WO2015053089A1 - 押圧検出装置及び押圧検出タッチパネル - Google Patents

押圧検出装置及び押圧検出タッチパネル Download PDF

Info

Publication number
WO2015053089A1
WO2015053089A1 PCT/JP2014/075521 JP2014075521W WO2015053089A1 WO 2015053089 A1 WO2015053089 A1 WO 2015053089A1 JP 2014075521 W JP2014075521 W JP 2014075521W WO 2015053089 A1 WO2015053089 A1 WO 2015053089A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
piezoelectric member
detection device
curable resin
press detection
Prior art date
Application number
PCT/JP2014/075521
Other languages
English (en)
French (fr)
Inventor
一洋 谷本
吉田 光伸
西川 茂雄
正道 安藤
英和 加納
Original Assignee
三井化学株式会社
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社, 株式会社村田製作所 filed Critical 三井化学株式会社
Priority to US15/026,050 priority Critical patent/US10190924B2/en
Priority to JP2015541514A priority patent/JP6101813B2/ja
Priority to EP14853064.5A priority patent/EP3035022B1/en
Priority to CN201480051725.1A priority patent/CN105556268B/zh
Publication of WO2015053089A1 publication Critical patent/WO2015053089A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/098Forming organic materials

Definitions

  • the present invention relates to a pressure detection device and a pressure detection touch panel.
  • PZT PbZrO 3 -PbTiO 3 solid solution
  • PZT contains lead, so it has a low environmental burden and is highly flexible.
  • Molecular piezoelectric members have been used.
  • polymer piezoelectric members include nylon 11, polyvinyl fluoride, polyvinyl chloride, polyurea, polyvinylidene fluoride ( ⁇ -type) (PVDF), and vinylidene fluoride-trifluoroethylene copolymer (P ( VDF-TrFE)) (75/25) and the like.
  • polymers having optical activity such as polypeptides and polylactic acids in addition to the above-described polymer piezoelectric members.
  • polylactic acid polymers exhibit piezoelectricity only by mechanical stretching operation.
  • polylactic acid has a small volume fraction of side chains with respect to the main chain and a large ratio of permanent dipoles per volume, and can be said to be an ideal polymer among the polymers having helical chirality.
  • polylactic acid that exhibits piezoelectricity only by stretching treatment does not require poling treatment and the piezoelectricity does not decrease over several years.
  • a polymer piezoelectric member containing polylactic acid a polymer piezoelectric member having a large piezoelectric constant d 14 and excellent transparency due to having polylactic acid has been reported (for example, Japanese Patent No. 4934235, International Publication No. 2010/104196).
  • a pressure detection touch panel including a piezoelectric sheet made from polylactic acid has been proposed (for example, International Publication No. 2010/143528, International Publication). No. 2011/125408, International Publication No. 2012/049969, International Publication No. 2011/138903). Since the pressure detection touch panel can detect not only the two-dimensional position information on the touch panel but also the pressure with which the touch panel surface is pressed, the operation method of the touch panel can be extended to three dimensions.
  • a polymer piezoelectric member applied to a pressure detection device (an example of a piezoelectric device) that is a constituent member of a pressure detection touch panel is vulnerable to heat and may be deformed or denatured depending on the temperature.
  • polymer piezoelectric members need to have molecular chains oriented in one direction in order to develop piezoelectricity, so deformation in one direction due to heat is very large compared to general biaxially stretched films.
  • the pressure detection device may use, for example, a take-out electrode electrically connected to the electrode when taking out an electric signal from an electrode formed around the polymer piezoelectric member in the pressure detection device.
  • the polymer piezoelectric member In order to make the extraction electrode conductive with the electrode, it is necessary to apply high heat between both electrodes using an ACF (anisotropic conductive film) or the like. Therefore, when the polymer piezoelectric member is applied to the periphery of the electrode, the polymer piezoelectric member may be deformed or denatured by heat connecting the extraction electrode. Although it is possible to arrange a reinforcing plate (glass epoxy, polyimide, etc.) that suppresses deformation on the opposite surface to which the electrodes of the polymer piezoelectric member are connected, the effect of suppressing deformation / denaturation is not sufficient. Moreover, the electrode formed around the polymeric piezoelectric material may be formed as a precise electrode pattern depending on the purpose.
  • ACF anisotropic conductive film
  • the polymer piezoelectric member is deformed or changed due to heat for connecting the take-out electrode or heat in other touch panel manufacturing processes, and the position of the precise electrode pattern is displaced. If the device fails to follow the deformation / change and breaks, the device will not function properly.
  • the pressure detection device to which the polymer piezoelectric member is applied for example, in consideration of the case where high heat is applied as described above, has a relatively high heat resistance, such as polyethylene terephthalate (PET), polycarbonate (PC), polyvinyl alcohol ( PVA), cycloolefin polymer (COP), polymethyl methacrylate (PMMA), triacetyl cellulose (TAC), polyimide (PI), etc.
  • electrodes are formed on a substrate such as glass, then electrodes are formed It is necessary to manufacture by bonding the formed base material and the polymer piezoelectric member.
  • an object of the present invention is to provide a pressed detection device with a simplified manufacturing process and a reduced thickness.
  • the present inventor has found that, in the press detection device, the manufacturing process is simplified and the thin press detection device can be provided by arranging the curable resin layer at a predetermined position. Completed the invention.
  • ⁇ 3> The press detection device according to ⁇ 1> or ⁇ 2>, including a position detection member.
  • ⁇ 4> The press detection device according to any one of ⁇ 1> to ⁇ 3>, wherein an adhesive layer is disposed between the pressed member and the polymer piezoelectric member.
  • ⁇ 5> The press detection device according to ⁇ 3>, wherein an adhesive layer is disposed between the position detection member and the polymer piezoelectric member.
  • ⁇ 6> The repeating unit structure of the polymer piezoelectric member according to any one of ⁇ 1> to ⁇ 5>, wherein the repeating unit structure has at least one functional group selected from the group consisting of a carbonyl group and an oxy group. Press detection device.
  • the polymeric piezoelectric member includes an optically active helical chiral polymer having a weight average molecular weight of 50,000 to 1,000,000, and a reference thickness measured by a microwave transmission type molecular orientation meter is 50 ⁇ m.
  • the normalized molecular orientation MORc is 2.0 to 10.0
  • the internal haze with respect to visible light is 50% or less, and measured by the DSC method of the normalized molecular orientation MORc and the polymeric piezoelectric member.
  • the pressure detection device according to any one of ⁇ 1> to ⁇ 6>, wherein the product of the degree of crystallinity is 25 to 700.
  • ⁇ 8> The press detection device according to ⁇ 7>, wherein the internal haze is 5% or less.
  • ⁇ 9> The pressure detection device according to ⁇ 7> or ⁇ 8>, wherein the internal haze is 2.0% or less.
  • ⁇ 10> The press detection device according to any one of ⁇ 7> to ⁇ 9>, wherein the internal haze is 1.0% or less.
  • ⁇ 11> The press detection device according to ⁇ 7>, wherein the helical chiral polymer is a polylactic acid polymer having a main chain including a repeating unit represented by the following formula (1).
  • ⁇ 12> The pressure detection device according to ⁇ 7> or ⁇ 11>, wherein the helical chiral polymer has an optical purity of 95.00% ee or more.
  • ⁇ 13> The pressure detection device according to any one of ⁇ 7>, ⁇ 11>, and ⁇ 12>, wherein the polymer piezoelectric member has a content of the helical chiral polymer of 80% by mass or more.
  • ⁇ 14> The press detection device according to any one of ⁇ 1> to ⁇ 13>, further including a take-out electrode electrically connected to the electrode.
  • a pressure detection touch panel comprising the pressure detection device according to any one of ⁇ 1> to ⁇ 14> and a display device.
  • the manufacturing process is simplified and a thin pressure detection device is provided.
  • the press detection device of the present invention is provided with a member to be pressed having a contact surface to which pressure is applied and pressure is applied, and on the opposite side of the contact surface of the member to be pressed, and the stress-charge at 25 ° C. It includes a polymeric piezoelectric member piezoelectric constant d 14 is 1 pC / N or more as measured by law, cold-curable resin, thermosetting resin, and active energy ray curable resin, at least one, of the polymeric piezoelectric member A curable resin layer disposed in contact with at least a portion of the surface; and an electrode disposed in contact with at least a portion of the surface of the polymeric piezoelectric member and the surface of the curable resin layer.
  • the curable resin layer having high hardness is disposed in contact with at least a part of the surface of the polymeric piezoelectric member. Therefore, high heat is applied to the electrode (hereinafter sometimes referred to as “first electrode”) disposed in contact with at least a part of the surface of the polymer piezoelectric member and the surface of the curable resin layer, and the heat Furthermore, even when transmitted to the polymer piezoelectric member, the curable resin layer acts as a support for the polymer piezoelectric member, and suppresses the dimensional change of the polymer piezoelectric member due to deformation / deformation of the polymer piezoelectric member. be able to.
  • the press detection device can simplify the manufacturing process. From the above, the manufacturing process is simplified and a thin pressure detection device is provided.
  • the electrode “is disposed in contact with at least part of the surface of the polymer piezoelectric member and the surface of the curable resin layer” (1) part or all of the surface of the polymer piezoelectric member Are arranged in contact with each other and are not arranged in contact with the surface of the curable resin layer, (2) arranged in contact with a part or all of the surface of the curable resin layer, and A mode that is not disposed in contact with the surface of the polymer piezoelectric member, (3) A portion of the surface of the polymer piezoelectric member that is disposed in contact with part or all of the surface of the polymer piezoelectric member, and The aspect arrange
  • positioned in contact with all is mentioned.
  • FIG. 1 is a cross-sectional view schematically showing a cross section in the thickness direction of an example of a press detection touch panel including a press detection device according to the present embodiment.
  • 2A to 2E are cross-sectional views schematically showing a cross section in the thickness direction of an example of the press detection member 30 in the press detection touch panel of the press detection device according to the present embodiment.
  • the press detection device 10 includes a pressed member 12 having a contact surface 12A to which pressure is applied by pressurization means and a press detection member 30. Further, the pressing detecting member 30, the contact surface 12A of the pressure member 12 is disposed on the opposite side, the stress at 25 ° C. - polymeric piezoelectric member piezoelectric constant d 14 is 1 pC / N or more as measured by a charge method 20, a curable resin that includes at least one of a room temperature curable resin, a thermosetting resin, and an active energy ray curable resin, and is disposed in contact with at least a part of the surface of the polymeric piezoelectric member 20
  • the layer 18 includes a pair of first electrodes 16.
  • a position detecting member 32 composed of the adhesive layer 14.
  • the adhesive layer 14 is applied between the pressed member 12 and the position detecting member 32, between the position detecting member 32 and the press detecting member 30, and applied to the press detecting member 30. It is also arranged on the surface opposite to the side where the pressure member 12 is arranged.
  • the first extraction electrode 26 is connected to the first electrode 16, and the second extraction electrode 28 is connected to the second electrode 22.
  • the polymer piezoelectric member 20 may be disposed on the side opposite to the contact surface 12A of the member to be pressed 12. Specifically, the polymer piezoelectric member 20 may be disposed on the side opposite to the contact surface 12A of the member to be pressed 12, for example, in contact with the member to be pressed 12. There may be a space (gap) or another layer (for example, an adhesive layer 14, a curable resin layer 18, etc.) between the two.
  • a space for example, an adhesive layer 14, a curable resin layer 18, etc.
  • the press detection member 30 is, in order from the side where the pressed member 12 is disposed, the first electrode 16, the curable resin layer 18, the polymer piezoelectric member 20, and the curable resin layer. 18 and the first electrode 16 are arranged.
  • the pressure detection member 30 is disposed so that the curable resin layer 18 is in contact with at least a part of the surface of the polymer piezoelectric member 20, and is disposed on at least a part of the surface of the polymer piezoelectric member 20 and the surface of the curable resin layer 18. What is necessary is just the structure by which the 1st electrode 16 is arrange
  • the pressure detection device 10 presses the member to be pressed 12, the position detection member 32, the adhesive layer 14, and the pressure
  • the detection member 30 and the polymer piezoelectric member 20 included therein are bent together. Due to this bending, a charge is generated in the polymer piezoelectric member 20 at a position where pressure is applied. The generated charges are taken out by the first take-out electrode 26 electrically connected to the end face of the first electrode.
  • press detection member 30 examples include the following (1) to (5) (see FIGS. 2A to 2E).
  • FIG. 2C An example in which the first electrode 16, the polymer piezoelectric member 20, and the curable resin layer 18 are arranged in order from the side where the member to be pressed 12 is arranged.
  • the pressure detection device 10 as an example of the present embodiment includes a position detection member 32.
  • the position detection member 32 which is an example of this embodiment is arrange
  • the 2nd electrode 22 should just be arrange
  • the member to be pressed (for example, the member to be pressed) in the present embodiment has a contact surface to which pressure is applied by pressing means such as an operator's finger.
  • the material to be pressed in the present embodiment is not particularly limited, such as an inorganic material such as glass, an organic material (preferably a resin) such as a resin (acrylic resin, polycarbonate resin, cycloolefin resin, vinyl chloride resin, etc.). .
  • an organic material preferably a resin
  • the contact surface is a surface where pressure means such as an operator's finger comes into contact.
  • the contact surface may be the surface of the member to be pressed formed as a single layer, or the member to be pressed may be composed of a plurality of materials and the outermost layer may form the contact surface.
  • an electrode may be disposed on the surface of the member to be pressed, and a hard coat layer may be formed to improve scratch resistance.
  • the member to be pressed may have a part of the space inside.
  • the thickness of the member to be pressed is preferably in the range of 0.2 mm to 20 mm, more preferably 0.3 mm to 10 mm, from the viewpoint of suppressing the distortion of the detection signal.
  • the size of the gap in the direction in which pressure is applied is preferably 0.1 mm or less. This is because when the member to be pressed is deflected (displaced) by a pressing means such as a finger, the member to be pressed comes into contact with the polymer piezoelectric member, so that the member to be pressed is bent. This is because electric charges are easily generated by the polymer piezoelectric member.
  • the contact surface of the pressing member is disposed on the opposite side of the stress at 25 ° C.
  • piezoelectric constant d 14 measured by the charge method is 1 pC / N or more.
  • piezoelectric constant d 14 (Characteristics of polymer piezoelectric member) - piezoelectric constant d 14 (stress - charge method) - A polymeric piezoelectric member, the stress at 25 ° C. - piezoelectric constant d 14 measured by the charge method is 1 pC / N or more.
  • piezoelectric constant d 14 measured by the stress-charge method at 25 ° C.” is also simply referred to as “piezoelectric constant d 14 ” or “piezoelectric constant”.
  • the stress - describing an example of a method for measuring a piezoelectric constant d 14 due to charge method First, the polymer piezoelectric member is cut to 150 mm in the direction of 45 ° with respect to the stretching direction (MD direction) of the polymer piezoelectric member, and cut to 50 mm in the direction orthogonal to the direction of 45 ° to produce a rectangular test piece. To do. Next, set the test piece obtained on the test stand of Showa Vacuum SIP-600, and deposit Al on one side of the test piece so that the deposition thickness of aluminum (hereinafter referred to as Al) is about 50 nm. To do. Next, vapor deposition is similarly performed on the other side of the test piece, and Al is coated on both sides of the test piece to form an Al conductive layer.
  • Al aluminum
  • a test piece of 150 mm ⁇ 50 mm with an Al conductive layer formed on both sides is 120 mm in a direction of 45 ° with respect to the stretching direction (MD direction) of the polymer piezoelectric member, and 10 mm in a direction perpendicular to the direction of 45 °. Cut and cut out a rectangular film of 120 mm ⁇ 10 mm. This is a piezoelectric constant measurement sample.
  • the obtained sample is set so as not to be loosened in a tensile tester (manufactured by AND, TENSILON RTG-1250) having a distance between chucks of 70 mm.
  • the force is periodically applied so that the applied force reciprocates between 4N and 9N at a crosshead speed of 5 mm / min.
  • a capacitor having a capacitance Qm (F) is connected in parallel to the sample, and the voltage V between the terminals of the capacitor Cm (95 nF) is converted into a buffer amplifier. Measure through.
  • the above measurement is performed under a temperature condition of 25 ° C.
  • the generated charge amount Q (C) is calculated as the product of the capacitor capacitance Cm and the terminal voltage Vm.
  • the upper limit of the piezoelectric constant d 14 is not particularly limited, from the viewpoint of the balance, such as transparency, which will be described later, preferably not more than 50pc / N is a polymer piezoelectric member using the helical chiral polymer, more or less 30 pC / N preferable. From the viewpoint of the balance with similarly transparency is preferably a piezoelectric constant d 14 measured by a resonance method is not more than 15pC / N.
  • the “MD direction” is a direction in which the film flows (Machine Direction)
  • the “TD direction” is a direction perpendicular to the MD direction and parallel to the main surface of the film (Transverse Direction). ).
  • the polymer piezoelectric member of the present invention preferably has a normalized molecular orientation MORc of 2.0 to 10.0. If the normalized molecular orientation MORc is in the range of 2.0 to 10.0, the strength of the film is maintained high, and the film in a specific direction (for example, a direction perpendicular to the main stretching direction and the film) A decrease in strength is suppressed. Moreover, if MORc is in the above range, there are many polymer piezoelectric members arranged in the stretching direction. As a result, the rate of formation of oriented crystals increases, and high piezoelectricity can be expressed.
  • the molecular orientation degree MOR is a value indicating the degree of molecular orientation and is measured by the following microwave measurement method. That is, the sample surface (film surface) is placed in a microwave resonant waveguide of a well-known microwave molecular orientation measuring apparatus (also referred to as a microwave transmission type molecular orientation meter) in the microwave traveling direction. ) To be vertical.
  • the sample is rotated 0 to 360 ° in a plane perpendicular to the traveling direction of the microwave, and the microwave transmitted through the sample is transmitted.
  • the degree of molecular orientation MOR is determined by measuring the strength.
  • the normalized molecular orientation MORc can be measured with a known molecular orientation meter such as a microwave molecular orientation meter MOA-2012A or MOA-6000 manufactured by Oji Scientific Instruments Co., Ltd. at a resonance frequency near 4 GHz or 12 GHz.
  • the normalized molecular orientation MORc can be controlled by crystallization conditions (for example, heating temperature and heating time) and stretching conditions (for example, stretching temperature and stretching speed) when the polymer piezoelectric member is manufactured.
  • the normalized molecular orientation MORc can be converted into a birefringence ⁇ n obtained by dividing the retardation amount (retardation) by the thickness of the film. Specifically, retardation can be measured using RETS100 manufactured by Otsuka Electronics Co., Ltd. MORc and ⁇ n are approximately in a linear proportional relationship, and when ⁇ n is 0, MORc is 1. For example, when the polymer (for example, polymer (A) described later) is a polylactic acid polymer and the birefringence ⁇ n is measured at a measurement wavelength of 550 nm, the lower limit of the preferred range of the normalized molecular orientation MORc is 2.0. Can be converted to birefringence ⁇ n 0.005.
  • the lower limit 40 of the preferred range of the product of the normalized molecular orientation MORc and the crystallinity of the polymer piezoelectric member is that the product of the birefringence ⁇ n and the crystallinity of the polymer piezoelectric member is converted to 0.1. Can do.
  • the transparency of the polymer piezoelectric member can be evaluated by, for example, visual observation or haze measurement.
  • the polymer piezoelectric member preferably has an internal haze with respect to visible light of 50% or less.
  • the internal haze is applied to a polymeric piezoelectric member having a thickness of 0.03 mm to 0.05 mm in accordance with JIS-K7105 using a haze measuring machine [TC Density Co., Ltd., TC-HIII DPK]. It is a value when measured at 25 ° C., and details of the measuring method will be described in detail in the Examples.
  • the internal haze of the polymer piezoelectric member is preferably 40% or less, more preferably 20% or less, further preferably 13% or less, and further preferably 5% or less. Further, the internal haze of the polymer piezoelectric member is preferably 2.0% or less, and particularly preferably 1.0% or less, from the viewpoint of further improving the longitudinal crack strength. Further, the lower the internal haze of the polymer piezoelectric member, the better. However, from the viewpoint of balance with the piezoelectric constant, etc., it is preferably 0.0% to 40%, preferably 0.01% to 20%. Is more preferable, 0.01% to 5% is more preferable, 0.01% to 2.0% is further preferable, and 0.01% to 1.0% is particularly preferable.
  • the “internal haze” of the polymer piezoelectric member referred to in the present application is a haze excluding haze due to the shape of the outer surface of the polymer piezoelectric member as will be described later in Examples.
  • the polymer piezoelectric member of the present invention has a crystallinity of 20% to 80% obtained by DSC method (differential scanning calorimetry).
  • the crystallinity is less than 20%, the strength of the polymer piezoelectric member tends to be insufficient.
  • the degree of crystallinity exceeds 80%, the polymer piezoelectric member tends to be insufficient in transparency (that is, the internal haze increases).
  • the crystallinity of 20% to 80% is advantageous in terms of improving the in-plane uniformity of internal haze.
  • the crystallinity is preferably 30% to 70%.
  • the crystallinity of the polymer piezoelectric member being 20% or more is advantageous in terms of improving the piezoelectricity (piezoelectric constant) of the polymer piezoelectric member.
  • the product of the normalized molecular orientation MORc and the crystallinity of the polymer piezoelectric member is preferably 25 to 700, more preferably 75 to 680, more preferably 90 to 660, more preferably 125 to 650, and more preferably 180. ⁇ 350.
  • the product is in the range of 25 to 700, transparency and dimensional stability are preferably maintained.
  • the piezoelectricity of the polymeric piezoelectric member is also suitably maintained.
  • the product of the crystallinity of the polymer piezoelectric member and the normalized molecular orientation MORc is adjusted to the above range by adjusting the crystallization and stretching conditions when manufacturing the polymer piezoelectric member. be able to.
  • the thickness of the polymeric piezoelectric member of the present invention is not particularly limited, and can be, for example, 10 ⁇ m to 1000 ⁇ m, preferably 10 ⁇ m to 400 ⁇ m, more preferably 20 ⁇ m to 200 ⁇ m, still more preferably 20 ⁇ m to 100 ⁇ m, and further preferably 30 ⁇ m. Particularly preferred is from 80 ⁇ m.
  • the polymer piezoelectric member of the present invention may be used as a single layer film or a laminated film.
  • the polymer piezoelectric member contains the polymer (A) and may contain the stabilizer (B) and other components depending on the purpose.
  • the polymer piezoelectric member preferably has, as the polymer (A), the repeating unit structure has at least one functional group selected from the group consisting of a carbonyl group and an oxy group. It is considered that the electrical polarity generated in the minute region on the surface of the polymer piezoelectric member described above becomes larger particularly when the polymer piezoelectric member includes a carbonyl group or oxy group having high polarity.
  • the polymer piezoelectric member preferably contains a helical chiral polymer having optical activity having a weight average molecular weight of 50,000 to 1,000,000 as the polymer (A).
  • the weight average molecular weight of the polymeric piezoelectric member is preferably 100,000 or more, and more preferably 150,000 or more.
  • the helical chiral polymer preferably has a weight average molecular weight of 800,000 or less, and more preferably 300,000 or less.
  • the molecular weight distribution (Mw / Mn) of the helical chiral polymer is preferably 1.1 to 5, more preferably 1.2 to 4, from the viewpoint of the strength of the polymer piezoelectric member. Further, it is preferably 1.4 to 3.
  • macromolecule are measured with the following GPC measuring method using a gel permeation chromatograph (GPC).
  • -GPC measuring device Waters GPC-100 -column- Made by Showa Denko KK, Shodex LF-804 -Sample preparation-
  • An optically active polymer (polymer (A)) is dissolved in a solvent (for example, chloroform) at 40 ° C. to prepare a sample solution having a concentration of 1 mg / ml.
  • a solvent for example, chloroform
  • -Measurement condition 0.1 ml of the sample solution is introduced into the column at a solvent [chloroform], a temperature of 40 ° C., and a flow rate of 1 ml / min.
  • polymer (A) examples include polypeptides, cellulose derivatives, polylactic acid resins, polypropylene oxide, poly ( ⁇ -hydroxybutyric acid), and the like.
  • polypeptide examples include poly (glutarate ⁇ -benzyl), poly (glutarate ⁇ -methyl) and the like.
  • cellulose derivative examples include cellulose acetate and cyanoethyl cellulose.
  • the helical chiral polymer preferably has an optical purity of 95.00% ee or more, more preferably 96.00% ee or more, further preferably 99.00% ee or more, and 99.99. Even more preferably, it is% ee or higher. Desirably, it is 100.00% ee.
  • optical purity of the helical chiral polymer is a value calculated by the following formula.
  • Optical purity (% ee) 100 ⁇
  • the value obtained by the method using a high performance liquid chromatography is used for the quantity [mass%] of the L form of helical chiral polymer, and the quantity [mass%] of the D form of helical chiral polymer.
  • a polymer having a main chain containing a repeating unit represented by the following formula (1) is preferable from the viewpoint of increasing the optical purity (and improving the piezoelectricity of the polymer piezoelectric member).
  • polylactic acid-based polymers examples include polylactic acid-based polymers.
  • polylactic acid is preferable, and L-lactic acid homopolymer (PLLA) or D-lactic acid homopolymer (PDLA) is most preferable.
  • the polylactic acid-based polymer in the present embodiment refers to “polylactic acid (polymer compound consisting only of repeating units derived from a monomer selected from L-lactic acid and D-lactic acid)”, “L-lactic acid or D-lactic acid”.
  • a copolymer of lactic acid and a compound copolymerizable with the L-lactic acid or D-lactic acid or a mixture of both.
  • polylactic acid is a polymer in which lactic acid is polymerized by an ester bond and is connected for a long time, a lactide method via lactide, and a direct polymerization method in which lactic acid is heated in a solvent under reduced pressure and polymerized while removing water. It is known that it can be manufactured by, for example.
  • examples of the “polylactic acid” include L-lactic acid homopolymers, D-lactic acid homopolymers, block copolymers containing at least one polymer of L-lactic acid and D-lactic acid, and L-lactic acid and D-lactic acid. Examples include graft copolymers containing at least one polymer.
  • Examples of the “compound copolymerizable with L-lactic acid or D-lactic acid” include glycolic acid, dimethyl glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxypropanoic acid, 3-hydroxypropanoic acid, 2- Hydroxyvaleric acid, 3-hydroxyvaleric acid, 4-hydroxyvaleric acid, 5-hydroxyvaleric acid, 2-hydroxycaproic acid, 3-hydroxycaproic acid, 4-hydroxycaproic acid, 5-hydroxycaproic acid, 6-hydroxycaprone Acid, 6-hydroxymethyl caproic acid, hydroxycarboxylic acid such as mandelic acid, glycolide, ⁇ -methyl- ⁇ -valerolactone, ⁇ -valerolactone, cyclic ester such as ⁇ -caprolactone, oxalic acid, malonic acid, succinic acid, Glutaric acid, adipic acid, pimelic acid, azelaic acid, sebacic acid, Polycarboxylic acids such as ndecanedioic acid, do
  • Examples of the “copolymer of L-lactic acid or D-lactic acid and a compound copolymerizable with the L-lactic acid or D-lactic acid” include a block copolymer or graft copolymer having a polylactic acid sequence capable of forming a helical crystal. Can be mentioned.
  • the concentration of the structure derived from the copolymer component in the polymer (A) is preferably 20 mol% or less.
  • the polymer (A) is a polylactic acid polymer
  • the copolymer component is preferably 20 mol% or less.
  • polylactic acid polymer examples include a method obtained by direct dehydration condensation of lactic acid described in JP-A-59-096123 and JP-A-7-033861, or US Pat. No. 2,668,182. And ring-opening polymerization using lactide, which is a cyclic dimer of lactic acid, described in US Pat. No. 4,057,357 and the like.
  • the polymer obtained by each of the above production methods has an optical purity of 95.000 by crystallizing operation when, for example, polylactic acid is produced by the lactide method in order to obtain an optical purity of 95.00% ee or higher. It is preferable to polymerize lactide having an optical purity of 00% ee or higher.
  • polylactic acid polymer commercially available polylactic acid may be used.
  • PURASORB (PD, PL) manufactured by PURAC, LACEA (H-100, H-400) manufactured by Mitsui Chemicals, and NatureWorks LLC.
  • Ingeo TM biopolymer manufactured by Ishikawa, etc. may be mentioned.
  • a polylactic acid polymer is used as the polymer (A)
  • Mw weight average molecular weight
  • a polylactic acid-based polymer can be obtained by a lactide method or a direct polymerization method. It is preferred to produce molecules.
  • the content of the polymer (A) (helical chiral polymer) contained in the polymer piezoelectric member of the present invention is preferably 80% by mass or more.
  • the polymeric piezoelectric member of the present invention contains a compound having a weight average molecular weight of 200 to 60,000 having at least one functional group selected from the group consisting of a carbodiimide group, an epoxy group, and an isocyanate group as a stabilizer. preferable.
  • This stabilizer (B) suppresses the hydrolysis reaction of the polymer (A) (this hydrolysis reaction is presumed to proceed, for example, in the following reaction scheme) and improves the heat and heat resistance of the film. Used for.
  • the description in paragraphs 0039 to 0055 of International Publication No. 2013/054918 pamphlet can be referred to as appropriate.
  • the polymer piezoelectric member of the present invention is a known resin represented by polyvinylidene fluoride, polyethylene resin or polystyrene resin, inorganic fillers such as silica, hydroxyapatite, montmorillonite, phthalocyanine, etc., as long as the effects of the present invention are not impaired.
  • Other components such as known crystal nucleating agents may be contained.
  • crystal nucleating agents may be contained.
  • the description in paragraphs 0057 to 0060 of International Publication No. 2013/054918 can be appropriately referred to.
  • the content of the component other than the polymer (A) is 20% by mass or less with respect to the total mass of the polymer piezoelectric member. Is preferable, and it is more preferable that it is 10 mass% or less.
  • the production method for producing the above-described polymer piezoelectric member of the present invention is not particularly limited.
  • the description in paragraphs 0065 to 0099 of International Publication No. 2013/054918 can be appropriately referred to.
  • the first step of obtaining a precrystallized sheet containing the polymer (A) and the stabilizer (B) examples thereof include a method for producing a polymeric piezoelectric member, which includes a second step of stretching in the axial direction, and a step of annealing as necessary.
  • a high-strength process including a step of stretching a sheet containing the polymer (A) and the stabilizer (B) mainly in a uniaxial direction and a step of annealing treatment in this order.
  • the manufacturing method of a molecular piezoelectric member is mentioned.
  • the curable resin layer in the present invention includes at least one of a room temperature curable resin, a thermosetting resin, and an active energy ray curable resin, and is in contact with at least a part of the surface of the polymer piezoelectric member. It is the curable resin layer arrange
  • the curable resin layer in the present invention functions as a heat resistant resin layer.
  • the room temperature curable resin and the thermosetting resin are not particularly limited as long as they are generally known as resins that are cured (insolubilized) when heated.
  • resins that are cured (insolubilized) when heated.
  • the room temperature curable resin and the thermosetting resin a resin composed of an epoxy compound containing at least two epoxy groups in the molecule and a curing agent is preferable from the viewpoint of excellent curability.
  • the epoxy compound include bisphenol A, bisphenol S, glycidyl ether of bisphenol F, a phenol novolac type epoxy resin, a biphenyl type epoxy compound, and the like.
  • the normal temperature at which the normal temperature curable resin is cured indicates 10 ° C. to 30 ° C.
  • the active energy ray curable resin examples include a resin using light as the active energy ray.
  • an ultraviolet curable resin using ultraviolet rays as the active energy ray is preferable.
  • the material for forming the ultraviolet curable resin include 1,6-hexanediol diacrylate, 1,4-butanediol diacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, tetraethylene glycol diacrylate, Tripropylene glycol diacrylate, neopentyl glycol diacrylate, 1,4-butanediol dimethacrylate, poly (butanediol) diacrylate, tetraethylene glycol dimethacrylate, 1,3-butylene glycol diacrylate, triethylene glycol diacrylate, Diacrylates such as triisopropylene glycol diacrylate, polyethylene glycol diacrylate, and bisphenol A dimethacrylate Triacrylates such as trimethylolpropane triacrylate, trimethylo
  • a polyfunctional acrylate having 5 or more functional groups can also be used as a material for forming the ultraviolet curable resin.
  • These polyfunctional acrylates may be used alone or in combination of two or more.
  • these acrylates include third components such as photoinitiators, photosensitizers, leveling agents, fine particles and ultrafine particles (particles having an average primary particle size of 1 nm to 100 nm) composed of a metal oxide, an acrylic component, and the like. Can be used by adding one or more.
  • the ultrafine particles are not essentially limited as long as they contain the same metal and / or metalloid element as the resin component, but metal oxides or metal fluorides are preferably used.
  • metal oxide and metal fluoride examples include Al 2 O 3 , Bi 2 O 3 , CaF 2 , In 2 O 3 , In 2 O 3 .SnO 2 , HfO 2 , La 2 O 3 , MgF 2 , Sb 2 O. 5 , Sb 2 O 5 .SnO 2 , SiO 2 , SnO 2 , TiO 2 , Y 2 O 3 , ZnO and ZrO 2 can be suitably used. At least one selected from the group consisting of Al 2 O 3 , SiO 2 and TiO 2 can be particularly preferably used.
  • the curable resin layer preferably includes a carbonyl group and includes a three-dimensional cross-linked structure from the viewpoint of suppressing dimensional changes of the polymer piezoelectric member due to deformation / modification of the polymer piezoelectric member.
  • the curable resin layer contains a carbonyl group, the adhesive force with the polymer piezoelectric member is excellent.
  • the adhesion to the polymer piezoelectric member and the solvent resistance can be further improved.
  • Examples of the method for forming a curable resin layer containing a carbonyl group and a polymer include a method of polymerizing a composition containing a compound having a carbonyl group and a functional compound having a reactive group.
  • the compound having the carbonyl group and the functional compound may or may not be the same.
  • the reactive group of the functional compound itself may contain a carbonyl group, and the structure other than the reactive group of the functional compound A carbonyl group may be included.
  • the compound having the carbonyl group and the functional compound are not the same, the compound having the carbonyl group has one or more reactive groups capable of reacting with the functional compound.
  • the polymerization reaction may be a reaction between one type of reactive group or a reaction between two or more different types of reactive groups.
  • reaction of two or more types of different reactive groups the above-mentioned reaction with a functional compound having two or more of the same reactive groups, even if two or more different reactive groups react in the same compound A functional compound having two or more different reactive groups capable of reacting with the functional group may be mixed.
  • Examples of the reactive group that reacts with one type of reactive group include an acryl group, a methacryl group, a vinyl group, an allyl group, an isocyanate group, and an epoxy group. .
  • Acrylic groups, methacrylic groups, and isocyanate groups have a carbonyl group among the reactive groups.
  • a vinyl group, allyl group, or epoxy group is used, a compound having a carbonyl group in the structure other than the reactive group can be used. From the viewpoint of giving the polymer a three-dimensional cross-linked structure, these same type of reactive groups can form a three-dimensional cross-linked structure if at least a bifunctional or higher functional compound is present in the composition.
  • the reactive group that reacts with two or more types of reactive groups includes an epoxy group and a carboxyl group, an epoxy group and an amino group, an epoxy group and a hydroxyl group, an epoxy group, Acid anhydride group, epoxy group and hydrazide group, epoxy group and thiol group, epoxy group and imidazole group, epoxy group and isocyanate group, isocyanate group and carboxyl group, isocyanate group and amino group, isocyanate group and hydroxyl group, carbodiimide group Combinations of amino group, carbodiimide group and carboxyl group, oxazolino group and carboxyl group, hydrazide group and carboxyl group, and the like can be used.
  • these heterogeneous reactive groups have a three-dimensional crosslinked structure if one or both of them are partially present in the composition. Can be formed.
  • the carboxyl group, acid anhydride group, hydrazide group, and isocyanate group have a carbonyl group among the reactive groups.
  • a compound having a carbonyl group in the structure other than the reactive group can be used.
  • Examples of the functional compound having an epoxy group and a carbonyl group in the same molecule include epoxy acrylate.
  • Examples of the functional compound having a hydroxyl group and a carbonyl group in the same molecule include polyester polyol, polyurethane polyol, acrylic polyol, polycarbonate polyol, and partial carboxymethyl cellulose.
  • Examples of the functional compound having an amino group and a carbonyl group in the same molecule include terminal amine polyamide, terminal amine polyimide, and terminal amine polyurethane.
  • a polymer of a compound having a (meth) acryl group is more preferable.
  • (Meth) acryl means containing at least one of acrylic and methacrylic.
  • a method for forming the curable resin layer As a method for forming the curable resin layer, a known method that has been generally used can be appropriately used. For example, a wet coating method may be used. For example, it is cured by applying a coating liquid in which a material (polymerizable compound or polymerized polymer compound) for forming a curable resin layer is dispersed or dissolved, and performing an operation such as drying as necessary. A functional resin layer is formed. Polymerization of the polymerizable compound may be performed before coating or after coating.
  • the curable resin layer may be cured by applying heat or active energy rays (ultraviolet rays, electron beams, radiation, etc.) to the material (polymerizable compound) during the polymerization.
  • heat or active energy rays ultraviolet rays, electron beams, radiation, etc.
  • the equivalent of the reactive group in the material (polymerizable compound) for forming the curable resin layer that is, increasing the number of reactive groups contained per unit molecular weight of the polymerizable compound.
  • the crosslink density is increased, and the adhesion to the polymer piezoelectric member can be further improved.
  • an active energy ray-curable resin cured by irradiation with active energy rays is preferable.
  • active energy rays ultraviolet rays, electron beams, radiation, etc.
  • the production efficiency can be improved, and the adhesion with the polymer piezoelectric member can be further improved.
  • the thickness (average thickness) d of the curable resin layer is not particularly limited, but is preferably in the range of 0.01 ⁇ m to 10 ⁇ m. When the thickness d is equal to or more than the above lower limit value, for example, the curable resin layer exhibits functions such as a hard coat layer described later.
  • the upper limit value of the thickness d is more preferably 6 ⁇ m or less, and even more preferably 3 ⁇ m or less. Further, the lower limit value is more preferably 0.2 ⁇ m or more, and further preferably 0.3 ⁇ m or more.
  • the curable resin layer may be provided on both surfaces of the polymer piezoelectric member.
  • the thickness d is the sum of the thicknesses of both surfaces.
  • the thickness d of the curable resin layer is determined by the following formula using a digital length measuring device DIGIMICRO STAND MS-11C manufactured by Nikon Corporation.
  • Formula d dt ⁇ dp dt: Average thickness of 10 laminates of the polymeric piezoelectric member and the curable resin layer
  • dt Average thickness of the 10 polymeric piezoelectric members before formation of the curable resin layer or after removal of the curable resin layer
  • the relative dielectric constant of the curable resin layer is preferably 1.5 or more, more preferably 2.0 or more and 20000 or less, and further preferably 2.5 or more and 10,000 or less. When the relative dielectric constant is in the above range, a large charge is generated by the electrode when an electrode is further provided on the curable resin layer in the laminate.
  • the relative dielectric constant of the curable resin layer is measured by the following method. After forming a curable resin layer on one side of the polymer piezoelectric member, Al of about 50 nm is deposited on both sides of the laminate using Showa Vacuum SIP-600. A 50 mm ⁇ 50 mm film is cut out from this laminate. This test piece is connected to LCR METER 4284A manufactured by HEWLETT PACKARD, the capacitance C is measured, and the relative dielectric constant ⁇ c of the curable resin layer is calculated by the following equation.
  • ⁇ c (C ⁇ dc ⁇ 2.7) / ( ⁇ 0 ⁇ 2.7 ⁇ S ⁇ C ⁇ dp)
  • dc curable resin layer thickness
  • ⁇ 0 vacuum dielectric constant
  • S test piece area
  • dp polymer piezoelectric member thickness
  • the internal haze of the curable resin layer is preferably 10% or less, more preferably 0.0% or more and 5% or less, and further preferably 0.01% or more and 2% or less.
  • the internal haze is in the above range, excellent transparency is exhibited, and for example, it can be effectively used as a press detection touch panel or the like.
  • the internal haze Hc of the curable resin layer is calculated by the following formula.
  • Hc H ⁇ Hp H: Internal haze of laminate of polymer piezoelectric member and curable resin layer
  • Hp Internal haze of polymer piezoelectric member before formation of curable resin layer or after removal of curable resin layer
  • polymer piezoelectric member The internal haze was measured using a haze measuring device (TC Density Co., Ltd., TC-HIII DPK) in accordance with JIS-K7105 for a polymer piezoelectric member having a thickness of 0.03 mm to 0.05 mm. The value is measured at 25 ° C., and details of the measuring method will be described in detail in Examples.
  • the internal haze of the laminate is also measured according to the method for measuring the internal haze of the polymer piezoelectric member.
  • the first electrode in the present invention is disposed in contact with at least a part of the surface of the polymer piezoelectric member and the surface of the curable resin layer. It is preferable that the electrode has a wide contact surface in contact with at least a part of the surface of the polymer piezoelectric member and the surface of the curable resin layer in order to make it easier to transmit the pressure applied by the pressing means.
  • the constituent component of the first electrode is not particularly limited, but for example, Al, Ag, Au, Cu, Ag—Pd alloy, Ag paste, carbon black, ITO (crystallized ITO and amorphous ITO), ZnO, IGZO, IZO (registered trademark), conductive polymer (polythiophene, PEDOT), Ag nanowire, carbon nanotube, graphene, or the like is used.
  • the method for forming the electrode depends on the constituent components, and examples thereof include sputtering, vapor deposition, and coating method.
  • a 2nd electrode may be arrange
  • the constituent components and the forming method of the second electrode include the same constituent components and forming method as the first electrode.
  • the first electrode and the second electrode in the present invention are preferably provided with an extraction electrode that is electrically connected.
  • Constituent components and forming method of the extraction electrode include the same constituent components and forming method as the first electrode.
  • Examples of the extraction electrode include FPC (flexible printed circuit board).
  • the end face of the electrode such as the first electrode or the second electrode is connected using ACF (anisotropic conductive film), ACP (anisotropic conductive paste), solder or the like.
  • ACF anisotropic conductive film
  • ACP anisotropic conductive paste
  • solder solder or the like.
  • a method is mentioned.
  • high heat is applied to the first electrode or the second electrode to which the extraction electrode is connected, and it is considered that high heat is also applied to the members around these electrodes. Since the layer is disposed in contact with at least a part of the surface of the polymer piezoelectric member, even if the polymer piezoelectric member is modified or deformed by heat, the dimensional change of the polymer piezoelectric member can be suppressed. .
  • the press detection device in the present invention may include a position detection member.
  • the position detection member is a specific direction in the main surface (contact surface) of the member to be pressed, X, and a direction perpendicular to X in the main surface of the member to be pressed is Y.
  • the member detects the position in the X and Y directions.
  • Any known member used for detecting such a position can be used as the position detecting member in the present invention.
  • the detection method include a resistance film method, a capacitance method, a surface acoustic wave method, an infrared method, and an optical method.
  • the location of the position detection member examples include the pressure surface side of the member to be pressed, the space between the member to be pressed and the polymer piezoelectric member, and the opposite side of the surface to which the member to be pressed of the polymer piezoelectric member is disposed. Can be mentioned.
  • the location of the resistive film type position detection member is preferably between the member to be pressed and the polymer piezoelectric member or on the opposite side of the surface of the polymer piezoelectric member where the member to be pressed is disposed.
  • the location of the detection member is preferably between the member to be pressed and the polymer piezoelectric member.
  • the location of the surface acoustic wave method, infrared method or optical method position detection member is preferably on the pressing surface side of the member to be pressed.
  • the position detection member may be integrated with the member to be pressed.
  • examples of the electrostatic capacity method include an in-cell type, an on-cell type, a film type, a cover glass integrated type, a film-glass composite type, and the like, depending on the position detection electrode.
  • a film type, a cover glass integrated type, and a film-glass composite type in which the pressure detection electrode does not hinder the position detection of the position detection electrode are desirable.
  • a touch sensor described in International Publication No. 2013/089048 is suitably used.
  • the position detection member includes, for example, an electrode and a base material (a film having high heat resistance such as PET or glass) provided with the electrode.
  • a film having high heat resistance in addition to PET, for example, polycarbonate (PC), polyvinyl alcohol (PVA), cycloolefin polymer (COP), polymethyl methacrylate (PMMA), triacetyl cellulose (TAC), polyimide (PI) ).
  • PC polycarbonate
  • PVA polyvinyl alcohol
  • COP cycloolefin polymer
  • PMMA polymethyl methacrylate
  • TAC triacetyl cellulose
  • PI polyimide
  • a zero retardation film with a very small in-plane retardation (several tens of nm) or an ultra-high retardation film with a very large in-plane retardation (several thousand nm or more) should be used. You can also.
  • the adhesive layer in the present invention is a layer having tackiness and adhesiveness.
  • An adhesive layer can be arrange
  • an adhesive layer of a double-sided tape (OCA; Optical Clear Adhesive) in which both surfaces are laminated with a separator can be used.
  • OCA Optical Clear Adhesive
  • the adhesive layer can also be formed using a solvent-based, solvent-free, water-based adhesive coating solution, UV curable OCR (Optical Clear Resin), hot melt adhesive, or the like.
  • optical transparent adhesive sheet LUCIACS series manufactured by Nitto Denko Corporation
  • highly transparent double-sided tape 5400A series manufactured by Sekisui Chemical Co., Ltd.
  • optical adhesive sheet Optia series manufactured by Lintec Corporation
  • high transparency adhesive Agent transfer tape series manufactured by Sumitomo 3M Co., Ltd.
  • SANCUARY series manufactured by Sanei Kaken Co., Ltd.
  • Adhesive coating solutions include SK Dyne Series (manufactured by Soken Chemical Co., Ltd.), Fine Tack Series (manufactured by DIC Corporation), Bon Coat Series, LKG Series (manufactured by Fujikura Kasei Co., Ltd.), and Coponille Series (Nippon Gosei Chemical Co., Ltd. Company-made).
  • the adhesive coating liquid is applied to members other than the OCA adhesive layer, the adhesive layer formed using OCR, and the polymer piezoelectric member.
  • An adhesive layer formed by applying a hot-melt adhesive to a member other than the adhesive layer formed by coating and a polymer piezoelectric member is preferable.
  • an adhesive layer contains resin.
  • the resin include acrylic resin, methacrylic resin, urethane resin, cellulose resin, vinyl acetate resin, ethylene-vinyl acetate resin, epoxy resin, nylon-epoxy resin, vinyl chloride resin, chloroprene rubber resin, and cyanoacrylate resin.
  • Resin silicone resin, modified silicone resin, aqueous polymer-isocyanate resin, styrene-butadiene rubber resin, nitrile rubber resin, acetal resin, phenol resin, polyamide resin, polyimide resin, melamine resin, urea resin, bromine Resins, starch resins, polyester resins, polyolefin resins and the like can be mentioned.
  • the press detection touch panel in the present invention may have a member having an existing function as long as the effects of the present invention are not impaired.
  • These members may be a single functional layer or may have a form in which a functional layer is formed on a substrate such as a film.
  • Functional layers include polarizing layer, retardation layer, anti-scattering layer, anti-reflection layer, anti-glare layer, anti-Newton ring layer, gas barrier layer, hard coat layer, anti-fingerprint layer, refractive index adjusting layer, slippery layer, anti-blocking layer , A protective layer, an antistatic layer, a heat dissipation layer, an ultraviolet absorption layer, and the like.
  • the press detection device of the present embodiment can be used as a press detection touch panel in combination with a display device.
  • a transparent electrode is preferable as the first electrode and the second electrode.
  • the transparency of the electrode specifically means that the internal haze is 20% or less (total light transmittance is 80% or more).
  • the display device for example, a liquid crystal panel, an organic EL panel, or the like can be used.
  • polylactic acid film PLA film
  • polylactic acid polymer product name: Ingeo TM Biopolymer, brand: 4032D, weight average molecular weight Mw: 20 million in the melting point (Tm): 166 ° C., a glass transition temperature ( Tg): 57-60 ° C.
  • Tm melting point
  • Tg glass transition temperature
  • the prepared raw material is put into an extruder hopper, extruded from a T die while being heated to 220 ° C to 230 ° C, and brought into contact with a cast roll at 55 ° C for 0.5 minutes to produce a pre-crystallized sheet having a thickness of 150 ⁇ m. Filmed (pre-crystallization step). The crystallinity of the pre-crystallized sheet was measured and found to be 5.63%. The obtained pre-crystallized sheet was stretched by roll-to-roll while being heated to 70 ° C. at a stretching speed of 1650 mm / min, and uniaxially stretched in the MD direction up to 3.3 times (stretching step).
  • the thickness of the obtained film was 0.05 mm (50 ⁇ m). Thereafter, the uniaxially stretched film was subjected to annealing treatment by roll-to-roll on a roll heated to 130 ° C. for 60 seconds to produce a polymer piezoelectric member (annealing step).
  • the polymer piezoelectric member is accurately weighed to 10 mg, and heated to 140 ° C. at a temperature rising rate of 500 ° C./min using a differential scanning calorimeter (DSC-1 manufactured by PerkinElmer Co.). The temperature was raised to 200 ° C. at 10 ° C./min to obtain a melting curve. The melting point Tm and crystallinity were obtained from the obtained melting curve.
  • the term “inside haze” as used herein refers to the inside haze of a polymer piezoelectric member, and the measurement method is a general method. Specifically, the internal haze value of the polymer piezoelectric member of this example was measured by measuring the light transmittance in the thickness direction using the following apparatus under the following measurement conditions. More specifically, the haze (H2) is measured by sandwiching only a silicone oil (Shin-Etsu Chemical Co., Ltd., Shin-Etsu Silicone (registered trademark), model number: KF96-100CS) between two glass plates in advance.
  • a silicone oil Shin-Etsu Chemical Co., Ltd., Shin-Etsu Silicone (registered trademark), model number: KF96-100CS
  • a polymer piezoelectric member having a surface uniformly coated with silicone oil is sandwiched between two glass plates, the haze (H3) is measured, and the difference between these is obtained as shown in the following formula.
  • the internal haze (H1) was obtained.
  • Internal haze (H1) Haze (H3) -Haze (H2)
  • Said haze (H2) and said haze (H3) were calculated
  • Measuring device Tokyo Denshoku Co., Ltd., HAZE METER TC-HIIIDPK Sample size: width 3mm x length 30mm, thickness 0.05mm Measurement conditions: Conforms to JIS-K7105 Measurement temperature: Room temperature (25 ° C)
  • the normalized molecular orientation MORc was measured by a microwave molecular orientation meter MOA-6000 manufactured by Oji Scientific Instruments.
  • the reference thickness tc was set to 50 ⁇ m.
  • piezoelectric constant d 14 Aforementioned stress - the measuring method of the charge method, was measured piezoelectric constant d 14 of the piezoelectric polymer member.
  • Example 1 ⁇ Formation of curable resin layer>
  • an acrylic hard coat liquid Pertron A2002, Pertron A2002 was used.
  • a PLA film having a width of 100 mm and a length of 100 mm is cut out from the produced polymer piezoelectric member (PLA film), and the coating liquid for forming the curable resin layer is formed on the entire surface of one of the wide surfaces of the cut PLA film.
  • PPA film polymer piezoelectric member
  • the coating liquid for forming the curable resin layer is formed on the entire surface of one of the wide surfaces of the cut PLA film.
  • the thickness of the curable resin layer was 2 ⁇ m.
  • a curable resin layer was similarly formed on the opposite surface on which the curable resin layer was formed, and a curable resin layer was formed on both sides of the PLA film.
  • Dimensional change rate (%) 100 ⁇ ((side length in the MD direction of the PLA film before heating) ⁇ (side length in the MD direction of the PLA film after heating)) / (side in the MD direction of the PLA film before heating) Long)
  • Example 1 The dimensional change rate was evaluated in the same manner as in Example 1 using the same PLA film as in Example 1 (PLA film on which the curable resin layer was not formed). The results are shown in Table 2 below and FIG.
  • the polymer piezoelectric member with the curable resin layer of Example 1 has a lower dimensional change rate than the polymer piezoelectric member without the curable resin layer of Comparative Example 1. it is obvious. From this, the press detection apparatus to which the polymer piezoelectric member with a curable resin layer in the present embodiment is applied does not require a step of forming a laminate of a film such as PET and the first electrode. It is clear that the manufacturing process is simplified. In addition, it is clear that the pressure detection apparatus to which the polymer piezoelectric member with a curable resin layer in the present embodiment is applied is thin because a film such as PET is not necessary.
  • Example 2 An ITO film (thickness: 100 nm) was laminated as an electrode on one side of the PLA film with a curable resin layer produced in Example 1 to produce a laminate.
  • the polymer piezoelectric member of the laminate (with curable resin layer) obtained in Example 2 is the polymer piezoelectric member of the laminate (without curable resin layer) obtained in Comparative Example 2. It is clear that the dimensional change rate at 150 ° C. is low as compared with FIG. Further, in Example 2, there was no significant difference between the initial surface resistance and the surface resistance after heating, but in Comparative Example 2, a large difference was observed between the initial surface resistance and the surface resistance after heating. In Comparative Example 2, it is considered that the surface resistance after heating was greatly increased due to the large deformation of the polymer piezoelectric material and the damage of the ITO film.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Human Computer Interaction (AREA)
  • Position Input By Displaying (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

 加圧手段が接触して圧力が加えられる接触面を有する被加圧部材と、前記被加圧部材の前記接触面とは反対側に配置され、25℃において応力-電荷法で測定した圧電定数d14が1pC/N以上である高分子圧電部材と、常温硬化性樹脂、熱硬化性樹脂、及び活性エネルギー線硬化樹脂からなる群から選ばれる少なくとも一方を含み、前記高分子圧電部材の表面の少なくとも一部に接触して配置されている硬化性樹脂層と、前記高分子圧電部材の表面及び前記硬化性樹脂層の表面の少なくとも一部に接触して配置されている電極と、を備える、押圧検出装置。

Description

押圧検出装置及び押圧検出タッチパネル
 本発明は、押圧検出装置及び押圧検出タッチパネルに関する。
 圧電材料としては、従来、セラミックス材料であるPZT(PbZrO-PbTiO系固溶体)が多く用いられてきたが、PZTは、鉛を含有することから、環境負荷が低く、また柔軟性に富む高分子圧電部材が用いられるようになってきている。
 現在知られている高分子圧電部材は、ナイロン11、ポリフッ化ビニル、ポリ塩化ビニル、ポリ尿素、ポリフッ化ビニリデン(β型)(PVDF)と、フッ化ビニリデン-トリフルオロエチレン共重合体(P(VDF-TrFE))(75/25)などに代表されるポーリング型高分子である。
 近年、上記の高分子圧電部材以外に、ポリペプチドやポリ乳酸等の光学活性を有する高分子を用いることが着目されている。ポリ乳酸系高分子は、機械的な延伸操作のみで圧電性が発現することが知られている。
 光学活性を有する高分子の中でも、ポリ乳酸のような高分子結晶の圧電性は、螺旋軸方向に存在するC=O結合の永久双極子に起因する。特にポリ乳酸は、主鎖に対する側鎖の体積分率が小さく、体積あたりの永久双極子の割合が大きく、ヘリカルキラリティをもつ高分子の中でも理想的な高分子といえる。
 延伸処理のみで圧電性を発現するポリ乳酸は、ポーリング処理が不要で、圧電率は数年にわたり減少しないことが知られている。
 ポリ乳酸を含む高分子圧電部材としては、ポリ乳酸を有することにより、圧電定数d14が大きく、透明性に優れる高分子圧電部材が報告されている(例えば、特許第4934235号公報、国際公開第2010/104196号参照)。
 ポリ乳酸系高分子を高分子圧電部材として用いた装置としては、例えば、ポリ乳酸から作製した圧電シートを備えた押圧検出タッチパネルが提案されている(例えば、国際公開第2010/143528号、国際公開第2011/125408号、国際公開第2012/049969号、国際公開第2011/138903号参照)。押圧検出タッチパネルは、タッチパネル上の二次元的な位置情報だけでなく、タッチパネル面を押した圧力を検出できるため、タッチパネルの操作方法を三次元に拡張することが可能である。
 押圧検出タッチパネルの構成部材である押圧検出装置(圧電デバイスの一例)に適用される高分子圧電部材は、熱に弱く、温度によっては変形・変性する場合がある。特に高分子圧電部材は圧電性を発現させるために一方向に分子鎖を配向させる必要があるため、一般的な二軸延伸フィルムと比べて熱による一方向への変形が非常に大きく、実際に押圧検出装置に適用した際、以下に記載する課題があることが、本発明者らの検討により明らかになった。
 ここで、押圧検出装置は、押圧検出装置内の高分子圧電部材周辺に形成した電極から電気信号を取り出すときに、例えば、この電極に電気的に接続した取り出し電極を用いる場合がある。そして、取り出し電極を、上記電極と導通させるために、ACF(異方性導電フィルム)などを用い、両電極間に高熱を加える必要がある。
 そのため、高分子圧電部材を電極周辺に適用している場合、高分子圧電部材が、取り出し電極を接続する熱により変形・変性する可能性がある。
 高分子圧電部材の電極を接続する反対面に変形を抑える補強版(ガラスエポキシ、ポリイミド等)を配置することも可能であるが、変形・変性を抑制する効果は十分では無い。
 また、高分子圧電材料周辺に形成される電極は、目的に応じて精密な電極パターンとして形成される場合がある。この場合、取り出し電極を接続する熱や、その他のタッチパネル製造工程での熱により、高分子圧電部材が変形・変化し、精密な電極パターンの位置にズレが生じたり、電極が高分子圧電部材の変形・変化に追随できずに破損したりすることで、デバイスが正常に機能しなくなる。
 そこで、高分子圧電部材を適用する押圧検出装置は、例えば、上記のような高熱がかかる場合を考慮して、耐熱性が比較的高いポリエチレンテレフタラート(PET)、ポリカーボネート(PC)、ポリビニルアルコール(PVA)、シクロオレフィンポリマー(COP)、ポリメタクリル酸メチル(PMMA)、トリアセチルセルロース(TAC)、ポリイミド(PI)などのフィルムやガラスなどの基材上に電極を形成し、次いで、電極が形成された基材と、高分子圧電部材と、を接着して製造する必要がある。
 しかし、この場合、PETなどのフィルムやガラスなどの基材上に電極が形成された積層体を形成する工程が必要となるため、押圧検出装置の製造工程が煩雑になる。
 また、PETなどのフィルムやガラスなどの基材や、粘接着層を含むこととなるため、押圧検出装置が厚くなる、またそれによって透明性が求められる用途では光学特性が悪化するという問題があった。
 そこで、本発明においては、上記事情に鑑み、製造工程が単純化され、且つ、薄化した押圧検出装置を提供することを目的とする。
 本発明者は、押圧検出装置において、硬化性樹脂層を所定の位置に配置することで、製造工程が単純化され、且つ、薄化した押圧検出装置が提供できることを見出し、この知見に基づき本発明を完成させた。
 即ち、前記課題を解決するための具体的手段は以下の通りである。
<1> 加圧手段が接触して圧力が加えられる接触面を有する被加圧部材と、前記被加圧部材の前記接触面とは反対側に配置され、25℃において応力-電荷法で測定した圧電定数d14が1pC/N以上である高分子圧電部材と、常温硬化性樹脂、熱硬化性樹脂、及び活性エネルギー線硬化樹脂からなる群から選ばれる少なくとも一つを含み、前記高分子圧電部材の表面の少なくとも一部に接触して配置されている硬化性樹脂層と、前記高分子圧電部材の表面及び前記硬化性樹脂層の表面の少なくとも一部に接触して配置されている電極と、を備える、押圧検出装置。
<2> 前記硬化性樹脂層がカルボニル基を含み、且つ、三次元架橋構造を含む、<1>に記載の押圧検出装置。
<3> 位置検出部材を備える、<1>又は<2>に記載の押圧検出装置。
<4> 前記被加圧部材と前記高分子圧電部材との間に、粘接着層が配置されている、<1>~<3>のいずれか1つに記載の押圧検出装置。
<5> 前記位置検出部材と前記高分子圧電部材との間に、粘接着層が配置されている、<3>に記載の押圧検出装置。
<6> 前記高分子圧電部材の繰り返し単位構造が、カルボニル基、及びオキシ基からなる群から選ばれる少なくとも1種類の官能基を有する、<1>~<5>のいずれか1つに記載の押圧検出装置。
<7> 前記高分子圧電部材が、重量平均分子量が5万~100万である光学活性を有するヘリカルキラル高分子を含み、マイクロ波透過型分子配向計で測定される基準厚さを50μmとしたときの規格化分子配向MORcが2.0~10.0であり、可視光線に対する内部ヘイズが50%以下であり、且つ、前記規格化分子配向MORcと前記高分子圧電部材のDSC法で測定される結晶化度との積が25~700である、<1>~<6>のいずれか1つに記載の押圧検出装置。
<8> 前記内部ヘイズが5%以下である、<7>に記載の押圧検出装置。
<9> 前記内部ヘイズが2.0%以下である、<7>または<8>に記載の押圧検出装置。
<10> 前記内部ヘイズが1.0%以下である、<7>~<9>のいずれか1つに記載の押圧検出装置。
<11> 前記ヘリカルキラル高分子が、下記式(1)で表される繰り返し単位を含む主鎖を有するポリ乳酸系高分子である、<7>に記載の押圧検出装置。
Figure JPOXMLDOC01-appb-C000002

 
<12> 前記ヘリカルキラル高分子は、光学純度が95.00%ee以上である、<7>又は<11>に記載の押圧検出装置。
<13> 前記高分子圧電部材が、前記ヘリカルキラル高分子の含有量が80質量%以上である、<7>、<11>および<12>のいずれか1つに記載の押圧検出装置。
<14> さらに、前記電極に電気的に接続されている取り出し電極を備える、<1>~<13>のいずれか1つに記載の押圧検出装置。
<15> <1>~<14>のいずれか1つに記載の押圧検出装置と、表示装置とを備える、押圧検出タッチパネル。
 本発明によれば、製造工程が単純化され、且つ、薄化した押圧検出装置が提供される。
本実施形態に係る押圧検出装置を備える押圧検出装置の一例について厚さ方向の断面を概略的に示す断面図である。 本実施形態に係る押圧検出装置の内、押圧検出部材30の他の一例について厚さ方向の断面を概略的に示す断面図である。 本実施形態に係る押圧検出装置の内、押圧検出部材30の他の一例について厚さ方向の断面を概略的に示す断面図である。 本実施形態に係る押圧検出装置の内、押圧検出部材30の他の一例について厚さ方向の断面を概略的に示す断面図である。 本実施形態に係る押圧検出装置の内、押圧検出部材30の他の一例について厚さ方向の断面を概略的に示す断面図である。 本実施形態に係る押圧検出装置の内、押圧検出部材30の他の一例について厚さ方向の断面を概略的に示す断面図である。 本実施例における寸法変化率の評価結果である。
[押圧検出装置]
 本発明の押圧検出装置は、加圧手段が接触して圧力が加えられる接触面を有する被加圧部材と、被加圧部材の接触面とは反対側に配置され、25℃において応力-電荷法で測定した圧電定数d14が1pC/N以上である高分子圧電部材と、常温硬化性樹脂、熱硬化性樹脂、及び活性エネルギー線硬化樹脂、の少なくとも一つを含み、高分子圧電部材の表面の少なくとも一部に接触して配置されている硬化性樹脂層と、高分子圧電部材の表面及び硬化性樹脂層の表面の少なくとも一部に接触して配置されている電極と、を備える。
 本発明においては、硬度が高い硬化性樹脂層を、高分子圧電部材の表面の少なくとも一部に接触して配置している。そのため、高分子圧電部材の表面及び硬化性樹脂層の表面の少なくとも一部に接触して配置されている電極(以下、「第1電極」と称する場合がある)に高熱がかかり、その熱がさらに高分子圧電部材に伝わった場合であっても、硬化性樹脂層が高分子圧電部材の支持体として働き、高分子圧電部材の変形・変性に起因する高分子圧電部材の寸法変化を抑制することができる。
 その結果、PETなどの耐熱性が高いフィルム上に電極を形成して粘接着層を介して高分子圧電部材と貼り合わせ、第1電極の代わりとすることが不要となるので、装置全体を薄化することができる。
 また、例えば、PETなどの耐熱性が高いフィルム上に電極を形成した積層体を製造する工程や、高分子圧電部材上に粘接着層等を介して積層体を貼り合せる工程が不要となるため、本実施形態に係る押圧検出装置は、製造工程が単純化できる。
 以上より、製造工程が単純化され、且つ、薄化した押圧検出装置が提供されることとなる。
 なお、電極が、「高分子圧電部材の表面及び硬化性樹脂層の表面の少なくとも一部に接触して配置されている」態様としては、(1)高分子圧電部材の表面の一部又は全部に接触して配置されており、且つ硬化性樹脂層の表面に接触して配置されていない態様、(2)硬化性樹脂層の表面の一部又は全部に接触して配置されており、且つ高分子圧電部材の表面に接触して配置されていない態様、(3)高分子圧電部材の表面の一部又は全部に接触して配置されており、且つ硬化性樹脂層の表面の一部又は全部に接触して配置されている態様、が挙げられる。
 本実施形態の一例に係る押圧検出装置10について、図を用いて具体的に説明する。
 図1は、本実施形態に係る押圧検出装置を備える押圧検出タッチパネルの一例について厚さ方向の断面を概略的に示す断面図である。
 図2A~2Eは、本実施形態に係る押圧検出装置を押圧検出タッチパネルの内、押圧検出部材30の一例について厚さ方向の断面を概略的に示す断面図である。
 本実施形態の一例に係る押圧検出装置10は、加圧手段が接触して圧力が加えられる接触面12Aを有する被加圧部材12と、押圧検出部材30と、を備える。
 さらに、押圧検出部材30は、被加圧部材12の接触面12Aとは反対側に配置され、25℃において応力-電荷法で測定した圧電定数d14が1pC/N以上である高分子圧電部材20、常温硬化性樹脂と、熱硬化性樹脂と、活性エネルギー線硬化樹脂と、の少なくとも一つを含み、高分子圧電部材20の表面の少なくとも一部に接触して配置されている硬化性樹脂層18、及び、一対の第1電極16から構成される。
 そして、この一例においては、被加圧部材12と、押圧検出部材30との間に、PETなどの耐熱性が高いフィルム24と、フィルム24上に設けられた電極(以下、「第2電極」と称する場合がある)22と、粘接着層14とから構成される位置検出部材32を備えている。
 また、この一例においては、粘接着層14が、被加圧部材12と位置検出部材32との間、位置検出部材32と押圧検出部材30との間、及び、押圧検出部材30における被加圧部材12が配置された側と反対側の面にも配置されている。
 また、この一例では、さらに、第1電極16には、第1取り出し電極26が、第2電極22には、第2取り出し電極28が接続されている。
 なお、本実施形態において、高分子圧電部材20は、被加圧部材12の接触面12Aとは反対側に配置されていればよい。
 具体的には、高分子圧電部材20が、被加圧部材12の接触面12Aとは反対側に、例えば、被加圧部材12に接触して配置されていてもよく、被加圧部材12との間に、空隙(隙間)や、他の層(例えば、粘接着層14、硬化性樹脂層18など)が存在していてもよい。
 押圧検出部材30は、具体的には、被加圧部材12が配置されている側から順番に、第1電極16と、硬化性樹脂層18と、高分子圧電部材20と、硬化性樹脂層18と、第1電極16とが配置されている。
 押圧検出部材30は、高分子圧電部材20の表面の少なくとも一部に硬化性樹脂層18が接触して配置され、高分子圧電部材20の表面及び硬化性樹脂層18の表面の少なくとも一部に第1電極16が接触して配置されている構成であればよい。
 押圧検出装置10は、被加圧部材12の接触面12Aに加圧手段が接触して圧力が加えられると、被加圧部材12と、位置検出部材32と、粘接着層14と、押圧検出部材30とそこに含まれる高分子圧電部材20と、が共に撓む。この撓みにより、高分子圧電部材20において、圧力が加えられた位置に電荷が発生する。
 発生した電荷は、第1電極の端面に電気的に接続された第1取り出し電極26により取り出される。
 押圧検出部材30の他の例としては、例えば、以下の(1)~(5)が挙げられる(図2A~2E参照)。
(1)被加圧部材12が配置されている側から順番に、第1電極16と、硬化性樹脂層18と、高分子圧電部材20と、硬化性樹脂層18とが配置されている例(図2A参照)。
(2)被加圧部材12が配置されている側から順番に、第1電極16と、硬化性樹脂層18と、高分子圧電部材20とが配置されている例(図2B参照)。
(3)被加圧部材12が配置されている側から順番に、第1電極16と、高分子圧電部材20と、硬化性樹脂層18とが配置されている例(図2C参照)。
(4)被加圧部材12が配置されている側から順番に、第1電極16と、硬化性樹脂層18と、高分子圧電部材20と、硬化性樹脂層18と、第1電極16とが配置されている例(図2D参照)。
(5)被加圧部材12が配置されている側から順番に、第1電極16と、硬化性樹脂層18と、高分子圧電部材20、第1電極16とが配置されている例(図2E参照)。
 本実施形態の一例である押圧検出装置10は、位置検出部材32を備えている。
 本実施形態の一例である位置検出部材32は、被加圧部材12の接触面12Aの反対側に、粘接着層14を介して配置されており、具体的には、この粘接着層14から順番に、第2電極22と、PETなどの耐熱性が高いフィルム24と、粘接着層14と、第2電極22と、PETなどの耐熱性が高いフィルム24と、から構成される。
 第2電極22は、フィルム24又は被加圧部材12に接触して配置されていればよく、被加圧部材12の接触面12Aの反対側の面に、接触して配置されていてもよい。
 位置検出部材32の詳細については、後述する。
 以下、本実施形態における押圧検出装置10の各構成要件について、詳細に説明する。
 なお、符号は省略して説明する。
<被加圧部材>
 本実施形態における被加圧部材(例えば上記被加圧部材)は、操作者の指などの加圧手段が接触して圧力が加えられる接触面を有する。
 本実施形態における被加圧部材は、ガラスなどの無機材料、樹脂(アクリル樹脂、ポリカーボネート樹脂、シクロオレフィン樹脂、塩化ビニル樹脂、等)などの有機材料(好ましくは樹脂)など、材質は特に限定されない。
 また、被加圧部材としては、無機材料層及び有機材料層とが積層され一体化した形態の被加圧部材や、樹脂材料層中に無機材料を分散した形態の被加圧部材を用いることもできる。
 また、本実施形態の押圧検出装置を表示装置と組み合わせて押圧検出タッチパネルを作製する場合は、表示装置の視認性を高めるため、被加圧部材としては、透明性が高い材料を用いることが好ましい。
 接触面は、操作者の指などの加圧手段が接触する面である。接触面は、単独の層として形成された被加圧部材の表面であってもよいし、被加圧部材を複数の材料で構成して最表面の層が接触面を形成してもよい。例えば、被加圧部材の表面に電極が配置されていてもよく、耐傷性を高めるためハードコート層が形成されていてもよい。また、被加圧部材は内部に一部空隙があってもよい。
 被加圧部材の厚さは、検出信号の歪みを抑制する観点から、0.2mm~20mmの範囲にあることが好ましく、0.3mm~10mmであることがより好ましい。
 本実施形態において、被加圧部材と高分子圧電部材との間に空隙がある場合は、圧力が加えられる方向の空隙の大きさは0.1mm以下であることが好ましい。これは指などによる加圧手段によって被加圧部材に撓み(変位)が生じた際に、被加圧部材が高分子圧電部材と接触することで、被加圧部材の撓みが高分子圧電部材に伝播し、高分子圧電部材により電荷が発生しやすくなるからである。
<高分子圧電部材>
 本発明における高分子圧電部材は、被加圧部材の接触面とは反対側に配置され、25℃において応力-電荷法で測定した圧電定数d14が1pC/N以上である。
 以下、高分子圧電部材の特性について説明する。
(高分子圧電部材の特性)
-圧電定数d14(応力-電荷法)-
 高分子圧電部材は、25℃において応力-電荷法で測定した圧電定数d14が1pC/N以上である。
 以下、「25℃において応力-電荷法で測定した圧電定数d14」を、単に「圧電定数d14」や「圧電定数」ともいう。
 以下、応力-電荷法による圧電定数d14の測定方法の一例について説明する。
 まず、高分子圧電部材を、高分子圧電部材の延伸方向(MD方向)に対して45°なす方向に150mm、45°なす方向に直交する方向に50mmにカットして、矩形の試験片を作製する。次に、昭和真空SIP-600の試験台に得られた試験片をセットし、アルミニウム(以下、Alとする)の蒸着厚が約50nmとなるように、試験片の一方の面にAlを蒸着する。次いで試験片の他方の面に同様に蒸着して、試験片の両面にAlを被覆し、Alの導電層を形成する。
 両面にAlの導電層が形成された150mm×50mmの試験片を、高分子圧電部材の延伸方向(MD方向)に対して45°なす方向に120mm、45°なす方向に直交する方向に10mmにカットして、120mm×10mmの矩形のフィルムを切り出す。これを、圧電定数測定用サンプルとする。
 得られたサンプルを、チャック間距離70mmとした引張試験機(AND社製、TENSILON RTG-1250)に、弛まないようにセットする。クロスヘッド速度5mm/minで、印加力が4Nと9N間を往復するように周期的に力を加える。このとき印加力に応じてサンプルに発生する電荷量を測定するため、静電容量Qm(F)のコンデンサーをサンプルに並列に接続し、このコンデンサーCm(95nF)の端子間電圧Vを、バッファアンプを介して測定する。以上の測定は25℃の温度条件下で行う。発生電荷量Q(C)は、コンデンサー容量Cmと端子間電圧Vmとの積として計算する。圧電定数d14は下式により計算される。
 d14=(2×t)/L×Cm・ΔVm/ΔF
  t:サンプル厚(m)
  L:チャック間距離(m)
  Cm:並列接続コンデンサー容量(F)
  ΔVm/ΔF:力の変化量に対する、コンデンサー端子間の電圧変化量比
 圧電定数d14は高ければ高いほど、高分子圧電部材に印加される電圧に対する高分子圧電部材の変位、逆に高分子圧電部材に印加される力に対し発生する電圧が大きくなり、高分子圧電部材としては有用である。
 具体的には、本発明における高分子圧電部材において、25℃における応力-電荷法で測定した圧電定数d14は、1pC/N以上であり、3pC/N以上が好ましく、4pC/N以上がより好ましい。また圧電定数d14の上限は特に限定されないが、後述する透明性などのバランスの観点からは、ヘリカルキラル高分子を用いた高分子圧電部材では50pC/N以下が好ましく、30pC/N以下がより好ましい。
 また、同様に透明性とのバランスの観点からは共振法で測定した圧電定数d14が15pC/N以下であることが好ましい。
 なお、本明細書中において、「MD方向」とはフィルムの流れる方向(Machine Direction)であり、「TD方向」とは、前記MD方向と直交し、フィルムの主面と平行な方向(Transverse Direction)である。
-規格化分子配向MORc-
 また、本発明の高分子圧電部材は、規格化分子配向MORcが2.0~10.0であることが好ましい。
 規格化分子配向MORcが2.0~10.0の範囲にあれば、フィルムの強度を高く維持し、かつ、特定方向(例えば、主たる延伸方向とフィルムの面内で直交する方向)のフィルムの強度の低下が抑制される。
 また、MORcが上記範囲にあれば、延伸方向に配列する高分子圧電部材が多く、その結果、配向結晶の生成する率が高くなり、高い圧電性を発現することが可能となる。
 ここで、規格化分子配向MORcについて説明する前に、まず、分子配向度MOR(Molecular Orientation Ratio)について説明する。
 分子配向度MORは、分子の配向の度合いを示す値であり、以下のようなマイクロ波測定法により測定される。
 すなわち、試料(フィルム)を、周知のマイクロ波分子配向度測定装置(マイクロ波透過型分子配向計ともいう)のマイクロ波共振導波管中に、マイクロ波の進行方向に前記試料面(フィルム面)が垂直になるように配置する。そして、振動方向が一方向に偏ったマイクロ波を試料に連続的に照射した状態で、試料をマイクロ波の進行方向と垂直な面内で0~360°回転させて、試料を透過したマイクロ波強度を測定することにより分子配向度MORを求める。
 上記規格化分子配向MORcとは、基準厚さtcを50μmとしたときのMOR値であって、下記式により求めることができる。
 MORc = (tc/t)×(MOR-1)+1
(tc:補正したい基準厚さ、t:試料厚さ)
 規格化分子配向MORcは、公知の分子配向計、例えば王子計測機器株式会社製マイクロ波方式分子配向計MOA-2012AやMOA-6000等により、4GHzもしくは12GHz近傍の共振周波数で測定することができる。
 また、規格化分子配向MORcは、高分子圧電部材を製造する際の結晶化の条件(例えば、加熱温度および加熱時間)及び延伸の条件(例えば、延伸温度および延伸速度)によって制御されうる。
 なお、規格化分子配向MORcは、位相差量(レターデーション)をフィルムの厚さで除した複屈折率Δnに変換することもできる。
 具体的には、レターデーションは大塚電子株式会社製RETS100を用いて測定することができる。またMORcとΔnとは大凡、直線的な比例関係にあり、かつΔnが0の場合、MORcは1になる。
 例えば、高分子(例えば、後述する高分子(A))がポリ乳酸系高分子で複屈折率Δnを測定波長550nmで測定した場合、規格化分子配向MORcの好ましい範囲の下限である2.0は、複屈折率Δn 0.005に変換できる。また高分子圧電部材の規格化分子配向MORcと結晶化度の積の好ましい範囲の下限である40は、高分子圧電部材の複屈折率Δnと結晶化度の積が0.1に変換することができる。
-内部ヘイズ-
 高分子圧電部材の透明性は、例えば、目視観察やヘイズ測定により評価することができる。
 高分子圧電部材は、可視光線に対する内部ヘイズが50%以下であることが好ましい。ここで内部ヘイズは、厚さ0.03mm~0.05mmの高分子圧電部材に対して、JIS-K7105に準拠して、ヘイズ測定機〔(有)東京電色製、TC-HIII DPK〕を用いて25℃で測定したときの値であり、測定方法の詳細は実施例において詳述する。
 高分子圧電部材の前記内部ヘイズは、更に40%以下であることが好ましく、20%以下であることがより好ましく、13%以下であることが更に好ましく、5%以下であることが更に好ましい。更に、高分子圧電部材の前記内部ヘイズは、縦裂強度をより向上させる観点からは、2.0%以下が好ましく、1.0%以下が特に好ましい。
 また、高分子圧電部材の前記内部ヘイズは、低ければ低いほどよいが、圧電定数などとのバランスの観点からは、0.0%~40%であることが好ましく、0.01%~20%であることがさらに好ましく、0.01%~5%がさらに好ましく、0.01%~2.0%がさらに好ましく、0.01%~1.0%が特に好ましい。
 なお、本願でいう高分子圧電部材の「内部ヘイズ」とは、実施例において後述するように前記高分子圧電部材の外表面の形状によるヘイズを除外したヘイズである。
-結晶化度-
 本発明の高分子圧電部材は、DSC法(示差走査熱分析法)で得られる結晶化度が20%~80%である。
 結晶化度が20%未満であると、高分子圧電部材の強度が不足する傾向がある。
 結晶化度が80%を超えると、高分子圧電部材の透明性が不足する(即ち、内部ヘイズが高くなる)傾向がある。
 また、結晶化度が20%~80%であることは、内部ヘイズの面内均一性を向上させる点でも有利である。
 結晶化度は、30%~70%が好ましい。
 また、高分子圧電部材の結晶化度が20%以上であることは、高分子圧電部材の圧電性(圧電定数)を向上させる点でも有利である。
-規格化分子配向MORcと結晶化度の積-
 高分子圧電部材の規格化分子配向MORcと結晶化度との積は、好ましくは25~700、さらに好ましくは75~680、さらに好ましくは90~660、さらに好ましくは125~650、さらに好ましくは180~350である。
 上記の積が25~700の範囲にあれば、透明性及び寸法安定性が好適に維持される。 更に、高分子圧電部材の圧電性も好適に維持される。
 本発明では、例えば、高分子圧電部材を製造する際の結晶化及び延伸の条件を調整することにより、高分子圧電部材の結晶化度と規格化分子配向MORcとの積を上記範囲に調整することができる。
-厚さ-
 本発明の高分子圧電部材の厚さには特に制限はないが、例えば、10μm~1000μmとすることができ、10μm~400μmが好ましく、20μm~200μmがより好ましく、20μm~100μmが更に好ましく、30μm~80μmが特に好ましい。
 また、本発明の高分子圧電部材は、単層フィルムとして用いられてもよいし、積層フィルムとして用いられてもよい。
(高分子圧電部材の成分)
 次に、高分子圧電部材の成分について説明する。
 高分子圧電部材は、高分子(A)を含み、目的に応じて、安定化剤(B)及びその他の成分を含んでいてもよい。
-高分子(A)-
 高分子圧電部材は、高分子(A)として、繰り返し単位構造が、カルボニル基、及びオキシ基からなる群から選ばれる少なくとも1種類の官能基を有することが好ましい。
 上述した、高分子圧電部材の表面の微小領域で発生する電気的極性は、特に高分子圧電部材に、極性が高いカルボニル基やオキシ基を含む場合に、より大きくなると考えられる。
 また、高分子圧電部材は、高分子(A)として、重量平均分子量が5万~100万である光学活性を有するヘリカルキラル高分子を含むことが好ましい。
 へリカルキラル高分子の重量平均分子量が5万未満であると、高分子圧電部材の機械的強度が不十分となる。高分子圧電部材の重量平均分子量は、10万以上であることが好ましく、15万以上であることがさらに好ましい。
 一方、へリカルキラル高分子の重量平均分子量が100万を超えると、高分子圧電部材を成形すること(例えば、押出成型などによりフィルム形状などに成形すること)が難しくなる。へリカルキラル高分子の重量平均分子量は、80万以下であることが好ましく、30万以下であることがさらに好ましい。
 また、へリカルキラル高分子の分子量分布(Mw/Mn)は、高分子圧電部材の強度の観点から、1.1~5であることが好ましく、1.2~4であることがより好ましい。さらに1.4~3であることが好ましい。
 なお、へリカルキラル高分子の重量平均分子量Mw及び分子量分布(Mw/Mn)は、ゲル浸透クロマトグラフ(GPC)を用い、下記GPC測定方法により、測定される。
-GPC測定装置-
 Waters社製GPC-100
-カラム-
 昭和電工社製、Shodex LF-804
-サンプルの調製-
 光学活性高分子(高分子(A))を40℃で溶媒(例えば、クロロホルム)へ溶解させ、濃度1mg/mlのサンプル溶液を準備する。
-測定条件-
 サンプル溶液0.1mlを溶媒〔クロロホルム〕、温度40℃、1ml/分の流速でカラムに導入する。
 カラムで分離されたサンプル溶液中のサンプル濃度を示差屈折計で測定する。ポリスチレン標準試料にてユニバーサル検量線を作成し、高分子(A)の重量平均分子量(Mw)および分子量分布(Mw/Mn)を算出する。
 高分子(A)としては、例えば、ポリペプチド、セルロース誘導体、ポリ乳酸系樹脂、ポリプロピレンオキシド、ポリ(β―ヒドロキシ酪酸)等を挙げることができる。
 前記ポリペプチドとしては、例えば、ポリ(グルタル酸γ-ベンジル)、ポリ(グルタル酸γ-メチル)等が挙げられる。
 前記セルロース誘導体としては、例えば、酢酸セルロース、シアノエチルセルロース等が挙げられる。
 へリカルキラル高分子は、光学純度が95.00%ee以上であることが好ましく、96.00%ee以上であることがより好ましく、99.00%ee以上であることがさらに好ましく、99.99%ee以上であることがさらにより好ましい。望ましくは100.00%eeである。
 へリカルキラル高分子の光学純度を上記範囲とすることで、高分子圧電部材中での高分子結晶のパッキング性が高くなる。その結果、例えば高分子圧電部材の圧電性(圧電定数)をより向上させることができる。
 へリカルキラル高分子の光学純度は、下記式にて算出した値である。
 光学純度(%ee)=100×|L体量-D体量|/(L体量+D体量)
 すなわち、『「へリカルキラル高分子のL体の量〔質量%〕とへリカルキラル高分子のD体の量〔質量%〕との量差(絶対値)」を「へリカルキラル高分子のL体の量〔質量%〕とへリカルキラル高分子のD体の量〔質量%〕との合計量」で割った(除した)数値』に、『100』をかけた(乗じた)値を、光学純度とする。
 なお、へリカルキラル高分子のL体の量〔質量%〕とへリカルキラル高分子のD体の量〔質量%〕は、高速液体クロマトグラフィー(HPLC)を用いた方法により得られる値を用いる。
 へリカルキラル高分子としては、光学純度を上げる観点(及び、高分子圧電部材の圧電性を向上させる観点)から、下記式(1)で表される繰り返し単位を含む主鎖を有する高分子が好ましい。
Figure JPOXMLDOC01-appb-C000003

 
 前記式(1)で表される繰り返し単位を主鎖とする高分子としては、ポリ乳酸系高分子が挙げられる。中でも、ポリ乳酸が好ましく、L-乳酸のホモポリマー(PLLA)またはD-乳酸のホモポリマー(PDLA)が最も好ましい。なお、本実施形態における前記ポリ乳酸系高分子とは、「ポリ乳酸(L-乳酸及びD-乳酸から選ばれるモノマー由来の繰り返し単位のみからなる高分子化合物)」、「L-乳酸またはD-乳酸と、該L-乳酸またはD-乳酸と共重合可能な化合物とのコポリマー」、又は、両者の混合物をいう。
 前記「ポリ乳酸」は、乳酸がエステル結合によって重合し、長く繋がった高分子であり、ラクチドを経由するラクチド法と、溶媒中で乳酸を減圧下加熱し、水を取り除きながら重合させる直接重合法などによって製造できることが知られている。前記「ポリ乳酸」としては、L-乳酸のホモポリマー、D-乳酸のホモポリマー、L-乳酸およびD-乳酸の少なくとも一方の重合体を含むブロックコポリマー、及び、L-乳酸およびD-乳酸の少なくとも一方の重合体を含むグラフトコポリマーが挙げられる。
 前記「L-乳酸またはD-乳酸と共重合可能な化合物」としては、グリコール酸、ジメチルグリコール酸、3-ヒドロキシ酪酸、4-ヒドロキシ酪酸、2-ヒドロキシプロパン酸、3-ヒドロキシプロパン酸、2-ヒドロキシ吉草酸、3-ヒドロキシ吉草酸、4-ヒドロキシ吉草酸、5-ヒドロキシ吉草酸、2-ヒドロキシカプロン酸、3-ヒドロキシカプロン酸、4-ヒドロキシカプロン酸、5-ヒドロキシカプロン酸、6-ヒドロキシカプロン酸、6-ヒドロキシメチルカプロン酸、マンデル酸等のヒドロキシカルボン酸、グリコリド、β-メチル-δ-バレロラクトン、γ-バレロラクトン、ε-カプロラクトン等の環状エステル、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、テレフタル酸等の多価カルボン酸、及びこれらの無水物、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、テトラメチレングリコール、1,4-ヘキサンジメタノール等の多価アルコール、セルロース等の多糖類、及び、α-アミノ酸等のアミノカルボン酸等を挙げることができる。
 前記「L-乳酸またはD-乳酸と、該L-乳酸またはD-乳酸と共重合可能な化合物とのコポリマー」としては、らせん結晶を生成可能なポリ乳酸シーケンスを有する、ブロックコポリマーまたはグラフトコポリマーが挙げられる。
 また高分子(A)中のコポリマー成分に由来する構造の濃度は20mol%以下であることが好ましい。例えば高分子(A)がポリ乳酸系高分子の場合、前記高分子中の乳酸に由来する構造と乳酸と共重合可能な化合物(コポリマー成分)に由来する構造のモル数の合計に対して、前記コポリマー成分が20mol%以下であることが好ましい。
 前記ポリ乳酸系高分子は、例えば、特開昭59-096123号公報、及び特開平7-033861号公報に記載されている乳酸を直接脱水縮合して得る方法や、米国特許2,668,182号及び4,057,357号等に記載されている乳酸の環状二量体であるラクチドを用いて開環重合させる方法などにより製造することができる。
 さらに、前記の各製造方法により得られた高分子は、光学純度を95.00%ee以上とするために、例えば、ポリ乳酸をラクチド法で製造する場合、晶析操作により光学純度を95.00%ee以上の光学純度に向上させたラクチドを、重合することが好ましい。
 ポリ乳酸系高分子としては、市販のポリ乳酸を用いてもよく、例えば、PURAC社製のPURASORB(PD、PL)、三井化学社製のLACEA(H-100、H-400)、NatureWorks LLC社製のIngeoTM biopolymer、等が挙げられる。
 高分子(A)としてポリ乳酸系高分子を用いるときに、ポリ乳酸系高分子の重量平均分子量(Mw)を5万以上とするためには、ラクチド法、または直接重合法によりポリ乳酸系高分子を製造することが好ましい。
 本発明の高分子圧電部材に含有される高分子(A)(へリカルキラル高分子)の含有量は、80質量%以上が好ましい。
-安定化剤(B)-
 本発明の高分子圧電部材は、安定化剤として、カルボジイミド基、エポキシ基、及びイソシアネート基からなる群より選ばれる1種類以上の官能基を有する重量平均分子量が200~60000の化合物を含むことが好ましい。
 この安定化剤(B)は、高分子(A)の加水分解反応(この加水分解反応は、例えば下記反応スキームにて進行するものと推定される)を抑制し、フィルムの耐湿熱性を改良するために用いられる。
 安定化剤については、国際公開第2013/054918号パンフレットの段落0039~0055の記載を適宜参照できる。
-その他の成分-
 本発明の高分子圧電部材は、本発明の効果を損なわない限度において、ポリフッ化ビニリデン、ポリエチレン樹脂やポリスチレン樹脂に代表される公知の樹脂や、シリカ、ヒドロキシアパタイト、モンモリロナイト等の無機フィラー、フタロシアニン等の公知の結晶核剤等他の成分を含有していてもよい。
 無機フィラー、結晶核剤等の他の成分については、国際公開第2013/054918号パンフレットの段落0057~0060の記載を適宜参照できる。
 なお、高分子圧電部材が高分子(A)以外の成分を含む場合、高分子(A)以外の成分の含有量は、高分子圧電部材全質量中に対して、20質量%以下であることが好ましく、10質量%以下であることがより好ましい。
(高分子圧電部材の製造方法)
 前述した本発明の高分子圧電部材を製造する製造方法には特に制限はないが、例えば、国際公開第2013/054918号パンフレットの段落0065~0099の記載を適宜参照できる。
 即ち、本発明の高分子圧電部材の好ましい製造方法としては、高分子(A)と安定化剤(B)とを含む予備結晶化シートを得る第一の工程と、予備結晶化シートを主として1軸方向に延伸する第二の工程と、さらに、必要に応じ、アニール処理をする工程を含む、高分子圧電部材の製造方法が挙げられる。
 また、別の好ましい製造方法としては、高分子(A)と安定化剤(B)とを含むシートを主として1軸方向に延伸する工程と、アニール処理をする工程と、をこの順で含む高分子圧電部材の製造方法が挙げられる。
<硬化性樹脂層>
 本発明における硬化性樹脂層とは、常温硬化性樹脂と、熱硬化性樹脂と、活性エネルギー線硬化樹脂と、の少なくとも一つを含み、高分子圧電部材の表面の少なくとも一部に接触して配置されている硬化性樹脂層である。
 ここで、本発明における硬化性樹脂層は、耐熱樹脂層として機能する。
-材料-
 常温硬化性樹脂及び熱硬化性樹脂としては、加熱すると硬化(不溶化)する樹脂として通常知られているものであれば特に限定されるものではなく、例えば、アクリル樹脂、メタクリル樹脂、ウレタン樹脂、セルロース系樹脂、酢酸ビニル樹脂、エチレン-酢酸ビニル樹脂、エポキシ樹脂、ナイロン-エポキシ系樹脂、塩化ビニル樹脂、クロロプレンゴム系樹脂、シアノアクリレート系樹脂、シリコーン系樹脂、変性シリコーン系樹脂、水性高分子-イソシアネート系樹脂、スチレン-ブタジエンゴム系樹脂、ニトリルゴム系樹脂、アセタール樹脂、フェノール樹脂、ポリアミド樹脂、ポリイミド樹脂、メラミン樹脂、ユリア樹脂、臭素樹脂、デンプン系樹脂、ポリエステル樹脂、ポリオレフィン樹脂等が挙げられる。
 常温硬化性樹脂及び熱硬化性樹脂として好ましくは、硬化性に優れる観点から、分子内に少なくとも2個エポキシ基を含むエポキシ化合物と硬化剤とからなる樹脂が好ましい。
 エポキシ化合物としては、例えば、ビスフェノールA、ビスフェノールS、ビスフェノールFのグリシジルエーテル、フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ化合物等が挙げられる。
 なお、本発明において、常温硬化性樹脂が硬化する常温とは、10℃~30℃を示す。
 活性エネルギー線硬化樹脂としては、例えば、活性エネルギー線として光を用いた樹脂が挙げられ、例えば、活性エネルギー線に紫外線を用いた紫外線硬化樹脂が好ましい。
 紫外線硬化樹脂を形成するための材料として具体的には、例えば、1,6-ヘキサンジオールジアクリレート、1,4-ブタンジオールジアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、1,4-ブタンジオールジメタクリレート、ポリ(ブタンジオール)ジアクリレート、テトラエチレングリコールジメタクリレート、1,3-ブチレングリコールジアクリレート、トリエチレングリコールジアクリレート、トリイソプロピレングリコールジアクリレート、ポリエチレングリコールジアクリレート及びビスフェノールAジメタクリレートといったジアクリレート類;トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリトリトールモノヒドロキシトリアクリレート及びトリメチロールプロパントリエトキシトリアクリレートといったトリアクリレート類;ペンタエリトリトールテトラアクリレート及びジ-トリメチロールプロパンテトラアクリレートといったテトラアクリレート類;並びにジペンタエリトリトール(モノヒドロキシ)ペンタアクリレートといったペンタアクリレート類を挙げることができる。
 紫外線硬化樹脂を形成するための材料としては、この他にも、5官能以上の多官能アクリレートも用いることができる。これらの多官能アクリレートは1種単独、又は2種以上混合して同時に用いてもよい。さらにこれらのアクリレート類には、光開始剤、光増感剤、レベリング剤、金属酸化物やアクリル成分などから成る微粒子や超微粒子(平均一次粒径1nm以上100nm以下の粒子)などの第三成分を1種又は2種以上を添加して用いることができる。
 超微粒子は、樹脂成分と同一の金属及び/又は半金属元素を含むものであれば本質的には限定されるものではないが、金属酸化物又は金属フッ化物が好適に使用される。金属酸化物及び金属フッ化物としては、Al、Bi、CaF、In、In・SnO、HfO、La、MgF、Sb、Sb・SnO、SiO、SnO、TiO、Y、ZnO及びZrOからなる群から選ばれる少なくとも一種を好適に用いることができ、Al、SiO、TiOを特に好適に用いることができる。
 硬化性樹脂層は、高分子圧電部材の変形・変性に起因する高分子圧電部材の寸法変化を抑制する観点から、カルボニル基を含み、且つ、三次元架橋構造を含むことが好ましい。
 硬化性樹脂層がカルボニル基を含むことで、高分子圧電部材との密着力に優れる。
 また、三次元架橋構造を有することで、高分子圧電部材との密着性や耐溶剤性を更に向上させることができる。
 カルボニル基を含み且つ重合体を含む硬化性樹脂層を形成する方法としては、カルボニル基を有する化合物と反応性基を持つ官能性化合物とを含有する組成物を重合する方法が挙げられる。この際、上記カルボニル基を有する化合物と上記官能性化合物は同一であっても、同一でなくてもよい。
 上記カルボニル基を有する化合物と上記官能性化合物が同一の場合、上記官能性化合物の持つ反応性基自身にカルボニル基が含まれていてもよく、上記官能性化合物の持つ反応性基以外の構造にカルボニル基が含まれていてもよい。上記カルボニル基を有する化合物と上記官能性化合物が同一でない場合、上記カルボニル基を有する化合物は、上記官能性化合物と反応できる反応性基を1つ以上有する。
 さらに重合反応は1種類の反応性基同士の反応でも、異なる2種類以上の反応性基の反応でもよい。異なる2種類以上の反応性基の反応の場合は、同一化合物内に反応する異なる2種類以上の反応性基を有しても、同一の反応性基を2つ以上持つ官能性化合物と前記反応性基と反応可能な別の反応性基を2つ以上持つ官能性化合物を混合してもよい。
 上記1種類の反応性基同士の反応を行う反応性基(以下単に「同種反応性基」とも称す)としてはアクリル基、メタクリル基、ビニル基、アリル基、イソシアネート基、エポキシ基などが挙げられる。アクリル基、メタクリル基、イソシアネート基はその反応性基の中にカルボニル基を有する。ビニル基、アリル基、エポキシ基を用いる場合は、反応性基以外の構造中にカルボニル基を有する化合物が使用できる。
 尚、前記重合体に三次元架橋構造を持たせる観点では、これらの同種反応性基は2官能以上の化合物が組成物中に一部でも存在すれば三次元架橋構造を形成できる。
 上記2種類以上の反応性基の反応を行う反応性基(以下単に「異種反応性基」とも称す)としてはエポキシ基とカルボキシル基、エポキシ基とアミノ基、エポキシ基とヒドロキシル基、エポキシ基と酸無水物基、エポキシ基とヒドラジド基、エポキシ基とチオール基、エポキシ基とイミダゾール基、エポキシ基とイソシアネート基、イソシアネート基とカルボキシル基、イソシアネート基とアミノ基、イソシアネート基とヒドロキシル基、カルボジイミド基とアミノ基、カルボジイミド基とカルボキシル基、オキサゾリノ基とカルボキシル基、ヒドラジド基とカルボキシル基などの組み合わせが利用できる。
 尚、前記重合体に三次元架橋構造を持たせる観点では、これらの異種反応性基はどちらか、もしくは両方が3官能以上の化合物が組成物中に一部でも存在すれば三次元架橋構造を形成できる。
 これらのうちカルボキシル基、酸無水物基、ヒドラジド基、イソシアネート基はその反応性基の中にカルボニル基を有する。それ以外の反応性基を用いる場合は反応性基以外の構造中にカルボニル基を有する化合物が使用できる。
 エポキシ基とカルボニル基を同一分子内に有する官能性化合物としてはエポキシアクリレートなどが挙げられる。
 ヒドロキシル基とカルボニル基を同一分子内に有する官能性化合物としてはポリエステルポリオール、ポリウレタンポリオール、アクリルポリオール、ポリカーボネートポリオール、部分カルボキシメチルセルロースなどが挙げられる。
 アミノ基とカルボニル基を同一分子内に有する官能性化合物としては末端アミンポリアミド、末端アミンポリイミド、末端アミンポリウレタンなどが挙げられる。
 本発明においては、上記の中でも(メタ)アクリル基を有する化合物の重合体がより好ましい。
 尚、「(メタ)アクリル」とは、アクリルおよびメタクリルの少なくとも一方を含むことを意味する。
-形成方法-
 硬化性樹脂層を形成する方法としては、従来一般的に用いられていた公知の方法が適宜使用できるが、例えばウェットコート法が挙げられる。例えば、硬化性樹脂層を形成するための材料(重合性化合物または重合性化合物の重合物)が分散または溶解されたコート液を塗布し、必要に応じて乾燥等の操作を行うことで、硬化性樹脂層が形成される。重合性化合物の重合は塗布前に行われていても、塗布後に行われてもよい。
 尚、さらに必要に応じて、上記重合の際に前記材料(重合性化合物)に対して熱や活性エネルギー線(紫外線、電子線、放射線等)照射により硬化性樹脂層を硬化させてもよい。尚、硬化性樹脂層を形成するための材料(重合性化合物)における反応性基の当量を小さくすることで(つまり、前記重合性化合物の単位分子量当たりに含まれる反応性基の数を増やすことで)架橋密度が高められ、高分子圧電部材との密着性を更に向上させることができる。
 尚、上記重合体の中でも、活性エネルギー線(紫外線、電子線、放射線等)照射により硬化された活性エネルギー線硬化樹脂が好ましい。活性エネルギー線硬化樹脂を含むことで、製造効率が向上し、また高分子圧電部材との密着性を更に向上させることができる。
-表面処理-
 高分子圧電部材表面と硬化性樹脂層の密着性や、高分子圧電部材表面への硬化性樹脂層塗工性を更に向上させる観点から、コロナ処理やイトロ処理、オゾン処理、プラズマ処理などによって高分子圧電部材表面を処理することもできる。
・厚さd
 硬化性樹脂層の厚さ(平均厚さ)dは、特に限定されるものではないが、0.01μm~10μmの範囲が好ましい。
 厚さdが上記下限値以上であることにより、例えば硬化性樹脂層が後述するハードコート層などの機能を発現する。
 上記厚さdの上限値は、より好ましくは6μm以下であり、更に好ましくは3μm以下である。また、下限値はより好ましくは0.2μm以上であり、更に好ましくは0.3μm以上である。
 但し、硬化性樹脂層は高分子圧電部材の両面にあってもよく、その場合上記厚さdは両面の厚さを足したものである。
 硬化性樹脂層の厚さdは、ニコン社製デジタル測長機DIGIMICRO STAND MS-11Cを用いて以下の式により決定される。
 式 d=dt-dp
  dt:高分子圧電部材と硬化性樹脂層との積層体10箇所の平均厚さ
  dp:硬化性樹脂層形成前または硬化性樹脂層を除去した後の高分子圧電部材10箇所の平均厚さ
-比誘電率-
 また、硬化性樹脂層の比誘電率が1.5以上であることが好ましく、更には2.0以上20000以下がより好ましく、2.5以上10000以下が更に好ましい。
 比誘電率が上記範囲であることにより、上記積層体における硬化性樹脂層上に更に電極を設けた際に電極により大きな電荷が発生する。
 尚、硬化性樹脂層の比誘電率は、以下の方法により測定される。
 高分子圧電部材の片面に硬化性樹脂層を形成した後、昭和真空SIP-600を用いて上記積層体の両面に約50nmのAlを蒸着する。この積層体より50mm×50mmのフィルムを切り出す。この試験片をHEWLETT PACKARD社製LCR METER 4284Aに接続して静電容量Cを測定し、以下の式で硬化性樹脂層の比誘電率εcを計算する。
 εc=(C×dc×2.7)/(ε×2.7×S-C×dp)
  dc:硬化性樹脂層厚さ、ε:真空誘電率、S:試験片面積、dp:高分子圧電部材厚さ
-硬化性樹脂層の内部ヘイズ-
 また、硬化性樹脂層の内部ヘイズが10%以下であることが好ましく、更には0.0%以上5%以下がより好ましく、0.01%以上2%以下が更に好ましい。
 内部ヘイズが上記範囲であることにより、優れた透明性が発揮され、例えば押圧検出タッチパネル等として有効に利用し得る。
 尚、硬化性樹脂層の内部ヘイズHcは、以下の式により計算される。
 Hc=H-Hp
  H:高分子圧電部材と硬化性樹脂層との積層体の内部ヘイズ
  Hp:硬化性樹脂層形成前または硬化性樹脂層を除去した後の高分子圧電部材の内部ヘイズ
 ここで、高分子圧電部材の内部ヘイズは、厚さ0.03mm~0.05mmの高分子圧電部材に対して、JIS-K7105に準拠して、ヘイズ測定機〔(有)東京電色製、TC-HIII DPK〕を用いて25℃で測定したときの値であり、測定方法の詳細は実施例において詳述する。
 また、上記積層体の内部ヘイズも、上記高分子圧電部材の内部ヘイズの測定方法に準じて測定される。
<電極>
(第1電極)
 本発明における第1電極は、高分子圧電部材の表面及び硬化性樹脂層の表面の少なくとも一部に接触して配置されている。
 電極の形状は、加圧手段により加えられる圧力をより伝えやすくするため、高分子圧電部材の表面及び硬化性樹脂層の表面の少なくとも一部に接触している接触面が広いことが好ましい。
 第1電極の構成成分としては、特に制限されないが、例えば、Al、Ag、Au、Cu、Ag-Pd合金、Agペースト、カーボンブラック、ITO(結晶化ITO及び非晶ITO)、ZnO、IGZO、IZO(登録商標)、導電性ポリマー(ポリチオフェン、PEDOT)、Agナノワイヤー、カーボンナノチューブ、グラフェン等が用いられる。
 電極の形成方法としては、構成成分によるが、例えば、スパッタリング、蒸着、塗布法等が挙げられる。
(第2電極)
 また、本発明における押圧検出装置が位置検出部材を備える場合、位置検出部材中には第2電極が配置される場合がある。
 第2電極の構成成分及び形成方法としては、第1電極と同様の構成成分及び形成方法が挙げられる。
(取り出し電極)
 本発明における第1電極及び第2電極には、電気的に接続されている取り出し電極が備えられていることが好ましい。
 取り出し電極の構成成分及び形成方法としては、第1電極と同様の構成成分及び形成方法が挙げられる。
 取り出し電極としてはFPC(フレキシブルプリント基板)などが挙げられる。
 取り出し電極の接続方法としては、例えば、第1電極や第2電極といった電極の端面に対して、ACF(異方性導電フィルム)、ACP(異方性導電ペースト)、はんだ等を用いて接続する方法が挙げられる。
 この場合、取り出し電極を接続する第1電極又は第2電極に対して高熱がかかることとなり、これらの電極周辺の部材に対しても高熱がかかると考えられるが、本発明においては、硬化性樹脂層が、高分子圧電部材の表面の少なくとも一部に接触して配置されているため、高分子圧電部材が熱により変性・変形したとしても、高分子圧電部材の寸法変化を抑制することができる。
<位置検出部材>
 本発明における押圧検出装置は、位置検出部材を備えていてもよい。
 ここで、本発明において、位置検出部材とは、被加圧部材の主面(接触面)内の特定の方向をX、被加圧部材の主面内でXに直行する方向をY、とした場合において、X及びY方向での位置を検出する部材である。このような位置を検出するために用いられている公知のものであれば、本発明における位置検出部材として適用できる。
 検出方式としては、抵抗膜方式、静電容量方式、表面弾性波方式、赤外線方式、光学方式等が挙げられる。
 位置検出部材の配置場所としては、例えば、被加圧部材の加圧面側、被加圧部材と高分子圧電部材との間、高分子圧電部材の被加圧部材の配置された面の反対側が挙げられる。抵抗膜方式の位置検出部材の配置場所は、被加圧部材と高分子圧電部材との間または高分子圧電部材における被加圧部材が配置された面の反対側が好ましく、静電容量方式の位置検出部材の配置場所は、被加圧部材と高分子圧電部材との間が好ましい。表面弾性波方式、赤外線方式または光学方式の位置検出部材の配置場所は、被加圧部材の加圧面側が好ましい。また、位置検出部材は、被加圧部材と一体化されていてもよい。
 さらに静電容量方式としては、位置検出電極の形成箇所によってインセル型、オンセル型、フィルム型、カバーガラス一体型、フィルム-ガラス複合型などが挙げられる。中でも押圧検出電極が位置検出電極の位置検出を阻害しない、フィルム型、カバーガラス一体型、フィルム-ガラス複合型が望ましい。
 位置検出部材としては、例えば、国際公開第2013/089048号パンフレットに記載のタッチセンサが好適に用いられる。
 本発明において、位置検出部材は、例えば、電極と、電極が設けられた基材(PET等の耐熱性が高いフィルムやガラス等)と、を有している。
 耐熱性が高いフィルムとしては、PETの他、例えば、ポリカーボネート(PC)、ポリビニルアルコール(PVA)、シクロオレフィンポリマー(COP)、ポリメタクリル酸メチル(PMMA)、トリアセチルセルロース(TAC)、ポリイミド(PI)が挙げられる。それらのフィルムとしては用途に応じて面内位相差の非常に小さな(数十nm以下)ゼロ位相差フィルムや、面内位相差の非常に大きな(数千nm以上)超高位相差フィルムも用いることもできる。
<粘接着層>
 本発明における粘接着層は、粘着性及び接着性を有する層である。粘接着層は、押圧検出装置における各部材の間に配置することができる。
 本発明における押圧検出装置の場合、例えば、被加圧部材と高分子圧電部材との間に、粘接着層が配置されていることが好ましい。また、上述の位置検出部材を配置している場合、位置検出部材と高分子圧電部材との間に粘接着層が配置されていることが好ましい。
 粘接着層としては両面をセパレータでラミネートしてある両面テープ(OCA;Optical Clear Adhensive)の粘接着層を用いることができる。
 また、上記粘接着層は、溶剤系、無溶剤系、水系などの粘接着コート液、UV硬化型OCR(Optical Clear Resin)、ホットメルト接着剤、などを用いて形成することもできる。
 OCAとしては、光学用透明粘着シートLUCIACSシリーズ(日東電工株式会社製)や高透明両面テープ5400Aシリーズ(積水化学工業株式会社製)、光学粘着シートOpteriaシリーズ(リンテック株式会社製)、高透明性接着剤転写テープシリーズ(住友スリーエム株式会社製)、SANCUARYシリーズ(株式会社サンエー化研製)などが挙げられる。
 粘着コート液としては、SKダインシリーズ(綜研化学株式会社製)、ファインタックシリーズ(DIC株式会社製)、ボンコートシリーズ、LKGシリーズ(藤倉化成株式会社製)、コーポニールシリーズ(日本合成化学工業株式会社製)などが挙げられる。
 粘接着層としては、高分子圧電部材の加熱を防ぐ観点から、OCAの粘接着層、OCRを用いて形成された粘接着層、高分子圧電部材以外の部材に粘接着コート液を塗布して形成した粘接着層、高分子圧電部材以外の部材にホットメルト接着剤を使用して形成した粘接着層が好ましい。
 粘接着層の材料には特に制限はないが、粘接着層は、樹脂を含むことが好ましい。
 樹脂としては、例えば、アクリル樹脂、メタクリル樹脂、ウレタン樹脂、セルロース系樹脂、酢酸ビニル樹脂、エチレン-酢酸ビニル樹脂、エポキシ樹脂、ナイロン-エポキシ系樹脂、塩化ビニル樹脂、クロロプレンゴム系樹脂、シアノアクリレート系樹脂、シリコーン系樹脂、変性シリコーン系樹脂、水性高分子-イソシアネート系樹脂、スチレン-ブタジエンゴム系樹脂、ニトリルゴム系樹脂、アセタール樹脂、フェノール樹脂、ポリアミド樹脂、ポリイミド樹脂、メラミン樹脂、ユリア樹脂、臭素樹脂、デンプン系樹脂、ポリエステル樹脂、ポリオレフィン樹脂等が挙げられる。
<その他の部材>
 本発明における押圧検出タッチパネルは、本発明の効果を損なわない限度において、既存の機能を持つ部材を有していてもよい。それらの部材は機能層単体でも良いし、フィルムなどの基材上に機能層を形成した形態でも良い。機能層としては偏光層、位相差層、飛散防止層、アンチリフレクション層、アンチグレア層、アンチニュートンリング層、ガスバリア層、ハードコート層、指紋防止層、屈折率調整層、易滑層、アンチブロック層、保護層、帯電防止層、放熱層、紫外線吸収層などが挙げられる。
[押圧検出タッチパネル]
 本実施形態の押圧検出装置は、表示装置と組み合わせて押圧検出タッチパネルとして用いることができる。この場合、第1電極及び第2電極としては、透明性のある電極が好ましい。ここで、電極について、透明性があるとは、具体的には内部ヘイズが20%以下(全光線透過率が80%以上)であることをいう。
 表示装置としては、例えば、液晶パネル、有機ELパネルなどを用いることもできる。
 以下、本発明の実施形態を実施例により更に具体的に説明するが、本実施形態はその主旨を越えない限り、以下の実施例に限定されるものではない。
<高分子圧電部材(ポリ乳酸フィルム:PLAフィルム)の作製>
 上述した高分子(A)として、NatureWorks LLC社製のポリ乳酸系高分子(品名:IngeoTM biopolymer、銘柄:4032D、重量平均分子量Mw:20万、融点(Tm):166℃、ガラス転移温度(Tg):57~60℃)を、原料として用意した。
 作製した原料を押出成形機ホッパーに入れて、220℃~230℃に加熱しながらTダイから押し出し、55℃のキャストロールに0.5分間接触させて、厚さ150μmの予備結晶化シートを製膜した(予備結晶化工程)。予備結晶化シートの結晶化度を測定したところ5.63%であった。
 得られた予備結晶化シートを70℃に加熱しながらロールツーロールで、延伸速度1650mm/分で延伸を開始し、3.3倍までMD方向に一軸延伸した(延伸工程)。得られたフィルムの厚さは0.05mm(50μm)であった。
 その後、前記一軸延伸フィルムを、ロールツーロールで、130℃に加熱したロール上に60秒間接触させアニール処理し、高分子圧電部材を作製した(アニール処理工程)。
〔物性測定〕
 以上のようにして得られた高分子圧電部材について、重量平均分子量(Mw)、光学活性高分子の分子量分布(Mw/Mn)、融点(Tm)、結晶化度、内部ヘイズ、MORc、圧電定数d14、及び規格化分子配向MORcと結晶化度との積を測定した。結果を表1に示す。
 具体的には、次のようにして測定した。
(光学活性高分子の分子量分布(Mw/Mn)及び重量平均分子量)
 前述したGPC測定方法により、高分子圧電部材に含まれる樹脂(光学活性高分子)の分子量分布(Mw/Mn)及び重量平均分子量(Mw)を算出した。
(融点、結晶化度)
 高分子圧電部材を、10mg正確に秤量し、示差走査型熱量計(パーキンエルマー社製DSC-1)を用い、昇温速度500℃/分の条件で140℃まで昇温し、さらに昇温速度10℃/分の条件で200℃まで昇温して融解曲線を得た。得られた融解曲線から融点Tm及び結晶化度を得た。
(内部ヘイズ)
 本願でいう「内部へイズ」とは高分子圧電部材の内部へイズのことを言い測定方法は一般的な方法で測定される。
 具体的には、本実施例の高分子圧電部材の内部ヘイズ値は、下記測定条件下で下記装置を用いて、厚さ方向の光透過性を測定することにより、測定した。より詳細には、予めガラス板2枚の間に、シリコーンオイル(信越化学工業株式会社製信越シリコーン(登録商標)、型番:KF96-100CS)のみを挟んでヘイズ(H2)を測定し、次にシリコーンオイルで表面を均一に塗らした高分子圧電部材を、ガラス板2枚で挟んでヘイズ(H3)を測定し、下記式のようにこれらの差をとることで本実施例の高分子圧電部材の内部ヘイズ(H1)を得た。
 内部ヘイズ(H1)=ヘイズ(H3)-ヘイズ(H2)
 上記ヘイズ(H2)及び上記ヘイズ(H3)は、下記測定条件下で下記装置を用いて、厚さ方向の光透過性を測定することにより求めた。
 測定装置:東京電色社製、HAZE METER TC-HIIIDPK
 試料サイズ:幅3mm×長さ30mm、厚さ0.05mm
 測定条件:JIS-K7105に準拠
 測定温度:室温(25℃)
(規格化分子配向MORc)
 規格化分子配向MORcは、王子計測機器株式会社製マイクロ波方式分子配向計MOA-6000により測定した。基準厚さtcは、50μmに設定した。
(圧電定数d14
 前述した応力-電荷法の測定方法により、高分子圧電部材の圧電定数d14を測定した。
(規格化分子配向MORcと結晶化度との積)
 高分子圧電部材の規格化分子配向MORcと結晶化度との積を算出した。
Figure JPOXMLDOC01-appb-T000004
[実施例1]
<硬化性樹脂層の形成>
 硬化性樹脂層形成用塗布液はアクリル系ハードコート液(ペルノックス社製、ペルトロンA2002)を使用した。
 作製した高分子圧電部材(PLAフィルム)から、幅100mm、長さ100mmのPLAフィルムを切り出し、切り出したPLAフィルムの広い面の一つに対して、全面に、上記硬化性樹脂層形成用塗布液をアプリケーターで塗布し、60℃にて5分間乾燥後、メタルハライドランプで積算光量1000mJ/cmの紫外線を照射することで硬化性樹脂層を形成した。硬化性樹脂層の厚さは2μmであった。
 次に硬化性樹脂層を形成した反対面に対しても同様に硬化性樹脂層を形成し、PLAフィルムの両面に硬化性樹脂層を形成した。
<評価>
(寸法変化率)
 作製した、硬化性樹脂層付きPLAフィルムを、恒温槽(製品名:DN64、ヤマト社製)を用いて、100℃、125℃、150℃、及び160℃の各温度で、30分ずつ、加熱した。
 加熱後、各硬化性樹脂層付きPLAフィルムについて、以下の方法で寸法変化率を測定した。寸法変化率が小さいほど寸法安定性が高いことを示す。結果は、以下の表2および図3に示す。
 寸法変化率(%)=100×((加熱前のPLAフィルムのMD方向の辺長)-(加熱後のPLAフィルムのMD方向の辺長))/(加熱前のPLAフィルムのMD方向の辺長)
[比較例1]
 実施例1と同様のPLAフィルム(硬化性樹脂層が形成されていないPLAフィルム)を用いて、実施例1と同様に、寸法変化率を評価した。結果は、以下の表2および図3に示す。
Figure JPOXMLDOC01-appb-T000005
 表2および図3の結果より、実施例1の硬化性樹脂層付き高分子圧電部材は、比較例1の硬化性樹脂層を有さない高分子圧電部材に比べ、寸法変化率が低いことが明らかである。
 このことから、本実施例における硬化性樹脂層付き高分子圧電部材を適用した押圧検出装置は、PETなどのフィルムと第1電極との積層体を形成する工程が不要であり、押圧検出装置の製造工程が単純化することが明らかである。
 また、本実施例における硬化性樹脂層付き高分子圧電部材を適用した押圧検出装置は、PETなどのフィルムも不要となるため、薄化することが明らかである。
[実施例2]
 実施例1で作製した硬化性樹脂層付きPLAフィルムの片面に、電極としてITO膜(厚さ100nm)をスパッタリング法で積層し、積層体を作製した。
[比較例2]
 また、比較例1で作製した硬化性樹脂層が形成されていないPLAフィルムの片面に、電極としてITO膜(厚さ100nm)をスパッタリング法で積層し、積層体を作製した。
(表面抵抗)
 実施例2および比較例2で得られた積層体について、ITO膜形成直後の初期表面抵抗および150℃30分加熱後の加熱後表面抵抗の測定を行った。これら表面抵抗の測定には、三菱化学アナリティック社製の表面抵抗率計ロレスタGP MCP-T610を用いた。
 さらに、実施例2および比較例2で得られた積層体について、実施例1および比較例1と同様に、150℃での寸法変化率およびその他の物性を評価した。
 結果は、以下の表3に示す。
Figure JPOXMLDOC01-appb-T000006
 表3の結果より、実施例2で得られた積層体(硬化性樹脂層付き)の高分子圧電部材は、比較例2で得られた積層体(硬化性樹脂層なし)の高分子圧電部材に比べ、150℃寸法変化率が低いことが明らかである。
 また、実施例2では、初期表面抵抗と加熱後表面抵抗との間に大きな相違はなかったが、比較例2では、初期表面抵抗と加熱後表面抵抗との間に大きな相違がみられた。比較例2では、高分子圧電材料が大きく変形してITO膜が破損したことにより、加熱後表面抵抗が大きく上昇したと思われる。
 2013年10月7日に出願された日本国特許出願2013-210346の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
10  押圧検出装置
12  被加圧部材
12A 接触面
14  粘接着層
16  第1電極
18  硬化性樹脂層
20  高分子圧電部材
22  第2電極
24  フィルム(PETなどの耐熱性が高いフィルム)
26  第1取り出し電極
28  第2取り出し電極
30  押圧検出部材
32  位置検出部材

Claims (15)

  1.  加圧手段が接触して圧力が加えられる接触面を有する被加圧部材と、
     前記被加圧部材の前記接触面とは反対側に配置され、25℃において応力-電荷法で測定した圧電定数d14が1pC/N以上である高分子圧電部材と、
     常温硬化性樹脂、熱硬化性樹脂、及び活性エネルギー線硬化樹脂からなる群から選ばれる少なくとも一つを含み、前記高分子圧電部材の表面の少なくとも一部に接触して配置されている硬化性樹脂層と、
     前記高分子圧電部材の表面及び前記硬化性樹脂層の表面の少なくとも一部に接触して配置されている電極と、
    を備える、押圧検出装置。
  2.  前記硬化性樹脂層がカルボニル基を含み、且つ、三次元架橋構造を含む、請求項1に記載の押圧検出装置。
  3.  位置検出部材を備える、請求項1又は請求項2に記載の押圧検出装置。
  4.  前記被加圧部材と前記高分子圧電部材との間に、粘接着層が配置されている、請求項1又は請求項2に記載の押圧検出装置。
  5.  前記位置検出部材と前記高分子圧電部材との間に、粘接着層が配置されている、請求項3に記載の押圧検出装置。
  6.  前記高分子圧電部材の繰り返し単位構造が、カルボニル基、及びオキシ基からなる群から選ばれる少なくとも1種類の官能基を有する、請求項1又は請求項2に記載の押圧検出装置。
  7.  前記高分子圧電部材が、重量平均分子量が5万~100万である光学活性を有するヘリカルキラル高分子を含み、マイクロ波透過型分子配向計で測定される基準厚さを50μmとしたときの規格化分子配向MORcが2.0~10.0であり、可視光線に対する内部ヘイズが50%以下であり、且つ、前記規格化分子配向MORcと前記高分子圧電部材のDSC法で測定される結晶化度との積が25~700である、請求項1又は請求項2に記載の押圧検出装置。
  8.  前記内部ヘイズが5%以下である、請求項7に記載の押圧検出装置。
  9.  前記内部ヘイズが2.0%以下である、請求項7に記載の押圧検出装置。
  10.  前記内部ヘイズが1.0%以下である、請求項7に記載の押圧検出装置。
  11.  前記ヘリカルキラル高分子が、下記式(1)で表される繰り返し単位を含む主鎖を有するポリ乳酸系高分子である、請求項7に記載の押圧検出装置。
    Figure JPOXMLDOC01-appb-C000001

     
  12.  前記ヘリカルキラル高分子は、光学純度が95.00%ee以上である、請求項7に記載の押圧検出装置。
  13.  前記高分子圧電部材が、前記ヘリカルキラル高分子の含有量が80質量%以上である、請求項7に記載の押圧検出装置。
  14.  さらに、前記電極に電気的に接続されている取り出し電極を備える、請求項1又は請求項2に記載の押圧検出装置。
  15.  請求項1又は請求項2に記載の押圧検出装置と、表示装置とを備える、押圧検出タッチパネル。
PCT/JP2014/075521 2013-10-07 2014-09-25 押圧検出装置及び押圧検出タッチパネル WO2015053089A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/026,050 US10190924B2 (en) 2013-10-07 2014-09-25 Pressure-sensing device and pressure-sensing touch panel
JP2015541514A JP6101813B2 (ja) 2013-10-07 2014-09-25 押圧検出装置及び押圧検出タッチパネル
EP14853064.5A EP3035022B1 (en) 2013-10-07 2014-09-25 Pressing-force detection device, and pressing-force-detecting touch panel
CN201480051725.1A CN105556268B (zh) 2013-10-07 2014-09-25 按压检测装置和按压检测触摸面板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013210346 2013-10-07
JP2013-210346 2013-10-07

Publications (1)

Publication Number Publication Date
WO2015053089A1 true WO2015053089A1 (ja) 2015-04-16

Family

ID=52812908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075521 WO2015053089A1 (ja) 2013-10-07 2014-09-25 押圧検出装置及び押圧検出タッチパネル

Country Status (6)

Country Link
US (1) US10190924B2 (ja)
EP (1) EP3035022B1 (ja)
JP (1) JP6101813B2 (ja)
CN (1) CN105556268B (ja)
TW (1) TWI650682B (ja)
WO (1) WO2015053089A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180113074A (ko) * 2017-04-05 2018-10-15 엘지이노텍 주식회사 터치 패널
JP2019039426A (ja) * 2017-08-22 2019-03-14 研能科技股▲ふん▼有限公司 アクチュエータ
WO2020066936A1 (ja) * 2018-09-28 2020-04-02 日東電工株式会社 圧電デバイス、及び圧電デバイスの製造方法
WO2020066930A1 (ja) * 2018-09-28 2020-04-02 日東電工株式会社 圧電デバイス、及び圧電デバイスの製造方法
WO2020067330A1 (ja) * 2018-09-28 2020-04-02 日東電工株式会社 圧電デバイス、及び圧電デバイスの製造方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8487759B2 (en) 2009-09-30 2013-07-16 Apple Inc. Self adapting haptic device
WO2015047372A1 (en) 2013-09-30 2015-04-02 Pearl Capital Developments Llc Magnetic actuators for haptic response
US9317118B2 (en) 2013-10-22 2016-04-19 Apple Inc. Touch surface for simulating materials
JP6037046B2 (ja) * 2013-11-01 2016-11-30 株式会社村田製作所 タッチ式入力装置及び携帯型表示装置
US10276001B2 (en) 2013-12-10 2019-04-30 Apple Inc. Band attachment mechanism with haptic response
JP6079931B2 (ja) * 2014-04-18 2017-02-15 株式会社村田製作所 押圧センサ
US10545604B2 (en) 2014-04-21 2020-01-28 Apple Inc. Apportionment of forces for multi-touch input devices of electronic devices
KR102019505B1 (ko) 2014-09-02 2019-09-06 애플 인크. 햅틱 통지
US10353467B2 (en) 2015-03-06 2019-07-16 Apple Inc. Calibration of haptic devices
JP6540125B2 (ja) * 2015-03-18 2019-07-10 株式会社リコー 発電素子及び発電装置
AU2016100399B4 (en) 2015-04-17 2017-02-02 Apple Inc. Contracting and elongating materials for providing input and output for an electronic device
CH711007A1 (de) * 2015-04-30 2016-10-31 Kistler Holding Ag Kontaktkraft-Prüfvorrichtung, Verwendung einer solchen Kontaktkraft-Prüfvorrichtung und Verfahren zur Herstellung einer solchen Kontaktkraft-Prüfvorrichtung.
TWI587189B (zh) * 2015-07-17 2017-06-11 林志忠 觸控面板
WO2017044618A1 (en) 2015-09-08 2017-03-16 Apple Inc. Linear actuators for use in electronic devices
US10039080B2 (en) 2016-03-04 2018-07-31 Apple Inc. Situationally-aware alerts
EP3418049B1 (en) * 2016-03-09 2021-02-17 Mitsui Chemicals, Inc. Laminated article
US10268272B2 (en) 2016-03-31 2019-04-23 Apple Inc. Dampening mechanical modes of a haptic actuator using a delay
KR102606498B1 (ko) 2016-08-29 2023-11-27 엘지전자 주식회사 이동 단말기
CN107145254B (zh) * 2017-03-24 2023-05-23 江西合力泰科技有限公司 带压力感应功能的生物识别模组
US10622538B2 (en) 2017-07-18 2020-04-14 Apple Inc. Techniques for providing a haptic output and sensing a haptic input using a piezoelectric body
US11048907B2 (en) * 2017-09-22 2021-06-29 Pix Art Imaging Inc. Object tracking method and object tracking system
CN108345781A (zh) * 2018-02-13 2018-07-31 北京小米移动软件有限公司 指纹解锁方法及装置
US10599223B1 (en) 2018-09-28 2020-03-24 Apple Inc. Button providing force sensing and/or haptic output
US10691211B2 (en) 2018-09-28 2020-06-23 Apple Inc. Button providing force sensing and/or haptic output
CN109443630B (zh) * 2018-10-31 2020-11-10 福州大学 一种基于qled发光器件的压力传感器
WO2020144941A1 (ja) * 2019-01-11 2020-07-16 株式会社村田製作所 圧電デバイス、振動構造体および圧電センサ
US11380470B2 (en) 2019-09-24 2022-07-05 Apple Inc. Methods to control force in reluctance actuators based on flux related parameters
CN112082674B (zh) * 2020-09-25 2022-03-25 长安大学 一种基于正挠曲电效应的土压力测量盒
US11977683B2 (en) 2021-03-12 2024-05-07 Apple Inc. Modular systems configured to provide localized haptic feedback using inertial actuators
US11809631B2 (en) 2021-09-21 2023-11-07 Apple Inc. Reluctance haptic engine for an electronic device

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2668182A (en) 1950-07-13 1954-02-02 William T Miller Polyunsaturated fluoroolefins
US4057357A (en) 1975-11-24 1977-11-08 Mueller Co. Chipless shell cutter for large diameter plastic pipe
JPS5996123A (ja) 1982-11-25 1984-06-02 Showa Highpolymer Co Ltd 高分子量ポリラクタイドの製造方法
JPH0733861A (ja) 1993-07-22 1995-02-03 Mitsui Toatsu Chem Inc ポリヒドロキシカルボン酸の製造方法
JP2002284787A (ja) * 2001-03-27 2002-10-03 Yokohama Rubber Co Ltd:The 安定フリーラジカル化合物およびそれを含むポリマー組成物
JP2006226858A (ja) * 2005-02-18 2006-08-31 Hiroshima Univ 変動荷重センサ及びこれを用いた触覚センサ
WO2010038466A1 (ja) * 2008-10-03 2010-04-08 ダイキン工業株式会社 タッチパネルおよび透明圧電シート
WO2010104196A1 (ja) 2009-03-13 2010-09-16 三井化学株式会社 高分子圧電材料、及びその製造方法、並びに、圧電素子
WO2010143528A1 (ja) 2009-06-11 2010-12-16 株式会社村田製作所 タッチパネルおよびタッチ式入力装置
WO2011125408A1 (ja) 2010-04-09 2011-10-13 株式会社村田製作所 タッチパネルおよびタッチパネルを備える入出力装置
JP2011222679A (ja) * 2010-04-07 2011-11-04 Daikin Ind Ltd 透明圧電シート
WO2011138903A1 (ja) 2010-05-06 2011-11-10 株式会社村田製作所 タッチパネル、ならびにタッチ式入力装置およびその制御方法
WO2012049969A1 (ja) 2010-10-15 2012-04-19 株式会社村田製作所 タッチ式入力装置およびその制御方法
JP4934235B2 (ja) 2010-08-25 2012-05-16 三井化学株式会社 高分子圧電材料、およびその製造方法
WO2013054918A1 (ja) 2011-10-13 2013-04-18 三井化学株式会社 高分子圧電材料、およびその製造方法
WO2013089048A1 (ja) 2011-12-16 2013-06-20 株式会社村田製作所 タッチ式操作入力装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3167668A (en) * 1961-10-02 1965-01-26 Nesh Florence Piezoelectric transducers
JPS5140771Y2 (ja) * 1971-10-08 1976-10-05
JPS4848573A (ja) 1971-10-23 1973-07-10
US6060812A (en) * 1997-08-01 2000-05-09 Toda; Kohji Ultrasonic touch-position sensing device
JP2004085304A (ja) * 2002-08-26 2004-03-18 Canon Inc 複合機能デバイス及び触覚情報システム
US20100141580A1 (en) * 2007-08-22 2010-06-10 Oh Eui Jin Piezo-electric sensing unit and data input device using piezo-electric sensing
EP2781886B1 (en) 2011-04-08 2017-06-14 Murata Manufacturing Co., Ltd. Operation device including displacement sensor
JP5742415B2 (ja) * 2011-04-14 2015-07-01 セイコーエプソン株式会社 センサーデバイス、力検出装置およびロボット
KR101489115B1 (ko) * 2011-12-13 2015-02-02 미쓰이 가가쿠 가부시키가이샤 고분자 압전 재료 및 그 제조 방법
US9564578B2 (en) 2015-06-23 2017-02-07 Infineon Technologies Ag Semiconductor package with integrated magnetic field sensor

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2668182A (en) 1950-07-13 1954-02-02 William T Miller Polyunsaturated fluoroolefins
US4057357A (en) 1975-11-24 1977-11-08 Mueller Co. Chipless shell cutter for large diameter plastic pipe
JPS5996123A (ja) 1982-11-25 1984-06-02 Showa Highpolymer Co Ltd 高分子量ポリラクタイドの製造方法
JPH0733861A (ja) 1993-07-22 1995-02-03 Mitsui Toatsu Chem Inc ポリヒドロキシカルボン酸の製造方法
JP2002284787A (ja) * 2001-03-27 2002-10-03 Yokohama Rubber Co Ltd:The 安定フリーラジカル化合物およびそれを含むポリマー組成物
JP2006226858A (ja) * 2005-02-18 2006-08-31 Hiroshima Univ 変動荷重センサ及びこれを用いた触覚センサ
WO2010038466A1 (ja) * 2008-10-03 2010-04-08 ダイキン工業株式会社 タッチパネルおよび透明圧電シート
WO2010104196A1 (ja) 2009-03-13 2010-09-16 三井化学株式会社 高分子圧電材料、及びその製造方法、並びに、圧電素子
WO2010143528A1 (ja) 2009-06-11 2010-12-16 株式会社村田製作所 タッチパネルおよびタッチ式入力装置
JP2011222679A (ja) * 2010-04-07 2011-11-04 Daikin Ind Ltd 透明圧電シート
WO2011125408A1 (ja) 2010-04-09 2011-10-13 株式会社村田製作所 タッチパネルおよびタッチパネルを備える入出力装置
WO2011138903A1 (ja) 2010-05-06 2011-11-10 株式会社村田製作所 タッチパネル、ならびにタッチ式入力装置およびその制御方法
JP4934235B2 (ja) 2010-08-25 2012-05-16 三井化学株式会社 高分子圧電材料、およびその製造方法
JP2012235086A (ja) * 2010-08-25 2012-11-29 Mitsui Chemicals Inc 高分子圧電材料、およびその製造方法
WO2012049969A1 (ja) 2010-10-15 2012-04-19 株式会社村田製作所 タッチ式入力装置およびその制御方法
WO2013054918A1 (ja) 2011-10-13 2013-04-18 三井化学株式会社 高分子圧電材料、およびその製造方法
WO2013089048A1 (ja) 2011-12-16 2013-06-20 株式会社村田製作所 タッチ式操作入力装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3035022A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180113074A (ko) * 2017-04-05 2018-10-15 엘지이노텍 주식회사 터치 패널
KR102276987B1 (ko) * 2017-04-05 2021-07-12 엘지이노텍 주식회사 터치 패널
JP2019039426A (ja) * 2017-08-22 2019-03-14 研能科技股▲ふん▼有限公司 アクチュエータ
JP7044663B2 (ja) 2017-08-22 2022-03-30 研能科技股▲ふん▼有限公司 アクチュエータ
JP2020057762A (ja) * 2018-09-28 2020-04-09 日東電工株式会社 圧電デバイス、及び圧電デバイスの製造方法
JP2020057781A (ja) * 2018-09-28 2020-04-09 日東電工株式会社 圧電デバイス、及び圧電デバイスの製造方法
WO2020067330A1 (ja) * 2018-09-28 2020-04-02 日東電工株式会社 圧電デバイス、及び圧電デバイスの製造方法
JP2020057654A (ja) * 2018-09-28 2020-04-09 日東電工株式会社 圧電デバイス、及び圧電デバイスの製造方法
KR20210043692A (ko) * 2018-09-28 2021-04-21 닛토덴코 가부시키가이샤 압전 디바이스 및 압전 디바이스 제조 방법
CN112823431A (zh) * 2018-09-28 2021-05-18 日东电工株式会社 压电器件及压电器件的制造方法
WO2020066930A1 (ja) * 2018-09-28 2020-04-02 日東電工株式会社 圧電デバイス、及び圧電デバイスの製造方法
WO2020066936A1 (ja) * 2018-09-28 2020-04-02 日東電工株式会社 圧電デバイス、及び圧電デバイスの製造方法
JP7315424B2 (ja) 2018-09-28 2023-07-26 日東電工株式会社 圧電デバイス、及び圧電デバイスの製造方法
JP7332315B2 (ja) 2018-09-28 2023-08-23 日東電工株式会社 圧電デバイス、及び圧電デバイスの製造方法
KR102647953B1 (ko) 2018-09-28 2024-03-14 닛토덴코 가부시키가이샤 압전 디바이스 및 압전 디바이스 제조 방법

Also Published As

Publication number Publication date
JPWO2015053089A1 (ja) 2017-03-09
TWI650682B (zh) 2019-02-11
CN105556268A (zh) 2016-05-04
US10190924B2 (en) 2019-01-29
JP6101813B2 (ja) 2017-03-22
EP3035022A1 (en) 2016-06-22
EP3035022A4 (en) 2017-04-05
CN105556268B (zh) 2018-05-25
EP3035022B1 (en) 2018-05-09
TW201528084A (zh) 2015-07-16
US20160238466A1 (en) 2016-08-18

Similar Documents

Publication Publication Date Title
JP6101813B2 (ja) 押圧検出装置及び押圧検出タッチパネル
JP6591041B2 (ja) 積層体
JP5933845B2 (ja) 積層体
WO2013183594A1 (ja) 圧電デバイス、および圧電デバイスの製造方法
JP2015186910A (ja) 積層体
US10031606B2 (en) Pressure detecting device and touch panel
JP2015186909A (ja) 積層体
WO2016027587A1 (ja) 高分子圧電フィルム
JP6300458B2 (ja) 積層圧電素子
JP6408124B2 (ja) フィルム巻層体及びその製造方法
JP6487178B2 (ja) 積層体
JP2015186908A (ja) 積層体
JP6328274B2 (ja) 積層体
JP6917818B2 (ja) 高分子圧電フィルム及びその製造方法、圧電フィルム片及びその製造方法、積層体、並びに、圧電素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480051725.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853064

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015541514

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014853064

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15026050

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE