WO2017159200A1 - 電子線滅菌設備 - Google Patents

電子線滅菌設備 Download PDF

Info

Publication number
WO2017159200A1
WO2017159200A1 PCT/JP2017/005675 JP2017005675W WO2017159200A1 WO 2017159200 A1 WO2017159200 A1 WO 2017159200A1 JP 2017005675 W JP2017005675 W JP 2017005675W WO 2017159200 A1 WO2017159200 A1 WO 2017159200A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
container
magnetic
transmission mechanism
driving force
Prior art date
Application number
PCT/JP2017/005675
Other languages
English (en)
French (fr)
Inventor
万晶 佐々木
和幸 横尾
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Priority to EP17766207.9A priority Critical patent/EP3431402A4/en
Publication of WO2017159200A1 publication Critical patent/WO2017159200A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/087Particle radiation, e.g. electron-beam, alpha or beta radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/42414Treatment of preforms, e.g. cleaning or spraying water for improved heat transfer
    • B29C49/42416Purging or cleaning the preforms
    • B29C49/42418Purging or cleaning the preforms for sterilizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B3/00Packaging plastic material, semiliquids, liquids or mixed solids and liquids, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
    • B65B3/02Machines characterised by the incorporation of means for making the containers or receptacles
    • B65B3/022Making containers by moulding of a thermoplastic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B35/00Supplying, feeding, arranging or orientating articles to be packaged
    • B65B35/56Orientating, i.e. changing the attitude of, articles, e.g. of non-uniform cross-section
    • B65B35/58Turning articles by positively-acting means, e.g. to present labelled portions in uppermost position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B43/00Forming, feeding, opening or setting-up containers or receptacles in association with packaging
    • B65B43/42Feeding or positioning bags, boxes, or cartons in the distended, opened, or set-up state; Feeding preformed rigid containers, e.g. tins, capsules, glass tubes, glasses, to the packaging position; Locating containers or receptacles at the filling position; Supporting containers or receptacles during the filling operation
    • B65B43/46Feeding or positioning bags, boxes, or cartons in the distended, opened, or set-up state; Feeding preformed rigid containers, e.g. tins, capsules, glass tubes, glasses, to the packaging position; Locating containers or receptacles at the filling position; Supporting containers or receptacles during the filling operation using grippers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B55/00Preserving, protecting or purifying packages or package contents in association with packaging
    • B65B55/02Sterilising, e.g. of complete packages
    • B65B55/04Sterilising wrappers or receptacles prior to, or during, packaging
    • B65B55/08Sterilising wrappers or receptacles prior to, or during, packaging by irradiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/11Apparatus for generating biocidal substances, e.g. vaporisers, UV lamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/12Apparatus for isolating biocidal substances from the environment
    • A61L2202/122Chambers for sterilisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/23Containers, e.g. vials, bottles, syringes, mail
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/4205Handling means, e.g. transfer, loading or discharging means
    • B29C49/42065Means specially adapted for transporting preforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/4205Handling means, e.g. transfer, loading or discharging means
    • B29C49/42073Grippers
    • B29C49/42085Grippers holding inside the neck
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/4205Handling means, e.g. transfer, loading or discharging means
    • B29C49/42093Transporting apparatus, e.g. slides, wheels or conveyors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/04Irradiation devices with beam-forming means
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/10Irradiation devices with provision for relative movement of beam source and object to be irradiated

Definitions

  • the present invention relates to an electron beam sterilization facility that sterilizes an object to be irradiated such as a container (which also means a specimen and a preform body) by irradiating with an electron beam.
  • a container which also means a specimen and a preform body
  • the transport device In the transport device, a plurality of irradiated objects are sequentially held by the holding unit, and the irradiated objects are rotated during the transfer.
  • a rotation drive device for the irradiated object is provided for each irradiated object, the container transport device becomes large. For this reason, the object to be irradiated is rotated between the rotation driving device and the holding unit via a contact-type driving force transmission mechanism such as a gear, a cam, or a transmission shaft.
  • the object of the present invention is to solve the above problems and provide an electron beam sterilization facility that does not generate dust or dust and does not adversely affect the contamination of the irradiated object.
  • the present invention is an electron beam sterilization facility for sterilizing with an electron beam irradiated to an irradiation object from an electron beam irradiation device, A transport device for holding and transporting the irradiated object; A rotating device that is provided in the transfer device and rotates an object to be irradiated; A magnetic-type driving force transmission mechanism that transmits the driving force in a non-contact manner between the driving member and the passive member of the rotating device;
  • the driving force transmission mechanism includes magnet rows in which magnets having different magnetic poles are alternately arranged on the driving member and the passive member that are moved to face each other with a predetermined gap.
  • the rotating device when the irradiated object is rotated and sterilized via the magnetic driving force transmission mechanism, the driving force is transmitted in a non-contact manner using the magnetic driving force transmission mechanism. Force transmission. This eliminates the contact part and friction part for transmitting the driving force, and can prevent the generation of dust and dust due to contact and wear, which can contaminate the irradiated object with dust and dust. Absent.
  • the “driving force transmission mechanism” is a structure for transmitting power between members using a magnetic force, as well as the direction of motion between the members, for example, linear motion-rotational motion.
  • a driving force conversion mechanism for conversion is included.
  • interference preventing means for preventing the magnetic force generated in the driving force transmission mechanism from adversely affecting the electron beam between the magnetic driving force transmission mechanism and the irradiated object. preferable.
  • the interference preventing means having the above configuration is provided with a magnetic attenuation distance for attenuating the magnetic force between the magnetic driving force transmission mechanism and the irradiated object. By securing the magnetic attenuation distance, the magnetic force is attenuated and stable sterilization becomes possible.
  • the interference preventing means having the above-described configuration is provided with a magnetic shielding member that shields the magnetic field emitted from the magnetic driving force transmission mechanism between the magnetic driving force transmission mechanism and the irradiated object.
  • a magnetic shielding member that shields the magnetic field emitted from the magnetic driving force transmission mechanism between the magnetic driving force transmission mechanism and the irradiated object.
  • the said structure WHEREIN It is preferable that the said magnet row
  • the driving member is a belt-like magnetic body disposed on the stationary side member along the conveyance direction of the irradiated object
  • the passive member is an annular magnetic body provided on the movable side member of the conveyance device. It is preferable that
  • the linear magnetic motion is converted into rotational motion in a non-contact manner using the magnetic force of the magnetic body, and the annular magnetic body is It can be rotated.
  • the electron beam irradiation apparatus and a chamber surrounding the irradiated object are provided by a partition wall made of a material that can shield X-rays, has low magnetic permeability, and has corrosion resistance. It is preferable that the magnet array is disposed in the chamber, and the magnet array of the driving member is disposed outside the chamber with a coating made of a low magnetic permeability and corrosion-resistant material.
  • the driving member having the magnet row is disposed integrally with the partition wall of the chamber or outside the partition wall, corrosion due to the corrosive gas can be prevented without attenuation of magnetic force.
  • the power transmission mechanism driven in a non-contact manner does not generate dust or dust, and does not contaminate the irradiated object.
  • FIG. 1 It is a schematic plan view which shows Example 1 of the container outer surface sterilization apparatus in the electron beam sterilization equipment which concerns on this invention. It is a cross-sectional view in an outer surface irradiation area
  • FIG. 7 is a transverse cross-sectional view showing a magnetic body of a first modification, showing a modification of the magnetic drive force transmission mechanism.
  • FIG. 7 is a transverse cross-sectional view showing a magnetic body of a second modification, showing a modification of the magnetic force driving force transmission mechanism.
  • FIG. 9 is a schematic transverse cross-sectional view in the inner surface irradiation region, showing a third modification of the magnetic driving force transmission mechanism. It is the expansion side view which shows the modification 3 of a magnetic-type drive force transmission mechanism, and shows a strip
  • Example 3 of the container outer surface sterilization apparatus which concerns on the electron beam sterilization equipment which concerns on this invention shows a magnetic force type driving force transmission mechanism.
  • Example 3 of the container external surface sterilization apparatus concerning the electron beam sterilization equipment concerning the present invention is shown, and it is the same side view.
  • the irradiation object to be sterilized is a specimen such as a laboratory instrument, a preform body before container molding, a container before aseptic filling of contents, and the like.
  • These objects to be irradiated are transported or moved up and down while rotating, and at least one of the outer surface and the inner surface is irradiated with an electron beam to sterilize.
  • a magnetic force type that can be driven in a non-contact manner is adopted as a driving force transmission mechanism for rotating the irradiated object. Thereby, driving force is transmitted or converted in a non-contact manner to prevent generation of dust or dust due to contact or wear.
  • interference preventing means for preventing the magnetic force generated in the magnetic force type driving force transmission mechanism from adversely affecting the electron beam.
  • the electron beam irradiated in the air generates a corrosive gas such as ozone gas and nitric acid gas by causing a chemical reaction in the air.
  • a corrosive gas such as ozone gas and nitric acid gas
  • the inside of the chamber covering the transfer device, the irradiated object, and the like becomes a corrosive gas atmosphere. Therefore, the magnetic-type driving force transmission mechanism has an anticorrosion structure that does not corrode in a corrosive gas atmosphere.
  • Example 1 of the container outer surface sterilization apparatus will be described with reference to FIGS.
  • this electron beam sterilization equipment is a container external surface sterilizer 11 for externally sterilizing a preform body P before forming a container by blow molding, and the irradiated object is the preform body P.
  • the container outer surface sterilizer 11 is covered with a corrosive gas shielding chamber C surrounding a corrosive gas atmosphere. Then, the corrosive gas in the chamber C is released into the atmosphere via the gas detoxification device N that removes harmful substances from the gas sent by the exhaust pump Po. New air is introduced into the chamber C through a filter F that removes impurities.
  • a container transport device 21 that transports the preform body P includes a pair of first wheels (rotators) 22 and second wheels (rotators) 23, a first wheel 22, An endless rotating moving body (movable member) 24 wound around the second wheel 23 and a container holding portion 25 provided on the rotating moving body 24 at a constant pitch are provided. Then, the preform body P carried in from the carry-in path Li is sent to the straight forward path La of the transport path L while being held in the container holding unit 25 by the carry-in wheel 12. Then, the preform body P is irradiated with the electron beam from the electron beam irradiation device 14 and sterilized in the straight forward path portion La. Further, the preform body P is sent from the second wheel 23 to the straight return path portion Lb and sent out from the first wheel 22 to the carry-out route Lo.
  • the outer peripheral surface is sterilized uniformly by rotating the preform P around the container axis Op by a container rotating device (rotating device) 26 provided in the container transport device 21.
  • the rotationally moving body 24 of the container transport device 21 includes two types of chain members 24 ⁇ / b> A and 24 ⁇ / b> B that are H-shaped in different side views and have vertical support shafts 27 perpendicular to the transport direction. Are connected so as to be foldable in a horizontal plane.
  • Each support shaft 27 is provided on the upper end side, a container holding portion 25 provided on the lower end side, wheel engagement rings 28U and 28D rotatably attached to the upper and lower positions of the chain members 24A and 24B via bearings.
  • a container rotating device 26 The reason why the wheel engagement rings 28U and 28D are provided up and down is that a pair of upper and lower sprockets are provided at predetermined intervals on the first wheel 22 and the second wheel 23, respectively. .
  • the container holding part 25 has a holder 25a made of an elastic body that can be attached to and detached from the mouth of the preform body P, and the preform is moved by an elevating mechanism (not shown) provided on the first wheel 22. By raising the body P, the holder 25a is inserted into the mouth of the preform body P, and the preform body P is lowered to remove the holder 25a from the mouth of the preform body P.
  • the container rotating device 26 includes a magnetic driving force transmission mechanism 31 that converts the linear motion of the rotary moving body 24 in the straight forward path portion La by the container transport device 21 into the rotational motion of the container holding portion 25 in a non-contact manner. ing. As shown in FIG. 4, this magnetic driving force transmission mechanism 31 has a linear belt-like magnetic body 32 attached to a support frame 30 that is a stationary member and a driving member of the container transport device 21 along the transport direction. It has been. On the other hand, an annular magnetic body 33 is fixed to a support shaft 27 which is a movable member of the container transport device 21 and is a passive member.
  • the annular magnetic body 33 moves along the belt-like magnetic body 32 with a predetermined gap (gap between the belt-like magnetic body 32 and the annular magnetic body 33) and rotates using the magnetic force.
  • the linear motion of the moving body 24 can be converted into the rotational motion of the support shaft 27.
  • the belt-like magnetic body 32 includes a magnet mounting member 32a arranged on the support frame 30 along the conveying direction, and S magnets and N pole magnets alternately arranged at a constant pitch on the magnet mounting member 32a. And a linear strip magnet row 32b arranged in the transport direction, and a cover member 32c, which is a covering material that covers the strip magnet row 32b made of a material having low magnetic permeability and corrosion resistance.
  • the annular magnetic body 33 includes a magnet support cylinder 33a fixed to the support shaft 27 through a key, and an outer periphery of the magnet support cylinder 33a having S (pole) and N pole magnets at a constant (angle) pitch.
  • the coating member 33c which is a covering material which covers the annular magnet row 33b made of a material having low magnetic permeability and corrosion resistance.
  • the cover member 32c and the coating member 33c are made of stainless steel or titanium alloy, but may be a coating layer coated with stainless steel or titanium material.
  • the cover member 32c and the coating member 33c prevent corrosion of the strip magnet row 32b and the annular magnet row 33b due to corrosive gas such as nitric acid gas including liquefied nitric acid or ozone gas.
  • the support shaft 27 is rotated by the action of the magnetic force of the strip magnet array 32b and the annular magnet array 33b.
  • the preform body P held by the holder 25a of the holder 25 is rotated around the container axis Op. Since the electron beam irradiation device 14 irradiates the electron beam while the preform body P rotates, the outer peripheral surface of the preform body P is uniformly irradiated with the electron beam.
  • a container rotation monitoring device 34 that monitors the rotation of the preform body P via the support shaft 27 is provided.
  • the rotation monitoring device 34 performs high-speed imaging of the mark 33m provided on the top plate of the annular magnetic body 33 by the imaging device 34a, and compares the acquired image with a normal rotation image, thereby performing the preform body P. Is monitored to see if it has been rotated a predetermined amount.
  • the rotation monitoring of the support shaft 27 is not limited to a visible image, and a known non-contact detection device using a medium such as an ultrasonic wave or a radar wave can also be used.
  • an inclination restricting rail 36U that restricts the displacement of the wheel engaging rings 28U and 28D arranged at the upper and lower positions of the rotary moving body 24 to the inside (support frame 30 side).
  • 36D are installed over the entire outer surface irradiation region Ro.
  • a levitation prevention rail 37 that abuts on the upper surface of an outer guide roller (not shown) is disposed over the outer surface irradiation region Ro, so that the outer guide roller rises. It is regulated.
  • the tilt restriction rails 36U and 36D and the anti-floating rail 37 can prevent the support shaft 27 from falling into the transport path L.
  • the preform generated by the magnetic force generated from the magnetic drive force transmission mechanism 31 deflects the irradiation direction of the electron beam irradiated from the electron beam irradiation device 14 and causes the irradiation amount to the preform body P to be non-uniform.
  • the sterilization of the body P may be adversely affected.
  • a magnetic force attenuation distance Ls for the magnetic force to be attenuated is secured from the magnetic driving force transmission mechanism 31 to the preform body P, and the magnetic force of the magnetic driving force transmission mechanism 31 is changed to the preform body. P is not affected by the electron beam irradiation.
  • the magnetic force driving force transmission mechanism 31, the irradiation port 14o, and the preform body P are located at the same time as or instead of securing the magnetic attenuation distance Ls.
  • a magnetic field shield 38 made of a material having a high magnetic permeability such as mu metal or permalloy that blocks magnetic force is installed in the space.
  • the surface of the magnetic field shield 38 may be covered with a surface material made of an anticorrosive material.
  • the magnetic field shield 38 may be installed at the same time as securing the magnetic attenuation distance Ls.
  • a magnetic driving force transmission having a belt-like magnetic body 32 linearly provided on the support frame 30 of the container transport device 21 and an annular magnetic body 33 attached to the support shaft 27 of the rotary moving body 24.
  • the mechanism 31 converts the linear motion of the rotary moving body 24 along the linear belt-shaped magnetic body 32 into the rotational motion of the annular magnetic body 33 in a non-contact manner, thereby preventing dust and dust from being generated due to contact and wear. Can do.
  • the magnetic field shield 38 and the magnetic attenuation distance Ls as the interference preventing means between the magnetic driving force transmission mechanism 31 and the preform body P, it is generated from the magnet of the magnetic driving force transmission mechanism 31.
  • the electron beam can be stably irradiated and a uniform sterilization operation becomes possible.
  • the belt-like magnet row 32b and the annular magnet row 33b are covered with the cover member 32c, the coat member 33c, and the coating made of a low magnetic permeability and corrosion-resistant material, thereby corroding in a corrosive gas atmosphere containing ozone gas or nitric acid gas. This can be prevented in advance.
  • the object to be sterilized is the container B, and the container inner surface sterilizer 40 is installed upstream of a filling device (not shown) for aseptically filling the contents into the container B.
  • a filling device not shown
  • symbol is attached
  • the container transfer device 40a of the container inner surface sterilizer 40 includes a rotary table Tc rotatable around a rotation axis Oc in a corrosive gas shielding chamber C, and a rotary table Tc.
  • a container holding device 41 that is installed on the outer periphery of the upper portion at a constant pitch and holds the container B via the neck portion Bn, and a container lifting device 51 that raises and lowers the container B via the container holding device 41 are provided.
  • route Lc which conveys the container B is formed in the outer periphery of the turntable Tc.
  • Ri is an inner surface irradiation region (electron beam irradiation region) of the electron beam provided in the circular path Lc.
  • the container B carried into the circular path Lc from the carry-in path Li via the carry-in wheel 12 is raised by the container elevating device 51 at the entrance of the inner surface irradiation region Ri. Then, the irradiation nozzle 54n of the electron beam irradiation device 54 is inserted into the container B through the mouth Bp, and the inner surface of the container B is sterilized. Further, the container B is lowered by the container lifting device 51 at the outlet of the inner surface irradiation area Ri, and the irradiation nozzle 54n is extracted from the mouth Bp. Then, the sterilized container B is carried out to the carry-out path Lo via the carry-out wheel 13.
  • a lifting platform 42 On the outer periphery of the rotary table Tc, a lifting platform 42 is disposed at a constant pitch so as to be movable up and down via a lifting rod 52.
  • a pair of left and right neck holding arms 43R and 43L are supported on a lifting platform 42 so as to be freely opened and closed around support shafts 43a and 43a, respectively.
  • the left and right neck holding arms 43R, 43L have a driving roller 44 supported at the tip portion so as to be rotatable around the vertical axis and an idle roller 45 supported at the intermediate portion so as to be rotatable around the vertical axis. Is provided.
  • the neck portion Bn of the container B is opened and gripped by these four rollers 44 and 45.
  • the arm opening and closing device for opening and closing the neck holding arms 43R and 43L is not shown, but a known technique such as a cam, a fluid pressure type or an electric cylinder is applied to the loading position and the loading wheel 13 corresponding to the loading wheel 12.
  • a known technique such as a cam, a fluid pressure type or an electric cylinder is applied to the loading position and the loading wheel 13 corresponding to the loading wheel 12.
  • the neck holding arms 43R and 43L are opened and closed, and the container B is carried in and held open and carried out.
  • each container holding device 41 is supported by a container lifting device 51 so that the lifting table 42 can be raised and lowered within a predetermined range on the outer peripheral portion of the rotary table Tc. That is, the container lifting / lowering device 51 is provided on the bottom side of the rotary table Tc, which is suspended from the lift 42 and is slidably fitted in the guide hole on the outer periphery of the rotary table Tc. There is provided an elevating drive device 53 that elevates and lowers the container holding device 41 within a predetermined range via the elevating rod 52. As the elevating drive device 53, a known drive device such as a cam mechanism, a fluid pressure cylinder or an electric cylinder is used.
  • a support table Ts that is rotated in synchronization with the rotary table Tc is installed above the rotary table Tc.
  • nozzle-type electron beam irradiation devices 54 are installed at a constant pitch corresponding to each container holding device 41.
  • the electron beam irradiation device 54 includes an irradiation nozzle 54n that extends downward through the support table Ts and can be inserted into the mouth Bp of the container B, and irradiates an electron beam from the irradiation port at the lower end of the irradiation nozzle 54n.
  • the electron beam irradiated from the irradiation nozzle 54n collides with air molecules in the chamber C and spreads in a spindle shape, and sterilizes the inner surface of the container B.
  • the container rotating device (rotating device) 46 rotates the container B around the container axis Ob, and uniformly irradiates the inner surface of the irregular container B with the electron beam.
  • the entire inner surface of the container B can be uniformly sterilized while being held in an appropriate range.
  • the container rotating device 46 is provided with a magnetic driving force transmission mechanism 47.
  • This magnetic driving force transmission mechanism 47 includes a pair of left and right annular magnetic bodies 48 attached to the upper part of the vertical interlocking shaft 44a that supports the driving roller 44, and a fixed member (a partition wall of the chamber C) over the inner surface irradiation region Ri.
  • Cw includes an arc-shaped belt-like magnetic body 49 arranged in the circumferential direction around the rotation axis Oc.
  • the annular magnetic body 48 and the belt-like magnetic body 49 have substantially the same structure as the annular magnetic body 33 and the belt-like magnetic body 32 of Example 1, and an annular magnet in which N-pole and S-pole magnets are alternately arranged on the magnet mounting member.
  • Rows and belt-like magnet rows are respectively attached, and are further covered with a coating member and a cover member 49c, which are covering materials made of a low magnetic permeability and corrosion-resistant material.
  • the belt-like magnetic body 49 is installed on the inner surface of the partition wall Cw of the chamber C via a support member 49d.
  • Reference numeral 50 denotes a magnetic field shield that shields a magnetic field mainly generated from the annular magnetic body 48 to prevent adverse effects on radiation in the irradiation nozzle 54n.
  • This magnetic shield 50 is made of a high magnetic permeability material such as mu metal or permalloy, a stainless steel or titanium alloy anticorrosion plate (or an anticorrosion coating layer coated with stainless steel or titanium material), and the like. Consists of.
  • the container B held by the container holding device 41 and transported through the circular path Lc is raised by the elevating drive device 53 at the entrance of the inner surface irradiation region Ri.
  • the annular magnetic body 33 of the magnetic driving force transmission mechanism 47 approaches the belt-like magnetic body 32.
  • the annular magnetic body 33 is rotated by the action of the magnetic force of the annular magnetic body 33 and the belt-like magnetic body 32.
  • the drive roller 44 is rotationally driven through the interlocking shaft 44a, and the container B is rotated around the container axis Ob.
  • the irradiation nozzle 54n is inserted into the main body Bb from the mouth Bp of the container B, and the inner surface of the container B is sterilized.
  • the irradiation nozzle 54n is extracted from the main body Bb of the container B through the mouth Bp, and the annular magnetic body 33 is separated from the belt-like magnetic body 32, so that the rotation of the container B is performed. Stopped.
  • the magnetic driving force transmission mechanism 47 converts the motion in the arc direction into the rotational motion by the belt-like magnetic body 49 fixed along the circular path Lc and the moving annular magnetic body 48.
  • the container B can be rotated around the container axis Ob without contact. Therefore, the magnetic driving force transmission mechanism 47 can greatly reduce the generation of dust and dust caused by contact and wear, and can prevent contamination of the container.
  • the driving roller 44 is provided at the tip of the left and right neck holding arms 43R, 43L, and the idle roller 45 is provided at the intermediate portion.
  • the present invention is not limited to the above configuration, and as long as it does not interfere with elevation, the free-rolling roller 45 is provided at the tip of the neck holding arms 43R and 43L, the drive roller 44 is provided at the middle, and the annular magnetic body 48 and A belt-like magnetic body 49 may be installed.
  • the electron beam irradiation device 14 is disposed in the circular path Lc in the front area of the inner surface irradiation area Ri, in the rear area, or in an area at least partially overlapping the inner surface irradiation area Ri as indicated by a virtual line.
  • the outer surface irradiation region Ro of the electron beam can be formed in the circular path Lc.
  • only the outer surface irradiation region Ro of the electron beam may be used.
  • the annular magnetic body 48 and the belt-like magnetic body 49 are both completely disposed in the chamber C.
  • the partition wall Cw may be provided integrally with the partition wall Cw (so as to extend inside and outside the partition wall Cw).
  • the belt-like magnetic body 49 can be installed outside the partition wall Cw of the chamber C.
  • a magnetic driving force transmission mechanism 60 that converts the lifting motion of the lifting platform 42 into the rotational motion of the driving roller 44 may be provided.
  • an arc-shaped opening 49e is formed in the partition wall Cw along the circular path Lc.
  • the belt-like magnetic body 49 provided integrally with the partition wall Cw of the chamber C (so as to extend inside and outside the partition wall Cw) is attached to the opening 49e via a magnet mounting member 49a, and S-pole magnets and N-pole magnets are alternately arranged.
  • a low magnetic permeability and corrosion resistant coating member 49c (or a low magnetic permeability and corrosion resistant coating layer) covering the magnet mounting member 49a and the belt shaped magnet row 49b on the inner surface of the partition wall Cw. .
  • the belt-like magnetic body 49 installed outside the partition wall Cw of the chamber C is covered with a coating material made of a low magnetic permeability and corrosion-resistant material in the belt-like opening 49e formed in the partition wall Cw.
  • a coat member 49c is attached.
  • column 49b is attached to the outer side of this coat member 49c by the magnet attachment member 49a. Since the partition wall Cw itself has corrosion resistance, the opening 49e and the coating member 49c can be deleted if the partition wall Cw is made of a material having a low magnetic permeability. Thereby, equipment costs can be reduced.
  • the strip magnet array 49b can be easily isolated from the corrosive gas atmosphere in the chamber C, and corrosion can be reduced. Further, by using the support member of the belt-like magnetic body 49 as the partition wall Cw, the number of members can be reduced. Furthermore, the space in the chamber C can be used effectively.
  • a container holding device 55 that is driven up and down within a predetermined range by the elevating drive device 53 via the elevating rod 52 includes a bifurcated neck holding arm 56 that extends from the elevating table 42 to the outer peripheral side and has a recessed portion 56a, and a neck holding arm.
  • the container rotating device 61 includes a rotating shaft 62 having a driving roller 59 attached to an upper end portion thereof, and a magnetic driving force transmission mechanism 60 provided at a lower portion of the rotating shaft 62.
  • the rotary shaft 62 is suspended parallel to the lifting rod 52 and penetrates the rotary table Tc so as to be slidable and rotatable.
  • This magnetic driving force transmission mechanism 60 has the same effect as the helical gear mechanism, and includes a belt-like magnetic body 63 suspended from the rotary table Tc in parallel with the rotary shaft 62 and the lower end of the rotary shaft 62. And an annular magnetic body 64 fixed to the portion.
  • the belt-like magnetic body 63 has a linear belt-like magnet row 63b on the magnet mounting member.
  • the S-pole and N-pole magnets alternately arranged at a constant pitch in the transport direction are each at a predetermined angle (30 ° to 60 °) with respect to the moving direction (vertical line) of the annular magnetic body 64. ) And are arranged corresponding to the teeth of the helical rack.
  • the annular magnetic body 64 includes a magnet support cylinder fixed to the rotating shaft 62 via a key, and an S pole and an N pole on the outer peripheral surface of the magnet support cylinder at a constant (angle) pitch corresponding to the strip magnet array 63b. And an annular magnet row 64b in which pole magnets are alternately provided on the outer periphery.
  • the S-pole and N-pole magnets in the annular magnet row 64b are arranged in an inclined manner corresponding to the teeth of the helical gears that are inclined with respect to the moving direction, corresponding to the magnets in the belt-like magnet row 63b. ing.
  • the gap between the turntable Tc and the partition wall Cw of the chamber C is shielded with a non-contact gas shielding member such as a labyrinth seal, so that the non-corrosive atmosphere space at the bottom of the turntable Tc is placed in the chamber C. Invasion of corrosive gas can be prevented. Thereby, corrosion of the magnetic-type driving force transmission mechanism 55 can be prevented, and thereby, a cover member, a coating member, and a coating layer for anticorrosion can be made unnecessary.
  • a non-contact gas shielding member such as a labyrinth seal
  • the magnetic drive force transmission mechanism 60 raises the lifting rod 52 together with the lifting platform 42 by the lifting drive device 53 and raises the container B.
  • the annular magnetic body 64 moves along the magnet row 63b, and the annular magnetic body 64 is rotated by the action of the magnetic force.
  • the irradiation nozzle 54n is inserted from the mouth Bp into the main body Bb, and the container B is rotated around the container axis Ob through the rotation shaft 62 and the drive roller 59.
  • an electron beam is sequentially irradiated from the irradiation port of the irradiation nozzle 54n into the mouth Bp, the neck Bn, the shoulder Bs, and the main body Bb of the container B, and is effectively sterilized according to the irradiation time and irradiation distance. Is done.
  • the magnetic drive force transmission mechanism 60 including the fixed belt-like magnet row 63b and the annular magnetic body 64 that moves linearly along the belt-like magnet row 63b, A rotational force can be generated by contact. Therefore, the magnetic drive force transmission mechanism 60 can significantly reduce the generation of dust and dust caused by contact and wear, and can prevent the container B from being contaminated.
  • the container inner surface sterilization apparatus 40 that sterilizes the inner surface of the container B while rotating the container B is used.
  • the electron beam irradiation is performed on the outer peripheral side or the inner peripheral side of the circular path Lc indicated by the phantom line in FIG.
  • the apparatus 14 may be disposed, and the outer surface of the container B may be sterilized in the outer surface irradiation region Ro while rotating the container B.
  • the outer surface of the container B may be rotated while rotating the container B on one circular path Lc.
  • the container inner and outer surface sterilization apparatus that sequentially sterilizes the outer surface and inner surface of the container B in the inner surface irradiation regions Ro and Ri may be used. Note that the rotation of the container B can be stopped in the inner surface irradiation region Ri.
  • the electron beam irradiation device 14 is arranged in the outer surface irradiation region where the container B is raised or lowered by the lifting / lowering drive device 53, thereby rotating the container B.
  • the outer surface of the container B can be sterilized over the entire circumference.
  • FIG. 11A, 11B, and 12 Another embodiment of the magnetic driving force transmission mechanism will be described with reference to FIGS. 11A, 11B, and 12.
  • FIG. This electron beam sterilization equipment relates to a container outer surface sterilization apparatus in which an object to be sterilized is a container B.
  • the same members as those in the previous embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the container outer surface sterilizer 70 is provided with a rotary table Tc that is rotatable about a rotary axis Oc in a chamber C for shielding corrosive gas.
  • a container holding device 71 that holds the container B via the neck portion Bn is installed at a constant pitch on the outer periphery of the rotary table Tc, and the container B is transported along the circular transport path Lc by the container holding device 71.
  • An electron beam irradiation device 14 is installed on the outer periphery of the circular conveyance path Lc, and an electron beam is emitted from the electron beam irradiation device 14 toward the outer surface of the container B in the inner surface irradiation region Ri (see FIG. 5) corresponding to the irradiation port 14o. Irradiated.
  • the container holding device 71 is provided with a bifurcated clamp body 73 having a concave portion 73a into which the neck portion Bn can be inserted and removed at the upper end portion of a support column 72 standing on the rotary table Tc. Yes.
  • a pair of left and right loose elastic rollers 74 facing each other on the inlet side of the recess 73a are rotatably disposed around an axis parallel to the container axis Ob, and a driving roller 75 is disposed on the inner side of the recess 73a. It is supported by a rotating shaft 75a parallel to the center Ob.
  • the container B is held by the two elastic rollers 74 and the drive roller 75 through the neck portion Bn by feeding the neck portion Bn into the recess 73a.
  • a magnetic-type driving force transmission mechanism 77 is provided between the output shaft 76 a of the driving motor 76 attached to the column 72 and the rotating shaft 75 a of the driving roller 75.
  • This magnetic driving force transmission mechanism 77 has the same effect as the gear mechanism that transmits the rotational motion of the output shaft 76 a of the drive motor 76 to the rotational motion of the rotational shaft 75 a of the drive roller 75. That is, the drive-side annular magnetic body 78 attached to the output shaft 76a of the drive motor 76 has an annular shape in which S-pole and N-pole magnets are alternately provided on the outer peripheral portion at a constant (angle) pitch on the magnet attachment member 78a.
  • a magnet row 78b and a drive side coating member 78c, which is a covering material covering the annular magnet row 78b, are provided.
  • the passive side annular magnetic body 79 attached to the rotating shaft 75a of the drive roller 75 close to the drive side annular magnetic body 78 has S pole and N pole magnets on the magnet mounting member 79a at a constant (angle) pitch.
  • An annular magnet array 79b provided alternately on the outer periphery, and a passive-side coating member 79c, which is a covering material that covers the annular magnet array 79b with low magnetic permeability and corrosion resistance, are provided.
  • Reference numeral 80 denotes a magnetic shielding body, which is composed of a high-permeability plate material such as mu metal or permalloy, and an anticorrosion plate made of stainless steel or titanium alloy (or an anticorrosion coating layer coated with stainless steel or titanium material). .
  • the magnetic field shield 80 shields the magnetic field generated from the magnetic driving force transmission mechanism 77 and reaching the electron beam, and also prevents the corrosive gas in the chamber C from reaching the magnetic driving force transmission mechanism 77. Can do.
  • the magnetic drive force transmission mechanism 77 that transmits power in a non-contact manner is provided between the drive-side annular magnetic body 78 that rotationally drives and the passive-side annular magnetic body 79 that passively rotates. Generation of dust and dust due to contact and wear during power transmission can be prevented. Therefore, the container B is not contaminated by these dusts and dusts.
  • the straight forward path portion La is described as a path in which the preform body P is sterilized while rotating, among the transport paths L in which the preform body P is held and transported by the container holding portion 25.
  • the present invention is not limited to this, and the circular path Lc as described in the second and third embodiments may be used.

Landscapes

  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

電子線照射装置からプリフォーム体(P)に照射される電子線により滅菌する容器外面滅菌装置である。容器外面滅菌装置は、プリフォーム体(P)を保持搬送する容器搬送装置(21)と、容器搬送装置(21)に設けられてプリフォーム体(P)を回転する容器回転装置(26)と、容器回転装置(26)の帯状磁力体(32)と環状磁力体(33)とで、非接触で駆動力を伝達する磁力式駆動力伝達機構(31)と、を具備する。磁力式駆動力伝達機構(31)は、所定の隙間をあけて対向して移動される帯状磁力体(32)と環状磁力体(33)に、磁極が異なる磁石が交互に配置された磁石列をそれぞれ有する。

Description

電子線滅菌設備
 本発明は、容器など(被検体およびプリフォーム体も意味する)の被照射物に、電子線を照射して滅菌する電子線滅菌設備に関する。
 被照射物の外面を滅菌する場合、容器搬送装置の保持部に被照射物を保持し、電子線の照射域内を搬送しつつ被照射物を回転させることで、外面全体を滅菌する技術が、たとえば特許文献1および2に提案されている。
 上記搬送装置では、複数の被照射物を順次保持部に保持し、搬送中に被照射物を回転させる。しかし、被照射物ごとに被照射物の回転駆動装置を設けると、容器搬送装置が大型化する。このため、回転駆動装置と保持部との間に、ギヤやカム、伝動軸などの接触式の駆動力伝動機構を介して被照射物をそれぞれ回転させる。
日本国特開2014-129142号公報 日本国特開2007-297067号公報
 ところで、容器やプリフォーム体の滅菌設備の場合、この滅菌設備と、充填装置やブロー成形装置が、一連の設備を構成して設置されている。このような設備では、通常、滅菌雰囲気中に粉塵や塵埃の発生を防止する対策が施されている。しかしながら、接触式の伝動機構を採用した場合、摩耗による粉塵や塵埃が発生し、容器やプリフォーム体が汚染されやすいという問題があった。
 本発明は上記問題点を解決して、粉塵や塵埃が発生することなく、被照射物の汚染など悪影響を与えない電子線滅菌設備を提供することを目的とする。
 本発明は、電子線照射装置から被照射物に照射される電子線により滅菌する電子線滅菌設備であって、
 被照射物を保持搬送する搬送装置と、
 前記搬送装置に設けられて被照射物を回転する回転装置と、
 前記回転装置の駆動部材と受動部材の間で、非接触で駆動力を伝達する磁力式駆動力伝達機構と、を具備し、
 前記駆動力伝達機構は、所定の隙間をあけて対向して移動される前記駆動部材と前記受動部材に、磁極が異なる磁石が交互に配置された磁石列をそれぞれ有するものである。
 上記構成によれば、回転装置において、磁力式駆動力伝達機構を介して被照射物を回転し、滅菌する時に、駆動力の伝達を、磁力式駆動力伝達機構を使用して非接触で駆動力伝達とした。これにより、駆動力を伝達するための接触部や摩擦部を無くして、接触や摩耗による粉塵や塵埃の発生を未然に防止することができ、粉塵や塵埃により、被照射物を汚染することがない。
 ここで、「駆動力伝達機構」は、磁力を利用して部材と部材の間で動力を伝達する構造の他、部材と部材の間で、例えば直線運動-回転運動のように、運動方向を変換する駆動力変換機構を含むものとする。
 上記構成において、前記磁気式駆動力伝達機構と被照射物との間に、前記駆動力伝達機構に発生する磁力が、前記電子線に悪影響を与えるのを防止する干渉防止手段を具備することが好ましい。
 上記構成により、磁気式駆動力伝達機構から発生した磁力が、電子線に悪影響を与えるのを防ぎ、電子線による安定した滅菌作業を実施できる。
 上記構成の干渉防止手段は、前記磁力式駆動力伝達機構と被照射物との間に、磁力を減衰させる磁力減衰距離を設けることが好ましい。上記磁力減衰距離を確保することにより、磁力を減衰させて、安定した滅菌が可能となる。
 上記構成の干渉防止手段は、前記磁力式駆動力伝達機構と被照射物との間に、前記磁力式駆動力伝達機構から出る磁場を遮蔽する磁場遮蔽体を配置することが好ましい。これにより、前記磁力式駆動力伝達機構から発生した磁力を、前記磁場遮蔽体で磁力を遮蔽したり、減衰させて、電子線による安定した滅菌作業が可能となる。
 上記構成において、前記磁石列は、低透磁率でかつ耐食性の材料からなる被覆材に覆われることが好ましい。
 上記構成によれば、電子線が空気中の酸素に衝突して発生するオゾンガスや、電子線のエネルギーにより空気中の窒素と酸素と水素が反応して発生する硝酸ガスを含む腐食性ガス雰囲気おいて、被覆材により磁石列が腐食するのを防止することができる。
 上記構成において、前記駆動部材は、固定側部材に被照射物の搬送方向に沿って配置された帯状磁力体であり、前記受動部材は、前記搬送装置の可動側部材に設けられた環状磁力体であることが好ましい。
 上記構成によれば、前記帯状磁力体に沿って前記環状磁力体を移動させることにより、磁力体の磁力を利用して、非接触で、直線運動を回転運動に変換して、環状磁力体を回転駆動させることができる。
 さらにまた、上記構成において、X線を遮蔽可能でかつ低透磁率であり、さらに耐食性を有する材料からなる隔壁により、前記電子線照射装置および被照射物を包囲するチャンバを備え、前記受動部材の磁石列が前記チャンバ内に配置されるとともに、前記駆動部材の磁石列が、低透磁率でかつ耐食性の材料からなる被覆材を隔てて前記チャンバの外側に配置されることが好ましい。
 上記構成によれば、チャンバの隔壁と一体化、または隔壁の外側に、磁石列を有する前記駆動部材を配置したので、磁力の減衰を伴うことなく腐食性ガスによる腐食を防止することができる。
 本発明によれば、非接触で駆動される動力伝達機構により、粉塵や塵埃が発生することなく、被照射物を汚染することがない。
本発明に係る電子線滅菌設備における容器外面滅菌装置の実施例1を示す概略平面図である。 容器外面滅菌装置の搬送装置を示し、外面照射領域における横断面図である。 容器外面滅菌装置の搬送装置を示し、撮像装置による環状磁力体の平面視の画像図である。 外面照射領域における搬送装置の正面断面図である。 磁力式駆動力伝達機構の帯状磁力体および環状磁力体を示す平面視の断面図である。 本発明に係る電子線滅菌設備における容器内面滅菌装置の実施例2を示す概略平面図である。 内面照射領域における容器回転装置を示す要部側面図である。 内面照射領域における容器回転装置を示す平面視の要部部分断面図である。 内面照射領域における容器昇降装置を示す要部の概略横断面図である。 磁力式駆動力伝達機構の変形例を示し、変形例1の磁力体を示す横断面図である。 磁力式駆動力伝達機構の変形例を示し、変形例2の磁力体を示す横断面図である。 磁力式駆動力伝達機構の変形例3を示し、内面照射領域における概略横断面図である。 磁力式駆動力伝達機構の変形例3を示し、帯状磁力体および環状磁力体を示す拡大側面図である。 磁力式駆動力伝達機構の変形例3を示し、容器回転装置を示す平面図である。 本発明に係る電子線滅菌設備に係る容器外面滅菌装置の実施例3を示し、磁力式駆動力伝達機構を示す平面視の部分断面図である。 本発明に係る電子線滅菌設備に係る容器外面滅菌装置の実施例3を示し、同側面図である。 容器外面滅菌装置の実施例3を示す概略平面図である。
 本発明に係る電子線滅菌設備は、滅菌対象である被照射物が、実験器具などの被検体や、容器成形前のプリフォーム体、内容物の無菌充填前の容器などである。これら被照射物を回転させつつ搬送移動または昇降移動させ、外面および内面の少なくとも一方に電子線を照射して滅菌を行う。そして、被照射物を回転させるための駆動力伝達機構に、非接触で駆動可能な磁力式を採用する。これにより、非接触で駆動力を伝達や変換して、接触や摩耗による粉塵や塵埃の発生を防止している。
 また、磁力式駆動力伝達機構において発生する磁力が、電子線に悪影響を及ぼさない干渉防止手段を設けている。
 ところで、空気中に照射された電子線は、空気中で化学反応を生じさせることにより、オゾンガスおよび硝酸ガスなどの腐食性ガスを発生させる。このため、搬送装置や被照射物などを覆うチャンバ内が腐食性ガス雰囲気となることが知られている。したがって、磁力式駆動力伝達機構を腐食性ガス雰囲気により腐食しない防食構造としている。
 本発明に係る容器外面滅菌装置の実施例1を図1~図4に基づいて説明する。
 図1に示すように、この電子線滅菌設備は、ブロー成形により容器を形成する前のプリフォーム体Pを外面滅菌するための容器外面滅菌装置11で、被照射物はプリフォーム体Pである。この容器外面滅菌装置11は、腐食性ガス雰囲気を包囲する腐食性ガス遮蔽用のチャンバCに覆われている。そして、チャンバC内の腐食性ガスは、排気ポンプPoで送られる気体から有害物を除去するガス無害化装置Nを介して大気中に放出される。新たな空気は、不純物を除去するフィルタFを介してチャンバC内に導入される。
 [容器搬送装置]
 図2Aに示すように、プリフォーム体Pを搬送する容器搬送装置(搬送装置)21は、一対の第1ホイール(回転体)22および第2ホイール(回転体)23と、第1ホイール22と第2ホイール23間にわたって巻張された無端状の回転移動体(可動側部材)24と、回転移動体24に一定ピッチで設けられた容器保持部25と、を具備している。そして、搬入経路Liから搬入されたプリフォーム体Pは、搬入ホイール12で容器保持部25に保持されながら、搬送経路Lの直線往路部Laに送られる。そして、直線往路部Laで、電子線照射装置14から電子線がプリフォーム体Pに照射されて滅菌される。さらにプリフォーム体Pは、第2ホイール23から直線復路部Lbに送られ、第1ホイール22から搬出経路Loに送り出される。
 直線往路部Laには、電子線照射装置14から電子線が照射される外面照射領域(電子線照射領域)Roが設定されており、この外面照射領域Roに対応して電子線照射装置14が設置されている。そして、直線往路部Laに沿って搬送されるプリフォーム体Pに、電子線照射装置14の照射口14oから電子線が照射される。この外面照射領域Roでは、容器搬送装置21に設けられた容器回転装置(回転装置)26によりプリフォーム体Pを容器軸心Op周りに回転させて、外周面を均一に滅菌する。
 図2A,図3に示すように、容器搬送装置21の回転移動体24は、互いに形状の異なる側面視H形の2種類のチェーン部材24A,24Bを搬送方向に垂直な鉛直方向の支軸27を介して水平面内で折り曲げ自在に連結したものである。各支軸27は、下端側に設けられた容器保持部25と、チェーン部材24A,24Bの上下位置に軸受を介して回転自在に取り付けられたホイール係合環28U,28Dと、上端側に設けられた容器回転装置26と、を具備している。なお、ホイール係合環28U,28Dが上下に設けられているのは、第1ホイール22および第2ホイール23には、それぞれ上下一対のスプロケットが、所定間隔をあけて設けられているためである。
 容器保持部25は、プリフォーム体Pの口部に着脱自在な、弾性体からなる保持具25aを有しており、第1ホイール22に設けられた昇降機構(図示せず)により、プリフォーム体Pを上昇させることで、プリフォーム体Pの口部に保持具25aを嵌入させ、またプリフォーム体Pを下降させてプリフォーム体Pの口部から保持具25aを離脱させる。
 [磁力式駆動力伝達機構]
 容器回転装置26は、容器搬送装置21による直線往路部Laでの回転移動体24の直線運動を、非接触で、容器保持部25の回転運動に変換する磁力式駆動力伝達機構31を具備している。この磁力式駆動力伝達機構31は、図4に示すように、容器搬送装置21の固定側部材でかつ駆動部材となる支持フレーム30に、直線状の帯状磁力体32が搬送方向に沿って取り付けられている。一方、容器搬送装置21の可動側部材で、かつ受動部材である支軸27に、環状磁力体33が固定されている。そして、外面照射領域Roでは、帯状磁力体32に沿って環状磁力体33が所定隙間(帯状磁力体32と環状磁力体33との隙間)をあけて移動することにより、磁力を利用して回転移動体24の直線運動を、支軸27の回転運動に変換することができる。
 図4に示すように、この帯状磁力体32は、支持フレーム30に搬送方向に沿って配置された磁石取付部材32aと、磁石取付部材32aにS極とN極の磁石とが交互に一定ピッチで搬送方向に配置された直線状の帯状磁石列32bと、低透磁率でかつ耐食性を有する材料からなり帯状磁石列32bを覆う被覆材であるカバー部材32cを有している。環状磁力体33は、支軸27にキーを介して固定された磁石支持筒33aと、この磁石支持筒33aの外周部に、一定の(角度)ピッチでS極とN極の磁石とが外周部に交互に取り付けられた環状磁石列33bと、低透磁率でかつ耐食性を有する材料からなり環状磁石列33bを覆う被覆材であるコート部材33cを有している。カバー部材32cおよびコート部材33cは、ステンレス製やチタン合金製であるが、ステンレス材やチタン材を被覆したコーティング層であってもよい。これらカバー部材32cとコート部材33cにより、液化硝酸も含む硝酸ガスやオゾンガスなどの腐食性ガスによる帯状磁石列32bおよび環状磁石列33bの腐食を防止する。
 上記構成において、直線往路部Laで容器搬送装置21により回転移動体24が搬送方向に直線移動されると、帯状磁石列32bと環状磁石列33bの磁力の作用により支軸27が回転され、容器保持部25の保持具25aに保持されたプリフォーム体Pが容器軸心Op周りに回転される。プリフォーム体Pが回転しながら電子線照射装置14により電子線が照射されるので、プリフォーム体Pの外周面に電子線が均一に照射される。
 ところで、プリフォーム体Pが回転不足になると、部分的に電子線の照射不足が生じ、滅菌不足のプリフォーム体Pにより下流側のブロー成形装置などが汚染される恐れがある。このため、図2Aおよび図2Bに示すように、プリフォーム体Pの回転を、支軸27を介して監視する容器の回転監視装置34が設けられている。この回転監視装置34は、たとえば環状磁力体33の天板に設けられたマーク33mを撮像装置34aにより高速撮像し、取得した画像と正常な回転の画像とを比較することにより、プリフォーム体Pが所定量回転されたかどうかを監視している。もちろん、支軸27の回転監視は、可視画像に限るものではなく、超音波やレーダ波などの媒体を利用した公知の非接触式検出装置を使用することもできる。
 また直線往路部Laの外面照射領域Roでは、磁力式駆動力伝達機構31に磁石を使用するため、常に環状磁力体33が帯状磁力体32側に吸引され、回転移動体24に図2Aに示す時計回り方向のモーメントMが発生する。通常、搬送経路Lでは、容器保持部25の姿勢が、図示しないガイドローラまたは磁力式の姿勢保持機構などにより、保持されている。しかし、この状態ではモーメントMに対処することができない。この回転移動体24の傾きを抑制するために、回転移動体24の上下位置に配置されたホイール係合環28U,28Dの内側(支持フレーム30側)への変位をそれぞれ規制する傾斜規制レール36U,36Dが、外面照射領域Ro全体にわたって設置されている。さらに搬送経路Lの外側(支持フレーム30とは反対側)に、図示しない外側のガイドローラの上面に当接する浮上防止レール37が、外面照射領域Roにわたって配置され、外側のガイドローラの浮上りを規制している。このように、外面照射領域Roでは、傾斜規制レール36U,36Dおよび浮上防止レール37により、支軸27が搬送経路L内側に倒れ込むのを防止することができる。
 さらに、磁力式駆動力伝達機構31から発生する磁力により、電子線照射装置14から照射された電子線の照射方向が偏向してプリフォーム体Pへの照射量が不均一になるなど、プリフォーム体Pの滅菌に悪影響が生じる恐れがある。これを防止する干渉防止手段として、磁力式駆動力伝達機構31からプリフォーム体Pまで、磁力が減衰するための磁力減衰距離Lsを確保し、磁力式駆動力伝達機構31の磁力がプリフォーム体Pへの電子線の照射に影響を与えないようにしている。
 また他の干渉防止手段として、磁力減衰距離Lsの確保と同時に、あるいはこれに替えて、図2Aに示すように、磁力式駆動力伝達機構31と、照射口14oおよびプリフォーム体Pとの間の空間部に、例えば磁力を遮るミューメタルやパーマロイなど高透磁率の材料からなる磁場遮蔽体38を設置している。この磁場遮蔽体38の表面は防食用の材料からなる表面材で覆われていてもよい。もちろん、磁力減衰距離Lsを確保すると同時に、磁場遮蔽体38が設置されていてもよい。
 [実施例1の効果]
 上記実施例1によれば、容器保持部25に保持されたプリフォーム体Pを容器軸心Op周りに回転するとともに、電子線をプリフォーム体Pに照射し滅菌する時に、容器回転装置26により、磁力式駆動力伝達機構31により非接触で駆動力伝達して、プリフォーム体Pを回転するので、動力伝達時の接触や摩耗による粉塵や塵埃の発生を未然に防止することができる。したがって、これら粉塵や塵埃により、プリフォーム体Pを汚染することがない。
 容器回転装置26では、容器搬送装置21の支持フレーム30に直線状に設けた帯状磁力体32と、回転移動体24の支軸27に取り付けられた環状磁力体33とを有する磁力式駆動力伝達機構31により、非接触で、直線帯状磁力体32に沿う回転移動体24の直線運動を、環状磁力体33の回転運動に変換し、接触や摩耗による粉塵や塵埃の発生を未然に防止することができる。
 また磁力式駆動力伝達機構31とプリフォーム体Pとの間に、干渉防止手段として磁場遮蔽体38と磁力減衰距離Lsの少なくとも一方を設けることにより、磁力式駆動力伝達機構31の磁石から発生する磁場を減衰させて、電子線を安定して照射でき均一な滅菌作業が可能となる。
 さらに、帯状磁石列32bおよび環状磁石列33bが、低透磁率でかつ耐食性の材質からなるカバー部材32c,コート部材33cやコーティングに覆われることにより、オゾンガスや硝酸ガスを含む腐食性ガス雰囲気により腐食するのを、未然に防止することができる。
 本発明に係る電子線滅菌設備の実施例2を図5~図8に基づいて説明する。
 この電子線滅菌設備は、滅菌対象である被照射物が容器Bであり、容器内面滅菌装置40は、内容物を容器Bに無菌充填する充填装置(図示せず)の上流側に設置される。なお、実施例1と同一部材には同一符号を付して、詳細な説明を省略する。
 この容器内面滅菌装置40の容器搬送装置40aは、図5~図8示すように、腐食性ガス遮蔽用のチャンバC内に、回転軸Oc周りに回転自在な回転テーブルTcと、回転テーブルTcの上部外周に一定ピッチで設置され、ネック部Bnを介して容器Bを保持する容器保持装置41と、容器保持装置41を介して容器Bを昇降する容器昇降装置51と、具備している。そして回転テーブルTcの外周に容器Bを搬送する円形経路Lcが形成されている。Riは、円形経路Lcに設けられた電子線の内面照射領域(電子線照射領域)である。搬入経路Liから搬入ホイール12を介して円形経路Lcに搬入された容器Bが、この内面照射領域Riの入口で、容器昇降装置51により容器Bが上昇される。そして、電子線照射装置54の照射ノズル54nが口部Bpを介して容器B内に挿入され、容器Bの内面が滅菌される。さらに内面照射領域Riの出口で、容器昇降装置51により容器Bが下降されて、口部Bpから照射ノズル54nが抜き出される。そして、滅菌後の容器Bが搬出ホイール13を介して搬出経路Loに搬出される。
 [容器保持装置]
 回転テーブルTcの外周部に、一定ピッチで昇降台42が昇降ロッド52を介して昇降自在に配置されている。容器保持装置41は、昇降台42に左右一対のネック保持アーム43R,43Lが支持軸43a,43a周りにそれぞれ開閉自在に支持されている。左右のネック保持アーム43R,43Lには、先端部に鉛直軸心周りに回転自在に支持された駆動ローラ44と、中間部に鉛直軸心周りに回転自在に支持された遊転ローラ45とが設けられている。そして、ネック保持アーム43R,43Lの開閉に従って、これら4個のローラ44,45により、容器Bのネック部Bnを開放、把持する。これらネック保持アーム43R,43Lを開閉するアーム開閉装置は、図示しないが、カムや、流体圧式や電動式のシリンダなど公知の技術が適用され、搬入ホイール12に対応する搬入位置および搬出ホイール13に対応する搬出位置で、ネック保持アーム43R,43Lが開閉されて、容器Bが搬入保持および開放搬出される。
 [容器昇降装置]
 図8に示すように、各容器保持装置41は、回転テーブルTcの外周部で、容器昇降装置51により昇降台42が所定範囲で昇降自在に支持されている。すなわち、容器昇降装置51は、昇降台42から垂下されるとともに、回転テーブルTcの外周部のガイド穴にスライド自在に嵌合された昇降ロッド52と、回転テーブルTcの底部側に設けられて、昇降ロッド52を介して容器保持装置41を所定範囲で昇降駆動する昇降駆動装置53とを具備している。この昇降駆動装置53は、カム機構や、流体圧シリンダや電動シリンダなど公知の駆動装置が使用される。
 一方、回転テーブルTcの上方部に、回転テーブルTcと同期して回転される支持テーブルTsが設置されている。この支持テーブルTsの外周部には、各容器保持装置41に対応して、ノズル式の電子線照射装置54が一定ピッチで設置されている。電子線照射装置54には、支持テーブルTsを貫通して下方に伸び容器Bの口部Bpに挿入可能な照射ノズル54nを具備し、照射ノズル54nの下端の照射口から電子線を照射する。なお、照射ノズル54nから照射される電子線は、チャンバC内の空気の分子に衝突して紡錘形に広がり、容器Bの内面を滅菌する。
 [容器回転装置]
 ところで、容器Bの材料である樹脂に、電子線が必要量以上に照射されると、樹脂が変質したり、変色されることが知られており、照射量を過不足の無い適正範囲に保持する必要がある。したがって、容器Bの内面を滅菌する場合、たとえば本体部Bbが、特に図示するように矩形断面に形成されていた場合や、特に小径のネック部Bnから本体部Bbの肩部Bsに急激に拡径されると、照射ノズル54nの照射口から内面までの距離が周方向で不規則となる。また装飾や把持のために、本体部Bbに凹凸模様が形成されると、照射口から内面までの距離が不規則となる。このため、電子線の照射量を適正範囲に保持するのが難しい。
 この実施例2では、容器回転装置(回転装置)46により容器Bを容器軸心Ob周りに回転させ、不規則な容器Bの内面に電子線を均一に照射して、電子線の照射量が適正範囲に保持し、容器Bの内面全体を均一に滅菌することができる。
 [磁力式駆動力伝達機構]
 前記容器回転装置46に磁力式駆動力伝達機構47を備えている。この磁力式駆動力伝達機構47は、駆動ローラ44を支持する鉛直方向の連動軸44aの上部に取り付けられた左右一対の環状磁力体48と、内面照射領域Riにわたって固定側部材(チャンバCの隔壁Cw)に回転軸Ocを中心とする周方向に配設された円弧状の帯状磁力体49と、を具備している。環状磁力体48および帯状磁力体49は、実施例1の環状磁力体33および帯状磁力体32と略同一構造で、磁石取付部材に、N極とS極の磁石が交互に配置された環状磁石列、帯状磁石列がそれぞれ取り付けられ、さらに低透磁率で耐食性の材料からなる被覆材であるコート部材、カバー部材49cによりそれぞれ被覆されている。なお、帯状磁力体49は、チャンバCの隔壁Cwの内面に支持部材49dを介して設置されている。50は、主に環状磁力体48から発生する磁場を遮蔽して、照射ノズル54n内の放射線に悪影響を及ぼすのを防止する磁場遮蔽体である。この磁場遮蔽体50は、ミューメタルやパーマロイなどの高透磁率の板料と、これを覆うステンレス製やチタン合金製の防食板(またはステンレス材やチタン材を被覆した防食用コーティング層)と、からなる。
 上記構成において、容器保持装置41に保持されて円形経路Lcを搬送される容器Bは、昇降駆動装置53により内面照射領域Riの入口で上昇される。同時に容器回転装置46では、磁力式駆動力伝達機構47の環状磁力体33が帯状磁力体32に接近する。そして容器Bが円形経路Lcに沿って移動されると、環状磁力体33および帯状磁力体32の磁力の作用により環状磁力体33が回転される。そして環状磁力体33の回転により、連動軸44aを介して駆動ローラ44が回転駆動され、容器Bが容器軸心Ob周りに回転される。さらに容器Bが内面照射領域Riに入ると、照射ノズル54nが容器Bの口部Bpから本体部Bb内に挿入され、容器Bの内面が滅菌される。内面照射領域Riの出口に接近すると、照射ノズル54nが容器Bの本体部Bbから口部Bpを介して抜き出されるとともに、帯状磁力体32から環状磁力体33が離間されて容器Bの回転が停止される。
 [実施例2の効果]
 実施例2によれば、磁力式駆動力伝達機構47において、円形経路Lcに沿って固定された帯状磁力体49と、移動する環状磁力体48とにより、円弧方向の運動を回転運動に変換して、非接触で、容器Bを容器軸心Ob周りに回転させることができる。したがって、磁力式駆動力伝達機構47により、接触や摩耗により発生する粉塵や塵埃の発生を大幅に軽減することができ、容器の汚染を防止することができる。
 なお、実施例2では、左右のネック保持アーム43R,43Lの先端部に駆動ローラ44を設け、中間部に遊転ローラ45を設けている。しかし、上記構成に限るものではなく、昇降に干渉しない範囲であれば、ネック保持アーム43R,43Lの先端部に遊転ローラ45を設け、中間部に駆動ローラ44を設け、環状磁力体48および帯状磁力体49を設置してもよい。
 また、円形経路Lcに、仮想線で示すように、内面照射領域Riの前方領域に、または後方領域、あるいは少なくとも一部が内面照射領域Riに重なった領域に、電子線照射装置14を配置して、円形経路Lcに電子線の外面照射領域Roを形成することもできる。もちろん、電子線の外面照射領域Roのみであってもよい。
 [磁力式駆動力伝達機構の変形例について]
 実施例2では、磁力式駆動力伝達機構47では、環状磁力体48および帯状磁力体49を共に完全にチャンバC内に配置したが、図9Aに示すように、帯状磁力体49をチャンバCの隔壁Cwと一体に(隔壁Cwの内外にわたるように)設けてもよい。また、図9Bに示すように、帯状磁力体49をチャンバCの隔壁Cwから外側に設置することもできる。さらに、図10A~図10Cに示すように、昇降台42の昇降運動を駆動ローラ44の回転運動に変換する磁力式駆動力伝達機構60を設けたものでもよい。なお、これら変形例1(図9Aに対応)、変形例2(図9Bに対応)、および変形例3(図10A~図10Cに対応)の説明において、実施例2に同一部材には同一符号を付して詳細な説明を省略する。
 [磁力式駆動力伝達機構の変形例1]
 図9Aに示すように、隔壁Cwに円形経路Lcに沿って円弧帯状の開口部49eが形成されている。チャンバCの隔壁Cwと一体に(隔壁Cwの内外にわたるように)設けられた帯状磁力体49は、開口部49eに磁石取付部材49aを介して装着されS極磁石とN極磁石が交互に配置された帯状磁石列49bと、隔壁Cwの内面に磁石取付部材49aと帯状磁石列49bを覆う低透磁率で耐食性のコート部材49c(または低透磁率で耐食性のコーティング層)と、で構成される。
 [磁力式駆動力伝達機構の変形例2]
 また図9Bに示すように、チャンバCの隔壁Cwから外側に設置された帯状磁力体49は、隔壁Cwに形成された帯状の開口部49eに、低透磁率で耐食性の材料からなる被覆材であるコート部材49cを装着する。そして、このコート部材49cの外側に、磁石取付部材49aにより環状磁石列49bが取り付けられる。なお、隔壁Cw自体が耐食性を有するので、隔壁Cwが低透磁率の材質であれば、開口部49eとコート部材49cを削除することができる。これにより、設備コストを低減することができる。
 上記変形例1,2によれば、帯状磁石列49bをチャンバCの腐食性ガス雰囲気から容易に隔離することができ、腐食を軽減することができる。また帯状磁力体49の支持部材を隔壁Cwとすることで、部材の削減を図ることができる。さらにチャンバC内の空間を有効利用することができる。
 [磁力式駆動力伝達機構の変形例3]
 変形例3を、図10A、図10Bおよび図10Cを参照して説明する。昇降駆動装置53により昇降ロッド52を介して所定範囲で昇降駆動される容器保持装置55は、昇降台42から外周側に伸び凹部56aが形成される二股状のネック保持アーム56と、ネック保持アーム56の凹部56aの入口において互いに対向して配置されネック部Bnを抜け止めする遊転式の左右一対の弾性ローラ58と、凹部56aの奥部に配置されてネック部Bnに当接する駆動ローラ59とを具備している。
 容器回転装置61は、上端部に駆動ローラ59が取り付けられた回転軸62と、回転軸62の下部に設けられた磁力式駆動力伝達機構60と、を具備している。前記回転軸62は、昇降ロッド52と平行に垂下され、回転テーブルTcに対して、スライド自在でかつ回転自在に貫通する。 
 この磁力式駆動力伝達機構60は、はすば形ギヤ機構と同様の作用効果を奏するもので、回転テーブルTcから回転軸62と平行に垂下された帯状磁力体63と、回転軸62の下端部に固定された環状磁力体64と、を具備している。帯状磁力体63は、磁石取付部材に直線状の帯状磁石列63bを有している。そして帯状磁石列63bにおいて、一定ピッチで搬送方向に交互に配置されたS極とN極の磁石は、環状磁力体64の移動方向(鉛直線)に対してそれぞれ所定角度(30°~60°)で傾斜して配置され、はすば形ラックの歯に対応して配置される。環状磁力体64は、回転軸62にキーを介して固定された磁石支持筒と、この磁石支持筒の外周面に、前記帯状磁石列63bに対応する一定の(角度)ピッチでS極とN極の磁石が外周部に交互に設けられた環状磁石列64bとを具備している。そして、環状磁石列64bのS極とN極の磁石は、帯状磁石列63bの磁石に対応して、移動方向に対して傾斜するはすば形歯車の歯に対応して傾斜状に配置されている。したがって、環状磁力体64が帯状磁力体63に沿って移動されることにより、磁力の作用により、環状磁力体64が回転軸62周りに回転駆動される。これにより、昇降台42の昇降運動が駆動ローラ59の回転運動に変換される。
 また図示しないが、回転テーブルTcとチャンバCの隔壁Cwとの隙間に、ラビリンスシールなど、非接触のガス遮蔽部材で遮蔽することにより、回転テーブルTcの底部の非腐食雰囲気空間に、チャンバC内の腐食性ガスの浸入を防止することができる。これにより、磁力式駆動力伝達機構55の腐食を防止することができ、これにより防食用のカバー部材やコート部材、コーティング層を不要とすることができる。
 上記構成において、容器Bが内面照射領域Riに入ると、磁力式駆動力伝達機構60において、昇降駆動装置53により昇降台42と共に昇降ロッド52が上昇されて容器Bが上昇されると同時に、帯状磁石列63bに沿って環状磁力体64が移動し、磁力の作用で環状磁力体64が回転される。これにより、照射ノズル54nが口部Bpから本体部Bbに挿入されるとともに、回転軸62、駆動ローラ59を介して容器Bが容器軸心Ob周りに回転される。したがって、照射ノズル54nの照射口から電子線が、容器Bの口部Bp、ネック部Bn、肩部Bs、本体部Bb内に順次照射されて、照射時間、照射距離に応じて効果的に滅菌される。
 上記磁力式駆動力伝達機構の変形例3によれば、固定された帯状磁石列63bと、帯状磁石列63bに沿って直線移動する環状磁力体64からなる磁力式駆動力伝達機構60により、非接触で回転力を発生させることができる。したがって、磁力式駆動力伝達機構60により、接触や摩耗により発生する粉塵や塵埃の発生を大幅に軽減して、容器Bの汚染を防止することができる。
 なお、実施例2では、容器Bを回転させつつ容器Bの内面を殺菌する容器内面滅菌装置40としたが、図12の仮想線で示す円形経路Lcの外周側または内周側に電子線照射装置14を配置し、容器Bを回転させつつ容器Bの外面を外面照射領域Roで滅菌する容器外面滅菌装置11としてもよく、或いは1つの円形経路Lc上で、容器Bを回転させつつ外面、内面照射領域Ro,Riで容器Bの外面と内面とを順次滅菌する容器内外面滅菌装置としてもよい。なお、内面照射領域Riで容器Bの回転を停止することもできる。
 また変形例3において、図10Aにおいて仮想線で示すように、昇降駆動装置53により容器Bが上昇または下降される外面照射領域に電子線照射装置14を配置することにより、容器Bを回転させつつ容器Bの外面を全周にわたって滅菌することができる。
 磁力式駆動力伝達機構の他の実施例を、図11A、図11Bおよび図12を参照して説明する。
 この電子線滅菌設備は、滅菌対象である被照射物が容器Bである容器外面滅菌装置に関するものである。なお、先の実施例と同一部材には同一符号を付して、詳しい説明を省略する。
 図12に示すように、容器外面滅菌装置70は、腐食性ガス遮蔽用のチャンバC内に、回転軸Oc周りに回転自在な回転テーブルTcが配置されている。この回転テーブルTcの外周部に、ネック部Bnを介して容器Bを保持する容器保持装置71が一定ピッチで設置されており、これら容器保持装置71により容器Bを円形搬送経路Lcに沿って搬送する。また円形搬送経路Lcの外周部に電子線照射装置14が設置され、照射口14oに対応する内面照射領域Ri(図5参照)で電子線照射装置14から容器Bの外面に向かって電子線が照射される。
 容器保持装置71は、図11Aに示すように、回転テーブルTcに立設された支柱72の上端部に、ネック部Bnが挿脱自在な凹部73aを有する二股状のクランプ体73が設けられている。前記凹部73aの入口側において互いに対向して左右一対の遊転式弾性ローラ74が容器軸心Obと平行な軸心周りに回転自在に配置され、凹部73aの奥側に駆動ローラ75が容器軸心Obと平行な回転軸75aに支持されている。そして、ネック部Bnが凹部73a内に送り込まれることにより、2つの弾性ローラ74と駆動ローラ75とで、ネック部Bnを介して容器Bが保持される。
 支柱72に取り付けられた駆動モータ76の出力軸76aと、駆動ローラ75の回転軸75aの間に、磁力式駆動力伝達機構77が設けられている。この磁力式駆動力伝達機構77は、駆動モータ76の出力軸76aの回転運動を駆動ローラ75の回転軸75aの回転運動に伝達する、歯車機構と同様の作用効果を奏するものである。すなわち、駆動モータ76の出力軸76aに取り付けられた駆動側環状磁力体78は、磁石取付部材78aに一定の(角度)ピッチでS極とN極の磁石が外周部に交互に設けられた環状磁石列78bと、環状磁石列78bを覆う被覆材である駆動側コート部材78cと、を具備している。また駆動側環状磁力体78に接近して駆動ローラ75の回転軸75aに取り付けられた受動側環状磁力体79は、磁石取付部材79aに一定の(角度)ピッチでS極とN極の磁石が外周部に交互に設けられた環状磁石列79bと、低透磁率かつ防食性で環状磁石列79bを覆う被覆材である受動側コート部材79cと、を具備している。
 80は磁場遮蔽体で、ミューメタルやパーマロイなどの高透磁率の板材と、これを覆うステンレス製やチタン合金製の防食板(またはステンレス材やチタン材を被覆した防食用コーティング層)とからなる。この磁場遮蔽体80により、磁力式駆動力伝達機構77から発生して電子線に至る磁場を遮蔽し、且つチャンバC内の腐食性ガスが磁力式駆動力伝達機構77に至るのを遮蔽することができる。
 上記実施例3では、回転駆動する駆動側環状磁力体78と、回転受動する受動側環状磁力体79との間で、非接触で動力を伝達する磁力式駆動力伝達機構77を設けたので、動力伝達時の接触や摩耗による粉塵や塵埃の発生を未然に防止することができる。したがって、これら粉塵や塵埃により、容器Bを汚染することがない。
 ところで、上記実施例1では、プリフォーム体Pが容器保持部25に保持されて搬送される搬送経路Lのうち、プリフォーム体Pが回転しながら滅菌される経路として、直線往路部Laについて説明したが、これに限定されるものではなく、実施例2および実施例3で説明したような円形経路Lcであってもよい。
 上記実施例1~実施例3は、全ての点で例示であって制限的なものではない。本発明の範囲は、上述した説明ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。なお、上記実施例1~実施例3で説明した構成のうち特許請求の範囲に記載した構成以外については、任意の構成であり、適宜削除および変更することが可能である。
 
 

Claims (5)

  1.  電子線照射装置から被照射物に照射される電子線により滅菌する電子線滅菌設備であって、
     被照射物を保持搬送する搬送装置と、
     前記搬送装置に設けられて被照射物を回転する回転装置と、
     前記回転装置の駆動部材と受動部材の間で、非接触で駆動力を伝達する磁力式駆動力伝達機構と、を具備し、
     前記駆動力伝達機構は、所定の隙間をあけて対向して移動される前記駆動部材と前記受動部材に、磁極が異なる磁石が交互に配置された磁石列をそれぞれ有する
     電子線滅菌設備。
  2.  前記駆動力伝達機構と被照射物との間に、前記駆動力伝達機構から発生する磁力が前記電子線に悪影響を与えるのを防止する干渉防止手段を具備した
     請求項1記載の電子線滅菌設備。
  3.  前記磁石列は、低透磁率でかつ耐食性の材料からなる被覆材に覆われた
     請求項1または2に記載の電子線滅菌設備。
  4.  前記駆動部材は、固定側部材に被照射物の搬送方向に沿って配置された帯状磁力体であり、
     前記受動部材は、前記搬送装置の可動側部材に設けられた環状磁力体である
     請求項1または2に記載の電子線滅菌設備。
  5.  X線を遮蔽可能でかつ低透磁率であり、さらに耐食性を有する材料からなる隔壁により、前記電子線照射装置および被照射物を包囲するチャンバを備え、
     前記受動部材の磁石列が前記チャンバ内に配置されるとともに、
     前記駆動部材の磁石列が、低透磁率でかつ耐食性の材料からなる被覆材を隔てて前記チャンバの外側に配置された
     請求項1または2に記載の電子線滅菌設備。
PCT/JP2017/005675 2016-03-18 2017-02-16 電子線滅菌設備 WO2017159200A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17766207.9A EP3431402A4 (en) 2016-03-18 2017-02-16 ELECTRON BEAM STERILIZATION APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-054586 2016-03-18
JP2016054586A JP6697911B2 (ja) 2016-03-18 2016-03-18 電子線滅菌設備

Publications (1)

Publication Number Publication Date
WO2017159200A1 true WO2017159200A1 (ja) 2017-09-21

Family

ID=59852295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005675 WO2017159200A1 (ja) 2016-03-18 2017-02-16 電子線滅菌設備

Country Status (3)

Country Link
EP (1) EP3431402A4 (ja)
JP (1) JP6697911B2 (ja)
WO (1) WO2017159200A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241758A1 (ja) * 2019-05-29 2020-12-03 日立造船株式会社 電子線滅菌装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3723817A1 (en) * 2017-12-11 2020-10-21 GlaxoSmithKline Intellectual Property Development Ltd Modular aseptic production system
DE102021134514A1 (de) 2021-12-23 2023-06-29 Krones Aktiengesellschaft Vorrichtung und Verfahren zum Behandeln und insbesondere Sterilisieren von Behältnissen
DE102021134529A1 (de) 2021-12-23 2023-06-29 Krones Aktiengesellschaft Vorrichtung und Verfahren zum Behandeln und insbesondere Sterilisieren von Behältnissen
DE102021134523A1 (de) 2021-12-23 2023-06-29 Krones Aktiengesellschaft Vorrichtung und Verfahren zum Behandeln und insbesondere Sterilisieren von Behältnissen
DE102021134507A1 (de) 2021-12-23 2023-06-29 Krones Aktiengesellschaft Vorrichtung und Verfahren zum Behandeln und insbesondere Sterilisieren von Behältnissen
DE102021134518A1 (de) 2021-12-23 2023-06-29 Krones Aktiengesellschaft Vorrichtung und Verfahren zum Behandeln und insbesondere Sterilisieren von Behältnissen
DE102021134503A1 (de) 2021-12-23 2023-06-29 Krones Aktiengesellschaft Vorrichtung und Verfahren zum Behandeln und insbesondere Sterilisieren von Behältnissen
DE102021134504A1 (de) 2021-12-23 2023-06-29 Krones Aktiengesellschaft Vorrichtung und Verfahren zum Behandeln und insbesondere Sterilisieren von Behältnissen
DE102021134499A1 (de) 2021-12-23 2023-06-29 Krones Aktiengesellschaft Vorrichtung und Verfahren zum Behandeln und insbesondere Sterilisieren von Behältnissen
DE102021134541A1 (de) 2021-12-23 2023-06-29 Krones Aktiengesellschaft Vorrichtung und Verfahren zum Behandeln und insbesondere Sterilisieren von Behältnissen

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03102013A (ja) * 1989-06-10 1991-04-26 W Reiners Verwalt Gmbh 自動繊維機械用搬送システム
JPH0491936U (ja) * 1990-07-04 1992-08-11
JPH061440A (ja) * 1992-06-19 1994-01-11 Hitachi Metals Ltd 磁気回路
JPH0680105A (ja) * 1992-08-31 1994-03-22 Dainippon Printing Co Ltd 無菌充填機
JP2002114293A (ja) * 2000-10-12 2002-04-16 Shibazaki Seisakusho Ltd キャップ装着装置及びキャップ装着方法
JP2007297067A (ja) * 2006-04-28 2007-11-15 Japan Ae Power Systems Corp 開口容器用電子線照射装置
JP2013256333A (ja) * 2012-06-13 2013-12-26 Krones Ag 容器のための閉鎖装置
JP2014129142A (ja) * 2012-12-12 2014-07-10 Krones Ag プラスチック製パリソンを殺菌するための装置
WO2014185251A1 (ja) * 2013-05-13 2014-11-20 日立造船株式会社 遮蔽体および電子線容器滅菌設備
JP2015511563A (ja) * 2012-03-26 2015-04-20 カーハーエス・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 包装手段を処理するめの方法および装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3562199B2 (ja) * 1997-03-04 2004-09-08 東洋製罐株式会社 キャッピング装置
JP4560870B2 (ja) * 2000-02-15 2010-10-13 東洋製罐株式会社 プリフォーム殺菌方法及びプリフォーム殺菌装置
JP4541383B2 (ja) * 2007-05-16 2010-09-08 株式会社松栄工機 搬送装置
US8835873B2 (en) * 2011-10-26 2014-09-16 Airex Co., Ltd. Continuous sterilization system
JP6015110B2 (ja) * 2012-05-09 2016-10-26 大日本印刷株式会社 飲料充填方法及び装置
JP6091373B2 (ja) * 2013-08-05 2017-03-08 日立造船株式会社 電子線滅菌装置および無菌充填設備

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03102013A (ja) * 1989-06-10 1991-04-26 W Reiners Verwalt Gmbh 自動繊維機械用搬送システム
JPH0491936U (ja) * 1990-07-04 1992-08-11
JPH061440A (ja) * 1992-06-19 1994-01-11 Hitachi Metals Ltd 磁気回路
JPH0680105A (ja) * 1992-08-31 1994-03-22 Dainippon Printing Co Ltd 無菌充填機
JP2002114293A (ja) * 2000-10-12 2002-04-16 Shibazaki Seisakusho Ltd キャップ装着装置及びキャップ装着方法
JP2007297067A (ja) * 2006-04-28 2007-11-15 Japan Ae Power Systems Corp 開口容器用電子線照射装置
JP2015511563A (ja) * 2012-03-26 2015-04-20 カーハーエス・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 包装手段を処理するめの方法および装置
JP2013256333A (ja) * 2012-06-13 2013-12-26 Krones Ag 容器のための閉鎖装置
JP2014129142A (ja) * 2012-12-12 2014-07-10 Krones Ag プラスチック製パリソンを殺菌するための装置
WO2014185251A1 (ja) * 2013-05-13 2014-11-20 日立造船株式会社 遮蔽体および電子線容器滅菌設備

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3431402A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241758A1 (ja) * 2019-05-29 2020-12-03 日立造船株式会社 電子線滅菌装置

Also Published As

Publication number Publication date
EP3431402A4 (en) 2019-11-20
JP6697911B2 (ja) 2020-05-27
EP3431402A1 (en) 2019-01-23
JP2017165474A (ja) 2017-09-21

Similar Documents

Publication Publication Date Title
WO2017159200A1 (ja) 電子線滅菌設備
US9296600B2 (en) Active sterilization zone for container filling
US8636949B2 (en) Electron beam sterilization apparatus
JP6084765B2 (ja) 容器を殺菌するための装置
JP6100696B2 (ja) 連続滅菌装置
WO2011011079A1 (en) Improved electron beam sterilization apparatus
JP6216502B2 (ja) 電荷担体のビームによりプラスチック容器の内部及び外部を殺菌する装置
KR20090092766A (ko) 용기 살균 장치
US20140112826A1 (en) Device for external sterilisation of plastic parisons
WO2016190088A1 (ja) 電子線照射装置
WO2014185251A1 (ja) 遮蔽体および電子線容器滅菌設備
JP2004236806A (ja) 電子線による容器外装の滅菌装置
WO2016080369A1 (ja) 電子線滅菌装置
JP2010285197A (ja) 電子線照射型キャップ殺菌装置
JPWO2015111544A1 (ja) インキュベータおよびこれを備えた細胞培養システム、加湿水の供給方法
CN219751131U (zh) 容器处理设备
JP2000062730A (ja) シール装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017766207

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017766207

Country of ref document: EP

Effective date: 20181018

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766207

Country of ref document: EP

Kind code of ref document: A1