WO2017158711A1 - 動力伝達装置 - Google Patents

動力伝達装置 Download PDF

Info

Publication number
WO2017158711A1
WO2017158711A1 PCT/JP2016/058080 JP2016058080W WO2017158711A1 WO 2017158711 A1 WO2017158711 A1 WO 2017158711A1 JP 2016058080 W JP2016058080 W JP 2016058080W WO 2017158711 A1 WO2017158711 A1 WO 2017158711A1
Authority
WO
WIPO (PCT)
Prior art keywords
raceway surface
input
output
roller
outer ring
Prior art date
Application number
PCT/JP2016/058080
Other languages
English (en)
French (fr)
Inventor
忠彦 加藤
Original Assignee
株式会社ユニバンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユニバンス filed Critical 株式会社ユニバンス
Priority to JP2018505097A priority Critical patent/JPWO2017158711A1/ja
Priority to PCT/JP2016/058080 priority patent/WO2017158711A1/ja
Publication of WO2017158711A1 publication Critical patent/WO2017158711A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/26Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, of type of freewheel device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D15/00Clutches with wedging balls or rollers or with other wedgeable separate clutching members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D7/00Slip couplings, e.g. slipping on overload, for absorbing shock
    • F16D7/02Slip couplings, e.g. slipping on overload, for absorbing shock of the friction type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H35/00Gearings or mechanisms with other special functional features
    • F16H35/10Arrangements or devices for absorbing overload or preventing damage by overload

Definitions

  • the present invention relates to a power transmission device, and more particularly to a power transmission device capable of absorbing torque fluctuations.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a power transmission device that can absorb large torque fluctuations.
  • the power transmission device is arranged in the power transmission path between the engine and the transmission. Power is input to the input member on which the input raceway surface having the predetermined taper angle is formed, and the output member on which the output raceway surface having the predetermined taper angle is formed can move relative to the input member in the axial direction. Composed. A plurality of first rollers interposed between the input raceway surface and the output raceway surface are set at a predetermined skew angle with respect to the central axis of the input member. The first roller revolves around the central axis while rotating between the input raceway surface and the output raceway surface by one-way relative rotation of the input member with respect to the output member.
  • the input member and the output member move relative to each other in the axial direction, and the first roller engages with the input member and the output member.
  • Attenuation characteristics can be secured from a small torque region to a large region by the rotation and revolution of the first roller, the first roller, the elastic deformation of the input raceway surface and the output raceway surface, etc., so that there is an effect of absorbing a large torque fluctuation. .
  • a plurality of second rollers are interposed between the first raceway surface that rotates integrally with the output member and the second raceway surface that rotates integrally with the input member.
  • the first raceway surface and the second raceway surface are set to a predetermined taper angle.
  • the second roller is set at a predetermined skew angle with respect to the central axis of the input member, and engages with the first track surface and the second track surface by relative rotation of the input member with respect to the output member in the reverse direction.
  • the second roller has an effect of transmitting torque from the transmission side to the engine side.
  • the first biasing spring includes the axial distance between the input raceway surface and the output raceway surface, and the axial distance between the first raceway surface and the second raceway surface. Energize in the direction to reduce both. In addition to the effect of the second aspect, there is an effect that the first roller and the second roller can be easily engaged by the first urging spring.
  • the second biasing spring is the axial distance between the input raceway surface and the output raceway surface, or the axial distance between the first raceway surface and the second raceway surface. Energize in the direction to increase. Since the second urging spring has an elastic force smaller than that of the first urging spring, in addition to the effect of claim 3, the first urging spring makes it easier to engage the first roller and the second roller. However, there is an effect that the first urging spring can easily disengage the first roller or the second roller.
  • the play in the rotational direction is formed between the input raceway surface and the second raceway surface.
  • the amount of play is determined from the first torsion angle when the first roller is engaged with the input raceway surface and the output raceway surface by the relative rotation of the input member with respect to the output member and the maximum torque is transmitted.
  • the size is set to be equal to or larger than twice the torsion angle calculated by subtracting the second torsion angle when the engagement of one roller is released and the torque is zero. Therefore, in addition to the effect of any one of claims 2 to 4, there is an effect of preventing double meshing where the first roller and the second roller are simultaneously engaged.
  • a play in the rotational direction is formed between the output raceway surface and the first raceway surface.
  • the amount of play is determined from the first torsion angle when the first roller is engaged with the input raceway surface and the output raceway surface by the relative rotation of the input member with respect to the output member and the maximum torque is transmitted.
  • the size is set to be equal to or larger than twice the torsion angle calculated by subtracting the second torsion angle when the engagement of one roller is released and the torque is zero. Therefore, in addition to the effect of any one of claims 2 to 4, there is an effect of preventing double meshing where the first roller and the second roller are simultaneously engaged.
  • the spring in the state where power is not transmitted between the input raceway surface and the output raceway surface via the first roller, the spring is located between the input raceway surface and the second raceway surface.
  • an elastic force in the rotational direction is applied between the output raceway surface and the first raceway surface.
  • the second biasing spring is an axial distance between the input raceway surface and the output raceway surface, or an axial distance between the first raceway surface and the second raceway surface. Energize in the direction to increase.
  • the first raceway surface or the second raceway surface rotates integrally with the output raceway surface or the input raceway surface by the elastic force in the rotational direction by the spring. Since the elastic force of the spring is set to be larger than the frictional force due to the vertical drag in the axial direction of the second biasing spring, the spring is elastically deformed when the force applied to the first raceway surface or the second raceway surface is greater than the frictional force. . Therefore, in addition to the effect of the seventh aspect, there is an effect of preventing rattling when the first raceway surface or the second raceway surface rotates integrally with the output raceway surface or the input raceway surface.
  • FIG. 4 is a cross-sectional view of the power transmission device taken along line IV-IV in FIG. 2. It is a figure which shows the relationship between the displacement of a rotation member with respect to a 2nd outer ring
  • A) is sectional drawing of a power transmission device when transmitting torque from an input shaft to an output shaft
  • (b) is sectional drawing of a power transmission device when transmitting torque from an output shaft to an input shaft. It is a torsion angle-torque characteristic of a power transmission device.
  • a vehicle 1 equipped with a power transmission device 10 according to a first embodiment of the present invention will be described with reference to FIG.
  • a clutch 4 that connects and disconnects the driving force of the engine 3 is disposed in a power transmission path between the engine 3 mounted on the vehicle body 2 and the transmission 5.
  • the output of the transmission 5 is transmitted to the drive wheels 8 via the propeller shaft 6 and the differential device 7.
  • the driving wheel 8 and the driven wheel 9 support the vehicle body 2.
  • a power transmission device 10 that absorbs torque fluctuations is disposed in a power transmission path between the engine 3 and the transmission 5.
  • FIG. 2 is a cross-sectional view of the power transmission device 10 schematically shown (a one-side cross-sectional view in which the whole is cut into 1 ⁇ 4 by a cut surface including the central axis O).
  • the power transmission device 10 outputs power to the inner ring 12 (input member) that rotates integrally with the input shaft 11 to which the driving force of the engine 3 (see FIG. 1) is input, and the transmission 5 (see FIG. 1).
  • a first outer ring 15 (output member) that rotates integrally with the shaft 14, a first roller 17 that is interposed between the inner ring 12 and the first outer ring 15, and a restriction device that restricts axial movement of the first outer ring 15. 30.
  • the inner ring 12 is a member that has a function of transmitting the power of the input shaft 11, and an input raceway surface 13 that forms a single lobe rotating hyperboloid around the central axis O is formed on the outer peripheral surface.
  • the inner ring 12 is restricted from rotating with respect to the input shaft 11 by a spline and is also restricted from moving in the axial direction with respect to the input shaft 11 by a retaining ring.
  • the first outer ring 15 is a member responsible for the function of transmitting the power of the input shaft 11 to the output shaft 14 together with the inner ring 12, and the output raceway surface 16 forming a single lobe hyperboloid around the central axis O is formed on the inner peripheral surface. Is formed.
  • the first outer ring 15 is disposed on the outer side in the radial direction of the inner ring 12, and is coupled to the output shaft 14 via the moving member 19.
  • the moving member 19 is a member for transmitting the power of the first outer ring 15 to the output shaft 14 and moving the first outer ring 15 in the axial direction.
  • the moving member 19 is integrated with the first outer ring 15 by a retaining ring.
  • the movement member 19 is restricted from rotating with respect to the output shaft 14 by the ball spline and is allowed to move in the axial direction with respect to the output shaft 14.
  • the input raceway surface 13 of the inner ring 12 and the output raceway surface 16 of the first outer ring 15 face each other in the axial direction and increase in diameter as they approach the moving member 19 side in the axial direction.
  • FIG. 3 is a perspective view of the inner ring 12 and the cage 18 showing the arrangement of the first rollers 17.
  • the first roller 17 is a member formed in a cylindrical shape, and a plurality of first rollers 17 are held between the input raceway surface 13 (see FIG. 2) and the output raceway surface 16 by the cage 18.
  • the cage 18 holds the first rollers 17 spaced apart from each other so that the first rollers 17 can rotate smoothly without interfering with each other.
  • the first roller 17 is inclined by a certain angle ⁇ with respect to the plane including the central axis O (set to a constant skew angle ⁇ with respect to the central axis O), and the outer circumference of the input raceway surface 13 and the output raceway surface 16. It arrange
  • the skew angle ⁇ of the first roller 17 and the taper angle 2 ⁇ (see FIG. 2) of the input raceway surface 13 and the output raceway surface 16 are the inner ring 12 and the first outer ring 15 when power is transmitted from the input shaft 11 to the output shaft 14.
  • the inner ring 12 Since the inner ring 12 is restricted from moving in the axial direction, when the first roller 17 is engaged and screwed into the inner ring 12 and the first outer ring 15, the axial direction between the input raceway surface 13 and the output raceway surface 16 is increased.
  • the first outer ring 15 moves in the axial direction (left side in FIG. 2) with the moving member 19 so that the distance becomes smaller.
  • the radius and mass of the first outer ring 15 and the first roller 17 are set smaller than the radius and mass of the clutch 4 (see FIG. 1). Therefore, the inertia generated by the rotational motion of the first outer ring 15 and the first roller 17 is smaller than the inertia generated by the rotational motion of the clutch 4.
  • the rotating member 20 is a disk-shaped portion that projects outward in the radial direction of the input shaft 11, and is integrated with the input shaft 11.
  • the rotating member 20 is a member for supporting the second outer ring 21 so as to be movable in the axial direction and the circumferential direction.
  • the rotating member 20 is disposed on the opposite side of the moving member 19 in the axial direction across the inner ring 12.
  • the second outer ring 21 is a member having a function of transmitting the power of the output shaft 14 to the input shaft 11 together with the first outer ring 15, and is arranged on the outer side in the radial direction of the first outer ring 15.
  • the second outer ring 21 has a second raceway surface 22 forming a single-leaf rotating hyperboloid around the central axis O formed on the inner peripheral surface.
  • a first raceway surface 23 that faces the second raceway surface 22 of the second outer ring 21 is formed on the outer peripheral surface of the first outer ring 15.
  • the first raceway surface 23 is a single leaf rotation hyperboloid around the central axis O.
  • the first raceway surface 23 of the first outer ring 15 and the second raceway surface 22 of the second outer ring 21 face each other in the axial direction and increase in diameter as they move away from the moving member 19 in the axial direction.
  • a second roller 24 is interposed between the first raceway surface 23 of the first outer ring 15 and the second raceway surface 22 of the second outer ring 21.
  • the second roller 24 is disposed so as to be inclined by a certain angle with respect to the plane including the central axis O (set to a constant skew angle with respect to the central axis O), and the first trajectory.
  • the outer peripheral surface is formed in a cylindrical shape in which the surface 23 and the second raceway surface 22 are in linear contact (line contact).
  • the skew angle of the second roller 24 and the taper angle 2 ⁇ of the first raceway surface 23 and the second raceway surface 22 are the same as those of the first outer ring 15 and the second outer ring 21 when power is transmitted from the input shaft 11 to the output shaft 14.
  • the second rollers 24 are set to engage with the first outer ring 15 and the second outer ring 21.
  • the disc spring 25 (first biasing spring) is a distance in the axial direction (center axis O direction) between the input raceway surface 13 of the inner ring 12 and the output raceway surface 16 of the first outer ring 15, and the first raceway surface 23. This is a member for urging the first outer ring 15 in the direction of reducing the axial distance from the second raceway surface 22, and is disposed between the rotating member 20 and the end surface of the first outer ring 15.
  • the disc spring 26 (second biasing spring) is a spring whose elastic force is set to be smaller than that of the disc spring 25, and the axial direction (center) between the input raceway surface 13 of the inner ring 12 and the output raceway surface 16 of the first outer ring 15.
  • the second outer ring 21 is biased in the direction of increasing the distance in the direction of the axis O).
  • the disc spring 26 is disposed between the rotating member 20 and the second outer ring 21, and the disc spring 26 comes into contact with the rotating member 20 and the second outer ring 21 to generate a frictional force.
  • the restriction device 30 is a device for restricting the movement in the axial direction of the moving member 19 to which the first outer ring 15 is coupled.
  • the restriction device 30 is moved through the first member via the moving member 19.
  • the movement of the outer ring 15 in the axial direction is appropriately stopped. As a result, torque exceeding a certain level can be prevented from being transmitted, so that the torque can be appropriately cut.
  • the limiting device 30 includes a worm wheel 31 and a worm 32.
  • the worm wheel 31 is a member that is coupled to the moving member 19 and integrally rotates around the central axis O, and the movement of the moving member 19 in the axial direction is restricted by a retaining ring.
  • the worm 32 is a member that meshes with the worm wheel 31, and is driven around a rotation shaft 33 (axis orthogonal to the center axis O) by a motor (not shown).
  • a motor not shown.
  • the worm 32 Since the worm 32 is restricted from moving in the axial direction (the direction of the central axis O), the worm 32 restrains the worm wheel 31 by self-locking even if torque is not input from a motor (not shown). On the other hand, when the worm 32 is driven by a motor (not shown), the worm wheel 31 can be rotated. Further, when the worm 32 is driven by a motor (not shown) in accordance with the rotation of the worm wheel 31, the worm 32 can be prevented from restraining the worm wheel 31.
  • the structure of the rotating member 20 will be described with reference to FIG. 4 is a cross-sectional view of the power transmission device 10 taken along line IV-IV in FIG.
  • the second outer ring 21 is disposed so as to be rotatable relative to the rotating member 20.
  • the rotating member 20 is formed with two arc-shaped grooves 40 with the central axis O as the center of symmetry on the end face in the axial direction (a plane parallel to the paper surface of FIG. 4).
  • the groove 40 is a portion in which a first spring 41 and a second spring 42 (spring), which are compression coil springs, are accommodated side by side in the circumferential direction (longitudinal direction).
  • the rotating member 20 is provided with four convex portions 43 with which the engaging portions 44 of the second outer ring 21 abut.
  • the convex portion 43 is a portion that protrudes from the end surface in the axial direction of the rotating member 20 to the moving member 19 side (the front side in FIG. 4), and the radial direction (short side) of the two grooves 40 with the central axis O as a symmetrical center. 2 at the outer side of the direction), with a total of four places arranged at equal intervals.
  • the engaging portion 44 is a portion that rotates integrally with the second outer ring 21 and is disposed at two locations with the central axis O as the center of symmetry.
  • the engaging portion 44 and the convex portion 43 are portions for setting a play in the rotational direction around the central axis O.
  • the engaging portion 44 is disposed so as to pass between the convex portions 43, and a part of the engaging portion 44 is sandwiched between the first spring 41 and the second spring 42 while being inserted in the center in the circumferential direction of the groove 40. Yes. Since the first spring 41 and the second spring 42 are accommodated in the groove 40 in a compressed state, the engaging portion 44 is pressed from both sides so that the engaging portion 44 is positioned at the center of the groove 40.
  • FIG. 5 is a diagram showing the relationship between the displacement of the rotating member 20 relative to the second outer ring 21 and the force.
  • FIG. 6A is a cross-sectional view of the power transmission device 10 when torque is transmitted from the input shaft 11 to the output shaft 14, and
  • FIG. 6B is a diagram when torque is transmitted from the output shaft 14 to the input shaft 11.
  • 1 is a cross-sectional view of a power transmission device 10.
  • FIG. 5 the displacement x of the rotating member 20 relative to the second outer ring 21 is on the horizontal axis, and the force F is on the vertical axis.
  • the arrows in FIGS. 6A and 6B indicate the rotation direction of the rotating member 20 relative to the second outer ring 21.
  • the rotating member 20 since the rotating member 20 is integrated with the input shaft 11, the rotating member 20 rotates integrally with the input shaft 11. Since a part of the engaging portion 44 is inserted into the groove 40, the second outer ring 21 is relative to the rotating member 20 around the central axis O within a range in which the engaging portion 44 can move along the groove 40. It rotates (see FIG. 4). Since the convex portion 43 limits the movement range of the engaging portion 44, the range in which the engaging portion 44 can move along the groove 40 is the distance 2 ⁇ x 0 between the convex portions 43.
  • Displacement x of the second outer ring 21 to the initial position x 1 of the rotating member 20 at the time of transmitting the torque from the output shaft 14 to the input shaft 11 is also 0 ⁇ x ⁇ x 0.
  • the second outer ring 21 rotates with respect to the rotating member 20.
  • the torque is large and the force exceeds F 0 , the second outer ring 21 slides with respect to the rotating member 20 by the disc spring 26. Therefore, when the displacement is less than the maximum displacement x 0 , the rotating member 20 is compressed while compressing the first spring 41. In contrast, the second outer ring 21 rotates relatively.
  • the engagement portion 44 of the second outer ring 21 as shown in FIG. 6 (b) abuts on the projection 43 of the rotary member 20, the rotating member 20 to bring the second outer ring 21 is Rotate.
  • the first outer ring 15 rotates so as to reduce the axial distance between the input raceway surface 13 and the output raceway surface 16 according to the magnitude of the torque. However, it moves in the axial direction (direction away from the disc spring 25).
  • the first roller 17 is engaged with the inner ring 12 and the first outer ring 15, and power is transmitted from the inner ring 12 to the first outer ring 15.
  • the first roller 17 engages with the inner ring 12 and the first outer ring 15 without slipping, and torque is transmitted from the inner ring 12 to the first outer ring 15 via the first roller 17. 12 rotates and the transmission torque increases. Since a torsional damper effect is obtained with respect to an increase in transmission torque, a shock during torque transmission can be absorbed.
  • the moving member 19 and the worm wheel 31 are coupled to the first outer ring 15, as the first outer ring 15 rotates and moves in the axial direction, the moving member 19 and the worm wheel 31 also move in the axial direction while rotating. Since the worm 32 is rotationally driven so as not to restrain the worm wheel 31, the worm 32 can be prevented from obstructing the rotation and axial movement of the worm wheel 31. As a result, the state in which the first roller 17 is engaged with the inner ring 12 and the first outer ring 15 continues, and thus the state in which torque is transmitted from the input shaft 11 to the output shaft 14 continues.
  • the worm wheel 31 When cutting the torque transmitted from the input shaft 11 to the output shaft 14, the worm wheel 31 is pressed against the worm 32 by stopping the worm 32 or decreasing the rotational speed. When axial thrust is generated in the worm wheel 31 and the worm 32, the worm 32 restrains the worm wheel 31 by self-locking. As a result, when the movement of the moving member 19 and the first outer ring 15 in the axial direction is restricted, the axial distance between the input raceway surface 13 and the output raceway surface 16 is not further reduced, and the first roller 17 Rolling is regulated. Since slip occurs between the inner ring 12 and the first outer ring 15 and the first roller 17 and the torque does not increase any more, the limiting device 30 becomes a torque limiter. As a result, a peak torque larger than the transmission torque from the input shaft 11 to the output shaft 14 can be cut.
  • the second roller 24 that linearly contacts the first outer ring 15 and the second outer ring 21 by the biasing force of the disc spring 25 rotates around the central axis O while rotating. Revolve.
  • the second roller 24 and the first raceway surface 23 of the first outer ring 15 are displaced in the radial direction by the rotation of the second roller 24, and the second raceway surface 22 moves while being elastically deformed in the radial direction by the displacement.
  • the second outer ring 21 moves in the axial direction (the direction away from the disc spring 26) while rotating so as to reduce the axial distance between the first raceway surface 23 and the second raceway surface 22.
  • the second roller 24 engages with the first outer ring 15 and the second outer ring 21, and power is transmitted from the first outer ring 15 to the second outer ring 21.
  • FIG. 7 is a diagram showing the torsion angle-torque characteristics of the power transmission device 10, with the torsion angle ⁇ on the horizontal axis and the torque N on the vertical axis. 7 is a relative displacement (angle) of the rotating member 20 with respect to the second outer ring 21, and when the rotating member 20 drives the second outer ring 21 (power is transferred from the input shaft 11 to the output shaft 14).
  • drive When transmitting, hereinafter referred to as “drive”) is positive (+ ⁇ ), and when the second outer ring 21 inertially drives the rotating member 20 (when transmitting power from the output shaft 14 to the input shaft 11, hereinafter “coast”). Is negative ( ⁇ ).
  • the first roller 17 rotates around the central axis O while rotating between the input raceway surface 13 and the output raceway surface 16. Revolve.
  • the inner ring 12 and the first outer ring 15 are relatively moved in the axial direction, and the first roller 17 is engaged with the inner ring 12 and the first outer ring 15.
  • Attenuation characteristics can be secured from a small torque region to a large region by the rotation and revolution of the first roller 17, the elastic deformation of the first roller 17, the input raceway surface 13, and the output raceway surface 16. Therefore, a large torque fluctuation can be absorbed as compared with a damper that absorbs the torque fluctuation using the elastic deformation of the coil spring.
  • the power transmission device 10 includes a second roller 24 between a first raceway surface 23 that rotates integrally with the first outer ring 15 and a second raceway surface 22 that rotates integrally with the inner ring 12 via the rotation member 20. There are several intervening.
  • the second roller 24 is set to a predetermined skew angle with respect to the central axis O, and engages with the first track surface 23 and the second track surface 22 by relative rotation of the inner ring 12 in the reverse direction with respect to the first outer ring 15. Torque can be transmitted from the transmission 5 side to the engine 3 side by the second roller 24.
  • the disc spring 25 (first biasing spring) has an axial distance between the input raceway surface 13 and the output raceway surface 16, and an axis between the first raceway surface 23 and the second raceway surface 22. Energize in the direction to reduce the distance in the direction. The first roller 17 and the second roller 24 can be easily engaged by the disc spring 25.
  • a play C (x 0 ) in the rotation direction of the second raceway surface 22 with respect to the input raceway surface 13 is formed by the convex portion 43 and the engagement portion 44 on the rotation member 20 that rotates integrally with the inner ring 12.
  • the play C has a size in the rotation direction when the first roller 17 is engaged with the input raceway surface 13 and the output raceway surface 16 by the relative rotation of the first outer ring 15 with respect to the inner ring 12 and the maximum torque is transmitted.
  • the play C is set to a magnitude corresponding to twice the torsion angle ( ⁇ 1 ⁇ 2)
  • the relationship between the input raceway surface 13 and the output raceway surface 16 and the first roller 17 is increased.
  • the time until the first raceway surface 23 and the second raceway surface 22 and the second roller 24 are engaged after the engagement is released can be shortened. Therefore, it is possible to shorten the time during which the first roller 17 and the second roller 24 idle (the time during which the absorbable torque is small).
  • a first spring 41 and a second spring 42 are disposed in the groove 40 to urge the second raceway surface 22 in the rotational direction against the rotating member 20 that rotates integrally with the input raceway surface 13.
  • the first roller 17 is engaged with the inner ring 12 and the first outer ring 15
  • the second spring 42 is compressed and the elastic force is stored.
  • the second spring 42 is restored, and the stored elastic force is released.
  • the first spring 41 is compressed and the elastic force is stored.
  • the first spring 41 is restored, and the stored elastic force is released. Accordingly, the first spring 41 and the second spring 42 can prevent the play due to the play C formed on the rotating member 20. Therefore, switching between engagement and release of the first roller 17 and the second roller 24 can be performed smoothly.
  • the second raceway surface 22 (second outer ring 21) rotates integrally with the rotating member 20 by a frictional force in the rotating direction against the rotating member 20 by the disc spring 26 (biasing spring).
  • the first spring 41 and the second spring 42 (spring) are set so that the elastic force at the initial position is larger than the frictional force in the rotational direction by the disc spring 26, so that the rotational force applied to the second raceway surface 22 is frictional. If it is larger than the force, the first spring 41 and the second spring 42 are elastically deformed. Therefore, rattling when the second raceway surface 22 rotates integrally with the rotating member 20 can be prevented.
  • the power transmission device 10 has the limiting device 30, the torque transmitted from the input shaft 11 to the output shaft 14 by restraining the worm wheel 31 by the worm 32 can be appropriately cut. Since the worm 32 restrains the worm wheel 31 by self-locking, a motor (not shown) that drives the worm 32 does not need a large output (torque) that restricts the rotation of the worm wheel 31, and controls the worm 32. It is sufficient if there is enough output to generate thrust in the axial direction. Therefore, an inexpensive and small motor with a small rated torque can be used to drive the worm 32.
  • the restriction device 30 can be omitted.
  • the present invention has been described above based on the embodiments. However, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. It can be easily guessed.
  • the number of first rollers 17, the skew angle ⁇ , the inclination of the input raceway surface 13 and the output raceway surface 16 with respect to the central axis O, and the like can be set as appropriate.
  • the power transmission device 10 mounted on an automobile has been described, but the present invention is not necessarily limited thereto.
  • the power transmission device 10 can be mounted on another vehicle.
  • Other vehicles include construction machinery, industrial vehicles, agricultural machinery, and the like.
  • the present invention is not necessarily limited thereto. It is naturally possible to provide the power transmission device 10 in place of the clutch 4 by adding a flywheel or the like.
  • the power transmission device 10 in which the inner ring 12 is coupled to the input shaft 11 and the first outer ring 15 is coupled to the output shaft 14 has been described, but the present invention is not necessarily limited thereto.
  • the moving member 19 is coupled to the first outer ring 15 (output member) and the movement of the moving member 19 in the axial direction is restricted by the restriction device 30 has been described.
  • the present invention is not necessarily limited thereto.
  • a moving member is coupled to the inner ring 12 (input member), and the axis of the moving member It is naturally possible to limit the movement in the direction by the limiting device 30.
  • the rotating member 20 coupled to the input shaft 11 rotates integrally with the inner ring 12 (input member)
  • the present invention is not necessarily limited thereto.
  • the rotating member 20 supports the first track surface.
  • the first spring 41 and the second spring 42 are accommodated in the groove 40 formed in the rotating member 20, and the positional relationship in the rotational direction between the rotating member 20 and the second outer ring 21 is determined.
  • the disc spring 26 is arranged at a position to be biased in the direction of increasing the axial distance between the input raceway surface 13 and the output raceway surface 16 .
  • the present invention is not necessarily limited to this.
  • the inner ring 12 and the second outer ring 21 can be integrally rotated through the rotating member 20 by utilizing the frictional force of the disc spring 26.
  • first spring 41 and the second spring 42 are formed by the compression coil spring.
  • present invention is not necessarily limited to this, and other springs can naturally be employed.
  • Other springs include torsion coil springs.
  • first spring 41 and the second spring 42 arranged on the rotating member 20 are set as a pair of springs and the biasing force in the rotational direction is applied using a total of four springs. It is not necessarily limited to this. At least a first spring that stores an elastic force when the first roller 17 engages with the inner ring 12 and the first outer ring 15, and a second roller 24 engages with the first outer ring 15 and the second outer ring 21. There may be a second spring that sometimes stores an elastic force.
  • the input raceway surface 13, the output raceway surface 16, the first raceway surface 23, and the second raceway surface 22 are made into a single leaf rotation hyperboloid, and the cylindrical first
  • the present invention is not necessarily limited to this, and it is natural that the first roller 17 and the second roller 24 such as an input raceway surface in other forms are employed. Is possible.
  • the input raceway surface or the like is a single-leaf rotating hyperboloid
  • the first roller 17 and the second roller 24 are conical
  • the input raceway surface or the like is a conical surface
  • the first roller 17 and the second roller 24 may be a drum shape, a drum shape, or a columnar shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Friction Gearing (AREA)

Abstract

エンジン(3)側から変速機(5)側へトルクを伝達するときは、第1コロ(17)は、第1外輪(15)に対する内輪(12)の相対回転により入力軌道面(13)と出力軌道面(16)との間を自転しつつ中心軸Oの回りを公転する。内輪(12)及び第1外輪(15)は軸方向に相対移動して、第1コロ(17)は内輪(12)及び第1外輪(15)に係合する。第1コロ(17)の自転や公転、入力軌道面(13)及び出力軌道面(16)の弾性変形等によってトルクの小さい領域から大きい領域に至るまで減衰特性を確保できるので、大きなトルク変動を吸収できる。

Description

動力伝達装置
 本発明は動力伝達装置に関し、特にトルク変動を吸収できる動力伝達装置に関するものである。
 燃費の向上のため、エンジンの排気量を小さくしたり気筒数を少なくしたりする技術(ダウンサイジング化)が研究され実用化されている。エンジンのトルク変動は、エンジンと変速機との間の動力伝達経路に配置されるダンパによって吸収される(特許文献1)。ダンパ(動力伝達装置)は、エンジンのダウンサイジング化によって増大するトルク変動を吸収することが要求される。
実公平3-34495号公報
 しかしながら上記従来の技術ではコイルばねの弾性変形を利用してトルク変動を吸収するので、トルクの小さい領域から大きい領域に至るまで減衰特性を確保することが困難であり、大きなトルク変動を吸収できないという問題点がある。
 本発明は、上述した問題点を解決するためになされたものであり、大きなトルク変動を吸収できる動力伝達装置を提供することを目的としている。
課題を解決するための手段および発明の効果
 この目的を達成するために請求項1記載の動力伝達装置によれば、エンジンと変速機との間の動力伝達経路に配置される。所定のテーパ角を有する入力軌道面が形成された入力部材に動力が入力され、所定のテーパ角を有する出力軌道面が形成された出力部材は、入力部材に対して軸方向に相対移動可能に構成される。入力軌道面と出力軌道面との間に複数介在する複数の第1コロは、入力部材の中心軸に対して所定のスキュー角に設定される。第1コロは、出力部材に対する入力部材の一方向の相対回転により入力軌道面と出力軌道面との間を自転しつつ中心軸の回りを公転する。エンジン側から変速機側へトルクを伝達するときは、入力部材および出力部材は軸方向に相対移動して、第1コロは入力部材および出力部材に係合する。第1コロの自転や公転、第1コロ、入力軌道面および出力軌道面の弾性変形等によってトルクの小さい領域から大きい領域に至るまで減衰特性を確保できるので、大きなトルク変動を吸収できる効果がある。
 請求項2記載の動力伝達装置によれば、出力部材と一体的に回転する第1軌道面と、入力部材と一体的に回転する第2軌道面との間に第2コロが複数介在する。第1軌道面および第2軌道面は所定のテーパ角に設定される。第2コロは、入力部材の中心軸に対して所定のスキュー角に設定され、出力部材に対する入力部材の逆方向の相対回転により第1軌道面および第2軌道面と係合する。請求項1の効果に加え、第2コロによって変速機側からエンジン側へトルクを伝達できる効果がある。
 請求項3記載の動力伝達装置によれば、第1付勢ばねは、入力軌道面と出力軌道面との軸方向の距離、及び、第1軌道面と第2軌道面との軸方向の距離の両方を小さくする方向へ付勢する。請求項2の効果に加え、第1付勢ばねにより第1コロ及び第2コロを係合し易くできる効果がある。
 請求項4記載の動力伝達装置によれば、第2付勢ばねは、入力軌道面と出力軌道面との軸方向の距離、又は、第1軌道面と第2軌道面との軸方向の距離を大きくする方向へ付勢する。第2付勢ばねは、弾性力が、第1付勢ばねの弾性力より小さいので、請求項3の効果に加え、第1付勢ばねにより第1コロ及び第2コロを係合し易くしつつ、第2付勢ばねにより第1コロ又は第2コロを係合解除し易くできる効果がある。
 請求項5記載の動力伝達装置によれば、入力軌道面と第2軌道面との間に回転方向の遊びが形成される。遊びは、回転方向の大きさが、出力部材に対する入力部材の相対回転により入力軌道面および出力軌道面に第1コロが係合して最大のトルクを伝達するときの第1ねじれ角から、第1コロの係合が解除されてトルクがゼロのときの第2ねじれ角を減じて算出されるねじれ角の2倍に相当する大きさ以上に設定されている。従って、請求項2から4のいずれかの効果に加え、第1コロと第2コロとが同時に係合する2重かみあいを防止できる効果がある。
 請求項6記載の動力伝達装置によれば、出力軌道面と第1軌道面との間に回転方向の遊びが形成される。遊びは、回転方向の大きさが、出力部材に対する入力部材の相対回転により入力軌道面および出力軌道面に第1コロが係合して最大のトルクを伝達するときの第1ねじれ角から、第1コロの係合が解除されてトルクがゼロのときの第2ねじれ角を減じて算出されるねじれ角の2倍に相当する大きさ以上に設定されている。従って、請求項2から4のいずれかの効果に加え、第1コロと第2コロとが同時に係合する2重かみあいを防止できる効果がある。
 請求項7記載の動力伝達装置によれば、第1コロを介して入力軌道面と出力軌道面との間に動力が伝達されない状態で、ばねは、入力軌道面と第2軌道面との間、又は、出力軌道面と第1軌道面との間に回転方向の弾性力を付与する。請求項5又は6の効果に加え、ばねにより、遊びによるガタツキが生じないようにできる効果がある。
 請求項8記載の動力伝達装置によれば、第2付勢ばねは、入力軌道面と出力軌道面との軸方向の距離、又は、第1軌道面と第2軌道面との軸方向の距離を大きくする方向へ付勢する。第1軌道面または第2軌道面は、ばねによる回転方向の弾性力により出力軌道面または入力軌道面と一体的に回転する。ばねは、弾性力が、第2付勢ばねの軸方向の垂直抗力による摩擦力より大きく設定されているので、第1軌道面または第2軌道面に加わる力が摩擦力より大きいと弾性変形する。よって、請求項7の効果に加え、第1軌道面または第2軌道面が出力軌道面または入力軌道面と一体的に回転するときのガタツキを防止できる効果がある。
第1実施の形態における動力伝達装置が搭載された車両の模式図である。 模式的に図示した動力伝達装置の断面図である。 第1コロの配置を示す内輪および保持器の斜視図である。 図2のIV-IV線における動力伝達装置の断面図である。 第2外輪に対する回転部材の変位と力との関係を示す図である。 (a)は入力軸から出力軸へトルクを伝達するときの動力伝達装置の断面図であり、(b)は出力軸から入力軸へトルクを伝達するときの動力伝達装置の断面図である。 動力伝達装置のねじれ角-トルク特性である。
 以下、本発明の好ましい実施の形態について添付図面を参照して説明する。図1を参照して本発明の第1実施の形態における動力伝達装置10が搭載された車両1について説明する。車両1は、車体2に搭載されたエンジン3と変速機5との間の動力伝達経路に、エンジン3の駆動力を断接するクラッチ4が配置されている。変速機5の出力は、プロペラシャフト6及び差動装置7を介して駆動輪8に伝達される。駆動輪8及び従動輪9は車体2を支える。エンジン3と変速機5との間の動力伝達経路にトルク変動を吸収する動力伝達装置10が配置されている。
 図2は模式的に図示した動力伝達装置10の断面図(中心軸Oを含む切断面によって全体を1/4に切断した片側断面図)である。動力伝達装置10は、エンジン3(図1参照)の駆動力が入力される入力軸11と一体に回転する内輪12(入力部材)と、変速機5(図1参照)へ動力を出力する出力軸14と一体に回転する第1外輪15(出力部材)と、内輪12と第1外輪15との間に介在する第1コロ17と、第1外輪15の軸方向の移動を制限する制限装置30とを備えている。
 内輪12は、入力軸11の動力を伝達するための機能を担う部材であり、中心軸O回りの単葉回転双曲面をなす入力軌道面13が外周面に形成されている。内輪12は、スプラインによって入力軸11に対して回転が規制されると共に、止め輪によって入力軸11に対する軸方向の移動が規制されている。
 第1外輪15は、内輪12と共に入力軸11の動力を出力軸14に伝達するための機能を担う部材であり、中心軸O回りの単葉回転双曲面をなす出力軌道面16が内周面に形成されている。第1外輪15は、内輪12の径方向の外側に配置されており、移動部材19を介して出力軸14に結合されている。
 移動部材19は、第1外輪15の動力を出力軸14に伝達し、且つ、第1外輪15を軸方向に移動させるための部材である。移動部材19は、止め輪によって第1外輪15に一体化されている。移動部材19は、ボールスプラインによって出力軸14に対して回転が規制されると共に、出力軸14に対して軸方向の移動が許容される。内輪12の入力軌道面13及び第1外輪15の出力軌道面16は、軸方向に互いに対向し、且つ、移動部材19側に向かって軸方向へ近づくにつれて拡径する。
 図3は第1コロ17の配置を示す内輪12及び保持器18の斜視図である。第1コロ17は円柱状に形成される部材であり、保持器18によって入力軌道面13(図2参照)と出力軌道面16との間に複数が保持される。保持器18は、第1コロ17が相互に干渉することなく円滑に回転するように第1コロ17を互いに間隔をあけて保持する。
 第1コロ17は、中心軸Oを含む面に対して一定角度αだけ傾斜して(中心軸Oに対して一定のスキュー角αに設定され)、入力軌道面13及び出力軌道面16に外周面が線状に接触(線接触)できるように、入力軌道面13及び出力軌道面16の円周方向に配置される。第1コロ17のスキュー角α及び入力軌道面13及び出力軌道面16のテーパ角2β(図2参照)は、入力軸11から出力軸14へ動力を伝達する場合に内輪12及び第1外輪15に第1コロ17が係合し、出力軸14から入力軸11へ動力を伝達する場合に内輪12及び第1外輪15と第1コロ17との係合が解除するように設定される。
 内輪12は軸方向の移動が規制されているので、内輪12及び第1外輪15に第1コロ17が係合して捻じ込まれると、入力軌道面13と出力軌道面16との軸方向の距離が小さくなるように、第1外輪15は移動部材19を伴って軸方向(図2左側)へ移動する。なお、第1外輪15及び第1コロ17の半径および質量は、クラッチ4(図1参照)の半径および質量より小さく設定されている。従って、第1外輪15及び第1コロ17の回転運動によって発生するイナーシャは、クラッチ4の回転運動によって発生するイナーシャより小さい。
 図2に戻って説明する。回転部材20は、入力軸11の径方向の外側へ張り出す円盤状の部位であり、入力軸11と一体化されている。回転部材20は、第2外輪21を軸方向および周方向へ移動可能に支持するための部材である。回転部材20は、内輪12を挟んで移動部材19の軸方向の反対側に配置されている。
 第2外輪21は、第1外輪15と共に出力軸14の動力を入力軸11に伝達するための機能を担う部材であり、第1外輪15の径方向の外側に配置されている。第2外輪21は、中心軸O回りの単葉回転双曲面をなす第2軌道面22が内周面に形成されている。第2外輪21の第2軌道面22と対向する第1軌道面23が、第1外輪15の外周面に形成されている。第1軌道面23は中心軸O回りの単葉回転双曲面である。第1外輪15の第1軌道面23及び第2外輪21の第2軌道面22は、軸方向に互いに対向し、且つ、移動部材19から軸方向へ離れるにつれて拡径する。第1外輪15の第1軌道面23と第2外輪21の第2軌道面22との間に第2コロ24が介在する。
 第2コロ24は、第1コロ17と同様に、中心軸Oを含む面に対して一定角度だけ傾斜して配置され(中心軸Oに対して一定のスキュー角に設定され)、第1軌道面23及び第2軌道面22に外周面が線状に接触(線接触)する円柱状に形成されている。第2コロ24のスキュー角および第1軌道面23及び第2軌道面22のテーパ角2γは、入力軸11から出力軸14へ動力を伝達する場合に第1外輪15及び第2外輪21と第2コロ24との係合が解除され、出力軸14から入力軸11へ動力を伝達する場合に第1外輪15及び第2外輪21に第2コロ24が係合するように設定されている。
 皿ばね25(第1付勢ばね)は、内輪12の入力軌道面13と第1外輪15の出力軌道面16との軸方向(中心軸O方向)の距離、及び、第1軌道面23と第2軌道面22との軸方向の距離を小さくする方向へ第1外輪15を付勢するための部材であり、回転部材20と第1外輪15の端面との間に配置されている。皿ばね26(第2付勢ばね)は、皿ばね25より弾性力が小さく設定されるばねであり、内輪12の入力軌道面13と第1外輪15の出力軌道面16との軸方向(中心軸O方向)の距離を大きくする方向へ第2外輪21を付勢する。皿ばね26は回転部材20と第2外輪21との間に配置されており、皿ばね26が回転部材20及び第2外輪21にそれぞれ接触して摩擦力が発生する。
 制限装置30は、第1外輪15が結合する移動部材19の軸方向の移動を制限するための装置である。制限装置30は、内輪12の入力軌道面13と第1外輪15の出力軌道面16との間に第1コロ17が係合して捻じ込まれたときに、移動部材19を介して第1外輪15の軸方向の移動を適宜停止させる。その結果、一定以上のトルクが伝達されないようにできるので、トルクを適宜カットできる。制限装置30はウォームホイール31及びウォーム32を備えている。
 ウォームホイール31は移動部材19に結合して一体に中心軸O回りを回転する部材であり、止め輪によって移動部材19に対する軸方向の移動が規制されている。ウォーム32はウォームホイール31に噛み合う部材であり、モータ(図示せず)により回転軸33(中心軸Oに直交する軸)を中心に駆動される。ウォームホイール31及びウォーム32は、ウォームホイール31の回転により軸方向の推力が生じると、セルフロックによりウォームホイール31をウォーム32が拘束するように摩擦係数および中心軸O(図2参照)に対する角度が設定されている(例えばウォーム32の進み角を小さくする等)。ウォーム32は軸方向(中心軸O方向)の移動が規制されているので、ウォーム32はモータ(図示せず)からトルクが入力されなくてもセルフロックによりウォームホイール31を拘束する。一方、モータ(図示せず)によりウォーム32を駆動すると、ウォームホイール31を回転させることができる。また、ウォームホイール31の回転に合わせてモータ(図示せず)によりウォーム32を駆動すると、ウォーム32がウォームホイール31を拘束しないようにできる。
 図4を参照して回転部材20の構造について説明する。図4は図2のIV-IV線における動力伝達装置10の断面図である。第2外輪21は、回転部材20に対して相対回転可能に配置されている。回転部材20は、軸方向の端面(図4紙面に平行な面)に中心軸Oを対称中心とする2つの円弧状の溝40が形成されている。溝40は、圧縮コイルバネである第1ばね41及び第2ばね42(ばね)が周方向(長手方向)に並んで収容される部位である。回転部材20は、第2外輪21の係合部44が当接する凸部43が4か所に設けられている。凸部43は回転部材20の軸方向の端面から移動部材19側(図4紙面手前側)へ突出する部位であり、中心軸Oを対称中心にして、2つの溝40の径方向(短手方向)の外側に2つずつ、合計4か所に等間隔に配置されている。
 係合部44は第2外輪21と一体に回転する部位であり、中心軸Oを対称中心にして2か所に配置されている。係合部44及び凸部43は、中心軸Oを中心とする回転方向の遊びを設定するための部位である。係合部44は凸部43の間を通るように配置されており、一部が、溝40の周方向の中央に挿入された状態で第1ばね41と第2ばね42とに挟まれている。第1ばね41及び第2ばね42は圧縮された状態で溝40に収容されるので、溝40の中央に係合部44が位置するように係合部44を両側から押し付ける。
 図4から図6を参照して回転部材20及び第2外輪21の動作について説明する。図5は第2外輪21に対する回転部材20の変位と力との関係を示す図である。図6(a)は入力軸11から出力軸14へトルクを伝達するときの動力伝達装置10の断面図であり、図6(b)は出力軸14から入力軸11へトルクを伝達するときの動力伝達装置10の断面図である。図5は第2外輪21に対する回転部材20の変位xを横軸に、力Fを縦軸にとっている。図6(a)及び図6(b)の矢印は第2外輪21に対する回転部材20の回転方向を示している。
 図2に示すように回転部材20は入力軸11に一体化されているので、回転部材20は入力軸11と一体に回転する。第2外輪21は、係合部44の一部が溝40に挿入されているので、溝40に沿って係合部44が移動できる範囲内で中心軸O回りを回転部材20に対して相対回転する(図4参照)。凸部43は係合部44の移動範囲を制限するので、溝40に沿って係合部44が移動できる範囲は、凸部43間の距離2・xである。
 係合部44は第1ばね41及び第2ばね42に両側から押し付けられるので、第2外輪21に対して回転部材20が相対回転すると、第1ばね41及び第2ばね42の内いずれかが圧縮され、第1ばね41及び第2ばね42の内いずれかが伸長する。図5に示すように第2ばね42のばね定数をk、入力軸11から出力軸14へトルクを伝達するときの第2外輪21に対する回転部材20の変位をxとすると、第2ばね42の弾性力FはF=kxと表される。入力軸11から出力軸14へトルクを伝達するときの第2外輪21の初期位置x(凸部43間の中間に係合部44が存在する位置、図4参照)に対する回転部材20の変位xは、凸部43によって制限されるので0≦x≦xである。
 第1ばね41についても、第2ばね42と同様にばね定数をk、出力軸14から入力軸11へトルクを伝達するときの回転部材20に対する第2外輪21の変位をxとすると、第1ばね41の弾性力FはF=kxと表される。出力軸14から入力軸11へトルクを伝達するときの回転部材20の初期位置xに対する第2外輪21の変位xも0≦x≦xである。
 皿ばね26は、第2外輪21と回転部材20とを軸方向(中心軸O方向)へ付勢するので、皿ばね26の弾性力による垂直抗力をP、皿ばね26の静止摩擦係数をμとすると、皿ばね26による第2外輪21に対する回転部材20の回転方向の最大静止摩擦力FはF=Pμと表される。図5に示すように動力伝達装置10は、最大静止摩擦力Fが、第2外輪21が初期位置(変位x)にあるときの第2ばね42の弾性力F=kxより小さく設定されている。
 入力軸11から出力軸14へトルクを伝達するときは、入力軸11に入力されるトルクが小さく力がF以下のときには、第2ばね42に力は伝達されずに、皿ばね26の摩擦力によって回転部材20に連れて第2外輪21が回転する。一方、トルクが大きく力がFを超えるときは、皿ばね26により第2外輪21に対して回転部材20が滑るので、最大変位x未満のときに、第2ばね42を圧縮しながら第2外輪21に対して回転部材20が相対回転する。最大変位xに達すると、図6(a)に示すように回転部材20の凸部43が第2外輪21の係合部44に当接するので、回転部材20に連れて第2外輪21が回転する。
 出力軸14から入力軸11へトルクを伝達するときは、回転部材20に対して第2外輪21が回転する。トルクが大きく力がFを超えるときは、皿ばね26により回転部材20に対して第2外輪21が滑るので、最大変位x未満のときに、第1ばね41を圧縮しながら回転部材20に対して第2外輪21が相対回転する。最大変位xに達すると、図6(b)に示すように第2外輪21の係合部44が回転部材20の凸部43に当接するので、第2外輪21に連れて回転部材20が回転する。一方、第2外輪21に入力されるトルクが小さく力がF以下のときには、第1ばね41に力は伝達されずに、皿ばね26の摩擦力によって第2外輪21に連れて回転部材20が回転する。
 次に動力伝達装置10の使用方法について説明する。エンジン3(図1参照)からクラッチ4及び変速機5を介して駆動輪8へ動力を伝達するときには、モータ(図示せず)を駆動して、ウォーム32を回転させてウォームホイール31が拘束されないようにする。入力軸11を介して内輪12が回転すると、皿ばね25の付勢力によって内輪12及び第1外輪15に線状に接触する第1コロ17が、自転しながら中心軸O回りを公転する。第1コロ17の回転によって第1コロ17及び第1外輪15の出力軌道面16が径方向に変位し、出力軌道面16は、それらの変位によって径方向に弾性変形しながら移動する。
 内輪12は軸方向の移動が規制されているので、第1外輪15は、トルクの大きさに応じて入力軌道面13と出力軌道面16との軸方向の距離を小さくするように、回転しながら軸方向(皿ばね25から離れる方向)へ移動する。これにより内輪12及び第1外輪15に第1コロ17が係合し、内輪12から第1外輪15へ動力が伝達される。第1コロ17は滑ることなく内輪12及び第1外輪15に係合し、第1コロ17を介して内輪12から第1外輪15にトルクが伝達されるので、第1外輪15に対して内輪12が回転して伝達トルクが増大する。伝達トルクの増加に対してねじれダンパ効果が得られるので、トルク伝達時のショックを吸収できる。
 なお、入力軸11にトルクが入力されても、第2コロ24は第1外輪15及び第2外輪21に係合できない。但し、入力軸11に入力されるトルクが大きく力がFを超えるときは、最大変位xに達すると、図6(a)に示すように回転部材20の凸部43が第2外輪21の係合部44に当接するので、回転部材20に連れて第2外輪21が回転する。
 移動部材19及びウォームホイール31は第1外輪15に結合しているので、第1外輪15の回転および軸方向の移動に伴い、移動部材19及びウォームホイール31も回転しながら軸方向へ移動する。ウォームホイール31を拘束しないようにウォーム32が回転駆動されているので、ウォームホイール31の回転および軸方向の移動をウォーム32が妨げないようにできる。これにより内輪12及び第1外輪15に第1コロ17が係合した状態が続くので、入力軸11から出力軸14へトルクを伝達する状態が続く。
 入力軸11から出力軸14へ伝達するトルクをカットするときには、ウォーム32の停止ないしは回転数の低下により、ウォームホイール31をウォーム32に押し付ける。ウォームホイール31及びウォーム32に軸方向の推力が生じると、セルフロックによりウォーム32がウォームホイール31を拘束する。その結果、移動部材19及び第1外輪15の軸方向の移動が規制されると、入力軌道面13と出力軌道面16との軸方向の距離がそれ以上は小さくならず、第1コロ17の転がりが規制される。内輪12及び第1外輪15と第1コロ17との間にすべりが発生してそれ以上はトルクが増加しなくなるので、制限装置30はトルクリミッタとなる。その結果、入力軸11から出力軸14への伝達トルクより大きなピークトルクをカットできる。
 車両1のコースト走行など、駆動輪8から変速機5を介して動力伝達装置10に動力が入力されるときには、出力軸14から移動部材19を介して第1外輪15に動力が伝達される。第1外輪15が駆動するときは、第1コロ17は内輪12及び第1外輪15に係合できないが、第1外輪15及び第2外輪21に第2コロ24が係合できる。
 移動部材19を介して第1外輪15が回転すると、皿ばね25の付勢力によって第1外輪15及び第2外輪21に線状に接触する第2コロ24が、自転しながら中心軸O回りを公転する。第2コロ24の回転によって第2コロ24及び第1外輪15の第1軌道面23が径方向に変位し、第2軌道面22は、それらの変位によって径方向に弾性変形しながら移動する。第2外輪21は、第1軌道面23と第2軌道面22との軸方向の距離を小さくするように、回転しながら軸方向(皿ばね26から離れる方向)へ移動する。これにより第1外輪15及び第2外輪21に第2コロ24が係合し、第1外輪15から第2外輪21へ動力が伝達される。
 回転部材20に対して第2外輪21が回転すると、トルクが大きく力がFを超えるときは、皿ばね26により回転部材20に対して第2外輪21が滑るので、最大変位x以下のときに、第1ばね41を圧縮しながら回転部材20に対して第2外輪21が相対回転する。最大変位xに達すると、図6(b)に示すように第2外輪21の係合部44が回転部材20の凸部43に当接するので、第2外輪21に連れて回転部材20が回転する。一方、第2外輪21に入力されるトルクが小さく力がF以下のときには、第1ばね41に力は伝達されずに、皿ばね26の摩擦力によって第2外輪21に連れて回転部材20が回転する。これらの結果、回転部材20に連れて回転する入力軸11にトルクが伝達される。
 図7を参照して第1コロ17と第2コロ24との関係について説明する。図7は動力伝達装置10のねじれ角-トルク特性を示す図であり、ねじれ角θを横軸にとり、トルクNを縦軸にとっている。図7に示すねじれ角θは第2外輪21に対する回転部材20の相対的な変位(角度)であり、回転部材20が第2外輪21を駆動するとき(入力軸11から出力軸14へ動力を伝達するとき、以下「ドライブ」と称す)を正(+θ)、第2外輪21が回転部材20を慣性駆動するとき(出力軸14から入力軸11へ動力を伝達するとき、以下「コースト」と称す)を負(-θ)とする。
 第1コロ17を介してトルクを伝達するドライブのときは(図7上図)、内輪12と第1外輪15との間に第1コロ17が係合して入力軸11から出力軸14へトルクが伝達される。入力軸11(回転部材20)にトルクが加えられると、圧縮される第2ばね42のばね定数の関係で変位(ねじれ)が発生する。ねじれ角θが大きくなるにつれてトルクNが増加する。最大のねじれ角θ1(第1ねじれ角)は、回転部材20の凸部43が第2外輪21の係合部44に当接するときである(図6(a)参照)。
 車両1のコースト走行など、内輪12と第1外輪15との間に第1コロ17が係合した状態で出力軸14が入力軸11を慣性駆動するときは、回転部材20に対して第2外輪21が回転し、伸長する第2ばね42のばね定数の関係で変位(ねじれ)が小さくなる。内輪12と第1外輪15との相対回転によって、内輪12及び第1外輪15と第1コロ17との係合が解除されるとトルクはゼロになるが、ヒステリシスロスによりねじれ角θ2(第2ねじれ角)が残る。動力伝達装置10は、凸部43間の距離と係合部44の幅との関係で設定される遊びC(C=x)が、ねじれ角θ1からねじれ角θ2を減じて算出されるねじれ角(θ1-θ2)の2倍に相当する大きさ以上に設定されている(θ1-θ2≦2x)。特に本実施の形態では、遊びC=θ1-θ2に設定されている。
 第2コロ24を介してトルクを伝達するコーストのときは(図7下図)、第1外輪15と第2外輪21との間に第2コロ24が係合して出力軸14から入力軸11へトルクが伝達される。第2外輪21にトルクが加えられると、圧縮される第1ばね41のばね定数の関係で変位(ねじれ)が発生する。ねじれ角θの絶対値が大きくなるにつれてトルクNが増加する。
 動力伝達装置10によれば、エンジン3側から変速機5側へトルクを伝達するときは、第1コロ17は入力軌道面13と出力軌道面16との間を自転しつつ中心軸Oの回りを公転する。内輪12及び第1外輪15は軸方向に相対移動して、第1コロ17は内輪12及び第1外輪15に係合する。第1コロ17の自転や公転、第1コロ17、入力軌道面13及び出力軌道面16の弾性変形等によってトルクの小さい領域から大きい領域に至るまで減衰特性を確保できる。よって、コイルばねの弾性変形を利用してトルク変動を吸収するダンパに比べ、大きなトルク変動を吸収できる。
 動力伝達装置10は、第1外輪15と一体的に回転する第1軌道面23と、回転部材20を介して内輪12と一体的に回転する第2軌道面22との間に第2コロ24が複数介在する。第2コロ24は中心軸Oに対して所定のスキュー角に設定され、第1外輪15に対する内輪12の逆方向の相対回転により第1軌道面23及び第2軌道面22と係合する。第2コロ24によって変速機5側からエンジン3側へトルクを伝達できる。
 動力伝達装置10は、皿ばね25(第1付勢ばね)が、入力軌道面13と出力軌道面16との軸方向の距離、及び、第1軌道面23と第2軌道面22との軸方向の距離を小さくする方向へ付勢する。皿ばね25により第1コロ17及び第2コロ24を係合し易くできる。
 内輪12と一体的に回転する回転部材20に、凸部43及び係合部44によって、入力軌道面13に対する第2軌道面22の回転方向の遊びC(x)が形成される。遊びCは、回転方向の大きさが、内輪12に対する第1外輪15の相対回転により入力軌道面13及び出力軌道面16に第1コロ17が係合して最大のトルクを伝達するときの第1ねじれ角θ1から、第1コロ17の係合が解除されてトルクがゼロのときの第2ねじれ角θ2を減じて算出されるねじれ角(θ1-θ2)の2倍に相当する大きさ以上に設定されている。従って、入力軌道面13及び出力軌道面16と第1コロ17との係合と、第1軌道面23及び第2軌道面22と第2コロ24との係合とが同時に起こる2重かみあいを防止できる。
 特に動力伝達装置10は、遊びCが、ねじれ角(θ1-θ2)の2倍に相当する大きさに設定されているので、入力軌道面13及び出力軌道面16と第1コロ17との係合が解除されてから、第1軌道面23及び第2軌道面22と第2コロ24とが係合するまでの時間を短くできる。よって、第1コロ17や第2コロ24が空転する時間(吸収できるトルクが小さい時間)を短縮できる。
 入力軌道面13と一体に回転する回転部材20に対して第2軌道面22を回転方向に付勢する第1ばね41及び第2ばね42が溝40に配置されている。第1コロ17が内輪12及び第1外輪15に係合するときは第2ばね42が圧縮されて弾性力が蓄えられる。第1コロ17の係合が解除されるときに第2ばね42が復元して、蓄えられた弾性力が解放される。一方、第2コロ24が第1外輪15及び第2外輪21に係合するときは第1ばね41が圧縮されて弾性力が蓄えらえる。第2コロ24の係合が解除されるときに第1ばね41が復元して、蓄えられた弾性力が解放される。よって、回転部材20に形成された遊びCによるガタツキを第1ばね41及び第2ばね42により防止できる。従って、第1コロ17及び第2コロ24の係合と解除との切り換えをスムーズにできる。
 第2軌道面22(第2外輪21)は、皿ばね26(付勢ばね)による回転部材20に対する回転方向の摩擦力により回転部材20と一体的に回転する。第1ばね41及び第2ばね42(ばね)は、皿ばね26による回転方向の摩擦力より初期位置の弾性力が大きく設定されているので、第2軌道面22に加わる回転方向の力が摩擦力より大きいと第1ばね41及び第2ばね42が弾性変形する。よって、第2軌道面22が回転部材20と一体的に回転するときのガタツキを防止できる。
 動力伝達装置10は制限装置30があるので、ウォーム32でウォームホイール31を拘束して入力軸11から出力軸14へ伝達するトルクを適宜カットできる。ウォーム32はセルフロックによりウォームホイール31を拘束するので、ウォーム32を駆動するモータ(図示せず)は、ウォームホイール31の回転を規制する大きな出力(トルク)は不要であり、ウォーム32を制御して軸方向への推力を発生させるだけの出力があれば良い。よって、ウォーム32を駆動するのに、定格トルクの小さい安価で小型のモータを採用できる。なお、制限装置30は省略できる。
 第1外輪15及び第1コロ17の回転運動によって発生するイナーシャは、クラッチ4の回転運動によって発生するイナーシャより小さいので、トルクをカットするときのイナーシャの変化によるショックを抑制できる。
 以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、第1コロ17の数やスキュー角α、入力軌道面13及び出力軌道面16の中心軸Oに対する傾き等は適宜設定できる。
 上記実施の形態では自動車に搭載される動力伝達装置10について説明したが、必ずしもこれに限れられるものではない。動力伝達装置10を他の車両に搭載することは当然可能である。他の車両としては、建設機械、産業車両、農業機械等が挙げられる。
 上記実施の形態ではエンジン3と変速機5との間の動力伝達経路に、クラッチ4に加えて動力伝達装置10を配置する場合について説明したが、必ずしもこれに限られるものではない。フライホイール等を付加することによって、クラッチ4に代えて動力伝達装置10を設けることは当然可能である。
 上記実施の形態では入力軸11に内輪12が結合し、出力軸14に第1外輪15が結合する動力伝達装置10について説明したが、必ずしもこれに限られるものではない。入力軸11に結合する外輪(入力部材)と、出力軸14に結合する内輪(出力部材)とを設け、外輪と内輪との間に複数のコロを設けることは当然可能である。
 上記実施の形態では第1外輪15(出力部材)に移動部材19を結合し、移動部材19の軸方向の移動を制限装置30で制限する場合について説明したが、必ずしもこれに限られるものではない。これとは逆に第1外輪15の軸方向の移動を規制し、内輪12を軸方向へ移動可能にする場合には、内輪12(入力部材)に移動部材を結合し、その移動部材の軸方向の移動を制限装置30で制限することは当然可能である。
 上記実施の形態では、入力軸11に結合する回転部材20が内輪12(入力部材)と一体に回転する場合について説明したが、必ずしもこれに限られるものではない。回転部材20と第1外輪15(出力部材)とが一体に回転するように、出力軸14に回転部材20を結合することは当然可能である。この場合、回転部材20は第1軌道面を支持することになる。この場合も本実施の形態と同様に、回転部材20に形成した溝40に第1ばね41及び第2ばね42を収容して、回転部材20と第2外輪21との回転方向の位置関係を設定する。
 上記実施の形態では、入力軌道面13と出力軌道面16との軸方向の距離を大きくする方向へ付勢する位置に皿ばね26を配置する場合について説明したが、必ずしもこれに限られるものではなく、第1軌道面23と第2軌道面22との軸方向の距離を大きくする方向へ付勢する位置に皿ばね26を配置することは当然可能である。この場合も皿ばね26の摩擦力を利用して、回転部材20を介して内輪12と第2外輪21とを一体に回転させることができる。
 上記実施の形態では、圧縮コイルばねで第1ばね41及び第2ばね42が形成される場合について説明したが、必ずしもこれに限られるものではなく、他のばねを採用することは当然可能である。他のばねとしては、ねじりコイルばねが挙げられる。
 上記実施の形態では、回転部材20に配置された第1ばね41及び第2ばね42を一組のばねとして、合計4本のばねを用いて回転方向の付勢力を与える場合について説明したが、必ずしもこれに限られるものではない。少なくとも、第1コロ17が内輪12及び第1外輪15に係合するときに弾性力が蓄えられる第1のばね、及び、第2コロ24が第1外輪15及び第2外輪21に係合するときに弾性力が蓄えらえる第2のばねがあれば良い。
 上記実施の形態では、入力軌道面13、出力軌道面16、第1軌道面23及び第2軌道面22(以下「入力軌道面等」と称す)を単葉回転双曲面にして、円柱状の第1コロ17及び第2コロ24を採用する場合について説明したが、必ずしもこれに限られるものではなく、他の形態における入力軌道面等、第1コロ17及び第2コロ24を採用することは当然可能である。他の形態としては、例えば入力軌道面等を単葉回転双曲面にして第1コロ17及び第2コロ24を円錐状にするもの、入力軌道面等を円錐状の面にするもの、入力軌道面等を円筒状としたり、第1コロ17や第2コロ24を鼓状、太鼓状や円柱状としたりするもの等が挙げられる。
 3  エンジン
 5  変速機
 10 動力伝達装置
 12 内輪(入力部材)
 13 入力軌道面
 15 第1外輪(出力部材)
 16 出力軌道面
 17 第1コロ
 22 第2軌道面
 23 第1軌道面
 24 第2コロ
 25 皿ばね(第1付勢ばね)
 26 皿ばね(第2付勢ばね)
 41 第1ばね(ばね)
 42 第2ばね(ばね)
 α  スキュー角
 β,γ テーパ角
 C  遊び
 O  中心軸
 θ1 第1ねじれ角
 θ2 第2ねじれ角

Claims (8)

  1.  エンジンと変速機との間の動力伝達経路に配置される動力伝達装置であって、
     動力が入力される、所定のテーパ角を有する入力軌道面が形成された入力部材と、
     その入力部材に対して軸方向に相対移動可能に構成される、所定のテーパ角を有する出力軌道面が形成された出力部材と、
     前記入力軌道面と前記出力軌道面との間に複数介在し前記入力部材の中心軸に対して所定のスキュー角に設定される、前記出力部材に対する前記入力部材の一方向の相対回転により前記入力軌道面および前記出力軌道面と係合する第1コロとを備えていることを特徴とする動力伝達装置。
  2.  前記出力部材と一体的に回転する、所定のテーパ角を有する第1軌道面と、
     前記入力部材と一体的に回転する、所定のテーパ角を有する第2軌道面と、
     その第2軌道面と前記第1軌道面との間に複数介在し前記入力部材の中心軸に対して所定のスキュー角に設定される、前記出力部材に対する前記入力部材の逆方向の相対回転により前記第1軌道面および前記第2軌道面と係合する第2コロとを備えていることを特徴とする請求項1記載の動力伝達装置。
  3.  前記入力軌道面と前記出力軌道面との軸方向の距離、及び、前記第1軌道面と前記第2軌道面との軸方向の距離の両方を小さくする方向へ付勢する第1付勢ばねを備えていることを特徴とする請求項2記載の動力伝達装置。
  4.  前記入力軌道面と前記出力軌道面との軸方向の距離、又は、前記第1軌道面と前記第2軌道面との軸方向の距離を大きくする方向へ付勢する第2付勢ばねを備え、
     その第2付勢ばねは、弾性力が、前記第1付勢ばねの弾性力より小さいことを特徴とする請求項3記載の動力伝達装置。
  5.  前記入力軌道面と前記第2軌道面との間に回転方向の遊びが形成され、
     その遊びは、回転方向の大きさが、前記出力部材に対する前記入力部材の相対回転により前記入力軌道面および前記出力軌道面に前記第1コロが係合して最大のトルクを伝達するときの第1ねじれ角から、前記第1コロの係合が解除されて前記トルクがゼロのときの第2ねじれ角を減じて算出されるねじれ角の2倍に相当する大きさ以上に設定されていることを特徴とする請求項2から4のいずれかに記載の動力伝達装置。
  6.  前記出力軌道面と前記第1軌道面との間に回転方向の遊びが形成され、
     その遊びは、回転方向の大きさが、前記出力部材に対する前記入力部材の相対回転により前記入力軌道面および前記出力軌道面に前記第1コロが係合して最大のトルクを伝達するときの第1ねじれ角から、前記第1コロの係合が解除されて前記トルクがゼロのときの第2ねじれ角を減じて算出されるねじれ角の2倍に相当する大きさ以上に設定されていることを特徴とする請求項2から4のいずれかに記載の動力伝達装置。
  7.  前記第1コロを介して前記入力軌道面と前記出力軌道面との間に動力が伝達されない状態で、前記入力軌道面と前記第2軌道面との間、又は、前記出力軌道面と前記第1軌道面との間に回転方向の弾性力を付与するばねを備えていることを特徴とする請求項5又は6に記載の動力伝達装置。
  8.  前記入力軌道面と前記出力軌道面との軸方向の距離、又は、前記第1軌道面と前記第2軌道面との軸方向の距離を大きくする方向へ付勢する第2付勢ばねを備え、
     前記第1軌道面または前記第2軌道面は、前記ばねによる回転方向の弾性力により前記出力軌道面または前記入力軌道面と一体的に回転し、
     前記ばねは、弾性力が、前記第2付勢ばねの軸方向の垂直抗力による摩擦力より大きく設定されていることを特徴とする請求項7記載の動力伝達装置。
PCT/JP2016/058080 2016-03-15 2016-03-15 動力伝達装置 WO2017158711A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018505097A JPWO2017158711A1 (ja) 2016-03-15 2016-03-15 動力伝達装置
PCT/JP2016/058080 WO2017158711A1 (ja) 2016-03-15 2016-03-15 動力伝達装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/058080 WO2017158711A1 (ja) 2016-03-15 2016-03-15 動力伝達装置

Publications (1)

Publication Number Publication Date
WO2017158711A1 true WO2017158711A1 (ja) 2017-09-21

Family

ID=59851083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058080 WO2017158711A1 (ja) 2016-03-15 2016-03-15 動力伝達装置

Country Status (2)

Country Link
JP (1) JPWO2017158711A1 (ja)
WO (1) WO2017158711A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711424U (ja) * 1993-07-30 1995-02-21 いすゞ自動車株式会社 車両の動力伝達装置
JP2903325B2 (ja) * 1990-01-05 1999-06-07 司郎 沢 流体摩擦伝達力制限装置
JP2007530889A (ja) * 2004-04-01 2007-11-01 パウル ミュラー ゲーエムベーハー ウント コンパニー カーゲー ウンターネーメンスベタイリグンゲン 輪止めを備えたクラッチ装置
JP4614167B2 (ja) * 2005-12-13 2011-01-19 司郎 澤 流体摩擦伝達力制限装置
JP5352769B2 (ja) * 2010-01-14 2013-11-27 司郎 澤 ローラークラッチ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2903325B2 (ja) * 1990-01-05 1999-06-07 司郎 沢 流体摩擦伝達力制限装置
JPH0711424U (ja) * 1993-07-30 1995-02-21 いすゞ自動車株式会社 車両の動力伝達装置
JP2007530889A (ja) * 2004-04-01 2007-11-01 パウル ミュラー ゲーエムベーハー ウント コンパニー カーゲー ウンターネーメンスベタイリグンゲン 輪止めを備えたクラッチ装置
JP4614167B2 (ja) * 2005-12-13 2011-01-19 司郎 澤 流体摩擦伝達力制限装置
JP5352769B2 (ja) * 2010-01-14 2013-11-27 司郎 澤 ローラークラッチ

Also Published As

Publication number Publication date
JPWO2017158711A1 (ja) 2019-01-17

Similar Documents

Publication Publication Date Title
JP6956708B2 (ja) 遠心振り子を備えるクラッチディスク
JP6149415B2 (ja) 動力伝達装置
EP2855957B1 (en) Isolator decoupler
US8857589B2 (en) Friction disk mechanism for bi-directional overrunning clutch
US9169914B2 (en) Isolating decoupler
JP6370998B2 (ja) クランク軸アイソレーティングプーリ
JP5439935B2 (ja) 駆動力伝達装置
JP2014152835A (ja) 動力伝達装置
WO2010005880A1 (en) Cam damped pulley for rotary devices
JP2018504565A (ja) 自動車の動力伝達チェーンに対する振動減衰装置
US9739339B2 (en) Isolating torque coupler
JPH04302740A (ja) トルク変動吸収装置
US11339864B2 (en) Integrated gear and torsional vibration damper assembly
WO2017158711A1 (ja) 動力伝達装置
WO2017154133A1 (ja) 動力伝達装置
JPH0647153Y2 (ja) トルク変動吸収装置
JPH0623790Y2 (ja) トルク変動吸収装置
WO2018216185A1 (ja) 動力伝達装置
JPH0645723Y2 (ja) トルク変動吸収装置
JP2008138885A (ja) トルク変動吸収装置
JP7002402B2 (ja) ダンパー装置
JP4120804B2 (ja) 緩衝装置
JP2007327615A (ja) 車両の動力伝達装置
JPH0620918Y2 (ja) トルク変動吸収装置
JP2007225031A (ja) ダンパ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018505097

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894335

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894335

Country of ref document: EP

Kind code of ref document: A1