WO2017155288A1 - 폴리에틸렌 글리콜 유도체 및 이의 용도 - Google Patents

폴리에틸렌 글리콜 유도체 및 이의 용도 Download PDF

Info

Publication number
WO2017155288A1
WO2017155288A1 PCT/KR2017/002469 KR2017002469W WO2017155288A1 WO 2017155288 A1 WO2017155288 A1 WO 2017155288A1 KR 2017002469 W KR2017002469 W KR 2017002469W WO 2017155288 A1 WO2017155288 A1 WO 2017155288A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
polyethylene glycol
bioactive polypeptide
peptide
Prior art date
Application number
PCT/KR2017/002469
Other languages
English (en)
French (fr)
Inventor
김대진
이종수
배성민
권세창
Original Assignee
한미약품 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한미약품 주식회사 filed Critical 한미약품 주식회사
Priority to CN201780028045.1A priority Critical patent/CN109071419A/zh
Priority to EP17763549.7A priority patent/EP3428147A4/en
Priority to US16/082,737 priority patent/US11603346B2/en
Priority to JP2018547405A priority patent/JP6937773B2/ja
Publication of WO2017155288A1 publication Critical patent/WO2017155288A1/ko
Priority to US18/085,341 priority patent/US20230212103A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/02Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen
    • C07C47/198Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen containing ether groups, groups, groups, or groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/02Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C233/04Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C233/05Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/16Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
    • C07C233/17Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/18Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C237/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/10Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C323/11Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/12Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/22Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and doubly-bound oxygen atoms bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/23Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
    • C07C323/39Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton at least one of the nitrogen atoms being part of any of the groups, X being a hetero atom, Y being any atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/70Sulfur atoms
    • C07D213/71Sulfur atoms to which a second hetero atom is attached

Definitions

  • the present invention relates to polyethylene glycol derivatives and their use.
  • Polyethylene glycol is a substance that has a high half-life in the body and does not have antigenicity. It is widely used in pharmaceuticals in combination with various physiologically active substances such as lipids and proteins. Representative biocompatible materials.
  • polyethylene glycol is widely used in terms of protein therapeutics because it has an effect of increasing the half-life in the blood and reducing the antigenicity of the protein therapeutic agent by binding to the protein therapeutic agent.
  • PEGylation PEGylation
  • the existing polyethylene glycol is known to have an aldehyde group, succinimidyl group, maleimide group (maleimide), vinyl sulfone group (vinylsulfone), halogenated acetamine group, orthopyridyl disulfide (OPSS), etc. as a reactor.
  • the polyethylene glycol used in the prior art was inconvenient to have a difference in reactivity according to its structure even if it includes a desired reactor at each end thereof.
  • One object of the present invention is to provide a polyethylene glycol compound, its stereoisomers, or pharmaceutically acceptable salts thereof.
  • Another object of the present invention is to provide a method for producing a polyethylene glycol compound-attached bioactive polypeptide comprising the step of reacting the polyethylene glycol compound with a bioactive polypeptide to prepare a bioactive polypeptide having a polyethylene glycol compound attached thereto. .
  • Still another object of the present invention is to provide a method for preparing a conjugate in which a bioactive polypeptide and a carrier protein are linked through a polyethylene glycol compound.
  • Still another object of the present invention is to provide a bioactive polypeptide to which the polyethylene glycol compound is attached.
  • Still another object of the present invention is to provide a conjugate in which a bioactive polypeptide and a carrier protein are attached to both terminal reactors of the polyethylene glycol compound, respectively.
  • Still another object of the present invention is to provide a method for preparing the polyethylene glycol compound.
  • Another object of the present invention is to provide a use of said polyethylene glycol compound for linking a carrier that increases half-life in vivo of a bioactive polypeptide to a bioactive polypeptide.
  • Still another object of the present invention is to provide a composition comprising the bioactive polypeptide or the conjugate to which the polyethylene glycol compound is attached.
  • One embodiment embodying the present invention is a polyethylene glycol compound, stereoisomer thereof, or a pharmaceutically acceptable salt thereof.
  • the compound is characterized in that the compound represented by the formula (1):
  • R 1 is 2,5-dioxopyrrolidinyl, 2,5-dioxopyrrolyl, aldehyde, maleimide, C 6 -C 20 aryldisulfide, C 5 -C 20 heteroaryldisulfide, vinylsulfone, thiol, halogenated acetamide , Succinimide, p-nitrophenyl carbonate, and derivatives thereof,
  • L 1 to L 3 are each independently straight or branched C 1 -C 6 alkylene
  • R 2 is orthopyridyl disulfide (OPSS), thiol, or halogen
  • n is a natural number between 10 and 2400.
  • R 2 is characterized in that disulfide orthopyridyl, thiol, or iodine.
  • R 1 is characterized in that it is an aldehyde.
  • R 1 and R 2 have different functional groups from each other.
  • the compound is represented by the following Chemical Formula 2:
  • n is a natural number of 10 to 2400
  • j, m and k are each independently a natural number of 1 to 6,
  • R 2 is orthopyridyl disulfide (OPSS), thiol, or halogen.
  • OPSS orthopyridyl disulfide
  • the compound is selected from the group consisting of Formulas 3-11:
  • n is a natural number of 10 to 2400.
  • Another embodiment embodying the present invention is a method for producing a polyethylene glycol compound attached bioactive polypeptide comprising the step of reacting the polyethylene glycol compound and the bioactive polypeptide to produce a bioactive polypeptide attached to the polyethylene glycol compound to be.
  • orthopyridyl disulfide (OPSS), thiol, or halogen located at R 2 in the preparation method is characterized in that it reacts with a thiol group located at the cysteine residue of the bioactive polypeptide.
  • the preparation method is characterized in that it further comprises the step of purifying the bioactive polypeptide to which the polyethylene glycol compound is attached.
  • the bioactive polypeptide is a hormone, cytokine, enzyme, antibody, growth factor, transcription regulator, blood factor, vaccine, insulin secreting peptide, neuropeptide, pituitary hormone, anti-obesity peptide, anti -Viral peptides, non-natural peptide derivatives having physiological activity, structural proteins, ligand proteins and receptors are selected from the group consisting of.
  • the bioactive polypeptide is glucagon, insulin, somatostatin, peptide YY (PYY), neuropeptide Y (NPY), Glucagon-like peptide-1 (GLP-1), and Glucagon-like peptide-2 (GLP-2).
  • glucagon-like peptides Activity against glucagon-like peptides, exendin-3, exendin-4, oxyntomodulin, glucagon receptor, GLP-1 receptor, and GIP receptor Peptides, Fibroblast growth factor, Ghrelin, Angiotensin, Bradykinin, Calcitonin, Corticosteroids, Corticotropin, Eledoisin, Gastrin, Leptin, Oxytocin, Oxytocin vasopressin, luteinizing hormone, luteinizing hormone, follicle stimulating hormone, parathyroid hormone, secretin, sermorelin, human growth hormone (hGH), growth hormone releasing peptide, colony stimulating factor (GCSF) , Interferon (IFN), interleukin (In terleukin, prolactin-releasing peptide, orexin, thyroid-releasing peptide, cholecystokinin, gastrin inhibitory peptide, calmodulin, gastric releasing peptid
  • Another embodiment embodying the present invention is a method for preparing a conjugate wherein a bioactive polypeptide and a carrier protein are linked through a polyethylene glycol compound.
  • step (b) reacting the polyethylene glycol compound prepared in step (a) with a polyethylene glycol compound and a carrier protein or a bioactive polypeptide, having one end attached to one end and having a terminal reactor at the other end, Connecting the carrier protein or the bioactive polypeptide to the terminal reactor of the polyethylene glycol compound to produce a conjugate in which the bioactive polypeptide and the carrier protein are linked through the polyethylene glycol compound.
  • step (b) reacting a carrier protein with a terminal protein of the polyethylene glycol compound by reacting the polyethylene glycol compound prepared in step (a) with a polyethylene glycol compound attached to one end and having a terminal reactor at the other end. Characterized in that it comprises the step of connecting.
  • the bioactive polypeptide is a hormone, cytokine, enzyme, antibody, growth factor, transcription regulator, blood factor, vaccine, insulin secreting peptide, neuropeptide, pituitary hormone, anti-obesity peptide, anti -Viral peptides, non-natural peptide derivatives having physiological activity, structural proteins, ligand proteins and receptors are selected from the group consisting of.
  • the polyethylene glycol compound of step (a) is characterized in that it has a structure of Formula 1.
  • step (a) in the method is characterized by reacting R 2 of the polyethylene glycol compound having the structure of Formula 1 with a thiol group located at a cysteine residue of the bioactive polypeptide.
  • step (b) is characterized in that the terminal aldehyde group of the polyethylene glycol compound is reacted with the amine group of the immunoglobulin Fc fragment.
  • the method further comprises purifying the conjugate in which the bioactive polypeptide and the carrier protein are linked through a polyethylene glycol compound.
  • the carrier protein is albumin and fragments thereof, polymers of repeating units of specific amino acid sequences, antibodies, antibody fragments, FcRn binding agents, fibronectin, transferrin, saccharides, or elastin It is characterized by.
  • the FcRn binding agent is an immunoglobulin Fc fragment.
  • Another embodiment embodying the present invention is a bioactive polypeptide to which the polyethylene glycol compound is attached.
  • the bioactive polypeptide to which the compound is attached is characterized in that it comprises a structure represented by any one of the following Formulas 15 to 17:
  • R 1 is 2,5-dioxopyrrolidinyl, 2,5-dioxopyrrolyl, aldehyde, maleimide, C 6 -C 20 aryldisulfide, C 5 -C 20 heteroaryldisulfide, vinylsulfone, thiol, halogenated acet Amide, succinimide, p-nitrophenyl carbonate, and derivatives thereof,
  • L 1 to L 3 are each independently straight or branched C 1 -C 6 alkylene
  • n is a natural number of 10 to 2400
  • R 2 is orthopyridyl disulfide (OPSS), thiol, or halogen
  • X is a bioactive polypeptide moiety.
  • Another embodiment embodying the present invention is a conjugate, wherein a bioactive polypeptide and a carrier protein are attached to both terminal reactors of the polyethylene glycol compound, respectively.
  • the conjugate is a conjugate having a structure represented by the following formula (18) or (19):
  • L 1 to L 3 are each independently straight or branched C 1 -C 6 alkylene
  • n is a natural number of 10 to 2400
  • X is a bioactive polypeptide moiety
  • Y is a carrier protein moiety.
  • the carrier protein is albumin and fragments thereof, polymers of repeating units of specific amino acid sequences, antibodies, antibody fragments, FcRn binding agents, fibronectin, transferrin, saccharides, or elastin It is characterized by.
  • the FcRn binding agent is an immunoglobulin Fc fragment.
  • Another embodiment embodying the present invention is a process for preparing the polyethylene glycol compound.
  • L 1 , L 2 , L 3 , n and R 2 are as described above.
  • the compound represented by Chemical Formula 20 of the first step is prepared by reacting the compound represented by Chemical Formula 23 with methanesulfonyl chloride:
  • the first step is performed by reacting the compound represented by Formula 20 with an aqueous ammonia solution and ammonium chloride.
  • the first step is the first-first step of preparing a compound represented by Chemical Formula 24 by reacting the compound represented by Chemical Formula 20 with hydroxyalkyl tetrahydropyranyl ether;
  • Step 1-2 to react the compound represented by the formula (24) with p-toluenesulfonic acid to replace the terminal tetrahydropyranyloxy group with a hydroxyl group;
  • the second step is performed by reacting a compound represented by Chemical Formula 21 with a compound represented by Chemical Formula 25:
  • the compound represented by Chemical Formula 21 is reacted with chloro (C2-C7 alkanoyl) chloride to synthesize a compound including a chloro group at the terminal represented by Chemical Formula 26 as an intermediate. It is characterized by the reaction with a halogen metal salt in the presence or absence of sodium hydrogen sulfide to convert chloro groups to thiols or halogens:
  • Another embodiment embodying the present invention is the use of said polyethylene glycol compound for linking a carrier that increases half-life in vivo of a bioactive polypeptide to a bioactive polypeptide.
  • Another embodiment embodying the present invention is a composition comprising the bioactive polypeptide or the conjugate to which the polyethylene glycol compound is attached.
  • Another embodiment embodying the present invention is a linker for linking an in vivo half-life increasing carrier of a bioactive polypeptide to a bioactive polypeptide, comprising a polyethylene glycol compound, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof .
  • the polyethylene glycol derivative of the present invention includes a desired reactor at its terminal, but easily reacts with a target substance (e.g., a protein) to be connected thereto, and thus is usefully used in the manufacture of a medicament for binding drugs such as protein conjugates. Can be.
  • a target substance e.g., a protein
  • linkers 10 to 12 are examples of the novel polyethylene glycol compound of the present invention 1) the chemical structure of the compound having an aldehyde group and disulfide orthopyridyl group (linkers 1, 4, 7), 2) aldehyde group and iodide acetamine group or iodine Chemical structures (linkers 2, 5, 8) of compounds having groups, and 3) Chemical structures (linkers 3, 6, 9) of compounds having aldehyde groups and sulfhydryl groups are shown.
  • linkers 10 to 12 correspond to comparison groups.
  • NMR 2 is a result of analysis and confirmation by nuclear magnetic resonance method (NMR) after linker 1 production.
  • NMR 4 is a result of analysis and confirmation by nuclear magnetic resonance method (NMR) after linker 2 production.
  • FIG. 12 shows the results of analysis and confirmation by nuclear magnetic resonance method (NMR) after the manufacture of Linker 8.
  • NMR nuclear magnetic resonance method
  • FIG. 13 shows the results of reverse phase chromatography after linker 8 preparation.
  • Figures 19 to 21 show the results of SDS-PAGE analysis of the triple activator-PEG-Fc conjugate prepared using the polyethylene glycol compound according to the present invention as a linker.
  • FIG. 19 shows a linker 7 according to the present invention
  • FIG. 20 shows a linker 8
  • FIG. 21 shows a result of SDS-PAGE analysis in the case of using a linker 9.
  • One embodiment embodying the present invention provides a polyethylene glycol compound, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof.
  • polyethylene glycol compound refers to a compound comprising a polyethylene glycol structure [-(OCH 2 CH 2 ) n- ]. More specifically, in the present invention, the polyethylene glycol compound may include two or more terminal reactors.
  • two or more terminal reactors present in the polyethylene glycol compound may be the same or different from each other. More specifically, they may be heterofunctional linkers that operate on different kinds of end reactors.
  • one terminal of the compound may be functional in the amine group while the other terminal is functional in the thiol group. However, it is not particularly limited thereto.
  • polyethylene glycol compound may be used as a linker for binding a carrier to a bioactive polypeptide.
  • one end of the polyethylene glycol compound having two or more terminal reactors may be linked to the bioactive polypeptide and the other end to the carrier.
  • the polyethylene glycol compound is used in combination with a polyethylene glycol derivative.
  • the polyethylene glycol compound according to the present invention may include an -NHCO-structure between a thiol reactive group and a polyethylene glycol structure as follows.
  • the compound may be a compound represented by Formula 1:
  • R 1 is 2,5-dioxopyrrolidinyl, 2,5-dioxopyrrolyl, aldehyde, maleimide, C 6 -C 20 aryldisulfide, C 5 -C 20 heteroaryldisulfide, vinylsulfone, thiol, halogenated acetamide , Succinimide, p-nitrophenyl carbonate, and derivatives thereof,
  • L is alkylene each independently C 1 -C 6 straight or branched chain alkyl
  • R 2 is orthopyridyl disulfide (OPSS), thiol, or halogen
  • n is a natural number between 10 and 2400.
  • R 2 in the above formula may be disulfide orthopyridyl, thiol, F, Br, Cl, or I, and more specifically may be orthopyridyl disulfide, or I, but is not particularly limited thereto.
  • R 1 may be an aldehyde is not particularly limited.
  • R 1 in the above formula may be a succinimid derivative, and examples thereof include succinimidyl propionate, hydroxy succinimidyl, succinimidyl carboxymethyl or succinimidyl carbonate, but are not particularly limited thereto. no.
  • the compound may be heterofunctional acting on different kinds of end reactors, and specifically, R 1 and R 2 may have different functional groups from each other. However, it is not particularly limited thereto.
  • R 1 is an aldehyde
  • R 2 may be an orthopyridyl disulfide (OPSS), thiol, or halogen, but is not particularly limited thereto.
  • OPSS orthopyridyl disulfide
  • thiol thiol
  • halogen but is not particularly limited thereto.
  • L 1 to L 3 in the compound may be each independently straight or branched C 1 -C 6 alkylene, more specifically C 1 -C 4 alkylene, but is not particularly limited thereto.
  • L 1 may be a natural number of 1, 2, 3, 4, 5, or 6
  • L 2 may be a natural number of 1, 2, 3, 4, 5, or 6
  • L 3 may be 1 It may be a natural number of 2, 3, 4, 5, or 6.
  • L 2 may be 2, 4, or 6 and L 1 and L 3 may be 1, 2, 3, 4, 5, or 6.
  • R 1 -L 1 -in the compound may be alkyl aldehyde, for example, C 2 -C 6 alkyl aldehyde, specifically may be propion aldehyde, butyl aldehyde and the like, but is not particularly limited thereto.
  • the polyethylene glycol compound of the present invention may have a molecular weight of about 100 Daltons to about 110,000 Daltons, specifically about 400 to about 110,000 Daltons, more specifically about 1000 to 100,000 Daltons, more specifically To have a molecular weight of about 1000 to 20,000 Daltons, but is not particularly limited thereto.
  • the n may be a natural number of 10 to 2400, and more specifically, may be a natural number of 20 to 460, but is not particularly limited thereto.
  • the compound may be represented by the following formula (2):
  • n is a natural number of 10 to 2400
  • j, m and k are each independently a natural number of 1 to 6,
  • R 2 is ortho-pyridyl disulfide, p-thiol, or halogen.
  • n may be a natural number of 10 to 2400, more specifically, a natural number of 20 to 460, but is not particularly limited thereto.
  • j, m and k may be each independently 1 to 6 natural numbers, specifically 1 to 4 natural numbers.
  • j may be a natural number of 1, 2, 3, 4, 5, or 6
  • m may be a natural number of 1, 2, 3, 4, 5, or 6
  • k may be 1, 2, 3 It may be a natural number of 4, 5, or 6.
  • j may be 2, 3, 4, 5, or 6
  • m may be 2, 4, or 6
  • k may be 1, 2, 3, 4, 5, or 6.
  • R 2 may be disulfide orthopyridyl, thiol, or halogen, specifically orthopyridyl disulfide, thiol, or F, Br, Cl, or I, and more specifically disulfide orthopyridyl, or I It may be, but is not particularly limited thereto.
  • the compound may be selected from the group consisting of the following Chemical Formulas 6 to 11.
  • n is as defined above.
  • the compound represented by Chemical Formula 6 as linker # 4 the compound represented by Chemical Formula 7 as linker # 5
  • the compound represented by Chemical Formula 8 as linker # 6 the compound represented by Chemical Formula 9
  • the compound represented by the formula (10) was named a linker # 8
  • the compound represented by the formula (11) was named a linker # 9.
  • the compounds belonging to Chemical Formula 1 may exhibit a higher reactivity with respect to thiol groups than the compounds without the -NHCO- structure. It can be useful to
  • the compound may specifically have a structure of any one of the following formulas 3 to 5:
  • n is as defined above.
  • the compound may exist in the form of a pharmaceutically acceptable salt.
  • salts are acid addition salts formed with pharmaceutically acceptable free acids.
  • the kind of the salt is not particularly limited. However, it is preferable that the form is safe and effective for an individual such as a mammal, but is not particularly limited thereto.
  • pharmaceutically acceptable means a substance that can be effectively used for a desired use without causing excessive toxicity, irritation, or allergic reactions within the scope of the medical judgment.
  • salts includes salts derived from pharmaceutically acceptable inorganic acids, organic acids, or bases.
  • suitable acids include hydrochloric acid, bromic acid, sulfuric acid, nitric acid, perchloric acid, fumaric acid, maleic acid, phosphoric acid, glycolic acid, lactic acid, salicylic acid, succinic acid, toluene-p-sulfonic acid, tartaric acid, acetic acid, citric acid, methanesulfonic acid, formic acid , Benzoic acid, malonic acid, naphthalene-2-sulfonic acid, benzenesulfonic acid and the like.
  • Salts derived from suitable bases may include alkali metals such as sodium, potassium, alkaline earth metals such as magnesium, and ammonium and the like.
  • Acid addition salts can be prepared by conventional methods, for example by dissolving a compound in an excess of aqueous acid solution and precipitating the salt using a water miscible organic solvent such as methanol, ethanol, acetone or acetonitrile. Equivalent molar amounts of the compound and acid or alcohol (eg, glycol monomethylether) in water can be heated and the mixture can then be evaporated to dryness or the precipitated salts can be suction filtered.
  • a water miscible organic solvent such as methanol, ethanol, acetone or acetonitrile.
  • Equivalent molar amounts of the compound and acid or alcohol (eg, glycol monomethylether) in water can be heated and the mixture can then be evaporated to dryness or the precipitated salts can be suction filtered.
  • Bases can also be used to make pharmaceutically acceptable metal salts.
  • Alkali metal salts or alkaline earth metal salts can be obtained, for example, by dissolving the compound in an excess of alkali metal hydroxide or alkaline earth metal hydroxide solution, filtering the insoluble compound salt, and then evaporating and drying the filtrate.
  • the compounds of the present invention and pharmaceutically acceptable salts thereof are a concept that includes possible solvates that may be prepared therefrom.
  • solvate refers to a complex of a compound according to the invention or a salt thereof with a solvent molecule.
  • compounds of the present invention may exist as R or S isomers, racemates, diastereomeric mixtures and individual diastereomers when all of the isomers and mixtures thereof have asymmetric carbon centers in their substituents. Included in the category.
  • Another embodiment embodying the present invention is a method for producing a polyethylene glycol compound attached bioactive polypeptide comprising the step of reacting the polyethylene glycol compound and the bioactive polypeptide to produce a bioactive polypeptide attached to the polyethylene glycol compound To provide.
  • the polyethylene glycol compound is as described above.
  • the method may include connecting any one of the reactors located at both ends of the polyethylene glycol compound to a physiologically active polypeptide. More specifically, the reactor located at R 1 may be linked to the bioactive polypeptide, or the reactor located at R 2 may be connected to the bioactive polypeptide, but is not particularly limited thereto.
  • disulfide orthopyridyl, thiol, or halogen located at R 2 may include, but is not limited to, reaction with a thiol group located at a cysteine residue of the bioactive polypeptide.
  • reaction between the polyethylene glycol compound and the bioactive polypeptide described above may be appropriately determined by those skilled in the art in consideration of the characteristics of the reactor of the polyethylene glycol compound and the reactor of the bioactive polypeptide to which the polyethylene glycol compound is to be linked.
  • reaction may be carried out in the presence of a suitable buffer such as citric acid buffer or HEPES and an organic solvent such as C 1 to C 6 alcohol, but is not particularly limited thereto.
  • a suitable buffer such as citric acid buffer or HEPES
  • an organic solvent such as C 1 to C 6 alcohol, but is not particularly limited thereto.
  • preparation method may further comprise the step of purifying the bioactive polypeptide to which the polyethylene glycol compound is attached.
  • physiologically active polypeptide is a concept including all peptides or proteins capable of exhibiting physiological activity, and is preferably a substance to be physiologically active in a subject.
  • the bioactive polypeptides include hormones, cytokines, enzymes, antibodies, growth factors, transcriptional regulators, blood factors, vaccines, insulin secreting peptides, neuropeptides, pituitary hormones, anti-obesity peptides, anti-viral peptides, physiology It is characterized in that it is selected from the group consisting of non-natural peptide derivatives, structural proteins, ligand proteins and receptors having activity.
  • bioactive polypeptides examples include GLP-1 receptor agonists, leptin receptor agonists, DPP-IV inhibitors, Y5 receptor antagonists, melanin-concentrating hormone (MCH) receptor antagonists, Y2 / 3 receptor agonists, MC3 / 4 receptor agonists, gastric / pancreatic lipase inhibitors, 5HT2c agonists, ⁇ 3A receptor agonists, Amylin receptor agonists, Ghrelin antagonists, ghrelin receptor antagonists
  • MCH melanin-concentrating hormone
  • bioactive polypeptide may be a peptide comprising, consisting essentially of, or consisting of an amino acid sequence comprising the following sequence:
  • the peptide may be one that has activity against the glucagon receptor, the GLP-1 receptor, and the GIP receptor, and the peptide is termed triple activator.
  • Xaa1 is histidine, 4-imidazoacetyl, or tyrosine,
  • Xaa2 is glycine, alpha-methyl-glutamic acid, or Aib,
  • Xaa3 is glutamic acid or glutamine
  • Xaa7 is threonine or isoleucine
  • Xaa10 is leucine, tyrosine, lysine, cysteine, or valine,
  • Xaa12 is lysine, serine, or isoleucine
  • Xaa13 is glutamine, tyrosine, alanine, or cysteine,
  • Xaa14 is leucine, methionine, or tyrosine
  • Xaa15 is cysteine, aspartic acid, glutamic acid, or leucine
  • Xaa16 is glycine, glutamic acid, or serine,
  • Xaa17 is glutamine, arginine, isoleucine, glutamic acid, cysteine, or lysine,
  • Xaa18 is alanine, glutamine, arginine, or histidine
  • Xaa19 is alanine, glutamine, cysteine, or valine
  • Xaa20 is lysine, glutamine, or arginine
  • Xaa21 is glutamic acid, glutamine, leucine, cysteine, or aspartic acid,
  • Xaa23 is isoleucine or valine
  • Xaa24 is alanine, glutamine, cysteine, asparagine, aspartic acid, or glutamic acid,
  • Xaa27 is valine, leucine, lysine, or methionine
  • Xaa28 is cysteine, lysine, alanine, asparagine, or aspartic acid
  • Xaa29 is cysteine, glycine, glutamine, threonine, glutamic acid, or histidine,
  • Xaa30 is cysteine, glycine, lysine, or histidine or absent,
  • R1 is cysteine, GKKNDWKHNIT (SEQ ID NO: 104), m-SSGAPPPS-n (SEQ ID NO: 105), or m-SSGQPPPS-n (SEQ ID NO: 106), or absent,
  • m is -Cys-, -Pro-, or -Gly-Pro-,
  • n is -Cys-, -Gly-, -Ser-, or -His-Gly- or absent.
  • triple activator examples include, but are not limited to, a peptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1 to 102.
  • physiologically active polypeptides include glucagon, insulin, somatostatin, peptide YY (PYY), neuropeptide Y (NPY), Glucagon-like peptide-1 (GLP-1), and Glucagon-like peptide-2 (GLP-2).
  • Another embodiment embodying the present invention provides a method for preparing a conjugate wherein a bioactive polypeptide and a carrier protein are linked through a polyethylene glycol compound.
  • bioactive polypeptide and the polyethylene glycol compound are as described above.
  • step (b) reacting the polyethylene glycol compound prepared in step (a) with a polyethylene glycol compound and a carrier protein or a bioactive polypeptide, having one end attached to one end and having a terminal reactor at the other end, Connecting the carrier protein or the bioactive polypeptide to the terminal reactor of the polyethylene glycol compound to prepare a conjugate in which the bioactive polypeptide and the carrier protein are linked through the polyethylene glycol compound.
  • step (b) reacting a carrier protein with a terminal protein of the polyethylene glycol compound by reacting the polyethylene glycol compound prepared in step (a) with a polyethylene glycol compound attached to one end and having a terminal reactor at the other end. It may be to include the step of connecting.
  • the polyethylene glycol compound of step (a) is characterized in that it has a structure of formula (1).
  • R 1 is an aldehyde group
  • L 1 to L 3 are each independently straight or branched C 1 -C 6 alkylene
  • R 2 is orthopyridyl disulfide (OPSS), thiol, or halogen
  • n is a natural number between 10 and 2400.
  • the reaction between the polyethylene glycol compound and the bioactive polypeptide in the above method may include reacting R 2 of the polyethylene glycol compound with a thiol group located at a cysteine residue of the bioactive polypeptide, and between the polyethylene glycol compound and the carrier protein.
  • the reaction may comprise a reaction between the terminal aldehyde group of the polyethylene glycol compound and the amine group of the carrier protein.
  • step (a) the general formula (1) the R 2 of the polyethylene glycol compound having the structure and a thiol group the reaction in the cysteine residue of the physiologically active polypeptide of, (b) step, the terminal aldehyde group of the polyethylene glycol compound It may be reacted with the amine group of the carrier protein.
  • reaction between the polyethylene glycol compound and the bioactive polypeptide or carrier protein described above may be appropriately determined by those skilled in the art in view of the characteristics of the reactor of the polyethylene glycol compound and the reactor of the bioactive polypeptide or carrier protein to which the polyethylene glycol compound is to be linked.
  • the PEGylation reaction may be carried out in the presence of a suitable buffer such as citric acid buffer or HEPES and an organic solvent such as C 1 to C 6 alcohol, but is not particularly limited thereto.
  • a suitable buffer such as citric acid buffer or HEPES
  • an organic solvent such as C 1 to C 6 alcohol, but is not particularly limited thereto.
  • the aldehyde reactor selectively reacts at the amino terminus at low pH and can form covalent bonds with lysine residues at high pH, for example pH9.0 conditions.
  • the carrier protein may be a substance linked to the bioactive polypeptide through the polyethylene glycol compound in order to increase the half-life of the bioactive polypeptide in vivo.
  • the carrier protein may be albumin and fragments thereof, polymers of repeating units of specific amino acid sequences, antibodies, antibody fragments, FcRn binding agents, fibronectin, transferrin, saccharides, or elastin, and the FcRn
  • the binding agent may be an immunoglobulin Fc fragment, but is not particularly limited thereto.
  • the terminal aldehyde group of the polyethylene glycol compound may be reacted with an amine group of the immunoglobulin Fc fragment, specifically, an N-terminal amine group, but is not particularly limited thereto.
  • immunoglobulin Fc region means a site including heavy chain constant region 2 (CH2) and / or heavy chain constant region 3 (CH3) moieties except for the heavy and light chain variable regions of an immunoglobulin.
  • the immunoglobulin Fc region may be one component forming a moiety of the conjugate of the present invention.
  • the immunoglobulin Fc region may include a hinge portion in the heavy chain constant region, but is not limited thereto.
  • some or all heavy chain constant region 1 (CH1) and / or light chain constant region It may be an extended Fc region including 1 (CL1). It may also be a region from which some fairly long amino acid sequences corresponding to CH2 and / or CH3 have been removed.
  • the immunoglobulin Fc regions of the present invention may comprise 1) CH1 domain, CH2 domain, CH3 domain and CH4 domain, 2) CH1 domain and CH2 domain, 3) CH1 domain and CH3 domain, 4) CH2 domain and CH3 domain, 5) Combination of one or two or more of the CH1 domain, CH2 domain, CH3 domain and CH4 domain with an immunoglobulin hinge region (or a portion of the hinge region), 6) heavy chain constant region may be a dimer of each domain and light chain constant region .
  • an immunoglobulin hinge region or a portion of the hinge region
  • the immunoglobulin Fc region may be in a dimeric form, and one molecule may be covalently linked to one Fc region in the dimeric form, wherein the immunoglobulin Fc is X may be linked to each other by a polyethylene glycol compound.
  • the immunoglobulin Fc and X may be connected to each other by a polyethylene glycol compound.
  • immunoglobulin Fc regions of the present invention include naturally occurring amino acid sequences as well as sequence derivatives thereof.
  • Amino acid sequence derivatives mean that one or more amino acid residues in a natural amino acid sequence have different sequences by deletion, insertion, non-conservative or conservative substitution, or a combination thereof.
  • IgG Fc amino acid residues 214 to 238, 297 to 299, 318 to 322 or 327 to 331 which are known to be important for binding can be used as suitable sites for modification.
  • various kinds of derivatives are possible, such as a site capable of forming disulfide bonds, a few amino acids at the N-terminus in the native Fc, or a methionine residue may be added at the N-terminus of the native Fc.
  • the complement binding site such as C1q binding site may be removed, ADCC (antibody dependent cell mediated cytotoxicity) site may be removed in order to eliminate the effector function.
  • ADCC antibody dependent cell mediated cytotoxicity
  • Amino acid exchange in proteins and peptides that do not alter the activity of the molecule as a whole is known in the art (H. Neurode, R. L. Hill, The Proteins, Academic Press, New York, 1979).
  • the most commonly occurring exchanges are amino acid residues Ala / Ser, Val / Ile, Asp / Glu, Thr / Ser, Ala / Gly, Ala / Thr, Ser / Asn, Ala / Val, Ser / Gly, Thy / Phe, Ala / Exchange between Pro, Lys / Arg, Asp / Asn, Leu / Ile, Leu / Val, Ala / Glu, Asp / Gly.
  • it may be modified by phosphorylation, sulfation, acrylation, glycosylation, methylation, farnesylation, acetylation and amidation. may be modified.
  • Fc derivatives may exhibit biological activities equivalent to those of the Fc region of the present invention and may increase structural stability to heat, pH, etc. of the Fc region.
  • the Fc region may be obtained from a natural type separated in vivo from animals such as humans, cows, goats, pigs, mice, rabbits, hamsters, rats or guinea pigs, or obtained from transformed animal cells or microorganisms. It may be recombinant or a derivative thereof.
  • the method of obtaining from the natural form may be a method of separating the whole immunoglobulin from a human or animal living body, and then processing the protease. Papain is cleaved into Fab and Fc and pepsin is cleaved into pF'c and F (ab) 2 . This may be separated by Fc or pF'c using size-exclusion chromatography and the like.
  • the human-derived Fc region is a recombinant immunoglobulin Fc region obtained from a microorganism.
  • the immunoglobulin Fc region may be in a natural sugar chain, an increased sugar chain compared to the natural form, a reduced sugar chain or a sugar chain removed from the natural form.
  • Conventional methods such as chemical methods, enzymatic methods, and genetic engineering methods using microorganisms can be used to increase or decrease such immunoglobulin Fc sugar chains.
  • the immunoglobulin Fc region in which the sugar chain is removed from the Fc is significantly reduced in binding strength with the complement (c1q), and antibody-dependent cytotoxicity or complement-dependent cytotoxicity is reduced or eliminated, thereby not causing an unnecessary immune response in vivo. Do not.
  • a form more consistent with the original purpose as a carrier of the drug would be the immunoglobulin Fc region from which the sugar chains have been removed or unglycosylated.
  • “Deglycosylation” refers to an Fc region in which sugar is removed by an enzyme
  • Aglycosylation refers to an Fc region which is not produced and glycosylated in prokaryotes, and more specifically, in Escherichia coli. .
  • the immunoglobulin Fc region may be of human origin or animal origin such as cattle, goats, pigs, mice, rabbits, hamsters, rats, guinea pigs, etc., and in more specific embodiments is human origin.
  • the immunoglobulin Fc region may be an Fc region by IgG, IgA, IgD, IgE, IgM derived or combinations thereof or hybrids thereof. In more specific embodiments it is derived from IgG or IgM, which is most abundant in human blood, and in more specific embodiments it is of IgG known to enhance the half-life of ligand binding proteins. In even more specific embodiments the immunoglobulin Fc region is an IgG4 Fc region, and in the most specific embodiment the immunoglobulin Fc region is a non-glycosylated Fc region derived from human IgG4, but is not limited thereto.
  • dimer or multimer when forming a dimer or multimer, means that the polypeptides encoding the same-origin single-chain immunoglobulin Fc region form a bond with the single-chain polypeptides of different origin. That is, it is possible to prepare dimers or multimers from two or more fragments selected from the group consisting of Fc fragments of IgG Fc, IgA Fc, IgM Fc, IgD Fc and IgE.
  • the method may further comprise the step of purifying the conjugate, the physiologically active polypeptide and the carrier protein is linked through a polyethylene glycol compound.
  • Another embodiment embodying the present invention provides a bioactive polypeptide to which the polyethylene glycol compound is attached.
  • the polyethylene glycol compound and the bioactive polypeptide are as described above.
  • bioactive polypeptide to which the compound is attached may include a structure represented by any one of the following Formulas 15 to 17:
  • R 1 is 2,5-dioxopyrrolidinyl, 2,5-dioxopyrrolyl, aldehyde, maleimide, C 6 -C 20 aryldisulfide, C 5 -C 20 heteroaryldisulfide, vinylsulfone, thiol, halogenated acet Amide, succinimide, p-nitrophenyl carbonate, and derivatives thereof,
  • L 1 to L 3 are each independently straight or branched C 1 -C 6 alkylene
  • n is a natural number of 10 to 2400
  • R 2 is disulfide orthopyridyl, thiol, or halogen
  • X corresponds to a bioactive polypeptide moiety.
  • -SSX may be a linking structure formed by reaction of a thiol group located at X with disulfide orthopyridyl or a thiol group
  • -CH 2 -SX is a halogen atom, specifically IA (iodoacetamide)
  • IA iodoacetamide
  • X-NHCH 2 -in the formula 17 may be a linking structure formed by the amine group located in X reacts with an aldehyde group and through reductive alkylation, but is not particularly limited thereto.
  • Another embodiment embodying the present invention provides a conjugate, wherein a bioactive polypeptide and a carrier protein are attached to both terminal reactors of the polyethylene glycol compound, respectively.
  • the polyethylene glycol compound, the bioactive polypeptide, and the carrier protein are as described above.
  • the conjugate is a conjugate having a structure represented by the following formula (18) or (19):
  • L 1 to L 3 are each independently straight or branched C 1 -C 6 alkylene
  • n is a natural number of 10 to 2400
  • X is a bioactive polypeptide moiety
  • Y is a carrier protein moiety.
  • Another embodiment embodying the present invention provides a method for preparing the polyethylene glycol compound.
  • the polyethylene glycol compound is as described above.
  • the method is a
  • Treating the compound represented by Formula 22 with an acid solution may include a third step of converting the terminal diethoxymethyl to aldehyde:
  • L 1 , L 2 , L 3 , n, and R 2 are the same as described above.
  • n ′ may be n + 1.
  • the compound represented by Chemical Formula 20 of the first step may be prepared by reacting a compound represented by Chemical Formula 23 with methanesulfonyl chloride:
  • the first step may be performed by reacting the compound represented by Formula 20 with an aqueous ammonia solution and ammonium chloride.
  • the first step is a step 1-1 to prepare a compound represented by the formula (24) by reacting the compound represented by the formula (20) with hydroxyalkyl tetrahydropyranyl ether;
  • Step 1-2 to react the compound represented by the formula (24) with p-toluenesulfonic acid to replace the terminal tetrahydropyranyloxy group with a hydroxyl group;
  • step 1-1 may be performed in the presence of potassium t-pentoxide.
  • the second step may be to perform reacting a compound represented by a compound of the formula 21 formula 25.
  • the second step is an intermediate represented by the following reaction by reacting a compound represented by Formula 21 with chloro (C2-C7 alkanoyl) chloride.
  • chloro C2-C7 alkanoyl
  • the second step is an intermediate represented by the following reaction by reacting a compound represented by Formula 21 with chloro (C2-C7 alkanoyl) chloride.
  • a halogen metal salt in the presence or absence of sodium hydrogen sulfide to convert the chloro group to a thiol or halogen.
  • Another embodiment embodying the present invention provides the use of said polyethylene glycol compound for linking a carrier that increases half-life in vivo of a bioactive polypeptide to a bioactive polypeptide.
  • bioactive polypeptide, carrier, and polyethylene glycol compound are as described above.
  • Another embodiment embodying the present invention provides a composition comprising the bioactive polypeptide or the conjugate to which the polyethylene glycol compound is attached.
  • bioactive polypeptide the conjugate, and the polyethylene glycol compound are as described above.
  • the composition may be a pharmaceutical composition and may include a pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers can be used as oral administration binders, lubricants, disintegrants, excipients, solubilizers, dispersants, stabilizers, suspending agents, pigments, flavors, etc., in the case of injections, buffers, preservatives, analgesic
  • a topical agent, a solubilizer, an isotonicity agent, a stabilizer, etc. can be mixed and used, and in case of topical administration, a base, an excipient, a lubricant, a preservative, etc. can be used.
  • the formulation of the pharmaceutical composition of the present invention can be prepared in various ways by mixing with the pharmaceutically acceptable carrier as described above.
  • oral administration in the case of oral administration, it may be prepared in the form of tablets, troches, capsules, elixirs, suspensions, syrups, wafers, etc., and in the case of injections, they may be prepared in unit dosage ampoules or multiple dosage forms. And other solutions, suspensions, tablets, pills, capsules, sustained release preparations and the like.
  • suitable carriers, excipients and diluents suitable for formulation include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl Cellulose, microcrystalline cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate or mineral oil and the like can be used.
  • fillers, anti-coagulants, lubricants, wetting agents, fragrances, preservatives and the like may be further included.
  • Another embodiment embodying the present invention provides a polyethylene glycol compound linker for linking a carrier that increases half-life in vivo of the bioactive polypeptide to the bioactive polypeptide.
  • bioactive polypeptide, carrier, and polyethylene glycol compound are as described above.
  • the compounds of the present invention can be synthesized through a series of reactions represented by the following schemes.
  • the following reaction scheme is merely an exemplary method for preparing the compound of the present invention, and the method for preparing the compound of the present invention is not limited thereto, and may be carried out using methods known in the art or appropriately modified.
  • Toluene and compound (10) are added to the reaction vessel. After potassium t-pentoxide was added, the temperature was raised to about 50 ° C. and stirred at 50 ° C. for 1 hour (activation solution).
  • Compound (2) and toluene are added to another reaction vessel.
  • the activation solution cooled to room temperature is added dropwise to the mixture at 30 ° C. for 1 hour.
  • the reaction solution is extracted by adding water. After layer separation, dichloromethane is added to the aqueous layer and extracted. Dichloromethane is added to the water layer again and extracted. The organic layer was dried over magnesium sulfate and filtered, and the remaining filtrate was concentrated under reduced pressure.
  • Dimethylformamide and compound (5) are added to the container. It heated up to 30 degreeC, added potassium thioacetate, and stirred at 30 degreeC for 5 hours. After cooling to room temperature, dichloromethane and water are added for extraction. After layer separation, the water layer is extracted again with dichloromethane. After layer separation, the extracted organic layer was collected and washed with 20% aqueous sodium chloride solution. After separating the layers, sodium sulfate was added to the organic layer and stirred for 30 minutes. After filtering the mixture, the filtrate is concentrated under reduced pressure. Dichloromethane was added to the concentrate to dissolve it, and then methyl t-butyl ether was added dropwise for 5 minutes. The resulting crystals are filtered off, washed with methyl t-butyl ether and then dried at room temperature under nitrogen to obtain the title compound (6).
  • Toluene and compound (12) are added to the reaction vessel. After potassium t-pentoxide was added, the temperature was raised to about 50 ° C. and stirred at 50 ° C. for 1 hour (activation solution). Compound (2) and toluene are added to another reaction vessel. The activation solution cooled to room temperature is added dropwise to the mixture at 30 ° C. for 1 hour. After stirring at 30 ° C. for 3 hours, the reaction solution is extracted by adding water. After layer separation, dichloromethane is added to the aqueous layer and extracted. Dichloromethane is added to the water layer and extracted further. The organic layer was dried over magnesium sulfate and filtered, and the remaining filtrate was concentrated under reduced pressure.
  • Acetone and compound (15) are added to the reaction vessel. It heated up to 30 degreeC, added potassium iodide, it heated up about 50 degreeC, and stirred at 50 degreeC for 15 hours.
  • the reaction solution is concentrated under reduced pressure and washed with dichloromethane and water. After separating the layers, the organic layer is washed once more with water. After separating the layers, sodium sulfate was added to the organic layer and stirred for 30 minutes. After filtering the mixture, the filtrate is concentrated under reduced pressure.
  • Dichloromethane was added to the concentrate to dissolve it, and 30 ml of methyl t-butyl ether was added dropwise for 5 minutes. The resulting crystals are filtered, washed with methyl t-butyl ether, and then dried at room temperature under nitrogen to obtain compound (16) as a target compound.
  • Dimethylformamide and compound (15) are added to the container. It heated up to 30 degreeC, added potassium thioacetate, and stirred at 30 degreeC for 5 hours. After cooling to room temperature, dichloromethane and water are added for extraction. After layer separation, the water layer is extracted again with dichloromethane. After layer separation, the extracted organic layer was collected and washed with 20% aqueous sodium chloride solution. After separating the layers, sodium sulfate was added to the organic layer and stirred for 30 minutes. After filtering the mixture, the filtrate is concentrated under reduced pressure. Dichloromethane was added to the concentrate to dissolve it, and then methyl t-butyl ether was added dropwise for 5 minutes. The resulting crystals are filtered off, washed with methyl t-butyl ether, and then dried at room temperature under nitrogen to obtain compound (18) as a target compound.
  • the present inventors prepared a polyethylene glycol derivative in which a desired reactor was introduced at both ends. Its production method is as shown in Reaction Examples 1-25.
  • a propionyl aldehyde group is added at one end of the polyethylene glycol backbone and then orthopyridyl disulfide (OPSS), iodoacetamide (IA), iodine group or sulfohydryl at the other end Heterofunctional PEG with the addition of (sulfhydryl group, SH-) is prepared [FIG. 1].
  • OPSS orthopyridyl disulfide
  • IA iodoacetamide
  • SH- Heterofunctional PEG with the addition of (sulfhydryl group, SH-) is prepared [FIG. 1].
  • Linker # 1 pALD-PEG-orthopyridyl disulfide
  • n is between 200 and 300
  • the molecular weight of the prepared polyetherin glycol linker was about 10 KDa, the structure was confirmed by NMR, and RPC analysis showed about 80% purity.
  • linker # 2 pALD-PEG-iodide
  • n is between 200 and 300
  • the molecular weight of the prepared polyetherin glycol linker was about 10 KDa, the structure was confirmed by NMR, and RPC analysis showed about 87% purity.
  • linker # 3 pALD-PEG-sulfhydryl group
  • n is between 200 and 300
  • the molecular weight of the prepared polyetherin glycol linker was about 10 KDa, the structure was confirmed by NMR, and RPC analysis showed about 76% purity.
  • linker # 5 pALD-PEG-iodide
  • n is between 200 and 300
  • the molecular weight of the prepared polyetherin glycol linker was about 10 KDa, the structure was confirmed by NMR, and RPC analysis showed about 88% purity.
  • linker # 7 pALD-PEG-orthopyridyl disulfide
  • n is between 200 and 300
  • the molecular weight of the prepared polyetherin glycol linker is about 10 KDa, and the RPC analysis showed about 81% purity.
  • n is between 200 and 300
  • the molecular weight of the prepared polyetherin glycol linker was about 10 KDa, the structure was confirmed by NMR, and RPC analysis showed about 78% purity.
  • linker # 9 pALD-PEG-sulfhydryl group
  • n is between 200 and 300
  • the molecular weight of the prepared polyetherin glycol linker is about 10 KDa, and RPC analysis showed about 76% purity.
  • n is between 200 and 300
  • the molecular weight of the prepared polyetherin glycol linker is about 10 KDa, the structure was confirmed by NMR, and RPC analysis showed about 89% purity.
  • a physiologically active polypeptide conjugate using the polyethylene glycol derivative prepared in Example 1 was prepared using GLP-1 / Glucagon / GIP Triple Agonist peptide. It was.
  • the triple activator peptide consists of 30 amino acids and corresponds to a peptide comprising a cysteine residue. Therefore, it was used for the reactivity comparison of the thiol reactor of the polyethylene glycol derivative according to the present invention.
  • linker # 2 As the polyethylene glycol derivative, linker # 2, 3, 5, 8, 9, and 11 having a molecular weight of about 10K (10,000 Da) were used.
  • linkers # 3 and # 9 correspond to 10K pALD-PEG-SH (PEG having one propionaldehyde group and one sulfhydryl group at each end), whereas linker # 9 is an amide structure before the thiol reactor unlike linker # 3.
  • linker # 9 There is a characteristic including.
  • linkers # 2, 5, 8, and 11 correspond to 10K pALD-PEG-I (PEG having one propion aldehyde group and one iodine group at each end), while linkers # 5 and 8 correspond to linkers # 2 and 11 and Otherwise it has the property of including an amide structure before the thiol reactor.
  • the molar ratio of peptide to PEG was 1: 3 to 5, the reaction concentration. Is reacted at 3 mg / ml at RT for about 2 hours.
  • the reaction was at 50 mM sodium citrate (pH 5.0) or 50 mM Hepes (HEPES) (pH 7.5), 60% isopropanol (IPA).
  • HEPES Hepes
  • IPA isopropanol
  • linker # 7 having a molecular weight of about 10K (10,000 Da) was used as the polyethylene glycol derivative.
  • the linker # 7 corresponds to about 10K pALD-PEG-OPSS (PEG having propion aldehyde groups and disulfide orthopyridyl disulfides at each end).
  • the molar ratio of peptide to PEG is 1: 1 to 1: 3 and the reaction concentration is 1 or 3
  • the reaction was carried out at mg / ml at RT for about 2 hours.
  • the reaction was at 50 mM sodium citrate (pH 3.0-5.0) or 50 mM Tris (pH 8.0), 60% isopropanol.
  • linkers # 8 and 9 having a molecular weight of about 10K (10,000 Da) were used.
  • linker # 8 corresponds to about 10K pALD-PEG-IA (PEG having propion aldehyde and IA (iodoacetamide) at each end)
  • linker # 9 corresponds to about 10K pALD-PEG- It corresponds to SH (PEG with one propionaldehyde group and one sulfhydryl group at each end).
  • the PEGylation reaction was performed under the same conditions as the PEGylation reaction of Example 2, and then the reaction solution was sodium citrate (pH 3.0), Purification was performed using an SP-HP (GE Healthcare, USA) column with 45% EtOH buffer and KCl concentration gradient.
  • the molar ratio of the purified mono-pegylated peptide and immunoglobulin Fc is 1: 5 and the total protein concentration is 20 mg / ml at 4 ° C.
  • the reaction was carried out for 15 hours. At this time, the reaction solution was added to 100 mM potassium phosphate buffer (pH 6.0) 20% isopropanol and 20 mM sodium cyanoborohydride as a reducing agent.
  • reaction solution was applied to a Source 15Q (GE Healthcare, USA) column using a sodium chloride concentration gradient in Bis-Tris (pH 6.5) buffer, ammonium sulfate and Tris (pH 7.5)
  • the triple activator-10K PEG-immunoglobulin Fc conjugate was purified by applying to Source ISO (GE, USA) using a concentration gradient of. The purity of the prepared conjugate sample was confirmed by SDS-PAGE analysis, and the molecular weight of triple activator and PEG was confirmed.

Abstract

본 발명은 폴리에틸렌 글리콜 유도체 및 이의 용도에 관한 것이다.

Description

폴리에틸렌 글리콜 유도체 및 이의 용도
본 발명은 폴리에틸렌 글리콜 유도체 및 이의 용도에 관한 것이다.
폴리에틸렌 글리콜 (Polyethylene glycol, PEG)은 높은 체내 반감기를 가지고 항원성을 가지지 않는 물질로, 지질이나 단백질 등 다양한 생리활성 물질과 결합하여 약제학적으로 널리 이용되고 있으며 그 자체로서의 약학적 용도도 연구되고 있는 대표적인 생체적합성 물질이다.
특히, 폴리에틸렌 글리콜은 단백질 치료제와 결합하여 혈중 반감기를 증가시키고 단백질 치료제의 항원성을 감소시키는 효과를 가지고 있어 단백질 치료제 측면에서 널리 사용되고 있다. 또한, 단백질에 폴리에틸렌 글리콜 분자를 공유 결합시킨 페길화(PEGylation)는 단백질 치료제의 안정성을 향상시킨다고 보고되었다 (Cantin et al., Am. J. 27:659-665 (2002)).
한편, 이러한 약제를 제조하는 과정에서 단백질 치료제의 활성을 유지하면서 결합체 제조 수율을 높이기 위해서는 정교한 제조 기술을 요구한다. 이에 따라 폴리에틸렌 글리콜을 포함하는 단백질 치료제를 제조하는 방법과 이러한 제조에 사용되는 폴리에틸렌 글리콜에 대한 지속적인 연구가 진행되어 왔다.
본 발명자들은 폴리에틸렌 글리콜을 이용한 생리활성 폴리펩티드 결합체를 제조함에 있어, 두 개 이상의 반응기를 가지는 폴리에틸렌 글리콜을 링커로서 사용하였다 (대한민국 공개특허 제10-2014-0018462호).
상기 기존 폴리에틸렌 글리콜은 반응기로 알데히드기, 숙시니미딜기, 말레이미드기 (maleimide), 비닐설폰기 (vinylsulfone), 할로겐화 아세트아민기, 또는 이황화 오르토피리딜기 (Orthopyridyl disulfide, OPSS) 등을 가지는 것으로 알려져 있다.
다만, 기존에 사용된 폴리에틸렌글리콜은 이의 각각의 말단에 원하는 반응기를 포함하고도 그 구조에 따른 반응성의 차이를 갖는 불편함이 있었다.
따라서, 목적하는 물질에 결합할 수 있는 반응기를 포함하면서도, 이들 물질과 반응이 더 용이한 새로운 폴리에틸렌 글리콜 유도체의 개발이 요구되어 왔다.
본 발명의 하나의 목적은 폴리에틸렌 글리콜 화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용가능한 염을 제공하는 것이다.
본 발명의 다른 목적은 상기 폴리에틸렌 글리콜 화합물과 생리활성 폴리펩티드를 반응시켜 폴리에틸렌 글리콜 화합물이 부착된 생리활성 폴리펩티드를 제조하는 단계를 포함하는, 폴리에틸렌 글리콜 화합물이 부착된 생리활성 폴리펩티드의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 생리활성 폴리펩티드와 캐리어 단백질이 폴리에틸렌 글리콜 화합물을 통하여 연결된, 결합체의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 폴리에틸렌 글리콜 화합물이 부착된, 생리활성 폴리펩티드를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 폴리에틸렌 글리콜 화합물의 양 말단 반응기에 각각 생리활성 폴리펩티드 및 캐리어 단백질이 부착된, 결합체를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 폴리에틸렌 글리콜 화합물의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 생리활성 폴리펩티드의 생체 내 반감기 증가시키는 캐리어를 생리활성 폴리펩티드에 연결시키기 위한, 상기 폴리에틸렌 글리콜 화합물의 용도를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 폴리에틸렌 글리콜 화합물이 부착된, 생리활성 폴리펩티드 또는 상기 결합체를 포함하는 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 생리활성 폴리펩티드의 생체 내 반감기 증가시키는 캐리어를 생리활성 폴리펩티드에 연결시키기 위한 폴리에틸렌 글리콜 화합물 링커를 제공하는 것이다.
본 발명을 구현하는 하나의 양태는 폴리에틸렌 글리콜 화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용가능한 염이다.
하나의 구체예로서, 상기 화합물은 하기 화학식 1로 표시되는 화합물인 것을 특징으로 한다:
[화학식 1]
Figure PCTKR2017002469-appb-I000001
상기 화학식 1에서,
R1은 2,5-디옥소피롤리디닐, 2,5-디옥소피롤릴, 알데히드, 말레이미드, C6-C20아릴디설파이드, C5-C20헤테로아릴디설파이드, 비닐술폰, 티올, 할로겐화 아세트아미드, 석시니미드, p-니트로페닐 카보네이트, 및 이들의 유도체로 이루어진 군에서 선택되고,
L1 내지 L3는 각각 독립적으로 직쇄 또는 분지쇄 C1-C6알킬렌이며,
R2는 이황화 오르토피리딜 (Orthopyridyl disulfide, OPSS), 티올, 또는 할로겐이고,
n은 10 내지 2400의 자연수임.
다른 구체예로서, 상기 R2는 이황화 오르토피리딜, 티올, 또는 요오드인 것을 특징으로 한다.
다른 구체예로서, 상기 R1은 알데히드인 것을 특징으로 한다.
다른 구체예로서, 상기 R1 및 R2는 서로 상이한 작용기를 가지는 것을 특징으로 한다.
다른 구체예로서, 상기 화합물은 하기 화학식 2로 표시되는 것을 특징으로 한다:
[화학식 2]
CHO-(CH2)j-O-(CH2CH2O)n-(CH2)m-NH(CO)-(CH2)k-R2
상기 화학식 2에서,
n은 10 내지 2400의 자연수이고,
j, m 및 k는 각각 독립적으로 1 내지 6의 자연수이며,
R2는 이황화 오르토피리딜 (Orthopyridyl disulfide, OPSS), 티올, 또는 할로겐임.
다른 구체예로서, 상기 화합물은 하기 화학식 3 내지 11로 이루어진 군에서 선택되는, 것을 특징으로 한다:
[화학식 3]
Figure PCTKR2017002469-appb-I000002
[화학식 4]
Figure PCTKR2017002469-appb-I000003
[화학식 5]
Figure PCTKR2017002469-appb-I000004
[화학식 6]
Figure PCTKR2017002469-appb-I000005
[화학식 7]
Figure PCTKR2017002469-appb-I000006
[화학식 8]
Figure PCTKR2017002469-appb-I000007
[화학식 9]
Figure PCTKR2017002469-appb-I000008
[화학식 10]
Figure PCTKR2017002469-appb-I000009
[화학식 11]
Figure PCTKR2017002469-appb-I000010
상기 화학식 3 내지 11에서, n은 10 내지 2400의 자연수임.
본 발명을 구현하는 다른 하나의 양태는, 폴리에틸렌 글리콜 화합물과 생리활성 폴리펩티드를 반응시켜 폴리에틸렌 글리콜 화합물이 부착된 생리활성 폴리펩티드를 제조하는 단계를 포함하는, 폴리에틸렌 글리콜 화합물이 부착된 생리활성 폴리펩티드의 제조방법이다.
하나의 구체예로서, 상기 제조방법에서 R2에 위치한 이황화 오르토피리딜 (Orthopyridyl disulfide, OPSS), 티올, 또는 할로겐이 생리활성 폴리펩티드의 시스테인 잔기에 위치한 티올기와 반응하는 것을 특징으로 한다.
다른 구체예로서, 상기 제조방법은 추가로 폴리에틸렌 글리콜 화합물이 부착된 생리활성 폴리펩티드를 정제하는 단계를 포함하는 것을 특징으로 한다.
다른 구체예로서, 상기 생리활성 폴리펩티드는 호르몬, 사이토카인, 효소, 항체, 성장인자, 전사조절인자, 혈액인자, 백신, 인슐린 분비 펩타이드, 뉴로펩타이드 (neuropeptide), 뇌하수체 호르몬, 항-비만 펩타이드, 항-바이러스 펩타이드, 생리활성을 갖는 비천연형 펩타이드 유도체, 구조단백질, 리간드 단백질 및 수용체로 이루어진 군에서 선택되는 것을 특징으로 한다.
다른 구체예로서, 상기 생리활성 폴리펩티드는 글루카곤, 인슐린, 소마토스타틴, PYY(peptide YY), NPY(neuropeptide Y), GLP-1(Glucagon-like peptide-1) 및 GLP-2(Glucagon-like peptide-2)와 같은 글루카곤 유사 펩타이드, 엑센딘-3(Exendin-3), 엑센딘-4(Exendin-4), 옥신토모둘린(Oxyntomodulin), 글루카곤 수용체, GLP-1 수용체, 및 GIP 수용체에 대해 활성을 보유한 펩타이드, 섬유아세포성장인자 (Fibroblast growth factor), 그렐린(Ghrelin), 안지오텐신, 브래디키닌, 칼시토닌, 부신피질 자극호르몬(Corticotropin), 엘레도이신(Eledoisin), 가스트린, 렙틴, 옥시토신(Oxytocin), 바소프레신(vasopressin), 황체 형성호르몬, 황체 자극호르몬, 여포 자극호르몬, 부갑상선 호르몬, 씨크레틴(secretin), 세르모레린(Sermorelin), 인간 성장호르몬(hGH), 성장호르몬 방출 펩타이드, 콜로니 자극인자(GCSF)류, 인터페론(IFN)류, 인터루킨(Interleukin)류, 프로락틴 방출 펩타이드, 오렉신(Orexin), 갑상선 방출 펩타이드, 콜레시스토키닌(Cholecystokinin), 가스트린억제 펩타이드, 칼모듈린, 가스트린 유리 펩타이드(Gastric releasing peptide), 모틸린(Motilin), 혈관활성 장관펩타이드(Vasoactive intestinal peptide), 심방나트륨이뇨 펩타이드(Atrial natriuretic peptide; ANP), B형 나트륨이뇨 펩타이드(B-type natriuretic peptide; BNP), C-형 나트륨이뇨 펩타이드(C-type natriuretic peptide; CNP), 뉴로키닌(Neurokinin) A, 뉴로메딘(Neuromedin), 레닌(Renin), 엔도텔린(Endothelin), 사라포톡신 펩타이드(Sarafotoxin peptide), 카르소모르핀 펩타이드(Carsomorphin peptide), 데모르핀(Dermorphin), 디노르핀(Dynorphin), 엔도르핀(Endorphin), 엔케팔린(Enkepalin), T 세포인자, 종양괴사인자, 종양괴사인자 수용체, 유로키나아제 수용체, 종양억제인자, 콜라게나제 억제제, 티모포이에틴(Thymopoietin), 티물린(Thymulin), 티모펜틴(Thymopentin), 티모신(Tymosin), 흉선 체액성 인자(Thymic humoral factor), 아드레노모둘린(Adrenomodullin), 알라토스타틴(Allatostatin), 아밀로이드 베타-프로테인 단편(Amyloid beta-protein fragment), 항균성 펩타이드, 항산화제 펩타이드, 봄베신(Bombesin), 오스테오칼신(Osteocalcin), CART 펩타이드, E-셀렉틴(selectin), ICAM-1, VCAM-1, 류코카인(Leucokine), 크링글(Kringle)-5, 라미닌(Laminin), 인히빈(Inhibin), 갈라닌(Galanin), 피브로넥틴(Fibronectin), 판크레아스타틴(Pancreastatin) 및 푸제온(Fuzeon), 인터페론 수용체, 지프로테인 관련수용체 (Gprotein-coupled receptor), 인터루킨 수용체, 효소류, 인터루킨 결합 단백질, 사이토카인 결합 단백질, 마크로파지 활성인자, 마크로파지 펩타이드, B 세포인자, 단백질 A, 알러지 억제인자, 세포 괴사 당단백질, 면역독소, 림포독소, 종양 억제인자, 전이 성장인자, 알파-1 안티트립신, 알부민, α-락트알부민, 아포리포단백질-E, 적혈구 생성인자, 고 당쇄화 적혈구 생성인자, 안지오포에이틴류, 헤모글로빈, 트롬빈, 트롬빈 수용체 활성 펩타이드, 트롬보모듈린, 혈액인자 VII, VIIa, VIII, IX, 및 XIII, 플라즈미노젠 활성인자, 피브린-결합 펩타이드, 유로키나제, 스트렙토키나제, 히루딘, 단백질 C, C-반응성 단백질, 레닌 억제제, 수퍼옥사이드 디스뮤타제, 혈소판 유래 성장인자, 상피세포 성장인자, 표피세포 성장인자, 안지오스타틴, 안지오텐신, 골 형성 성장인자, 골 형성 촉진 단백질, 아트리오펩틴, 연골 유도인자, 엘카토닌, 결합조직 활성인자, 조직인자 경로 억제제, 황체 형성 호르몬 방출 호르몬, 신경 성장인자, 릴랙신, 소마토메딘, 인슐린 유사 성장인자, 부신피질 호르몬, 췌장 폴리펩티드, 가스트린 방출 펩타이드, 코티코트로핀 방출인자, 갑상선 자극호르몬, 오토탁신, 락토페린, 미오스타틴, 세포표면항원, 바이러스 유래 백신 항원, 단일클론 항체, 다중클론 항체 및 항체 단편, 적혈구 증식인자, 백혈구 증식인자, 아밀린 및 그의 아날로그로 이루어진 군에서 선택되는 것을 특징으로 한다.
본 발명을 구현하는 다른 하나의 양태는 생리활성 폴리펩티드와 캐리어 단백질이 폴리에틸렌 글리콜 화합물을 통하여 연결된, 결합체의 제조방법이다.
하나의 구체예로서, 상기 제조방법은
(a) 상기 폴리에틸렌 글리콜 화합물과 생리활성 폴리펩티드 또는 캐리어 단백질 중 하나를 반응시켜 생리활성 폴리펩티드 또는 캐리어 단백질이 한쪽 말단에 부착되고, 다른 쪽 말단에 반응기 (reactive end group)를 가지는, 폴리에틸렌 글리콜 화합물을 제조하는 단계; 및
(b) 상기 (a) 단계에서 제조된, 생리활성 폴리펩티드 또는 캐리어 단백질이 한쪽 말단에 부착되고, 다른 쪽 말단에 말단 반응기을 가지는, 폴리에틸렌 글리콜 화합물과 캐리어 단백질 또는 생리활성 폴리펩티드 중 다른 하나를 반응시켜 상기 폴리에틸렌 글리콜 화합물의 말단 반응기에 캐리어 단백질 또는 생리활성 폴리펩티드를 연결시켜 생리활성 폴리펩티드와 캐리어 단백질이 폴리에틸렌 글리콜 화합물을 통하여 연결된, 결합체를 제조하는 단계를 포함하는 것을 특징으로 한다.
다른 구체예로서,
(a) 상기 폴리에틸렌 글리콜 화합물과 생리활성 폴리펩티드를 반응시켜 생리활성 폴리펩티드가 한쪽 말단에 부착되고, 다른 쪽 말단에 반응기 (reactive end group)를 가지는, 폴리에틸렌 글리콜 화합물을 제조하는 단계; 및
(b) 상기 (a) 단계에서 제조된, 생리활성 폴리펩티드가 한쪽 말단에 부착되고, 다른 쪽 말단에 말단 반응기을 가지는, 폴리에틸렌 글리콜 화합물과 캐리어 단백질을 반응시켜 상기 폴리에틸렌 글리콜 화합물의 말단 반응기에 캐리어 단백질을 연결시키는 단계를 포함하는 것을 특징으로 한다.
다른 구체예로서, 상기 생리활성 폴리펩티드는 호르몬, 사이토카인, 효소, 항체, 성장인자, 전사조절인자, 혈액인자, 백신, 인슐린 분비 펩타이드, 뉴로펩타이드 (neuropeptide), 뇌하수체 호르몬, 항-비만 펩타이드, 항-바이러스 펩타이드, 생리활성을 갖는 비천연형 펩타이드 유도체, 구조단백질, 리간드 단백질 및 수용체로 이루어진 군에서 선택되는 것을 특징으로 한다.
다른 구체예로서, 상기 (a) 단계의 폴리에틸렌 글리콜 화합물은 상기 화학식 1의 구조를 가지는 것을 특징으로 한다.
다른 구체예로서, 상기 방법에서 (a) 단계는 상기 화학식 1의 구조를 가지는 폴리에틸렌 글리콜 화합물의 R2를 생리활성 폴리펩티드의 시스테인 잔기에 위치한 티올 기와 반응시키는 것을 특징으로 한다.
다른 구체예로서, (b) 단계는 폴리에틸렌 글리콜 화합물의 말단 알데히드 기를 면역글로불린 Fc 단편의 아민기와 반응시키는 것을 특징으로 한다.
다른 구체예로서, 상기 제조방법은 추가로 생리활성 폴리펩티드와 캐리어 단백질이 폴리에틸렌 글리콜 화합물을 통하여 연결된, 결합체를 정제하는 단계를 포함하는 것을 특징으로 한다.
다른 구체예로서, 상기 캐리어 단백질은 알부민 및 이의 단편, 특정 아미노산 서열의 반복단위의 중합체, 항체, 항체 단편, FcRn 결합물질, 파이브로넥틴, 트랜스페린(Transferrin), 사카라이드(saccharide), 또는 엘라스틴인 것을 특징으로 한다.
다른 구체예로서, 상기 FcRn 결합물질은 면역글로불린 Fc 단편인 것을 특징으로 한다.
본 발명을 구현하는 다른 하나의 양태는 상기 폴리에틸렌 글리콜 화합물이 부착된, 생리활성 폴리펩티드이다.
하나의 구체예로서, 상기 화합물이 부착된, 생리활성 폴리펩티드는 하기 화학식 15 내지 17 중 어느 하나로 표시되는 구조를 포함하는 것을 특징으로 한다:
[화학식 15]
R1-L1-O-(CH2CH2O)n-L2-NH(CO)-L3-S-S-X
[화학식 16]
R1-L1-O-(CH2CH2O)n-L2-NH(CO)-CH2-S-X
[화학식 17]
X-NHCH2-L1-O-(CH2CH2O)n-L2-NH(CO)-L3-R2
상기 화학식 15 내지 17에서,
R1은, 2,5-디옥소피롤리디닐, 2,5-디옥소피롤릴, 알데히드, 말레이미드, C6-C20아릴디설파이드, C5-C20헤테로아릴디설파이드, 비닐술폰, 티올, 할로겐화 아세트아미드, 석시니미드, p-니트로페닐 카보네이트, 및 이들의 유도체로 이루어진 군에서 선택되고,
L1 내지 L3는 각각 독립적으로 직쇄 또는 분지쇄 C1-C6알킬렌이며,
n은 10 내지 2400의 자연수이고,
R2는, 이황화 오르토피리딜 (Orthopyridyl disulfide, OPSS), 티올, 또는 할로겐이고,
X는, 생리활성 폴리펩티드 모이어티임.
본 발명을 구현하는 다른 하나의 양태는 상기 폴리에틸렌 글리콜 화합물의 양 말단 반응기에 각각 생리활성 폴리펩티드 및 캐리어 단백질이 부착된, 결합체이다.
하나의 구체예로서, 상기 결합체는 하기 화학식 18 또는 19로 표시되는 구조를 가지는, 결합체인 것을 특징으로 한다:
[화학식 18]
Y-NHCH2-L1-O-(CH2CH2O)n-L2-NH(CO)-L3-S-S-X
[화학식 19]
Y-NHCH2-L1-O-(CH2CH2O)n-L2-NH(CO)-CH2-S-X
상기 화학식 18 및 19에서,
L1 내지 L3는 각각 독립적으로 직쇄 또는 분지쇄 C1-C6알킬렌이며,
n은 10 내지 2400의 자연수이고,
X는, 생리활성 폴리펩티드 모이어티이고,
Y는, 캐리어 단백질 모이어티임.
다른 구체예로서, 상기 캐리어 단백질은 알부민 및 이의 단편, 특정 아미노산 서열의 반복단위의 중합체, 항체, 항체 단편, FcRn 결합물질, 파이브로넥틴, 트랜스페린(Transferrin), 사카라이드(saccharide), 또는 엘라스틴인 것을 특징으로 한다.
다른 구체예로서, 상기 FcRn 결합물질은 면역글로불린 Fc 단편인 것을 특징으로 한다.
본 발명을 구현하는 다른 하나의 양태는 상기 폴리에틸렌 글리콜 화합물의 제조방법이다.
하나의 구체예로서, 상기 방법은
(a) 폴리에틸렌 글리콜의 한쪽 말단에 2,5-디옥소피롤리디닐, 2,5-디옥소피롤릴, 알데히드, 말레이미드, C6-C20아릴디설파이드, C5-C20헤테로아릴디설파이드, 비닐술폰, 티올, 할로겐화 아세트아미드, 석시니미드, p-니트로페닐 카보네이트, 및 이들의 유도체로 이루어진 군으로부터 선택되는 R1을 도입하는 단계; 및
(b) 상기 폴리에틸렌 글리콜의 다른 한쪽 말단에 -NH(CO)L3-R2 구조를 도입하는 단계를 포함하고, 여기서, R2는 이황화 오르토피리딜 (Orthopyridyl disulfide, OPSS), 티올, 또는 할로겐인 것을 특징으로 한다.
다른 구체예로서,
화학식 20로 표시되는 화합물로부터 화학식 21로 표시되는 화합물을 준비하는 제1단계; 화학식 21로 표시되는 화합물로부터 화학식 22로 표시되는 화합물을 준비하는 제2단계; 및 화학식 22으로 표시되는 화합물을 산 용액으로 처리하여 말단의 디에톡시메틸을 알데히드로 전환하는 제3단계를 포함하는 것을 특징으로 한다:
[화학식 20]
Figure PCTKR2017002469-appb-I000011
여기서, n'은 n 또는 n+1
[화학식 21]
Figure PCTKR2017002469-appb-I000012
[화학식 22]
Figure PCTKR2017002469-appb-I000013
여기서, 상기 L1, L2, L3, n 및 R2에 대해서는 상기에서 기술된 바와 같음.
다른 구체예로서, 상기 제1단계의 화학식 20로 표시되는 화합물은 하기 화학식 23으로 표시되는 화합물을 메탄설포닐 클로라이드와 반응시켜 준비하는 것을 특징으로 한다:
[화학식 23]
Figure PCTKR2017002469-appb-I000014
.
다른 구체예로서, 상기 제1단계는 화학식 20으로 표시되는 화합물을 암모니아 수용액 및 염화암모늄과 반응시킴으로써 수행하는 것을 특징으로 한다.
다른 구체예로서, 상기 제1단계는 화학식 20으로 표시되는 화합물을 히드록시알킬 테트라하이드로피라닐 에테르와 반응시켜 화학식 24로 표시되는 화합물을 제조하는 제1-1단계;
화학식 24로 표시되는 화합물을 p-톨루엔설폰산과 반응시켜 말단의 테트라하이드로피라닐옥시기를 히드록시기로 치환하는 제1-2단계;
이전 단계로부터 수득한 화합물을 메탄설포닐클로라이드와 반응시켜 히드록시기를 메탄술폰산기로 전환하는 제1-3단계; 및
이전 단계로부터 수득한 화합물을 암모니아 수용액 및 염화암모늄과 반응시키는 제1-4단계를 포함하여 수행하는 것을 특징으로 한다.
[화학식 24]
Figure PCTKR2017002469-appb-I000015
.
다른 구체예로서, 상기 제2단계는 화학식 21로 표시되는 화합물을 하기 화학식 25로 표시되는 화합물과 반응시켜 수행하는 것을 특징으로 한다:
[화학식 25]
Figure PCTKR2017002469-appb-I000016
다른 구체예로서, 상기 제2단계는 화학식 21로 표시되는 화합물을 클로로(C2-C7 알카노일) 클로라이드와 반응시켜 중간체로 하기 화학식 26으로 표시되는, 말단에 클로로기를 포함하는 화합물을 합성한 후, 황화수소 나트륨 존재 또는 부재 하에 할로겐 금속염과 반응시켜 클로로기를 티올 또는 할로겐으로 전환하여 수행하는 것을 특징으로 한다:
[화학식 26]
Figure PCTKR2017002469-appb-I000017
본 발명을 구현하는 다른 하나의 양태는 생리활성 폴리펩티드의 생체 내 반감기 증가시키는 캐리어를 생리활성 폴리펩티드에 연결시키기 위한, 상기 폴리에틸렌 글리콜 화합물의 용도이다.
본 발명을 구현하는 다른 하나의 양태는 상기 폴리에틸렌 글리콜 화합물이 부착된, 생리활성 폴리펩티드 또는 상기 결합체를 포함하는 조성물이다.
본 발명을 구현하는 다른 하나의 양태는 폴리에틸렌 글리콜 화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용가능한 염을 포함하는, 생리활성 폴리펩티드의 생체 내 반감기 증가시키는 캐리어를 생리활성 폴리펩티드에 연결시키기 위한 링커이다.
본 발명의 폴리에틸렌 글리콜 유도체는 이의 말단에 원하는 반응기를 포함하면서도, 이와 연결하고자 하는 목적 물질 (예, 단백질)과의 반응성이 용이하여, 단백질 결합체 등의 결합 약물에 대한 약제의 제조 분야에서 유용하게 이용될 수 있다.
도 1a 및 b는 본 발명의 신규한 폴리에틸렌 글리콜 화합물의 일 예로서 1) 알데히드기와 이황화 오르토피리딜기를 가지는 화합물의 화학 구조 (링커 1, 4, 7), 2) 알데히드기와 요오드화 아세트아민기 혹은 요오드 기를 가지는 화합물의 화학 구조 (링커 2, 5, 8), 및 3) 알데히드기와 설프히드릴기를 가지는 화합물의 화학 구조 (링커 3, 6, 9)를 나타낸다. 도 1b에서 링커 10 내지 12는 비교군에 해당한다.
도 2는, 링커 1 제조 후 핵자기공명법(NMR)으로 분석, 확인한 결과이다.
도 3은, 링커 1 제조 후 역상크로마토그래피로 분석한 결과이다.
도 4는, 링커 2 제조 후 핵자기공명법(NMR)으로 분석, 확인한 결과이다.
도 5는, 링커 2 제조 후 역상크로마토그래피로 분석한 결과이다.
도 6은, 링커 3 제조 후 핵자기공명법(NMR)으로 분석, 확인한 결과이다.
도 7은, 링커 3 제조 후 역상크로마토그래피로 분석한 결과이다.
도 8은, 링커 5 제조 후 핵자기공명법(NMR)으로 분석, 확인한 결과이다.
도 9는, 링커 5 제조 후 역상크로마토그래피로 분석한 결과이다.
도 10은, 링커 5 제조 후 분자량을 MALDI-TOF으로 분석한 결과이다.
도 11은, 링커 7 제조 후 역상크로마토그래피로 분석한 결과이다.
도 12은, 링커 8 제조 후 핵자기공명법(NMR)으로 분석, 확인한 결과이다.
도 13는, 링커 8 제조 후 역상크로마토그래피로 분석한 결과이다.
도 14은, 링커 8 제조 후 분자량을 MALDI-TOF으로 분석한 결과이다.
도 15은, 링커 9 제조 후 역상크로마토그래피로 분석한 결과이다.
도 16는, 링커 11 제조 후 핵자기공명법(NMR)으로 분석, 확인한 결과이다.
도 17는, 링커 11 제조 후 역상크로마토그래피로 분석한 결과이다.
도 18는, 본 발명에 따른 폴리에틸렌 글리콜 화합물의 티올 반응성 기 (thiol reactive group)의 반응성 비교 실험 결과를 나타낸다.
도 19 내지 21는, 본 발명에 따른 폴리에틸렌 글리콜 화합물을 링커로서 사용하여 제조한 삼중활성체 - PEG - Fc 결합체의 SDS-PAGE 분석 결과를 나타낸 것이다.
도 19는 본 발명에 따른 링커 7을, 도 20은 링커 8을, 도 21은 링커 9를 사용한 경우에 있어서의 SDS-PAGE 분석 결과를 나타낸 것이다.
본 발명을 구현하는 하나의 양태는 폴리에틸렌 글리콜 화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용가능한 염을 제공한다.
이를 구체적으로 설명하면 다음과 같다. 한편, 본원에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본원에서 개시된 다양한 요소들의 모든 조합이 본 발명의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 발명의 범주가 제한된다고 볼 수 없다.
본 발명에서 용어, "폴리에틸렌 글리콜 화합물"은 폴리에틸렌 글리콜 구조 [-(OCH2CH2)n-]를 포함하는 화합물을 말한다. 보다 구체적으로, 본 발명에서 상기 폴리에틸렌 글리콜 화합물은 2개 이상의 말단 반응기를 포함할 수 있다.
이때, 상기 폴리에틸렌 글리콜 화합물에 존재하는 2개 이상의 말단 반응기는 서로 동일하거나 상이할 수 있다. 보다 구체적으로는 서로 상이한 종류의 말단 반응기에 작용하는 헤테로 작용성(heterofunctional) 링커일 수 있다. 예컨대, 상기 화합물의 하나의 말단은 아민 기에 작용성을 가지는 반면, 다른 말단은 티올 기에 작용성을 가지는 것을 들 수 있다. 그러나, 특별히 이에 제한되는 것은 아니다.
또한, 상기 폴리에틸렌 글리콜 화합물은 생리활성 폴리펩티드에 캐리어를 결합시키기 위한 링커로서 사용될 수 있다. 따라서, 상기 2개 이상의 말단 반응기를 가지는 폴리에틸렌 글리콜 화합물의 하나의 말단은 생리활성 폴리펩티드에 다른 말단은 캐리어에 연결될 수 있다.
한편, 본 발명에서 상기 폴리에틸렌 글리콜 화합물은 폴리에틸렌 글리콜 유도체와 혼용되어 사용된다.
구체적인 양태로서, 본 발명에 따른 폴리에틸렌 글리콜 화합물은 다음과 같이 티올 반응기 (thiol reactive group)와 폴리에틸렌 글리콜 구조 사이에 -NHCO-구조를 포함하는 것일 수 있다.
구체적으로, 상기 화합물은 하기 화학식 1로 표시되는 화합물일 수 있다:
[화학식 1]
Figure PCTKR2017002469-appb-I000018
상기 화학식 1에서,
R1은 2,5-디옥소피롤리디닐, 2,5-디옥소피롤릴, 알데히드, 말레이미드, C6-C20아릴디설파이드, C5-C20헤테로아릴디설파이드, 비닐술폰, 티올, 할로겐화 아세트아미드, 석시니미드, p-니트로페닐 카보네이트, 및 이들의 유도체로 이루어진 군에서 선택되고,
L1 내지 L3는 각각 독립적으로 직쇄 또는 분지쇄 C1-C6알킬렌이며,
R2는 이황화 오르토피리딜 (Orthopyridyl disulfide, OPSS), 티올, 또는 할로겐이고,
n은 10 내지 2400의 자연수임.
상기 화학식에서 R2는 이황화 오르토피리딜, 티올, F, Br, Cl, 또는 I일 수 있으며, 보다 더 구체적으로 이황화 오르토피리딜, 또는 I일 수 있으나, 특별히 이에 제한되는 것은 아니다.
상기 화학식에서 R1은 알데히드일 수 있으나, 특별히 이에 제한되지 않는다.
상기 화학식에서 R1은 석시니미드 유도체일 수 있으며, 그 종류로 석시니미딜 프로피오네이트, 히드록시 석시니미딜, 석시니미딜 카르복시메틸 또는 석시니미딜 카보네이트를 들 수 있으나, 특별히 이에 제한되는 것은 아니다.
또한, 상기 화합물은 서로 상이한 종류의 말단 반응기에 작용하는 헤테로 작용성(heterofunctional) 일 수 있으며, 구체적으로는 R1 및 R2는 서로 상이한 작용기를 가질 수 있다. 그러나, 특별히 이에 제한되는 것은 아니다.
구체적으로, R1은 알데히드이고, R2는 이황화 오르토피리딜 (Orthopyridyl disulfide, OPSS), 티올, 또는 할로겐일 수 있으나, 특별히 이에 제한되는 것은 아니다.
상기 화합물에서 L1 내지 L3는 각각 독립적으로 직쇄 또는 분지쇄 C1-C6알킬렌, 보다 더 구체적으로 C1-C4 알킬렌일 수 있으나, 특별히 이에 제한되는 것은 아니다.
예컨대, 상기 L1은 1, 2, 3, 4, 5, 또는 6의 자연수일 수 있고, L2는 1, 2, 3, 4, 5, 또는 6의 자연수일 수 있고, 상기 L3는 1, 2, 3, 4, 5, 또는 6의 자연수일 수 있다.
하나의 일례로서, L2는 2, 4, 또는 6이고, L1과 L3는 1, 2, 3, 4, 5, 또는 6일 수 있다.
상기 화합물에서 R1-L1-은 알킬 알데히드일 수 있고, 예컨대 C2-C6 알킬 알데히드일 수 있으며, 구체적으로 프로피온 알데히드, 부틸알데히드 등일 수 있으나, 특별히 이에 제한되지 않는다.
또한, 특별히 이에 제한되지 않으나, 본 발명의 폴리에틸렌 글리콜 화합물은 약 100 달톤 내지 약 110,000 달톤의 분자량, 구체적으로 약 400 내지 약 110,000 달톤의 분자량, 더 구체적으로 약 1000 내지 100,000 달톤의 분자량, 보다 더 구체적으로 약 1000 내지 20,000 달톤의 분자량을 가질 수 있으나, 특별히 이에 제한되는 것은 아니다.
상기 n은 10 내지 2400의 자연수일 수 있으며, 보다 더 구체적으로 20 내지 460의 자연수일 수 있으나, 특별히 이에 제한되지 않는다.
구체적으로, 상기 화합물은 하기 화학식 2로 표시되는 것일 수 있다:
[화학식 2]
CHO-(CH2)j-O-(CH2CH2O)n-(CH2)m-NH(CO)-(CH2)k-R2
상기 화학식 2에서,
n은 10 내지 2400의 자연수이고,
j, m 및 k는 각각 독립적으로 1 내지 6의 자연수이며,
R2는 이황화 오르토피리딜, 티올, 또는 할로겐임.
보다 더 구체적으로, 상기 화학식 2에서 n은 10 내지 2400의 자연수, 더 구체적으로 20 내지 460의 자연수일 수 있으나, 특별히 이에 제한되지 않는다.
구체적 양태에서 상기 j, m 및 k는 각각 독립적으로 1 내지 6의 자연수, 구체적으로 1 내지 4의 자연수일 수 있다.
예컨대, 상기 j는 1, 2, 3, 4, 5, 또는 6의 자연수일 수 있고, m은 1, 2, 3, 4, 5, 또는 6의 자연수일 수 있으며, k는 1, 2, 3, 4, 5, 또는 6의 자연수일 수 있다.
하나의 일례로서, j는 2, 3, 4, 5, 또는 6이고, m은 2, 4, 또는 6이고, k는 1, 2, 3, 4, 5, 또는 6일 수 있다.
또한, 상기 R2는 이황화 오르토피리딜, 티올, 또는 할로겐, 구체적으로는 이황화 오르토피리딜, 티올, 또는 F, Br, Cl, 또는 I일 수 있으며, 보다 더 구체적으로 이황화 오르토피리딜, 또는 I일 수 있으나, 특별히 이에 제한되는 것은 아니다.
구체적으로, 상기 화합물은 하기 화학식 6 내지 11로 이루어진 군에서 선택되는 것일 수 있다.
[화학식 6]
Figure PCTKR2017002469-appb-I000019
[화학식 7]
Figure PCTKR2017002469-appb-I000020
[화학식 8]
Figure PCTKR2017002469-appb-I000021
[화학식 9]
Figure PCTKR2017002469-appb-I000022
[화학식 10]
Figure PCTKR2017002469-appb-I000023
[화학식 11]
Figure PCTKR2017002469-appb-I000024
상기 화학식 6 내지 11에서, n은 상기에서 정의한 바와 같음.
본원 실시예에서는 상기 화학식 6으로 표시되는 화합물을 링커 #4로, 상기 화학식 7로 표시되는 화합물을 링커 #5로, 상기 화학식 8로 표시되는 화합물을 링커 #6로, 상기 화학식 9로 표시되는 화합물을 링커 #7로, 상기 화학식 10으로 표시되는 화합물을 링커 #8로, 상기 화학식 11로 표시되는 화합물을 링커 #9로 명명하였다.
본 발명의 일 양태에 따르면 상기 화학식 1에 속하는 화합물들이 -NHCO- 구조를 포함하지 않는 상기 화합물에 비하여 티올 기에 대해 높은 반응성을 나타낼 수 있음을 확인하였는바, 상기 화합물들을 티올 기를 포함하는 물질에 부착하는데 유용하게 사용될 수 있다.
한편, 상기 화합물은 구체적으로 하기 화학식 3 내지 5 중 어느 하나의 구조를 가질 수 있다:
[화학식 3]
Figure PCTKR2017002469-appb-I000025
[화학식 4]
Figure PCTKR2017002469-appb-I000026
[화학식 5]
Figure PCTKR2017002469-appb-I000027
여기서 n은 상기에서 정의한 바와 같음.
한편, 상기 화합물은 약학적으로 허용가능한 염의 형태로 존재할 수 있다. 염으로는 약학적으로 허용가능한 유리산 (free acid)에 의해 형성된 산부가염이 유용하다.
상기 염의 종류는 특별히 제한되지는 않는다. 다만, 개체, 예컨대 포유류에게 안전하고 효과적인 형태인 것이 바람직하나, 특별히 이에 제한되는 것은 아니다.
상기 용어, "약학적으로 허용가능한"은 의약학적 판단의 범위 내에서,과도한 독성,자극, 또는 알레르기 반응 등을 유발하지 않고 원하는 용도에 효과적으로 사용 가능한 물질을 의미한다.
본 발명에서 용어, "약학적으로 허용가능한 염" 이란 약학적으로 허용되는 무기산, 유기산, 또는 염기로부터 유도된 염을 포함한다. 적합한 산의 예로는 염산, 브롬산, 황산, 질산, 과염소산, 푸마르산,말레산, 인산, 글리콜산, 락트산, 살리실산,숙신산, 톨루엔-p-설폰산, 타르타르산, 아세트산,시트르산, 메탄설폰산,포름산, 벤조산, 말론산, 나프탈렌-2-설폰산, 벤젠설폰산 등을 들 수 있다. 적합한 염기로부터 유도된 염은 나트륨, 칼륨 등의 알칼리 금속,마그네슘 등의 알칼리 토금속,및 암모늄 등을 포함할 수 있다.
산부가염은 통상의 방법, 예를 들어 화합물을 과량의 산 수용액에 용해시키고, 이 염을 수혼화성 유기 용매, 예를 들어 메탄올, 에탄올, 아세톤 또는 아세토니트릴을 사용하여 침전시켜서 제조할 수 있다. 동 몰량의 화합물 및 물 중의 산 또는 알코올 (예, 글리콜 모노메틸에테르)을 가열하고, 이어서 상기 혼합물을 증발시켜 건조시키거나, 또는 석출된 염을 흡인 여과시킬 수 있다.
또한, 염기를 사용하여 약학적으로 허용가능한 금속염을 만들 수 있다. 알칼리 금속염 또는 알칼리 토금속염은, 예를 들어 화합물을 과량의 알칼리 금속 수산화물 또는 알칼리 토금속 수산화물 용액 중에 용해시키고, 비용해 화합물 염을 여과한 후 여액을 증발, 건조시켜 얻을 수 있다.
또한, 본 발명의 상기 화합물 및 이의 약학적으로 허용가능한 염은 이로부터 제조될 수 있는 가능한 용매화물을 포함하는 개념이다.
본 발명에서 사용된 용어 "용매화물"은 본 발명에 따른 화합물 또는 이의 염이 용매 분자와 복합체를 형성한 것을 말한다.
아울러, 본 발명의 화합물이 그 치환기에 비대칭 탄소중심을 가질 경우 R 또는 S 이성질체, 라세미체, 부분입체이성질체 혼합물 및 개개 부분입체이성질체로서 존재할 수 있으며, 이들 모든 이성질체 및 이들의 혼합물은 본 발명의 범주에 포함된다.
본 발명을 구현하는 다른 하나의 양태는, 폴리에틸렌 글리콜 화합물과 생리활성 폴리펩티드를 반응시켜 폴리에틸렌 글리콜 화합물이 부착된 생리활성 폴리펩티드를 제조하는 단계를 포함하는, 폴리에틸렌 글리콜 화합물이 부착된 생리활성 폴리펩티드의 제조방법을 제공한다.
상기 폴리에틸렌 글리콜 화합물에 대해서는 앞서 설명한 바와 같다.
상기 제조방법은 상기 폴리에틸렌 글리콜 화합물의 양 말단에 위치한 반응기 중 어느 하나를 생리활성 폴리펩티드에 연결시키는 단계를 포함할 수 있다. 보다 구체적으로는 R1에 위치한 반응기를 생리활성 폴리펩티드에 연결시키거나, R2에 위치한 반응기를 생리활성 폴리펩티드에 연결시킬 수 있으나, 특별히 이에 제한되지 않는다.
보다 구체적으로, R2에 위치한 이황화 오르토피리딜, 티올, 또는 할로겐이 생리활성 폴리펩티드의 시스테인 잔기에 위치한 티올기와 반응하는 것을 포함할 수 있으나, 특별히 이에 제한되지는 않는다.
상술한 폴리에틸렌 글리콜 화합물과 생리활성 폴리펩티드 간의 반응은 폴리에틸렌 글리콘 화합물의 반응기와 폴리에틸렌 글리콜 화합물이 연결될 생리활성 폴리펩티드의 반응기의 특성을 고려하여 당업자가 적절히 결정할 수 있다.
예컨대, 구연산 완충액 또는 HEPES와 같은 적절한 완충액과 C1 내지 C6 알코올과 같은 유기용매의 존재 하에 상기 반응이 수행될 수 있으나, 특별히 이에 제한되는 것은 아니다.
또한, 상기 제조방법은 추가로 폴리에틸렌 글리콜 화합물이 부착된 생리활성 폴리펩티드를 정제하는 단계를 포함할 수 있다.
이러한 정제에는 당업계에 공지된 방법을 제한 없이 이용할 수 있으며, 구체적으로는 크로마토그래피를 이용할 수 있으나, 특별히 이에 제한되지 않는다.
본 발명에서 용어, "생리활성 폴리펩티드"는 생리활성을 나타낼 수 있는 펩타이드 혹은 단백질을 모두 포함하는 개념으로서, 바람직하게는 대상체 내에서 생리활성을 나타내게 하고자 하는 물질이다.
상기 생리활성 폴리펩티드는 호르몬, 사이토카인, 효소, 항체, 성장인자, 전사조절인자, 혈액인자, 백신, 인슐린 분비 펩타이드, 뉴로펩타이드 (neuropeptide), 뇌하수체 호르몬, 항-비만 펩타이드, 항-바이러스 펩타이드, 생리활성을 갖는 비천연형 펩타이드 유도체, 구조단백질, 리간드 단백질 및 수용체로 이루어진 군에서 선택되는 것을 특징으로 한다.
상기 생리활성 폴리펩티드의 예로, GLP-1 수용체 아고니스트, 렙틴(Leptin) 수용체 아고니스트, DPP-IV 저해제, Y5 수용체 안타고니스트, MCH (Melanin-concentrating hormone) 수용체 안타고니스트, Y2/3 수용체 아고니스트, MC3/4 수용체 아고니스트, 위/췌장 리파아제(gastric/pancreatic lipase) 저해제, 5HT2c 아고니스트, β3A 수용체 아고니스트, 아밀린(Amylin) 수용체 아고니스트, 그랠린 (Ghrelin) 안타고니스트, 그랠린 수용체 안타고니스트 등이 될 수 있으나, 특별히 이에 제한되지 않는다.
또한, 생리활성 폴리펩티드는 하기 서열을 포함하는 아미노산 서열을 포함하거나, 이로 필수적으로 구성되거나, 혹은 이로 구성된 펩타이드일 수 있다. 상기 펩타이드는 글루카곤 수용체, GLP-1 수용체, 및 GIP 수용체에 대해 활성을 갖는 것일 수 있으며, 이러한 펩타이드를 삼중 활성체로 명명한다.
Xaa1-Xaa2-Xaa3-Gly-Thr-Phe-Xaa7-Ser-Asp-Xaa10-Ser-Xaa12-Xaa13-Xaa14-Xaa15-Xaa16-Xaa17-Xaa18-Xaa19-Xaa20-Xaa21-Phe-Xaa23-Xaa24-Trp-Leu-Xaa27-Xaa28-Xaa29-Xaa30-R1 (서열번호 103)
상기 식에서,
Xaa1은 히스티딘, 4-이미다조아세틸, 또는 티로신이고,
Xaa2는 글리신, 알파-메틸-글루탐산, 또는 Aib이며,
Xaa3은 글루탐산 또는 글루타민이고,
Xaa7은 트레오닌 또는 이소류신이며,
Xaa10은 류신, 티로신, 리신, 시스테인, 또는 발린이고,
Xaa12는 리신, 세린, 또는 이소류신이며,
Xaa13은 글루타민, 티로신, 알라닌, 또는 시스테인이고,
Xaa14는 류신, 메티오닌, 또는 티로신이며,
Xaa15는 시스테인, 아스파르트산, 글루탐산, 또는 류신이며,
Xaa16은 글리신, 글루탐산, 또는 세린이고,
Xaa17은 글루타민, 아르기닌, 이소류신, 글루탐산, 시스테인, 또는 리신이며,
Xaa18은 알라닌, 글루타민, 아르기닌, 또는 히스티딘이고,
Xaa19는 알라닌, 글루타민, 시스테인, 또는 발린이며,
Xaa20은 리신, 글루타민, 또는 아르기닌이고,
Xaa21은 글루탐산, 글루타민, 류신, 시스테인, 또는 아스파르트산이며,
Xaa23은 이소류신 또는 발린이고,
Xaa24는 알라닌, 글루타민, 시스테인, 아스파라긴, 아스파르트산, 또는 글루탐산이며,
Xaa27은 발린, 류신, 리신, 또는 메티오닌이고,
Xaa28은 시스테인, 리신, 알라닌, 아스파라긴, 또는 아스파르트산이며,
Xaa29는 시스테인, 글리신, 글루타민, 트레오닌, 글루탐산, 또는 히스티딘이고,
Xaa30은 시스테인, 글리신, 리신, 또는 히스티딘이거나, 부존재하며,
R1은 시스테인, GKKNDWKHNIT (서열번호 104), m-SSGAPPPS-n (서열번호 105), 또는 m-SSGQPPPS-n (서열번호 106)이거나, 부존재하며,
여기서,
m은 -Cys-, -Pro-, 또는 -Gly-Pro-이고,
n은 -Cys-, -Gly-, -Ser-, 또는 -His-Gly-이거나, 부존재함.
상기 삼중 활성체의 예로, 서열번호: 1 내지 102로 이루어진 군에서 선택된 아미노산 서열을 포함하는 펩타이드를 들 수 있으나, 특별히 이에 제한되지 않는다.
또한, 상기 생리활성 폴리펩티드는 글루카곤, 인슐린, 소마토스타틴, PYY(peptide YY), NPY(neuropeptide Y), GLP-1(Glucagon-like peptide-1) 및 GLP-2(Glucagon-like peptide-2)와 같은 글루카곤 유사 펩타이드, 엑센딘-3(Exendin-3), 엑센딘-4(Exendin-4), 옥신토모둘린(Oxyntomodulin), 글루카곤 수용체, GLP-1 수용체, 및 GIP 수용체에 대해 활성을 보유한 펩타이드, 섬유아세포성장인자 (Fibroblast growth factor), 그렐린(Ghrelin), 안지오텐신, 브래디키닌, 칼시토닌, 부신피질 자극호르몬(Corticotropin), 엘레도이신(Eledoisin), 가스트린, 렙틴, 옥시토신(Oxytocin), 바소프레신(vasopressin), 황체 형성호르몬, 황체 자극호르몬, 여포 자극호르몬, 부갑상선 호르몬, 씨크레틴(secretin), 세르모레린(Sermorelin), 인간 성장호르몬(hGH), 성장호르몬 방출 펩타이드, 콜로니 자극인자(GCSF)류, 인터페론(IFN)류, 인터루킨(Interleukin)류, 프로락틴 방출 펩타이드, 오렉신(Orexin), 갑상선 방출 펩타이드, 콜레시스토키닌(Cholecystokinin), 가스트린억제 펩타이드, 칼모듈린, 가스트린 유리 펩타이드(Gastric releasing peptide), 모틸린(Motilin), 혈관활성 장관펩타이드(Vasoactive intestinal peptide), 심방나트륨이뇨 펩타이드(Atrial natriuretic peptide; ANP), B형 나트륨이뇨 펩타이드(B-type natriuretic peptide; BNP), C-형 나트륨이뇨 펩타이드(C-type natriuretic peptide; CNP), 뉴로키닌(Neurokinin) A, 뉴로메딘(Neuromedin), 레닌(Renin), 엔도텔린(Endothelin), 사라포톡신 펩타이드(Sarafotoxin peptide), 카르소모르핀 펩타이드(Carsomorphin peptide), 데모르핀(Dermorphin), 디노르핀(Dynorphin), 엔도르핀(Endorphin), 엔케팔린(Enkepalin), T 세포인자, 종양괴사인자, 종양괴사인자 수용체, 유로키나아제 수용체, 종양억제인자, 콜라게나제 억제제, 티모포이에틴(Thymopoietin), 티물린(Thymulin), 티모펜틴(Thymopentin), 티모신(Tymosin), 흉선 체액성 인자(Thymic humoral factor), 아드레노모둘린(Adrenomodullin), 알라토스타틴(Allatostatin), 아밀로이드 베타-프로테인 단편(Amyloid beta-protein fragment), 항균성 펩타이드, 항산화제 펩타이드, 봄베신(Bombesin), 오스테오칼신(Osteocalcin), CART 펩타이드, E-셀렉틴(selectin), ICAM-1, VCAM-1, 류코카인(Leucokine), 크링글(Kringle)-5, 라미닌(Laminin), 인히빈(Inhibin), 갈라닌(Galanin), 피브로넥틴(Fibronectin), 판크레아스타틴(Pancreastatin) 및 푸제온(Fuzeon), 인터페론 수용체, 지프로테인 관련수용체 (Gprotein-coupled receptor), 인터루킨 수용체, 효소류, 인터루킨 결합 단백질, 사이토카인 결합 단백질, 마크로파지 활성인자, 마크로파지 펩타이드, B 세포인자, 단백질 A, 알러지 억제인자, 세포 괴사 당단백질, 면역독소, 림포독소, 종양 억제인자, 전이 성장인자, 알파-1 안티트립신, 알부민, α-락트알부민, 아포리포단백질-E, 적혈구 생성인자, 고 당쇄화 적혈구 생성인자, 안지오포에이틴류, 헤모글로빈, 트롬빈, 트롬빈 수용체 활성 펩타이드, 트롬보모듈린, 혈액인자 VII, VIIa, VIII, IX, 및 XIII, 플라즈미노젠 활성인자, 피브린-결합 펩타이드, 유로키나제, 스트렙토키나제, 히루딘, 단백질 C, C-반응성 단백질, 레닌 억제제, 수퍼옥사이드 디스뮤타제, 혈소판 유래 성장인자, 상피세포 성장인자, 표피세포 성장인자, 안지오스타틴, 안지오텐신, 골 형성 성장인자, 골 형성 촉진 단백질, 아트리오펩틴, 연골 유도인자, 엘카토닌, 결합조직 활성인자, 조직인자 경로 억제제, 황체 형성 호르몬 방출 호르몬, 신경 성장인자, 릴랙신, 소마토메딘, 인슐린 유사 성장인자, 부신피질 호르몬, 췌장 폴리펩티드, 가스트린 방출 펩타이드, 코티코트로핀 방출인자, 갑상선 자극호르몬, 오토탁신, 락토페린, 미오스타틴, 세포표면항원, 바이러스 유래 백신 항원, 단일클론 항체, 다중클론 항체 및 항체 단편, 적혈구 증식인자, 백혈구 증식인자, 아밀린 및 그의 아날로그로 이루어진 군에서 선택되는 것일 수 있으나, 특별히 이에 제한되는 것은 아니다.
본 발명을 구현하는 다른 하나의 양태는 생리활성 폴리펩티드와 캐리어 단백질이 폴리에틸렌 글리콜 화합물을 통하여 연결된, 결합체의 제조방법을 제공한다.
상기 생리활성 폴리펩티드 및 폴리에틸렌 글리콜 화합물에 대해서는 앞서 설명한 바와 같다.
구체적으로, 상기 제조방법은
(a) 상기 폴리에틸렌 글리콜 화합물과 생리활성 폴리펩티드 또는 캐리어 단백질 중 하나를 반응시켜 생리활성 폴리펩티드 또는 캐리어 단백질이 한쪽 말단에 부착되고, 다른 쪽 말단에 반응기 (reactive end group)를 가지는, 폴리에틸렌 글리콜 화합물을 제조하는 단계; 및
(b) 상기 (a) 단계에서 제조된, 생리활성 폴리펩티드 또는 캐리어 단백질이 한쪽 말단에 부착되고, 다른 쪽 말단에 말단 반응기을 가지는, 폴리에틸렌 글리콜 화합물과 캐리어 단백질 또는 생리활성 폴리펩티드 중 다른 하나를 반응시켜 상기 폴리에틸렌 글리콜 화합물의 말단 반응기에 캐리어 단백질 또는 생리활성 폴리펩티드를 연결시켜 생리활성 폴리펩티드와 캐리어 단백질이 폴리에틸렌 글리콜 화합물을 통하여 연결된, 결합체를 제조하는 단계를 포함하는 것일 수 있다.
보다 더 구체적으로, 상기 제조방법은
(a) 상기 폴리에틸렌 글리콜 화합물과 생리활성 폴리펩티드를 반응시켜 생리활성 폴리펩티드가 한쪽 말단에 부착되고, 다른 쪽 말단에 반응기 (reactive end group)를 가지는, 폴리에틸렌 글리콜 화합물을 제조하는 단계; 및
(b) 상기 (a) 단계에서 제조된, 생리활성 폴리펩티드가 한쪽 말단에 부착되고, 다른 쪽 말단에 말단 반응기을 가지는, 폴리에틸렌 글리콜 화합물과 캐리어 단백질을 반응시켜 상기 폴리에틸렌 글리콜 화합물의 말단 반응기에 캐리어 단백질을 연결시키는 단계를 포함하는 것일 수 있다.
구체적으로, 상기 (a) 단계의 폴리에틸렌 글리콜 화합물은 하기 화학식 1의 구조를 가지는 것을 특징으로 한다.
[화학식 1]
Figure PCTKR2017002469-appb-I000028
상기 화학식 1에서,
R1은 알데히드 기이고,
L1 내지 L3는 각각 독립적으로 직쇄 또는 분지쇄 C1-C6알킬렌이며,
R2는 이황화 오르토피리딜 (Orthopyridyl disulfide, OPSS), 티올, 또는 할로겐이고,
n은 10 내지 2400의 자연수임.
특별히 이에 제한되지 않으나, 상기 방법에서 폴리에틸렌 글리콜 화합물과 생리활성 폴리펩티드 간의 반응은 폴리에틸렌 글리콜 화합물의 R2를 생리활성 폴리펩티드의 시스테인 잔기에 위치한 티올 기와 반응을 포함할 수 있고, 폴리에틸렌 글리콜 화합물과 캐리어 단백질 간의 반응은 폴리에틸렌 글리콜 화합물의 말단 알데히드 기와 캐리어 단백질의 아민기 간의 반응을 포함할 수 있다.
구체적으로, 상기 방법에서 (a) 단계는 상기 화학식 1의 구조를 가지는 폴리에틸렌 글리콜 화합물의 R2를 생리활성 폴리펩티드의 시스테인 잔기에 위치한 티올 기와 반응시키고, (b) 단계에서는 폴리에틸렌 글리콜 화합물의 말단 알데히드 기를 캐리어 단백질의 아민기와 반응시키는 것일 수 있다.
상술한 폴리에틸렌 글리콜 화합물과 생리활성 폴리펩티드 또는 캐리어 단백질 간의 반응은 폴리에틸렌 글리콜 화합물의 반응기와 폴리에틸렌 글리콜 화합물이 연결될 생리활성 폴리펩티드 또는 캐리어 단백질의 반응기의 특성을 고려하여 당업자가 적절히 결정할 수 있다.
예컨대, 페길화 반응은 구연산 완충액 또는 HEPES와 같은 적절한 완충액과 C1 내지 C6 알코올과 같은 유기용매의 존재 하에 수행될 수 있으나, 특별히 이에 제한되는 것은 아니다.
또한, 알데히드 반응기는 낮은 pH에서 아미노 말단에 선택적으로 반응하며, 높은 pH, 예를 들어 pH9.0 조건에서는 라이신 잔기와 공유결합을 형성할 수 있다.
한편, 상기 캐리어 단백질은 생리활성 폴리펩티드의 생체 내 반감기를 증가시키기 위하여 상기 폴리에틸렌 글리콜 화합물을 통해 상기 생리활성 폴리펩티드에 연결되는 물질일 수 있다.
상기 캐리어 단백질은 알부민 및 이의 단편, 특정 아미노산 서열의 반복단위의 중합체, 항체, 항체 단편, FcRn 결합물질, 파이브로넥틴, 트랜스페린(Transferrin), 사카라이드(saccharide), 또는 엘라스틴일 수 있으며, 상기 FcRn 결합물질은 면역글로불린 Fc 단편일 수 있으나, 특별히 이에 제한되지 않는다.
구체적인 예로서, 상기 폴리에틸렌 글리콜 화합물의 말단 알데히드기는 면역글로불린 Fc 단편의 아민기, 구체적으로 N-말단 아민기와 반응하는 것일 수 있으나, 특별히 이에 제한되지 않는다.
본 발명에서, "면역글로불린 Fc 영역"은, 면역글로불린의 중쇄와 경쇄 가변영역을 제외한, 중쇄 불변영역 2(CH2) 및/또는 중쇄 불변영역 3(CH3)부분을 포함하는 부위를 의미한다. 상기 면역글로불린 Fc 영역은 본 발명의 결합체의 모이어티를 이루는 일 구성일 수 있다.
이러한 면역글로불린 Fc 영역은 중쇄 불변영역에 힌지(hinge) 부분을 포함할 수 있으나, 이에 제한되는 것은 아니다. 또한 본 발명의 면역글로불린 Fc 영역은 천연형과 실질적으로 동등하거나 향상된 효과를 갖는 한, 면역 글로불린의 중쇄와 경쇄 가변영역만을 제외하고, 일부 또는 전체 중쇄 불변영역 1(CH1) 및/또는 경쇄불변영역 1(CL1)을 포함하는 확장된 Fc 영역일 수 있다. 또한, CH2 및/또는 CH3에 해당하는 상당히 긴 일부 아미노산 서열이 제거된 영역일 수도 있다.
예컨대, 본 발명의 면역글로불린 Fc 영역은 1) CH1 도메인, CH2 도메인, CH3 도메인 및 CH4 도메인, 2) CH1 도메인 및 CH2 도메인, 3) CH1 도메인 및 CH3 도메인, 4) CH2 도메인 및 CH3 도메인, 5) CH1 도메인, CH2 도메인, CH3 도메인 및 CH4 도메인 중 1개 또는 2개의 이상의 도메인과 면역글로불린 힌지 영역(또는 힌지 영역의 일부)와의 조합, 6) 중쇄 불변 영역 각 도메인과 경쇄 불변영역의 이량체일 수 있다. 그러나, 이에 제한되는 것은 아니다.
또한, 하나의 구체예로서, 상기 면역글로불린 Fc 영역은 이합체 형태 (dimeric form)일 수 있으며, 이합체 형태의 하나의 Fc 영역에 X 한 분자가 공유결합적으로 연결될 수 있으며, 이때 상기 면역글로불린 Fc와 X는 폴리에틸렌 글리콜 화합물에 의해 서로 연결될 수 있다. 한편, 이합체 형태의 하나의 Fc 영역에 X 두 분자가 대칭적으로 결합하는 것 역시 가능하다. 이때 상기 면역글로불린 Fc와 X는 폴리에틸렌 글리콜 화합물에 의해 서로 연결될 수 있다. 그러나, 상기 기술된 예에 제한되는 것은 아니다.
또한, 본 발명의 면역글로불린 Fc 영역은 천연형 아미노산 서열뿐만 아니라 이의 서열 유도체를 포함한다. 아미노산 서열 유도체란 천연 아미노산 서열 중의 하나 이상의 아미노산 잔기가 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합에 의하여 상이한 서열을 가지는 것을 의미한다.
예를 들면, IgG Fc의 경우 결합에 중요하다고 알려진 214 내지 238, 297 내지 299, 318 내지 322 또는 327 내지 331번 아미노산 잔기들이 변형을 위해 적당한 부위로서 이용될 수 있다.
또한, 이황화 결합을 형성할 수 있는 부위가 제거되거나, 천연형 Fc에서 N-말단의 몇몇 아미노산이 제거되거나 또는 천연형 Fc의 N-말단에 메티오닌 잔기가 부가될 수도 있는 등 다양한 종류의 유도체가 가능하다. 또한, 이펙터 기능을 없애기 위해 보체결합부위, 예로 C1q 결합부위가 제거될 수도 있고, ADCC (antibody dependent cell mediated cytotoxicity) 부위가 제거될 수도 있다. 이러한 면역글로불린 Fc 영역의 서열 유도체를 제조하는 기술은 국제특허공개 제WO 97/34631호, 국제특허공개 제96/32478호 등에 개시되어 있다.
분자의 활성을 전체적으로 변경시키지 않는 단백질 및 펩타이드에서의 아미노산 교환은 당해 분야에 공지되어 있다 (H.Neurath, R.L.Hill, The Proteins, Academic Press, New York, 1979). 가장 통상적으로 일어나는 교환은 아미노산 잔기 Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Thy/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu, Asp/Gly 간의 교환이다. 경우에 따라서는 인산화(phosphorylation), 황화(sulfation), 아크릴화(acrylation), 당화(glycosylation), 메틸화(methylation), 파네실화(farnesylation), 아세틸화(acetylation) 및 아미드화(amidation) 등으로 수식(modification)될 수도 있다.
상기 기술한 Fc 유도체는 본 발명의 Fc 영역과 동등한 생물학적 활성을 나타내며 Fc 영역의 열, pH 등에 대한 구조적 안정성을 증대시킨 것일 수 있다.
또한, 이러한 Fc 영역은 인간, 소, 염소, 돼지, 마우스, 래빗, 햄스터, 랫트 또는 기니아 픽 등의 동물의 생체 내에서 분리한 천연형으로부터 얻어질 수도 있고, 형질전환된 동물세포 또는 미생물로부터 얻어진 재조합형 또는 이의 유도체일 수 있다. 여기서, 천연형으로부터 획득하는 방법은 전체 면역글로불린을 인간 또는 동물의 생체로부터 분리한 후, 단백질 분해효소를 처리하여 획득하는 방법일 수 있다. 파파인을 처리할 경우에는 Fab 및 Fc로 절단되고, 펩신을 처리할 경우에는 pF'c 및 F(ab)2로 절단된다. 이를 크기 배제 크로마토그래피 (size-exclusion chromatography) 등을 이용하여 Fc 또는 pF'c를 분리할 수 있다. 더 구체적인 실시 형태에서는 인간 유래의 Fc 영역을 미생물로부터 수득한 재조합형 면역글로불린 Fc 영역이다.
또한, 면역글로불린 Fc 영역은 천연형 당쇄, 천연형에 비해 증가된 당쇄, 천연형에 비해 감소한 당쇄 또는 당쇄가 제거된 형태일 수 있다. 이러한 면역글로불린 Fc 당쇄의 증감 또는 제거에는 화학적 방법, 효소학적 방법 및 미생물을 이용한 유전 공학적 방법과 같은 통상적인 방법이 이용될 수 있다. 여기서, Fc에서 당쇄가 제거된 면역글로불린 Fc 영역은 보체(c1q)와의 결합력이 현저히 저하되고, 항체-의존성 세포독성 또는 보체-의존성 세포 독성이 감소 또는 제거되므로, 생체 내에서 불필요한 면역 반응을 유발하지 않는다. 이런 점에서 약물의 캐리어로서의 본래의 목적에 보다 부합하는 형태는 당쇄가 제거되거나 비당쇄화된 면역글로불린 Fc 영역이라 할 것이다.
본 발명에서 "당쇄의 제거(Deglycosylation)"는 효소로 당을 제거한 Fc 영역을 말하며, 비당쇄화(Aglycosylation)는 원핵동물, 더 구체적인 실시 형태에서는 대장균에서 생산하여 당쇄화되지 않은 Fc 영역을 의미한다.
한편, 면역글로불린 Fc 영역은 인간 또는 소, 염소, 돼지, 마우스, 래빗, 햄스터, 랫트, 기니아 픽 등의 동물기원일 수 있으며, 더 구체적인 실시 형태에서는 인간기원이다.
또한, 면역글로불린 Fc 영역은 IgG, IgA, IgD, IgE, IgM 유래 또는 이들의 조합(combination) 또는 이들의 혼성(hybrid)에 의한 Fc 영역일 수 있다. 더 구체적인 실시 형태에서는 인간 혈액에 가장 풍부한 IgG 또는 IgM유래이며 보다 더 구체적인 실시 형태에서는 리간드 결합 단백질의 반감기를 향상시키는 것으로 공지된 IgG 유래이다. 더욱 더 구체적인 실시 형태에서 상기 면역글로불린 Fc 영역은 IgG4 Fc 영역이며, 가장 구체적인 실시 형태에서 상기 면역글로불린 Fc 영역은 인간 IgG4 유래의 비-당쇄화된 Fc 영역이나, 이에 제한되는 것은 아니다.
한편, 본 발명에서 "조합(combination)"이란 이량체 또는 다량체를 형성할 때, 동일 기원 단쇄 면역글로불린 Fc 영역을 암호화하는 폴리펩티드가 상이한 기원의 단쇄 폴리펩티드와 결합을 형성하는 것을 의미한다. 즉, IgG Fc, IgA Fc, IgM Fc, IgD Fc 및 IgE의 Fc 단편으로 이루어진 그룹으로부터 선택된 2개 이상의 단편으로부터 이량체 또는 다량체의 제조가 가능하다.
또한, 상기 제조방법은 추가로 생리활성 폴리펩티드와 캐리어 단백질이 폴리에틸렌 글리콜 화합물을 통하여 연결된, 결합체를 정제하는 단계를 포함할 수 있다.
이러한 정제에는 당업계에 공지된 방법을 제한 없이 이용할 수 있으며, 구체적으로는 크로마토그래피를 이용할 수 있으나, 특별히 이에 제한되지 않는다.
본 발명을 구현하는 다른 하나의 양태는 상기 폴리에틸렌 글리콜 화합물이 부착된, 생리활성 폴리펩티드를 제공한다.
상기 폴리에틸렌 글리콜 화합물 및 생리활성 폴리펩티드에 대해서는 앞서 설명한 바와 같다.
하나의 구체예로서, 상기 화합물이 부착된, 생리활성 폴리펩티드는 하기 화학식 15 내지 17 중 어느 하나로 표시되는 구조를 포함하는 것일 수 있다:
[화학식 15]
R1-L1-O-(CH2CH2O)n-L2-NH(CO)-L3-S-S-X
[화학식 16]
R1-L1-O-(CH2CH2O)n-L2-NH(CO)-CH2-S-X
[화학식 17]
X-NHCH2-L1-O-(CH2CH2O)n-L2-NH(CO)-L3-R2
상기 화학식 15 내지 17에서,
R1은, 2,5-디옥소피롤리디닐, 2,5-디옥소피롤릴, 알데히드, 말레이미드, C6-C20아릴디설파이드, C5-C20헤테로아릴디설파이드, 비닐술폰, 티올, 할로겐화 아세트아미드, 석시니미드, p-니트로페닐 카보네이트, 및 이들의 유도체로 이루어진 군에서 선택되고,
L1 내지 L3는 각각 독립적으로 직쇄 또는 분지쇄 C1-C6알킬렌이며,
n은 10 내지 2400의 자연수이고,
R2는, 이황화 오르토피리딜, 티올, 또는 할로겐이고,
X는, 생리활성 폴리펩티드 모이어티에 해당한다.
상기 기술된 변수의 구체적인 양태 및 조합에 대해서는 앞서 설명한 내용이 모두 적용된다.
상기 화학식 15에서 -S-S-X는 X에 위치한 티올 기가 이황화 오르토피리딜 또는 티올 기와 반응하여 형성된 연결 구조일 수 있고, 화학식 16에서 -CH2-S-X는 X에 위치한 티올 기가 할로겐, 구체적으로 IA (iodoacetamide)와 반응하여 형성된 연결 구조일 수 있으며, 화학식 17에서 X-NHCH2-는 X에 위치한 아민 기가 알데히드기와 반응하고 환원적 알킬화를 통해 형성된 연결 구조일 수 있으나, 특별히 이에 제한되는 것은 아니다.
본 발명을 구현하는 다른 하나의 양태는 상기 폴리에틸렌 글리콜 화합물의 양 말단 반응기에 각각 생리활성 폴리펩티드 및 캐리어 단백질이 부착된, 결합체를 제공한다.
상기 폴리에틸렌 글리콜 화합물, 생리활성 폴리펩티드, 및 캐리어 단백질에 대해서는 앞서 설명한 바와 같다.
하나의 구체예로서, 상기 결합체는 하기 화학식 18 또는 19로 표시되는 구조를 가지는, 결합체인 것을 특징으로 한다:
[화학식 18]
Y-NHCH2-L1-O-(CH2CH2O)n-L2-NH(CO)-L3-S-S-X
[화학식 19]
Y-NHCH2-L1-O-(CH2CH2O)n-L2-NH(CO)-CH2-S-X
상기 화학식 18 및 19에서,
L1 내지 L3는 각각 독립적으로 직쇄 또는 분지쇄 C1-C6알킬렌이며,
n은 10 내지 2400의 자연수이고,
X는, 생리활성 폴리펩티드 모이어티이며,
Y는 캐리어 단백질 모이어티임.
본 발명을 구현하는 다른 하나의 양태는 상기 폴리에틸렌 글리콜 화합물의 제조방법을 제공한다.
폴리에틸렌 글리콜 화합물에 대해서는 앞서 설명한 바와 같다.
구체적으로, 상기 방법은
(a) 폴리에틸렌 글리콜의 한쪽 말단에 2,5-디옥소피롤리디닐, 2,5-디옥소피롤릴, 알데히드, 말레이미드, C6-C20아릴디설파이드, C5-C20헤테로아릴디설파이드, 비닐술폰, 티올, 할로겐화 아세트아미드, 석시니미드, p-니트로페닐 카보네이트, 및 이들의 유도체로 이루어진 군으로부터 선택되는 R1을 도입하는 단계; 및
(b) 상기 폴리에틸렌 글리콜의 다른 한쪽 말단에 -NH(CO)L3-R2 구조를 도입하는 단계를 포함하고, 여기서, R2는 이황화 오르토피리딜 (Orthopyridyl disulfide, OPSS), 티올, 또는 할로겐인 단계를 포함할 수 있다.
비제한적인 방법으로서,
상기 방법은
화학식 20로 표시되는 화합물로부터 화학식 21로 표시되는 화합물을 준비하는 제1단계;
화학식 21로 표시되는 화합물로부터 화학식 22로 표시되는 화합물을 준비하는 제2단계; 및
화학식 22으로 표시되는 화합물을 산 용액으로 처리하여 말단의 디에톡시메틸을 알데히드로 전환하는 제3단계를 포함할 수 있다:
[화학식 20]
Figure PCTKR2017002469-appb-I000029
여기서, n'은 n 또는 n+1
[화학식 21]
Figure PCTKR2017002469-appb-I000030
[화학식 22]
Figure PCTKR2017002469-appb-I000031
여기서, 상기 L1, L2, L3, n 및 R2에 대해서는 앞서 설명한 바와 같음.
링커 5 (화학식 7)와 같이 L2가 2인 폴리에틸렌글리콜 화합물을 제조하는 경우에는 상기 n'은 n+1일 수 있다.
상기 방법에서, 상기 제1단계의 화학식 20으로 표시되는 화합물은 하기 화학식 23으로 표시되는 화합물을 메탄설포닐 클로라이드와 반응시켜 준비하는 것일 수 있다:
[화학식 23]
Figure PCTKR2017002469-appb-I000032
.
링커 5 (화학식 7)와 같이 L2가 2인 폴리에틸렌글리콜 화합물을 제조하는 경우 등에서, 상기 제1단계는 화학식 20으로 표시되는 화합물을 암모니아 수용액 및 염화암모늄과 반응시킴으로써 수행하는 것일 수 있다.
한편, 링커 7 내지 9 (화학식 9 내지 11)과 같이 L2가 3 이상인 폴리에틸렌글리콜 화합물을 제조하는 경우 등에서,
상기 제1단계는 화학식 20으로 표시되는 화합물을 히드록시알킬 테트라하이드로피라닐 에테르와 반응시켜 화학식 24로 표시되는 화합물을 제조하는 제1-1단계;
화학식 24로 표시되는 화합물을 p-톨루엔설폰산과 반응시켜 말단의 테트라하이드로피라닐옥시기를 히드록시기로 치환하는 제1-2단계;
이전 단계로부터 수득한 화합물을 메탄설포닐클로라이드와 반응시켜 히드록시기를 메탄술폰산기로 전환하는 제1-3단계; 및
이전 단계로부터 수득한 화합물을 암모니아 수용액 및 염화암모늄과 반응시키는 제1-4단계를 포함하여 수행하는 것을 특징으로 한다.
[화학식 24]
Figure PCTKR2017002469-appb-I000033
여기서, 상기 제1-1 단계는 포타슘 t-펜톡사이드 존재 하에 수행될 수 있다.
또한, R2에 OPSS를 반응기로 도입하는 경우에 있어서, 상기 제2단계는 화학식 21로 표시되는 화합물을 하기 화학식 25로 표시되는 화합물과 반응시켜 수행하는 것일 수 있다.
[화학식 25]
Figure PCTKR2017002469-appb-I000034
.
한편, R2에 -I 또는 -SH를 반응기로 도입하는 경우에 있어서, 상기 제2단계는 화학식 21로 표시되는 화합물을 클로로(C2-C7 알카노일) 클로라이드와 반응시켜 중간체로 하기 화학식 26으로 표시되는, 말단에 클로로기를 포함하는 화합물을 합성한 후, 황화수소 나트륨 존재 또는 부재 하에 할로겐 금속염과 반응시켜 클로로기를 티올 또는 할로겐으로 전환하여 수행하는 것일 수 있다.
[화학식 26]
Figure PCTKR2017002469-appb-I000035
본 발명을 구현하는 다른 하나의 양태는 생리활성 폴리펩티드의 생체 내 반감기 증가시키는 캐리어를 생리활성 폴리펩티드에 연결시키기 위한, 상기 폴리에틸렌 글리콜 화합물의 용도를 제공한다.
상기 생리활성 폴리펩티드, 캐리어, 및 폴리에틸렌 글리콜 화합물에 대해서는 앞서 설명한 바와 같다.
본 발명을 구현하는 다른 하나의 양태는 상기 폴리에틸렌 글리콜 화합물이 부착된, 생리활성 폴리펩티드 또는 상기 결합체를 포함하는 조성물을 제공한다.
상기 생리활성 폴리펩티드, 결합체 및 폴리에틸렌 글리콜 화합물에 대해서는 앞서 설명한 바와 같다.
상기 조성물은 약학적 조성물일 수 있으며, 약제학적으로 허용가능한 담체를 포함할 수 있다.
약제학적으로 허용되는 담체는 경구투여시에는 결합제, 활택제, 붕해제, 부형제, 가용화제, 분산제, 안정화제, 현탁화제, 색소, 향료 등을 사용할 수 있으며, 주사제의 경우에는 완충제, 보존제, 무통화제, 가용화제, 등장화제, 안정화제 등을 혼합하여 사용할 수 있으며, 국소투여용의 경우에는 기제, 부형제, 윤활제, 보존제 등을 사용할 수 있다. 본 발명의 약학적 조성물의 제형은 상술한 바와 같은 약제학적으로 허용되는 담체와 혼합하여 다양하게 제조될 수 있다. 예를 들어, 경구 투여시에는 정제, 트로키, 캡슐, 엘릭서, 서스펜션, 시럽, 웨이퍼 등의 형태로 제조할 수 있으며, 주사제의 경우에는 단위 투약 앰플 또는 다수회 투약 형태로 제조할 수 있다. 기타, 용액, 현탁액, 정제, 환약, 캡슐, 서방형 제제 등으로 제형화할 수 있다.
한편, 제제화에 적합한 담체, 부형제 및 희석제의 예로는 락토즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로즈, 폴리비닐피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 또는 광물유 등이 사용될 수 있다. 또한, 충진제, 항응집제, 윤활제, 습윤제, 향료, 방부제 등을 추가로 포함할 수 있다.
본 발명을 구현하는 다른 하나의 양태는 생리활성 폴리펩티드의 생체 내 반감기 증가시키는 캐리어를 생리활성 폴리펩티드에 연결시키기 위한 폴리에틸렌 글리콜 화합물 링커를 제공한다.
상기 생리활성 폴리펩티드, 캐리어, 및 폴리에틸렌 글리콜 화합물에 대해서는 앞서 설명한 바와 같다.
본 발명의 화합물은 하기 반응식으로 표시되는 일련의 반응을 통해 합성될 수 있다. 그러나, 하기 반응식은 본 발명의 화합물의 예시적인 제조방법일 뿐, 본 발명의 화합물의 제조방법은 이에 제한되지 않으며, 당업계에 공지된 방법을 이용하거나 적절히 변경하여 수행될 수 있다.
[반응식]
Figure PCTKR2017002469-appb-I000036
<반응 예 1> 화합물 (2)의 제조
반응 용기에 화합물 (1)과 디클로로메탄을 투입한다. 반응온도를 10℃ 이하로 유지하면서 트리에틸아민과 메탄설포닐클로라이드를 투입한다. 실온에서 3시간동안 교반한다. 반응 완결 후 물과 디클로로메탄을 투입하고 5분동안 교반한다. 유기층을 추출한 후 수층에 다시 디클로로메탄을 투입하여 추가 추출한다. 유기층을 모아 증류수로 세척 후 황산마그네슘으로 건조시키고 여과하여 남은 여액을 감압 농축시킨다. 농축액에 디클로로메탄을 첨가하여 용해시킨 후 메틸 t-부틸에테르를 20분 동안 적가한다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 화합물 (2)를 얻는다.
<반응 예 2> 화합물 (3)의 제조
반응 용기에 톨루엔과 화합물 (10)를 투입한다. 포타슘 t-펜톡사이드를 투입한 후 약 50℃까지 승온시키고 50℃에서 1시간 동안 교반한다 (activation 용액). 다른 반응 용기에 화합물 (2)와 톨루엔을 투입한다. 실온으로 냉각시킨 activation 용액을 상기 혼합액에 30℃에서 1시간 동안 적가한다. 30℃에서 3시간 동안 교반시킨 후 반응 용액에 물을 첨가하여 추출한다. 층분리 후 수용액층에 디클로로메탄을 첨가하여 추출한다. 물 층에 다시 디클로로메탄을 투입하여 추가 추출한다. 유기층을 황산마그네슘으로 건조시키고 여과하여 남은 여액을 감압 농축시킨다. 농축액에 디클로로메탄을 첨가하여 용해시킨 후 메틸 t-부틸에테르를 20분 동안 적가한다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 화합물 (3)을 얻는다.
<반응 예 3> 화합물 (4)의 제조
반응 용기에 화합물 (3)과 에탄올, 디클로로메탄을 투입한다. p-톨루엔 설폰산 (p-TsOH)을 투입한 후 실온에서 20시간동안 교반한다. 수산화나트륨을 투입한 후 용매를 감압 농축시킨다. 디클로로메탄과 물을 투입하고 5분 동안 교반한다. 유기층을 추출한 후 유기층을 물로 세척한다. 유기층을 황산마그네슘으로 건조시키고 여과하여 남은 여액을 감압 농축시킨다. 농축액에 디클로로메탄을 첨가하여 용해시킨 후 메틸 t-부틸에테르를 20분 동안 적가한다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 화합물 (4)를 얻는다.
<반응 예 4> 화합물 (5)의 제조
반응 용기에 화합물 (4)와 디클로로메탄을 투입한다. 반응온도를 10℃ 이하로 유지하면서 트리에틸아민과 메탄설포닐클로라이드를 투입한다. 실온에서 3시간동안 교반한다. 반응 완결 후 물과 디클로로메탄을 투입하고 5분 동안 교반한다. 유기층을 추출한 후 물층에 다시 디클로로메탄을 투입하여 추가 추출한다. 유기층을 모아 증류수 60㎖로 세척 후 황산마그네슘으로 건조시키고 여과하여 남은 여액을 감압 농축시킨다. 농축액에 디클로로메탄을 첨가하여 용해시킨 후 메틸 t-부틸에테르를 20분 동안 적가한다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 화합물 (5) 를 얻는다.
<반응 예 5> 화합물 (6)의 제조
용기에 디메틸포름아마이드와 화합물(5)를 투입한다. 30℃까지 승온시키고 포타슘 싸이오아세테이트를 투입한 후 30℃에서 5시간 동안 교반한다. 실온으로 냉각시킨 후 디클로로메탄과 물을 첨가하여 추출한다. 층 분리 후 물층을 디클로로메탄로 재 추출한다. 층 분리 후 추출한 유기층을 모아 20% 염화나트륨 수용액으로 세척한다. 층 분리 후 유기층에 황산나트륨을 투입하고 30분 동안 교반한다. 상기 혼합액을 여과한 후 여과액을 감압 농축시킨다. 농축액에 디클로로메탄을 첨가하여 용해시킨 후 메틸 t-부틸에테르를 5분 동안 적가한다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 화합물 (6)을 얻는다.
<반응 예 6> 화합물 (7)의 제조
용기에 물과 화합물 (6)을 투입한다. 반응액이 pH 14가 되도록 0.1M 수산화나트륨용액을 적가한다. 실온에서 12hr 교반 후 1N 염산용액을 사용하여 pH 6~7로 맞춘다. 중화시킨 후 디클로로메탄을 투입하고 추출한다. 층 분리 후 물층을 디클로로메탄로 재 추출한다. 층 분리 후 추출한 유기층을 모아 황산나트륨을 투입하고 30분 동안 교반한다. 상기 혼합액을 여과한 후 여과액을 감압 농축시킨다. 농축액에 디클로로메탄을 첨가하여 용해시킨 후 메틸 t-부틸에테르를 5분 동안 적가한다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 화합물 (7)을 얻는다.
<반응 예 7> 화합물 (8)의 제조
반응 용기에 화합물 (7)과 메탄올을 투입한다. 화합물 (11)을 적가한 후 실온에서 3일동안 교반한다. 반응 용매를 감압 농축시킨다. 농축액에 디클로로메탄을 첨가하여 용해시킨 후 메틸 t-부틸에테르를 20분 동안 적가한다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 화합물 (8)을 얻는다.
<반응 예 8> 화합물 (9)의 제조 [링커 #1]
반응 용기에 화합물 (8)과 증류수를 투입한다. 1N HCl을 사용하여 반응용액의 pH를 1로 맞춘 후 실온에서 1시간동안 교반한다. 반응 완결 후 물 과 디클로로메탄을 투입하고 5분동안 교반한다. 5% 탄산수소나트륨을 사용하여 pH 6으로 맞추어 주었다. 디클로로메탄을 첨가하여 추출한 후 유기층에 황산나트륨을 투입하고 30분 동안 교반시킨다. 상기 혼합액을 여과한 후 여과액을 감압 농축시킨다. 농축액에 디클로로메탄 1㎖를 첨가하여 용해시킨 후 메틸 t-부틸에테르를 20분 동안 적가한다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 화합물 (9) 를 얻는다.
Figure PCTKR2017002469-appb-I000037
<반응 예 9> 화합물 (13)의 제조
반응 용기에 톨루엔과 화합물 (12)를 투입한다. 포타슘 t-펜톡사이드를 투입한 후 약 50℃까지 승온시키고 50℃에서 1시간 동안 교반한다 (activation 용액). 다른 반응 용기에 화합물 (2)와 톨루엔을 투입한다. 실온으로 냉각시킨 activation 용액을 상기 혼합액에 30℃에서 1시간 동안 적가한다. 30℃에서 3시간 동안 교반시킨 후 반응 용액에 물을 첨가하여 추출한다. 층분리 후 수용액층에 디클로로메탄을 첨가하여 추출한다. 물층에 다시 디클로로메탄을 투입하여 추가 추출한다. 유기층을 황산마그네슘으로 건조시키고 여과하여 남은 여액을 감압 농축시킨다. 농축액에 디클로로메탄을 첨가하여 용해시킨 후 메틸 t-부틸에테르를 20분 동안 적가한다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 화합물 (13)을 얻는다.
<반응 예 10> 화합물 (14)의 제조
반응 용기에 화합물 (13)과 에탄올과 디클로로메탄을 투입한다. p-TsOH 을 투입한 후 실온에서 20시간동안 교반한다. 수산화나트륨을 투입한 후 용매를 감압 농축시킨다. 디클로로메탄과 물을 투입하고 5분 동안 교반한다. 유기층을 추출한 후 유기층을 물로 세척한다. 유기층을 황산마그네슘으로 건조시키고 여과하여 남은 여액을 감압 농축시킨다. 농축액에 디클로로메탄을 첨가하여 용해시킨 후 메틸 t-부틸에테르를 20분 동안 적가한다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 화합물 (14)를 얻는다.
<반응 예 11> 화합물 ( 15)의 제조
반응 용기에 화합물 (14)와 디클로로메탄을 투입한다. 반응온도를 10℃ 이하로 유지하면서 트리에틸아민과 메탄설포닐클로라이드를 투입한다. 실온에서 3시간동안 교반한다. 반응 완결 후 물과 디클로로메탄을 투입하고 5분동안 교반한다. 유기층을 추출한 후 물층에 다시 디클로로메탄을 투입하여 추가 추출한다. 유기층을 모아 증류수로 세척 후 황산마그네슘으로 건조시키고 여과하여 남은 여액을 감압 농축시킨다. 농축액에 디클로로메탄을 첨가하여 용해시킨 후 메틸 t-부틸에테르를 20분 동안 적가한다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 화합물 (15)를 얻는다.
<반응 예 12> 화합물 (16)의 제조
반응 용기에 아세톤과 화합물 (15)를 투입한다. 30℃까지 승온시키고 아이오딘화 포타슘을 투입한 후 약 50℃까지 승온시키고 50℃에서 15시간 동안 교반한다. 상기 반응액을 감압 농축시킨 후 디클로로메탄과 물로 세척한다. 층 분리 후 유기층을 물로 한번 더 세척한다. 층 분리 후 유기층에 황산나트륨을 투입하고 30분 동안 교반시킨다. 상기 혼합액을 여과한 후 여과액을 감압 농축시킨다. 농축액에 디클로로메탄을 첨가하여 용해시킨 후 메틸 t-부틸에테르 30㎖를 5분 동안 적가한다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 화합물 (16)을 얻는다.
<반응 예 13> 화합물 (17)의 제조 [링커 #2]
용기에 물과 화합물 (16)을 투입한다. 반응액이 pH1.0이 되도록 1N 염산용액을 적가한다. 실온에서 1시간 교반 후 5% 탄산수소나트륨 용액을 사용하여 pH 6~7로 맞춘다. 중화시킨 후 디클로로메탄 투입하고 추출한다. 층 분리 후 물층을 디클로로메탄로 재 추출한다. 층 분리 후 추출한 유기층을 모아 황산나트륨을 투입하고 30분 동안 교반한다. 상기 혼합액을 여과한 후 여과액을 감압 농축시킨다. 농축액에 디클로로메탄을 첨가하여 용해시킨 후 메틸 t-부틸에테르를 5분 동안 적가한다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 화합물 (17)을 얻는다.
Figure PCTKR2017002469-appb-I000038
<반응 예 14> 화합물 (18)의 제조
용기에 디메틸포름아마이드과 화합물 (15)를 투입한다. 30℃까지 승온시키고 포타슘 싸이오아세테이트를 투입한 후 30℃에서 5시간 동안 교반한다. 실온으로 냉각시킨 후 디클로로메탄과 물을 첨가하여 추출한다. 층 분리 후 물층을 디클로로메탄로 재 추출한다. 층 분리 후 추출한 유기층을 모아 20% 염화나트륨 수용액으로 세척한다. 층 분리 후 유기층에 황산나트륨을 투입하고 30분 동안 교반한다. 상기 혼합액을 여과한 후 여과액을 감압 농축시킨다. 농축액에 디클로로메탄을 첨가하여 용해시킨 후 메틸 t-부틸에테르를 5분 동안 적가한다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 화합물 (18)을 얻는다.
<반응 예 15> 화합물 (19)의 제조
용기에 물과 화합물 (18)을 투입한다. 반응액이 pH14가 되도록 0.1M 수산화나트륨용액을 적가한다. 실온에서 12시간 교반 후 1N 염산용액을 사용하여 pH 6~7로 맞춘다. 중화시킨 후 디클로로메탄을 투입하고 추출한다. 층 분리 후 물층을 디클로로메탄으로 재 추출한다. 층 분리 후 추출한 유기층을 모아 황산나트륨을 투입하고 30분 동안 교반한다. 상기 혼합액을 여과한 후 여과액을 감압 농축시킨다. 농축액에 디클로로메탄을 첨가하여 용해시킨 후 메틸 t-부틸에테르를 5분 동안 적가한다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 화합물 (19)를 얻는다.
<반응 예 16> 화합물 (20)의 제조 [링커 #3]
용기에 물과 화합물 (19)를 투입한다. 반응액이 pH1.0이 되도록 1N 염산용액을 적가한다. 실온에서 1시간 교반 후 5% 탄산수소나트륨 용액을 사용하여 pH 6~7로 맞춘다. 중화시킨 후 디클로로메탄을 투입하고 추출한다. 층 분리 후 물층을 디클로로메탄 5㎖로 재 추출한다. 층 분리 후 추출한 유기층을 모아 황산나트륨을 투입하고 30분 동안 교반한다. 상기 혼합액을 여과한 후 여과액을 감압 농축시킨다. 농축액에 디클로로메탄을 첨가하여 용해시킨 후 메틸 t-부틸에테르를 5분 동안 적가한다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 화합물 (20)을 얻는다.
Figure PCTKR2017002469-appb-I000039
<반응 예 17> 화합물 (21)의 제조
반응 용기에 암모니아 수용액과 염화암모늄을 투입한다. 화합물 (5)를 투입한 후 실온에서 4일 동안 교반한다. 디클로로메탄을 투입하고 5분 동안 교반한다. 유기층을 추출한 후 물층에 다시 디클로로메탄을 투입하여 추가 추출한다. 유기층을 모아 증류수로 세척 후 황산마그네슘으로 건조시키고 여과하여 남은 여액을 감압 농축시킨다. 농축액에 디클로로메탄을 첨가하여 용해시킨 후 메틸 t-부틸에테르를 20분 동안 적가한다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 화합물 (21)을 얻는다.
<반응 예 18> 화합물 (22)의 제조
반응 용기에 화합물 (21)과 디클로로메탄을 투입한다. 트라이에틸아민과 클로로아세틸 클로라이드를 적가한 후 실온에서 16시간 동안 교반한다. 반응 완결 후 반응액을 물로 세척 후 황산마그네슘으로 건조시키고 여과하여 남은 여액을 감압 농축시킨다. 농축액에 디클로로메탄을 첨가하여 용해시킨 후 메틸 t-부틸에테르를 20분 동안 적가한다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 화합물 (22)를 얻는다.
<반응 예 19> 화합물 (23)의 제조
반응 용기에 화합물 (22)와 아세톤을 투입한다. KI 을 투입한 후 55℃에서 6시간동안 교반한다. 반응액을 실온으로 식힌 후 반응 용매를 감압 농축시킨다. 디클로로메탄과 물을 투입하고 5분 동안 교반한다. 유기층을 추출한 후 물층에 다시 디클로로메탄을 투입하여 추가 추출한다. 유기층을 황산마그네슘으로 건조시키고 여과하여 남은 여액을 감압 농축시킨다. 농축액에 디클로로메탄을 첨가하여 용해시킨 후 메틸 t-부틸에테르를 20분 동안 적가한다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 화합물 (23)를 얻는다.
<반응 예 20> 화합물 (24)의 제조 [링커 #5]
반응 용기에 화합물 (23)과 증류수를 투입한다. 1N HCl을 사용하여 반응용액의 pH를 1.0으로 맞춘 후 실온에서 1시간동안 교반한다. 반응 완결 후 물과 디클로로메탄을 투입하고 5분동안 교반한다. 5% 탄산수소나트륨을 사용하여 pH 6으로 맞추어 주었다. 디클로로메탄을 첨가하여 추출한 후 유기층에 황산나트륨을 투입하고 30분 동안 교반시킨다. 상기 혼합액을 여과한 후 여과액을 감압 농축시킨다. 농축액에 디클로로메탄을 첨가하여 용해시킨 후 메틸 t-부틸에테르를 20분 동안 적가한다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 화합물 (24) 를 얻는다.
Figure PCTKR2017002469-appb-I000040
<반응 예 21> 화합물 (25)의 제조
반응 용기에 화합물 (5)와 아세톤을 투입한다. KI 를 투입한 후 55℃에서 20시간동안 교반한다. 반응액을 실온으로 식힌 후 반응 용매를 감압 농축시킨다. 디클로로메탄과 물을 투입하고 5분 동안 교반한다. 유기층을 추출한 후 물층에 다시 디클로로메탄을 투입하여 추가 추출한다. 유기층을 황산마그네슘으로 건조시키고 여과하여 남은 여액을 감압 농축시킨다. 농축액에 디클로로메탄을 첨가하여 용해시킨 후 메틸 t-부틸에테르를 20분 동안 적가한다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 화합물 (25)를 얻는다.
<반응 예 22> 화합물 (26)의 제조 [링커 #11]
반응 용기에 화합물 (25)와 증류수를 투입한다. 1N HCl을 사용하여 반응용액의 pH를 1.0으로 맞춘 후 실온에서 1시간동안 교반한다. 반응 완결 후 물과 디클로로메탄을 투입하고 5분동안 교반한다. 5% 탄산수소나트륨을 사용하여 pH 6으로 맞추어 주었다. 디클로로메탄을 첨가하여 추출한 후 유기층에 황산나트륨을 투입하고 30분 동안 교반시킨다. 상기 혼합액을 여과한 후 여과액을 감압 농축시킨다. 농축액에 디클로로메탄을 첨가하여 용해시킨 후 메틸 t-부틸에테르를 20분 동안 적가한다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 화합물 (26)을 얻는다.
Figure PCTKR2017002469-appb-I000041
<반응 예 23> 화합물 (27)의 제조
반응 용기에 암모니아 수용액과 염화암모늄을 투입한다. 화합물 (5)를 투입한 후 실온에서 4일 동안 교반한다. 디클로로메탄을 투입하고 유기층을 추출한 후 물층에 다시 디클로로메탄을 투입하여 추가 추출한다. 유기층을 모아 증류수로 세척 후 황산마그네슘으로 건조시키고 여과하여 남은 여액을 감압 농축시킨다. 농축액에 디클로로메탄을 첨가하여 용해시킨 후 메틸 t-부틸에테르를 20분 동안 적가한다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 화합물 (27)을 얻는다.
<반응 예 24> 화합물 (28)의 제조
반응 용기에 화합물 (27), 화합물 (30), EDC (1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide), HOBt (Hydroxybenzotriazole), 트라이에틸아민, 디메틸포름아마이드를 투입한다. 실온에서 16시간 동안 교반한다. 디클로로메탄과 물을 첨가하여 추출한다. 층 분리 후 물층을 디클로로메탄으로 재 추출한다. 층 분리 후 추출한 유기층을 모아 20% 염화나트륨 수용액으로 세척한다. 층 분리 후 유기층에 황산나트륨을 투입하고 교반한다. 상기 혼합액을 여과한 후 여과액을 감압 농축시킨다. 농축액에 디클로로메탄을 첨가하여 용해시킨 후 메틸 t-부틸에테르를 5분 동안 적가한다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 화합물 (28)을 얻는다.
<반응 예 25> 화합물 (29)의 제조 [링커 #7]
반응 용기에 화합물 (28)과 증류수를 투입한다. 1N HCl을 사용하여 반응용액의 pH를 1로 맞춘 후 실온에서 1시간동안 교반한다. 반응 완결 후 물과 디클로로메탄을 투입하고 교반한다. 5% 탄산수소나트륨을 사용하여 pH 6으로 맞추어 준다. 디클로로메탄을 첨가하여 추출한 후 유기층에 황산나트륨을 투입하고 상기 혼합액을 여과한 후 여과액을 감압 농축시킨다. 농축액에 디클로로메탄을 첨가하여 용해시킨 후 메틸 t-부틸에테르를 20분 동안 적가한다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 화합물 (29)를 얻는다.
Figure PCTKR2017002469-appb-I000042
<반응 예 26> 화합물 (31)의 제조
반응 용기에 화합물 (27)과 디클로로메탄을 투입한다. 트라이에틸아민과 클로로아세틸 클로라이드를 적가한 후 실온에서 16시간 동안 교반한다. 반응 완결 후 반응액을 물로 세척 후 황산마그네슘으로 건조시키고 여과하여 남은 여액을 감압 농축시킨다. 농축액에 디클로로메탄을 첨가하여 용해시킨 후 메틸 t-부틸에테르를 20분 동안 적가한다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 화합물 (31)을 얻는다.
<반응 예 27> 화합물 (32)의 제조
반응 용기에 화합물 (31)과 아세톤을 투입한다. KI를 투입한 후 55℃에서 6시간동안 교반한다. 반응액을 실온으로 식힌 후 반응 용매를 감압 농축시킨다. 디클로로메탄과 물을 투입하고 유기층을 추출한 후 물층에 다시 디클로로메탄을 투입하여 추가 추출한다. 유기층을 황산마그네슘으로 건조시키고 여과하여 남은 여액을 감압 농축시킨다. 농축액에 디클로로메탄을 첨가하여 용해시킨 후 메틸 t-부틸에테르를 20분 동안 적가한다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 화합물 (32)를 얻는다.
<반응 예 28> 화합물 (33)의 제조 [링커 #8]
반응 용기에 화합물 (32)와 증류수를 투입한다. 1N HCl을 사용하여 반응용액의 pH를 1로 맞춘 후 실온에서 1시간동안 교반한다. 반응 완결 후 물과 디클로로메탄을 투입하고 5분동안 교반한다. 5% 탄산수소나트륨을 사용하여 pH 6으로 맞추어 준다. 디클로로메탄을 첨가하여 추출한 후 유기층에 황산나트륨을 투입하고 상기 혼합액을 여과한 후 여과액을 감압 농축시킨다. 농축액에 디클로로메탄을 첨가하여 용해시킨 후 메틸 t-부틸에테르를 20분 동안 적가한다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 화합물 (33)을 얻는다.
Figure PCTKR2017002469-appb-I000043
<반응 예 29> 화합물 (34)의 제조
반응 용기에 화합물 (31)과 메탄올을 투입한다. KI와 NaSH를 투입한 후 실온에서 6시간동안 교반한다. 반응액을 실온으로 식힌 후 반응 용매를 감압 농축시킨다. 디클로로메탄과 물을 투입하고 유기층을 추출한 후 물층에 다시 디클로로메탄을 투입하여 추가 추출한다. 유기층을 황산마그네슘으로 건조시키고 여과하여 남은 여액을 감압 농축시킨다. 농축액에 디클로로메탄을 첨가하여 용해시킨 후 메틸 t-부틸에테르를 20분 동안 적가한다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 화합물 (34)를 얻는다.
<실시 예 30> 화합물 (35)의 제조 [링커 #9]
반응 용기에 화합물 (34)와 증류수를 투입한다. 1N HCl을 사용하여 반응용액의 pH를 1로 맞춘 후 실온에서 1시간동안 교반한다. 반응 완결 후 물과 디클로로메탄을 투입하고 5분동안 교반한다. 5% 탄산수소나트륨을 사용하여 pH 6으로 맞추어 준다. 디클로로메탄을 첨가하여 추출한 후 유기층에 황산나트륨을 투입하고 상기 혼합액을 여과한 후 여과액을 감압 농축시킨다. 농축액에 디클로로메탄을 첨가하여 용해시킨 후 메틸 t-부틸에테르를 20분 동안 적가한다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 화합물 (35)를 얻는다.
이하, 본 발명의 이해를 돕기 위하여 실시 예 등을 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시 예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시 예들에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시 예들은 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
실시예 1: 폴리에틸렌 글리콜 유도체 제조
본 발명자는 원하는 반응기를 양 말단에 도입한 폴리에틸렌 글리콜 유도체를 제조하였다. 이의 제조 방법은 반응 예 1~25에 나타낸 바와 같다.
대표적으로, 폴리에틸렌 글리콜 골격 (backbone)의 한쪽 말단에 프로피오닐 알데히드 기를 부가한 후 다른 한쪽 말단에 이황화 오르토피리딜 (Orthopyridyl disulfide, OPSS), 요오드화 아세트아민 (Iodoacetamide, IA), 요오드기 또는 설포하이드릴 (sulfhydryl group, SH-)를 부가한 헤테로 작용성 (heterofunctional) PEG를 제조한다 [도 1].
각각의 제조된 PEG의 순도는 NMR과 RPC (reversed phase chromatography) 분석법으로 분석하였다.
대표적인 폴리에틸렌 글리콜 유도체에 대한 구체적인 내용은 다음과 같다.
(1) 링커 #1: pALD-PEG-이황화 오르토피리딜 (orthopyridyl disulfide)
[화학식 3]
Figure PCTKR2017002469-appb-I000044
여기서, n은 200~300임
제조된 폴리에텔린 글리콜 링커의 분자량은 약 10 KDa 이며, NMR 을 통하여 구조를 확인 하였으며, RPC 분석 결과 약 80 % 순도를 보였다.
1H-NMR(CDCl3, 400 MHz) δ 9.79(t, 1H, J= 2.0 Hz), 8.50(d, 1H, J= 5.6 Hz), 7.71-7.64(m, 2H), 7.09-6.70(m, 1H), 3.87-3.40(m, 908H), 2.82(t, 2H, J= 5.6 Hz), 2.68(t, 2H, J= 2.0Hz), 1.86-1.66(m, 4H)
(2) 링커 # 2: pALD-PEG-요오드 (iodide)
[화학식 4]
Figure PCTKR2017002469-appb-I000045
여기서, n은 200~300임
제조된 폴리에텔린 글리콜 링커의 분자량은 약 10 KDa 이며, NMR 을 통하여 구조를 확인 하였으며, RPC 분석 결과 약 87 % 순도를 보였다.
1H-NMR(CDCl3, 400 MHz) δ 9.81(s, 1H), 3.84-3.47(m, 910H), 3.29(t, 2H, J= 6.8 Hz), 2.71-2.69(m, 2H), 2.10-2.06(m, 2H)
(3) 링커 #3: pALD-PEG-설프하이드릴기
[화학식 5]
Figure PCTKR2017002469-appb-I000046
여기서, n은 200~300임
제조된 폴리에텔린 글리콜 링커의 분자량은 약 10 KDa 이며, NMR 을 통하여 구조를 확인 하였으며, RPC 분석 결과 약 76 % 순도를 보였다.
1H-NMR(CDCl3, 400 MHz) δ 9.79(s, 1H), 3.82-3.45(m, 910H), 2.74(t, 2H, J= 6.8 Hz), 2.69-2.67(m, 2H), 1.99-1.95(m, 2H)
(4) 링커 #5: pALD-PEG-요오드 (iodide)
[화학식 7]
Figure PCTKR2017002469-appb-I000047
여기서, n은 200~300임
제조된 폴리에텔린 글리콜 링커의 분자량은 약 10 KDa 이며, NMR 을 통하여 구조를 확인 하였으며, RPC 분석 결과 약 88 % 순도를 보였다.
1H-NMR(CDCl3, 400 MHz) δ 9.78(t, 1H, J= 1.6 Hz), 3.82-3.41(m, 912H), 2.67(t, 2H, J= 2.0 Hz)
(5) 링커 #7: pALD-PEG-이황화 오르토피리딜 (orthopyridyl disulfide)
[화학식 9]
Figure PCTKR2017002469-appb-I000048
여기서, n은 200~300임
제조된 폴리에텔린 글리콜 링커의 분자량은 약 10 KDa 이며, RPC 분석 결과 약 81% 순도를 보였다.
(6) 링커 # 8: pALD-PEG-요오드 (iodide)
[화학식 10]
Figure PCTKR2017002469-appb-I000049
여기서, n은 200~300임
제조된 폴리에텔린 글리콜 링커의 분자량은 약 10 KDa 이며, NMR 을 통하여 구조를 확인 하였으며, RPC 분석 결과 약 78 % 순도를 보였다.
1H-NMR(CDCl3, 400 MHz) δ 9.78(s, 1H), 3.82-3.41(m, 912H), 2.70(t, 2H, J= 2.0Hz), 1.44-1.24(m, 4H)
(7) 링커 #9: pALD-PEG-설프하이드릴기
[화학식 11]
Figure PCTKR2017002469-appb-I000050
여기서, n은 200~300임
제조된 폴리에텔린 글리콜 링커의 분자량은 약 10 KDa 이며, RPC 분석 결과 약 76% 순도를 보였다.
(8) 링커 #11: pALD-PEG-요오드 (iodide) - 비교예
[화학식 13]
Figure PCTKR2017002469-appb-I000051
여기서, n은 200~300임
제조된 폴리에텔린 글리콜 링커의 분자량은 약 10 KDa 이며, NMR 을 통하여 구조를 확인 하였으며, RPC 분석 결과 약 89 % 순도를 보였다.
1H-NMR(CDCl3, 400 MHz) δ 9.79(t, 1H, J= 2.0 Hz), 3.82-3.41(m, 908H), 3.29-3.22(m, 2H), 2.69(t, 2H, J= 2.0Hz)
실시예 2: 신규한 폴리에틸렌 글리콜 유도체 반응성 비교
상기 실시예 1에서 제조한 폴리에틸렌 글리콜 유도체를 이용하여 생리활성 폴리펩티드 연결체를 제조하고자, 생리활성 펩타이드의 대표적인 예로 GLP-1/Glucagon/GIP 삼중 활성체 (Triple Agonist) 펩타이드를 이용하여 연결체를 제조하였다. 해당 삼중 활성체 펩타이드는 30개의 아미노산으로 이루어지며, 시스테인 잔기를 포함하는 펩타이드에 해당한다. 따라서, 이를 본 발명에 따른 폴리에틸렌 글리콜 유도체의 티올 반응기의 반응성 비교에 사용하였다.
또한, 폴리에틸렌 글리콜 유도체로서, 약 10K (10,000Da) 분자량을 가지는 링커 #2, 3, 5, 8, 9, 및 11을 사용하였다. 여기서, 링커 #3 및 #9는 10K pALD-PEG-SH (양 말단에 각각 프로피온 알데히드기와 설프하이드릴기 하나씩 지니고 있는 PEG)에 해당하나, 링커 #9는 링커 #3과 달리 티올 반응기 앞에 아마이드 구조를 포함하는 특성이 있다. 또한, 링커 #2, 5, 8, 및 11은 10K pALD-PEG-I (양 말단에 각각 프로피온 알데하이드기와 요오드기를 하나씩 지니고 있는 PEG)에 해당하나, 링커 #5 및 8은 링커 #2와 11과 달리 티올 반응기 앞에 아마이드 구조를 포함하는 특성이 있다.
펩타이드 분말을 10mM HCl에 용해시킨 후, 10K pALD-PEG-I와 10K pALD-PEG-SH를 펩타이드의 시스테인 잔기에 페길화시키기 위하여, 펩타이드 : PEG의 몰 비를 1:3~5로, 반응 농도를 3 mg/ml로 RT에서 약 2시간 반응시킨다. 이때 반응은 50mM 구연산 나트륨 (pH 5.0) 또는 50mM 헤페스(HEPES) (pH 7.5), 60% 아이소프로판올 (IPA)에서 이루어졌다. 이후 SDS-PAGE 분석을 수행 후 band integration 방법으로 각 티올 반응기의 반응 성을 비교하였다 [도 18]. 반응 성을 확인 한 결과 티올 반응기 앞에 아마이드 구조를 포함하는 특성이 있는 PEG의 경우 반응 성이 우세한 것으로 확인 되었다.
실시예 3: 신규한 폴리에틸렌 글리콜 유도체를 이용한 생리활성 폴리펩티드와 면역글로불린 Fc 결합체 제조
상기 실시예 1에서 제조한 폴리에틸렌 글리콜 유도체를 이용하여 생리활성 폴리펩티드와 면역글로불린 Fc 결합체를 제조하고자, 실시예 2에서 언급한 펩타이드를 이용하여 결합체를 제조하였다.
먼저, 폴리에틸렌 글리콜 유도체로서, 약 10K (10,000Da) 분자량을 가지는 링커 #7을 사용하였다. 여기서, 링커 #7은 약 10K pALD-PEG-OPSS (양 말단에 각각 프로피온 알데하이드기(propion aldehyde)와 이황화 오르토피리딜기(orthopyridyl disulfide)를 하나씩 지니고 있는 PEG)에 해당한다. 펩타이드 분말을 10mM HCl에 용해시킨 후, 상기 10K pALD-PEG-OPSS를 펩타이드의 시스테인 잔기에 페길화시키기 위하여, 펩타이드 : PEG의 몰 비를 1:1~1:3로, 반응 농도를 1 또는 3 mg/ml로 RT에서 약 2시간 반응시켰다. 이때 반응은 50mM 구연산 나트륨 (pH 3.0~5.0) 또는 50mM 트리스 (pH 8.0), 60% 아이소프로판올에서 이루어졌다.
또한, 폴리에틸렌 글리콜 유도체로서, 약 10K (10,000Da) 분자량을 가지는 링커 #8과 9를 사용하였다. 여기서, 링커 #8은 약 10K pALD-PEG-IA (양 말단에 각각 프로피온 알데하이드기(propion aldehyde)와 IA(iodoacetamide)를 하나씩 지니고 있는 PEG)에 해당하고, 링커 #9는 약 10K pALD-PEG-SH (양 말단에 각각 프로피온 알데히드기와 설프하이드릴기 하나씩 지니고 있는 PEG)에 해당한다.
상기 pALD-PEG-IA 그리고 pALD-PEG-SH를 링커로 사용한 결합체를 제조하기 위하여 상기 실시예 2와 페길화 반응 동일한 조건에서 페길화 반응을 진행한 후, 반응액을 구연산 나트륨 (pH 3.0), 45% EtOH가 포함된 버퍼와 KCl 농도 구배를 이용한 SP-HP (GE Healthcare, 미국) 컬럼을 사용하여 정제하였다.
다음으로, 각각의 반응기로 결합된 후 상기 정제된 모노 페길화된(mono-PEGylated) 펩타이드와 면역글로불린 Fc의 몰비가 1 : 5가 되도록 하고 전체 단백질 농도를 20 mg/ml로 하여 4°C에서 15시간 반응시켰다. 이때 반응액은 100 mM 인산화 칼륨 완충액(pH 6.0)에 20% 아이소프로판올과 환원제로서 20 mM 소디움 시아노보로하이드라이드를 첨가하였다.
반응이 종결된 후 반응액은 비스-트리스(Bis-Tris) (pH 6.5) 버퍼에서 염화 나트륨 농도 구배를 이용하여 Source 15Q (GE Healthcare, 미국) 컬럼에 적용하고, 황산암모늄과 트리스 (pH 7.5)의 농도 구배를 이용하여 Source ISO (GE, 미국)에 적용하여, 삼중 활성체-10K PEG-면역글로불린 Fc 결합체를 정제 하였다. 제조된 결합체 시료의 순도는 SDS-PAGE 분석법으로 확인하였고, 삼중 활성체와 PEG가 결합 된 분자량을 확인 하였다. 이후 삼중 활성체-PEG 결합체와 면역글로불린 Fc가 결합된 삼중 활성체-10K PEG-면역글로불린 Fc 결합체의 분자량을 환원, 비환원 조건으로 확인 하였다. 이에 대한 실험 결과를 도 19 내지 21에 나타내었다 [도 19 내지 21].
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (32)

  1. 하기 화학식 1로 표시되는 화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용가능한 염:
    [화학식 1]
    Figure PCTKR2017002469-appb-I000052
    상기 화학식 1에서,
    R1은 2,5-디옥소피롤리디닐, 2,5-디옥소피롤릴, 알데히드, 말레이미드, C6-C20아릴디설파이드, C5-C20헤테로아릴디설파이드, 비닐술폰, 티올, 할로겐화 아세트아미드, 석시니미드, p-니트로페닐 카보네이트, 및 이들의 유도체로 이루어진 군에서 선택되고,
    L1 내지 L3는 각각 독립적으로 직쇄 또는 분지쇄 C1-C6알킬렌이며,
    R2는 이황화 오르토피리딜 (Orthopyridyl disulfide, OPSS), 티올, 또는 할로겐이고,
    n은 10 내지 2400의 자연수임.
  2. 제1항에 있어서,
    상기 R2는 이황화 오르토피리딜, 티올, 또는 요오드인,
    화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용가능한 염.
  3. 제1항에 있어서,
    상기 R1은 알데히드인,
    화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용가능한 염.
  4. 제1항에 있어서,
    상기 R1 및 R2는 서로 상이한 작용기를 가지는,
    화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용가능한 염.
  5. 제1항에 있어서,
    상기 화합물은 하기 화학식 2로 표시되는 것인, 화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용가능한 염:
    [화학식 2]
    CHO-(CH2)j-O-(CH2CH2O)n-(CH2)m-NH(CO)-(CH2)k-R2
    상기 화학식 2에서,
    n은 10 내지 2400의 자연수이고,
    j, m 및 k는 각각 독립적으로 1 내지 6의 자연수이며,
    R2는 이황화 오르토피리딜 (Orthopyridyl disulfide, OPSS), 티올, 또는 할로겐임.
  6. 제1항에 있어서,
    상기 화합물은 하기 화학식 6 내지 11로 이루어진 군에서 선택되는, 화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용가능한 염:
    [화학식 6]
    Figure PCTKR2017002469-appb-I000053
    [화학식 7]
    Figure PCTKR2017002469-appb-I000054
    [화학식 8]
    Figure PCTKR2017002469-appb-I000055
    [화학식 9]
    Figure PCTKR2017002469-appb-I000056
    [화학식 10]
    Figure PCTKR2017002469-appb-I000057
    [화학식 11]
    Figure PCTKR2017002469-appb-I000058
    상기 화학식 6 내지 11에서, n은 10 내지 2400의 자연수임.
  7. 제1항 내지 제6항 중 어느 한 항에 따른 폴리에틸렌 글리콜 화합물과 생리활성 폴리펩티드를 반응시켜 폴리에틸렌 글리콜 화합물이 부착된 생리활성 폴리펩티드를 제조하는 단계를 포함하는,
    폴리에틸렌 글리콜 화합물이 부착된 생리활성 폴리펩티드의 제조방법.
  8. 제7항에 있어서,
    R2에 위치한 이황화 오르토피리딜 (Orthopyridyl disulfide, OPSS), 티올, 또는 할로겐이 생리활성 폴리펩티드의 시스테인 잔기에 위치한 티올기와 반응하는 것인,
    폴리에틸렌 글리콜 화합물이 부착된 생리활성 폴리펩티드의 제조방법.
  9. 제7항에 있어서,
    추가로 폴리에틸렌 글리콜 화합물이 부착된 생리활성 폴리펩티드를 정제하는 단계를 포함하는,
    폴리에틸렌 글리콜 화합물이 부착된 생리활성 폴리펩티드의 제조방법.
  10. 제7항에 있어서,
    상기 생리활성 폴리펩티드는 호르몬, 사이토카인, 효소, 항체, 성장인자, 전사조절인자, 혈액인자, 백신, 인슐린 분비 펩타이드, 뉴로펩타이드 (neuropeptide), 뇌하수체 호르몬, 항-비만 펩타이드, 항-바이러스 펩타이드, 생리활성을 갖는 비천연형 펩타이드 유도체, 구조단백질, 리간드 단백질 및 수용체로 이루어진 군에서 선택되는,
    폴리에틸렌 글리콜 화합물이 부착된 생리활성 폴리펩티드의 제조방법.
  11. 제7항에 있어서,
    상기 생리활성 폴리펩티드는 글루카곤, 인슐린, 소마토스타틴, PYY(peptide YY), NPY(neuropeptide Y), GLP-1(Glucagon-like peptide-1) 및 GLP-2(Glucagon-like peptide-2)와 같은 글루카곤 유사 펩타이드, 엑센딘-3(Exendin-3), 엑센딘-4(Exendin-4), 옥신토모둘린(Oxyntomodulin), 글루카곤 수용체, GLP-1 수용체, 및 GIP 수용체에 대해 활성을 보유한 펩타이드, 섬유아세포성장인자 (Fibroblast growth factor), 그렐린(Ghrelin), 안지오텐신, 브래디키닌, 칼시토닌, 부신피질 자극호르몬(Corticotropin), 엘레도이신(Eledoisin), 가스트린, 렙틴, 옥시토신(Oxytocin), 바소프레신(vasopressin), 황체 형성호르몬, 황체 자극호르몬, 여포 자극호르몬, 부갑상선 호르몬, 씨크레틴(secretin), 세르모레린(Sermorelin), 인간 성장호르몬(hGH), 성장호르몬 방출 펩타이드, 콜로니 자극인자(GCSF)류, 인터페론(IFN)류, 인터루킨(Interleukin)류, 프로락틴 방출 펩타이드, 오렉신(Orexin), 갑상선 방출 펩타이드, 콜레시스토키닌(Cholecystokinin), 가스트린억제 펩타이드, 칼모듈린, 가스트린 유리 펩타이드(Gastric releasing peptide), 모틸린(Motilin), 혈관활성 장관펩타이드(Vasoactive intestinal peptide), 심방나트륨이뇨 펩타이드(Atrial natriuretic peptide; ANP), B형 나트륨이뇨 펩타이드(B-type natriuretic peptide; BNP), C-형 나트륨이뇨 펩타이드(C-type natriuretic peptide; CNP), 뉴로키닌(Neurokinin) A, 뉴로메딘(Neuromedin), 레닌(Renin), 엔도텔린(Endothelin), 사라포톡신 펩타이드(Sarafotoxin peptide), 카르소모르핀 펩타이드(Carsomorphin peptide), 데모르핀(Dermorphin), 디노르핀(Dynorphin), 엔도르핀(Endorphin), 엔케팔린(Enkepalin), T 세포인자, 종양괴사인자, 종양괴사인자 수용체, 유로키나아제 수용체, 종양억제인자, 콜라게나제 억제제, 티모포이에틴(Thymopoietin), 티물린(Thymulin), 티모펜틴(Thymopentin), 티모신(Tymosin), 흉선 체액성 인자(Thymic humoral factor), 아드레노모둘린(Adrenomodullin), 알라토스타틴(Allatostatin), 아밀로이드 베타-프로테인 단편(Amyloid beta-protein fragment), 항균성 펩타이드, 항산화제 펩타이드, 봄베신(Bombesin), 오스테오칼신(Osteocalcin), CART 펩타이드, E-셀렉틴(selectin), ICAM-1, VCAM-1, 류코카인(Leucokine), 크링글(Kringle)-5, 라미닌(Laminin), 인히빈(Inhibin), 갈라닌(Galanin), 피브로넥틴(Fibronectin), 판크레아스타틴(Pancreastatin) 및 푸제온(Fuzeon), 인터페론 수용체, 지프로테인 관련수용체 (Gprotein-coupled receptor), 인터루킨 수용체, 효소류, 인터루킨 결합 단백질, 사이토카인 결합 단백질, 마크로파지 활성인자, 마크로파지 펩타이드, B 세포인자, 단백질 A, 알러지 억제인자, 세포 괴사 당단백질, 면역독소, 림포독소, 종양 억제인자, 전이 성장인자, 알파-1 안티트립신, 알부민, α-락트알부민, 아포리포단백질-E, 적혈구 생성인자, 고 당쇄화 적혈구 생성인자, 안지오포에이틴류, 헤모글로빈, 트롬빈, 트롬빈 수용체 활성 펩타이드, 트롬보모듈린, 혈액인자 VII, VIIa, VIII, IX, 및 XIII, 플라즈미노젠 활성인자, 피브린-결합 펩타이드, 유로키나제, 스트렙토키나제, 히루딘, 단백질 C, C-반응성 단백질, 레닌 억제제, 수퍼옥사이드 디스뮤타제, 혈소판 유래 성장인자, 상피세포 성장인자, 표피세포 성장인자, 안지오스타틴, 안지오텐신, 골 형성 성장인자, 골 형성 촉진 단백질, 아트리오펩틴, 연골 유도인자, 엘카토닌, 결합조직 활성인자, 조직인자 경로 억제제, 황체 형성 호르몬 방출 호르몬, 신경 성장인자, 릴랙신, 소마토메딘, 인슐린 유사 성장인자, 부신피질 호르몬, 췌장 폴리펩티드, 가스트린 방출 펩타이드, 코티코트로핀 방출인자, 갑상선 자극호르몬, 오토탁신, 락토페린, 미오스타틴, 세포표면항원, 바이러스 유래 백신 항원, 단일클론 항체, 다중클론 항체 및 항체 단편, 적혈구 증식인자, 백혈구 증식인자, 아밀린 및 그의 아날로그로 이루어진 군에서 선택되는,
    폴리에틸렌 글리콜 화합물이 부착된 생리활성 폴리펩티드의 제조방법.
  12. (a) 제1항 내지 제6항 중 어느 한 항에 따른 폴리에틸렌 글리콜 화합물과 생리활성 폴리펩티드 또는 캐리어 단백질 중 하나를 반응시켜 생리활성 폴리펩티드 또는 캐리어 단백질이 한쪽 말단에 부착되고, 다른 쪽 말단에 반응기 (reactive end group)를 가지는, 폴리에틸렌 글리콜 화합물을 제조하는 단계; 및
    (b) 상기 (a) 단계에서 제조된, 생리활성 폴리펩티드 또는 캐리어 단백질이 한쪽 말단에 부착되고, 다른 쪽 말단에 말단 반응기을 가지는, 폴리에틸렌 글리콜 화합물과 캐리어 단백질 또는 생리활성 폴리펩티드 중 다른 하나를 반응시켜 상기 폴리에틸렌 글리콜 화합물의 말단 반응기에 캐리어 단백질 또는 생리활성 폴리펩티드를 연결시켜 생리활성 폴리펩티드와 캐리어 단백질이 폴리에틸렌 글리콜 화합물을 통하여 연결된, 결합체를 제조하는 단계를 포함하는,
    생리활성 폴리펩티드와 캐리어 단백질이 폴리에틸렌 글리콜 화합물을 통하여 연결된, 결합체의 제조방법.
  13. 제12항에 있어서,
    상기 생리활성 폴리펩티드는 호르몬, 사이토카인, 효소, 항체, 성장인자, 전사조절인자, 혈액인자, 백신, 인슐린 분비 펩타이드, 뉴로펩타이드 (neuropeptide), 뇌하수체 호르몬, 항-비만 펩타이드, 항-바이러스 펩타이드, 생리활성을 갖는 비천연형 펩타이드 유도체, 구조단백질, 리간드 단백질 및 수용체로 이루어진 군에서 선택되는,
    생리활성 폴리펩티드와 캐리어 단백질이 폴리에틸렌 글리콜 화합물을 통하여 연결된, 결합체의 제조방법.
  14. 제12항에 있어서,
    상기 (a) 단계의 폴리에틸렌 글리콜 화합물은 하기 화학식 1의 구조를 가지는,
    생리활성 폴리펩티드와 캐리어 단백질이 폴리에틸렌 글리콜 화합물을 통하여 연결된, 결합체의 제조방법:
    [화학식 1]
    Figure PCTKR2017002469-appb-I000059
    상기 화학식 1에서,
    R1은 알데히드 기이고,
    L1 내지 L3는 각각 독립적으로 직쇄 또는 분지쇄 C1-C6알킬렌이며,
    R2는 이황화 오르토피리딜 (Orthopyridyl disulfide, OPSS), 티올, 또는 할로겐이고,
    n은 10 내지 2400의 자연수임.
  15. 제14항에 있어서,
    (a) 단계는 상기 화학식 1의 구조를 가지는 폴리에틸렌 글리콜 화합물의 R2를 생리활성 폴리펩티드의 시스테인 잔기에 위치한 티올 기와 반응시키는,
    생리활성 폴리펩티드와 캐리어 단백질이 폴리에틸렌 글리콜 화합물을 통하여 연결된, 결합체의 제조방법.
  16. 제15항에 있어서,
    (b) 단계는 폴리에틸렌 글리콜 화합물의 말단 알데히드 기를 캐리어 단백질 의 아민기와 반응시키는,
    생리활성 폴리펩티드와 캐리어 단백질이 폴리에틸렌 글리콜 화합물을 통하여 연결된, 결합체의 제조방법.
  17. 제12항에 있어서,
    상기 제조방법은 추가로 생리활성 폴리펩티드와 캐리어 단백질이 폴리에틸렌 글리콜 화합물을 통하여 연결된, 결합체를 정제하는 단계를 포함하는,
    생리활성 폴리펩티드와 캐리어 단백질이 폴리에틸렌 글리콜 화합물을 통하여 연결된, 결합체의 제조방법.
  18. 제12항에 있어서,
    상기 캐리어 단백질은 알부민 및 이의 단편, 특정 아미노산 서열의 반복단위의 중합체, 항체, 항체 단편, FcRn 결합물질, 파이브로넥틴, 트랜스페린(Transferrin), 사카라이드(saccharide), 또는 엘라스틴인,
    생리활성 폴리펩티드와 캐리어 단백질이 폴리에틸렌 글리콜 화합물을 통하여 연결된, 결합체의 제조방법.
  19. 제18항에 있어서,
    상기 FcRn 결합물질은 면역글로불린 Fc 단편인,
    생리활성 폴리펩티드와 캐리어 단백질이 폴리에틸렌 글리콜 화합물을 통하여 연결된, 결합체의 제조방법.
  20. 제1항 내지 제6항 중 어느 한 항의 화합물이 부착된, 생리활성 폴리펩티드.
  21. 제20항에 있어서,
    상기 화합물이 부착된, 생리활성 폴리펩티드는 하기 화학식 15 내지 17 중 어느 하나로 표시되는 구조를 포함하는, 생리활성 폴리펩티드:
    [화학식 15]
    R1-L1-O-(CH2CH2O)n-L2-NH(CO)-L3-S-S-X
    [화학식 16]
    R1-L1-O-(CH2CH2O)n-L2-NH(CO)-CH2-S-X
    [화학식 17]
    X-NHCH2-L1-O-(CH2CH2O)n-L2-NH(CO)-L3-R2
    상기 화학식 15 내지 17에서,
    R1은, 2,5-디옥소피롤리디닐, 2,5-디옥소피롤릴, 알데히드, 말레이미드, C6-C20아릴디설파이드, C5-C20헤테로아릴디설파이드, 비닐술폰, 티올, 할로겐화 아세트아미드, 석시니미드, p-니트로페닐 카보네이트, 및 이들의 유도체로 이루어진 군에서 선택되고,
    L1 내지 L3는 각각 독립적으로 직쇄 또는 분지쇄 C1-C6알킬렌이며,
    n은 10 내지 2400의 자연수이고,
    R2는, 이황화 오르토피리딜 (Orthopyridyl disulfide, OPSS), 티올, 또는 할로겐이고,
    X는, 생리활성 폴리펩티드 모이어티.
  22. 제1항 내지 제6항 중 어느 한 항의 화합물의 양 말단 반응기에 각각 생리활성 폴리펩티드 및 캐리어 단백질이 부착된, 결합체.
  23. 제22항에 있어서,
    상기 결합체는 하기 화학식 18 또는 19로 표시되는 구조를 가지는, 결합체:
    [화학식 18]
    Y-NHCH2-L1-O-(CH2CH2O)n-L2-NH(CO)-L3-S-S-X
    [화학식 19]
    Y-NHCH2-L1-O-(CH2CH2O)n-L2-NH(CO)-CH2-S-X
    상기 화학식 18 및 19에서,
    L1 내지 L3는 각각 독립적으로 직쇄 또는 분지쇄 C1-C6알킬렌이며,
    n은 10 내지 2400의 자연수이고,
    X는, 생리활성 폴리펩티드 모이어티이고,
    Y는, 캐리어 단백질 모이어티임.
  24. 제22항에 있어서,
    상기 캐리어 단백질은 알부민 및 이의 단편, 특정 아미노산 서열의 반복단위의 중합체, 항체, 항체 단편, FcRn 결합물질, 파이브로넥틴, 트랜스페린(Transferrin), 사카라이드(saccharide), 또는 엘라스틴인, 결합체.
  25. 제24항에 있어서, 상기 FcRn 결합물질은 면역글로불린 Fc 단편인, 결합체.
  26. (a) 폴리에틸렌 글리콜의 한쪽 말단에 2,5-디옥소피롤리디닐, 2,5-디옥소피롤릴, 알데히드, 말레이미드, C6-C20아릴디설파이드, C5-C20헤테로아릴디설파이드, 비닐술폰, 티올, 할로겐화 아세트아미드, 석시니미드, p-니트로페닐 카보네이트, 및 이들의 유도체로 이루어진 군으로부터 선택되는 R1을 도입하는 단계; 및
    (b) 상기 폴리에틸렌 글리콜의 다른 한쪽 말단에 -NH(CO)L3-R2 구조를 도입하는 단계를 포함하고, 여기서, R2는 이황화 오르토피리딜 (Orthopyridyl disulfide, OPSS), 티올, 또는 할로겐인,
    제1항의 화합물의 제조방법.
  27. 제26항에 있어서,
    화학식 20로 표시되는 화합물로부터 화학식 21로 표시되는 화합물을 준비하는 제1단계;
    화학식 21로 표시되는 화합물로부터 화학식 22로 표시되는 화합물을 준비하는 제2단계; 및
    화학식 22로 표시되는 화합물을 산 용액으로 처리하여 말단의 디에톡시메틸을 알데히드로 전환하는 제3단계를 포함하는,
    제조방법:
    [화학식 20]
    Figure PCTKR2017002469-appb-I000060
    여기서, n'은 n 또는 n+1
    [화학식 21]
    Figure PCTKR2017002469-appb-I000061
    [화학식 22]
    Figure PCTKR2017002469-appb-I000062
    여기서, 상기 L1, L2, L3, n 및 R2에 대해서는 제1항에 기술된 바와 같음.
  28. 제27항에 있어서,
    상기 제1단계의 화학식 20으로 표시되는 화합물은 하기 화학식 23으로 표시되는 화합물을 메탄설포닐 클로라이드와 반응시켜 준비하는 것인 제조방법:
    [화학식 23]
    Figure PCTKR2017002469-appb-I000063
    .
  29. 제27항에 있어서,
    상기 제1단계는 화학식 20으로 표시되는 화합물을 암모니아 수용액 및 염화암모늄과 반응시킴으로써 수행하는 것인 제조방법.
  30. 제27항에 있어서,
    상기 제1단계는 화학식 20으로 표시되는 화합물을 히드록시알킬 테트라하이드로피라닐 에테르와 반응시켜 화학식 24로 표시되는 화합물을 제조하는 제1-1단계;
    화학식 24로 표시되는 화합물을 p-톨루엔설폰산과 반응시켜 말단의 테트라하이드로피라닐옥시기를 히드록시기로 치환하는 제1-2단계;
    이전 단계로부터 수득한 화합물을 메탄설포닐클로라이드와 반응시켜 히드록시기를 메탄술폰산기로 전환하는 제1-3단계; 및
    이전 단계로부터 수득한 화합물을 암모니아 수용액 및 염화암모늄과 반응시키는 제1-4단계를 포함하여 수행하는 것인 제조방법:
    [화학식 24]
    Figure PCTKR2017002469-appb-I000064
    .
  31. 제27항에 있어서,
    상기 제2단계는 화학식 21로 표시되는 화합물을 하기 화학식 25로 표시되는 화합물과 반응시켜 수행하는 것인 제조방법:
    [화학식 25]
    Figure PCTKR2017002469-appb-I000065
    .
  32. 제27항에 있어서,
    상기 제2단계는 화학식 21로 표시되는 화합물을 클로로(C2-C7 알카노일) 클로라이드와 반응시켜 중간체로 하기 화학식 26으로 표시되는, 말단에 클로로기를 포함하는 화합물을 합성한 후, 황화수소 나트륨 존재 또는 부재 하에 할로겐 금속염과 반응시켜 클로로기를 티올 또는 할로겐으로 전환하여 수행하는 것인 제조방법:
    [화학식 26]
    Figure PCTKR2017002469-appb-I000066
    .
PCT/KR2017/002469 2016-03-07 2017-03-07 폴리에틸렌 글리콜 유도체 및 이의 용도 WO2017155288A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780028045.1A CN109071419A (zh) 2016-03-07 2017-03-07 聚乙二醇衍生物及其用途
EP17763549.7A EP3428147A4 (en) 2016-03-07 2017-03-07 Polyethylene glycol derivative and use thereof
US16/082,737 US11603346B2 (en) 2016-03-07 2017-03-07 Polyethylene glycol derivative and use thereof
JP2018547405A JP6937773B2 (ja) 2016-03-07 2017-03-07 ポリエチレングリコール誘導体及びその用途
US18/085,341 US20230212103A1 (en) 2016-03-07 2022-12-20 Polyethylene glycol derivative and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0027317 2016-03-07
KR20160027317 2016-03-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/082,737 A-371-Of-International US11603346B2 (en) 2016-03-07 2017-03-07 Polyethylene glycol derivative and use thereof
US18/085,341 Division US20230212103A1 (en) 2016-03-07 2022-12-20 Polyethylene glycol derivative and use thereof

Publications (1)

Publication Number Publication Date
WO2017155288A1 true WO2017155288A1 (ko) 2017-09-14

Family

ID=59789639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002469 WO2017155288A1 (ko) 2016-03-07 2017-03-07 폴리에틸렌 글리콜 유도체 및 이의 용도

Country Status (8)

Country Link
US (2) US11603346B2 (ko)
EP (1) EP3428147A4 (ko)
JP (1) JP6937773B2 (ko)
KR (1) KR102372857B1 (ko)
CN (1) CN109071419A (ko)
AR (1) AR107823A1 (ko)
TW (1) TWI770010B (ko)
WO (1) WO2017155288A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111372911A (zh) * 2017-11-06 2020-07-03 韩美精密化学株式会社 聚乙二醇衍生物及其制备方法
RU2805873C2 (ru) * 2019-07-18 2023-10-24 Ханми Фарм. Ко., Лтд. Новый способ получения длительно действующего конъюгата лекарственного средства посредством получения промежуточного соединения

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019066609A1 (ko) * 2017-09-29 2019-04-04 한미약품 주식회사 링커로서 비펩타이드성 중합체 결합 지방산 유도체 화합물을 포함하는 단백질 결합체 및 이의 제조방법
FI3936142T3 (fi) * 2019-06-28 2024-02-13 Hanmi Pharm Ind Co Ltd Kaikkien glukagoni-, glp-1- ja gip-reseptorien suhteen aktiivisuutta omaava kolmoisagonisti maksasairauden hoitoon
NZ784956A (en) * 2019-07-18 2023-01-27 Hanmi Pharm Ind Co Ltd Novel method for preparing long-acting drug conjugate through preparation of intermediate
US20220273808A1 (en) * 2019-07-18 2022-09-01 Hanmi Pharm. Co., Ltd Novel method of preparing protein conjugate
CN116789771B (zh) * 2023-08-28 2023-11-14 南京杰肽生物科技有限公司 一种抗菌多肽修饰的蛋白衍生物及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001002017A2 (en) * 1999-07-02 2001-01-11 F. Hoffmann-La Roche Ag Erythropoietin conjugates with polyethylenglycol
KR20050025974A (ko) * 2002-07-24 2005-03-14 에프. 호프만-라 로슈 아게 폴리에틸렌 글리콜 알데하이드 유도체
WO2010021720A1 (en) * 2008-08-19 2010-02-25 Nektar Therapeutics Conjugates of small-interfering nucleic acids
KR20110047169A (ko) * 2009-10-29 2011-05-06 한국과학기술원 카테콜 폴리에틸렌글리콜 유도체와 단백질 또는 펩타이드의 접합체 및 이의 제조방법
KR20130040889A (ko) * 2010-04-15 2013-04-24 스피로즌 살 증식성 질환 치료용 피롤로벤조디아제핀

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6096871A (en) 1995-04-14 2000-08-01 Genentech, Inc. Polypeptides altered to contain an epitope from the Fc region of an IgG molecule for increased half-life
JP4046354B2 (ja) 1996-03-18 2008-02-13 ボード オブ リージェンツ,ザ ユニバーシティ オブ テキサス システム 増大した半減期を有する免疫グロブリン様ドメイン
WO2002087497A2 (en) * 2001-04-26 2002-11-07 Board Of Regents, The University Of Texas System Therapeutic agent/ligand conjugate compositions, their methods of synthesis and use
RU2487877C2 (ru) * 2008-04-30 2013-07-20 Иммьюноджен, Инк. Высокоэффективные конъюгаты и гидрофильные сшивающие агенты (линкеры)
WO2010138343A1 (en) * 2009-05-27 2010-12-02 Merck Sharp & Dohme Corp. Neuromedin u receptor agonists
EP2555777B1 (en) 2010-04-09 2019-02-20 Sirna Therapeutics, Inc. Novel single chemical entities and methods for delivery of oligonucleotides
FR2988608B1 (fr) * 2012-03-30 2014-09-05 Commissariat Energie Atomique Materiau, son procede de preparation et ses utilisations
KR101968344B1 (ko) * 2012-07-25 2019-04-12 한미약품 주식회사 옥신토모듈린 유도체를 포함하는 고지혈증 치료용 조성물
US10278991B2 (en) * 2014-05-14 2019-05-07 Targimmune Therapeutics Ag Polyethyleneimine polyethyleneglycol vectors
TWI684458B (zh) * 2014-05-30 2020-02-11 南韓商韓美藥品股份有限公司 包含胰島素及glp-1/昇糖素雙重促效劑之治療糖尿病之組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001002017A2 (en) * 1999-07-02 2001-01-11 F. Hoffmann-La Roche Ag Erythropoietin conjugates with polyethylenglycol
KR20050025974A (ko) * 2002-07-24 2005-03-14 에프. 호프만-라 로슈 아게 폴리에틸렌 글리콜 알데하이드 유도체
WO2010021720A1 (en) * 2008-08-19 2010-02-25 Nektar Therapeutics Conjugates of small-interfering nucleic acids
KR20110047169A (ko) * 2009-10-29 2011-05-06 한국과학기술원 카테콜 폴리에틸렌글리콜 유도체와 단백질 또는 펩타이드의 접합체 및 이의 제조방법
KR20130040889A (ko) * 2010-04-15 2013-04-24 스피로즌 살 증식성 질환 치료용 피롤로벤조디아제핀

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3428147A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111372911A (zh) * 2017-11-06 2020-07-03 韩美精密化学株式会社 聚乙二醇衍生物及其制备方法
JP2021501816A (ja) * 2017-11-06 2021-01-21 ハンミ・ファイン・ケミカル・カンパニー・リミテッドHanmi Fine Chemical Co., Ltd. ポリエチレングリコール誘導体及びこの製造方法
EP3708561A4 (en) * 2017-11-06 2021-11-03 Hanmi Fine Chemical Co., Ltd. POLYETHYLENE GLYCOL DERIVATIVE AND PROCESS FOR PREPARATION
JP7258019B2 (ja) 2017-11-06 2023-04-14 ハンミ・ファイン・ケミカル・カンパニー・リミテッド ポリエチレングリコール誘導体及びこの製造方法
CN111372911B (zh) * 2017-11-06 2023-06-13 韩美精密化学株式会社 聚乙二醇衍生物及其制备方法
RU2805873C2 (ru) * 2019-07-18 2023-10-24 Ханми Фарм. Ко., Лтд. Новый способ получения длительно действующего конъюгата лекарственного средства посредством получения промежуточного соединения

Also Published As

Publication number Publication date
US20190071379A1 (en) 2019-03-07
EP3428147A4 (en) 2019-08-28
KR102372857B1 (ko) 2022-03-11
TWI770010B (zh) 2022-07-11
US11603346B2 (en) 2023-03-14
EP3428147A1 (en) 2019-01-16
US20230212103A1 (en) 2023-07-06
AR107823A1 (es) 2018-06-06
TW201808344A (zh) 2018-03-16
KR20170104409A (ko) 2017-09-15
JP6937773B2 (ja) 2021-09-22
CN109071419A (zh) 2018-12-21
JP2019515972A (ja) 2019-06-13

Similar Documents

Publication Publication Date Title
WO2017155288A1 (ko) 폴리에틸렌 글리콜 유도체 및 이의 용도
WO2018147641A1 (ko) 비펩티드성 중합체 링커 화합물, 그 링커 화합물을 포함하는 결합체, 및 이들의 제조방법
WO2017116205A1 (ko) 글루카곤, glp-1 및 gip 수용체 모두에 활성을 갖는 삼중 활성체의 지속형 결합체
WO2017052321A1 (ko) 다수의 생리활성 폴리펩타이드 및 면역글로불린 Fc 영역을 포함하는, 단백질 결합체
WO2015152618A1 (ko) 면역글로불린 fc 단편 결합을 이용한 단백질 및 펩타이드의 용해도를 개선시키는 방법
WO2018143729A1 (ko) 지속성이 증가된 생리활성 물질의 결합체 및 이의 용도
WO2017116207A1 (ko) Fgf21 아날로그, fgf21 결합체, 및 이의 용도
WO2019066586A1 (ko) 글루카곤 유사 펩타이드-2(glp-2) 유도체의 지속형 결합체
WO2020130749A1 (ko) 글루카곤, glp-1 및 gip 수용체 모두에 활성을 갖는 삼중 활성체 및 인슐린을 포함하는 약학 조성물
WO2019190293A1 (ko) 뇌 표적 지속성 단백질 결합체, 이의 제조 방법, 및 이를 포함하는 조성물
WO2020153774A1 (ko) 항체-페이로드 컨쥬게이트 제조용 화합물, 이의 용도
WO2021066600A1 (ko) 글루카곤, 및 glp-1 수용체 및 gip 수용체 이중 작용제를 포함하는 조성물 및 이의 치료학적 용도
WO2022065913A1 (ko) 요산산화효소-알부민 접합체, 그 제조방법 및 용도
WO2023106845A1 (ko) 신규한 아디포넥틴 아날로그 및 결합체
WO2022015082A1 (ko) 글루카곤 유도체 또는 이의 결합체의 간질환에 대한 치료적 용도
WO2020071865A1 (ko) 글루카곤 및 이를 포함하는 조합물의 치료학적 용도
WO2022015115A1 (ko) 3중 작용성 지속형 결합체 또는 3중 작용제를 포함하는 조합물의 치료학적 용도
WO2019172605A1 (ko) 선택적으로 기능화된 타이로신을 가지는 생체 물질의 제조방법, 선택적으로 기능화된 타이로신을 가지는 생체 물질 및 이를 유효성분으로 함유하는 약학적 조성물
WO2020263063A1 (ko) 글루카곤, glp-1 및 gip 수용체 모두에 활성을 갖는 삼중 활성체 또는 이의 결합체의 간 질환에 대한 치료적 용도
WO2022080986A1 (ko) Glp-1/gip 이중작용제, 이의 지속형 결합체, 및 이를 포함하는 약학적 조성물
WO2021215801A1 (ko) 글루카곤, glp-1 및 gip 수용체 모두에 활성을 갖는 삼중 활성체 또는 이의 결합체를 포함하는 고지혈증 예방 또는 치료용 약학적 조성물 및 예방 또는 치료 방법
WO2020214013A1 (ko) 글루카곤, glp-1 및 gip 수용체 모두에 활성을 갖는 삼중 활성체 또는 이의 결합체의 고지혈증에 대한 치료적 용도
WO2021133087A1 (ko) Glp-2 또는 이의 결합체를 포함하는 골 대사성 질환에 대한 예방 또는 치료용 약학적 조성물
WO2020242268A1 (ko) 비오틴 모이어티와 결합된 생리활성 물질 및 이를 포함하는 경구 투여용 조성물
WO2022139552A1 (ko) 단장증후군의 예방 또는 치료를 위한 인슐린 분비 펩타이드 및 glp-2의 병용 요법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018547405

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017763549

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017763549

Country of ref document: EP

Effective date: 20181008

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763549

Country of ref document: EP

Kind code of ref document: A1