素センサ12により検出され、送信される水素濃度を取得し、該水素濃度が閾値A以上であるか否かを判断する(S51)。CPU22は、水素センサ12により検出される水素濃度が閾値A以上であると判断した場合(S51:YES)、水素漏洩(異常モードC)と判断し、報知部21により異常を報知し(S52)、燃料電池システム1を停止させ(S53)、水素漏洩検知処理を終了する。CPU22は、燃料電池システム1の発電中及び待機中において常に水素漏洩の有無を監視する。
 CPU22は、ステップS51において水素センサ12により検出される水素濃度が閾値A以上でないと判断した場合(S51:NO)、水素センサ12により検出される水素濃度が閾値B以上であるか否かを判断する(S54)。CPU22は、水素センサ12により検出される水素濃度が閾値B以上でないと判断した場合(S54:NO)、処理をステップS51に戻す。
 CPU22は、ステップS54において水素センサ12により検出される水素濃度が閾値B以上であると判断した場合(S54:YES)、異常検知実行中フラグが「1」であるか否かを判断する(S55)。CPU22は、異常検知実行中フラグが「1」であると判断した場合(S55:YES)、処理をステップS51に戻す。CPU22は、異常検知実行中フラグが「1」でないと判断した場合(S55:NO)、処理をステップS52に進める。
<異常検知>
 図12は、第2実施形態の水素パージ工程における異常検知処理を示すフローチャートである。CPU22は、水素パージが実行されるときに、異常検知処理を実行する。尚、CPU22は、異常検知処理を実行している間も、水素漏洩検知処理を実行する。
 まずCPU22は、異常検知実行中フラグに「1」を代入する(S101)。CPU22は、開閉弁10を開放し(S102)、第1反応時間待機する(S103)。ここで第1反応時間とは、開閉弁10が開放されてから、アノードオフガスが水素センサ12まで到達し、水素センサ12が正しく水素濃度を検出できるようになるまでに必要な時間であり、開閉弁10と水素センサ12との位置関係を考慮し、予め実験等により定められる。
 CPU22は、水素センサ12により検出される水素濃度が閾値B以上であるか否かを判断する(S104)。CPU22は、水素センサ12により検出される水素濃度が閾値B以上でないと判断した場合(S104:NO)、水素センサ12の異常(異常モードB)と判断し、報知部21により異常を報知し(S105)、開閉弁10を閉止し(S106)、燃料電池システム1を停止させ(S107)、異常検知実行中フラグに「0」を代入し(S108)、異常検知処理を終了する。つまり、開閉弁10が開放されてから、第1反応時間が経過した時点で、水素センサ12が閾値B以上の水素濃度を検出しない場合には、水素センサ12の異常と判断できる。
 CPU22は、ステップS104において水素センサ12により検出される水素濃度が閾値B以上であると判断した場合(S104:YES)、規定パージ時間待機し(S109)し、開閉弁10を閉止する(S110)。ここで規定パージ時間とは、開閉弁10を開放している間の時間である。規定パージ時間は、燃料電池本体3内の水素経路の容積を考慮し、予め実験等により定められる。本実施形態では、規定パージ時間は20秒間とする。
 CPU22は、開閉弁10を閉止した後、第2反応時間待機する(S111)。ここで第2反応時間とは、開閉弁10が閉止されてから、アノードオフガスが換気出口5から充分に排出されるまでに必要な時間であり、開閉弁10と水素センサ12と排気出口5との位置関係を考慮し、予め実験等により定められる。
 CPU22は、水素センサ12により検出される水素濃度が閾値B未満であるか否かを判断する(S112)。CPU22は、水素センサ12により検出される水素濃度が閾値B未満でないと判断した場合(S112:NO)、風量不足(異常モードA)と判断し、報知部21により異常を報知し(S114)、処理をステップS107に進め、燃料電池システム1を停止させる。つまり、開閉弁10が閉止されて第2反応時間が経過した後であっても希釈室8内の水素濃度が閾値B以上であり、正常に換気がなされていないため、換気ファン6または換気フィルタ7は異常であると判断できる。
 CPU22は、水素センサ12により検出される水素濃度が閾値B未満であると判断した場合(S112:YES)、水素センサ12により検出される水素濃度が閾値E未満であるか否かを判断する(S113)。
 CPU22は、水素センサ12により検出される水素濃度が閾値E未満であると判断した場合(S113:YES)、処理をステップS108に進める。つまり、換気ファン6及び換気フィルタ7は正常であると判断できる。ここで閾値Eとは、閾値Bよりも充分に低い値であり、燃焼電池システム1の通常運転時における筐体2内の水素濃度を考慮して、予め実験等により定められる。
 CPU22は、水素センサ12により検出される水素濃度が閾値E未満でないと判断した場合(S113:NO)、換気の風量が低下している(ファン劣化モード)と判断し、報知部21により風量低下アラームを報知し(S115)、処理をステップS108に進める。つまり、開閉弁10が閉止されてから第2反応時間が経過した後、希釈室8内の水素濃度は閾値B未満には低下しているものの、僅かにアノードオフガスが残留していると想定される。つまり、直ちにシステムを停止させるほどではないが、換気ファン6または換気フィルタ7の劣化が進んでいる状態と想定される。CPU22は、ファン劣化モードと判断した場合、報知部21により風量低下アラームを報知し、使用者に対して換気ファン6または換気フィルタ7の交換や清掃等を促すことができる。
<正常動作>
 図13は、第2実施形態の異常検知処理における正常動作を示すタイムチャートである。図13には、水素センサに検出される水素濃度の推移と、開閉弁10のON信号及びOFF信号の指令に係る推移とが示されている。水素パージ工程が開始されると、まずCPU22は、開閉弁10にON信号を送信し、開閉弁10を開放する。開閉弁10が開放されることにより、希釈室8内にアノードオフガスが排出され、希釈室8内の水素濃度が上昇する。CPU22は、開閉弁10を開放してから第1反応時間が経過したとき、水素センサ12により検出される水素濃度の値を取得する。水素センサ12により検出される水素濃度の値が、閾値B以上かつ閾値A未満である場合、水素センサ12は正常に動作していると判断できる。
 開閉弁10が開放されてから規定パージ時間が経過すると、CPU22は開閉弁10にOFF信号を送信し、開閉弁10を閉止する。開閉弁10が閉止されることによりアノードオフガス排出が止まり、換気ファン6によって換気がなされ、希釈室8内の水素濃度が下がる。CPU22は、開閉弁10を閉止してから第2反応時間が経過したとき、水素センサ12により検出される水素濃度の値を取得する。水素センサ12により検出される水素濃度の値が閾値E未満である場合、正常に換気がなされたと判断できる。以上により、水素センサ12により検出される水素濃度に基づいて、水素センサ12、換気ファン6、及び換気フィルタ7を含む換気ユニット60は正常であると判断できる。
<異常モードA>
 図14は、第2実施形態の異常検知処理における異常モードAを示すタイムチャートである。図14には、水素センサに検出される水素濃度の推移と、開閉弁10のON信号及びOFF信号の指令に係る推移とが示されている。異常モードAは、水素パージ工程開始から開閉弁10が閉止されるまでは正常動作と同様であるので説明は省略する。
 開閉弁10が閉止されることによりアノードオフガス排出が止まる。しかしながら第2反応時間が経過した時点で水素センサ12により検出される水素濃度が閾値B未満にならないため、正常に換気がなされていないと判断できる。以上により、水素センサ12により検出される水素濃度に基づいて、換気ファン6及び換気フィルタ7を含む換気ユニット60が異常であると判断できる。
 CPU22は、換気ユニット60が異常であると判断した場合、報知部21によって異常報知を行うとともに、速やかに燃料電池システム1を停止させる。ただし異常モードAは、換気が不十分であり希釈室8内にアノードオフガスが滞留している状態であるので、換気ファン6は継続して動作させることが好ましい。
<異常モードB>
 図15は、第2実施形態の異常検知処理における異常モードBを示すタイムチャートである。図15には、水素センサに検出される水素濃度の推移と、開閉弁10のON信号及びOFF信号の指令に係る推移とが示されている。まず、水素パージ工程が開始されると、CPU22は、開閉弁10にON信号を送信し、開閉弁10を開放する。開閉弁10が開放されることにより、希釈室8内にアノードオフガスが排出され、希釈室8内の水素濃度が上昇する。しかしながら、開閉弁10が開放されてから第1反応時間が経過しても、水素センサ12が閾値B以上の水素濃度を検出しない。この場合、水素センサ12が異常であると判断できる。
 CPU22は、水素センサ12が異常であると判断した場合、報知部21によって異常報知を行うとともに、速やかに燃料電池システム1を停止させる。
<ファン劣化モード>
 図16は、第2実施形態の異常検知処理におけるファン劣化モードを示すタイムチャートである。図16には、水素センサに検出される水素濃度の推移と、開閉弁10のON信号及びOFF信号の指令に係る推移とが示されている。ファン劣化モードは、水素パージ工程開始から開閉弁10が閉止されるまでは正常動作と同様であるので説明は省略する。
 開閉弁10が閉止されることによりアノードオフガス排出が止まる。しかしながら開閉弁10が閉止されてから第2反応時間が経過した時点で、水素センサ12により検出される水素濃度の値は、閾値B以下であるが、正常動作時よりも高く、閾値E以上である。このため、直ちに燃料電池システム1を停止させるほどではないが、換気量が低下している状態であると想定される。以上により、水素センサ12により検出される水素濃度に基づいて、換気ファン6及び換気フィルタ7を含む換気ユニット60が劣化していると判断できる。この場合、CPU22は、報知部21により風量低下アラームを報知し、使用者に対して換気ファン6または換気フィルタ7の交換、清掃等を促すことが望ましい。また、CPU22は、第2反応時間経過後に水素センサ12により検出される水素濃度に応じて、次回の換気フィルタ7の交換時期を推定し、報知部21により次回交換時期を報知する構成であってもよい。
 第2実施形態においても、第1実施形態と同様の効果を得る。CPU22は、水素センサ12により検出される水素濃度の値を基に、水素センサ12及び換気ユニット60に異常が発生しているか否かを判断できる。このため、換気ファン6及び換気フィルタ7の異常の有無を判断する専用センサを設ける必要がなく、簡易な構成となり、コストダウンできる。
[第3実施形態]
 次に、本開示の第3実施形態について図17を参照して説明する。第3実施形態では、制御部20の構成が第1実施形態とは異なる。尚、制御部20の構成を除く燃料電池システム1の構成及び動作については、上述の第1実施形態と同様なので、詳細な説明は省略する。
 図17は第3実施形態の燃料電池システム1が備える制御部20を示す構成図である。第3実施形態に係る制御部20は、ROM23に代えて、バスを介してCPU22に接続されている記憶部201を備える。記憶部201は、EEPROM、フラッシュメモリ、HDD(Hard Disk Drive)等の不揮発性メモリを備え、燃料電池システム1の運転プログラム26を記憶している。また、異常検知プログラム27は、可搬型の記録媒体202に記録されており、記録媒体202を介して制御部20に提供することが可能であるように構成されている。
 制御部20は、記録媒体読み取り装置(図示略)を備え、該記録媒体読み取り装置に記録媒体202が挿入された場合、記録媒体202から異常検知プログラム27を読み出し、記憶部201にインストールする。インストールされた異常検知プログラム27はRAM24にロードして実行される。これにより、第3実施形態に係る燃料電池システム1は、第1実施形態と同様の動作を行う。
 記録媒体202は、例えば、CD-ROM、磁気テープ及びカセットテープ等のテープ類、フレキシブルディスク及びハードディスク等の磁気ディスク類並びにICカード(メモリーカードを含む)/光カード等のカード類等である。
 なお、制御部20は、制御部20と通信可能なコンピュータ又は制御部20に通信ネットワークを介して接続されたサーバコンピュータ等から本実施形態における異常検知プログラム27を取得し、記憶部201に記憶させることにしてもよい。
 また、本第3実施形態と同様の構成で、第2実施形態と同様の動作を行うこととしてもよい。
[請求の範囲と実施形態との構成の対応関係]
 本実施形態の水素センサON時間は、請求の範囲の濃度検出時間の一例である。本実施形態の閾値Cは、請求の範囲の時間閾値の一例である。本実施形態の閾値Aは、請求の範囲の第2濃度閾値である。本実施形態の閾値Bは、請求の範囲の第1濃度閾値である。
[変形例]
 第1実施形態においては、水素センサ12は、検出した水素濃度に応じた検出信号をCPU22に送信するのに対し、第1実施形態の変形例においては、水素センサ12は検出した水素濃度の値をCPU22に送信するように構成されていてもよい。CPU22は、水素センサ12から送信される水素濃度の値を基に、異常判断を行うようにしてもよい。
 また、第2実施形態においては、CPU22は、開閉弁10を開放してから第1反応時間経過した時点における水素濃度と、開閉弁10を閉止してから第2反応時間経過した時点における水素濃度とを基に水素センサ12及び換気ユニット60の異常を検知するのに対し、第2実施形態の変形例においては、CPU22は、異常検知処理を実行する間に水素センサ12により検出される水素濃度の最大値に基づいて異常を検知するように構成されていてもよい。水素センサ12により検出される水素濃度の最大値が大きいほど、換気ユニット60が劣化していると判断できる。
 本開示の一実施形態に係る燃料電池システムは、燃料電池本体と、前記燃料電池本体を収納し、換気出口を有する筐体と、前記燃料電池本体から排出されるアノードオフガスを前記換気出口に向けて送出し、アノードオフガス出口を有するアノードオフガス配管と、前記アノードオフガス配管を開閉する開閉弁と、前記開閉弁が開放されることにより前記アノードオフガス配管により送出されるアノードオフガスを前記換気出口から前記筐体の外部へ排出する換気ユニットであって、少なくとも換気ファンを含む換気ユニットと、前記アノードオフガス出口と前記換気出口との間に配置され、前記筐体内の水素濃度を検出する水素センサと、前記開閉弁と、前記換気ファンとを制御する制御部と、を備え、前記制御部は、前記開閉弁が開放される際に、前記水素濃度、または前記水素センサからの検出信号によって定められる濃度検出時間に基づき、前記水素センサに異常が発生しているか否かを判断すると共に、前記換気ユニットに異常が発生しているか否かを判断する異常検知処理を実行するように構成されており、前記濃度検出時間は、前記水素濃度が第1濃度閾値以上である時間であることを特徴とする。
 本開示の一実施形態によれば、水素センサにより検出される水素濃度、または水素センサからの検出信号によって定められる濃度検出時間に基づき、水素センサ及び換気ユニットの異常を検知できる。このため、換気ユニットの異常を検知するための専用センサを省略することができる。
 本開示の一実施形態に係る燃料電池システムは、上述の燃料電池システムであって、更に、前記制御部は、前記異常検知処理において、前記濃度検出時間を計測する計時処理を実行するように構成され、前記制御部は、前記計時処理において計測した時間が時間閾値以上である場合、前記換気ユニットの異常と判断することを特徴とするものである。
 本開示の一実施形態によれば、濃度検出時間が時間閾値以上である場合は、換気ユニットの異常と判断できる。このため、換気ユニットの異常を検知するための専用センサを省略することができる。
 本開示の一実施形態に係る燃料電池システムは、上述の燃料電池システムであって、更に、前記制御部は、前記異常検知処理において、前記開閉弁が開放されたときから所定時間が経過するまでの間に、前記水素センサが前記第1濃度閾値以上であることを検出しない場合、前記水素センサの異常と判断することを特徴とするものである。
 本開示の一実施形態によれば、所定時間の間に水素センサが第1濃度閾値以上の水素濃度を検出しない場合は、水素センサの異常と判断できる。
 本開示の一実施形態に係る燃料電池システムは、上述の燃料電池システムであって、更に、前記制御部は、前記異常検知処理において、前記水素濃度が前記第1濃度閾値以上となったときから前記第1濃度閾値未満となるまでの時間が前記時間閾値未満である場合、前記水素センサ及び前記換気ユニットは正常であると判断することを特徴とするものである。
 本開示の一実施形態によれば、水素センサからの検出信号によって定められる濃度検出時間が時間閾値未満である場合に、水素センサ及び換気ユニットが正常であると判断できる。このため、換気ユニットの異常を検知するための専用センサを省略することができる。
 本開示の一実施形態に係る燃料電池システムは、上述の燃料電池システムであって、更に、前記換気ユニットは換気フィルタを更に含み、前記制御部は、前記換気ファンの回転数に対応した回転信号を取得する取得処理を実行するように構成され、前記制御部が前記異常検知処理において前記換気ユニットの異常であると判断するときに、前記取得処理により取得される前記回転信号に対応した回転数が所定の範囲内である場合、前記制御部は、前記換気ユニットの異常のうちの前記換気フィルタの異常であると判断することを特徴とするものである。
 本開示の一実施形態によれば、換気ファンの回転数に基づき、換気ユニットの異常のうち、換気フィルタの異常であると判断できる。このため、換気フィルタの異常を検知するための専用センサを省略することができる。
 本開示の一実施形態に係る燃料電池システムは、上述の燃料電池システムであって、更に、前記制御部は、前記水素センサにより検出される前記水素濃度が前記第1濃度閾値以上である場合に前記筐体内で水素が漏洩していると判断する判断処理と、前記異常検知処理を実行している間は前記判断処理を実行することを禁止し、前記異常検知処理を実行していないときは前記判断処理を実行することを許容する、判断制御処理とを実行することを特徴とするものである。
 本開示の一実施形態によれば、異常検知処理を実行している間に誤って水素漏洩と判断することを防ぎ、異常検知処理を実行していない時には、水素漏洩を検知できる。
 本開示の一実施形態に係る燃料電池システムは、上述の燃料電池システムであって、更に、前記水素センサは、検出される水素濃度が前記第1濃度閾値以上である場合に前記制御部に第1の信号を送信し、検出される水素濃度が前記第1濃度閾値よりも大きい第2濃度閾値以上である場合に前記制御部に第2の信号を送信し、前記制御部は、前記水素センサから前記第2の信号を受信した場合に、前記筐体内で水素が漏洩していると判断することを特徴とするものである。
 本開示の一実施形態によれば、水素センサにより検出される水素濃度に基づき、水素センサ及び換気ユニットの異常を検知すると同時に、水素漏洩の異常を検知することができる。このため、水素漏洩を検知するための専用センサを省略することができる。
 本開示の一実施形態に係る異常検知方法は、燃料電池本体と、前記燃料電池本体を収納し、換気出口を有する筐体と、前記燃料電池本体から排出されるアノードオフガスを前記換気出口に向けて送出し、アノードオフガス出口を有するアノードオフガス配管と、前記アノードオフガス配管を開閉する開閉弁と、前記開閉弁が開放されることにより前記アノードオフガス配管により送出されるアノードオフガスを前記換気出口から前記筐体の外部へ排出する換気ユニットであって、少なくとも換気ファンを含む換気ユニットと、前記アノードオフガス出口と前記換気出口との間に配置され、前記筐体内の水素濃度を検出する水素センサと、前記開閉弁と、前記換気ファンとを制御する制御部と、を備える燃料電池システムの異常検知方法であって、前記開閉弁が開放される際に、前記水素濃度、または前記水素センサからの検出信号によって定められる濃度検出時間に基づき、前記水素センサに異常が発生しているか否かを判断すると共に、前記換気ユニットに異常が発生しているか否かを判断し、前記濃度検出時間は、前記水素濃度が第1濃度閾値以上である時間であることを特徴とする。
 本開示の一実施形態によれば、水素センサにより検出される水素濃度、または水素センサからの検出信号によって定められる濃度検出時間に基づき、水素センサ及び換気ユニットの異常を検知できる。このため、換気ユニットの異常を検知するための専用センサを省略することができる。
 本開示の一実施形態に係るコンピュータプログラムは、燃料電池本体と、前記燃料電池本体を収納し、換気出口を有する筐体と、前記燃料電池本体から排出されるアノードオフガスを前記換気出口に向けて送出し、アノードオフガス出口を有するアノードオフガス配管と、前記アノードオフガス配管を開閉する開閉弁と、前記開閉弁が開放されることにより前記アノードオフガス配管により送出されるアノードオフガスを前記換気出口から前記筐体の外部へ排出する換気ユニットであって、少なくとも換気ファンを含む換気ユニットと、前記アノードオフガス出口と前記換気出口との間に配置され、前記筐体内の水素濃度を検出する水素センサと、前記開閉弁と、前記換気ファンとを制御する制御部と、を備える燃料電池システムを制御するコンピュータに、前記開閉弁が開放される際に、前記水素濃度、または前記水素センサからの検出信号によって定められる濃度検出時間に基づき、前記水素センサに異常が発生しているか否かを判断すると共に、前記換気ユニットに異常が発生しているか否かを判断する処理を実行させ、前記濃度検出時間は、前記水素濃度が第1濃度閾値以上である時間であることを特徴とする。
 本開示の一実施形態によれば、水素センサにより検出される水素濃度、または水素センサからの検出信号によって定められる濃度検出時間に基づき、水素センサ及び換気ユニットの異常を検知できる。このため、換気ユニットの異常を検知するための専用センサを省略することができる。
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えるべきである。本発明の範囲は、上記した意味ではなく、請求の範囲によって示し、請求の範囲と均等の意味及び範囲内でのすべての変更を含むことを意図している。即ち、本発明の技術的範囲は、請求項に示した範囲で適宜変更した技術的手段を組み合わせた実施形態も含む。
  1 燃料電池システム
  2 筐体
  3 燃料電池本体
  4 換気入口
  5 換気出口
  6 換気ファン
  7 換気フィルタ
  8 希釈室
  9 アノードオフガス配管
 10 開閉弁
 11 アノードオフガス出口
 12 水素センサ
 20 制御部
 22 CPU
 27 異常検知プログラム
 60 換気ユニット
 

Claims (9)

  1.  燃料電池本体と、
     前記燃料電池本体を収納し、換気出口を有する筐体と、
     前記燃料電池本体から排出されるアノードオフガスを前記換気出口に向けて送出し、アノードオフガス出口を有するアノードオフガス配管と、
     前記アノードオフガス配管を開閉する開閉弁と、
     前記開閉弁が開放されることにより前記アノードオフガス配管により送出されるアノードオフガスを前記換気出口から前記筐体の外部へ排出する換気ユニットであって、少なくとも換気ファンを含む換気ユニットと、
     前記アノードオフガス出口と前記換気出口との間に配置され、前記筐体内の水素濃度を検出する水素センサと、
     前記開閉弁と、前記換気ファンとを制御する制御部と、
    を備え、
     前記制御部は、前記開閉弁が開放される際に、前記水素濃度、または前記水素センサからの検出信号によって定められる濃度検出時間に基づき、前記水素センサに異常が発生しているか否かを判断すると共に、前記換気ユニットに異常が発生しているか否かを判断する異常検知処理を実行するように構成されており、
     前記濃度検出時間は、前記水素濃度が第1濃度閾値以上である時間である
     ことを特徴とする燃料電池システム。
  2.  前記制御部は、前記異常検知処理において、前記濃度検出時間を計測する計時処理を実行するように構成され、
     前記制御部は、前記計時処理において計測した時間が時間閾値以上である場合、前記換気ユニットの異常と判断することを特徴とする請求項1に記載の燃料電池システム。
  3.  前記制御部は、前記異常検知処理において、前記開閉弁が開放されたときから所定時間が経過するまでの間に、前記水素センサが前記第1濃度閾値以上であることを検出しない場合、前記水素センサの異常と判断することを特徴とする請求項2に記載の燃料電池システム。
  4.  前記制御部は、前記異常検知処理において、前記水素濃度が前記第1濃度閾値以上となったときから前記第1濃度閾値未満となるまでの時間が前記時間閾値未満である場合、前記水素センサ及び前記換気ユニットは正常であると判断することを特徴とする請求項2または3に記載の燃料電池システム。
  5.  前記換気ユニットは換気フィルタを更に含み、
     前記制御部は、
     前記換気ファンの回転数に対応した回転信号を取得する取得処理を実行するように構成され、
     前記制御部が前記異常検知処理において前記換気ユニットの異常であると判断するときに、前記取得処理により取得される前記回転信号に対応した回転数が所定の範囲内である場合、前記制御部は、前記換気ユニットの異常のうちの前記換気フィルタの異常であると判断する
     ことを特徴とする請求項2から4のいずれか1項に記載の燃料電池システム。
  6.  前記制御部は、
     前記水素センサにより検出される前記水素濃度が前記第1濃度閾値以上である場合に前記筐体内で水素が漏洩していると判断する判断処理と、
     前記異常検知処理を実行している間は前記判断処理を実行することを禁止し、前記異常検知処理を実行していないときは前記判断処理を実行することを許容する、判断制御処理と
     を実行することを特徴とする請求項2から5のいずれか1項に記載の燃料電池システム。
  7.  前記水素センサは、
     検出される水素濃度が前記第1濃度閾値以上である場合に前記制御部に第1の信号を送信し、
     検出される水素濃度が前記第1濃度閾値よりも大きい第2濃度閾値以上である場合に前記制御部に第2の信号を送信し、
     前記制御部は、前記水素センサから前記第2の信号を受信した場合に、前記筐体内で水素が漏洩していると判断することを特徴とする請求項1から6のいずれか1項に記載の燃料電池システム。
  8.  燃料電池本体と、
     前記燃料電池本体を収納し、換気出口を有する筐体と、
     前記燃料電池本体から排出されるアノードオフガスを前記換気出口に向けて送出し、アノードオフガス出口を有するアノードオフガス配管と、
     前記アノードオフガス配管を開閉する開閉弁と、
     前記開閉弁が開放されることにより前記アノードオフガス配管により送出されるアノードオフガスを前記換気出口から前記筐体の外部へ排出する換気ユニットであって、少なくとも換気ファンを含む換気ユニットと、
     前記アノードオフガス出口と前記換気出口との間に配置され、前記筐体内の水素濃度を検出する水素センサと、
     前記開閉弁と、前記換気ファンとを制御する制御部と、
    を備える燃料電池システムの異常検知方法であって、
     前記開閉弁が開放される際に、前記水素濃度、または前記水素センサからの検出信号によって定められる濃度検出時間に基づき、前記水素センサに異常が発生しているか否かを判断すると共に、前記換気ユニットに異常が発生しているか否かを判断し、
     前記濃度検出時間は、前記水素濃度が第1濃度閾値以上である時間である
     ことを特徴とする燃料電池システムの異常検知方法。
  9.  燃料電池本体と、
     前記燃料電池本体を収納し、換気出口を有する筐体と、
     前記燃料電池本体から排出されるアノードオフガスを前記換気出口に向けて送出し、アノードオフガス出口を有するアノードオフガス配管と、
     前記アノードオフガス配管を開閉する開閉弁と、
     前記開閉弁が開放されることにより前記アノードオフガス配管により送出されるアノードオフガスを前記換気出口から前記筐体の外部へ排出する換気ユニットであって、少なくとも換気ファンを含む換気ユニットと、
     前記アノードオフガス出口と前記換気出口との間に配置され、前記筐体内の水素濃度を検出する水素センサと、
     前記開閉弁と、前記換気ファンとを制御する制御部と、
     を備える燃料電池システムを制御するコンピュータに、
     前記開閉弁が開放される際に、前記水素濃度、または前記水素センサからの検出信号によって定められる濃度検出時間に基づき、前記水素センサに異常が発生しているか否かを判断すると共に、前記換気ユニットに異常が発生しているか否かを判断する処理を実行させ、
     前記濃度検出時間は、前記水素濃度が第1濃度閾値以上である時間である
     ことを特徴とするコンピュータプログラム。
PCT/JP2017/002443 2016-03-23 2017-01-25 燃料電池システム、燃料電池システムの異常検知方法、及びコンピュータプログラム WO2017163585A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016058135 2016-03-23
JP2016-058135 2016-03-23

Publications (1)

Publication Number Publication Date
WO2017163585A1 true WO2017163585A1 (ja) 2017-09-28

Family

ID=59899906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002443 WO2017163585A1 (ja) 2016-03-23 2017-01-25 燃料電池システム、燃料電池システムの異常検知方法、及びコンピュータプログラム

Country Status (2)

Country Link
JP (1) JP2017183275A (ja)
WO (1) WO2017163585A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911709A (zh) * 2018-08-27 2020-03-24 丰田自动车株式会社 燃料气体供给控制装置及方法和燃料电池车的启动方法
CN115032328A (zh) * 2021-03-04 2022-09-09 郑州宇通客车股份有限公司 一种车辆中气体泄漏探测的防误报控制系统及控制方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6830199B2 (ja) * 2018-02-26 2021-02-17 パナソニックIpマネジメント株式会社 燃料電池システム及びその運転方法
JP7230094B2 (ja) * 2020-04-20 2023-02-28 Jfeスチール株式会社 高圧水素容器
WO2021215399A1 (ja) * 2020-04-20 2021-10-28 Jfeスチール株式会社 高圧水素容器
KR102332774B1 (ko) * 2021-08-18 2021-12-01 주식회사 케이알엔지니어링 배터리모듈의 오프가스 배출구조
DE102022207297A1 (de) 2022-07-18 2024-01-18 Robert Bosch Gesellschaft mit beschränkter Haftung Diagnoseverfahren zur Diagnose eines Zustands eines Wasserstoffsensors in einem Brennstoffzellensystem

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259912A (ja) * 1998-02-06 1998-09-29 Gastar Corp 燃焼装置
JPH10281464A (ja) * 1997-04-04 1998-10-23 Matsushita Electric Ind Co Ltd 室内開放型温風暖房器の制御装置
JP2005158432A (ja) * 2003-11-25 2005-06-16 Nissan Motor Co Ltd 燃料電池システム
JP2006153857A (ja) * 2004-10-26 2006-06-15 Nissan Motor Co Ltd 水素センサの劣化検知システム、劣化検知方法及び水素濃度測定手段の劣化検知システム
JP2009043427A (ja) * 2007-08-06 2009-02-26 Toyota Industries Corp 燃料電池型産業車両の異常検知装置
JP2009070747A (ja) * 2007-09-14 2009-04-02 Toshiba Fuel Cell Power Systems Corp 燃料電池発電システム及びその換気制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10281464A (ja) * 1997-04-04 1998-10-23 Matsushita Electric Ind Co Ltd 室内開放型温風暖房器の制御装置
JPH10259912A (ja) * 1998-02-06 1998-09-29 Gastar Corp 燃焼装置
JP2005158432A (ja) * 2003-11-25 2005-06-16 Nissan Motor Co Ltd 燃料電池システム
JP2006153857A (ja) * 2004-10-26 2006-06-15 Nissan Motor Co Ltd 水素センサの劣化検知システム、劣化検知方法及び水素濃度測定手段の劣化検知システム
JP2009043427A (ja) * 2007-08-06 2009-02-26 Toyota Industries Corp 燃料電池型産業車両の異常検知装置
JP2009070747A (ja) * 2007-09-14 2009-04-02 Toshiba Fuel Cell Power Systems Corp 燃料電池発電システム及びその換気制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911709A (zh) * 2018-08-27 2020-03-24 丰田自动车株式会社 燃料气体供给控制装置及方法和燃料电池车的启动方法
CN115032328A (zh) * 2021-03-04 2022-09-09 郑州宇通客车股份有限公司 一种车辆中气体泄漏探测的防误报控制系统及控制方法
CN115032328B (zh) * 2021-03-04 2023-09-08 宇通客车股份有限公司 一种车辆中气体泄漏探测的防误报控制系统及控制方法

Also Published As

Publication number Publication date
JP2017183275A (ja) 2017-10-05

Similar Documents

Publication Publication Date Title
WO2017163585A1 (ja) 燃料電池システム、燃料電池システムの異常検知方法、及びコンピュータプログラム
US7581431B2 (en) Gas leak detection device and method for same
JP4513119B2 (ja) 燃料電池システム
KR102552073B1 (ko) 연료전지 워터트랩의 수위센서 고장 진단 방법과 이를 이용한 제어 장치
JP5226936B2 (ja) 燃料電池システム、および、燃料電池システムの運転方法
JP5366435B2 (ja) 燃料電池システム
JP2007035446A (ja) 燃料電池システムおよびガス漏れ検知装置
EP3506406B1 (en) Fuel cell system, control method for fuel cell system, and computer program
EP1869722B1 (en) Fuel cell system
JP5034186B2 (ja) 燃料電池システム、ガス漏れ検知装置、および、ガス漏れ検知方法
KR102614135B1 (ko) 연료전지의 공기 공급 제어방법 및 제어시스템
JP2006318715A (ja) 固体高分子型燃料電池及び固体高分子型燃料電池の運転方法
JP7119716B2 (ja) 燃料電池システム
JP2008153079A (ja) 燃料電池システム
JP6183414B2 (ja) 燃料電池システム
JP6861548B2 (ja) 燃料電池システム及び燃料電池システムの運転方法
JP2002313390A (ja) 燃料電池システム
KR102506848B1 (ko) 연료전지용 공기공급계의 고장 진단장치 및 그 방법
JP2008108612A (ja) 燃料電池システム
JP4940573B2 (ja) 燃料ガス供給装置
JP2007227159A (ja) 燃料電池システム
KR20180129196A (ko) 연료전지 시스템 제어 방법
JP2006079981A (ja) 異常検出処理をする燃料電池システム
JP2006294497A (ja) 燃料電池システム
JP2009301804A (ja) 燃料電池システムおよび燃料電池システムの異常診断方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769632

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769632

Country of ref document: EP

Kind code of ref document: A1