WO2017155006A1 - 積層体 - Google Patents

積層体 Download PDF

Info

Publication number
WO2017155006A1
WO2017155006A1 PCT/JP2017/009344 JP2017009344W WO2017155006A1 WO 2017155006 A1 WO2017155006 A1 WO 2017155006A1 JP 2017009344 W JP2017009344 W JP 2017009344W WO 2017155006 A1 WO2017155006 A1 WO 2017155006A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polymer
polymer film
protective film
laminate according
Prior art date
Application number
PCT/JP2017/009344
Other languages
English (en)
French (fr)
Inventor
一洋 谷本
裕幸 関野
正己 天野
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to CN201780014912.6A priority Critical patent/CN108698371B/zh
Priority to KR1020187025245A priority patent/KR102107328B1/ko
Priority to JP2018504570A priority patent/JP6591041B2/ja
Priority to EP17763346.8A priority patent/EP3418049B1/en
Priority to US16/082,462 priority patent/US11088313B2/en
Publication of WO2017155006A1 publication Critical patent/WO2017155006A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • C09J7/381Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/385Acrylic polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/40Adhesives in the form of films or foils characterised by release liners
    • C09J7/405Adhesives in the form of films or foils characterised by release liners characterised by the substrate of the release liner
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/098Forming organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/871Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • H10N30/883Additional insulation means preventing electrical, physical or chemical damage, e.g. protective coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/025Polyolefin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/414Translucent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2405/00Adhesive articles, e.g. adhesive tapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/057Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by stacking bulk piezoelectric or electrostrictive bodies and electrodes

Definitions

  • the present invention relates to a laminate.
  • An organic material having piezoelectricity is known, and an example thereof is a polymer material using a helical chiral polymer having optical activity (for example, a polylactic acid polymer).
  • a polymer piezoelectric material that exhibits a piezoelectric constant of about 10 pC / N at room temperature by stretching a molded product of polylactic acid has been disclosed (for example, see JP-A-5-152638).
  • high piezoelectricity of about 18 pC / N is produced by a special orientation method called forging (see, for example, JP-A-2005-213376). .
  • a protective film may be provided on the polymer film for the purpose of protecting the polymer film. This makes it possible to store and transport the polymer film as a roll wound up until it is used for manufacturing a device, and to suppress the occurrence of scratches on the polymer film during handling. be able to.
  • the protective film may be peeled off just before the process. In this case, if the adhesive force between the protective film and the polymer film is strong, a part of the protective film may remain on the surface of the polymer film.
  • the inventors have found that the surface of the polymer film after peeling is not damaged even when the protective film can be peeled without leaving the surface of the polymer film containing the organic piezoelectric material. I found out that This is because organic piezoelectric materials generally have a property of being easily deformed, and because organic piezoelectric materials are very easily charged, minute foreign matter is adsorbed between the protective film and the polymer film when the protective film is bonded, It is considered that the surface of the polymer film is deformed by foreign matter. In such a case, the quality of the polymer film itself may be deteriorated, and further, the appearance and quality of a device manufactured using the polymer film may be deteriorated.
  • a laminate having a polymer film containing an organic piezoelectric material and a protective film, which suppresses deterioration of the appearance of the polymer film after the protective film is peeled off.
  • the purpose is to do.
  • the protective film (B) has a base material layer and an adhesive layer provided on the main surface of the base material layer on the side facing the polymer film (A),
  • the maximum indentation depth hmax is the laminate according to ⁇ 1> or ⁇ 2>, which is the maximum indentation depth when the adhesive layer side of the protective film (B) is measured.
  • the laminate according to ⁇ 3>, wherein the acid value of the adhesive layer is 10 mgKOH / g or less.
  • the base material layer is made of a polyolefin resin or a polyethylene terephthalate resin, and the adhesive layer contains an acrylic adhesive.
  • the T-type peel strength between the polymer film (A) and the protective film (B) is 0.07 N / 50 mm to 1 N / 50 mm, and any one of ⁇ 1> to ⁇ 5> The laminated body of description.
  • the polymer film (A) is 40% or less internal haze to visible light, and the stress at 25 ° C. - is the piezoelectric constant d 14 is 1 pC / N or more as measured by a charge method, ⁇ 1
  • ⁇ 8> The laminate according to ⁇ 7>, wherein the internal haze is 1% or less.
  • the polymer film (A) has a normalized molecular orientation MORc of 3.5 to 15.0, and a product of the normalized molecular orientation MORc and the crystallinity is 70 to 700.
  • ⁇ 10> The laminate according to any one of ⁇ 1> to ⁇ 9>, wherein the organic piezoelectric material is a helical chiral polymer (X) having optical activity.
  • the helical chiral polymer (X) is a polylactic acid polymer having a main chain containing a repeating unit represented by the following formula (1).
  • ⁇ 12> The laminate according to ⁇ 10> or ⁇ 11>, wherein the helical chiral polymer (X) has an optical purity of 95.00% ee or more.
  • ⁇ 13> The laminate according to any one of ⁇ 10> to ⁇ 12>, wherein the content of the helical chiral polymer (X) in the polymer film (A) is 80% by mass or more.
  • the laminated body which has a polymeric film containing a helical chiral polymer, and a protective film, Comprising: The laminated body by which the external appearance deterioration of the polymeric film after peeling a protective film is suppressed is provided. .
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the “polymer film” is a concept including a polymer sheet.
  • the main surface of a film means the surface (in other words, surface including a length direction and a width direction) which opposes the thickness direction of a film.
  • the “main surface” may be simply referred to as “surface”.
  • the “surface” of a member means the “main surface” of the member unless otherwise specified.
  • the “MD direction” is the direction in which the film flows (Machine Direction), that is, the stretching direction
  • the “TD direction” is a direction perpendicular to the MD direction and parallel to the main surface of the film ( Transverse Direction).
  • the laminate according to the present disclosure includes an optically active organic piezoelectric material having a weight average molecular weight of 50,000 to 1,000,000, and is a standard when a reference thickness measured by a microwave transmission type molecular orientation meter is 50 ⁇ m.
  • the maximum indentation depth hmax is 53 nm to 100 nm when the surface of the protective film (B) in contact with the polymer film (A) is measured by the nanoindentation method.
  • the laminated body which concerns on this indication may have another peelable protective film which contact
  • yuzu skin means that wrinkles or irregularities (steps) are generated on the surface like a yuzu skin.
  • the width of each concave portion of the yuzu skin is about several mm, and the depth is about several ⁇ m to several tens of ⁇ m.
  • the present inventors have further adopted a laminated body having a layer structure including the organic piezoelectric material and having a combination of the polymer film (A) having the above characteristics and the protective film (B), and further protecting it.
  • the maximum indentation depth hmax when the surface of the film (B) in contact with the polymer film (A) was measured by the nanoindentation method was adjusted to the above range.
  • the maximum indentation depth hmax is 53 nm or more
  • a part of the protective film (B) remains on the surface of the polymer film (A) after the protective film (B) is peeled off, and
  • the surface of the polymer film (A) is suppressed from being distorted.
  • the organic piezoelectric material may be a helical chiral polymer (hereinafter sometimes referred to as a helical chiral polymer (X)), or an organic piezoelectric material other than the helical chiral polymer. Also good.
  • the maximum indentation depth hmax is preferably 53 nm to 60 nm. As described above, when the maximum indentation depth hmax is 53 nm or more, it is suppressed that the surface of the polymer film (A) becomes a skin after the protective film (B) is peeled off.
  • the protective film (B) includes a base material layer and an adhesive layer provided on the main surface of the base material layer on the side facing the polymer film (A).
  • the maximum indentation depth hmax is preferably the maximum indentation depth when the adhesive layer side of the protective film (B) is measured.
  • the acid value of the adhesive layer is preferably 10 mgKOH / g or less.
  • the base material layer is made of a polyolefin resin or a polyethylene terephthalate resin
  • the adhesive layer contains an acrylic adhesive.
  • the T-type peel strength between the polymer film (A) and the protective film (B) is preferably 0.07 N / 50 mm to 1 N / 50 mm.
  • the T-type peel strength is 0.07 N / 50 mm or more, the adhesive force between the polymer film (A) and the protective film (B) is ensured.
  • the T-type peel strength is 1 N / 50 mm or less, the peelability of the protective film (B) is ensured.
  • the polymer film (A) is 40% or less internal haze to visible light, and, 25 stresses in ° C. - piezoelectric constant d 14 is 1 pC / N or more as measured by a charge method It is preferable that The polymer film (A) is a piezoelectric film having transparency. Thereby, the polymer film (A) can be applied to various piezoelectric devices.
  • the internal haze is preferably 1% or less from the viewpoint of improving the transparency of the polymer film (A).
  • the polymer film (A) has a normalized molecular orientation MORc of 3.5 to 15.0, and a product of the normalized molecular orientation MORc and the crystallinity is 70. It is preferable that it is -700.
  • the polymer film (A) is a piezoelectric film. Therefore, when the normalized molecular orientation MORc is in the above range and the product is in the above range, the piezoelectricity of the polymer film (A) is improved.
  • the helical chiral polymer (X) is represented by the following formula (1) from the viewpoint of further improving piezoelectricity when the polymer film (A) is used as a piezoelectric film.
  • a polylactic acid polymer having a main chain containing units is preferred.
  • the helical chiral polymer (X) has an optical purity of 95.00% ee or more from the viewpoint of further improving piezoelectricity when the polymer film (A) is used as a piezoelectric film. Preferably there is.
  • the content of the organic piezoelectric material in the polymer film (A) is preferably 80% by mass or more.
  • the organic piezoelectric material is a helical chiral polymer (X)
  • the content of the helical chiral polymer (X) in the polymer film (A) is preferably 80% by mass or more.
  • the polymer film (A) is one or more selected from the group consisting of a carbodiimide group, an epoxy group, and an isocyanate group from the viewpoint of improving the heat and moisture resistance of the polymer film (A).
  • One or more stabilizers (Y) selected from the group consisting of a stabilizer (Y1) having a weight average molecular weight of 200 to 60,000 having a functional group and a stabilizer (Y2) having an iminoether group
  • the organic piezoelectric material is a helical chiral polymer (X)
  • One or more stabilizers (Y) selected from the group consisting of a stabilizer (Y1) and a stabilizer (Y2) having an imino ether group are added to 100 parts by mass of the helical chiral polymer (X). It is preferable to contain 0.01 to 10 parts by mass.
  • the organic piezoelectric material contains an organic piezoelectric material having a weight average molecular weight of 50,000 to 1,000,000.
  • the organic piezoelectric material in the present disclosure can be adopted regardless of a low-molecular material or a high-molecular material, such as polyvinylidene fluoride or polyvinylidene fluoride-based copolymer, polycyanide vinylidene or vinylidene cyanide-based copolymer, nylon 9 or Examples include odd-numbered nylon such as nylon 11, helical chiral polymers such as aromatic nylon, alicyclic nylon, polyurea, and polylactic acid, polyhydroxycarboxylic acids such as polyhydroxybutyrate, cellulose derivatives, and polypeptides. From the viewpoints of good piezoelectric properties, processability, availability, etc., it is preferably a polymer organic piezoelectric material, particularly a helical chiral polymer (X) having optical activity.
  • the helical chiral polymer is a helical chiral polymer having a weight average molecular weight of 50,000 to 1,000,000 and having optical activity (this specification) In the book, it is also called helical chiral polymer (X)).
  • the “helical chiral polymer having optical activity” refers to a polymer having a helical structure and a molecular optical activity.
  • the helical chiral polymer (X) in the present disclosure is a polymer having a weight average molecular weight of 50,000 to 1,000,000 among the above-mentioned “helical chiral polymers having optical activity”.
  • Examples of the helical chiral polymer (X) include polylactic acid polymers and poly ( ⁇ -hydroxybutyric acid).
  • the helical chiral polymer (X) preferably has an optical purity of 95.00% ee or more, more preferably 96.00% ee or more, and further preferably 99.00% ee or more. Even more preferably, it is 99.99% ee or more. Desirably, it is 100.00% ee.
  • the optical purity of the helical chiral polymer (X) within the above range, the crystallinity and packing properties of the polymer crystal in the polymer film (A) are increased. As a result, for example, when the polymer film (A) is used as a piezoelectric film, the piezoelectricity (piezoelectric constant) can be further improved.
  • the optical purity of the helical chiral polymer (X) is a value calculated by the following formula.
  • Optical purity (% ee) 100 ⁇
  • the amount of L-form [mass%] of the helical chiral polymer (X) and the amount of D-form [mass%] of the helical chiral polymer (X) are obtained by a method using high performance liquid chromatography (HPLC). Use the value obtained.
  • the measurement method is as follows. In a 50 mL Erlenmeyer flask, 1.0 g of the sample (polymer film (A)) is weighed, and 2.5 mL of IPA (isopropyl alcohol) and 5 mL of 5.0 mol / L sodium hydroxide solution are added. Next, the Erlenmeyer flask containing the sample solution is placed in a water bath at a temperature of 40 ° C. and stirred for about 5 hours until the helical chiral polymer (X) is completely hydrolyzed.
  • IPA isopropyl alcohol
  • the sample solution is cooled to room temperature, neutralized by adding 20 mL of a 1.0 mol / L hydrochloric acid solution, and the Erlenmeyer flask is sealed and mixed well. Dispense 1.0 mL of the sample solution into a 25 mL volumetric flask and prepare HPLC sample solution 1 with 25 mL of mobile phase. 5 ⁇ L of the HPLC sample solution 1 is injected into the HPLC apparatus, the D / L body peak area of the helical chiral polymer (X) is determined under the following HPLC conditions, and the amount of L body and the amount of D body are calculated.
  • -HPLC measurement conditions - ⁇ Column Optical resolution column, SUMICHIRAL OA5000, manufactured by Sumika Chemical Analysis Co., Ltd.
  • the helical chiral polymer (X) has a main chain containing a repeating unit represented by the following formula (1) from the viewpoint of further improving piezoelectricity when the polymer film (A) is used as a piezoelectric film. Compounds are preferred.
  • a polylactic acid polymer is preferable.
  • the polylactic acid polymer means “polylactic acid (polymer consisting only of repeating units derived from a monomer selected from L-lactic acid and D-lactic acid)”, “L-lactic acid or D-lactic acid, and L “Lactic acid or a copolymer of D-lactic acid and a copolymerizable compound” or a mixture of both.
  • polylactic acid is preferable, and L-lactic acid homopolymer (PLLA) or D-lactic acid homopolymer (PDLA) is most preferable.
  • Polylactic acid is a polymer in which lactic acid is polymerized by an ester bond and connected for a long time. It is known that polylactic acid can be produced by a lactide method via lactide; a direct polymerization method in which lactic acid is heated in a solvent under reduced pressure and polymerized while removing water.
  • Examples of polylactic acid include L-lactic acid homopolymer, D-lactic acid homopolymer, block copolymer containing at least one polymer of L-lactic acid and D-lactic acid, and at least one of L-lactic acid and D-lactic acid.
  • a graft copolymer containing a polymer may be mentioned.
  • Examples of the “compound copolymerizable with L-lactic acid or D-lactic acid” include glycolic acid, dimethyl glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxypropanoic acid, 3-hydroxypropanoic acid, 2- Hydroxyvaleric acid, 3-hydroxyvaleric acid, 4-hydroxyvaleric acid, 5-hydroxyvaleric acid, 2-hydroxycaproic acid, 3-hydroxycaproic acid, 4-hydroxycaproic acid, 5-hydroxycaproic acid, 6-hydroxycaprone Hydroxycarboxylic acids such as acid, 6-hydroxymethylcaproic acid and mandelic acid; cyclic esters such as glycolide, ⁇ -methyl- ⁇ -valerolactone, ⁇ -valerolactone and ⁇ -caprolactone; oxalic acid, malonic acid, succinic acid, Glutaric acid, adipic acid, pimelic acid, azelaic acid, sebacic acid, Polycarboxylic acids such as ndecanedioic acid, do
  • the “copolymer of L-lactic acid or D-lactic acid and a compound copolymerizable with the L-lactic acid or D-lactic acid” includes a block copolymer or graft copolymer having a polylactic acid sequence capable of forming a helical crystal. Can be mentioned.
  • the concentration of the structure derived from the copolymer component in the helical chiral polymer (X) is preferably 20 mol% or less.
  • the helical chiral polymer (X) is a polylactic acid polymer
  • the structure derived from lactic acid and the structure derived from a compound copolymerizable with lactic acid (copolymer component) in the polylactic acid polymer It is preferable that the concentration of the structure derived from the copolymer component is 20 mol% or less with respect to the total number of moles.
  • the polylactic acid polymer is obtained by, for example, a method obtained by direct dehydration condensation of lactic acid described in JP-A-59-096123 and JP-A-7-033861; US Pat. No. 2,668,182 and A method of ring-opening polymerization using lactide, which is a cyclic dimer of lactic acid, as described in US Pat. No. 4,057,357.
  • the polylactic acid polymer obtained by the above production methods has an optical purity of 95.00% ee or higher.
  • the optical purity is improved by crystallization operation. It is preferable to polymerize lactide having an optical purity of 95.00% ee or higher.
  • the weight average molecular weight (Mw) of the organic piezoelectric material is 50,000 to 1,000,000 as described above.
  • Mw weight average molecular weight
  • the Mw is preferably 100,000 or more, and more preferably 200,000 or more.
  • the organic piezoelectric material has Mw of 1 million or less, the moldability when the polymer film (A) is obtained by molding (for example, extrusion molding) is improved.
  • the Mw is preferably 800,000 or less, and more preferably 300,000 or less.
  • the molecular weight distribution (Mw / Mn) of the organic piezoelectric material is preferably 1.1 to 5, and more preferably 1.2 to 4, from the viewpoint of the strength of the polymer film (A). Further, it is preferably 1.4 to 3.
  • the weight average molecular weight Mw and molecular weight distribution (Mw / Mn) of an organic piezoelectric material point out the value measured using the gel permeation chromatograph (GPC).
  • Mn is the number average molecular weight of the organic piezoelectric material.
  • a sample solution having a concentration of 1 mg / ml having a concentration of 1 mg / ml.
  • -Measurement condition- 0.1 ml of the sample solution is introduced into the column at a solvent [chloroform], a temperature of 40 ° C., and a flow rate of 1 ml / min.
  • the sample concentration in the sample solution separated by the column is measured with a differential refractometer.
  • a universal calibration curve is created with a polystyrene standard sample, and the weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the organic piezoelectric material are calculated.
  • the polylactic acid polymer that is an example of the organic piezoelectric material is a helical chiral polymer, and commercially available polylactic acid can be used. Examples of commercially available products, PURAC Co. PURASORB (PD, PL), manufactured by Mitsui Chemicals, Inc. of LACEA (H-100, H- 400), NatureWorks LLC Corp. Ingeo TM Biopolymer, and the like.
  • PURAC Co. PURASORB PD, PL
  • LACEA H-100, H- 400
  • NatureWorks LLC Corp. Ingeo TM Biopolymer and the like.
  • Mw weight average molecular weight
  • the lactate method or the direct polymerization method is used. It is preferable to manufacture.
  • the polymer film (A) in the present disclosure may contain only one kind of the above-described organic piezoelectric material, or may contain two or more kinds.
  • the content of the organic piezoelectric material in the polymer film (A) (the total content in the case of two or more types) is preferably 80% by mass or more based on the total amount of the polymer film (A).
  • the organic piezoelectric material is a helical chiral polymer (X)
  • the content of the helical chiral polymer (X) in the polymer film (A) is 80 mass% or more is preferable with respect to the whole quantity of a polymer film (A).
  • the polymer film (A) further comprises a stabilizer having one or more functional groups selected from the group consisting of a carbodiimide group, an epoxy group, and an isocyanate group in one molecule and having a weight average molecular weight of 200 to 60,000. It is preferable to contain at least one stabilizer (Y) selected from the group consisting of Y1) and a stabilizer (Y2) having an iminoether group. Thereby, the heat-and-moisture resistance of a polymer film (A) can be improved.
  • the polymer film (A) contains the stabilizer (Y), that is, the polymer film (A) is one or more kinds of stabilizers selected from the group consisting of the stabilizer (Y1) and the stabilizer (Y2).
  • the content of the stabilizer (Y) is preferably 0.01 to 10 parts by weight, preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the organic piezoelectric material.
  • the amount is more preferably 5 parts by mass, further preferably 0.1 to 3 parts by mass, and particularly preferably 0.5 to 2 parts by mass.
  • the content of the stabilizer (Y) is 0.01 to 10 parts by mass with respect to 100 parts by mass of the helical chiral polymer (X). It is preferably from 0.01 parts by weight to 5 parts by weight, more preferably from 0.1 parts by weight to 3 parts by weight, and more preferably from 0.5 parts by weight to 2 parts by weight. Particularly preferred.
  • the content is 0.01 parts by mass or more, the moisture and heat resistance of the polymer film (A) is further improved. Moreover, the transparency fall is suppressed more as the said content is 10 mass parts or less.
  • the said content shows those total amounts, when using 2 or more types of stabilizers (Y) together.
  • Stabilizer (Y1) As the stabilizer (Y1), “stabilizer (B)” described in paragraphs 0039 to 0055 of WO 2013/054918 pamphlet can be used.
  • Examples of the compound (carbodiimide compound) containing a carbodiimide group in one molecule that can be used as the stabilizer (Y1) include a monocarbodiimide compound, a polycarbodiimide compound, and a cyclic carbodiimide compound.
  • a monocarbodiimide compound dicyclohexylcarbodiimide, bis-2,6-diisopropylphenylcarbodiimide, and the like are preferable.
  • As a polycarbodiimide compound what was manufactured by the various method can be used. Conventional methods for producing polycarbodiimides (for example, U.S. Pat. No.
  • the cyclic carbodiimide compound can be synthesized based on the method described in JP2011-256337A.
  • a commercially available product may be used.
  • B2756 (trade name) manufactured by Tokyo Chemical Industry Co., Ltd.
  • Carbodilite LA-1 manufactured by Nisshinbo Chemical Co., Ltd.
  • Stabaxol P Stabaxol P400
  • Stabaxol I Product name Stabaxol I Product name
  • Examples of the compound (isocyanate compound) containing an isocyanate group in one molecule that can be used as the stabilizer (Y1) include 3- (triethoxysilyl) propyl isocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate.
  • Examples of the compound containing an epoxy group in one molecule (epoxy compound) that can be used as the stabilizer (Y1) include phenyl glycidyl ether, diethylene glycol diglycidyl ether, bisphenol A-diglycidyl ether, hydrogenated bisphenol A-diglycidyl ether. Phenol novolac type epoxy resin, cresol novolac type epoxy resin, epoxidized polybutadiene and the like.
  • the weight average molecular weight of the stabilizer (Y1) is preferably 200 to 60000, more preferably 200 to 30000, and further preferably 300 to 18000. When the molecular weight is within the above range, the stabilizer (Y1) is more easily moved, and the moisture and heat resistance of the polymer film (A) is improved.
  • the weight average molecular weight of the stabilizer (Y1) is particularly preferably 200 to 900.
  • the weight average molecular weight of 200 to 900 is almost the same as the number average molecular weight of 200 to 900. Further, when the weight average molecular weight is 200 to 900, the molecular weight distribution may be 1.0. In this case, “weight average molecular weight 200 to 900” can be simply referred to as “molecular weight 200 to 900”. .
  • the polymer film (A) may contain only one type of stabilizer (Y1), or two or more types. Also good.
  • a preferred embodiment of the stabilizer (Y1) is a stabilizer having one or more functional groups selected from the group consisting of a carbodiimide group, an epoxy group, and an isocyanate group, and having a number average molecular weight of 200 to 900.
  • (Y1a) a stabilizer having two or more functional groups selected from the group consisting of a carbodiimide group, an epoxy group, and an isocyanate group in one molecule and having a weight average molecular weight of 1,000 to 60,000 ( An embodiment in which Y1b) is used in combination.
  • the weight average molecular weight of the stabilizer (Y1a) having a number average molecular weight of 200 to 900 is about 200 to 900, and the number average molecular weight and the weight average molecular weight of the stabilizer (Y1a) are almost the same value. .
  • the stabilizer (Y1a) and the stabilizer (Y1b) are used in combination as the stabilizer, it is preferable that a large amount of the stabilizer (Y1a) is contained from the viewpoint of improving the transparency.
  • the stabilizer (Y1b) is preferably in the range of 10 to 150 parts by mass with respect to 100 parts by mass of the stabilizer (Y1a) from the viewpoint of achieving both transparency and wet heat resistance. More preferably, it is in the range of 50 to 100 parts by mass.
  • Stabilizer Y-1 The compound name is bis-2,6-diisopropylphenylcarbodiimide.
  • the weight average molecular weight (in this example, simply equal to “molecular weight”) is 363.
  • Commercially available products include “Stabaxol I” manufactured by Rhein Chemie and “B2756” manufactured by Tokyo Chemical Industry.
  • Stabilizer Y-2 The compound name is poly (4,4′-dicyclohexylmethanecarbodiimide).
  • “Carbodilite LA-1” manufactured by Nisshinbo Chemical Co., Ltd., having a weight average molecular weight of about 2000 can be mentioned.
  • Stabilizer Y-3 The compound name is poly (1,3,5-triisopropylphenylene-2,4-carbodiimide).
  • “Stabaxol P” manufactured by Rhein Chemie Co., Ltd. can be mentioned as having a weight average molecular weight of about 3000.
  • “Stabaxol P400” manufactured by Rhein Chemie is listed as having a weight average molecular weight of 20,000.
  • Stabilizer (Y2) As the stabilizer (Y2) having an imino ether group, a compound having an imino ether group in one molecule (imino ether compound) can be used.
  • imino ether compound examples include compounds represented by the following general formula (1).
  • R 2 has an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent.
  • R 3 represents an alkyl group represented by the following general formula (2) or an aryl group represented by the following general formula (3), and R 11 , R 12 and R 13 are each independently Represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent.
  • R 2 , R 3 , R 11 , R 12 and R 13 may be bonded to each other to form a ring.
  • the bond formed by at least one of R 11 to R 13 and at least one of R 31 to R 33 is a bond having two or more linking atoms.
  • R 31 , R 32 and R 33 each independently represent a hydrogen atom or a substituent. R 31 , R 32 and R 33 may be connected to each other to form a ring.
  • R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different.
  • N represents an integer of 0 to 5.
  • * represents a position bonded to a nitrogen atom.
  • the alkyl group represented by R 2 is preferably an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 12 carbon atoms.
  • the alkyl group represented by R 2 may be linear or branched. Further, the alkyl group represented by R 2 may be a cycloalkyl group.
  • Examples of the alkyl group represented by R 2 include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, tert-butyl group, sec-butyl group, iso-butyl group, n-pentyl group, Examples thereof include a sec-pentyl group, an iso-pentyl group, an n-hexyl group, a sec-hexyl group, an iso-hexyl group, and a cyclohexyl group.
  • the alkyl group represented by R 2 may further have a substituent.
  • substituents include the alkyl group, aryl group, alkoxy group, halogen atom, nitro group, amide group, hydroxyl group, ester group, ether group, and aldehyde group.
  • the number of carbon atoms of the alkyl group represented by R 2 may indicate the number of carbon that does not contain a substituent group.
  • the aryl group represented by R 2 is preferably an aryl group having 6 to 20 carbon atoms, and more preferably an aryl group having 6 to 12 carbon atoms.
  • Examples of the aryl group represented by R 2 include a phenyl group and a naphthyl group, and among them, a phenyl group is particularly preferable.
  • the aryl group represented by R 2 may further have a substituent. In addition, as a substituent, said substituent can be illustrated similarly.
  • the number of carbon atoms of the aryl group represented by R 2 is the number of carbon atoms not including a substituent.
  • the alkoxy group represented by R 2 is preferably an alkoxy group having 1 to 20 carbon atoms, more preferably an alkoxy group having 1 to 12 carbon atoms, and an alkoxy group having 2 to 6 carbon atoms. Is particularly preferred.
  • the alkoxy group represented by R 2 may be linear, branched or cyclic.
  • Preferable examples of the alkoxy group represented by R 2 include a group in which —O— is linked to the terminal of the alkyl group represented by R 2 .
  • the alkoxy group represented by R 2 may further have a substituent. In addition, as a substituent, said substituent can be illustrated similarly.
  • the number of carbon atoms of the alkoxy group represented by R 2 indicate the number of carbon that does not contain a substituent group.
  • R 3 represents an alkyl group represented by the general formula (2) or an aryl group represented by the general formula (3).
  • R 31 , R 32 and R 33 each independently represent a hydrogen atom or a substituent. When R 31 , R 32 and R 33 are substituents, they may be linked to each other to form a ring. Examples of the substituent include the alkyl group, aryl group, alkoxy group, halogen atom, nitro group, amide group, hydroxyl group, ester group, ether group, and aldehyde group.
  • R 31 , R 32 and R 33 may be all hydrogen atoms or the same substituent or different substituents.
  • the alkyl group represented by the general formula (2) may be linear or branched.
  • the alkyl group represented by the general formula (2) may be a cycloalkyl group.
  • R 41 represents a substituent, and n represents an integer of 0 to 5. When n is 2 or more, R 41 may be the same or different. In addition, as a substituent, said substituent can be illustrated similarly. N is more preferably from 0 to 3, and further preferably from 0 to 2.
  • R 11 , R 12 and R 13 each independently represent a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent.
  • the alkyl group and aryl group can be exemplified similarly an alkyl group and aryl group R 2 can be taken.
  • R 2 , R 3 , R 11 , R 12 and R 13 are preferably not bonded to form a ring, but R 2 , R 3 , R 11 , R 12 and R 13 are bonded to each other to form a ring. May be.
  • R 41 and at least one of R 11 to R 13 may combine to form a ring, and a benzene ring and R 11 to R 13 A ring containing any of the above may form a condensed ring.
  • R 41 and at least one of R 11 to R 13 are not bonded to form a ring.
  • R 3 when R 3 is represented by the general formula (2), the bond formed by at least one of R 11 to R 13 and at least one of R 31 to R 33 is a bond having two or more linking atoms.
  • R 3 is represented by the above general formula (2), the bond formed by one of R 11 to R 13 and one of R 31 to R 33 is a bond having two or more linking atoms, and a double bond A bond is preferred.
  • R 3 is represented by the general formula (2), it is preferable that at least one of R 11 to R 13 and at least one of R 31 to R 33 are not bonded to form a ring.
  • General formula (1) may include a repeating unit.
  • at least one of R 2 , R 3 or R 11 to R 13 is a repeating unit, and this repeating unit preferably contains an iminoether group.
  • the molecular weight per iminoether group of the stabilizer (Y2) is preferably 1000 or less, more preferably 750 or less, and even more preferably 500 or less.
  • the molecular weight of the stabilizer (Y2) is preferably 280 or more, and more preferably 300 or more.
  • the polymer film (A) may contain only one kind of stabilizer (Y2) or two or more kinds. Also good.
  • the polymer film (A) may contain other components as necessary.
  • Other components include known resins such as polyethylene resins and polystyrene resins; known inorganic fillers such as silica, hydroxyapatite and montmorillonite; known crystal nucleating agents such as phthalocyanines; stabilizers other than the stabilizer (Y) And the like.
  • known resins such as polyethylene resins and polystyrene resins
  • known inorganic fillers such as silica, hydroxyapatite and montmorillonite
  • known crystal nucleating agents such as phthalocyanines
  • stabilizers other than the stabilizer (Y) And the like examples of the inorganic filler and the crystal nucleating agent include components described in paragraphs 0057 to 0058 of International Publication No. 2013/054918.
  • the polymer film (A) according to the present disclosure has a normalized molecular orientation MORc of 1.0 to 15.0, preferably 2.0 to 15.0, and preferably 3.5 to 15.0. More preferably, it is 3.5 to 10.0, more preferably 4.0 to 8.0.
  • the normalized molecular orientation MORc is a value determined based on the “molecular orientation degree MOR” which is an index indicating the degree of orientation of the organic piezoelectric material.
  • the normalized molecular orientation MORc is in the range of 1.0 to 15.0, the strength of the film (polymer film (A)) is maintained high, and a specific direction (for example, the main stretching direction and the in-plane of the film) In the direction perpendicular to the film) is prevented from decreasing in strength. If the MORc is in the range of 2.0 to 15.0, the molecular chains of the organic piezoelectric material arranged in the stretching direction increase. As a result, when the polymer film (A) is used as a piezoelectric film, the rate of formation of oriented crystals is increased, and high piezoelectricity can be expressed.
  • the molecular orientation degree MOR (Molecular Orientation Ratio) is measured by the following microwave measurement method. That is, the polymer film (A) is placed in a microwave resonant waveguide of a known microwave transmission type molecular orientation meter (also referred to as a microwave molecular orientation degree measuring device) in the microwave traveling direction ( It arrange
  • a known microwave transmission type molecular orientation meter also referred to as a microwave molecular orientation degree measuring device
  • the normalized molecular orientation MORc can be measured with a known molecular orientation meter such as a microwave molecular orientation meter MOA-2012A or MOA-6000 manufactured by Oji Scientific Instruments Co., Ltd. at a resonance frequency near 4 GHz or 12 GHz.
  • the normalized molecular orientation MORc is controlled by the heat treatment conditions (heating temperature and heating time) before stretching, the stretching conditions (stretching temperature and stretching speed), and the like. Can be done.
  • the normalized molecular orientation MORc can be converted into a birefringence ⁇ n obtained by dividing the retardation amount (retardation) by the thickness of the film. Specifically, retardation can be measured using RETS100 manufactured by Otsuka Electronics Co., Ltd. MORc and ⁇ n are approximately in a linear proportional relationship, and when ⁇ n is 0, MORc is 1. For example, when the organic piezoelectric material is a polylactic acid polymer and the birefringence ⁇ n of the polymer film (A) is measured at a measurement wavelength of 550 nm, the normalized molecular orientation MORc is 2.0. The refractive index ⁇ n can be converted to 0.005, and if the normalized molecular orientation MORc is 4.0, the refractive index ⁇ n can be converted to 0.01.
  • the degree of crystallinity of the polymer film (A) in the present disclosure is a value measured by a DSC method.
  • the crystallinity of the polymer film (A) in the present disclosure is 20% to 80%, preferably 20% to 70%, and more preferably 20% to 50%.
  • the degree of crystallinity is 20% or more, the strength of the film (polymer film (A)) is ensured.
  • the degree of crystallinity is 80% or less, the transparency of the film is maintained high. Further, if the crystallinity is in the above range, whitening and breakage hardly occur when the film is stretched, and it is easy to produce.
  • the crystallinity of the polymer film (A) is 20% or more, which means that the heat resistance is improved, and in the case where the polymer film (A) is used as a piezoelectric film, the piezoelectricity (piezoelectric constant) is reduced. It is also advantageous in terms of improvement.
  • the polymer film (A) in the present disclosure preferably has a product of the normalized molecular orientation MORc and the crystallinity obtained by the DSC method when the reference thickness measured by a microwave transmission type molecular orientation meter is 50 ⁇ m. Is from 20 to 700, more preferably from 40 to 700, still more preferably from 70 to 700, still more preferably from 75 to 680, still more preferably from 90 to 660, still more preferably from 100 to 650, still more preferably from 100 to 350. If the product of the normalized molecular orientation MORc and the crystallinity obtained by the DSC method is in the range of 20 to 700, transparency and dimensional stability are preferably maintained.
  • the polymer film (A) is used as the piezoelectric film.
  • the piezoelectricity is preferably maintained.
  • the polymer film (A) in the present disclosure has an internal haze with respect to visible light (hereinafter also simply referred to as “internal haze”) of 50% or less, preferably 40% or less, and preferably 20% or less. Is more preferably 15% or less, further preferably 13% or less, further preferably 5% or less, and further preferably 1% or less.
  • the internal haze of the polymer film (A) is preferably as low as possible from the viewpoint of transparency, and the lower limit is not particularly limited, but the internal haze in the present disclosure should be, for example, 0.1% or more. Can do.
  • internal haze refers to haze excluding haze due to the shape of the outer surface of the polymer film (A). Further, the “internal haze” here is a value when measured at 25 ° C. according to JIS-K7105 for the polymer film (A). An example of a method for measuring internal haze will be described later in Examples.
  • the polymer film (A) in the present disclosure is suitably used as a piezoelectric film, for example.
  • the piezoelectric constant of the polymer film (A) is a value measured as follows. First, the polymer film (A) is cut to 150 mm in a direction formed by 45 ° with respect to the stretching direction (for example, MD direction) of the polymer film (A), and cut to 50 mm in a direction orthogonal to the direction formed by 45 °. A test piece is prepared.
  • the test piece obtained on the test stand of Showa Vacuum SIP-600 is set, and Al is vapor-deposited on one surface of the test piece so that the deposition thickness of Al is about 50 nm.
  • Al is vapor-deposited in the same manner on the other surface of the test piece. As described above, an Al conductive layer is formed on both sides of the test piece.
  • a test piece (polymer film (A)) having a 150 mm ⁇ 50 mm Al conductive layer formed on both sides is 120 mm in a direction that makes 45 ° with respect to the stretching direction (for example, MD direction) of the polymer film (A), Cut to 10 mm in a direction orthogonal to the 45 ° direction, and cut out a 120 mm ⁇ 10 mm rectangular film. This is a piezoelectric constant measurement sample.
  • the obtained sample is set so as not to be loosened in a tensile tester (manufactured by AND, TENSILON RTG-1250) having a distance between chucks of 70 mm.
  • a force is periodically applied so that the applied force reciprocates between 4N and 9N at a crosshead speed of 5 mm / min.
  • a capacitor having a capacitance Qm (F) is connected in parallel to the sample, and the voltage Vm between terminals of the capacitor Cm (95 nF) is converted into a buffer amplifier. Measure through.
  • the generated charge amount Q (C) is calculated as the product of the capacitor capacitance Cm and the terminal voltage Vm.
  • the stress at 25 ° C. - piezoelectric constant d 14 measured by the charge method is preferably more than 1 pC / N, more preferably at least pC / N, more preferably more than 4Pc / N.
  • the upper limit of the piezoelectric constant is not particularly limited, but from the viewpoint of balance such as transparency described later, in the polymer film (A) using the organic piezoelectric material, 50 pC / N or less is preferable, and 30 pC / N or less is preferable. More preferred. Similarly, from the viewpoint of the balance between transparency and stress - it is preferably a piezoelectric constant d 14 is equal to or less than 15pC / N was measured with a charge method.
  • the polymer film in the present disclosure (A) is 40% or less internal haze to visible light, and the stress at 25 ° C. - that the piezoelectric constant d 14 is 1 pC / N or more as measured by a charge method Is preferred.
  • the internal haze, and the stress at 25 ° C. to visible light - each preferable range of the piezoelectric constant d 14 measured by the charge method is as previously described.
  • the polymer film (A) in the present disclosure may be a single layer film or a laminated film.
  • the thickness of the polymer film (A) in the present disclosure is not particularly limited, but can be, for example, 10 ⁇ m to 1000 ⁇ m, preferably 10 ⁇ m to 400 ⁇ m, more preferably 20 ⁇ m to 200 ⁇ m, and still more preferably 20 ⁇ m to 100 ⁇ m. 30 ⁇ m to 80 ⁇ m is particularly preferable.
  • the above thickness represents the thickness of the entire laminated film.
  • the production method of the polymer film (A) in the present disclosure is not particularly limited.
  • the raw material of the polymer film (A) such as the helical chiral polymer (X) such as the polylactic acid polymer described above
  • An organic piezoelectric material and other components (stabilizer (Y), inorganic filler, etc.) may be mixed as necessary, and the mixture may be produced by extrusion film formation using a film forming machine.
  • the production method for producing a piezoelectric film as the polymer film (A) is not particularly limited, but for example, the description in paragraphs 0065 to 0099 of International Publication No. 2013/054918 can be appropriately referred to.
  • a method for producing the polymer film (A) which includes a second step of stretching the film (and a step of annealing as necessary).
  • the laminate according to the present disclosure has a peelable protective film (B) in contact with one main surface of the polymer film (A). As described above, the laminate according to the present disclosure may further include another peelable protective film that is in contact with the other main surface of the polymer film (A).
  • Examples of the material for the protective film (B) include polyolefin resins, polyethylene terephthalate resins, polyester resins (excluding polyethylene terephthalate resins), nylon resins, polyvinyl alcohol resins, polyvinylidene chloride resins, polystyrene resins, polyresins.
  • Examples include vinyl chloride resin, polycarbonate resin, polymethyl methacrylate resin, polyurethane resin, fluororesin, polyacrylonitrile resin, polybutene resin, polyimide resin, polyarylate resin, and acetyl cellulose resin. These resins may be used alone or in combination of two or more.
  • polyolefin resins and polyethylene terephthalate resins are preferable from the viewpoint of suppressing deterioration of the appearance of the polymer film (A) after the protective film (B) is peeled off.
  • These resins may be used alone or in combination of two or more.
  • the protective film (B) may be a multilayer body of these resin layers.
  • polyolefin resins include olefin homopolymers, copolymers of two or more olefins, and copolymers of olefins and other monomers.
  • olefin homopolymers include ⁇ -polyolefin polymers such as polyethylene, polypropylene, polybutene, and polymethylpentene; and cyclic polyolefin polymers.
  • the copolymer of two or more olefins include an ethylene / propylene copolymer, a propylene / ethylene / butylene copolymer, and an ethylene-1-butene copolymer.
  • polyethylene terephthalate resin examples include polyethylene terephthalate resin produced by polycondensation of terephthalic acid and ethylene glycol, and polybutylene terephthalate produced by polycondensation of terephthalic acid and tetramethylene glycol.
  • the polyethylene terephthalate resin may contain a structural unit derived from another monomer.
  • a protective film (B) has a base material layer and the adhesion layer provided on the main surface on the side facing the polymer film (A) of a base material layer.
  • the material for the base material layer include the same materials as those for the protective film (B) described above.
  • the base material layer is preferably made of a polyolefin resin or a polyethylene terephthalate resin. These resins may be used alone or in combination of two or more.
  • the base material layer may be a multilayer body of these resin layers.
  • Adhesive layer examples of the material for the adhesive layer include ethylene-vinyl acetate copolymer (EVA) adhesives, acrylic adhesives, rubber adhesives, polyolefin adhesives (eg, polyethylene oligomer adhesives), and cellulose adhesives.
  • EVA ethylene-vinyl acetate copolymer
  • acrylic adhesives acrylic adhesives
  • rubber adhesives polyolefin adhesives (eg, polyethylene oligomer adhesives)
  • cellulose adhesives for example, glue
  • silicone adhesive silicone adhesive, urethane adhesive, vinyl alkyl ether adhesive, polyvinyl alcohol adhesive, polyvinyl pyrrolidone adhesive, polyacrylamide adhesive, and the like.
  • silicone adhesive silicone adhesive
  • urethane adhesive vinyl alkyl ether adhesive
  • polyvinyl alcohol adhesive polyvinyl alcohol adhesive
  • polyvinyl pyrrolidone adhesive polyacrylamide adhesive
  • a material for the adhesive layer an acrylic adhesive, a urethane adhesive, and a silicone adhesive
  • the adhesive layer preferably contains an acrylic adhesive.
  • These pressure-sensitive adhesives may be used alone or in combination of two or more.
  • the adhesive layer may be a multilayer body.
  • An antistatic agent may be added to the adhesive layer for the purpose of preventing peeling electrification.
  • Examples of the adhesive polymer of the acrylic adhesive include (meth) acrylic having 1 to 10 carbon atoms in the alkyl group such as 2-ethylhexyl acrylate, butyl acrylate, isooctyl acrylate, butyl methacrylate, propyl methacrylate, and the like.
  • Preferable examples include a copolymer containing an acid ester and a functional group-containing unsaturated monomer such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, hydroxyethyl acrylate, and hydroxyethyl methacrylate.
  • the laminated body which concerns on this indication consists of a polyolefin-type resin or a polyethylene terephthalate-type resin from a viewpoint of suppressing the external appearance deterioration of the polymer film (A) after peeling a protective film (B).
  • the pressure-sensitive adhesive layer preferably contains an acrylic pressure-sensitive adhesive.
  • the acid value of the adhesive layer is preferably 10 mgKOH / g or less, more preferably 0.01 mgKOH / g to 10 mgKOH / g, further preferably 0.05 mgKOH / g to 5 mgKOH / g, and 0.1 mgKOH / g to 1 mgKOH / g. Further preferred.
  • the acid value of the adhesive layer exceeds 0 mgKOH / g, interaction between the polar group of the adhesive layer and the polar group of the polymer film (A) occurs, so the adhesive force between the adhesive layer and the polymer film (A) is increased. It is done.
  • the acid value of the adhesive layer refers to the amount (mg) of KOH required to neutralize the free acid in 1 g of the adhesive layer.
  • the amount (mg) of KOH is measured by titrating an adhesive layer dissolved or swollen in a solvent with a 0.005 M KOH (potassium hydroxide) ethanol solution using phenolphthalein as an indicator.
  • the maximum indentation depth hmax when the surface of the protective film (B) in contact with the polymer film (A) is measured by the nanoindentation method is the polymer after the protective film (B) is peeled off. From the viewpoint of suppressing deterioration of the appearance of the film (A), the thickness is 53 nm to 100 nm.
  • the measurement of the maximum indentation depth hmax by the nanoindentation method is performed according to ISO 14577-1 (instrumented indentation hardness). Details of the measurement method will be described in detail in Examples.
  • the maximum indentation depth hmax is 53 nm to 100 nm, preferably 53 nm to 80 mm, and more preferably 53 nm to 60 mm.
  • the protective film after peeling a protective film (B) from a laminated body (B) may be used, but in either case, the maximum indentation depth hmax is measured on the side of the protective film (B) that is in contact with the polymer film (A).
  • the maximum of the protective film (B) is the maximum indentation depth when the adhesive layer side of the protective film (B) is measured.
  • the maximum indentation depth hmax is regarded as the maximum indentation depth hmax of the adhesive layer.
  • the T-type peel strength between the protective film (B) and the polymer film (A) is 0 from the viewpoint of suppressing deterioration of the appearance of the polymer film (A) after peeling the protective film (B).
  • 0.07 N / 50 mm to 1 N / 50 mm is preferable, 0.07 N / 50 mm to 0.5 N / 50 mm is more preferable, and 0.10 N / 50 mm to 0.3 N / 50 mm is still more preferable.
  • the “T-type peel strength” is a value measured at 25 ° C. using a tensile tester (manufactured by AND, TENSILON RTG-1250) according to JIS K6854-3 (1999). Details of the measurement method will be described in detail in Examples.
  • the thickness of the protective film (B) is not particularly limited, but from the viewpoint of enhancing the protective function, the thickness is preferably 5 ⁇ m or more, more preferably 10 ⁇ m to 100 ⁇ m, and 20 ⁇ m to 80 ⁇ m. More preferably, the range of 30 ⁇ m to 50 ⁇ m is particularly preferable.
  • the thickness of the base layer is preferably in the range of 9 ⁇ m to 99 ⁇ m, more preferably in the range of 19 ⁇ m to 79 ⁇ m, and still more preferably in the range of 29 ⁇ m to 49 ⁇ m.
  • the thickness of the adhesive layer is preferably in the range of 1 ⁇ m to 20 ⁇ m, and more preferably in the range of 3 ⁇ m to 10 ⁇ m.
  • the protective film (B) in the present disclosure may be a single layer film, or may be a laminated film having a base material layer and an adhesive layer as described above, for example.
  • a protective film (B) adheres to a polymer film (A) by the adhesiveness of protective film (B) itself, or electrostatic attraction, for example.
  • the protective film (B) may have a functional layer. Examples of the functional layer include an easy adhesion layer, a hard coat layer, an antistatic layer, an antiblock layer, a protective layer, an oligomer block layer, and an electrode layer.
  • These functional layers may be disposed on the main surface of the protective film (B) on the side facing the polymer film (A) depending on the purpose, and the polymer film (A) of the protective film (B). You may arrange
  • the protective film (B) may have two or more functional layers.
  • the elastic modulus of the protective film (B) and the elastic modulus of the polymer film (A) preferably satisfy the following relational expression (F).
  • a polymer film containing an organic piezoelectric material with a protective film may be stored in a roll state for a long time.
  • a polymer film containing an organic piezoelectric material is stretched in one direction in order to impart piezoelectricity. Therefore, when stored for a long time in a roll state, the polymer film is slightly shrunk in the stretching direction and the flatness of the film is lowered.
  • the inventors have found.
  • the ratio of the elastic modulus of the protective film (B) to the elastic modulus of the polymer film (A) is set to 0.1 or more, and the present disclosure is made for a long period of one year or more. Even when the protective film (B) is peeled off after the laminate according to the invention is stored in a roll body, the polymer film (A) is suppressed from being contracted and deformed, and a decrease in flatness is suppressed. The present inventors have found. In other words, by satisfying the above formula F, even if the protective film is peeled off after long-term storage in a roll state, there is a further effect that the flatness of the film can be maintained without shrinking and deforming the polymer film. can get.
  • the ratio of the elastic modulus of the protective film (B) to the elastic modulus of the polymer film (A) is 10 or less, the peeling point when the protective film (B) is peeled is stable, and the polymer film (A ) Appearance quality is further improved. Furthermore, if the ratio of the elastic modulus of the protective film (B) to the elastic modulus of the polymer film (A) is 0.3 or more, the reduction in planarity is more strongly suppressed.
  • the protective film (B) is a laminated film having a base material layer and an adhesive layer
  • the elastic modulus of the protective film (B) in the formula F is the same as that of the base material layer in the protective film (B).
  • a composite elastic modulus of the adhesive layer is preferable.
  • the elastic modulus of each film means a value obtained by elastic modulus measurement based on JIS K7127 (1999). Specifically, the elastic modulus was determined by cutting a sample of 100 mm in the main stretching direction of the polymer film containing the organic piezoelectric material and 20 mm in the direction perpendicular to the main stretching direction of the polymer piezoelectric film.
  • the polymer piezoelectric film and the protective film are peeled off, and each of the polymer piezoelectric film and the protective film is subjected to a tensile tester (manufactured by AND, TENSILON RTG-1250 (trade name)) with a chuck of 70 mm and a speed of 50 mm / min It can be measured based on JIS K7127 (1999) under conditions.
  • the polymer film containing the organic piezoelectric material may have anisotropy due to stretching, but in the present disclosure, the elastic modulus in the main stretching direction is measured.
  • the protective film (B) is a laminated film having a base material layer and an adhesive layer, and the base material layer is made of a polyethylene terephthalate resin.
  • the adhesive layer preferably contains an acrylic adhesive.
  • the protective film (B) can be formed by extrusion-forming a resin for forming the protective film (B) with a film forming machine.
  • the protective film (B) is a multilayer film composed of a plurality of layers including a base material layer and an adhesive layer, for example, a formed base material layer, a formed adhesive layer, and other films as necessary
  • a multilayer film may be formed by adhering a layer (for example, a functional layer), or an adhesive layer and other layers may be formed by extrusion on the formed base material layer to form a multilayer film. .
  • the material which comprises a base material layer, the material which comprises the adhesion layer, etc. may be coextruded with a multilayer film forming machine, and a multilayer film may be formed.
  • an adhesive layer may be formed on the base material layer by a wet coating method.
  • the adhesive layer is formed by applying a coating liquid (coating liquid for adhesive layer) in which a material (resin, additive, etc.) for forming the adhesive layer is dispersed or dissolved on the base material layer. Can do.
  • the surface of the protective film (B) may be treated by corona treatment, itro treatment, ozone treatment, plasma treatment, or the like.
  • Examples of commercially available protective films (B) include PAC series, JA series, KD series, MA series, NSA series of Sanei Kaken Co., Ltd .; 622 series of Sekisui Chemical Co., Ltd .; FM series; V series from Sumilon Co., Ltd .; E-MASK series from Nitto Denko Corporation; Mitsui Masking Tape from Mitsui Chemicals Tosero Co., Ltd .; Protect film series from Toyo Packaging Co., Ltd .; Tape series; EM series of Higashiyama Film Co., Ltd .; Kimoto's Prosave series, etc.
  • the laminate according to the present disclosure may further include another peelable protective film that is in contact with the other main surface of the polymer film (A).
  • the laminate according to the present disclosure further has another peelable protective film in contact with the other main surface of the polymer film (A)
  • the other protective film is the same as the protective film (B).
  • the other protective film and the protective film (B) may be the same or different.
  • the laminate 10 of the first aspect has a polymer film 12 and a protective film 14.
  • the protective film 14 is adhered to the polymer film 12 by the adhesiveness of the protective film 14 itself or electrostatic attraction. Thereby, the surface of the polymer film 12 can be protected.
  • the maximum pushing depth hmax of the protective film 14 is adjusted in the range of 53 nm to 100 nm. Therefore, according to the laminate 10 of the first aspect, deterioration of the appearance of the polymer film 12 after the protective film 14 is peeled is suppressed.
  • FIG. 2 sectional drawing of the 2nd aspect of the laminated body which concerns on this indication is shown.
  • 10 A of laminated bodies of a 2nd aspect have the polymer film 12, the adhesion layer 16, and the base material layer 18 in this order.
  • the protective film 14 ⁇ / b> A is composed of the adhesive layer 16 and the base material layer 18.
  • the protective film 14A is adhere
  • the maximum indentation depth hmax of the protective film 14A that is, the maximum indentation depth hmax of the adhesive layer 16 is adjusted in the range of 53 nm to 100 nm. Therefore, according to the laminated body 10A of the second aspect, deterioration of the appearance of the polymer film 12 after the protective film 14A is peeled is suppressed.
  • piezoelectric film (A1) a piezoelectric film having piezoelectricity
  • the protective film (B) is protected from the laminated body according to the present disclosure.
  • Piezoelectric film (A1) after peeling off is speaker, headphones, touch panel, actuator, remote controller, microphone, underwater microphone, ultrasonic transducer, ultrasonic applied measuring instrument, piezoelectric vibrator, mechanical filter, piezoelectric transformer, delay Device, sensor, force sensor, acceleration sensor, impact sensor, vibration sensor, pressure sensor, tactile sensor, electric field sensor, sound pressure sensor, display, fan, pump, variable focus mirror, sound insulation material, soundproof material, keyboard, sound equipment Various information processing equipment, measuring equipment, medical equipment, etc. It can be used in the field.
  • the piezoelectric film (A1) preferably has at least two surfaces and is used as a piezoelectric element having electrodes on the surfaces.
  • the electrodes only need to be provided on at least two surfaces of the piezoelectric film (A1).
  • limit especially as said electrode For example, ITO, ZnO, IZO (trademark), a conductive polymer, etc. are used.
  • the piezoelectric film (A1) and the electrode can be repeatedly stacked to be used as a laminated piezoelectric element.
  • an electrode and a unit of a piezoelectric film (A1) are repeatedly stacked, and finally, the main surface of the piezoelectric film (A1) that is not covered with an electrode is covered with an electrode.
  • the unit that is repeated twice is a laminated piezoelectric element in which an electrode, a piezoelectric film (A1), an electrode, a piezoelectric film (A1), and an electrode are stacked in this order.
  • one layer of the piezoelectric film (A1) may be the piezoelectric film (A1) in the present disclosure, and the other layers are not the piezoelectric film (A1) in the present disclosure. Also good.
  • the laminated piezoelectric element includes a plurality of piezoelectric films (A1) and the organic piezoelectric material is a helical chiral polymer (X), the helical chiral polymer (X) included in the piezoelectric film (A1) of a certain layer.
  • the helical chiral polymer (X) contained in the piezoelectric film (A1) of the other layer may be in the L form or the D form.
  • the arrangement of the piezoelectric film (A1) can be appropriately adjusted according to the use of the piezoelectric element.
  • the first layer of the piezoelectric film (A1) containing the L-form helical chiral polymer (X) as the main component contains the L-form helical chiral polymer (X) as the main component via the electrode.
  • the uniaxial stretching direction (main stretching direction) of the first piezoelectric film (A1) intersects the uniaxial stretching direction (main stretching direction) of the second piezoelectric film (A1).
  • the first layer of the piezoelectric film (A1) containing the L-form helical chiral polymer (X) as the main component contains the D-form helical chiral polymer (X) as the main component via the electrode.
  • the uniaxial stretching direction (main stretching direction) of the first piezoelectric film (A1) is substantially the same as the uniaxial stretching direction (main stretching direction) of the second piezoelectric film (A1).
  • the displacement directions of the first piezoelectric film (A1) and the second piezoelectric film (A1) can be made uniform, and the piezoelectricity of the entire laminated piezoelectric element is increased, which is preferable.
  • the transparency of the electrode specifically means that the internal haze is 50% or less and the total light transmittance is 50% or more.
  • the piezoelectric element using the piezoelectric film (A1) in the present disclosure can be applied to the above-described various piezoelectric devices such as a speaker and a touch panel.
  • a piezoelectric element provided with a transparent electrode is suitable for application to a speaker, a touch panel, an actuator, and the like.
  • the piezoelectric element using the laminate according to the present disclosure can be applied to the above-described various piezoelectric devices such as a speaker and a touch panel.
  • a piezoelectric element provided with a transparent electrode is suitable for application to a speaker, a touch panel, an actuator, and the like.
  • the laminate according to the present disclosure has a polymer film having no piezoelectricity (hereinafter referred to as “polymer film (A2)”) as the polymer film (A), the laminate according to the present disclosure
  • the polymer film (A2) after peeling off the protective film (B) can be suitably used as an optical film or the like used for a display device or the like.
  • ⁇ Method for producing laminate> Although there is no limitation in particular in the manufacturing method of the laminated body which concerns on this indication, For example, by manufacturing a polymer film (A) by the above-mentioned method and bonding with the protective film (B) formed by the above-mentioned method. Can be manufactured.
  • the polymer film (A) and the protective film (B) may be produced by a known method or may be produced in advance.
  • helical chiral polymer (X) a is NatureWorks LLC Inc.
  • polylactic acid product name: Ingeo TM Biopolymer, brand: 4032D
  • additive Z mentioned later as a stabilizer (Y) was added with respect to 100 mass parts of polylactic acid, and it dry-blended and produced the raw material.
  • the prepared raw material was put into an extrusion molding machine hopper, extruded from a T-die while being heated to 210 ° C., and contacted with a cast roll at 50 ° C.
  • Pre-crystallization step The crystallinity of the pre-crystallized sheet was measured and found to be 6%.
  • the obtained pre-crystallized sheet was stretched at a stretching speed of 10 m / min with a roll-to-roll while being heated to 70 ° C., and uniaxially stretched in the MD direction up to 3.5 times (stretching step). Thereafter, the uniaxially stretched film was subjected to annealing for 15 seconds on a roll heated to 145 ° C. using a roll-to-roll, and a polymer piezoelectric film was produced as a polymer film (A) (annealing step). The thickness of the obtained polymer piezoelectric film was 47.2 ⁇ m.
  • Stabaxol P400 poly (1,3,5-triisopropylphenylene-2,4-carbodiimide) (weight average molecular weight: 20000)
  • Carbodilite LA-1 poly (4,4′-dicyclohexylmethanecarbodiimide) (weight average molecular weight: about 2000)
  • Haze (H2) and haze (H3) were each measured using the following apparatus under the following measurement conditions.
  • Measuring device Tokyo Denshoku Co., Ltd., HAZE METER TC-HIIIDPK Sample size: 30mm width x 30mm length
  • Measurement conditions Conforms to JIS-K7136 (2000) Measurement temperature: Room temperature (25 ° C)
  • Example 1 For the main surface of the polymer piezoelectric film produced by the above method, using a laminator, roll to roll, as protective film (B), base material layer (PET base material) / adhesive layer (acrylic adhesive) A protective film (thickness: 50 ⁇ m) having the layer structure is bonded to the polymer piezoelectric film so that the adhesive layer and the main surface of the polymer piezoelectric film face each other, and the base layer / adhesive layer / polymer piezoelectric film A laminate having a layer structure was produced. In addition, NSA33T manufactured by Sanei Kaken Co., Ltd. was used as the protective film.
  • an SPI 3800 manufactured by SII is used as the AFM control unit
  • a Triscope made by Hystron is used as the nanoindent module unit
  • a Berkovich type made of diamond (triangular pyramid shape: apex angle 142.3 °) is used as the indenter.
  • the maximum indentation depth hmax was measured by pushing the indenter into the protective film under the condition of a maximum load of 10 ⁇ N by the indentation control linear load addition method. The measurement was performed at nine locations at room temperature (25 ° C.), and among the measured values at the nine locations, the average value at seven locations excluding the maximum value and the minimum value was defined as the maximum indentation depth hmax of the protective film. The measurement was performed at room temperature (25 ° C.). The results are shown in Table 2.
  • T-peel strength After the laminated body produced in Example 1 was stored at room temperature for 1 month, a sample of 50 mm in the TD direction and 150 mm in the MD direction was cut out. The protective film and the polymer piezoelectric film are peeled off 30 mm in the MD direction and set in a tensile tester (manufactured by AND, TENSILON RTG-1250). The T-type peel strength between the polymer piezoelectric film and the protective film is JIS K6854-3. (1999). The measurement was performed 5 times at room temperature (25 ° C.), and the average value was defined as T-type peel strength. The results are shown in Table 2. In Table 2, “T-type peel strength against piezoelectric film” represents the T-type peel strength.
  • Example 2 Example 1 except that a protective film (JA13K manufactured by Sanei Kaken Co., Ltd., thickness 35 ⁇ m) having a layer structure of base material layer (polyolefin base material) / adhesive layer (acrylic adhesive) was used as the protective film. Was performed. The results are shown in Table 2.
  • a protective film JA13K manufactured by Sanei Kaken Co., Ltd., thickness 35 ⁇ m
  • base material layer polyolefin base material
  • adhesive layer acrylic adhesive
  • Example 3 Example 1 except that a protective film (KD23K manufactured by Sanei Kaken Co., Ltd., thickness 35 ⁇ m) having a layer structure of base material layer (polyolefin base material) / adhesive layer (acrylic adhesive) was used as the protective film. Was performed. The results are shown in Table 2.
  • a protective film KD23K manufactured by Sanei Kaken Co., Ltd., thickness 35 ⁇ m
  • base material layer polyolefin base material
  • adhesive layer acrylic adhesive
  • ⁇ Comparative Example 1> Implemented except that a protective film (PAC-3-70 manufactured by Sanei Kaken Co., Ltd., thickness 70 ⁇ m) having a layer structure of base material layer (LDPE base material) / adhesive layer (EVA adhesive) was used as the protective film. The same operation as in Example 1 was performed. The results are shown in Table 2.
  • ⁇ Comparative example 2> Executed except that a protective film (PAC-3-50THK, thickness 50 ⁇ m, manufactured by Sanei Kaken Co., Ltd.) having a layer structure of base material layer (LDPE base material) / adhesive layer (special polyolefin adhesive) was used as the protective film. The same operation as in Example 1 was performed. The results are shown in Table 2.
  • Example 3 ⁇ Comparative Example 3> Example 1 except that a protective film (SPV-3643F manufactured by Nitto Denko Corporation, thickness 45 ⁇ m) having a layer structure of a base material layer (polyethylene base material) / adhesive layer (synthetic rubber adhesive) was used as the protective film The same operation was performed. The results are shown in Table 2.
  • a protective film SPV-3643F manufactured by Nitto Denko Corporation, thickness 45 ⁇ m
  • base material layer polyethylene base material
  • adhesive layer synthetic rubber adhesive
  • Table 2- -PET indicates that it is polyethylene terephthalate.
  • LDPE indicates low density polyethylene.
  • EVA indicates an ethylene / vinyl acetate copolymer.
  • “100 ⁇ ” in Table 2 is a display indicating that the maximum indentation depth hmax of the protective film is assumed to exceed 100 nm, as will be described later.
  • Comparative Example 3 it is inferred that the maximum pushing depth hmax of the protective film exceeds 100 nm. Therefore, in the laminated body of a present Example, it turned out that the external appearance deterioration (Yuzu skin) of the polymer film after peeling a protective film is suppressed.
  • Example 1 in which the elastic modulus ratio is 0.1 or more, the planarity of the polymer film after long-term storage is improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

重量平均分子量が5万~100万である有機圧電材料を含み、マイクロ波透過型分子配向計で測定される基準厚さを50μmとしたときの規格化分子配向MORcが1.0~15.0であり、DSC法で得られる結晶化度が20%~80%であり、可視光線に対する内部ヘイズが50%以下である高分子フィルム(A)と、前記高分子フィルム(A)の一方の主面に接する剥離可能な保護フィルム(B)と、を有し、前記保護フィルム(B)の前記高分子フィルム(A)と接する面の側をナノインデンテーション法によって測定したときの最大押し込み深さhmaxが53nm~100nmである、積層体。

Description

積層体
 本発明は、積層体に関する。
 圧電性を有する有機材料が知られており、その例としては光学活性を有するヘリカルキラル高分子(例えばポリ乳酸系高分子)を用いた高分子材料がある。
 例えば、ポリ乳酸の成型物を延伸処理することで、常温で、10pC/N程度の圧電率を示す高分子圧電体が開示されている(例えば、特開平5-152638号公報参照)。
 また、ポリ乳酸結晶を高配向にするために、鍛造法と呼ばれる特殊な配向方法により18pC/N程度の高い圧電性を出すことも報告されている(例えば、特開2005-213376号公報参照)。
 ところで、高分子フィルムを各種デバイスの製造に利用する場合、高分子フィルムへの傷の発生、及び異物の付着などに起因して、デバイス(製品)の外観が損なわれることがある。
 一方、高分子フィルム上には、高分子フィルムの保護を目的として、保護フィルムを設ける場合がある。これにより、高分子フィルムをデバイスの製造に使用するまで、ロール状に巻き取った巻重体として保管することや移送することが可能となり、ハンドリング時における高分子フィルムへの傷の発生なども抑制することができる。
 実際に高分子フィルムを利用して各種デバイスを製造する際、工程の直前に保護フィルムを剥がして使用することがある。この場合、保護フィルムと高分子フィルムとの粘着力が強いと、保護フィルムの一部が高分子フィルムの表面に残ることがある。
 また、本発明者らは、検討の結果、保護フィルムを有機圧電材料を含む高分子フィルムの表面に残さずに剥離できる場合であっても、剥離後の前記高分子フィルムの表面がゆず肌となることがあることを見いだした。これは有機圧電材料が一般に変形しやすい性質を有すること、また有機圧電材料が非常に帯電しやすいために保護フィルムの貼合時に保護フィルムと前記高分子フィルムの間に微小な異物が吸着され、前記高分子フィルムの表面が異物によって変形すること、によるものと考えられる。このような場合、前記高分子フィルム自体の品質が低下するおそれがあり、更には前記高分子フィルムを使用して製造されるデバイスの外観及び品質も低下するおそれがある。
 本発明においては上記事情に鑑み、有機圧電材料を含む高分子フィルムと保護フィルムとを有する積層体であって、保護フィルムを剥離した後の高分子フィルムの外観悪化が抑制される積層体を提供することを目的とする。
 課題を解決するための具体的手段は以下の通りである。
  <1> 重量平均分子量が5万~100万である有機圧電材料を含み、マイクロ波透過型分子配向計で測定される基準厚さを50μmとしたときの規格化分子配向MORcが1.0~15.0であり、DSC法で得られる結晶化度が20%~80%であり、可視光線に対する内部ヘイズが50%以下である高分子フィルム(A)と、
 前記高分子フィルム(A)の一方の主面に接する剥離可能な保護フィルム(B)と、を有し、
 前記保護フィルム(B)の前記高分子フィルム(A)と接する面の側をナノインデンテーション法によって測定したときの最大押し込み深さhmaxが53nm~100nmである、積層体。
<2> 前記最大押し込み深さhmaxは、53nm~60nmである、<1>に記載の積層体。
<3> 前記保護フィルム(B)が、基材層と、前記基材層の前記高分子フィルム(A)に対向する側の主面上に設けられた粘着層と、を有し、
 前記最大押し込み深さhmaxは、前記保護フィルム(B)の前記粘着層の側を測定したときの最大押し込み深さである、<1>又は<2>に記載の積層体。
<4> 前記粘着層の酸価が10mgKOH/g以下である、<3>に記載の積層体。
<5> 前記基材層がポリオレフィン系樹脂又はポリエチレンテレフタレート系樹脂からなり、前記粘着層がアクリル系粘着剤を含む、<3>又は<4>に記載の積層体。
<6> 前記高分子フィルム(A)と前記保護フィルム(B)とのT型剥離強度が、0.07N/50mm~1N/50mmである、<1>~<5>のいずれか1つに記載の積層体。
<7> 前記高分子フィルム(A)は、可視光線に対する内部ヘイズが40%以下であり、かつ、25℃において応力-電荷法で測定した圧電定数d14が1pC/N以上である、<1>~<6>のいずれか1つに記載の積層体。
<8> 前記内部ヘイズが1%以下である、<7>に記載の積層体。
<9> 前記高分子フィルム(A)は、前記規格化分子配向MORcが3.5~15.0であり、前記規格化分子配向MORcと前記結晶化度との積が70~700である、<1>~<8>のいずれか1つに記載の積層体。
<10> 前記有機圧電材料は、光学活性を有するヘリカルキラル高分子(X)である、<1>~<9>のいずれか1つに記載の積層体。
<11> 前記ヘリカルキラル高分子(X)が、下記式(1)で表される繰り返し単位を含む主鎖を有するポリ乳酸系高分子である、<10>に記載の積層体。
Figure JPOXMLDOC01-appb-C000002

 
<12> 前記ヘリカルキラル高分子(X)は、光学純度が95.00%ee以上である、<10>又は<11>に記載の積層体。
<13> 前記高分子フィルム(A)中における前記ヘリカルキラル高分子(X)の含有量が、80質量%以上である、<10>~<12>のいずれか1つに記載の積層体。
<14> 前記高分子フィルム(A)が、カルボジイミド基、エポキシ基、及びイソシアネート基からなる群より選ばれる1種類以上の官能基を有する重量平均分子量が200~60000の安定化剤(Y1)、並びに、イミノエーテル基を有する安定化剤(Y2)からなる群より選ばれる1種以上の安定化剤(Y)を、前記ヘリカルキラル高分子(X)100質量部に対して0.01質量部~10質量部含む、<10>~<13>のいずれか1つに記載の積層体。
<15>
 前記保護フィルム(B)の弾性率と、高分子フィルム(A)の弾性率とが、以下の関係式(F):
 保護フィルム(B)の弾性率/高分子フィルム(A)の弾性率≧0.1(式F)
 を満たす、<1>~<14>のいずれか1つに記載の積層体。
 本発明によれば、ヘリカルキラル高分子を含む高分子フィルムと保護フィルムとを有する積層体であって、保護フィルムを剥離した後の高分子フィルムの外観悪化が抑制される積層体が提供される。
本開示に係る積層体の第1態様を示す断面図である。 本開示に係る積層体の第2態様を示す断面図である。
 以下、本発明の実施形態について説明する。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 なお、本明細書において、「高分子フィルム」は、高分子シートを包含する概念である。
 また、本明細書において、フィルムの主面とは、フィルムの厚み方向に対向する面(言い換えれば、長さ方向及び幅方向を含む面)のことを意味する。なお、「主面」を単に「面」とも称することがある。
 本明細書において、部材の「面」は、特に断りが無い限り、部材の「主面」を意味する。
 本明細書において、「MD方向」とはフィルムの流れる方向(Machine Direction)、すなわち、延伸方向であり、「TD方向」とは、前記MD方向と直交し、フィルムの主面と平行な方向(Transverse Direction)である。
≪積層体≫
 本開示に係る積層体は、重量平均分子量が5万~100万である光学活性を有する有機圧電材料を含み、マイクロ波透過型分子配向計で測定される基準厚さを50μmとしたときの規格化分子配向MORcが1.0~15.0であり、DSC法で得られる結晶化度が20%~80%であり、可視光線に対する内部ヘイズが50%以下である高分子フィルム(A)と、
 高分子フィルム(A)の一方の主面に接する剥離可能な保護フィルム(B)と、を有し、
 保護フィルム(B)の前記高分子フィルム(A)と接する面の側をナノインデンテーション法によって測定したときの最大押し込み深さhmaxが53nm~100nmである。
 なお、本開示に係る積層体は、さらに高分子フィルム(A)の他方の主面に接する剥離可能な他の保護フィルムを有していてもよい。
 本発明者等の検討により、有機圧電材料を含む高分子フィルムと、剥離可能な保護フィルムとを有する積層体において、保護フィルムを積層体から剥離すると、保護フィルムの一部が高分子フィルムの表面に残りやすく、また、保護フィルムが高分子フィルムの表面に残らない場合であっても、当該高分子フィルムの表面がゆず肌(Orange Peel Texture)になりやすいことが判明した。
 ここで、「ゆず肌」とは、ゆずの皮のように、表面にしわ、又は凹凸(段差)が生じていることを意味する。ゆず肌の各凹部の幅は数mm程度であり、深さは数μm~数十μm程度である。
 そこで本発明者等は、上記有機圧電材料を含み、かつ上記特性を持つ高分子フィルム(A)と、保護フィルム(B)とを組み合わせた層構成を有する積層体を採用した上で、さらに保護フィルム(B)の高分子フィルム(A)と接する面の側をナノインデンテーション法によって測定したときの最大押し込み深さhmaxを上記範囲に調整した。これにより、保護フィルム(B)を剥離した後の高分子フィルム(A)の外観悪化を抑制することができることを見出し、本発明を完成させた。
 本開示において、上記最大押し込み深さhmaxが53nm以上であることにより、保護フィルム(B)を剥離した後に、保護フィルム(B)の一部が高分子フィルム(A)の表面に残ること、及び、高分子フィルム(A)の表面がゆず肌となることが抑制される。
 また、上記最大押し込み深さhmaxが100nm以下であることにより、保護フィルム(B)を積層体から剥離しやすくなる。即ち、保護フィルム(B)の剥離性が良好となる。
 従って、上記最大押し込み深さhmaxを上記範囲とすることにより、保護フィルム(B)を剥離した後の高分子フィルム(A)の外観悪化が抑制される。
 以下、本開示に係る積層体の好ましい態様について説明する。
 本開示においては、前記有機圧電材料は、ヘリカルキラル高分子(以下、ヘリカルキラル高分子(X)と呼ぶ場合がある)であってもよいし、ヘリカルキラル高分子以外の有機圧電材料であってもよい。
 本開示に係る積層体において、前記最大押し込み深さhmaxは53nm~60nmであることが好ましい。
 上述の通り、前記最大押し込み深さhmaxが53nm以上であることにより、保護フィルム(B)を剥離した後に、高分子フィルム(A)の表面がゆず肌となることが抑制される。
 また、前記最大押し込み深さhmaxが60nm以下であることにより、保護フィルム(B)の一部が高分子フィルム(A)の表面に残ることを抑制でき、また保護フィルム(B)の剥離性がより良好となる。
 従って、上記最大押し込み深さhmaxを上記範囲とすることにより、保護フィルム(B)を剥離した後の高分子フィルム(A)の外観悪化がより抑制される。
 本開示に係る積層体において、前記保護フィルム(B)は、基材層と、前記基材層の前記高分子フィルム(A)に対向する側の主面上に設けられた粘着層と、を有し、
 前記最大押し込み深さhmaxは、前記保護フィルム(B)の前記粘着層の側を測定したときの最大押し込み深さであることが好ましい。
 これにより、保護フィルム(B)と高分子フィルム(A)とが粘着層を介して粘着されるため、両フィルム間の粘着力が高められる。
 さらに、保護フィルム(B)の最大押し込み深さhmax、即ち、粘着層の最大押し込み深さhmaxが53nm以上であることにより、保護フィルム(B)を剥離した後に、粘着層の一部が高分子フィルム(A)の表面に残ること、及び、高分子フィルム(A)の表面がゆず肌となることが抑制される。
 また、上記最大押し込み深さhmaxが100nm以下であることにより、保護フィルム(B)を積層体から剥離しやすくなる。即ち、保護フィルム(B)の剥離性が良好となる。
 本開示に係る積層体において、前記粘着層の酸価は10mgKOH/g以下であることが好ましい。
 これにより、高分子フィルム(A)に含まれる有機圧電材料、例えばヘリカルキラル高分子(X)、の分子量の低下が抑制されるため、高分子フィルム(A)の安定性が向上する。
 本開示に係る積層体において、前記基材層はポリオレフィン系樹脂又はポリエチレンテレフタレート系樹脂からなり、前記粘着層はアクリル系粘着剤を含むことが好ましい。
 これにより、基材層と粘着層との密着力が高められるため、保護フィルム(B)を積層体から剥離しやすくなる。
 本開示に係る積層体において、前記高分子フィルム(A)と前記保護フィルム(B)とのT型剥離強度が、0.07N/50mm~1N/50mmであることが好ましい。
 T型剥離強度が、0.07N/50mm以上であることにより、高分子フィルム(A)と保護フィルム(B)との粘着力が確保される。
 T型剥離強度が、1N/50mm以下であることにより、保護フィルム(B)の剥離性が確保される。
 本開示に係る積層体において、前記高分子フィルム(A)は、可視光線に対する内部ヘイズが40%以下であり、かつ、25℃において応力-電荷法で測定した圧電定数d14が1pC/N以上であることが好ましい。
 上記高分子フィルム(A)は、透明性を有する圧電フィルムである。これにより、高分子フィルム(A)を各種圧電デバイスに適用することができる。
 本開示に係る積層体において、高分子フィルム(A)の透明性を向上させる観点から、前記内部ヘイズは1%以下であるであることが好ましい。
 本開示に係る積層体において、前記高分子フィルム(A)は、前記規格化分子配向MORcが3.5~15.0であり、前記規格化分子配向MORcと前記結晶化度との積が70~700であることが好ましい。
 上記高分子フィルム(A)は、圧電フィルムである。
 従って、前記規格化分子配向MORcが上記範囲であり、かつ前記積が上記範囲であることにより、高分子フィルム(A)の圧電性が向上する。
 本開示に係る積層体において、前記ヘリカルキラル高分子(X)は、高分子フィルム(A)を圧電フィルムとして用いたときには圧電性をより向上させる観点から、下記式(1)で表される繰り返し単位を含む主鎖を有するポリ乳酸系高分子であることが好ましい。
 本開示に係る積層体において、前記ヘリカルキラル高分子(X)は、高分子フィルム(A)を圧電フィルムとして用いたときには圧電性をより向上させる観点から、光学純度が95.00%ee以上であることが好ましい。
 本開示に係る積層体において、前記高分子フィルム(A)中における前記有機圧電材料の含有量は、80質量%以上であることが好ましい。例えば、前記有機圧電材料がヘリカルキラル高分子(X)である場合、前記高分子フィルム(A)中における前記ヘリカルキラル高分子(X)の含有量は、80質量%以上であることが好ましい。
 本開示に係る積層体において、前記高分子フィルム(A)は、高分子フィルム(A)の耐湿熱性を向上させる観点から、カルボジイミド基、エポキシ基、及びイソシアネート基からなる群より選ばれる1種類以上の官能基を有する重量平均分子量が200~60000の安定化剤(Y1)、並びに、イミノエーテル基を有する安定化剤(Y2)からなる群より選ばれる1種以上の安定化剤(Y)を、前記有機圧電材料100質量部に対して0.01質量部~10質量部含むことが好ましい。例えば、前記有機圧電材料がヘリカルキラル高分子(X)である場合、カルボジイミド基、エポキシ基、及びイソシアネート基からなる群より選ばれる1種類以上の官能基を有する重量平均分子量が200~60000の安定化剤(Y1)、並びに、イミノエーテル基を有する安定化剤(Y2)からなる群より選ばれる1種以上の安定化剤(Y)を、前記ヘリカルキラル高分子(X)100質量部に対して0.01質量部~10質量部含むことが好ましい。
 以下、本開示に係る積層体について、更に詳細に説明する。
<高分子フィルム(A)>
〔有機圧電材料〕
 前記有機圧電材料は、重量平均分子量が5万~100万の有機圧電材料を含有する。
本開示における有機圧電材料は、低分子材料、高分子材料を問わず採用でき、例えば、ポリフッ化ビニリデン若しくはポリフッ化ビニリデン系共重合体、ポリシアン化ビニリデン若しくはシアン化ビニリデン系共重合体、ナイロン9若しくはナイロン11などの奇数ナイロン、芳香族ナイロン、脂環族ナイロン、ポリウレア、ポリ乳酸などのヘリカルキラル高分子や、ポリヒドロキシブチレートなどのポリヒドロキシカルボン酸、セルロース系誘導体、ポリペプチドなどが挙げられる。
 良好な圧電特性、加工性、入手容易性等の観点から、高分子の有機圧電材料、特に光学活性を有するヘリカルキラル高分子(X)であることが好ましい。
 -ヘリカルキラル高分子(X)-
 本開示における高分子フィルム(A)が、ヘリカルキラル高分子を含有する場合、ヘリカルキラル高分子は、重量平均分子量が5万~100万であり光学活性を有するヘリカルキラル高分子である(本明細書においては、ヘリカルキラル高分子(X)ともいう)。
 ここで、「光学活性を有するヘリカルキラル高分子」とは、分子構造が螺旋構造であり分子光学活性を有する高分子を指す。
 本開示におけるヘリカルキラル高分子(X)は、上記の「光学活性を有するヘリカルキラル高分子」のうち、重量平均分子量が5万~100万である高分子である。
 ヘリカルキラル高分子(X)としては、例えば、ポリ乳酸系高分子、ポリ(β―ヒドロキシ酪酸)等を挙げることができる。
 ヘリカルキラル高分子(X)は、光学純度が95.00%ee以上であることが好ましく、96.00%ee以上であることがより好ましく、99.00%ee以上であることがさらに好ましく、99.99%ee以上であることがさらにより好ましい。望ましくは100.00%eeである。
 ヘリカルキラル高分子(X)の光学純度を上記範囲とすることで、高分子フィルム(A)中での高分子結晶の結晶化度及びパッキング性が高くなる。その結果、例えば高分子フィルム(A)を圧電フィルムとして用いたときには、圧電性(圧電定数)をより向上させることができる。
 ここで、ヘリカルキラル高分子(X)の光学純度は、下記式にて算出した値である。
 光学純度(%ee)=100×|L体量-D体量|/(L体量+D体量)
 すなわち、ヘリカルキラル高分子(X)の光学純度は、
『「ヘリカルキラル高分子(X)のL体の量〔質量%〕とヘリカルキラル高分子(X)のD体の量〔質量%〕との量差(絶対値)」を「ヘリカルキラル高分子(X)のL体の量〔質量%〕とヘリカルキラル高分子(X)のD体の量〔質量%〕との合計量」で割った(除した)数値』に、『100』をかけた(乗じた)値である。
 なお、ヘリカルキラル高分子(X)のL体の量〔質量%〕とヘリカルキラル高分子(X)のD体の量〔質量%〕は、高速液体クロマトグラフィー(HPLC)を用いた方法により得られる値を用いる。測定方法は以下のとおりである。
 50mLの三角フラスコに1.0gのサンプル(高分子フィルム(A))を秤り込み、IPA(イソプロピルアルコール)2.5mLと、5.0mol/L水酸化ナトリウム溶液5mLとを加える。次に、サンプル溶液が入った前記三角フラスコを、温度40℃の水浴に入れ、ヘリカルキラル高分子(X)が完全に加水分解するまで、約5時間攪拌する。
 前記サンプル溶液を室温まで冷却後、1.0mol/L塩酸溶液を20mL加えて中和し、三角フラスコを密栓してよくかき混ぜる。サンプル溶液の1.0mLを25mLのメスフラスコに取り分け、移動相で25mLとしてHPLC試料溶液1を調製する。HPLC試料溶液1を、HPLC装置に5μL注入し、下記HPLC条件で、ヘリカルキラル高分子(X)のD/L体ピーク面積を求め、L体の量とD体の量を算出する。
-HPLC測定条件-
・カラム
 光学分割カラム、(株)住化分析センター製 SUMICHIRAL OA5000・測定装置
 日本分光社製 液体クロマトグラフィ
・カラム温度
 25℃
・移動相
 1.0mM-硫酸銅(II)緩衝液/IPA=98/2(V/V)
 硫酸銅(II)/IPA/水=156.4mg/20mL/980mL
・移動相流量
 1.0ml/分
・検出器
 紫外線検出器(UV254nm)
 上記ヘリカルキラル高分子(X)としては、高分子フィルム(A)を圧電フィルムとして用いたときには圧電性をより向上させる観点から、下記式(1)で表される繰り返し単位を含む主鎖を有する化合物が好ましい。
Figure JPOXMLDOC01-appb-C000003

 
 
 前記式(1)で表される繰り返し単位を主鎖とする化合物の中でも、ポリ乳酸系高分子が好ましい。
 ここで、ポリ乳酸系高分子とは、「ポリ乳酸(L-乳酸及びD-乳酸から選ばれるモノマー由来の繰り返し単位のみからなる高分子)」、「L-乳酸またはD-乳酸と、該L-乳酸またはD-乳酸と共重合可能な化合物とのコポリマー」、又は、両者の混合物をいう。
 ポリ乳酸系高分子の中でも、ポリ乳酸が好ましく、L-乳酸のホモポリマー(PLLA)またはD-乳酸のホモポリマー(PDLA)が最も好ましい。
 ポリ乳酸は、乳酸がエステル結合によって重合し、長く繋がった高分子である。
 ポリ乳酸は、ラクチドを経由するラクチド法;溶媒中で乳酸を減圧下加熱し、水を取り除きながら重合させる直接重合法;などによって製造できることが知られている。
 ポリ乳酸としては、L-乳酸のホモポリマー、D-乳酸のホモポリマー、L-乳酸およびD-乳酸の少なくとも一方の重合体を含むブロックコポリマー、及び、L-乳酸およびD-乳酸の少なくとも一方の重合体を含むグラフトコポリマーが挙げられる。
 上記「L-乳酸またはD-乳酸と共重合可能な化合物」としては、グリコール酸、ジメチルグリコール酸、3-ヒドロキシ酪酸、4-ヒドロキシ酪酸、2-ヒドロキシプロパン酸、3-ヒドロキシプロパン酸、2-ヒドロキシ吉草酸、3-ヒドロキシ吉草酸、4-ヒドロキシ吉草酸、5-ヒドロキシ吉草酸、2-ヒドロキシカプロン酸、3-ヒドロキシカプロン酸、4-ヒドロキシカプロン酸、5-ヒドロキシカプロン酸、6-ヒドロキシカプロン酸、6-ヒドロキシメチルカプロン酸、マンデル酸等のヒドロキシカルボン酸;グリコリド、β-メチル-δ-バレロラクトン、γ-バレロラクトン、ε-カプロラクトン等の環状エステル;シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、テレフタル酸等の多価カルボン酸及びこれらの無水物;エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、テトラメチレングリコール、1,4-ヘキサンジメタノール等の多価アルコール;セルロース等の多糖類;α-アミノ酸等のアミノカルボン酸;等を挙げることができる。
 上記「L-乳酸またはD-乳酸と、該L-乳酸またはD-乳酸と共重合可能な化合物とのコポリマー」としては、らせん結晶を生成可能なポリ乳酸シーケンスを有する、ブロックコポリマーまたはグラフトコポリマーが挙げられる。
 また、ヘリカルキラル高分子(X)中におけるコポリマー成分に由来する構造の濃度は20mol%以下であることが好ましい。
 例えば、ヘリカルキラル高分子(X)がポリ乳酸系高分子である場合、ポリ乳酸系高分子中における、乳酸に由来する構造と、乳酸と共重合可能な化合物(コポリマー成分)に由来する構造と、のモル数の合計に対して、コポリマー成分に由来する構造の濃度が20mol%以下であることが好ましい。
 ポリ乳酸系高分子は、例えば、特開昭59-096123号公報、及び特開平7-033861号公報に記載されている乳酸を直接脱水縮合して得る方法;米国特許2,668,182号及び4,057,357号等に記載されている乳酸の環状二量体であるラクチドを用いて開環重合させる方法;などにより製造することができる。
 さらに、上記各製造方法により得られたポリ乳酸系高分子は、光学純度を95.00%ee以上とするために、例えば、ポリ乳酸をラクチド法で製造する場合、晶析操作により光学純度を95.00%ee以上の光学純度に向上させたラクチドを、重合することが好ましい。
-重量平均分子量-
 有機圧電材料の重量平均分子量(Mw)は、前述のとおり、5万~100万である。
 有機圧電材料のMwが5万以上であることにより、高分子フィルム(A)の機械的強度が向上する。上記Mwは、10万以上であることが好ましく、20万以上であることがさらに好ましい。
 一方、有機圧電材料のMwが100万以下であることにより、成形(例えば押出成形)によって高分子フィルム(A)を得る際の成形性が向上する。上記Mwは、80万以下であることが好ましく、30万以下であることがさらに好ましい。
 また、有機圧電材料の分子量分布(Mw/Mn)は、高分子フィルム(A)の強度の観点から、1.1~5であることが好ましく、1.2~4であることがより好ましい。さらに1.4~3であることが好ましい。
 なお、有機圧電材料の重量平均分子量Mw及び分子量分布(Mw/Mn)は、ゲル浸透クロマトグラフ(GPC)を用いて測定された値を指す。ここでMnは、有機圧電材料の数平均分子量である。
 以下、GPCによる有機圧電材料のMw及びMw/Mnの測定方法の一例を示す。
-GPC測定装置-
 Waters社製GPC-100
-カラム-
 昭和電工社製、Shodex LF-804
-サンプルの調製-
 高分子フィルム(A)を40℃で溶媒(例えば、クロロホルム)へ溶解させ、濃度1mg/mlのサンプル溶液を準備する。
-測定条件-
 サンプル溶液0.1mlを溶媒〔クロロホルム〕、温度40℃、1ml/分の流速でカラムに導入する。
 カラムで分離されたサンプル溶液中のサンプル濃度を示差屈折計で測定する。
 ポリスチレン標準試料にてユニバーサル検量線を作成し、有機圧電材料の重量平均分子量(Mw)および分子量分布(Mw/Mn)を算出する。
 有機圧電材料の例であるポリ乳酸系高分子は、ヘリカルキラル高分子であり、市販のポリ乳酸を用いることができる。
 市販品としては、例えば、PURAC社製のPURASORB(PD、PL)、三井化学社製のLACEA(H-100、H-400)、NatureWorks LLC社製のIngeoTM biopolymer、等が挙げられる。
 有機圧電材料としてポリ乳酸系高分子を用いるときに、ポリ乳酸系高分子の重量平均分子量(Mw)を5万以上とするためには、ラクチド法、または直接重合法によりポリ乳酸系高分子を製造することが好ましい。
 本開示における高分子フィルム(A)は、前述した有機圧電材料を、1種のみ含有していてもよいし、2種以上含有していてもよい。
 高分子フィルム(A)中における有機圧電材料の含有量(2種以上である場合には総含有量)は、高分子フィルム(A)の全量に対し、80質量%以上が好ましい。例えば、前記有機圧電材料がヘリカルキラル高分子(X)である場合、高分子フィルム(A)中におけるヘリカルキラル高分子(X)の含有量(2種以上である場合には総含有量)は、高分子フィルム(A)の全量に対し、80質量%以上が好ましい。
〔安定化剤(Y)〕
 高分子フィルム(A)は、更に、一分子中に、カルボジイミド基、エポキシ基、及びイソシアネート基からなる群より選ばれる1種類以上の官能基を有する重量平均分子量が200~60000の安定化剤(Y1)、並びに、イミノエーテル基を有する安定化剤(Y2)からなる群より選ばれる1種以上の安定化剤(Y)を含有することが好ましい。これにより、高分子フィルム(A)の耐湿熱性を向上させることができる。
 高分子フィルム(A)が安定化剤(Y)を含む場合、即ち、高分子フィルム(A)が安定化剤(Y1)及び安定化剤(Y2)からなる群より選ばれる1種以上の安定化剤(Y)を含む場合、安定化剤(Y)の含有量は、有機圧電材料100質量部に対し、0.01質量部~10質量部であることが好ましく、0.01質量部~5質量部であることがより好ましく、0.1質量部~3質量部であることがさらに好ましく、0.5質量部~2質量部であることが特に好ましい。例えば有機圧電材料がヘリカルキラル高分子(X)である場合、安定化剤(Y)の含有量は、ヘリカルキラル高分子(X)100質量部に対し、0.01質量部~10質量部であることが好ましく、0.01質量部~5質量部であることがより好ましく、0.1質量部~3質量部であることがさらに好ましく、0.5質量部~2質量部であることが特に好ましい。
 上記含有量が0.01質量部以上であると、高分子フィルム(A)の耐湿熱性がより向上する。
 また、上記含有量が10質量部以下であると、透明性の低下がより抑制される。
 なお、上記含有量は、安定化剤(Y)を2種以上併用する場合、それらの総量を示す。
(安定化剤(Y1))
 安定化剤(Y1)としては、国際公開第2013/054918号パンフレットの段落0039~0055に記載された「安定化剤(B)」を用いることができる。
 安定化剤(Y1)として用い得る、一分子中にカルボジイミド基を含む化合物(カルボジイミド化合物)としては、モノカルボジイミド化合物、ポリカルボジイミド化合物、環状カルボジイミド化合物が挙げられる。
 モノカルボジイミド化合物としては、ジシクロヘキシルカルボジイミド、ビス-2,6-ジイソプロピルフェニルカルボジイミド、等が好適である。
 また、ポリカルボジイミド化合物としては、種々の方法で製造したものを使用することができる。従来のポリカルボジイミドの製造方法(例えば、米国特許第2941956号明細書、特公昭47-33279号公報、J.0rg.Chem.28,2069-2075(1963)、Chemical Review 1981,Vol.81 No.4、p619-621)により、製造されたものを用いることができる。具体的には特許4084953号公報に記載のカルボジイミド化合物を用いることもできる。
 ポリカルボジイミド化合物としては、ポリ(4,4’-ジシクロヘキシルメタンカルボジイミド)、ポリ(N,N’-ジ-2,6-ジイソプロピルフェニルカルボジイミド)、ポリ(1,3,5-トリイソプロピルフェニレン-2,4-カルボジイミド、等が挙げられる。
 環状カルボジイミド化合物は、特開2011-256337号公報に記載の方法などに基づいて合成することができる。
 カルボジイミド化合物としては、市販品を用いてもよく、例えば、東京化成製、B2756(商品名)、日清紡ケミカル社製、カルボジライトLA-1、ラインケミー社製、Stabaxol P、Stabaxol P400、Stabaxol I(いずれも商品名)等が挙げられる。
 安定化剤(Y1)として用い得る、一分子中にイソシアネート基を含む化合物(イソシアネート化合物)としては、イソシアン酸3-(トリエトキシシリル)プロピル、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、水素添加キシリレンジイソシアネート、イソホロンジイソシアネート、等が挙げられる。
 安定化剤(Y1)として用い得る、一分子中にエポキシ基を含む化合物(エポキシ化合物)としては、フェニルグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ビスフェノールA-ジグリシジルエーテル、水添ビスフェノールA-ジグリシジルエーテル、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、エポキシ化ポリブタジエン等が挙げられる。
 安定化剤(Y1)の重量平均分子量としては、上述のとおり200~60000が好ましく、200~30000がより好ましく、300~18000がさらに好ましい。
 分子量が上記範囲内ならば、安定化剤(Y1)がより移動しやすくなり、高分子フィルム(A)の耐湿熱性が向上する。
 安定化剤(Y1)の重量平均分子量は、200~900であることが特に好ましい。なお、重量平均分子量200~900は、数平均分子量200~900とほぼ一致する。また、重量平均分子量200~900の場合、分子量分布が1.0である場合があり、この場合には、「重量平均分子量200~900」を、単に「分子量200~900」と言い換えることもできる。
 高分子フィルム(A)が安定化剤(Y1)を含有する場合、上記高分子フィルム(A)は、安定化剤(Y1)を1種のみ含有してもよいし、2種以上含有してもよい。
 安定化剤(Y1)の好ましい態様としては、カルボジイミド基、エポキシ基、及びイソシアネート基からなる群より選ばれる1種類以上の官能基を有し、且つ、数平均分子量が200~900の安定化剤(Y1a)と、カルボジイミド基、エポキシ基、及びイソシアネート基からなる群より選ばれる1種類以上の官能基を1分子内に2以上有し、且つ、重量平均分子量が1000~60000の安定化剤(Y1b)とを併用するという態様が挙げられる。なお、数平均分子量が200~900の安定化剤(Y1a)の重量平均分子量は、大凡200~900であり、安定化剤(Y1a)の数平均分子量と重量平均分子量とはほぼ同じ値となる。
 安定化剤として安定化剤(Y1a)と安定化剤(Y1b)とを併用する場合、安定化剤(Y1a)を多く含むことが透明性向上の観点から好ましい。
 具体的には、安定化剤(Y1a)100質量部に対して、安定化剤(Y1b)が10質量部~150質量部の範囲であることが、透明性と耐湿熱性の両立という観点から好ましく、50質量部~100質量部の範囲であることがより好ましい。
 以下、安定化剤(Y1)の具体例(安定化剤Y-1~Y-3)を示す。
Figure JPOXMLDOC01-appb-C000004

 
 
 以下、上記安定化剤Y-1~Y-3について、化合物名、市販品等を示す。
・安定化剤Y-1 … 化合物名は、ビス-2,6-ジイソプロピルフェニルカルボジイミドである。重量平均分子量(この例では、単なる「分子量」に等しい)は、363である。市販品としては、ラインケミー社製「Stabaxol I」、東京化成社製「B2756」が挙げられる。
・安定化剤Y-2 … 化合物名は、ポリ(4,4’-ジシクロヘキシルメタンカルボジイミド)である。市販品としては、重量平均分子量約2000のものとして、日清紡ケミカル社製「カルボジライトLA-1」が挙げられる。
・安定化剤Y-3 … 化合物名は、ポリ(1,3,5-トリイソプロピルフェニレン-2,4-カルボジイミド)である。市販品としては、重量平均分子量約3000のものとして、ラインケミー社製「Stabaxol P」が挙げられる。また、重量平均分子量20000のものとして、ラインケミー社製「Stabaxol P400」が挙げられる。
(安定化剤(Y2))
 イミノエーテル基を有する安定化剤(Y2)としては、一分子中にイミノエーテル基を含む化合物(イミノエーテル化合物)を用い得る。イミノエーテル化合物としては、下記一般式(1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000005

 
 
 一般式(1)中、Rは置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいアルコキシ基を表し、Rは下記一般式(2)で表されるアルキル基、又は下記一般式(3)で表されるアリール基を表し、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。また、R、R、R11、R12及びR13は互いに結合して環を形成してもよい。但し、Rが下記一般式(2)で表される場合、R11~R13の少なくとも1つとR31~R33の少なくとも1つが形成する結合は連結原子数が2以上の結合である。
Figure JPOXMLDOC01-appb-C000006

 
Figure JPOXMLDOC01-appb-C000007

 
 
 一般式(2)中、R31、R32及びR33はそれぞれ独立に水素原子又は置換基を表す。R31、R32及びR33は互いに連結して環を形成してもよい。一般式(3)中、R41は置換基を表し、R41が複数存在する場合は同じであっても、異なっていてもよい。また、nは0~5の整数を表す。なお、一般式(2)及び(3)において*は、窒素原子と結合する位置を表す。
 一般式(1)において、Rで表されるアルキル基は、炭素数1~20のアルキル基であることが好ましく、炭素数1~12のアルキル基であることがより好ましい。Rが表すアルキル基は直鎖であっても分枝鎖であってもよい。また、Rで表されるアルキル基は、シクロアルキル基であってもよい。Rが表すアルキル基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基、sec-ブチル基、iso-ブチル基、n-ペンチル基、sec-ペンチル基、iso-ペンチル基、n-ヘキシル基、sec-ヘキシル基、iso-ヘキシル基、シクロヘキシル基、などを挙げることができる。中でもメチル基、エチル基、n-プロピル基、iso-プロピル基、iso-ブチル基、シクロヘキシル基とすることがより好ましい。
 Rが表すアルキル基はさらに置換基を有していてもよい。置換基としては、上記のアルキル基、アリール基、アルコキシ基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。なお、Rが表すアルキル基の炭素数は、置換基を含まない炭素数を示す。
 Rで表されるアリール基は、炭素数6~20のアリール基であることが好ましく、炭素数6~12のアリール基であることがより好ましい。Rが表すアリール基としては、フェニル基、ナフチル基などを挙げることができ、その中でもフェニル基が特に好ましい。Rが表すアリール基はさらに置換基を有していてもよい。なお、置換基としては、上記の置換基を同様に例示することができる。また、Rが表すアリール基の炭素数は、置換基を含まない炭素数を示す。
 Rで表されるアルコキシ基は、炭素数1~20のアルコキシ基であることが好ましく、炭素数1~12のアルコキシ基であることがより好ましく、炭素数2~6のアルコキシ基であることが特に好ましい。Rが表すアルコキシ基は直鎖であっても分枝であっても環状であってもよい。Rが表すアルコキシ基の好ましい例としては、Rが表すアルキル基の末端に-O-が連結した基を挙げることができる。Rが表すアルコキシ基はさらに置換基を有していてもよい。なお、置換基としては、上記の置換基を同様に例示することができる。また、Rが表すアルコキシ基の炭素数は、置換基を含まない炭素数を示す。
 Rは上記一般式(2)で表されるアルキル基、又は上記一般式(3)で表されるアリール基を表す。一般式(2)中、R31、R32及びR33はそれぞれ独立に水素原子又は置換基を表す。R31、R32及びR33が置換基である場合、互いに連結して環を形成してもよい。置換基としては、上記のアルキル基、アリール基、アルコキシ基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。R31、R32及びR33は全てが水素原子であるか又は同一の置換基であってもよく、異なる置換基であってもよい。また、一般式(2)で表されるアルキル基は、直鎖であっても分枝であってもよい。また、一般式(2)で表されるアルキル基は、シクロアルキル基であってもよい。
 一般式(3)中、R41は置換基を表し、nは0~5の整数を表す。nが2以上の場合、R41は同じであっても、異なっていてもよい。なお、置換基としては、上記の置換基を同様に例示することができる。なお、nは0~3であることがより好ましく、0~2であることがさらに好ましい。
 R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。アルキル基及びアリール基としては、Rが取り得るアルキル基及びアリール基を同様に例示することができる。
 R、R、R11、R12及びR13は互いに結合して環を形成しないことが好ましいが、R、R、R11、R12及びR13は互いに結合して環を形成してもよい。例えば、Rが上記一般式(3)で表される場合、R41とR11~R13の少なくとも一つとが結合して環を形成してもよく、ベンゼン環と、R11~R13のいずれかを含む環が縮合環を形成してもよい。Rが上記一般式(3)で表される場合、R41とR11~R13の少なくとも一つとが結合して環を形成しないことが好ましい。
 但し、Rが上記一般式(2)で表される場合、R11~R13の少なくとも1つとR31~R33の少なくとも1つが形成する結合は連結原子数が2以上の結合である。Rが上記一般式(2)で表される場合、R11~R13の1つとR31~R33の1つが形成する結合は連結原子数が2以上の結合であり、かつ、二重結合であることが好ましい。Rが上記一般式(2)で表される場合、R11~R13の少なくとも1つとR31~R33の少なくとも1つが結合して環を形成しないことが好ましい。
 一般式(1)は、繰り返し単位を含んでいてもよい。この場合、R、R又はR11~R13の少なくとも1つが繰り返し単位であり、この繰り返し単位には、イミノエーテルル基が含まれることが好ましい。
 安定化剤(Y2)のイミノエーテル基あたりの分子量は1000以下であることが好ましく、750以下であることがより好ましく、500以下であることがさらに好ましい。
 安定化剤(Y2)の分子量、即ち、イミノエーテル化合物全体の分子量は、280以上であることが好ましく、300以上であることがより好ましい。
 高分子フィルム(A)が安定化剤(Y2)を含有する場合、上記高分子フィルム(A)は、安定化剤(Y2)を1種のみ含有してもよいし、2種以上含有してもよい。
 なお、一般式(1)で表される化合物については、国際公開第2015/194661号パンフレットの段落0015~0063の記載を参照できる。
〔その他の成分〕
 高分子フィルム(A)は、必要に応じ、その他の成分を含有してもよい。
 その他の成分としては、ポリエチレン樹脂、ポリスチレン樹脂等の公知の樹脂;シリカ、ヒドロキシアパタイト、モンモリロナイト等の公知の無機フィラー;フタロシアニン等の公知の結晶核剤;安定化剤(Y)以外の安定化剤;等が挙げられる。
 無機フィラー及び結晶核剤としては、国際公開第2013/054918号パンフレットの段落0057~0058に記載された成分を挙げることもできる。
<高分子フィルム(A)の物性>
〔規格化分子配向MORc〕
 本開示に係る高分子フィルム(A)は、規格化分子配向MORcが1.0~15.0であり、2.0~15.0であることが好ましく、3.5~15.0であることがより好ましく、3.5~10.0であることが更に好ましく、4.0~8.0であることが更に好ましい。
 規格化分子配向MORcは、有機圧電材料の配向の度合いを示す指標である「分子配向度MOR」に基づいて定められる値である。
 規格化分子配向MORcが1.0~15.0の範囲にあれば、フィルム(高分子フィルム(A))の強度を高く維持し、かつ、特定方向(例えば、主たる延伸方向とフィルムの面内で直交する方向)のフィルムの強度の低下が抑制される。
 また、MORcが2.0~15.0の範囲にあれば、延伸方向に配列する有機圧電材料の分子鎖が多くなる。その結果、高分子フィルム(A)を圧電フィルムとして用いたときには、配向結晶の生成する率が高くなり、高い圧電性を発現することが可能となる。
 ここで、分子配向度MOR(Molecular Orientation Ratio)は、以下のようなマイクロ波測定法により測定される。すなわち、高分子フィルム(A)を、周知のマイクロ波透過型分子配向計(マイクロ波分子配向度測定装置ともいう)のマイクロ波共振導波管中に、マイクロ波の進行方向に高分子フィルム(A)の面(フィルム面)が垂直になるように配置する。そして、振動方向が一方向に偏ったマイクロ波を試料に連続的に照射した状態で、高分子フィルム(A)をマイクロ波の進行方向と垂直な面内で0~360°回転させて、試料を透過したマイクロ波強度を測定することにより分子配向度MORを求める。
 規格化分子配向MORcは、基準厚さtcを50μmとしたときの分子配向度MORであって、下記式により求めることができる。
 MORc=(tc/t)×(MOR-1)+1
(tc:補正したい基準厚さ、t:高分子フィルム(A)の厚さ)
 規格化分子配向MORcは、公知の分子配向計、例えば王子計測機器株式会社製マイクロ波方式分子配向計MOA-2012AやMOA-6000等により、4GHzもしくは12GHz近傍の共振周波数で測定することができる。
 規格化分子配向MORcは、例えば、高分子フィルム(A)が延伸フィルムである場合には、延伸前の加熱処理条件(加熱温度及び加熱時間)、延伸条件(延伸温度及び延伸速度)等によって制御されうる。
 なお、規格化分子配向MORcは、位相差量(レターデーション)をフィルムの厚さで除した複屈折率Δnに変換することもできる。具体的には、レターデーションは大塚電子株式会社製RETS100を用いて測定することができる。またMORcとΔnとは大凡、直線的な比例関係にあり、かつΔnが0の場合、MORcは1になる。
 例えば、有機圧電材料がポリ乳酸系高分子であり、かつ、高分子フィルム(A)の複屈折率Δnを測定波長550nmで測定した場合、規格化分子配向MORcが2.0であれば、複屈折率Δn 0.005に変換でき、規格化分子配向MORcが4.0であれば、複屈折率Δn 0.01に変換できる。
〔結晶化度〕
 本開示における高分子フィルム(A)の結晶化度は、DSC法によって測定される値である。本開示における高分子フィルム(A)の結晶化度は、20%~80%であり、好ましくは20%~70%、さらに好ましくは20%~50%である。
 結晶化度が20%以上であることにより、フィルム(高分子フィルム(A))の強度が確保される。結晶化度が80%以下であることにより、フィルムの透明性が高く維持される。また、上記範囲に結晶化度があれば、フィルムを延伸するときに、白化や破断がおきにくく製造しやすい。
 また、高分子フィルム(A)の結晶化度が20%以上であることは、耐熱性を向上させる点や、高分子フィルム(A)を圧電フィルムとして用いる場合において、圧電性(圧電定数)を向上させる点でも有利である。
〔規格化分子配向MORcと結晶化度の積〕
 本開示における高分子フィルム(A)は、マイクロ波透過型分子配向計で測定される基準厚さを50μmとしたときの規格化分子配向MORcとDSC法で得られる結晶化度との積が好ましくは20~700、より好ましくは40~700、さらに好ましくは70~700、さらに好ましくは75~680、さらに好ましくは90~660、さらに好ましくは100~650、さらに好ましくは100~350である。
 前記規格化分子配向MORcと、DSC法で得られる結晶化度との積が20~700の範囲にあれば、透明性及び寸法安定性が好適に維持される。
 また、前記規格化分子配向MORcと、DSC法で得られる結晶化度との積が40~700(好ましくは70~700)の範囲にあれば、高分子フィルム(A)を圧電フィルムとして用いる場合には、圧電性が好適に維持される。
〔透明性(内部ヘイズ)〕
 本開示における高分子フィルム(A)は、可視光線に対する内部ヘイズ(以下、単に「内部ヘイズ」ともいう)が、50%以下であり、40%以下であることが好ましく、20%以下であることがより好ましく、15%以下であることがさらに好ましく、13%以下であることがさらに好ましく、5%以下であることがさらに好ましく、1%以下であることがさらに好ましい。なお、高分子フィルム(A)の内部ヘイズは、透明性の観点からは低ければ低い程良く、その下限には特に制限はないが、本開示における内部ヘイズは例えば0.1%以上とすることができる。
 内部ヘイズが0.1%以上であることは、例えば高分子フィルム(A)を圧電フィルムとして用いる場合において、圧電定数をより高くする観点からみて好適である。
 本開示において、「内部ヘイズ」とは、高分子フィルム(A)の外表面の形状によるヘイズを除外したヘイズを指す。
 また、ここでいう「内部ヘイズ」は、高分子フィルム(A)に対して、JIS-K7105に準拠して、25℃で測定したときの値である。
 内部ヘイズの測定方法の例については、実施例において後述する。
〔圧電定数(応力-電荷法)〕
 本開示における高分子フィルム(A)は、例えば、圧電フィルムとして好適に用いられる。
 高分子フィルム(A)を圧電フィルムとして用いる場合には、高分子フィルム(A)(圧電フィルム)の圧電定数は、次のようにして測定される値をいう。
 まず、高分子フィルム(A)を、高分子フィルム(A)の延伸方向(例えばMD方向)に対して45°なす方向に150mm、45°なす方向に直交する方向に50mmにカットして、矩形の試験片を作製する。次に、昭和真空SIP-600の試験台に得られた試験片をセットし、Alの蒸着厚が約50nmとなるように、試験片の一方の面にAlを蒸着する。次いで試験片の他方の面にも同様にしてAlを蒸着する。以上のようにして、試験片の両面にAlの導電層を形成する。
 両面にAlの導電層が形成された150mm×50mmの試験片(高分子フィルム(A))を、高分子フィルム(A)の延伸方向(例えばMD方向)に対して45°なす方向に120mm、45°なす方向に直交する方向に10mmにカットして、120mm×10mmの矩形のフィルムを切り出す。これを、圧電定数測定用サンプルとする。
 得られたサンプルを、チャック間距離70mmとした引張試験機(AND社製、TENSILON RTG-1250)に、弛まないようにセットする。クロスヘッド速度5mm/minで、印加力が4Nと9Nとの間を往復するように周期的に力を加える。このとき印加力に応じてサンプルに発生する電荷量を測定するため、静電容量Qm(F)のコンデンサーをサンプルに並列に接続し、このコンデンサーCm(95nF)の端子間電圧Vmを、バッファアンプを介して測定する。発生電荷量Q(C)は、コンデンサー容量Cmと端子間電圧Vmとの積として計算する。圧電定数d14は下式により計算される。
 d14=(2×t)/L×Cm・ΔVm/ΔF
  t:サンプル厚(m)
  L:チャック間距離(m)
  Cm:並列接続コンデンサー容量(F)
  ΔVm/ΔF:力の変化量に対する、コンデンサー端子間の電圧変化量比
 圧電定数は高ければ高いほど、高分子フィルム(A)に印加される電圧に対する前記フィルムの変位が大きくなり、また、逆に高分子フィルム(A)に印加される力に対し発生する電圧が大きくなり、高分子フィルム(A)としては有用である。
 具体的には、25℃における応力-電荷法で測定した圧電定数d14は1pC/N以上が好ましく、3pC/N以上がより好ましく、4pC/N以上がさらに好ましい。また、圧電定数の上限は特に限定されないが、後述する透明性などのバランスの観点からは、有機圧電材料を用いた高分子フィルム(A)では、50pC/N以下が好ましく、30pC/N以下がより好ましい。
 また、同様に、透明性とのバランスの観点からは、応力-電荷法で測定した圧電定数d14が15pC/N以下であることが好ましい。
 ここで、本開示における高分子フィルム(A)は、可視光線に対する内部ヘイズが40%以下であり、かつ、25℃において応力-電荷法で測定した圧電定数d14が1pC/N以上であることが好ましい。なお、可視光線に対する内部ヘイズ、及び25℃において応力-電荷法で測定した圧電定数d14のそれぞれの好ましい範囲は前述のとおりである。
 なお、本開示における高分子フィルム(A)は、単層フィルムであっても、積層フィルムであってもよい。
〔厚さ〕
 本開示における高分子フィルム(A)の厚さには特に制限はないが、例えば、10μm~1000μmとすることができ、10μm~400μmが好ましく、20μm~200μmがより好ましく、20μm~100μmが更に好ましく、30μm~80μmが特に好ましい。
 但し、高分子フィルム(A)が複数層からなる積層フィルムの場合には、上記厚さは積層フィルム全体における厚さを表す。
<高分子フィルム(A)の製造方法>
 本開示における高分子フィルム(A)の製造方法には特に限定されはないが、例えば高分子フィルム(A)の原料(既述のポリ乳酸系高分子などのヘリカルキラル高分子(X)などの有機圧電材料)と、必要に応じて他の成分(安定化剤(Y)、無機フィラー等)とを混合して、混合物を製膜機により押出製膜することで製造することができる。
 また、高分子フィルム(A)として圧電フィルムを製造する製造方法にも特に制限はないが、例えば、国際公開第2013/054918号パンフレットの段落0065~0099の記載を適宜参照できる。
 例えば、高分子フィルム(A)(圧電フィルム)の好ましい製造方法としては、高分子フィルム(A)の原料を含む予備結晶化フィルムを得る第一の工程と、予備結晶化フィルムを主として1軸方向に延伸する第二の工程と、(さらに、必要に応じ、アニール処理をする工程と)を含む、高分子フィルム(A)の製造方法が挙げられる。
 また、別の好ましい製造方法としては、高分子フィルム(A)の原料を含むフィルムを主として1軸方向に延伸する工程と、アニール処理をする工程と、をこの順で含む高分子フィルム(A)の製造方法が挙げられる。
<保護フィルム(B)>
 本開示に係る積層体は、高分子フィルム(A)の一方の主面に接する剥離可能な保護フィルム(B)を有する。
 前述の通り、本開示に係る積層体は、さらに高分子フィルム(A)の他方の主面に接する剥離可能な他の保護フィルムを有していてもよい。
 保護フィルム(B)の材料としては、例えば、ポリオレフィン系樹脂、ポリエチレンテレフタレート系樹脂、ポリエステル樹脂(ただし、ポリエチレンテレフタレート系樹脂を除く)、ナイロン樹脂、ポリビニルアルコール樹脂、ポリ塩化ビニリデン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、ポリカーボネート樹脂、ポリメチルメタクリレート樹脂、ポリウレタン樹脂、フッ素樹脂、ポリアクリロニトリル樹脂、ポリブテン樹脂、ポリイミド樹脂、ポリアリレート樹脂、アセチルセルロース樹脂等が挙げられる。
 これらの樹脂は、1種単独で用いてもよいし、2種以上を混合して用いてもよい。
 これらの樹脂の中でも、保護フィルム(B)を剥離した後の高分子フィルム(A)の外観悪化を抑制する観点から、ポリオレフィン系樹脂、ポリエチレンテレフタレート系樹脂が好ましい。これらの樹脂は、1種類単独で用いてもよいし、2種以上を併用してもよい。
 なお、保護フィルム(B)は、これら樹脂の層の多層体であってもよい。
 ポリオレフィン系樹脂としては、オレフィンの単独重合体、2種以上のオレフィンの共重合体、又はオレフィンと他のモノマーとの共重合体が挙げられる。
 オレフィンの単独重合体としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン等のα-ポリオレフィン重合体;環状ポリオレフィン重合体が挙げられる。2種以上のオレフィンの共重合体としては、エチレン/プロピレン共重合体、プロピレン/エチレン/ブチレン共重合体、エチレン-1-ブテン共重合体などが挙げられる。
 ポリエチレンテレフタレート系樹脂としては、例えば、テレフタル酸とエチレングリコ-ルとの重縮合により生成するポリエチレンテレフタレ-ト樹脂、テレフタル酸とテトラメチレングリコ-ルとの重縮合により生成するポリブチレンテレフタレ-ト樹脂、テレフタル酸と1、4-シクロヘキサンジメタノ-ルとの重縮合により生成するポリシクロヘキサンジメチレンテレフタレ-ト樹脂、テレフタル酸とイソフタル酸とエチレングリコ-ルとの共重縮合により生成するポリエチレンテレフタレ-ト樹脂、テレフタル酸とエチレングリコ-ルと1、4-シクロヘキサンジメタノ-ルとの共重縮合により生成するポリエチレンテレフタレ-ト樹脂、テレフタル酸とイソフタル酸とエチレングリコ-ルとプロピレングリコ-ルとの共重縮合により生成するポリエチレンテレフタレ-ト樹脂;が挙げられる。また、ポリエチレンテレフタレート系樹脂には、他のモノマーから誘導される構造単位が含まれていてもよい。
〔基材層〕
 保護フィルム(B)は、基材層と、基材層の高分子フィルム(A)に対向する側の主面上に設けられた粘着層と、を有することが好ましい。
 基材層の材料の例示としては、上述した保護フィルム(B)の材料と同様のものが挙げられる。上記樹脂の中でも、基材層の材料としては、保護フィルム(B)を剥離した後の高分子フィルム(A)の外観悪化を抑制する観点から、ポリオレフィン系樹脂、ポリエチレンテレフタレート系樹脂が好ましい。即ち、基材層は、ポリオレフィン系樹脂、ポリエチレンテレフタレート系樹脂からなることが好ましい。
 これらの樹脂は、1種類単独で用いてもよいし、2種以上を併用してもよい。
 なお、基材層は、これらの樹脂の層の多層体であってもよい。
〔粘着層〕
 粘着層の材料としては、例えば、エチレン-酢酸ビニル共重合体(EVA)系粘着剤、アクリル系粘着剤、ゴム系粘着剤、ポリオレフィン系粘着剤(例えばポリエチレンオリゴマー粘着剤等)、セルロース系粘着剤(例えば糊等)、シリコーン系粘着剤、ウレタン系粘着剤、ビニルアルキルエーテル系粘着剤、ポリビニルアルコール系粘着剤、ポリビニルピロリドン系粘着剤、ポリアクリルアミド系粘着剤、等が挙げられる。これらの中でも、粘着層の材料としては、保護フィルム(B)を剥離した後の高分子フィルム(A)の外観悪化を抑制する観点から、アクリル系粘着剤、ウレタン系粘着剤、シリコーン系粘着剤が好ましい。特に、粘着層は、アクリル系粘着剤を含むことが好ましい。
 これらの粘着剤は、1種類単独で用いてもよいし、2種以上を併用してもよい。
 なお、粘着層は、多層体であってもよい。
 また、粘着層には剥離帯電を防止する目的で、帯電防止剤が添加されていても良い。
 アクリル系粘着剤の粘着性ポリマーとしては、例えば、アクリル酸2-エチルヘキシル、アクリル酸ブチル、アクリル酸イソオクチル、メタクリル酸ブチル、メタクリル酸プロピルなどのアルキル基の炭素数が1~10の(メタ)アクリル酸エステルと、アクリル酸、メタクリル酸、マレイン酸、フマル酸、アクリル酸ヒドロキシエチル、メタクリル酸ヒドロキシエチルなどの官能基含有不飽和単量体とを含む共重合体が好適に挙げられる。
 ここで、本開示に係る積層体は、保護フィルム(B)を剥離した後の高分子フィルム(A)の外観悪化を抑制する観点から、基材層がポリオレフィン系樹脂又はポリエチレンテレフタレート系樹脂からなり、粘着層がアクリル系粘着剤を含むことが好ましい。
〔粘着層の酸価〕
 粘着層の酸価は、10mgKOH/g以下が好ましく、0.01mgKOH/g~10mgKOH/gがより好ましく、0.05mgKOH/g~5mgKOH/gがさらに好ましく、0.1mgKOH/g~1mgKOH/gがさらに好ましい。
 粘着層の酸価が0mgKOH/gを超えると粘着層の極性基と高分子フィルム(A)の極性基との相互作用が生じるため、粘着層と高分子フィルム(A)との粘着力が高められる。
 粘着層の酸価が10mgKOH/g以下であると高分子フィルム(A)に含まれる有機圧電材料の分子量の低下が抑制されるため、高分子フィルム(A)の安定性が向上する。
 本開示に係る積層体において、粘着層の酸価は、粘着層1g中の遊離酸を中和するのに要するKOHの量(mg)を指す。このKOHの量(mg)は、溶媒に溶解又は膨潤させた粘着層を、フェノールフタレインを指示薬として0.005M KOH(水酸化カリウム)エタノール溶液によって滴定することにより測定される。
<保護フィルム(B)の特性>
〔最大押し込み深さhmax〕
 本開示において、保護フィルム(B)の高分子フィルム(A)と接する面の側をナノインデンテーション法によって測定したときの最大押し込み深さhmaxは、保護フィルム(B)を剥離した後の高分子フィルム(A)の外観悪化を抑制する観点から、53nm~100nmである。なお、ナノインデンテーション法による最大押し込み深さhmaxの測定は、ISO 14577-1(計装化押し込み硬さ)に準拠して行う。測定方法の詳細は実施例において詳述する。
 上記最大押し込み深さhmaxは、上述の通り、53nm~100nmであるが、好ましくは53nm以上80mm以下、より好ましくは53nm以上60mm以下である。
 なお、サンプルとしては高分子フィルム(A)の主面上に配置する(ラミネートする)前の保護フィルム(B)を使用しても、保護フィルム(B)を積層体から剥離した後の保護フィルム(B)を使用してもよいが、どちらの場合も、上記最大押し込み深さhmaxは、保護フィルム(B)の高分子フィルム(A)と接する面の側を測定する。
 また、保護フィルム(B)が基材層と粘着層とを有し、粘着層を介して保護フィルム(B)と高分子フィルム(A)とが粘着される場合、保護フィルム(B)の最大押し込み深さhmaxは、保護フィルム(B)の粘着層の側を測定したときの最大押し込み深さである。この場合、上記最大押し込み深さhmaxとは、粘着層の最大押し込み深さhmaxとみなす。
〔T型剥離強度〕
 本開示において、保護フィルム(B)と高分子フィルム(A)とのT型剥離強度は、保護フィルム(B)を剥離した後の高分子フィルム(A)の外観悪化を抑制する観点から、0.07N/50mm~1N/50mmが好ましく、0.07N/50mm~0.5N/50mmがより好ましく、0.10N/50mm~0.3N/50mmがさらに好ましい。
 また、「T型剥離強度」は、引張試験機(AND社製、TENSILON RTG-1250)を用いて、JIS K6854-3(1999)に準拠して、25℃で測定したときの値である。測定方法の詳細は実施例において詳述する。
〔厚さ〕
 保護フィルム(B)の厚さは、特に限定されるものではないが、保護機能を高める観点から、厚さは、5μm以上の範囲が好ましく、10μm~100μmの範囲がより好ましく、20μm~80μmが更に好ましく、30μm~50μmの範囲が特に好ましい。
 保護フィルム(B)が基材層と粘着層とを有する場合、基材層の厚さは、9μm~99μmの範囲が好ましく、19μm~79μmの範囲がより好ましく、29μm~49μmの範囲が更に好ましい。
 一方、粘着層の厚さは、1μm~20μmの範囲が好ましく、3μm~10μmの範囲がより好ましい。
 本開示における保護フィルム(B)は、単層フィルムであってもよいし、例えば、上述のように、基材層と粘着層とを有する積層フィルムであってもよい。
 なお、保護フィルム(B)が単層フィルムの場合、保護フィルム(B)は、例えば、保護フィルム(B)自体の粘着性、又は静電引力により高分子フィルム(A)に粘着される。
 保護フィルム(B)が積層フィルムの場合、保護フィルム(B)は機能層を有していてもよい。
 機能層としては、例えば、易接着層、ハードコート層、帯電防止層、アンチブロック層、保護層、オリゴマーブロック層、電極層が挙げられる。これらの機能層は、目的に応じて、高分子フィルム(A)に対向する側の保護フィルム(B)の主面上に配置してもよく、保護フィルム(B)の高分子フィルム(A)とは反対側の主面上に配置してもよい。なお、保護フィルム(B)は、機能層を2つ以上有していてもよい。
 本開示に係る積層体において、前記保護フィルム(B)の弾性率と、高分子フィルム(A)の弾性率とは、以下の関係式(F)を満たすことが好ましい。
 
 保護フィルム(B)の弾性率/高分子フィルム(A)の弾性率≧0.1(式F)
 
 保護フィルムを付けた有機圧電材料を含む高分子フィルムは、ロール状態で長期保管される場合がある。有機圧電材料を含む高分子フィルムは、圧電性を付与するために一方向に延伸されているため、ロール状態で長期保管すると延伸方向に僅かに収縮し、フィルムの平面性が低下することを本発明者らは見いだした。この平面性の低下により、更には高分子フィルムを使用して製造されるデバイスの外観及び品質も低下するおそれがある。
 しかし、上記式Fで表されるように保護フィルム(B)の弾性率の高分子フィルム(A)の弾性率に対する比を0.1以上とすることにより、1年以上の長期に渡り本開示に係る積層体をロール体にて保管をした後に保護フィルム(B)を剥離した場合でも、高分子フィルム(A)が収縮して変形することが抑制され、平面性の低下が抑制されることを、本発明者らは見いだした。
 言い換えれば、上記式Fを満たすことにより、ロール状態で長期保管後に保護フィルムを剥がしても、高分子フィルムが収縮して変形することなく、フィルムの平面性保持することができる、というさらなる効果が得られる。
 また、保護フィルム(B)の弾性率の高分子フィルム(A)の弾性率に対する比が10以下であれば、保護フィルム(B)を剥離する際の剥離点が安定し、高分子フィルム(A)の外観品質がさらに良好となる。さらに、保護フィルム(B)の弾性率の高分子フィルム(A)の弾性率に対する比が0.3以上であれば、平面性の低下がより強く抑制される。
 ここで、保護フィルム(B)が基材層と粘着層とを有する積層フィルムである場合、前記式Fにおける保護フィルム(B)の弾性率は、前記保護フィルム(B)における前記基材層と粘着層の複合的な弾性率であることが好ましい。
 本開示において、各フィルムの弾性率は、JIS K7127(1999)に基づいた弾性率測定により得られる値を意味する。具体的には、弾性率は、積層体について、有機圧電材料を含む高分子フィルムの主たる延伸方向に100mm、高分子圧電フィルムの主たる延伸方向と垂直方向に20mmのサンプルを切り出し、切り出したサンプルを高分子圧電フィルムと保護フィルムに剥離し、高分子圧電フィルムと保護フィルムそれぞれについて引張試験機(AND社製、TENSILON RTG-1250(商品名))を用いて、チャック間70mm、速度50mm/min の条件でJIS K7127(1999)に基づいて測定できる。有機圧電材料を含む高分子フィルムは、延伸による異方性が存在し得るが、本開示では主たる延伸方向における弾性率を測定している。
 平面性の低下をより強く抑制する観点からは、本開示の積層体において、保護フィルム(B)が基材層と粘着層とを有する積層フィルムであり、前記基材層はポリエチレンテレフタレート系樹脂からなり、前記粘着層はアクリル系粘着剤を含むことが好ましい。
 このような構成を採用することにより、フィルムの剛性が高められるため、1年以上の長期に渡り前記積層体をロール体にて保管をした後に、保護フィルム(B)を剥離した場合でも、高分子フィルム(A)の収縮による変形を抑制し、平面性の低下が抑制される。
<保護フィルム(B)の形成方法>
 保護フィルム(B)を形成する方法としては、従来一般的に用いられていた公知の方法が適宜使用できる。例えば、保護フィルム(B)を形成する樹脂を製膜機により押出製膜することで保護フィルム(B)を形成することができる。
 また、保護フィルム(B)が基材層と粘着層とを含む複数層からなる多層フィルムである場合、例えば、製膜した基材層と、製膜した粘着層と、必要に応じて他の層(例えば機能層)とを接着することで多層フィルムを形成してもよく、製膜した基材層上に、粘着層及び他の層を押出製膜して多層フィルムを形成してもよい。また、基材層を構成する材料と、粘着層を構成する材料等とを多層製膜機により共押出製膜して多層フィルムを形成してもよい。また、基材層上にウェットコート法により粘着層を形成しても良い。この場合、粘着層を形成するための材料(樹脂、添加剤等)が分散または溶解されたコート液(粘着層用塗工液)を基材層上に塗布することで粘着層を形成することができる。
 なお、保護フィルム(B)の剥離性を向上させる観点から、コロナ処理やイトロ処理、オゾン処理、プラズマ処理などによって保護フィルム(B)の表面を処理してもよい。
 保護フィルム(B)の市販品としては、例えば、株式会社サンエー化研のPACシリーズ、JAシリーズ、KDシリーズ、MAシリーズ、NSAシリーズ;積水化学工業株式会社の622シリーズ;大王加工紙工業株式会社のFMシリーズ;株式会社スミロンのVシリーズ;日東電工株式会社のE-MASKシリーズ;三井化学東セロ株式会社の三井マスキングテープ;東洋包材株式会社のプロテクトフィルムシリーズ;リンテック株式会社の工業用粘着テープ微粘着テープシリーズ;東山フイルム株式会社のEMシリーズ;株式会社きもとのProsaveシリーズ等が挙げられる。
<他の保護フィルム>
 前述の通り、本開示に係る積層体は、さらに高分子フィルム(A)の他方の主面に接する剥離可能な他の保護フィルムを有していてもよい。
 本開示に係る積層体が、さらに高分子フィルム(A)の他方の主面に接する剥離可能な他の保護フィルムを有する場合、他の保護フィルムとしては、保護フィルム(B)と同様のものを用いることができる。
 なお、他の保護フィルムと保護フィルム(B)とは、同一であっても、異なるものであってもよい。
<第1態様>
 図1に、本開示に係る積層体の第1態様の断面図を示す。第1態様の積層体10は、高分子フィルム12と、保護フィルム14と、を有する。第1態様の積層体10では、保護フィルム14は、保護フィルム14自体の粘着性、又は静電引力により高分子フィルム12に粘着されている。これにより、高分子フィルム12の表面を保護することができる。
 また、第1態様の積層体10では、保護フィルム14の最大押し込み深さhmaxが、53nm~100nmの範囲に調整されている。
 従って、第1態様の積層体10によれば、保護フィルム14を剥離した後の高分子フィルム12の外観悪化が抑制される。
<第2態様>
 図2に、本開示に係る積層体の第2態様の断面図を示す。第2態様の積層体10Aは、高分子フィルム12と、粘着層16と、基材層18と、をこの順に有する。第2態様の積層体10Aでは、保護フィルム14Aが、粘着層16と基材層18とで構成されている。また、第2態様の積層体10Aでは、保護フィルム14Aが、粘着層16を介して高分子フィルム12に粘着されているため、保護フィルム14Aと高分子フィルム12との粘着力が高められる。
 その上、第2態様の積層体10Aでは、保護フィルム14Aの最大押し込み深さhmax、即ち、粘着層16の最大押し込み深さhmaxが、53nm~100nmの範囲に調整されている。
 従って、第2態様の積層体10Aによれば、保護フィルム14Aを剥離した後の高分子フィルム12の外観悪化が抑制される。
<積層体の用途>
 本開示に係る積層体が高分子フィルム(A)として、圧電性を有する圧電フィルム(以下、「圧電フィルム(A1)」と称する)を有する場合、本開示に係る積層体から保護フィルム(B)を剥離した後の圧電フィルム(A1)は、スピーカー、ヘッドホン、タッチパネル、アクチュエータ、リモートコントローラー、マイクロホン、水中マイクロホン、超音波トランスデューサ、超音波応用計測器、圧電振動子、機械的フィルター、圧電トランス、遅延装置、センサー、力センサー、加速度センサー、衝撃センサー、振動センサー、感圧センサー、触覚センサー、電界センサー、音圧センサー、ディスプレイ、ファン、ポンプ、可変焦点ミラー、遮音材料、防音材料、キーボード、音響機器、情報処理機、計測機器、医用機器などの種々の分野で利用することができる。
 このとき、圧電フィルム(A1)は、少なくとも2つの面を有し、当該面には電極が備えられた圧電素子として用いられることが好ましい。電極は、圧電フィルム(A1)の少なくとも2つの面に備えられていればよい。前記電極としては、特に制限されないが、例えば、ITO、ZnO、IZO(登録商標)、導電性ポリマー等が用いられる。
 また、圧電フィルム(A1)と電極を繰り返し重ねて積層圧電素子として用いることもできる。例としては電極と圧電フィルム(A1)のユニットを繰り返し重ね、最後に電極で覆われていない圧電フィルム(A1)の主面を電極で覆ったものが挙げられる。具体的にはユニットの繰り返しが2回のものは、電極、圧電フィルム(A1)、電極、圧電フィルム(A1)、電極をこの順で重ねた積層圧電素子である。積層圧電素子に用いられる圧電フィルム(A1)はそのうち1層の圧電フィルム(A1)が本開示における圧電フィルム(A1)であればよく、その他の層は本開示における圧電フィルム(A1)でなくてもよい。
 また積層圧電素子に複数の圧電フィルム(A1)が含まれ、有機圧電材料がヘリカルキラル高分子(X)である場合は、ある層の圧電フィルム(A1)に含まれるヘリカルキラル高分子(X)の光学活性がL体ならば、他の層の圧電フィルム(A1)に含まれるヘリカルキラル高分子(X)はL体であってもD体であってもよい。圧電フィルム(A1)の配置は圧電素子の用途に応じて適宜調整することができる。
 例えば、L体のヘリカルキラル高分子(X)を主たる成分として含む圧電フィルム(A1)の第1の層が電極を介してL体のヘリカルキラル高分子(X)を主たる成分として含む第2の圧電フィルム(A1)と積層される場合は、第1の圧電フィルム(A1)の一軸延伸方向(主たる延伸方向)を、第2の圧電フィルム(A1)の一軸延伸方向(主たる延伸方向)と交差、好ましくは直交させると、第1の圧電フィルム(A1)と第2の圧電フィルム(A1)の変位の向きを揃えることができ、積層圧電素子全体としての圧電性が高まるので好ましい。
 一方、L体のヘリカルキラル高分子(X)を主たる成分として含む圧電フィルム(A1)の第1の層が電極を介してD体のヘリカルキラル高分子(X)を主たる成分として含む第2の圧電フィルム(A1)と積層される場合は、第1の圧電フィルム(A1)の一軸延伸方向(主たる延伸方向)を、第2の圧電フィルム(A1)の一軸延伸方向(主たる延伸方向)と略平行となるように配置すると第1の圧電フィルム(A1)と第2の圧電フィルム(A1)の変位の向きを揃えることができ、積層圧電素子全体としての圧電性が高まるので好ましい。
 特に圧電フィルム(A1)の主面に電極を備える場合には、透明性のある電極を備えることが好ましい。ここで、電極について、透明性があるとは、具体的には、内部ヘイズが50%以下且つ全光線透過率が50%以上であることをいう。
 本開示における圧電フィルム(A1)を用いた前記圧電素子は、スピーカーやタッチパネル等、上述の種々の圧電デバイスに応用することができる。特に、透明性のある電極を備えた圧電素子は、スピーカー、タッチパネル、アクチュエータ等への応用に好適である。
 本開示に係る積層体を用いた前記圧電素子は、スピーカーやタッチパネル等、上述の種々の圧電デバイスに応用することができる。特に、透明性のある電極を備えた圧電素子は、スピーカー、タッチパネル、アクチュエータ等への応用に好適である。
 また、本開示に係る積層体が高分子フィルム(A)として、圧電性を有さない高分子フィルム(以下、「高分子フィルム(A2)」と称する)を有する場合、本開示に係る積層体から保護フィルム(B)を剥離した後の高分子フィルム(A2)は表示装置などに用いられる光学フィルム等として好適に用いることができる。
<積層体の製造方法>
 本開示に係る積層体の製造方法には特に限定はないが、例えば、前述の方法により高分子フィルム(A)を製造して、前述の方法により形成した保護フィルム(B)と貼り合わせることにより製造することができる。
 なお、高分子フィルム(A)、保護フィルム(B)は、公知の方法で製造したものであっても、予め製造されたものであってもよい。
 以下、本発明の実施形態を実施例により更に具体的に説明するが、本開示の主旨を越えない限り、実施形態は以下の実施例に限定されるものではない。
<高分子圧電フィルムの作製>
 有機圧電材料として、ヘリカルキラル高分子(X)であるNatureWorks LLC社製のポリ乳酸(品名:IngeoTM biopolymer、銘柄:4032D)を用意した。そして、ポリ乳酸100質量部に対して、安定化剤(Y)として後述する添加剤Zを1.0質量部添加し、ドライブレンドし、原料を作製した。
 作製した原料を押出成形機ホッパーに入れて、210℃に加熱しながらTダイから押し出し、50℃のキャストロールに0.3分間接触させて、厚さ150μmの予備結晶化シートを製膜した(予備結晶化工程)。前記予備結晶化シートの結晶化度を測定したところ6%であった。
 得られた予備結晶化シートを70℃に加熱しながらロールtoロールで、延伸速度10m/分で延伸を開始し、3.5倍までMD方向に一軸延伸した(延伸工程)。
 その後、一軸延伸したフィルムを、ロールtoロールで、145℃に加熱したロール上に15秒間接触させアニール処理し、高分子フィルム(A)として高分子圧電フィルムを作製した(アニール処理工程)。得られた高分子圧電フィルムの厚さは、47.2μmであった。
-添加剤Z-
 添加剤Zとしては、ラインケミー社製Stabaxol P400(10質量部)、ラインケミー社製Stabaxol I(70質量部)、及び日清紡ケミカル社製カルボジライトLA-1(20質量部)の混合物を用いた。
 上記混合物における各成分の詳細は以下のとおりである。
 Stabaxol I :ビス-2,6-ジイソプロピルフェニルカルボジイミド(分子量(=重量平均分子量):363)
 Stabaxol P400 :ポリ(1,3,5-トリイソプロピルフェニレン-2,4-カルボジイミド)(重量平均分子量:20000)
 カルボジライトLA-1 :ポリ(4,4’-ジシクロヘキシルメタンカルボジイミド)(重量平均分子量:約2000)
<ポリ乳酸の物性測定>
 高分子圧電フィルムに含まれるポリ乳酸について、既述の方法で、光学純度、重量平均分子量(Mw)及び分子量分布(Mw/Mn)を測定した。結果を表1に示す。
<高分子圧電フィルムの物性測定>
 上記高分子圧電フィルムについて、以下の方法で、融点Tm、結晶化度及び内部ヘイズを測定した。また、既述の方法で圧電定数d14(応力-電荷法)及び規格化分子配向MORcを測定した。結果を表1に示す。
〔融点Tm及び結晶化度〕
 高分子圧電フィルムを10mg正確に秤量し、示差走査型熱量計(パーキンエルマー社製DSC-1)を用い、昇温速度10℃/分の条件で測定し、融解吸熱曲線を得た。得られた融解吸熱曲線から、融点Tm及び結晶化度を得た。結果を表1に示す。
〔内部ヘイズ〕
 以下の方法により、上記高分子圧電フィルムの内部ヘイズ(以下、内部ヘイズ(H1)ともいう)を得た。結果を表1に示す。
 まず、予めガラス板2枚の間に、シリコーンオイル(信越化学工業株式会社製信越シリコーン(商標)、型番:KF96-100CS)のみを挟んでヘイズ(H2)(%)を測定した。次に、シリコーンオイルで表面を均一に塗らした上記高分子圧電フィルムを上記のガラス板2枚で挟んでヘイズ(H3)(%)を測定した。
 次に、下記式のようにこれらの差をとることで、上記高分子圧電フィルムの内部ヘイズ(H1)(%)を得た。
 内部ヘイズ(H1)=ヘイズ(H3)-ヘイズ(H2)
 ヘイズ(H2)及びヘイズ(H3)(いずれも単位は%)は、それぞれ、下記測定条件下で下記装置を用いて測定した。
 測定装置:東京電色社製、HAZE METER TC-HIIIDPK
 試料サイズ:幅30mm×長さ30mm
 測定条件:JIS-K7136(2000)に準拠
 測定温度:室温(25℃)
Figure JPOXMLDOC01-appb-T000008

 
<実施例1>
 上記方法にて作製した高分子圧電フィルムの主面に対し、ラミネーターを用いて、ロールtoロールで、保護フィルム(B)として、基材層(PET基材)/粘着層(アクリル系粘着剤)の層構成を有する保護フィルム(厚さ50μm)を、粘着層と高分子圧電フィルムの主面とが対向する向きで高分子圧電フィルムに貼り合わせ、基材層/粘着層/高分子圧電フィルムの層構成を有する積層体を作製した。なお、上記保護フィルムは、サンエー化研社製のNSA33Tを用いた。
<特性測定>
 保護フィルムの最大押し込み深さhmax、並びに、高分子圧電フィルム及び保護フィルムのT型剥離強度を以下の方法で測定した。
〔最大押し込み深さhmax〕
 実施例1にて作製した積層体から保護フィルムを剥離し、剥離した保護フィルムについて、保護フィルムの高分子圧電フィルムと接していた面の側をナノインデンテーション法によって測定し、保護フィルムの最大押し込み深さhmaxを測定した。
 より詳細には、AFM制御部としてSII社製SPI3800を用い、ナノインデントモジュール部としてHysitron社製TriboScopeを用い、圧子としてダイヤモンド製Berkovich型(三角錐状:頂角142.3°)を用いて、押し込み制御線形荷重付加方式により最大荷重10μNの条件で、上記圧子を保護フィルムに押し込むことにより、上記最大押し込み深さhmaxを測定した。
 測定は室温(25℃)で9カ所行い、9カ所の測定値のうち、最大値及び最小値を除く7カ所の平均値を保護フィルムの最大押し込み深さhmaxとした。
 なお、測定は室温(25℃)で行った。結果を表2に示す。
〔T型剥離強度〕
 実施例1にて作製した積層体を1か月室温で保存した後、TD方向に50mm、MD方向に150mmのサンプルを切り出した。保護フィルムと高分子圧電フィルムとをMD方向に30mm剥がして引張試験機(AND社製、TENSILON RTG-1250)にセットし、高分子圧電フィルムと保護フィルムとのT型剥離強度をJIS K6854-3(1999)に準拠して測定した。
 測定は室温(25℃)で5回行い、その平均値をT型剥離強度とした。結果を表2に示す。なお、表2において、「対圧電フィルムT型剥離強度」は、上記T型剥離強度を表す。
〔弾性率〕
 実施例1にて作成した積層体について、高分子圧電フィルムの主たる延伸方向に100mm、高分子圧電フィルムの主たる延伸方向と垂直方向に20mmのサンプルを切り出した。切り出したサンプルを高分子圧電フィルムと保護フィルムに剥離し、高分子圧電フィルムと保護フィルムそれぞれについて引張試験機(AND社製、TENSILON RTG-1250)を用いて、チャック間70mm、速度50mm/min の条件でJIS K7127(1999)に基づいて弾性率を測定した。
 〔弾性率比〕
 上記測定で得られた高分子圧電フィルムの弾性率と保護フィルムの弾性率とから、保護フィルムの弾性率/高分子圧電フィルムの弾性率の比の値を求め、弾性率比とした。なお、実施例1の高分子圧電フィルムの弾性率は、6.2GPaであった。
<評価>
〔保護フィルム剥離後の外観(ゆず肌)評価〕
 実施例1にて作製した積層体を1か月室温で保存した後、TD方向に300mm、MD方向に300mmのサンプルを切り出した。次いで、積層体から保護フィルムを剥離した後、高分子圧電フィルムの保護フィルムをラミネートしていた面(保護フィルムとの粘着面)の外観を以下の基準で判定した。
-評価基準-
 A:ゆず肌が全く発生していない
 B:わずかにゆず肌が発生している
 C:全面にゆず肌が強く発生している
〔長期保管後の平面性評価〕
 実施例1にて作製した積層体を1年間室温で保存した後、積層体から保護フィルムを剥離した。高分子圧電フィルムを平面である金属板上に置き外観を以下の基準で判定した。
-評価基準-
 A:平面性を保っている
 B:部分的に平面性がない
 C:全面に平面性がない
 なお、この評価で観察している平面性は、高分子圧電フィルムの10cmスケールのうねりである。このため、平面性の評価は、数mmスケールの凹凸の評価であるゆず肌評価とは異なる外観評価である。
<実施例2>
 保護フィルムとして、基材層(ポリオレフィン基材)/粘着層(アクリル系粘着剤)の層構成を有する保護フィルム(サンエー化研社製JA13K、厚さ35μm)を用いた以外は実施例1と同様の操作を行った。結果を表2に示す。
<実施例3>
 保護フィルムとして、基材層(ポリオレフィン基材)/粘着層(アクリル系粘着剤)の層構成を有する保護フィルム(サンエー化研社製KD23K、厚さ35μm)を用いた以外は実施例1と同様の操作を行った。結果を表2に示す。
<比較例1>
 保護フィルムとして、基材層(LDPE基材)/粘着層(EVA系粘着剤)の層構成を有する保護フィルム(サンエー化研社製PAC-3-70、厚さ70μm)を用いた以外は実施例1と同様の操作を行った。結果を表2に示す。
<比較例2>
 保護フィルムとして、基材層(LDPE基材)/粘着層(特殊ポリオレフィン粘着剤)の層構成を有する保護フィルム(サンエー化研社製PAC-3-50THK、厚さ50μm)を用いた以外は実施例1と同様の操作を行った。結果を表2に示す。
<比較例3>
 保護フィルムとして、基材層(ポリエチレン基材)/粘着層(合成ゴム系粘着剤)の層構成を有する保護フィルム(日東電工社製SPV-3643F、厚さ45μm)を用いた以外は実施例1と同様の操作を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000009
-表2の説明-
・PETは、ポリエチレンテレフタレートであることを示す。
・LDPEは、低密度ポリエチレンであることを示す。
・EVAは、エチレン/酢酸ビニル共重合体であることを示す。
・表2中の「100< 」は、後述のように、保護フィルムの最大押し込み深さhmaxが100nmを超えることが推察されることを示す表示である。
 表2に示すように、最大押し込み深さhmaxが53nm~100nmの範囲にある保護フィルムを用いた実施例1~3は、ゆず肌の発生が抑制されていることがわかった。
 一方、最大押し込み深さhmaxが53nm未満の保護フィルムを用いた比較例1、2は、ゆず肌が発生していることが確認された。
 なお、比較例3では、保護フィルムを剥離することが難しく、保護フィルムを剥離した後の高分子圧電フィルムの表面はガタガタな状態となった。これは、保護フィルムと高分子圧電フィルムとの剥離強度が強すぎることが要因である。この結果から、比較例3では、保護フィルムの最大押し込み深さhmaxが100nmを超えることが推察される。
 従って、本実施例の積層体では、保護フィルムを剥離した後の高分子フィルムの外観悪化(ゆず肌)が抑制されることがわかった。
 さらに、弾性率比が0.1未満である実施例2及び実施例3に比べて、弾性率比が0.1以上である実施例1では、長期保管後の高分子フィルムの平面性が向上することがわかった。
(符号の説明)
10,10A 積層体
12 高分子フィルム
14,14A 保護フィルム
16 粘着層
18 基材層
 2016年3月9日に出願された日本国特許出願2016-046183号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (15)

  1.  重量平均分子量が5万~100万である有機圧電材料を含み、マイクロ波透過型分子配向計で測定される基準厚さを50μmとしたときの規格化分子配向MORcが1.0~15.0であり、DSC法で得られる結晶化度が20%~80%であり、可視光線に対する内部ヘイズが50%以下である高分子フィルム(A)と、
     前記高分子フィルム(A)の一方の主面に接する剥離可能な保護フィルム(B)と、を有し、
     前記保護フィルム(B)の前記高分子フィルム(A)と接する面の側をナノインデンテーション法によって測定したときの最大押し込み深さhmaxが53nm~100nmである、積層体。
  2.  前記最大押し込み深さhmaxは、53nm~60nmである、請求項1に記載の積層体。
  3.  前記保護フィルム(B)が、基材層と、前記基材層の前記高分子フィルム(A)に対向する側の主面上に設けられた粘着層と、を有し、
     前記最大押し込み深さhmaxは、前記保護フィルム(B)の前記粘着層の側を測定したときの最大押し込み深さである、請求項1又は請求項2に記載の積層体。
  4.  前記粘着層の酸価が10mgKOH/g以下である、請求項3に記載の積層体。
  5.  前記基材層がポリオレフィン系樹脂又はポリエチレンテレフタレート系樹脂からなり、前記粘着層がアクリル系粘着剤を含む、請求項3又は請求項4に記載の積層体。
  6.  前記高分子フィルム(A)と前記保護フィルム(B)とのT型剥離強度が、0.07N/50mm~1N/50mmである、請求項1~請求項5のいずれか1項に記載の積層体。
  7.  前記高分子フィルム(A)は、可視光線に対する内部ヘイズが40%以下であり、かつ、25℃において応力-電荷法で測定した圧電定数d14が1pC/N以上である、請求項1~請求項6のいずれか1項に記載の積層体。
  8.  前記内部ヘイズが1%以下である、請求項7に記載の積層体。
  9.  前記高分子フィルム(A)は、前記規格化分子配向MORcが3.5~15.0であり、前記規格化分子配向MORcと前記結晶化度との積が70~700である、請求項1~請求項8のいずれか1項に記載の積層体。
  10.  前記有機圧電材料は、光学活性を有するヘリカルキラル高分子(X)である、請求項1~請求項9のいずれか1項に記載の積層体。
  11.  前記ヘリカルキラル高分子(X)が、下記式(1)で表される繰り返し単位を含む主鎖を有するポリ乳酸系高分子である、請求項10に記載の積層体。
    Figure JPOXMLDOC01-appb-C000001

     
     
  12.  前記ヘリカルキラル高分子(X)は、光学純度が95.00%ee以上である、請求項10又は請求項11に記載の積層体。
  13.  前記高分子フィルム(A)中における前記ヘリカルキラル高分子(X)の含有量が、80質量%以上である、請求項10~請求項12のいずれか1項に記載の積層体。
  14.  前記高分子フィルム(A)が、カルボジイミド基、エポキシ基、及びイソシアネート基からなる群より選ばれる1種類以上の官能基を有する重量平均分子量が200~60000の安定化剤(Y1)、並びに、イミノエーテル基を有する安定化剤(Y2)からなる群より選ばれる1種以上の安定化剤(Y)を、前記ヘリカルキラル高分子(X)100質量部に対して0.01質量部~10質量部含む、請求項10~請求項13のいずれか1項に記載の積層体。
  15.  前記保護フィルム(B)の弾性率と、高分子フィルム(A)の弾性率とが、以下の関係式(F):
     保護フィルム(B)の弾性率/高分子フィルム(A)の弾性率≧0.1(式F)
     を満たす、請求項1~請求項14のいずれか1項に記載の積層体。
PCT/JP2017/009344 2016-03-09 2017-03-08 積層体 WO2017155006A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780014912.6A CN108698371B (zh) 2016-03-09 2017-03-08 层叠体
KR1020187025245A KR102107328B1 (ko) 2016-03-09 2017-03-08 적층체
JP2018504570A JP6591041B2 (ja) 2016-03-09 2017-03-08 積層体
EP17763346.8A EP3418049B1 (en) 2016-03-09 2017-03-08 Laminated article
US16/082,462 US11088313B2 (en) 2016-03-09 2017-03-08 Layered body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016046183 2016-03-09
JP2016-046183 2016-03-09

Publications (1)

Publication Number Publication Date
WO2017155006A1 true WO2017155006A1 (ja) 2017-09-14

Family

ID=59789569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009344 WO2017155006A1 (ja) 2016-03-09 2017-03-08 積層体

Country Status (7)

Country Link
US (1) US11088313B2 (ja)
EP (1) EP3418049B1 (ja)
JP (1) JP6591041B2 (ja)
KR (1) KR102107328B1 (ja)
CN (1) CN108698371B (ja)
TW (1) TWI715738B (ja)
WO (1) WO2017155006A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020083911A (ja) * 2018-11-15 2020-06-04 王子ホールディングス株式会社 積層シート
JPWO2021200790A1 (ja) * 2020-04-02 2021-10-07
WO2023021905A1 (ja) * 2021-08-18 2023-02-23 富士フイルム株式会社 圧電フィルムおよび積層圧電素子
WO2023224056A1 (ja) * 2022-05-18 2023-11-23 株式会社クレハ 導電圧電フィルム、デバイス、及び導電圧電フィルムの製造方法
WO2023224057A1 (ja) * 2022-05-18 2023-11-23 株式会社クレハ 積層圧電フィルム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105352428B (zh) 2011-04-08 2019-04-02 株式会社村田制作所 操作设备
WO2020194135A1 (en) * 2019-03-22 2020-10-01 Gentex Corporation Piezoelectric films with low haze and methods of making and using
CN114919247A (zh) * 2022-05-10 2022-08-19 浙江师范大学 一种层状复合薄膜及其制备方法、应用
WO2024071584A1 (ko) * 2022-09-27 2024-04-04 에스케이마이크로웍스 주식회사 다층필름, 이를 포함하는 보호필름

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299720A (ja) * 1991-12-13 1993-11-12 Hewlett Packard Co <Hp> 圧電材料のパターン形成方法
JP2013199649A (ja) * 2011-10-13 2013-10-03 Mitsui Chemicals Inc 高分子圧電材料、およびその製造方法
JP2014027038A (ja) * 2012-07-25 2014-02-06 Teijin Ltd 圧電積層体用一軸配向フィルムおよび圧電積層体
WO2014168188A1 (ja) * 2013-04-10 2014-10-16 三井化学株式会社 積層体
WO2015030174A1 (ja) * 2013-09-02 2015-03-05 三井化学株式会社 積層体
WO2015079899A1 (ja) * 2013-11-26 2015-06-04 三井化学株式会社 高分子圧電材料及びその製造方法
JP2015188055A (ja) * 2014-10-20 2015-10-29 三井化学株式会社 積層体
WO2015170446A1 (ja) * 2014-05-07 2015-11-12 パナソニックIpマネジメント株式会社 圧電デバイスおよびそれの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3074404B2 (ja) 1991-07-31 2000-08-07 タキロン株式会社 高分子圧電材
JP3691658B2 (ja) * 1998-04-03 2005-09-07 株式会社クラレ マイクロ波を用いた分子配向度計測方法および装置
JP4445277B2 (ja) 2004-01-29 2010-04-07 三井化学株式会社 ポリ乳酸系樹脂と無機化合物からなる高分子圧電材料
JP5708214B2 (ja) * 2011-03-28 2015-04-30 セイコーエプソン株式会社 圧力センサー、センサーアレイ、センサーアレイの製造方法、及び把持装置
EP3035022B1 (en) * 2013-10-07 2018-05-09 Mitsui Chemicals, Inc. Pressing-force detection device, and pressing-force-detecting touch panel
JP6280646B2 (ja) * 2014-06-20 2018-02-14 富士フイルム株式会社 樹脂組成物、ポリエステルフィルム及び成形品

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299720A (ja) * 1991-12-13 1993-11-12 Hewlett Packard Co <Hp> 圧電材料のパターン形成方法
JP2013199649A (ja) * 2011-10-13 2013-10-03 Mitsui Chemicals Inc 高分子圧電材料、およびその製造方法
JP2014027038A (ja) * 2012-07-25 2014-02-06 Teijin Ltd 圧電積層体用一軸配向フィルムおよび圧電積層体
WO2014168188A1 (ja) * 2013-04-10 2014-10-16 三井化学株式会社 積層体
WO2015030174A1 (ja) * 2013-09-02 2015-03-05 三井化学株式会社 積層体
WO2015079899A1 (ja) * 2013-11-26 2015-06-04 三井化学株式会社 高分子圧電材料及びその製造方法
WO2015170446A1 (ja) * 2014-05-07 2015-11-12 パナソニックIpマネジメント株式会社 圧電デバイスおよびそれの製造方法
JP2015188055A (ja) * 2014-10-20 2015-10-29 三井化学株式会社 積層体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3418049A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020083911A (ja) * 2018-11-15 2020-06-04 王子ホールディングス株式会社 積層シート
JPWO2021200790A1 (ja) * 2020-04-02 2021-10-07
CN115362059A (zh) * 2020-04-02 2022-11-18 株式会社吴羽 层叠膜、其制造方法和利用
WO2023021905A1 (ja) * 2021-08-18 2023-02-23 富士フイルム株式会社 圧電フィルムおよび積層圧電素子
WO2023224056A1 (ja) * 2022-05-18 2023-11-23 株式会社クレハ 導電圧電フィルム、デバイス、及び導電圧電フィルムの製造方法
WO2023224057A1 (ja) * 2022-05-18 2023-11-23 株式会社クレハ 積層圧電フィルム

Also Published As

Publication number Publication date
US11088313B2 (en) 2021-08-10
JPWO2017155006A1 (ja) 2019-01-10
US20190088850A1 (en) 2019-03-21
TW201805156A (zh) 2018-02-16
EP3418049A1 (en) 2018-12-26
KR20180105226A (ko) 2018-09-27
JP6591041B2 (ja) 2019-10-16
CN108698371A (zh) 2018-10-23
EP3418049B1 (en) 2021-02-17
CN108698371B (zh) 2020-08-28
TWI715738B (zh) 2021-01-11
KR102107328B1 (ko) 2020-05-06
EP3418049A4 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
JP6591041B2 (ja) 積層体
JP6278947B2 (ja) 積層体
JP5933845B2 (ja) 積層体
JPWO2015053089A1 (ja) 押圧検出装置及び押圧検出タッチパネル
JP2015186910A (ja) 積層体
JP6300458B2 (ja) 積層圧電素子
JP6408124B2 (ja) フィルム巻層体及びその製造方法
JP6509876B2 (ja) 高分子圧電フィルム
JP2015186909A (ja) 積層体
JP6487178B2 (ja) 積層体
TWI687450B (zh) 高分子壓電膜及其製造方法
JP2015201609A (ja) 高分子圧電材料
JP2015186908A (ja) 積層体
JP2019026691A (ja) 高分子圧電フィルム及びその製造方法、圧電フィルム片及びその製造方法、積層体、並びに、圧電素子
JP2016204619A (ja) 高分子圧電材料
JP2016172797A (ja) 高分子圧電材料、およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187025245

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018504570

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017763346

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017763346

Country of ref document: EP

Effective date: 20180920

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763346

Country of ref document: EP

Kind code of ref document: A1