WO2017159491A1 - 家畜の飼育方法及び乳の製造方法 - Google Patents

家畜の飼育方法及び乳の製造方法 Download PDF

Info

Publication number
WO2017159491A1
WO2017159491A1 PCT/JP2017/009215 JP2017009215W WO2017159491A1 WO 2017159491 A1 WO2017159491 A1 WO 2017159491A1 JP 2017009215 W JP2017009215 W JP 2017009215W WO 2017159491 A1 WO2017159491 A1 WO 2017159491A1
Authority
WO
WIPO (PCT)
Prior art keywords
livestock
circadian cycle
period
light
circadian
Prior art date
Application number
PCT/JP2017/009215
Other languages
English (en)
French (fr)
Inventor
篠田 晶子
隆史 渡邊
悦子 粕谷
まどか 須藤
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2017159491A1 publication Critical patent/WO2017159491A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K29/00Other apparatus for animal husbandry
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K45/00Other aviculture appliances, e.g. devices for determining whether a bird is about to lay

Definitions

  • the present invention relates to a method for raising livestock and a method for producing milk.
  • This application claims priority to Japanese Patent Application No. 2016-049890 filed in Japan on March 14, 2016, the contents of which are incorporated herein by reference.
  • Melatonin has been reported as a substance that enhances the immunity of mammals (for example, see Non-Patent Document 1). Melatonin is a substance secreted from the pineal gland of the brain in response to day and night cycles, and is a hormone that regulates the circadian rhythm of mammals. Melatonin also affects the deep body temperature of mammals, and it is known that deep body temperature begins to decrease when sleeping and increases when waking from sleep.
  • the secretion pattern of melatonin in mammals shows a high rhythm at night and a low rhythm in the daytime, and the secretion of melatonin is influenced by the effects of light during the day, especially the light of short wavelength (blue light (blue light)). It is known to be strong (see, for example, Patent Document 1 and Non-Patent Document 2).
  • An object of the present invention is to provide a livestock breeding method capable of enhancing the immunity of livestock by increasing the amount of melatonin secreted in the livestock body without greatly disturbing the circadian rhythm of livestock. .
  • this invention provides the following means in order to solve the said subject.
  • a livestock breeding method includes a first period including a period in which a livestock is irradiated with light including a wavelength of less than 500 nm and a dark period in which the livestock is not irradiated with light.
  • a circadian cycle and a second circadian cycle that includes a period in which the livestock is irradiated with light having a peak wavelength in the range of 570 nm to 610 nm and that does not irradiate light having a wavelength of less than 500 nm.
  • the second circadian cycle is performed after the first circadian cycle.
  • the first circadian cycle and the second circadian cycle may be alternately repeated.
  • the first circadian cycle, the second circadian cycle, and the third circadian cycle may be repeated in this order. Good.
  • a peak wavelength in the second circadian cycle is 570 nm after a dark period in the first circadian cycle.
  • the period of irradiating light of ⁇ 610 nm may be continuously performed.
  • the period of irradiation with light of less than 500 nm in the first circadian cycle is in the range of 8 to 16 hours.
  • the dark period in the first circadian cycle is in the range of 16 hours to 8 hours, and the period of irradiation with light having a peak wavelength of 570 nm to 610 nm in the second circadian cycle is 8 hours to 24 hours. It may be within a time range.
  • the first circadian cycle, the second circadian cycle, and the third circadian cycle are: Each may be 23 to 25 hours.
  • milking is performed from a female livestock raised by the livestock breeding method according to any one of (1) to (7) above.
  • the milking is performed within a period of irradiation with light having a peak wavelength of 570 nm to 610 nm in the second circadian cycle or the third circadian cycle. Also good.
  • the livestock breeding method according to one embodiment of the present invention can enhance the immunity of livestock. As a result, the productivity of livestock can be increased. In addition, the amount of drug used can be reduced, and safe meat can be provided. Moreover, the circadian rhythm of livestock is rarely disturbed, and the stress of livestock is not increased and the efficiency of breeding and breeding is reduced.
  • the livestock breeding method according to one embodiment of the present invention is particularly useful for melatonin-rich milk production in northern Europe where there is a white night, and has the effect of promoting the health of animals (including livestock and display animals) at polar nights. Moreover, since illumination can be used at night in the circadian rhythm of livestock, it is possible to improve the workability and work efficiency of workers.
  • FIG 3 shows a method for raising livestock according to one embodiment of the present invention in time series.
  • the domestic animal breeding method in an Example is shown in time series.
  • an emission spectrum of an incandescent lamp (tungsten bulb) lit in a barn is shown.
  • the emission spectrum of the LED illumination lighted in the barn is shown.
  • the livestock breeding method according to one aspect of the present invention is a livestock breeding method in a barn.
  • livestock that can be raised by the method for raising livestock according to one embodiment of the present invention include cows, pigs, sheep, goats, deer, horses, chickens, quails, and the like.
  • the livestock breeding method has a first circadian cycle and a second circadian cycle.
  • the “circadian cycle” is an intrinsic rhythm found in physiological phenomena such as animal movement and sleep. Generally, it is a cycle of about 24 hours, but this circadian cycle varies depending on external stimuli such as light, temperature, and meal. That is, the circadian cycle in this specification is a cycle of about 24 hours, but may vary in a time range of about 1 to 3 hours depending on the type of livestock and the breeding environment. In other words, the circadian cycle varies depending on the type of livestock and the breeding environment, and generally ranges from 21 hours to 27 hours.
  • the first circadian cycle includes a period in which the livestock is irradiated with light including a wavelength of less than 500 nm and a dark period in which the livestock is not irradiated with light.
  • the second circadian cycle includes a period in which the livestock is irradiated with light having a peak wavelength in the range of 570 nm to 610 nm.
  • the livestock is not irradiated with light having a wavelength of less than 500 nm. Control of the light irradiated with respect to livestock can be performed by controlling the light irradiated, for example in a livestock barn.
  • the period in which the livestock is irradiated with light including a wavelength of less than 500 nm can be performed by introducing sunlight into the barn and lighting the lighting fixture provided in the barn.
  • an incandescent lamp tungsten bulb
  • LED illumination capable of irradiating light including a wavelength of less than 500 nm, or the like can be used as the lighting fixture in this cycle.
  • the period during which the livestock is irradiated with light having a peak wavelength in the range of 570 nm to 610 nm can be performed by lighting the lighting fixture provided in the barn.
  • LED lighting capable of irradiating light including a wavelength in the range of 570 nm to 610 nm, a sodium lamp, or the like can be used.
  • FIG. 1 shows a method for raising livestock according to one embodiment of the present invention in time series.
  • the direction from the left side to the right side of the figure shows the direction of time elapsed for breeding.
  • the horizontal width of the period shown in FIG. 1 is not necessarily proportional to time.
  • a period in which the livestock is irradiated with light having a wavelength of less than 500 nm is “period A”
  • a dark period in which the livestock is not irradiated with light is “period B”
  • a wavelength of less than 500 nm for the livestock Is expressed as “period C” in which light having a peak wavelength in the range of 570 nm to 610 nm is irradiated.
  • the domestic animal breeding method shown in the first embodiment repeats the first circadian cycle and the second circadian cycle in this order.
  • a period (period A) in which the livestock is irradiated with light including a wavelength of less than 500 nm and a dark period (period B) are provided in this order.
  • the second circadian cycle has a period (period C) in which the livestock is irradiated with light that does not include light having a wavelength of less than 500 nm and has a peak wavelength in the range of 570 nm to 610 nm.
  • circadian rhythms for livestock There are two main categories of circadian rhythms for livestock: daytime and nighttime.
  • the period (period A) in which the livestock is irradiated with light having a wavelength of less than 500 nm corresponds to the daytime in the circadian rhythm of the livestock
  • the dark period (period B) in the circadian rhythm of the livestock Corresponds to night.
  • the livestock In the former period (period A) in which light including a wavelength of less than 500 nm is irradiated, the livestock is awakened to promote active activity of the livestock and reset the biological clock. Thereby, the appetite of livestock can be raised and stress can be reduced. As a result, it has the effect of improving the efficiency of breeding and breeding and stabilizing the circadian rhythm of livestock.
  • the latter dark period (period B) has the effect of promoting the sleep and rest of livestock, and promoting the secretion of melatonin in the body to enhance the immunity of livestock.
  • the period of irradiation with light containing a wavelength of less than 500 nm is preferably in the range of 8 hours to 16 hours, more preferably 10 hours to 14 hours, and more preferably 12 hours. Is more preferable.
  • the period (period A) in which light including a wavelength of less than 500 nm is irradiated corresponds to daytime for livestock, and therefore, if the daytime is within this range, it is possible to avoid disturbing the sagadian rhythm of livestock. it can.
  • the dark period (period B) in the first circadian cycle is the time excluding the period of irradiating light of less than 500 nm from the circadian cycle. Therefore, the dark period (period B) in the first circadian cycle is preferably in the range of 16 hours to 8 hours, more preferably 14 hours to 10 hours, and even more preferably 12 hours. . If the dark period is within this range, it is possible to avoid disturbing the Sagadian rhythm of livestock.
  • the wavelength of light irradiated in period C includes a wavelength in the range of 570 nm to 610 nm. This is because light of a wavelength within this range rarely disturbs the Sagadian rhythm of livestock according to the inventors' investigation.
  • the period (period C) during which light having a peak wavelength in the second circadian cycle is 570 nm to 610 nm is preferably in the range of 8 hours to 24 hours.
  • the period during which the predetermined light is irradiated in the second circadian cycle can be set regardless of the Sagadian rhythm of livestock. Therefore, it can set based on the cost effectiveness of the time which a breeder works and the time which continues irradiating light.
  • the first half of the second circadian cycle corresponds to daytime in the circadian rhythm of livestock, and the second half corresponds to nighttime.
  • livestock act on circadian rhythm.
  • melatonin is secreted in the livestock.
  • livestock sleep and rest based on circadian rhythm.
  • melatonin continues to be secreted in the livestock because no light including a wavelength of less than 500 nm is irradiated. That is, in the second circadian cycle, melatonin is secreted at any time in the livestock.
  • the secretion amount as a total amount of melatonin increases, and it has the effect of increasing the immunity of livestock.
  • the peak wavelength of the light irradiated in the second circadian cycle is in the range of 570 nm to 610 nm, which is a wavelength range that can be seen by humans. Therefore, the livestock keeper can visually recognize the inside of the barn during the period when light in this wavelength range is irradiated. That is, the livestock keeper can easily act in the barn, and the workability of the keeper is not impaired. As shown in the first embodiment, by extending the irradiation period for irradiating light in this wavelength range to the entire area of the second circadian cycle, the working efficiency of livestock breeders in the barn can be significantly increased. it can.
  • the breeding method of the second embodiment is different from the first embodiment in that the light irradiation conditions of the second circadian cycle are divided into the first half and the second half.
  • the first half of the second circadian cycle is a period (period C) in which light that does not include a wavelength of less than 500 nm and includes a wavelength within a range of a peak wavelength of 570 nm to 610 nm. is there.
  • the second half of the second circadian cycle is a dark period (period B). During the dark period (period B), the lighting in the barn is turned off, so that light with a wavelength of less than 500 nm is not irradiated to the livestock throughout the second circadian cycle.
  • the first half of the second circadian cycle corresponds to daytime in the circadian rhythm of livestock, and the second half corresponds to nighttime.
  • livestock act on circadian rhythm with melatonin secretion maintained.
  • livestock basically sleep with their eyes closed due to the secretion of melatonin. Therefore, even if it turns off the illumination of this period and it is a dark period, it does not affect livestock.
  • the second half of the second circadian cycle as a dark period, it is possible to suppress power consumption due to illumination.
  • the light irradiation conditions in the period corresponding to the second half of the second circadian cycle are different.
  • the period corresponding to the dark period (period B) in the second half of the second circadian cycle in the second embodiment does not include a wavelength less than 500 nm, and the peak wavelength is in the range of 570 nm to 610 nm.
  • a period (period C) for irradiating light including the inner wavelength is provided.
  • Light including a wavelength having a peak wavelength in the range of 570 nm to 610 nm is a wavelength range visible to humans.
  • the keeper can work in the barn during the light irradiation period. Moreover, even if such an irradiation period is provided at night in the circadian rhythm of livestock, the circadian rhythm of livestock is rarely disturbed. For this reason, there are few cases where the stress of livestock is increased and the efficiency of breeding and rearing is reduced. If a period for irradiating light with a peak wavelength in the range of 570 nm to 610 nm is provided in the second half of the second circadian cycle, livestock breeders can work in the barn compared to the second embodiment. Can save time and increase the work efficiency of the keeper.
  • the first circadian cycle and the second circadian cycle are alternately repeated.
  • the domestic animal breeding method according to one embodiment of the present invention does not have to include only the first circadian cycle and the second circadian cycle, and may include other steps.
  • the order of the dark period and the period of irradiation with light having a wavelength of less than 500 nm may be switched.
  • the period of irradiation with light including any wavelength in the range of the peak wavelength from 570 to 610 nm may be performed at any timing during the second circadian cycle.
  • the livestock breeding method according to the fourth embodiment is different from the livestock breeding method according to the first embodiment in that it further includes a third circadian cycle.
  • the first circadian cycle, the second circadian cycle, and the third circadian cycle are repeated in this order.
  • the third circadian cycle includes a period in which the livestock is irradiated with light having a peak wavelength in the range of 570 nm to 610 nm.
  • the livestock is not irradiated with light having a wavelength of less than 500 nm.
  • the range of light irradiation conditions of the third circadian cycle is the same as that of the second circadian cycle.
  • the specific light irradiation conditions of the third circadian cycle may be the same as or different from the specific light irradiation conditions of the second circadian cycle as long as they are within this range.
  • the light irradiation period in the third circadian cycle is expressed as a period C ′.
  • the first half of the first circadian cycle is a period in which the livestock is awakened and the livestock is activated and the body clock is reset. Even if this period is set at a frequency of once in three circadian cycles, it works effectively for a specific livestock.
  • a cow can be mentioned as a specific domestic animal, for example.
  • the method for raising livestock it is possible to increase the immunity of livestock that is high in the circadian cycle corresponding to daytime in the amount of melatonin secreted in the body of livestock.
  • the immunity of livestock can be increased and the productivity of livestock can be increased.
  • the amount of drug used to enhance immunity can be reduced, and safe meat can be provided.
  • the circadian rhythm of livestock is rarely disturbed, it is possible to suppress the livestock from feeling stress and reducing the efficiency of breeding and breeding.
  • milk rich in melatonin can be produced by milking a female livestock raised by the above-described livestock breeding method.
  • the milking operation is performed within the period (period C, period C ′) in which light having a peak wavelength of 570 nm to 610 nm is irradiated without irradiating light having a wavelength of less than 500 nm in the second or third circadian cycle. Is preferred. During this period, it is easy for the keeper to check the position of the livestock in the barn, and the efficiency of the milking work can be improved.
  • Example 1 Four Holstein steers (7-9 months old) were raised in the barn.
  • the first and second circadian cycles in the breeding period are 24 hours from 6 am to 6 am the next day, respectively, and 48 hours of the first circadian cycle and the second circadian cycle that follows this are 1 hour. This 48 hour cycle was repeated as a cycle.
  • the breeding environment was a temperature of 22 ° C. and a humidity of 60%, and feeding was from 8:15 to 8:45 and twice a day from 15:15 to 15:45.
  • an incandescent lamp (tungsten bulb) was lit in the barn for 12 hours from 6:00 to 18:00 of the first circadian cycle.
  • the emission spectrum of the incandescent lamp used is shown in FIG.
  • the illuminance in the barn at that time was 800 lux.
  • LED lighting with a central wavelength of 590 nm was turned on in the barn.
  • the emission spectrum of the LED illumination used is shown in FIG.
  • the illuminance in the barn at that time was 800 lux.
  • the lighting in the barn was turned off to make it a dark period.
  • the above irradiation pattern is schematically shown in FIG.
  • the amount of melatonin in the blood of cattle is low at 12:00 of the first circadian cycle, which is daytime, and is high at 24:00 of the first circadian cycle, which is nighttime.
  • the cows act according to the circadian rhythm, but at 12:00 corresponding to the daytime of the circadian rhythm, the melatonin amount is the daytime at 12:00 of the first circadian cycle. The level does not drop to the level, and the night level continues to be maintained.
  • Example 2 Breeding was carried out in the same manner as in Example 1, but the lighting conditions in the barn were changed as shown in FIG. That is, for 24 hours from 6 o'clock to 6 o'clock of the second circadian cycle, LED lighting with a central wavelength of 590 nm was turned on in the barn, and the illuminance in the barn at that time was 800 lux. Then, blood was collected by the same method as in Example 1, and the amount of melatonin in the blood was measured. The test results are shown in Table 2.
  • cattle also operate according to the circadian rhythm in the second circadian cycle. Then, at 24:00 corresponding to the night of the circadian rhythm, the amount of melatonin is maintained at the night level of the first circadian cycle.
  • Example 3 Breeding was carried out in the same manner as in Example 1, but the lighting in the barn was changed as shown in FIG. That is, the third circadian cycle was added to the first and second circadian cycles, and 72 hours of the first, second, and third circadian cycles were taken as one cycle, and the cycle of 72 hours was repeated.
  • the incandescent lamp was turned on in the barn for 12 hours from 6:00 to 18:00 of the first circadian cycle.
  • the illuminance in the barn at that time was 800 lux.
  • the lighting in the barn was turned off to make it a dark period.
  • LED lighting with a central wavelength of 590 nm was turned on in the barn.
  • the illuminance in the barn at that time was 800 lux.
  • the lighting in the barn was turned off to make it a dark period.
  • the third circadian cycle was the same as the second circadian cycle.
  • the test results are shown in Table 3.
  • cattle also operate according to the circadian rhythm in the second and third circadian cycles.
  • the melatonin amount is maintained at the nighttime level of the first circadian cycle, and at 24:00 corresponding to the nighttime of the circadian rhythm, the melatonin amount is the first.
  • the nighttime level of the circadian cycle is maintained.
  • the present invention relates to a method for raising livestock and a method for producing milk. According to the present invention, the immunity of livestock can be enhanced by increasing the amount of melatonin secreted in the livestock body without greatly disturbing the circadian rhythm of livestock.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Birds (AREA)
  • Housing For Livestock And Birds (AREA)

Abstract

本発明は、家畜の体内において分泌されるメラトニンの量を高めることで家畜の免疫力を高めるとともに、家畜のサーカディアンリズムを乱すことの少ない飼育方法を提供することを目的として、家畜に対して500nm未満の波長を含む光を照射する期間と、家畜に対して光を照射しない暗期間と、を含む第1の概日サイクルと、家畜に対してピーク波長が570nm~610nmの範囲内の波長を含む光を照射する期間を含み、かつ、500nm未満の波長の光を照射しない第2の概日サイクルと、を有し、前記第1の概日サイクルの後に、前記第2の概日サイクルを行う。

Description

家畜の飼育方法及び乳の製造方法
 本発明は、家畜の飼育方法及び乳の製造方法に関する。本願は、2016年3月14日に日本に出願された特願2016-049890号に対して優先権を主張し、その内容をここに援用する。
 家畜の生産者、飼育者にとって疾病による生産性の低下は重要な問題である。特に離乳期の家畜は、授乳による母親からの免疫抗体を受けられないため、疾病のリスクが高い。
そのため、生産者、飼育者は抗生物質等の薬剤の投与などによってこの問題の対策をとってきた。しかしながら、家畜の免疫力の低下、家畜を食肉として供する際に家畜の肉に残留する物質の人体への影響等が新たに問題となっている。
 哺乳類の免疫力を高める物質としてメラトニン(Melatonin)が報告されている(例えば、非特許文献1参照)。メラトニンは昼と夜の周期に反応して脳の松果体から分泌される物質で、哺乳類の概日リズム(サーカディアンリズム)を調整しているホルモンである。メラトニンは哺乳類の深部体温にも影響し、深部体温は睡眠に入ると低下しはじめ、睡眠から醒めると上昇することが知られている。
 すなわち、哺乳類におけるメラトニンの分泌パターンは、夜間に高く昼間に低いリズムを示し、そして、メラトニンの分泌は日中の光の影響、特に、短波長の光(青色光(ブルーライト))の影響が強いことが知られている(例えば、特許文献1、非特許文献2参照)。
国際公開第2007/068361号
Journal of Pineal Research,14,P.1-10(1993). 時間生物学 Vol.14,No.1,P.13-20(2008).
 本発明は、家畜のサーカディアンリズムを大きく乱すことなく、家畜の体内において分泌されるメラトニンの量を高めることで、家畜の免疫力を高めることができる家畜の飼育方法を提供することを目的とする。
 本発明者らは、鋭意検討の結果、所定の条件で家畜に対して光を照射することで、家畜のサーカディアンリズムを大きく乱すことなく、家畜の免疫力が高まることを見出し、発明を完成させた。
 すなわち、本発明は、上記課題を解決するため、以下の手段を提供する。
(1)本発明の一態様に係る家畜の飼育方法は、家畜に対して500nm未満の波長を含む光を照射する期間と、家畜に対して光を照射しない暗期間と、を含む第1の概日サイクルと、家畜に対してピーク波長が570nm~610nmの範囲内の波長を含む光を照射する期間を含み、かつ、500nm未満の波長の光を照射しない第2の概日サイクルと、を有し、前記第1の概日サイクルの後に、前記第2の概日サイクルを行う。
(2)上記(1)に記載の家畜の飼育方法において、前記第1の概日サイクルと前記第2の概日サイクルを交互に繰り返して行ってもよい。
(3)上記(1)に記載の家畜の飼育方法において、前記第2の概日サイクルの後に、家畜に対してピーク波長が570nm~610nmの範囲内の波長を含む光を照射する期間を含み、かつ、500nm未満の波長の光を照射しない第3の概日サイクルを行ってもよい。
(4)上記(3)に記載の家畜の飼育方法において、前記第1の概日サイクルと、前記第2の概日サイクルと、前記第3の概日サイクルと、をこの順に繰り返し行ってもよい。
(5)上記(1)~(4)のいずれか一つに記載の家畜の飼育方法において、前記第1の概日サイクルにおける暗期間の後に、前記第2の概日サイクルにおけるピーク波長が570nm~610nmの光を照射する期間を連続して行ってもよい。
(6)上記(1)~(5)のいずれか一つに記載の家畜の飼育方法において、前記第1の概日サイクルにおける500nm未満の光を照射する期間が8時間~16時間の範囲内であり、前記第1の概日サイクルにおける暗期間が16時間~8時間の範囲内であり、前記第2の概日サイクルにおけるピーク波長が570nm~610nmの光を照射する期間が8時間~24時間の範囲内であってもよい。
(7)上記(3)~(6)のいずれか一つに記載の家畜の飼育方法において、前記第1の概日サイクル、前記第2の概日サイクル及び前記第3の概日サイクルが、それぞれ23時間~25時間であってもよい。
(8)本発明の一態様に係る乳の製造方法は、上記(1)~(7)のいずれか一つに記載の家畜の飼育方法により飼育された雌の家畜から搾乳する。
(9)上記(8)に記載の乳の製造方法において、前記搾乳を前記第2の概日サイクルまたは第3の概日サイクルにおけるピーク波長が570nm~610nmの光を照射する期間内に行ってもよい。
 本発明の一態様に係る家畜の飼育方法によれば、家畜の免疫力を高めることが可能となる。その結果、家畜の生産性を高めることができる。また、薬剤の使用量を減らすことができ、安全な肉の提供が可能となる。また、家畜のサーカディアンリズムを乱すことが少なく、家畜のストレスを高めたり、繁殖や育成の効率を低下させたりすることも少ない。
 本発明の一態様に係る家畜の飼育方法は、白夜がある北欧等でのメラトニンリッチな乳生産に特に有用であり、極夜における動物(家畜、展示動物を含む)の健康増進効果を有する。また、家畜のサーカディアンリズムの夜間においても照明を用いることができるため、作業員の作業性や作業効率を高めることができる。
本発明の一態様に係る家畜の飼育方法を時系列的に示したものである。 実施例における家畜の飼育方法を時系列的に示したものである。 第1の概日サイクルにおいて、畜舎内で点灯した白熱灯(タングステン電球)の発光スペクトルを示す。 第2の概日サイクル及び第3の概日サイクルにおいて、畜舎内で点灯したLED照明の発光スペクトルを示す。
 本発明の一態様に係る家畜の飼育方法は、畜舎内での家畜の飼育方法である。本発明の一態様に係る家畜の飼育方法で飼育可能な家畜は、牛、豚、めん羊、山羊、鹿、馬、鶏、うずら等を挙げることができる。
 本発明の一態様に係る家畜の飼育方法は、第1の概日サイクルと第2の概日サイクルとを有する。「概日サイクル」とは、動物の運動や睡眠等の生理現象にみられる内因性のリズムである。一般的には、約24時間のサイクルであるが、この概日サイクルは、光、温度、食事などの外界からの刺激によって変動する。すなわち、本明細書における概日サイクルは、約24時間のサイクルであるものの、家畜の種類、飼育環境によって1~3時間程度の時間範囲において変動する場合がある。つまり、概日サイクルは、家畜の種類、飼育環境によって異なり、概ね21時間~27時間の範囲となる。
 第1の概日サイクルは、家畜に対して500nm未満の波長を含む光を照射する期間と、家畜に対して光を照射しない暗期間を含む。
 第2の概日サイクルは、家畜に対してピーク波長が570nm~610nmの範囲内の波長を含む光を照射する期間を含む。また第2の概日サイクル中は、家畜に対して500nm未満の波長の光を照射しない。
 家畜に対して照射する光の制御は、例えば畜舎内に照射する光を制御することにより行うことができる。
 すなわち、第1の概日サイクルで、家畜に対して500nm未満の波長を含む光を照射する期間は、畜舎内への太陽光の導入、畜舎内に設けた照明器具の点灯によって行うことができる。本発明では、このサイクルでの照明器具として、白熱灯(タングステン電球)、500nm未満の波長を含む光を照射可能なLED照明等を用いることができる。
 また、第2の概日サイクルで、家畜に対してピーク波長が570nm~610nmの範囲内の波長を含む光を照射する期間は、畜舎内に設けた照明器具の点灯によって行うことが可能であり、このサイクルでの照明器具として、570nm~610nmの範囲内の波長を含む光を照射可能なLED照明、ナトリウムランプ等を用いることができる。
 図1は、本発明の一態様に係る家畜の飼育方法を時系列的に示したものである。図の左側から右側方向が飼育の時間経過方向を示す。図1に示す期間の横方向の幅は、必ずしも時間とは比例しない。
 また図1において、家畜に対して500nm未満の波長を含む光を照射する期間を「期間A」、家畜に対して光を照射しない暗期間を「期間B」、家畜に対して500nm未満の波長の光を含まず、ピーク波長が570nm~610nmの範囲内の波長を含む光を照射する「期間C」として表記する。
 以下、図1に示す第1実施形態~第4実施形態に沿って具体的に本発明の一態様に係る家畜の飼育方法について説明する。
 先ず第1実施形態の飼育方法を説明する。
 第1実施形態に示す家畜の飼育方法は、第1の概日サイクルと第2の概日サイクルを、この順で繰り返し行う。第1の概日サイクルは、家畜に対して500nm未満の波長を含む光を照射する期間(期間A)と、暗期間(期間B)とをこの順で続けて設けている。第2の概日サイクルは、500nm未満の波長の光を含まず、ピーク波長が570nm~610nmの範囲内の波長を含む光を家畜に対して照射する期間(期間C)を設けている。
 家畜のサーカディアンリズムには、大きく分けて昼間と夜間の二つの区分がある。
 第1の概日サイクルにおける、家畜に対して500nm未満の波長を含む光を照射する期間(期間A)は家畜のサーカディアンリズムにおける昼間に相当し、暗期間(期間B)は家畜のサーカディアンリズムにおける夜間に相当する。
 前者の500nm未満の波長を含む光を照射する期間(期間A)は、家畜を目覚めさせ家畜の活発な活動を促すとともに体内時計をリセットする。これにより、家畜の食欲を高め、ストレスを減らすことができる。その結果、繁殖や育成の効率を向上させると共に、家畜のサーカディアンリズムを安定させる効果を有する。そして、後者の暗期間(期間B)は、家畜の睡眠や休息を促し、また体内のメラトニンの分泌を促し、家畜の免疫力を高める効果を有する。
 500nm未満の波長を含む光を照射する期間(期間A)の時間は、8時間~16時間の範囲内であることが好ましく、10時間~14時間であることがより好ましく、12時間であることがさらに好ましい。上述のように500nm未満の波長を含む光を照射する期間(期間A)は、家畜にとって昼間に対応するため、昼の時間がこの範囲であれば家畜のサーガディアンリズムを乱すことを避けることができる。
 これに対し、第1の概日サイクルにおける暗期間(期間B)は、概日サイクルから500nm未満の光を照射する期間を除いた時間である。そのため、第1の概日サイクルにおける暗期間(期間B)は16時間~8時間の範囲内であることが好ましく、14時間~10時間であることがより好ましく、12時間であることがさらに好ましい。暗期間がこの範囲であれば、家畜のサーガディアンリズムを乱すことを避けることができる。
 第2の概日サイクルでは、500nm未満の波長を含む光を照射しない。その中で、ピーク波長が570nm~610nmの範囲内の波長を含む光を照射する期間(期間C)を有する。本願発明者らの検討の結果、家畜をこのような環境下で飼育しても、家畜体内においてメラトニンの分泌が維持されることが明らかになった。
 期間Cに照射する光の波長は、570nm~610nmの範囲内の波長を含む。これは、発明者の検討によると、この範囲内の波長の光は家畜のサーガディアンリズムを乱すことが少ないからである。
 第2の概日サイクルにおけるピーク波長が570nm~610nmの光を照射する期間(期間C)は、8時間~24時間の範囲内であることが好ましい。第2の概日サイクルにおいて所定の光を照射する期間は、家畜のサーガディアンリズムと関係なく設定することができる。そのため、飼育者が作業する時間と、光を照射し続ける時間の費用対効果に基づいて設定することができる。
 第1実施形態において、第2の概日サイクルの前半は家畜のサーカディアンリズムにおける昼間に相当し、後半は夜間に相当する。
 第2の概日サイクルの前半では、家畜はサーカディアンリズムに基づいて活動を行う。
この際、家畜は500nm未満の波長を含む光が照射されない環境下で飼育されているため、家畜体内ではメラトニンが分泌される。また、第2の概日サイクルの後半では、家畜はサーカディアンリズムに基づいて睡眠や休息をとる。この際も、500nm未満の波長を含む光が照射されないため、家畜体内ではメラトニンが分泌され続ける。
 すなわち、第2の概日サイクルにおいては、家畜の体内では随時メラトニンが分泌される。その結果、メラトニンの総量としての分泌量が増加し、家畜の免疫力を高める効果を有する。
 また家畜は、第2の概日サイクルにおいてもサーカディアンリズムを大きく乱すこと無く生活する。そのため、家畜のストレスが高まり、繁殖や育成の効率が低下することも少ない。
 さらに、第2の概日サイクルにおいて照射される光のピーク波長は570nm~610nmの範囲内であり、人間が可視できる波長域である。そのため、家畜の飼育員は、この波長域の光が照射されている期間は畜舎内を視認することができる。つまり、家畜の飼育員は畜舎内で容易に行動することができ、飼育員の作業性が損なわれることがない。第1実施形態に示すように、この波長域の光を照射する照射期間を第2の概日サイクルの全域に拡張することで、家畜の飼育員の畜舎内での作業効率を著しく高めることができる。
 次に、第2実施形態の飼育方法について具体的に説明する。第2実施形態に示す飼育方法において、第1実施形態と同じ個所は説明を省略する。以下、第3実施形態、第4実施形態の説明においても同様である。
 第2実施形態の飼育方法は、第2の概日サイクルの光照射条件が、前半と後半で分かれている点が第1実施形態と異なる。
 第2実施形態の飼育方法において、第2の概日サイクルの前半は、500nm未満の波長を含まず、ピーク波長が570nm~610nmの範囲内の波長を含む光を照射する期間(期間C)である。そして、第2の概日サイクルの後半は、暗期間(期間B)である。
暗期間(期間B)は畜舎内の照明を落としているため、第2の概日サイクル全体を通して、500nm未満の波長の光が家畜に照射されることはない。
 第1実施形態と同様に、第2の概日サイクルの前半は、家畜のサーカディアンリズムにおける昼間に相当し、後半は夜間に相当する。前半において、家畜はメラトニンの分泌が維持された状態でサーカディアンリズムに基づいて活動を行う。一方で、第2の概日サイクルの後半は、家畜はメラトニンの分泌により、基本的には目を閉じ睡眠をとる。そのため、この期間の照明を切って暗期間としても家畜に影響を与えない。第2実施形態に示すように、第2の概日サイクルの後半を暗期間とすることで、照明による電力消費量を抑えることができる。
 次に、第3実施形態について説明する。
 第3実施形態の飼育方法と第2実施形態の飼育方法とを比較すると、第2の概日サイクルの後半にあたる期間の光照射条件が異なる。
 第3実施形態では、第2実施形態における第2の概日サイクルの後半の暗期間(期間B)に対応する期間の中に、500nm未満の波長を含まず、ピーク波長が570nm~610nmの範囲内の波長を含む光を照射する期間(期間C)が設けられている。
 ピーク波長が570nm~610nmの範囲内の波長を含む光は、人間が可視可能な波長域である。そのため飼育員は、この光の照射期間は畜舎内で作業を行うことができる。
また家畜のサーカディアンリズムの夜間においてこのような照射期間を設けても、家畜のサーカディアンリズムを乱すことも少ない。そのため、家畜のストレスを高めたり、繁殖や育成の効率を低下させたりすることも少ない。
 ピーク波長が570nm~610nmの範囲内の波長を含む光を照射する期間を第2の概日サイクルの後半に設けると、第2実施形態の場合に比べ、家畜の飼育員が畜舎内で作業可能な時間を稼ぐことができ、飼育員の作業効率を高めることができる。
 上述のように、第1~第3実施形態においては、第1の概日サイクルと、第2の概日サイクルとを交互に繰り返し行っている。本発明の一態様に係る家畜の飼育方法は、第1の概日サイクル及び第2の概日サイクルのみからなる必要はなく、その他の工程を有していてもよい。また第1の概日サイクルにおいて、500nm未満の波長を含む光を照射する期間と暗期間の順番を入れ替えてもよい。またピーク波長が570~610nmの範囲何の波長を含む光りを照射する期間は、第2の概日サイクル中のいずれのタイミングで行ってもよい。
 第4実施形態に係る家畜の飼育方法は、第1実施形態に係る家畜の飼育方法と比較して、第3の概日サイクルをさらに有する点が異なる。第4実施形態では、第1の概日サイクルと、第2の概日サイクルと、第3の概日サイクルとを、この順で繰り返し行う。
 第3の概日サイクルでは、家畜に対してピーク波長が570nm~610nmの範囲内の波長を含む光を照射する期間を含む。また第3の概日サイクル中は、家畜に対して500nm未満の波長の光を照射しない。
 第3の概日サイクルの光照射条件の範囲は、第2の概日サイクルと同様である。第3の概日サイクルの具体的な光照射条件は、この範囲内であれば第2の概日サイクルの具体的な光照射条件と一致していても、異なっていてもよい。図1においては、第3の概日サイクルにおける光照射期間を期間C’と表現する。
 第1の概日サイクルの前半は、家畜を目覚めさせ家畜の活発な活動を促すとともに体内時計をリセットする期間である。この期間を3回の概日サイクルに1回の頻度で設けても、特定の家畜には有効に作用する。ここで、特定の家畜とは、例えば、牛を挙げることができる。このような飼育方法を採用することで、家畜の飼育員が畜舎内で作業を行える期間を著しく拡張することが可能となり、家畜の飼育員の作業効率を高めることができる。
 本発明の一態様に係る家畜の飼育方法によれば、家畜の体内のメラトニンの分泌量を、昼間に相当する概日サイクルにおいて高い家畜の免疫力を高めることが可能となる。その結果、家畜の免疫力を高めることができ、家畜の生産性を高めることができる。また免疫力を高めるために投与していた薬剤の使用量を減らすことができ、安全な肉の提供が可能となる。また、家畜のサーカディアンリズムを乱すことが少ないため、家畜がストレスを感じ、繁殖や育成の効率が低下することを抑えることができる。
 本発明の一態様に係る家畜の飼育方法によって飼育された雌の家畜は、メラトニンリッチな乳を生産することができる。そのため、上述の家畜の飼育方法により飼育された雌の家畜から搾乳することで、メラトニンリッチな乳を生産することができる。
 搾乳作業は、第2または第3の概日サイクルにおける500nm未満の波長の光を照射することなく、ピーク波長が570nm~610nmの光を照射する期間(期間C、期間C’)内に行うことが好ましい。この期間内は、飼育員が家畜の畜舎内での位置確認を容易であり、搾乳作業の効率性を高めることができる。
 以下、実施例により本発明の効果をより明らかなものとする。本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。
(実施例1)
 畜舎内でホルスタイン去勢牛(7~9か月齢)4頭の飼育を行った。飼育における第1、第2の概日サイクルを、それぞれ朝6時から翌日の朝6時までの24時間とし、第1の概日サイクルとこれに続く第2の概日サイクルの48時間を1サイクルとして、この48時間のサイクルを繰り返した。
 飼育環境は、温度22℃、湿度60%とし、給餌は8時15分から8時45分までと、15時15分から15時45分までの1日2回とした。
 畜舎内の照明は、第1の概日サイクルの6時から18時までの12時間は、畜舎内に白熱灯(タングステン電球)を点灯させた。用いた白熱灯の発光スペクトルを図3に示す。
その際の畜舎内の照度は800ルクスとした。第1の概日サイクルの18時から翌日6時の12時間は、畜舎内の照明を落とし、暗期間とした。第2の概日サイクルの6時から18時までの12時間は、畜舎内に中心波長590nmのLED照明を点灯させた。用いたLED照明の発光スペクトルを図4に示す。その際の畜舎内の照度は800ルクスとした。第2の概日サイクルの18時から翌日6時の12時間は、畜舎内の照明を落とし、暗期間とした。以上の照射パターンを図2に模式的に示す。
 2サイクル目の、第1の概日サイクル(試験開始後3日目)の12時と24時、第2の概日サイクル(試験開始後4日目)の12時と24時に4頭の牛から採血を行い、血液中のメラトニン量の平均値を測定した。採血は残置頸静脈カテーテルによって行った。またその時間帯の牛の活動状況を確認した。「牛の活動」は、牛が起床し、活動している場合は「あり」、牛が眠っており、活動していない場合は「なし」とした。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、牛の血液中のメラトニン量は、昼間である第1の概日サイクルの12時においては低く、夜間である第1の概日サイクルの24時においては高くなる。
一方、第2の概日サイクルでは、牛は概日リズムにそって活動はするものの、概日リズムの昼間に相当する12時において、メラトニン量は第1の概日サイクルの12時の昼間の水準までは低下せず、引き続き夜間の水準が維持されている。
(実施例2)
 実施例1と同様に飼育を行ったが、畜舎内の照明の条件を図2に示すように変更した。
すなわち、第2の概日サイクルの6時から翌日6時までの24時間、畜舎内に中心波長590nmのLED照明を点灯させ、その際の畜舎内の照度は800ルクスとした。そして、実施例1と同様の方法で採血し、血液中のメラトニン量を測定した。
 試験結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、牛は第2の概日サイクルにおいても概日リズムにそって活動する。そして、概日リズムの夜間に相当する24時において、メラトニン量は第1の概日サイクルの夜間の水準が維持されている。
(実施例3)
 実施例1と同様に飼育を行ったが、畜舎内の照明を図2に示すように変更した。すなわち、第1、第2の概日サイクルに第3の概日サイクルを加え、第1、第2、第3の概日サイクルの72時間を1サイクルとして、この72時間のサイクルを繰り返した。
 第1の概日サイクルの6時から18時までの12時間は、畜舎内に白熱灯を点灯させた。その際の畜舎内の照度は800ルクスとした。第1の概日サイクルの18時から翌日6時の12時間は、畜舎内の照明を落とし、暗期間とした。第2の概日サイクルの6時から18時までの12時間は、畜舎内に中心波長590nmのLED照明を点灯させた。その際の畜舎内の照度は800ルクスとした。第2の概日サイクルの18時から翌日6時の12時間は、畜舎内の照明を落とし、暗期間とした。そして、第3の概日サイクルは、第2の概日サイクルと同じにした。
 2サイクル目の、第1の概日サイクル(試験開始後4日目)の12時と24時、第2の概日サイクル(試験開始後5日目)の12時と24時、第3の概日サイクル(試験開始後6日目)の12時と24時に4頭の牛から採血と、その時間帯の牛の活動状況の確認を行った。試験結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、牛は第2、第3の概日サイクルにおいても概日リズムにそって活動する。そして、概日リズムの昼間に相当する12時において、メラトニン量は第1の概日サイクルの夜間の水準が維持され、また概日リズムの夜間に相当する24時においても、メラトニン量は第1の概日サイクルの夜間の水準が維持されている。
 本発明は、家畜の飼育方法及び乳の製造方法に関する。本発明によれば、家畜のサーカディアンリズムを大きく乱すことなく、家畜の体内において分泌されるメラトニンの量を高めることで、家畜の免疫力を高めることができる。

Claims (9)

  1.  家畜に対して500nm未満の波長を含む光を照射する期間と、家畜に対して光を照射しない暗期間と、を含む第1の概日サイクルと、
     家畜に対してピーク波長が570nm~610nmの範囲内の波長を含む光を照射する期間を含み、かつ、500nm未満の波長の光を照射しない第2の概日サイクルと、を有し、
     前記第1の概日サイクルの後に、前記第2の概日サイクルを行う家畜の飼育方法。
  2.  前記第1の概日サイクルと前記第2の概日サイクルを交互に繰り返して行う請求項1に記載の家畜の飼育方法。
  3.  前記第2の概日サイクルの後に、家畜に対してピーク波長が570nm~610nmの範囲内の波長を含む光を照射する期間を含み、かつ、500nm未満の波長の光を照射しない第3の概日サイクルを行う請求項1に記載の家畜の飼育方法。
  4.  前記第1の概日サイクルと、前記第2の概日サイクルと、前記第3の概日サイクルと、をこの順に繰り返し行う請求項3に記載の家畜の飼育方法。
  5.  前記第1の概日サイクルにおける暗期間の後に、前記第2の概日サイクルにおけるピーク波長が570nm~610nmの光を照射する期間を連続して行う請求項1~4のいずれか一項に記載の家畜の飼育方法。
  6.  前記第1の概日サイクルにおける500nm未満の光を照射する期間が8時間~16時間の範囲内であり、
     前記第1の概日サイクルにおける暗期間が16時間~8時間の範囲内であり、
     前記第2の概日サイクルにおけるピーク波長が570nm~610nmの光を照射する期間が8時間~24時間の範囲内である請求項1~5のいずれか一項に記載の家畜の飼育方法。
  7.  前記第1の概日サイクル、前記第2の概日サイクル及び前記第3の概日サイクルが、それぞれ21時間~27時間である請求項3~6のいずれか一項に記載の家畜の飼育方法。
  8.  前記請求項1~7のいずれか一項に記載の家畜の飼育方法により飼育された雌の家畜から搾乳する乳の製造方法。
  9.  前記搾乳を前記第2の概日サイクルまたは第3の概日サイクルにおけるピーク波長が570nm~610nmの光を照射する期間内に行う請求項8に記載の乳の製造方法。
PCT/JP2017/009215 2016-03-14 2017-03-08 家畜の飼育方法及び乳の製造方法 WO2017159491A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016049890A JP6644243B2 (ja) 2016-03-14 2016-03-14 家畜の飼育方法及び乳の製造方法
JP2016-049890 2016-03-14

Publications (1)

Publication Number Publication Date
WO2017159491A1 true WO2017159491A1 (ja) 2017-09-21

Family

ID=59850884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009215 WO2017159491A1 (ja) 2016-03-14 2017-03-08 家畜の飼育方法及び乳の製造方法

Country Status (2)

Country Link
JP (1) JP6644243B2 (ja)
WO (1) WO2017159491A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021069375A1 (en) * 2019-10-10 2021-04-15 Signify Holding B.V. A control system for adapting a light recipe
IT201900020955A1 (it) * 2019-11-12 2021-05-12 Dalessandro Gianpiero Impianto di illuminazione per allevamento
IT201900020961A1 (it) * 2019-11-12 2021-05-12 Dalessandro Gianpiero Impianto di illuminazione per allevamento
WO2021094864A1 (en) * 2019-11-12 2021-05-20 Dalessandro Gianpiero Lighting system for breeding

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7054785B2 (ja) * 2017-10-13 2022-04-15 パナソニックIpマネジメント株式会社 照明システム、及び、昼行性家禽類の飼育方法
JP7122596B2 (ja) * 2017-10-13 2022-08-22 パナソニックIpマネジメント株式会社 照明システム、及び、昼行性家禽類の飼育方法
JP7117526B2 (ja) * 2018-07-13 2022-08-15 パナソニックIpマネジメント株式会社 照明システム、及び、昼行性家禽類の飼育方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001001784A1 (en) * 1999-06-30 2001-01-11 Maija Valtonen Method for producing melatonin rich milk
JP5247462B2 (ja) * 2005-12-13 2013-07-24 トニー グナン 高比率のメラトニンを有する乳または乳製品を生産するための方法
JP2015522907A (ja) * 2012-05-22 2015-08-06 デラヴァル ホルディング アーベー 家畜小屋で使用するためのled照明器具

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001001784A1 (en) * 1999-06-30 2001-01-11 Maija Valtonen Method for producing melatonin rich milk
JP5247462B2 (ja) * 2005-12-13 2013-07-24 トニー グナン 高比率のメラトニンを有する乳または乳製品を生産するための方法
JP2015522907A (ja) * 2012-05-22 2015-08-06 デラヴァル ホルディング アーベー 家畜小屋で使用するためのled照明器具

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021069375A1 (en) * 2019-10-10 2021-04-15 Signify Holding B.V. A control system for adapting a light recipe
CN114554840A (zh) * 2019-10-10 2022-05-27 昕诺飞控股有限公司 用于调整光配方的控制系统
CN114554840B (zh) * 2019-10-10 2023-10-20 昕诺飞控股有限公司 用于调整光配方的控制系统
IT201900020955A1 (it) * 2019-11-12 2021-05-12 Dalessandro Gianpiero Impianto di illuminazione per allevamento
IT201900020961A1 (it) * 2019-11-12 2021-05-12 Dalessandro Gianpiero Impianto di illuminazione per allevamento
WO2021094864A1 (en) * 2019-11-12 2021-05-20 Dalessandro Gianpiero Lighting system for breeding

Also Published As

Publication number Publication date
JP2017163858A (ja) 2017-09-21
JP6644243B2 (ja) 2020-02-12

Similar Documents

Publication Publication Date Title
WO2017159491A1 (ja) 家畜の飼育方法及び乳の製造方法
JP5247462B2 (ja) 高比率のメラトニンを有する乳または乳製品を生産するための方法
Yang et al. A new method to manipulate broiler chicken growth and metabolism: Response to mixed LED light system
JP6098010B2 (ja) 家禽飼育方法
Zhang et al. Effect of a combination of green and blue monochromatic light on broiler immune response
Soliman et al. Light wavelengths/colors: Future prospects for broiler behavior and production
Arowolo et al. The implication of lighting programmes in intensive broiler production system
KR101138368B1 (ko) Led를 이용한 닭의 사육방법
Yang et al. Effects of intermittent lighting on broiler growth performance, slaughter performance, serum biochemical parameters and tibia parameters
England et al. The influence of light of different wavelengths on laying hen production and egg quality
KR101478632B1 (ko) 닭사육용 램프장치
Wall et al. Integument, mortality, and skeletal strength in extended production cycles for laying hens–effects of genotype and dietary zinc source
Mahmud et al. Effect of different light regimens on performance of broilers.
Biyatmoko Effects the combinations of light color and intensity of light to age at first laying and production egg of Alabio laying ducks.
CN105265394A (zh) 一种促进人工饲养的桃蛀螟交配及产卵的红色光照方法
Morrill et al. The effect of RGB monochromatic and polychromatic LED lighting on growth performance, behavior, and development of broilers
CN106659126B (zh) 培养活生物体的方法和系统
CN105145475A (zh) 蛋鸡产蛋期的无公害饲养方法
Olin et al. The impact of the optical radiation spectrum of artificial lighting on the milk producing ability of cows
KR101478630B1 (ko) 닭사육을 위한 백열 전구형 램프장치
JP6977203B2 (ja) 育成牛の飼育方法
KR102357999B1 (ko) Led조명을 이용한 육계의 생산성 향상과 면역력 강화 방법
Fukuzawa et al. Influence of changes in luminous emittance before bedtime on sleep in companion dogs
Das Factors influencing the inactive behaviours of stall-fed sheep under experimental conditions
JP7232625B2 (ja) 認知機能障害モデル動物の作製方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766492

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766492

Country of ref document: EP

Kind code of ref document: A1