WO2017154771A1 - スクリュ圧縮機 - Google Patents

スクリュ圧縮機 Download PDF

Info

Publication number
WO2017154771A1
WO2017154771A1 PCT/JP2017/008478 JP2017008478W WO2017154771A1 WO 2017154771 A1 WO2017154771 A1 WO 2017154771A1 JP 2017008478 W JP2017008478 W JP 2017008478W WO 2017154771 A1 WO2017154771 A1 WO 2017154771A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
rotor
shaft
cooling
liquid
Prior art date
Application number
PCT/JP2017/008478
Other languages
English (en)
French (fr)
Inventor
克徳 濱田
昇 壷井
元 中村
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020187025567A priority Critical patent/KR102067054B1/ko
Priority to US16/070,855 priority patent/US11053942B2/en
Priority to CN201780016026.7A priority patent/CN108700071B/zh
Publication of WO2017154771A1 publication Critical patent/WO2017154771A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/045Heating; Cooling; Heat insulation of the electric motor in hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0071Couplings between rotors and input or output shafts acting by interengaging or mating parts, i.e. positive coupling of rotor and shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present invention relates to a screw compressor, and more particularly, to a screw compressor having a cooling structure for cooling a motor that rotationally drives a screw rotor.
  • the screw rotor In the screw compressor, the screw rotor is driven to rotate by a motor.
  • the motor When the motor is driven to rotate at high speed, the motor generates heat due to electrical loss such as so-called iron loss (hysteresis loss and eddy current loss) and copper loss (loss due to winding resistance).
  • a cooling jacket is provided on the outer periphery of the motor casing.
  • the cooling liquid flows through the cooling jacket, and the motor is cooled by exchanging heat with the cooling liquid.
  • a double cooling structure including a cooling jacket that cools the outer portion of the motor casing and a coolant passage formed on the inner peripheral surface of the motor casing that cools the outer peripheral portion of the stator of the motor.
  • the double cooling structure cools the stator of the motor that is in contact with the inner peripheral surface of the motor casing.
  • the stator of the motor is arranged apart from the rotor by a minute air gap.
  • the generated heat is transmitted to the rotor through a minute air gap, thereby further increasing the temperature of the rotor. Since the liquid-cooled motor of Patent Document 1 has a structure that cools the stator of the motor, the rotor positioned inside the stator of the motor cannot be sufficiently cooled.
  • a technical problem to be solved by the present invention is to provide a screw compressor capable of effectively cooling a stator and a rotor of a motor that rotationally drives a screw rotor.
  • the present invention provides the following screw compressor.
  • the screw compressor includes a compressor main body in which a screw rotor is accommodated in a rotor casing, a rotor and a stator accommodated in a motor chamber of a motor casing, and the screw rotor by a motor shaft fixed to the rotor.
  • a motor that rotationally drives the rotor shaft of the motor shaft, a shaft liquid supply portion that is provided on the opposite side of the motor shaft to supply a coolant, and a cavity that extends in the axial direction within the motor shaft,
  • the cooling liquid supplied through the shaft liquid supply part flows in the cavity to cool the motor shaft, and is located on the rotor side of the motor shaft or on the motor side of the rotor shaft,
  • a liquid outflow portion that extends radially inward from an outflow opening formed on an outer surface of the motor shaft or the rotor shaft and is fluidly connected to the motor shaft cooling portion, That.
  • the motor shaft is cooled by the coolant flowing through the motor shaft cooling section.
  • the rotor fixed to the motor shaft is cooled from the inner peripheral side (motor shaft side) to the circumferential direction.
  • the stator is cooled in the circumferential direction in the motor chamber by allowing the coolant to flow into the motor chamber from the outflow opening that moves in the circumferential direction by the rotation of the motor shaft. Therefore, the motor can be effectively cooled by cooling the stator and the rotor of the motor that rotationally drives the screw rotor from the inside of the motor in the circumferential direction.
  • the cross-sectional view which shows notionally the screw compressor which concerns on 1st Embodiment of this invention.
  • the longitudinal cross-sectional view of the screw compressor shown in FIG. The fragmentary sectional view of the motor chamber in the screw compressor shown in FIG.
  • the expanded sectional view of the motor bearing part periphery in the screw compressor shown in FIG. The expanded sectional view of the intermediate bearing part periphery in the screw compressor shown in FIG.
  • the fragmentary sectional view which shows notionally the motor chamber in the screw compressor which concerns on 2nd Embodiment of this invention.
  • the longitudinal cross-sectional view which shows notionally the screw compressor which concerns on 3rd Embodiment of this invention.
  • the screw compressor 1 shown in FIG. 1 is an oil-free screw compressor.
  • a pair of screw rotors 3 including a male rotor 3 a and a female rotor 3 b that mesh with each other in an oil-free state are accommodated in a rotor chamber 17 formed in the rotor casing 4 of the compressor body 2.
  • a bearing casing 7 is attached to the suction side end of the rotor casing 4.
  • a motor casing 5 of the motor 6 is attached to the discharge side end of the rotor casing 4.
  • the motor 6 includes a rotor 6a, a stator 6b, and a motor casing 5.
  • the motor casing 5 includes a motor casing body 5a, a cooling jacket 8, and a cover 9.
  • a rotor (rotor) 6a and a stator (stator) 6b are accommodated in the motor casing body 5a.
  • the end of the motor casing 5 on the side opposite to the rotor is closed with a cover 9.
  • a gas discharge port (not shown) is formed on the motor 6 side of the rotor casing 4, and a gas suction port (not shown) is formed on the rotor casing 4 on the opposite side of the motor 6.
  • Timing gears (not shown) that mesh with each other are attached to shaft ends of the male rotor 3a and the female rotor 3b opposite to the motor 6. Normally, the male rotor 3 a is driven to rotate by the motor 6. The rotation of the motor shaft 31 of the motor 6 causes the male rotor shaft 21 of the male rotor 3a to rotate, and the female rotor shaft 22 of the female rotor 3b rotates so as to synchronize with the male rotor shaft 21 via the timing gear. .
  • the rotation speed of the motor 6 is controlled by an inverter (not shown), and the motor 6 is operated at a high speed rotation exceeding 20000 rpm, for example.
  • the rotor 6a of the motor 6 is fixed to the outer peripheral portion of the motor shaft 31, and the stator 6b is arranged apart from the rotor 6a.
  • An air gap 6g is formed between the rotor 6a and the stator 6b.
  • the cooling jacket 8 is disposed between the stator 6b and the motor casing body 5a so as to be in close contact with the stator 6b.
  • the motor shaft 31 has a plurality of different-diameter shaft portions that reduce the diameter from the screw rotor 3 side toward the motor bearing portion 13 side.
  • the motor shaft 31 includes, for example, a first shaft portion 44 and a second shaft portion 45.
  • the large-diameter first shaft portion 44 is locked to the side end surface of the rotor 6a.
  • the rotor 6a is fixed so as to be in close contact with the outer peripheral surface of the small-diameter second shaft portion 45.
  • the connection hole 32 extends in the axial direction over the entire first shaft portion 44 and a part of the second shaft portion 45.
  • a central hole 33 serving as a motor shaft cooling portion extends in the axial direction over the remaining portion of the second shaft portion 45.
  • the protruding end portion of the bearing support 37 is inserted into the center hole 33 of the motor shaft 31 and is tightened with the mounting bolt 38 in a state where the flange portion of the bearing support 37 is in contact with the side end surface of the second shaft portion 45. ing.
  • the bearing support 37 is fixed to the motor shaft 31 and one end of the center hole 33 on the motor bearing portion 13 side is closed.
  • the center hole 33 is a cavity extending in the axial direction in the motor shaft 31, and coolant (oil in the present embodiment) supplied through the motor shaft liquid supply member (shaft liquid supply portion) 10 is in the center hole 33. It works as a motor shaft cooling part which cools motor shaft 31 by circulating.
  • the motor shaft cooling unit is provided in the motor shaft 31 at a position where the rotor 6a is located.
  • the cooling jacket 8 is fixed to the motor casing main body 5a by tightly fitting the cooling jacket 8 along the inner side surface of the motor casing main body 5a and tightening the bolts with the bolts in contact with each other.
  • a cooling passage 8b for flowing a cooling liquid (oil in this embodiment) is formed in the cooling jacket portion 8a of the cooling jacket 8. Liquid leakage from the cooling passage 8b into the motor casing body 5a is prevented by the packings provided on the cooling jacket portions 8a located on both outer sides in the axial direction of the cooling passage 8b.
  • the male rotor shaft 21 of the screw rotor 3 and the motor shaft 31 of the motor 6 are configured separately, and the key is arranged so that the male rotor shaft 21 and the motor shaft 31 extend coaxially in the horizontal direction (lateral direction). 41 (coupling member) is integrally connected.
  • the non-motor 6 side of the male rotor shaft 21 is supported on the bearing casing 7 by the rotor bearing portion 11.
  • the motor 6 side of the male rotor shaft 21 is supported on the rotor casing 4 by the intermediate bearing portion 12. That is, the male rotor shaft 21 is supported by both ends by the rotor bearing portion 11 and the intermediate bearing portion 12.
  • the bearing support 37 fixed to the end of the motor shaft 31 opposite to the rotor is supported by the cover 9 by the motor bearing 13. Accordingly, the integrally connected male rotor shaft 21 and motor shaft 31 extend coaxially in the horizontal direction (lateral direction) and are supported at three locations of the rotor bearing portion 11, the intermediate bearing portion 12, and the motor bearing portion 13 ( That is, three points are supported).
  • the female rotor shaft 22 of the female rotor 3 b is supported by both the bearing casing 7 and the rotor casing 4 by the rotor bearing portion 15 and the intermediate bearing portion 16.
  • the rotor bearing portion 11 includes, for example, a thrust bearing (four-point contact ball bearing) 11a and a radial bearing (roller bearing) 11b.
  • the intermediate bearing portion 12 includes, for example, a radial bearing (roller bearing) 12a provided on the rotor side and a thrust bearing (4-point contact ball bearing) 12b provided on the motor side.
  • an intermediate liquid supply path 82 (intermediate oil supply path) for supplying oil to the intermediate bearing portion 12 is provided between the radial bearing 12a and the thrust bearing 12b.
  • the motor bearing portion 13 is composed of, for example, a radial bearing (deep groove ball bearing).
  • the rotor bearing portion 15 that supports the female rotor shaft 22 includes, for example, a thrust bearing (four-point contact ball bearing) 15a and a radial bearing (roller bearing) 15b.
  • the intermediate bearing portion 16 includes, for example, a radial bearing (roller bearing) 16a and a thrust bearing (four-point contact ball bearing) 16b.
  • a bearing (corresponding to the thrust bearing 12b in the present embodiment) that supports at least the rotor shaft (here, the male rotor shaft 21) connected to the motor shaft 31 on the motor 6 side supplies oil to the motor 6 side.
  • Open type bearings are used so that they can be distributed and lubricated. In this embodiment, the other bearings also use the open type, but for each of the other bearings, whether or not to make an open type bearing is considered in consideration of the load on the bearing and the manner of lubrication. What is necessary is just to determine suitably.
  • An intermediate shaft sealing portion 14 a is provided on the male rotor shaft 21 between the male rotor 3 a and the intermediate bearing portion 12.
  • a shaft sealing portion 14c is provided on the male rotor shaft 21 between the rotor bearing portion 11 and the male rotor 3a.
  • a shaft sealing portion 14 b is provided on the female rotor shaft 22 between the female rotor 3 b and the intermediate bearing portion 16.
  • a shaft sealing portion 14d is provided on the female rotor shaft 22 between the rotor bearing portion 15 and the female rotor 3b.
  • Each shaft sealing part 14a, 14b, 14c, 14d is provided with the mechanical seal which acts as a Bisco seal and an air seal which work as an oil seal, for example.
  • the visco seal provided on the bearing side prevents oil from flowing into the rotor chamber 17.
  • the mechanical seal provided on the screw rotor 3 side prevents inflow of oil into the rotor chamber 17 and excessive leakage of compressed gas from the rotor chamber 17.
  • the inner ring of the motor bearing portion 13 is positioned so as not to move in the axial direction by a stop ring 61 disposed on the bearing support 37.
  • the motor bearing portion 13 is attached to the bearing mounting hole 9a of the cover 9 with a clearance fit.
  • wheel of the motor bearing part 13 can move to an axial direction. That is, the motor bearing portion 13 is assembled to the motor 6 so as to allow sliding in the axial direction on the outer ring. According to this configuration, even if the motor shaft 31 extends due to thermal expansion, it is possible to prevent an unreasonable load from being applied to the motor bearing portion 13.
  • the cover 9 is attached to the cooling jacket 8 so as to close the opening of the motor casing 5.
  • the cover 9 is fixed to the cooling jacket 8 by tightening with a bolt while the flange portion of the cover 9 is in contact with the side end surface of the cooling jacket 8.
  • the shaft diameter of the motor shaft 31 of the motor 6 is larger than the shaft diameter of the connecting end portion 24 on the motor 6 side of the screw rotor 3 (in this embodiment, the male rotor shaft 21).
  • a connecting hole 32 for inserting the connecting end portion 24 is formed in the motor shaft 31 having a large diameter.
  • the motor shaft 31 is formed with a center hole 33 having a diameter larger than that of the connection hole 32.
  • a step is formed at the boundary between the relatively large diameter center hole 33 and the small diameter connection hole 32.
  • the fastening flange 27 can be freely inserted through the center hole 33 due to the level difference of the through-hole penetrating the motor shaft 31, but it is a dead end with respect to the connection hole 32.
  • the fastening flange 27 has a screw insertion hole and a plurality of flange communication holes 27a.
  • the plurality of flange communication holes 27a communicate the center hole 33 and the liquid guide hole 21c.
  • a second key groove 31 a having a rectangular cross section is formed on the inner peripheral surface 31 b of the coupling hole 32 provided in the motor shaft 31.
  • a rectangular key groove 42 is formed in the axial direction by the first key groove 24a and the second key groove 31a.
  • a fastening portion is provided inside the connecting end portion 24.
  • the fastening portion includes a liquid guide hole 21 c and a screw hole 26 that extend in the axial direction from the end face of the connecting end portion 24.
  • the liquid guide hole 21c is a cavity that is provided on the motor 6 side of the rotor shaft 21 and extends in the axial direction within the rotor shaft 21, and is used for connecting the rotor shaft 21 and the motor shaft 31, and as a rotor shaft cooling unit. work.
  • the diameter of the liquid guide hole 21 c is larger than that of the screw hole 26.
  • a cavity that forms a flow path connecting the liquid guide hole 21c and the flange communication hole 27a is provided between the connecting end portion 24 and the fastening flange 27.
  • the coolant (oil in this embodiment) that has passed through the flange communication hole 27 a can flow through the annular gap formed between the liquid guide hole 21 c and the fastening bolt 28.
  • One end of the rotor shaft (in this case, the male rotor shaft 21) between the rotor-side end surface of the rotor 6a and the bearing support member 19 communicates with the inside of the motor chamber 20 in the radial direction (for example, an axis orthogonal to the axis).
  • a plurality of liquid outflow holes 21d extending in the direction) are formed. That is, a plurality of outflow openings 21 f that open toward the inside of the motor chamber 20 are formed on the outer surface of the rotor shaft 21.
  • the plurality of liquid outflow holes 21d constitute a liquid outflow portion that fluidly connects each outflow opening 21f, the liquid guide hole 21c, and the motor chamber 20.
  • a part of the motor shaft communication portion 39 is configured by the communication between the center hole 33, the plurality of flange communication holes 27a, the liquid guide hole 21c, and the plurality of liquid outflow holes 21d.
  • the plurality of liquid outflow holes 21d extending radially inward are located between the rotor-side end surface of the rotor 6a and the bearing support member 19, and are formed in the plurality of outflow openings 21f that open toward the motor chamber 20. Any communication is acceptable. That is, the liquid outflow hole 21 d may be formed across the rotor shaft 21 and the motor shaft 31. In this case, an outflow opening is formed on the outer surface of the motor shaft 31. Further, the liquid outflow hole 21d is directed toward the motor rotor 6a and the stator 6b so that the outflowing coolant (oil in the present embodiment) can easily come into contact with the motor rotor 6a and the stator 6b. The aspect extended in inclination may be sufficient. Further, the liquid outflow hole 21d may be configured to extend so that the outflow opening 21f is positioned facing the inner peripheral side of the winding portion of the stator 6b. Thereby, the coil
  • the motor shaft 31 and the male rotor shaft 21 are integrally connected by a key 41 as a coupling member, and the motor shaft 31 and the male rotor shaft 21 fastened by a fastening bolt 28 as a fastening member are a single shaft body. Work as. In the fitting structure using the key 41, the transmission torque is not affected by the coolant. Therefore, even if the coolant travels along the male rotor shaft 21 extending in the horizontal direction and enters the coupling hole 32, torque can be reliably transmitted between the motor shaft 31 and the male rotor shaft 21. .
  • the head portion 28a of the fastening bolt 28 is located in the center hole 33 formed so as to penetrate the motor shaft 31 in the axial direction. Specifically, the head 28 a is immersed in the center hole 33 of the motor shaft 31 so that the head 28 a is positioned in the vicinity of the shaft end surface of the male rotor shaft 21. That is, the axial length of the fastening bolt 28 is configured to be short. According to the said structure, the influence of the thermal expansion of the fastening bolt 28 decreases, and it can clamp
  • the connection end 24 of the male rotor shaft 21, the connection hole 32, and the center hole 33 of the motor shaft 31 extend coaxially.
  • a radial bearing 12 a of the intermediate bearing portion 12 is attached to the motor 6 side of the rotor casing 4.
  • the position of the inner ring of the radial bearing 12a is fixed with respect to the male rotor shaft 21, and the position of the outer ring of the radial bearing 12a is fixed with respect to the rotor casing 4 by a retaining ring.
  • a bearing support member 19 is attached to the rotor 6 on the motor 6 side via the spacer 18. By tightening with bolts, the bearing support member 19 and the spacer 18 are fixed to the motor 6 side of the rotor casing 4.
  • the position of the inner ring of the thrust bearing 12b is fixed to the male rotor shaft 21 by a locking nut 23a.
  • a radial bearing 16 a of the intermediate bearing portion 16 is attached to the motor 6 side of the rotor casing 4.
  • the position of the inner ring of the radial bearing 16a is fixed with respect to the female rotor shaft 22, and the position of the outer ring of the radial bearing 16a is fixed with respect to the rotor casing 4 by a retaining ring.
  • the position of the inner ring of the thrust bearing 16b is fixed to the female rotor shaft 22 by a locking nut 23b.
  • the inner ring, outer ring, and rolling elements constituting the bearing are usually made of steel and have conductivity. Therefore, the high frequency current from the inverter circuit of the motor 6 flows to the intermediate bearing portion 12 and the motor bearing portion 13 that support the motor shaft 31 of the motor 6, and between the outer ring and the inner ring of the intermediate bearing portion 12 and the motor bearing portion 13. When the shaft voltage is generated, an electrolytic corrosion phenomenon that the bearing is damaged occurs. Therefore, the intermediate bearing portion 12 and the motor bearing portion 13 are electrically insulated.
  • the bearing is electrically insulated because, for example, the rolling element of the bearing is made of an inorganic insulating material such as ceramics, and the outer surface of at least one of the inner ring and outer ring of the bearing is epoxy resin, unsaturated polyester resin, etc. It is covered with an organic insulating material. Moreover, in the support member and casing which support a bearing, the part contact
  • an intermediate liquid supply port (intermediate oil supply port) 64 communicating with the intermediate liquid supply channel (intermediate oil supply channel) 82 is formed in the upper portion of the rotor casing 4.
  • An intermediate liquid supply hole (intermediate oil supply hole) 82 a extending from the intermediate liquid supply port 64 to the intermediate bearing portion 12 is formed in the rotor casing 4.
  • a radial bearing 12 a and a thrust bearing 12 b are arranged apart from each other by a spacer 18.
  • a communication space 82b is formed between the separated radial bearing 12a and thrust bearing 12b.
  • the intermediate liquid supply hole 82a communicates with the communication space 82b. Therefore, the intermediate liquid supply path 82 communicates with the communication space 82 b through the intermediate liquid supply hole 82 a in the rotor casing 4.
  • the oil supplied to the intermediate liquid supply path 82 is supplied to each of the radial bearing 12a and the thrust bearing 12b of the intermediate bearing portion 12 through the communication space 82b.
  • the oil supplied to the radial bearing 12a is used for lubrication and cooling of the radial bearing 12a.
  • the oil is restricted from flowing toward the rotor chamber 17 by the oil seal of the intermediate shaft sealing portion 14a.
  • the rotor casing 4 includes an intermediate communication portion 54 having one end communicating with a gap formed between the radial bearing 12 a and the intermediate shaft sealing portion 14 a and the other end communicating with the motor chamber 20. The oil that is about to flow from the radial bearing 12 a to the screw rotor 3 side is guided into the motor chamber 20 through the intermediate communication portion 54.
  • the oil introduced into the motor chamber 20 through the intermediate communication portion 54 is described as a motor chamber drain port 66 (motor chamber drain port; hereinafter referred to as a drain port 66) which is a drain section on the rotor side of the rotor 6a. From the motor chamber 20 and is recovered by the liquid recovery unit 71 (oil recovery unit).
  • the intermediate communication portion 54 oil can be prevented from flowing into the rotor chamber 17 beyond the intermediate shaft sealing portion 14a even when the open type is used for the radial bearing 12a.
  • the low-pressure stage screw rotor 3 includes the intermediate communication portion 54 when the discharge side of the low-pressure stage has a negative pressure.
  • oil can be effectively prevented from flowing into the rotor chamber 17.
  • the oil supplied to the thrust bearing 12b is used for lubrication and cooling of the thrust bearing 12b.
  • the oil lubricated and cooled while flowing through the thrust bearing 12b is guided into the motor chamber 20 and cools the motor shaft 31 from the outer surface.
  • the oil is finely divided into oil mist by the motor shaft 31 and the rotor 6a that rotate at high speed in the motor chamber 20.
  • the oil mist is attached to the rotor 6a, the stator 6b, and the motor shaft 31 in the motor chamber 20, and contributes to cooling the motor 6 from the motor chamber 20.
  • a motor chamber supply passage 83 (motor chamber supply passage; hereinafter referred to as a supply passage 83) that supplies oil as a coolant to the inside of the motor chamber 20 is provided above the motor casing 5 on the rotor side of the rotor 6a. Is provided).
  • a motor chamber liquid supply port 65 (motor chamber oil supply port; hereinafter referred to as a liquid supply port 65) that communicates with the liquid supply path 83 is located above the motor chamber 20 on the intermediate bearing portion 12 side, that is, on the intermediate bearing portion 12 side.
  • the motor casing 5 is disposed on the top.
  • the liquid supply passage 83 and the liquid supply port 65 function as a motor chamber oil supply passage and a motor chamber oil supply port, respectively.
  • the liquid supply port 65 is provided with a nozzle (not shown) through which oil can flow out in the form of fine particles.
  • the oil supplied to the liquid supply path 83 is guided into the motor chamber 20 through the nozzle.
  • the oil introduced into the motor chamber 20 adheres to the rotor 6a, the stator 6b, and the motor shaft 31 in the motor chamber 20, and cools the motor 6.
  • a motor chamber drainage path 92 (motor chamber drainage path; hereinafter referred to as a drainage path 92) that discharges oil as coolant from the inside of the motor chamber 20 is provided below the motor casing 5 on the rotor side of the rotor 6a. To be described).
  • a drain port 66 communicating with the drain path 92 is formed at the bottom of the motor chamber 20 on the intermediate bearing portion 12 side, that is, at the bottom of the motor casing 5 on the intermediate bearing portion 12 side.
  • the drainage channel 92 and the drainage port 66 function as a motor chamber drainage channel and a motor chamber drainage port (drainage part), respectively.
  • the oil used for lubricating the intermediate bearing portion 12 and cooling the motor 6 gathers at the bottom of the motor chamber 20 on the intermediate bearing portion 12 side and is discharged out of the motor chamber 20 through the drain port 66.
  • the oil is recovered by the liquid recovery unit 71 through the drainage path 92.
  • a motor chamber supply passage 86 (motor chamber supply passage; hereinafter referred to as a supply passage 86) for supplying oil as a coolant into the motor chamber 20 is provided at the upper portion of the motor casing 5 on the side opposite to the rotor from the rotor 6a. To be described).
  • a motor chamber liquid supply port 77 (motor chamber oil supply port; hereinafter referred to as a liquid supply port 77) communicating with the liquid supply path 86 is formed in the upper portion of the motor chamber 20 on the motor bearing portion 13 side. That is, a liquid supply port 77 is formed in the upper portion of the motor casing 5 that forms the cooling jacket 8 on the motor bearing portion 13 side.
  • the liquid supply passage 86 and the liquid supply port 77 function as a motor chamber oil supply passage and a motor chamber oil supply port, respectively.
  • the liquid supply port 77 is opened so that oil flows out toward the winding of the stator 6b.
  • a motor bearing oil supply hole 79 is formed in the upper part of the cover 9 located below the winding of the stator 6b.
  • the motor bearing oil supply hole 79 has an oil receiving portion with an opening area that is concavely expanded at the top.
  • the oil supplied to the liquid supply path 86 is supplied into the motor chamber 20 through the liquid supply port 77, and cools the winding of the stator 6b.
  • the oil that has flowed downward from the winding of the stator 6 b is collected at the oil receiving portion and supplied to the motor bearing portion 13 through the motor bearing oil supply hole 79.
  • the oil supplied to the motor bearing portion 13 is used for lubrication and cooling of the motor bearing portion 13.
  • the oil that has lubricated and cooled the motor bearing 13 is guided into the motor chamber 20.
  • a motor chamber drainage passage 93 (motor chamber drainage passage; hereinafter referred to as a drainage passage 93) that discharges oil as coolant from the motor chamber 20 is provided.
  • a motor chamber drain port 78 (motor chamber drain port; hereinafter referred to as a drain port 78) communicating with the drain path 93 is formed at the bottom of the motor chamber 20 on the motor bearing portion 13 side. That is, a drainage port 78 is formed at the bottom of the motor casing 5 that forms the cooling jacket 8 on the motor bearing portion 13 side.
  • the drainage passage 93 on the side opposite to the rotor and the drainage port 78 on the side opposite to the rotor function as a motor chamber drainage passage and a motor chamber drainage port (drainage part), respectively.
  • the oil used for lubricating the motor bearing 13 and cooling the windings of the stator 6b of the motor 6 gathers at the bottom of the motor chamber 20 on the motor bearing 13 side and drains on the side opposite to the rotor of the rotor 6a. It is discharged out of the motor chamber 20 through the drainage port 78 that is a part.
  • the oil is recovered by the liquid recovery unit 71 through the drainage passage 93.
  • a bearing liquid supply path 81 (bearing oil supply path) for supplying to the rotor bearing portion 11 is provided at the upper part of the bearing casing 7.
  • a rotor bearing oil supply port (not shown) communicating with the bearing liquid supply path 81 is formed in the upper portion of the bearing casing 7 on the rotor bearing portion 11 side.
  • a rotor bearing oil supply hole (not shown) extending from the rotor bearing oil supply port to the rotor bearing portion 11 is formed.
  • the oil supplied to the bearing oil supply path 81 is supplied to the rotor bearing portion 11 through the rotor bearing oil supply hole.
  • the oil supplied to the rotor bearing portion 11 is used for lubrication and cooling of the rotor bearing portion 11.
  • the oil that has lubricated and cooled the rotor bearing portion 11 is restricted from flowing toward the rotor chamber 17 by the oil seal of the shaft seal portion 14c.
  • a bearing drainage passage 91 (bearing drainage passage) for discharging oil from the rotor bearing portion 11 is provided at the lower portion of the bearing casing 7.
  • a rotor bearing drainage port (rotor bearing drainage port; not shown) that leads from the rotor bearing portion 11 to the bearing drainage passage 91 is formed at the bottom of the bearing casing 7. Oil used for lubricating and cooling the rotor bearing portion 11 is discharged out of the bearing casing 7 through the rotor bearing drainage port. The oil is recovered by the liquid recovery part 71 through the bearing drainage path 91.
  • the motor casing 5 is provided with a jacket liquid supply path 84 (hereinafter referred to as a liquid supply path 84) for supplying oil as a cooling liquid to the cooling passage 8b of the cooling jacket 8.
  • a jacket liquid supply port 67 (hereinafter referred to as a liquid supply port 67) communicating with the liquid supply path 84 is formed.
  • the liquid supply port 67 communicates with the cooling passage 8b.
  • the oil supplied to the liquid supply path 84 is supplied to the cooling passage 8b through the liquid supply port 67 to cool the stator 6b.
  • a jacket drain path 94 (jacket drain path; hereinafter referred to as a drain path 94) for discharging oil as a coolant from the cooling jacket 8 is provided.
  • a jacket drain port 68 (hereinafter referred to as a drain port 68) that communicates with the drain path 94 is formed in the lower portion of the motor casing 5.
  • a downstream side of the cooling passage 8b in the cooling jacket 8 communicates with a drainage passage 94 that constitutes a part of a drainage passage 90 (an oil discharge passage; hereinafter referred to as a drainage passage 90).
  • the drainage port 68 communicates with the cooling passage 8b.
  • the oil that has flowed through the cooling passage 8 b is discharged out of the motor casing 5 through the drainage port 68.
  • the oil is recovered by the liquid recovery unit 71 through the drainage path 94. Therefore, the oil for lubricating and cooling the bearing portions 11, 12, and 13 can be used to cool the stator 6 b of the motor 6 by flowing oil in the cooling passage 8 b of the cooling jacket portion 8 a.
  • the motor shaft liquid supply member 10 includes an attachment flange 10 a and a protrusion 10 b and is attached in a sealed state to the opening on the side surface of the cover 9.
  • a motor shaft liquid supply port 69 (hereinafter, referred to as a shaft liquid supply port 69) is formed in the central portion of the mounting flange 10a.
  • a liquid introduction hole 10c is formed inside the protruding portion 10b extending in the axial direction.
  • the liquid introduction hole 10 c is a through hole extending in the axial direction, and communicates the shaft liquid supply port 69 and the insertion hole 37 c of the bearing support 37.
  • An insertion hole 37 c is formed at the center of the bearing support 37.
  • the insertion hole 37c is a through-hole that is larger in diameter than the protruding portion 10b of the motor shaft liquid supply member 10 and extends in the axial direction so that the protruding portion 10b can be inserted through a slight gap.
  • the liquid introduction hole 10 c and the insertion hole 37 c are arranged coaxially with respect to the center hole 33. A part of the protrusion 10b is inserted into the insertion hole 37c so that the end of the protrusion 10b overlaps the insertion hole 37c in the axial direction. As shown in FIG.
  • a part of the motor shaft communication portion 39 is configured by the communication of the liquid introduction hole 10 c, the insertion hole 37 c, and the center hole 33.
  • the motor shaft liquid supply member 10 and the bearing support 37 are respectively provided on the side opposite to the rotor of the motor shaft 31 and are supplied from a shaft liquid supply path 85 (hereinafter referred to as a liquid supply path 85).
  • a shaft liquid supply unit for supplying oil that acts as a motor shaft communication unit 39 to the motor shaft communication unit 39.
  • the motor shaft communication portion 39 is configured by the communication of the liquid introduction hole 10c, the insertion hole 37c, the center hole 33, the plurality of flange communication holes 27a, the liquid guide hole 21c, and the plurality of liquid outflow holes 21d.
  • the oil supplied from the shaft liquid supply port 69 communicating with the liquid supply passage 85 flows through the center hole 33 formed in the portion where the rotor 6a of the motor shaft 31 is located and rotates.
  • the child 6a is cooled from its inner side (inside) in the circumferential direction.
  • the oil that has flowed through the center hole 33 cools the motor shaft 31 from the inside (inside the motor).
  • the center hole 33 extending in the axial direction along the rotor 6a has a diameter larger than that of the insertion hole 37c.
  • the center hole 33 has a surface area per unit length that is set larger than that of the insertion hole 37c in the axial direction, and is larger than the insertion hole 37c by three times or more in diameter. Thereby, the surface area of the center hole 33, that is, the heat transfer surface can be increased, and the cooling effect of the rotor 6a can be enhanced.
  • the oil used to cool the rotor 6a of the motor 6 from the inner side (inside the motor) in the circumferential direction through the center hole 33 is a plurality of liquids that move in the circumferential direction by the rotation of the motor shaft 31. It flows out into the motor chamber 20 on the rotor side from each outflow opening 21f of the outflow hole 21d. The oil that flows out from each outflow opening 21f adheres to the stator 6b in the circumferential direction, and cools the stator 6b in the circumferential direction from the inside of the motor chamber 20.
  • the oil used for cooling the motor 6 is discharged from the motor chamber 20 to the outside of the motor chamber 20 through the drain port 66. The oil is recovered by the liquid recovery unit 71 through the drainage path 92.
  • the motor shaft 31 is cooled by the oil flowing through the center hole 33 that functions as a motor shaft cooling section, and the rotor 6a fixed in close contact with the motor shaft 31 is cooled in the circumferential direction by the cooling of the motor shaft 31.
  • the stator 6b is cooled over the circumferential direction. That is, both the rotor 6a and the stator 6b of the motor 6 are cooled by the oil flowing through the motor shaft 31, and the motor 6 is cooled from the inside. Therefore, the motor 6 that rotationally drives the screw rotor 3 can be cooled from the inside to effectively cool the motor 6.
  • the drainage path 90 is connected to a liquid recovery unit 71 that recovers oil.
  • a liquid cooler 72 (oil cooler) for cooling the recovered oil is provided on the downstream side of the liquid recovery unit 71.
  • a liquid pump 73 (oil pump) is connected to the downstream side of the liquid cooler 72.
  • a liquid supply path 80 (oil supply path) for supplying oil to the liquid supply destination (oil supply destination) is connected to the downstream side of the liquid pump 73 (oil pump).
  • the liquid supply destination (oil supply destination) is the rotor bearing portion 11, the intermediate bearing portions 12 and 16, the motor bearing portion 13 and the like.
  • the liquid supply path 80 is branched into a bearing liquid supply path 81, an intermediate liquid supply path 82, a liquid supply path 83, a liquid supply path 84, a liquid supply path 85, and a liquid supply path 86.
  • Each liquid supply path 81, 82, 83, 84, 85, 86 includes a rotor bearing oil supply port (not shown), an intermediate liquid supply port 64, a rotor side liquid supply port 65, a liquid supply port 67, and a shaft liquid supply port 69. And the liquid supply port 77 on the non-rotor side.
  • the oil is supplied to each liquid supply destination that requires lubrication and cooling in the compressor body 2 and the motor 6 and is used for lubrication and cooling at each liquid supply destination. And the process of cooling by the liquid cooler 72 is repeated. Thus, the oil is circulated and used in the screw compressor 1.
  • the oil flowing through the center hole 33 of the motor shaft 31 and the oil flowing through the cooling passage 8b of the cooling jacket 8 can effectively cool the motor 6 from the inside and outside of the motor 6, and the motor with respect to the input power A decrease in output can be suppressed.
  • the liquid recovery units 71 and 101, the liquid coolers 72 and 102, and the liquid pumps 73 and 103 can be shared, and the configuration relating to the supply and discharge of the coolant (oil) can be simplified.
  • the motor casing 5 is attached to the discharge side of the rotor casing 4, and the motor shaft 31 of the motor 6 extends to the discharge side of the rotor casing 4.
  • the discharge side of the rotor casing 4 becomes high temperature due to gas compression by the screw rotor 3, and the male rotor shaft 21 and the motor shaft 31 are likely to become higher temperature.
  • temperature rise of the male rotor shaft 21 and the motor shaft 31 can be suppressed.
  • the key 41 and the key groove 42 are fitted with the connecting end portion 24 of the male rotor shaft 21 having a small shaft diameter inserted into the connecting hole 32 of the motor shaft 31 having a large shaft diameter.
  • the motor shaft 31 and the male rotor shaft 21 are integrally connected.
  • the male rotor shaft 21 having a small shaft diameter is provided with a liquid outflow hole 21d.
  • the motor shaft 31 and the male rotor shaft 21 are integrated by fitting the key 41 and the key groove 42 with the motor shaft 31 having a small shaft diameter inserted into the male rotor shaft 21 having a large shaft diameter. It may be an embodiment linked to the.
  • the motor shaft 31 having a small shaft diameter is provided with a plurality of outflow openings 21f and liquid outflow holes 21d.
  • a motor side end 51 is provided on the motor 6 side of the male rotor shaft 21, and the male rotor shaft 21 and the motor side end 51 are separated from one shaft body, that is, the rotating shaft 50. It is configured.
  • the rotor 6a is attached to the outer peripheral surface of the motor side end portion 51 in the same manner as the motor shaft 31 in the second embodiment.
  • the motor 6 side of the male rotor shaft 21 extends from the portion on the motor 6 side to the bearing support 37 supported by the motor bearing portion 13 with respect to the locking nut 23a to constitute a motor side end portion 51.
  • a cooling hole 30 serving as a rotor cooling unit is formed in the motor side end 51 which is a part of the rotating shaft 50 where the rotor 6a is located.
  • the cooling hole 30 is a cavity through which the coolant supplied through the motor shaft supply member (shaft supply portion) 10 and the bearing support 37 (shaft supply portion) flows. As the coolant flows through the cooling hole 30, the motor side end 51 is cooled.
  • the cooling hole 30 extends in the axial direction of the rotary shaft 50 and communicates the end surface opening of the bearing support 37 and the plurality of liquid outflow holes 21d.
  • a part of the protrusion 10b is inserted into the insertion hole 37c of the bearing support 37 so that the end of the protrusion 10b of the motor shaft liquid supply member 10 overlaps the insertion hole 37c in the axial direction.
  • the motor shaft communication portion 39 is configured by the communication between the liquid introduction hole 10c, the insertion hole 37c, the cooling hole 30, and the plurality of liquid outflow holes 21d.
  • the coolant (oil in the present embodiment) supplied from the shaft supply port 69 connected to the shaft supply passage 85 is cooled at the motor-side end 51 of the rotating shaft 50. It flows in the hole 30.
  • the oil that has flowed through the cooling hole 30 cools the motor-side end 51 of the rotating shaft 50 and further cools the rotor 6a from the inner side (inside the motor) to the circumferential direction.
  • the oil used to cool the rotor 6a of the motor 6 from the inner side to the circumferential direction through the cooling hole 30 moves in the circumferential direction by the rotation of the rotary shaft 50. It flows out into the motor chamber 20 on the rotor side from each outflow opening 21f. The oil that flows out from each outflow opening 21f adheres to the stator 6b in the circumferential direction, and cools the stator 6b in the circumferential direction from the inside of the motor chamber 20.
  • the oil used for cooling the motor 6 is discharged from the motor chamber 20 to the outside of the motor chamber 20 through the drain port 66. The oil is recovered by the liquid recovery unit 71 through the drainage path 92.
  • the motor side end 51 of the rotating shaft 50 is cooled by the coolant (oil) flowing through the cooling hole 30 that functions as the rotor cooling unit, and the rotation that is fixed in close contact with the rotating shaft 50 by the cooling of the rotating shaft 50.
  • the child 6a is cooled in the circumferential direction.
  • oil flowing through the cooling hole 30 and the plurality of liquid outflow holes 21d flows out from the outflow opening 21f into the motor chamber 20 on the rotor side in the circumferential direction, so that the stator 6b extends in the circumferential direction. To be cooled.
  • both the rotor 6a and the stator 6b of the motor 6 are cooled by the oil flowing through the rotary shaft 50, and the motor 6 is cooled from the inside (inside the motor chamber 20). Therefore, the motor 6 that rotationally drives the screw rotor 3 can be cooled from the inside to effectively cool the motor 6.
  • oil is used as a coolant to lubricate and cool the bearings 11, 12, and 13 in the compressor body 2 and the motor 6, while the motor 6 is cooled. It is characterized by using cooling water.
  • the cooling water for cooling the motor 6 is an aqueous liquid other than oil, and is, for example, water alone or an aqueous solution containing a rust preventive and an antifreeze.
  • the screw compressor 1 according to the third embodiment includes a liquid supply path 80 (oil supply path) for circulating oil for lubricating and cooling the bearings 11, 12, and 13 in the compressor body 2 and the motor 6, and drainage.
  • a path 90 (oil drain path) is provided.
  • the screw compressor 1 according to the third embodiment includes a liquid supply path 120 (water supply path) and a drainage path 110 (drainage path) for circulating cooling water that cools the motor 6.
  • the liquid supply path 80 is a flow path on the downstream side of the liquid recovery part 71 (oil recovery part), and on the downstream side of the liquid cooler 72 (oil cooler) and the liquid pump 73 (oil pump), the bearing liquid supply path 81 (bearing oil supply path), an intermediate liquid supply path 82 (intermediate oil supply path), and a motor bearing liquid supply path 87 (motor bearing oil supply path).
  • a bearing liquid supply path 81 (bearing oil supply path), an intermediate supply liquid path 82 (intermediate oil supply path), and a motor bearing liquid supply path 87 (motor bearing oil supply path) are respectively a rotor bearing liquid supply port (rotor bearing oil supply port), It leads to an intermediate liquid supply port 64 (intermediate oil supply port) and a motor bearing liquid supply port (motor bearing oil supply port).
  • the bearing drainage path 91, the intermediate drainage path 96 and the motor bearing drainage path 97 merge to form a drainage path 90.
  • the liquid supply path 120 is a flow path on the downstream side of the liquid recovery unit 101 (water recovery unit).
  • the liquid supply path 120 is located downstream of the liquid cooler 102 (water cooler) and the liquid pump 103 (water pump), and the motor chamber liquid supply path 123 (motor chamber water supply path) located closer to the rotor than the rotor 6a. It is branched into a jacket liquid supply path 124 (jacket water supply path), a motor chamber liquid supply path 126 (motor chamber water supply path) and a shaft supply liquid path 125 (axial water supply path) located on the opposite side of the rotor from the rotor 6a. .
  • the motor chamber supply passage 123, the jacket supply passage 124, the motor chamber supply passage 126, and the shaft supply passage 125 are respectively a motor chamber supply port 165 (motor chamber supply port) and a jacket supply port (not shown; 1 (corresponding to jacket liquid supply port 67 shown in FIG. 1), motor chamber liquid supply port 177 (motor chamber water supply port), and shaft liquid supply port 69.
  • the drainage channel 110 (drainage channel) is a channel on the upstream side of the liquid recovery unit 101.
  • the intermediate drainage path 112 (motor chamber drainage path), the jacket drainage path 114 (jacket drainage path), and the motor chamber drainage path 113 (motor chamber drainage path) located on the opposite side of the rotor from the rotor 6a merge.
  • a drainage path 110 is formed.
  • the intermediate drainage channel 112, the jacket drainage channel 114, and the motor chamber drainage channel 113 on the opposite rotor side are respectively connected to a drainage port 166 and a jacket drainage port (not shown; jacket drainage port 68 in the first embodiment). And a drainage port 178 provided on the side opposite to the rotor from the rotor 6a.
  • the motor shaft communication portion 39 is configured by the communication of the liquid introduction hole 10c, the insertion hole 37c, the center hole 33, the plurality of flange communication holes 27a, the liquid guide hole 21c, and the plurality of liquid outflow holes 21d.
  • the cooling water supplied from the shaft liquid supply port 69 that communicates with the shaft liquid supply path 125 flows through the center hole 33 formed in the motor shaft 31, and passes through the motor shaft 31 from the inside (inside). Cooling.
  • the rotor 6a is cooled from the inside (inside the motor 6) to the circumferential direction.
  • the cooling water used for cooling the rotor 6a of the motor 6 from the inside (inside) to the circumferential direction through the central hole 33 is a plurality of liquids that move in the circumferential direction by the rotation of the motor shaft 31. It flows out into the motor chamber 20 on the rotor side from the outflow hole 21d. The cooling water flowing out from the plurality of liquid outflow holes 21d adheres to the stator 6b in the circumferential direction, and cools the stator 6b in the circumferential direction from the inside of the motor chamber 20. The cooling water used for cooling the motor 6 is discharged out of the motor chamber 20 through the drain port 66. The cooling water is recovered by the liquid recovery unit 101 through the intermediate drainage path 112.
  • the motor shaft 31 is cooled in the circumferential direction by cooling water flowing through the center hole 33 that functions as a motor shaft cooling section, and the rotor 6a that is fixed in close contact with the motor shaft 31 is cooled by the cooling of the motor shaft 31. Is done.
  • the coolant flowing through the center hole 33, the plurality of flange communication holes 27a, the liquid guide holes 21c, and the plurality of liquid outflow holes 21d flows from the outflow opening 21f into the motor chamber 20 on the rotor side in the circumferential direction. By doing so, the stator 6b is cooled over the circumferential direction.
  • both the rotor 6a and the stator 6b of the motor 6 are cooled by the cooling water flowing through the motor shaft 31, and the motor 6 is cooled from the inside. Therefore, the motor 6 that rotationally drives the screw rotor 3 can be cooled from the inside to effectively cool the motor 6.
  • cooling water supplied from a jacket liquid supply port (not shown) communicating with the jacket liquid supply path 124 flows through the cooling passage 8b of the cooling jacket 8 mounted on the inner surface of the motor casing body 5a, and is fixed.
  • the child 6b is cooled from the outside.
  • the cooling water flowing in the central hole 33 of the motor shaft 31 and the cooling water flowing in the cooling passage 8b of the cooling jacket 8 can effectively cool the motor 6 from the inside and outside of the motor 6, and the input power It is possible to suppress a decrease in motor output with respect to.
  • the intermediate shaft sealing portion 12 c is provided on the motor 6 side of the thrust bearing 12 b of the intermediate bearing portion 12.
  • the position of the inner ring of the thrust bearing 12b is fixed with respect to the male rotor shaft 21 by a sleeve interposed between the inner ring of the thrust bearing 12b and the intermediate shaft sealing portion 12c.
  • the motor side shaft seal portion 13 c is provided on the motor 6 side of the motor bearing portion 13.
  • the position of the inner ring of the motor bearing portion 13 is fixed to the bearing support 37 by a sleeve interposed between the inner ring of the motor bearing portion 13 and the motor side shaft seal portion 13c.
  • the intermediate shaft sealing portion 12c includes, for example, a visco seal as an oil seal and a visco seal as a cooling water seal.
  • the visco seal provided on the thrust bearing 12 b side prevents the oil from flowing into the motor chamber 20.
  • the visco seal provided on the motor 6 side prevents cooling water from flowing into the thrust bearing 12b.
  • the motor side shaft seal portion 13c also includes, for example, a visco seal as an oil seal and a visco seal as a cooling water seal.
  • the intermediate shaft sealing portion 12c and the motor side shaft sealing portion 13c can be separately recovered by the liquid recovery portion 71 and the liquid recovery portion 101, respectively.
  • the recovered oil is circulated through the liquid supply path 80 and the drain path 90 for use.
  • the recovered cooling water is circulated through the liquid supply path 120 and the drainage path 110 for use.
  • the cooling water is water alone
  • the water discharged from the drainage channel 110 is discarded without being circulated through the supply channel 120 and the drainage channel 110, and new water is supplied. It is also possible to adopt a non-circulating mode for supplying from the channel 120.
  • the drainage path 90 and the drainage path 110 are integrated into one drainage path, and an oil / water separator for separating oil from cooling water mixed with oil is provided downstream of the integrated drainage path. It can also be set as the aspect to arrange
  • the oil and cooling water separated by the oil / water separator are collected by the liquid recovery unit 71 (oil recovery unit) and the liquid recovery unit 101 (water recovery unit), respectively, and then the liquid supply path 80 and the liquid supply path By being supplied to each oil supply destination and each water supply destination through 120, it is circulated and used.
  • the drainage path can be simplified.
  • the rotor shaft 21 of the screw rotor 3 and the motor shaft 31 of the motor 6 may be configured separately, or as described in the second embodiment, the motor of the male rotor shaft 21.
  • the motor-side end portion 51 may be provided on the 6 side, and the male rotor shaft 21 and the motor-side end portion 51 may be constituted by a rotating shaft 50 that is one shaft body.
  • the liquid recovery unit 71 is not described in detail, but the liquid recovery unit 71 may be a space for recovering at least the oil discharged outside the motor chamber 20.
  • the liquid recovery unit 71 may be configured with an oil tank separately installed outside the motor chamber 20, or may be configured with an integral structure with the motor casing 5.
  • the liquid recovery unit 101 only needs to be a space for recovering at least the cooling water discharged out of the motor chamber 20.
  • the liquid recovery unit 101 may be configured with a water tank separately installed outside the motor chamber 20, or may be configured with an integral structure with the motor casing 5.
  • a taper ring is used as a coupling member. (Also called spun ring) can be used.
  • the taper ring connects the motor shaft 31 and the male rotor shaft 21 by using a frictional force generated on the peripheral surface of the ring disposed in the mounting space between the motor shaft 31 and the male rotor shaft 21.
  • the taper ring is configured by combining a wedge-shaped inner ring having one inclined surface and a wedge-shaped outer ring having the other inclined surface engaged with the one inclined surface.
  • the configuration of the coupling member is not limited as long as the transmission torque and the rotational speed of the shaft satisfy the desired specifications.
  • the screw compressor 1 having the cooling structure described above is, for example, an oil-free type that is rotationally driven at a high speed of about 20000 rpm, and cooling oil is introduced into the rotor chamber 17 and is rotationally driven at a low speed of about 3000 rpm. It may be an oil-cooled type.
  • the Bisco seal is exemplified as the intermediate shaft seal portion 12c and the motor side shaft seal portion 13c, a lip seal may be appropriately used in consideration of the rotational speed of the shaft in the shaft seal portion.
  • the cooling jacket 8 may be eliminated, and the cooling passage 8b for flowing the cooling liquid for cooling the stator 6b of the motor 6 may be formed in the motor casing body 5a.
  • the stator 6b is directly attached to the inner wall surface of the motor casing body 5a.
  • the “rotor side” in the “rotor-side motor chamber 20 and the rotor-side liquid supply port 65” in this specification refers to the screw rotor of the compressor body 2 with respect to a reference position. It does not mean that it is on the side of the rotor 6a of the motor 6 with respect to a certain reference position.
  • the screw compressor 1 includes a compressor body 2 in which the screw rotor 3 is accommodated in the rotor casing 4, and a motor in which the rotor 6 a and the stator 6 b are the motor casing 5.
  • a motor 6 housed in the chamber 20 and driven to rotate the rotor shaft 21 of the screw rotor 3 by a motor shaft 31 fixed to the rotor 6a, and provided on the side opposite to the rotor of the motor shaft 31 to supply coolant.
  • the shaft liquid supply units 10 and 37 and the cavity extending in the axial direction in the motor shaft 31, and the coolant supplied through the shaft liquid supply units 10 and 37 circulates in the cavity, thereby allowing the motor shaft 31 to move.
  • the motor shaft cooling section 33 to be cooled, and the outflow opening 21f formed on the outer surface of the motor shaft 31 or the rotor shaft 21 on the rotor side of the motor shaft 31 or the motor 6 side of the rotor shaft And a liquid outlet portion 21d which is connected fluidly with the motor shaft cooling unit 33 extends radially inward.
  • the motor shaft 31 is cooled by the coolant flowing through the motor shaft cooling unit 33.
  • the rotor 6a fixed to the motor shaft 31 is cooled in the circumferential direction by cooling from the inside of the motor shaft 31.
  • the stator 6b is cooled in the circumferential direction inside the motor chamber 20 by allowing the coolant to flow out from the outflow opening 21f that moves in the circumferential direction as the motor shaft 31 rotates. Therefore, the motor 6 can be effectively cooled by cooling the rotor 6a and the stator 6b of the motor 6 that rotationally drives the screw rotor 3 from the inner side of the motor 6 in the circumferential direction.
  • the discharge side of the rotor casing 4 is connected to the motor casing 5, the rotor shaft 21 is coaxially connected to the motor shaft 31, and is provided on the motor 6 side of the rotor shaft 21 and extends in the axial direction within the rotor shaft 21.
  • the rotor shaft cooling section 21c used for connecting the rotor shaft 21 and the motor shaft 31 is further provided, and the rotor shaft cooling section 21c is fluidly connected to the motor shaft cooling section 33 and the liquid outflow section 21d.
  • the rotor shaft 21 becomes hot due to gas compression, but the rotor shaft 21 includes the rotor shaft cooling unit 21 c, thereby increasing the temperature of the rotor shaft 21 and the motor shaft 31. Can be suppressed.
  • the screw compressor 1 includes a compressor body 2 in which a screw rotor 3 is accommodated in a rotor casing 4, a rotor 6a and a stator 6b are accommodated in a motor chamber 20 of the motor casing 5, A motor 6 that rotationally drives the screw rotor 3 via a rotary shaft fixed to the rotor 6a; a shaft liquid supply unit 10 that is provided at a motor-side end 51 of the rotary shaft 50 and supplies coolant; Rotor cooling that is provided in the rotary shaft 50 at the position where the rotor 6a is located and that cools the rotor 6a by circulating the coolant supplied through the shaft liquid supply unit 10 through the cavity.
  • Part 30 and an outflow opening 21f provided between the screw rotor 3 and the rotor 6a of the rotating shaft 50 and provided on the outer surface of the rotating shaft 50 so as to be opened into the motor chamber 20, 21f It extends radially inward and a rotor cooling section 30 and fluidly connected to the liquid outlet portion 21d.
  • the rotating shaft 50 is cooled in the circumferential direction by the coolant flowing through the rotor cooling unit 30 provided in the rotating shaft 50 at the position where the rotor 6a is located.
  • the rotor 6a fixed to the rotating shaft 50 is cooled in the circumferential direction.
  • the stator 6b is cooled in the circumferential direction inside the motor chamber 20 by allowing the coolant to flow in the circumferential direction of the rotating shaft 50 from the outflow opening 21f that moves in the circumferential direction as the rotating shaft 50 rotates. Is done. Therefore, the motor 6 can be effectively cooled by directly cooling the stator 6b and the rotor 6a of the motor 6 that rotationally drives the screw rotor 3 from the inner side in the circumferential direction.
  • This invention can have the following features in addition to the above features.
  • the screw compressor 1 uses the liquid coolers 72 and 102 for cooling the cooling liquid used for cooling the motor 6 and the liquid discharged from the liquid discharge portions 66 and 78 provided in the motor casing 5 as liquid.
  • the supply channels 80 and 120 for supplying the coolant cooled by the liquid coolers 72 and 102 to the supply destination, and the supply channels 80 and 120 Axial liquid supply passages 85 and 125 that are branched and supplied to the axial liquid supply units 10 and 37 are provided.
  • the cooled cooling fluid can be circulated and used.
  • the liquid supply passages 80 and 120 are branched into jacket liquid supply passages 84 and 124, and the jacket liquid supply passages 84 and 124 are fluidly connected to the cooling jacket 8 that cools the stator 6b of the motor 6.
  • Jacket drain passages 94 and 114 fluidly connected on the downstream side of the jacket 8 join the drain passages 90 and 110. According to this configuration, the cooling jacket 8 and the stator 6b of the motor 6 are cooled in addition to the cooling of the rotor 6a of the motor 6 and the inside of the motor chamber 20 by the coolant. That is, both the stator and rotor of the motor are cooled.
  • Liquid recovery units 71 and 101 for storing the coolant used for cooling the motor 6 are provided on the downstream side of the cooling jacket 8. According to this configuration, even when the cooling jacket 8 that requires a relatively large amount of cooling liquid is used, it is not necessary to hold the cooling liquid in the motor chamber 20, so that the cooling liquid by the rotor 6a of the motor 6 can be reduced. Stirring loss can be reduced.
  • motor chamber liquid supply ports 65 and 77 for supplying cooling liquid into the motor chamber 20 are disposed. According to the said structure, since a cooling fluid is supplied from the upper part of the motor chamber 20 through the motor chamber liquid supply ports 65 and 77, the motor chamber 20 can be cooled more effectively.
  • the coolant is oil that lubricates the bearings 11, 12, and 13 provided in at least one of the motor 6 and the compressor body 2. According to this configuration, since the oil also serves as the coolant, the liquid recovery units 71 and 101, the liquid coolers 72 and 102, and the liquid pumps 73 and 103 can be shared, and the configuration related to the supply and discharge of oil (coolant) Can be simplified.
  • Screw compressor oil-free screw compressor
  • Compressor body 3 Screw rotor 3a: Male rotor 3b: Female rotor 4: Rotor casing 5: Motor casing 5a: Motor casing body 6: Motor 6a: Rotor 6b: Stator 6g: Air gap 7: Bearing casing 8 : Cooling jacket 9: Cover 10: Motor shaft liquid supply member (shaft liquid supply part) 10c: Liquid introduction hole 11: Rotor bearing part (bearing part) 12: Intermediate bearing part (bearing part) 12c: Intermediate shaft sealing part 13: Motor bearing part (bearing part) 13c: Motor side shaft seal portion 14a: Intermediate shaft seal portion 17: Rotor chamber 20: Motor chamber 21: Male rotor shaft (rotor shaft) 21c: Liquid guide hole (rotor shaft cooling part) 21d: Liquid outflow hole (liquid outflow part) 21f: Outflow opening 22: Female rotor shaft (rotor shaft) 26: Screw hole 27: Fastening flange 28: Fastening bolt (fast).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

スクリュ圧縮機1は、スクリュロータ3がロータケーシング4内に収容された圧縮機本体2と、回転子6a及び固定子6bがモータ室20内に収容され、モータ軸31によってロータ軸21を回転駆動するモータ6と、モータ軸31の反ロータ側に設けられた軸給液部10,37と、モータ軸31内で軸方向に延びる空洞であって、冷却液が空洞内を流通することによりモータ軸31を冷却するモータ軸冷却部33と、モータ軸31のロータ側又はロータ軸21のモータ6側に位置して、モータ軸31又はロータ軸21の外面に形成された流出開口21fから径方向内方に延びてモータ軸冷却部33と流体的に接続される液流出部21dとを備える。

Description

スクリュ圧縮機
 この発明は、スクリュ圧縮機に関し、詳細には、スクリュロータを回転駆動するモータを冷却する冷却構造を有するスクリュ圧縮機に関する。
 スクリュ圧縮機では、スクリュロータが、モータによって回転駆動されている。モータを高速で回転駆動すると、いわゆる鉄損(ヒステリシス損や渦電流損)や銅損(巻線抵抗による損失)等の電気的な損失により、モータが発熱する。
 発熱したモータを冷却するために、冷却ジャケットがモータケーシングの外周部に設けられている。冷却液が冷却ジャケットの中を流れて、冷却液で熱交換することによりモータを冷却している。
 高速回転するモータを用いたスクリュ圧縮機では、モータのサイズが小さくなるにつれて、モータケーシングの外周部に設けられる冷却ジャケットも小さくなる。そして、このような小さな冷却ジャケットによる冷却だけでは、モータの冷却が不十分になり、固定子のコイル及び回転子の表面で温度が上昇してモータに不具合が生じる。そこで、モータの固定子を効率良く冷却するため、二重の冷却構造を備える液冷式モータが提案されている(特許文献1を参照)。
特開2004-343857号公報
 特許文献1の液冷式モータでは、モータケーシングの外側部分を冷却する冷却ジャケットとモータの固定子の外周部分を冷却するモータケーシングの内周面に形成された冷却液通路という二重の冷却構造が設けられている。当該二重の冷却構造は、モータケーシングの内周面に接触しているモータの固定子を冷却している。
 ところで、モータの固定子は、回転子に対して微小なエアギャップで離間して配置されている。固定子が発熱すると、発生した熱が微小なエアギャップを介して回転子に伝達されることにより、回転子の温度を一層上昇させる。特許文献1の液冷式モータは、モータの固定子を冷却する構造であるため、モータの固定子の内側に位置する回転子を十分に冷却することができない。
 したがって、この発明の解決すべき技術的課題は、スクリュロータを回転駆動するモータの固定子及び回転子を効果的に冷却することが可能なスクリュ圧縮機を提供することである。
 上記技術的課題を解決するために、この発明によれば、以下のスクリュ圧縮機が提供される。
 すなわち、スクリュ圧縮機は、スクリュロータがロータケーシング内に収容された圧縮機本体と、回転子及び固定子がモータケーシングのモータ室内に収容され、前記回転子に固定されたモータ軸によって前記スクリュロータのロータ軸を回転駆動するモータと、前記モータ軸の反ロータ側に設けられて、冷却液を供給するための軸給液部と、前記モータ軸内で軸方向に延びる空洞であって、前記軸給液部を通じて供給された冷却液が前記空洞内を流通することにより前記モータ軸を冷却するモータ軸冷却部と、前記モータ軸のロータ側又は前記ロータ軸のモータ側に位置して、前記モータ軸又は前記ロータ軸の外面に形成された流出開口から径方向内方に延びて前記モータ軸冷却部と流体的に接続される液流出部とを備えることを特徴とする。
 上記構成によれば、モータ軸冷却部内を流通する冷却液によってモータ軸が冷却される。モータ軸内部からの冷却により、モータ軸に固定された回転子が内周側(モータ軸側)から周方向に亘って冷却される。それとともに、モータ軸の回転により周方向に移動する流出開口からモータ室内部に冷却液を流出させることによって、モータ室内部において固定子が周方向に亘って冷却される。したがって、スクリュロータを回転駆動するモータの固定子及び回転子をモータ内部から周方向に亘って冷却することにより、モータを効果的に冷却できる。
この発明の第1実施形態に係るスクリュ圧縮機を概念的に示す横断面図。 図1に示したスクリュ圧縮機の縦断面図。 図2に示したスクリュ圧縮機におけるモータ室の部分断面図。 図3に示したスクリュ圧縮機におけるモータ軸受部周辺の拡大断面図。 図3に示したスクリュ圧縮機における中間軸受部周辺の拡大断面図。 この発明の第2実施形態に係るスクリュ圧縮機におけるモータ室を概念的に示す部分断面図。 この発明の第3実施形態に係るスクリュ圧縮機を概念的に示す縦断面図。 図7に示したスクリュ圧縮機におけるモータ室の部分断面図。
(第1実施形態)
 まず、この発明の第1実施形態に係るスクリュ圧縮機1について、図1から図5を参照しながら説明する。なお、本願における「ロータ側」及び「反ロータ側」の文言は、それぞれ、「スクリュロータのある側と相対的に同じ側」及び「スクリュロータのある側と相対的に反対側」を意味している。また、「モータ側」及び「反モータ側」の文言は、それぞれ、「モータのある側と相対的に同じ側」及び「モータのある側と相対的に反対側」を意味している。
 図1に示すスクリュ圧縮機1は、オイルフリースクリュ圧縮機である。互いに無給油状態で噛合する雄ロータ3a及び雌ロータ3bからなる1対のスクリュロータ3が、圧縮機本体2のロータケーシング4に形成されたロータ室17内に収容されている。ロータケーシング4の吸込側端には軸受ケーシング7が取り付けられている。ロータケーシング4の吐出側端には、モータ6のモータケーシング5が取り付けられている。モータ6は、回転子6aと固定子6bとモータケーシング5とを有している。モータケーシング5は、モータケーシング本体5aと冷却ジャケット8とカバー9とを備える。モータケーシング本体5a内には、回転子(ロータ)6aと固定子(ステータ)6bとが収容されている。モータケーシング5の反ロータ側の端部は、カバー9で閉じられている。
 図示しないガスの吐出口がロータケーシング4のモータ6側に形成され、図示しないガスの吸込口がロータケーシング4においてモータ6の反対側に形成されている。雄ロータ3a及び雌ロータ3bでのモータ6の反対側の各軸端には、互いに噛合するタイミングギヤ(図示せず)が取り付けられている。通常は、雄ロータ3aがモータ6によって回転駆動される。モータ6のモータ軸31の回転駆動により、雄ロータ3aの雄ロータ軸21が回転し、さらにタイミングギヤを介して、雄ロータ軸21と同期するように雌ロータ3bの雌ロータ軸22が回転する。
 モータ6は、図示しないインバータにより回転数制御され、例えば、20000rpmを超える高速回転で運転される。モータ6の回転子6aは、モータ軸31の外周部に固定され、固定子6bは回転子6aの外側に離間して配置されている。回転子6aと固定子6bとの間には、エアギャップ6gが形成されている。モータケーシング5において、冷却ジャケット8は、固定子6bと密接するように、固定子6b及びモータケーシング本体5aの間に配設されている。
 モータ軸31は、スクリュロータ3側からモータ軸受部13側に行くに従って縮径する複数の異径軸部を有する。モータ軸31は、図3に示すように、例えば、第1軸部44及び第2軸部45から構成される。大径の第1軸部44が、回転子6aの側端面に係止している。回転子6aが、小径の第2軸部45の外周面と密接するように固定されている。連結穴32が、第1軸部44の全部と第2軸部45の一部にわたって軸方向に延在している。モータ軸冷却部として働く中心穴33が、第2軸部45の残部にわたって軸方向に延在している。軸受支持体37の突出端部がモータ軸31の中心穴33に挿入されて、軸受支持体37のフランジ部を第2軸部45の側端面に当接させた状態で取付ボルト38で締め付けられている。これにより、軸受支持体37がモータ軸31に固定されているとともに、中心穴33のモータ軸受部13側の一端が閉じられている。中心穴33は、モータ軸31内で軸方向に延びる空洞であって、モータ軸給液部材(軸給液部)10を通じて供給された冷却液(本実施形態においては油)が中心穴33内を流通することによりモータ軸31を冷却するモータ軸冷却部として働く。モータ軸冷却部は、回転子6aの位置する部位のモータ軸31内に設けられている。
 冷却ジャケット8がモータケーシング本体5aの内側面に沿って密着されて、互いのフランジ部が当接した状態でボルトで締め付けることにより、冷却ジャケット8がモータケーシング本体5aに固定されている。冷却ジャケット8の冷却ジャケット部8aには、冷却液(本実施形態においては油)を流すための冷却通路8bが形成されている。冷却通路8bの軸方向の両外側に位置する冷却ジャケット部8aにそれぞれ設けられたパッキンにより、冷却通路8bからモータケーシング本体5a内への液漏れを防止している。
 スクリュロータ3の雄ロータ軸21とモータ6のモータ軸31とは、別体で構成されており、雄ロータ軸21及びモータ軸31が水平方向(横向き)に同軸で延在するように、キー41(カップリング部材)により一体に連結されている。図1に示すように、雄ロータ軸21の反モータ6側は、ロータ軸受部11により軸受ケーシング7に支持されている。雄ロータ軸21のモータ6側は、中間軸受部12によりロータケーシング4に支持されている。すなわち、雄ロータ軸21は、ロータ軸受部11及び中間軸受部12により両持ちで支持されている。モータ軸31の反ロータ側端部に固定された軸受支持体37は、モータ軸受部13によりカバー9に支持されている。したがって、一体に連結された雄ロータ軸21及びモータ軸31が、水平方向(横向き)に同軸で延在し、ロータ軸受部11と中間軸受部12とモータ軸受部13との三箇所で支持(すなわち3点支持)されている。他方、雌ロータ3bの雌ロータ軸22は、ロータ軸受部15及び中間軸受部16により、軸受ケーシング7及びロータケーシング4に両持ちで支持されている。
 ロータ軸受部11は、例えば、スラスト軸受(4点接触玉軸受)11aとラジアル軸受(ころ軸受)11bとから構成される。中間軸受部12は、例えば、ロータ側に設けられたラジアル軸受(ころ軸受)12aと、モータ側に設けられたスラスト軸受(4点接触玉軸受)12bとから構成される。スラスト軸受12bをモータ6側に設けることにより、ロータ軸21が熱膨張によって伸長しても、スラスト軸受12bによってスラスト荷重を受けることができる。また、ラジアル軸受12aとスラスト軸受12bとの間には、中間軸受部12に油を供給するための中間給液路82(中間給油路)が設けられている。モータ軸受部13は、例えば、ラジアル軸受(深溝玉軸受)から構成される。
 また、雌ロータ軸22を支持するロータ軸受部15は、例えば、スラスト軸受(4点接触玉軸受)15aとラジアル軸受(ころ軸受)15bとから構成される。中間軸受部16は、例えば、ラジアル軸受(ころ軸受)16aとスラスト軸受(4点接触玉軸受)16bとから構成される。また、少なくともモータ軸31と接続されるロータ軸(ここでは雄ロータ軸21)をモータ6側で支持する軸受(本実施形態においては、スラスト軸受12bに該当する)は、モータ6側へ油を流通させて潤滑されるように、開放形の軸受を使用している。なお、本実施形態においては他の各軸受も開放形を使用しているが、他の各軸受については、軸受に対する負荷や潤滑の仕方などを考慮して開放形の軸受とするか否かを適宜に決定すればよい。
 雄ロータ3aと中間軸受部12との間の雄ロータ軸21には、中間軸封部14aが設けられている。ロータ軸受部11と雄ロータ3aとの間の雄ロータ軸21には、軸封部14cが設けられている。雌ロータ3bと中間軸受部16との間の雌ロータ軸22には、軸封部14bが設けられている。ロータ軸受部15と雌ロータ3bとの間の雌ロータ軸22には、軸封部14dが設けられている。各軸封部14a,14b,14c,14dは、例えば、オイルシールとして働くビスコシール及びエアシールとして働くメカニカルシールを備えている。軸受側に設けられたビスコシールは、油のロータ室17への流入を防止する。スクリュロータ3側に設けられたメカニカルシールは、油のロータ室17への流入及び圧縮ガスのロータ室17からの必要以上の漏出を防止する。
 図3に示すように、モータ軸受部13の内輪は、軸受支持体37に配設された止めリング61によって軸方向に移動不可に位置決めされている。他方、モータ軸受部13がカバー9の軸受装着穴9aに対してすきまばめで取り付けられている。これにより、モータ軸受部13の外輪は、軸方向に移動できる。すなわち、モータ軸受部13は、外輪での軸方向の摺動を許容するようにモータ6に組み付けられている。当該構成によれば、モータ軸31が熱膨張によって伸長しても、無理な荷重がモータ軸受部13に負荷されることを防止できる。
 カバー9は、モータケーシング5の開口を閉じるように冷却ジャケット8に装着されている。カバー9のフランジ部を冷却ジャケット8の側端面に当接させた状態でボルトで締め付けることにより、カバー9が冷却ジャケット8に固定されている。
 モータ6のモータ軸31の軸径は、スクリュロータ3(本実施形態においては、雄ロータ軸21)のモータ6側の連結端部24の軸径よりも大径である。大径であるモータ軸31には、連結端部24を挿入するための連結穴32が形成されている。モータ軸31には、連結穴32よりも大径の中心穴33が形成されている。中心穴33と連結穴32とにより、モータ軸31の内部を軸方向に貫通する貫通孔がモータ軸31に形成されて、モータ軸31が中空構造になっている。
 相対的に大径の中心穴33と小径の連結穴32との境界には段差が形成されている。モータ軸31を貫通する貫通孔の段差により、締結フランジ27は、中心穴33内を自在に挿通可能であるが、連結穴32に対しては行き止まりになっている。締結フランジ27は、ネジ挿通穴と複数のフランジ連通孔27aとを有する。複数のフランジ連通孔27aは、中心穴33及び液ガイド穴21cを連通している。
 図5に示すように、モータ軸31に設けられた連結穴32の内周面31bには、例えば矩形断面で凹状の第2キー溝31aが形成されている。雄ロータ軸21に設けられた連結端部24の外周面21bには、例えば矩形断面で凹状の第1キー溝24aが形成されている。第1キー溝24a及び第2キー溝31aによって、矩形断面のキー溝42が軸方向に構成されている。連結端部24が連結穴32に挿入された状態で、矩形断面のキー41が、モータ軸31の連結穴32の内周面31bと雄ロータ軸21の連結端部24の外周面21bとの間に介在配置されている。キー41がキー溝42に嵌め込まれることにより、キー41がキー溝42に嵌合している。したがって、キー41は、モータ軸31と雄ロータ軸21とを一体に連結するカップリング部材として働く。
 連結端部24の内部には、締結部が設けられている。締結部は、連結端部24の端面から軸方向に延びる液ガイド穴21cとネジ穴26とを備えている。液ガイド穴21cは、ロータ軸21のモータ6側に設けられてロータ軸21内で軸方向に延びる空洞であってロータ軸21及びモータ軸31の連結に使用されると共に、ロータ軸冷却部として働く。液ガイド穴21cの穴径は、ネジ穴26よりも大きい。また、連結端部24と締結フランジ27の間には、液ガイド穴21cとフランジ連通孔27aとの間を結ぶ流路をなす空洞が設けられている。したがって、フランジ連通孔27aを通過した冷却液(本実施形態においては油)が、液ガイド穴21cと締結ボルト28との間に形成された環状隙間を流れることができる。回転子6aのロータ側端面と軸受支持部材19との間のロータ軸(ここでは雄ロータ軸21)には、一端がモータ室20内に連通して径方向内方に(例えば軸直交軸心方向に)延びる複数の液流出穴21dが形成されている。すなわち、ロータ軸21の外面には、モータ室20内に向けて開口する複数の流出開口21fが形成されている。複数の液流出穴21dは、各流出開口21fと、液ガイド穴21c及びモータ室20とを流体的に接続する液流出部を構成している。中心穴33と複数のフランジ連通孔27aと液ガイド穴21cと複数の液流出穴21dとの連通により、モータ軸連通部39の一部分が構成されている。
 径方向内方に延びる複数の液流出穴21dは、回転子6aのロータ側の端面と軸受支持部材19との間に位置して、モータ室20内に向けて開口する複数の流出開口21fに連通するものであればよい。すなわち、液流出穴21dは、ロータ軸21とモータ軸31とに亘って形成してもよい。この場合、モータ軸31の外面に流出開口が形成される。また、液流出穴21dは、流出した冷却液(本実施形態においては油)がモータの回転子6aや固定子6bと接触しやすくなるように、モータの回転子6aや固定子6bに向けて傾斜して延びる態様であってもよい。また、液流出穴21dは、固定子6bの巻線部の内周側と対向して流出開口21fが位置するように延びる態様であってもよい。これにより、固定子6bの巻線部を効果的に冷却することができる。
 締結ボルト28のネジ部28bが、締結部のネジ穴26に螺合する。締結フランジ27のネジ挿通穴を通じて、締結部材としての締結ボルト28が挿通される。締結フランジ27を中心穴33に挿入して貫通孔の段差で係合させた状態で締結ボルト28を締め付けると、雄ロータ軸21の連結端部24がモータ軸受部13の方に引き寄せられて、締結ボルト28の頭部28aが締結フランジ27に係止する。その結果、締結ボルト28によって、モータ軸31と雄ロータ軸21とが締結される。このように、キー41によってモータ軸31と雄ロータ軸21とが一体に連結された状態で、モータ軸31と雄ロータ軸21とが締結ボルト28によって締結されている。
 カップリング部材としてのキー41によってモータ軸31と雄ロータ軸21とが一体に連結され、締結部材としての締結ボルト28によって締結されたモータ軸31及び雄ロータ軸21は、一塊の一つの軸体として働く。そして、キー41を用いた嵌合構造では、伝達トルクが冷却液の影響を受けない。そのため、冷却液が水平方向に延在する雄ロータ軸21を伝わって連結穴32の中に入ってきても、モータ軸31と雄ロータ軸21との間でトルクを確実に伝達することができる。
 このとき、締結ボルト28の頭部28aが、モータ軸31を軸方向に貫通するように形成された中心穴33内に位置している。詳しくは、頭部28aが、雄ロータ軸21の軸端面付近に位置するように、モータ軸31の中心穴33内部に没入されている。すなわち、締結ボルト28の軸方向長さが短くなるように構成されている。当該構成によれば、締結ボルト28の熱膨張の影響が少なくなり、確実に締め付けることができる。なお、雄ロータ軸21の連結端部24と、モータ軸31の連結穴32及び中心穴33とは、同軸に延在している。
 図1に示すように、ロータケーシング4のモータ6側には、中間軸受部12のラジアル軸受12aが取り付けられている。ラジアル軸受12aの内輪は雄ロータ軸21に対して位置が固定され、ラジアル軸受12aの外輪は止めリングによりロータケーシング4に対して位置が固定されている。スペーサ18を介して、軸受支持部材19がロータケーシング4のモータ6側に取り付けられている。ボルトで締め付けることにより、軸受支持部材19及びスペーサ18が、ロータケーシング4のモータ6側に固定されている。スラスト軸受12bの内輪は、緩み止めナット23aにより雄ロータ軸21に対して位置が固定されている。
 同様に、ロータケーシング4のモータ6側には、中間軸受部16のラジアル軸受16aが取り付けられている。ラジアル軸受16aの内輪は雌ロータ軸22に対して位置が固定され、ラジアル軸受16aの外輪は止めリングによりロータケーシング4に対して位置が固定されている。スラスト軸受16bの内輪は、緩み止めナット23bにより雌ロータ軸22に対して位置が固定されている。
 なお、軸受を構成する内輪と外輪及び転動体は、通常、鋼材からなり導電性を有する。そのため、モータ6のインバータ回路からの高周波電流が、モータ6のモータ軸31を支持する中間軸受部12及びモータ軸受部13に流れ、中間軸受部12及びモータ軸受部13の外輪及び内輪の間に軸電圧が発生することにより軸受を損傷するという電食現象を生じる。そこで、中間軸受部12及びモータ軸受部13が、電気的に絶縁されている。軸受が電気的に絶縁されているというのは、例えば、軸受の転動体がセラミックスなどの無機系絶縁材料からなること、軸受の内輪及び外輪の少なくとも一方の外面がエポキシ樹脂や不飽和ポリエステル樹脂などの有機系絶縁材料で覆われていることである。また、軸受を支持する支持部材やケーシングにおいて、軸受に当接する部分が、絶縁材料で覆われていてもよい。このように中間軸受部12及びモータ軸受部13が電気的に絶縁されていることにより、モータ6のインバータ回路からの高周波電流によって当該軸受部12,13が損傷を受けるという電食現象を生じにくくできる。
(油によるモータの冷却構造)
 次に、上記第1実施形態において、スクリュロータ3を高速で回転駆動するモータ6を、冷却液である油で冷却する冷却構造を説明する。
 図2に示すように、中間給液路(中間給油路)82と通じる中間給液口(中間給油口)64が、ロータケーシング4の上部に形成されている。中間給液口64から中間軸受部12まで延びる中間給液孔(中間給油孔)82aが、ロータケーシング4の内部に形成されている。ラジアル軸受12a及びスラスト軸受12bがスペーサ18によって離間して配置されている。離間したラジアル軸受12a及びスラスト軸受12bの間には、連通スペース82bが形成されている。中間給液孔82aは、連通スペース82bに連通している。したがって、中間給液路82は、ロータケーシング4内の中間給液孔82aを介して、連通スペース82bに連通している。
 中間給液路82に供給された油は、連通スペース82bを通じて、中間軸受部12のラジアル軸受12a及びスラスト軸受12bのそれぞれに供給される。ラジアル軸受12aに供給された油は、ラジアル軸受12aの潤滑及び冷却に使用される。油は、中間軸封部14aのオイルシールにより、ロータ室17に向けて流れることが規制される。他方、ロータケーシング4は、一端がラジアル軸受12a及び中間軸封部14aの間に形成された間隙部に通じるとともに他端がモータ室20に通じている中間連通部54を備えている。ラジアル軸受12aからスクリュロータ3側に流れようとする油は、中間連通部54を通じて、モータ室20内に導かれる。中間連通部54を通じてモータ室20内に導かれた油は、回転子6aのロータ側にある排液部であるモータ室排液口66(モータ室排油口;以下、排液口66と記載する。)からモータ室20外に排出されて液回収部71(油回収部)に回収される。
 したがって、中間連通部54を備えることで、ラジアル軸受12aに開放形を用いた場合でも、油が中間軸封部14aを越えてロータ室17内に流入することを防止できる。特に、複数のモータ6で個別に回転数を調節することのできる複数段圧縮機において、低圧段のスクリュロータ3が中間連通部54を備えることは、低圧段の吐出側が負圧になった場合でも、ロータ室17内への油の流入を効果的に防止できる。
 スラスト軸受12bに供給された油は、スラスト軸受12bの潤滑及び冷却に使用される。スラスト軸受12bを流通しながら潤滑及び冷却した油は、モータ室20内に導かれ、モータ軸31を外面から冷却する。油は、モータ室20内で高速回転するモータ軸31及び回転子6aによって、微粒子化されてオイルミストになる。オイルミスト化した油は、モータ室20内の回転子6aと固定子6bとモータ軸31とに付着して、モータ6をモータ室20内からの冷却に寄与する。
 回転子6aよりもロータ側にあるモータケーシング5の上部には、モータ室20内部へ冷却液としての油を供給するモータ室給液路83(モータ室給油路;以下、給液路83と記載する。)が設けられている。給液路83と通じるモータ室給液口65(モータ室給油口;以下、給液口65と記載する。)が、中間軸受部12側のモータ室20の上部に、すなわち中間軸受部12側のモータケーシング5の上部に、配設されている。給液路83及び給液口65は、それぞれ、モータ室給油路及びモータ室給油口として働く。給液口65には、油を微粒子状に流出できるノズル(図示せず)を設けている。
 給液路83に供給された油は、ノズルを通じて、モータ室20内に導かれる。モータ室20内に導かれた油は、モータ室20内の回転子6aと固定子6bとモータ軸31とに付着して、モータ6を冷却する。
 回転子6aよりもロータ側にあるモータケーシング5の下部には、モータ室20内部から冷却液である油を排出するモータ室排液路92(モータ室排油路;以下、排液路92と記載する。)が設けられている。排液路92と通じる排液口66が、中間軸受部12側のモータ室20の底部に、すなわち中間軸受部12側のモータケーシング5の底部に、形成されている。排液路92及び排液口66は、それぞれ、モータ室排油路及びモータ室排油口(排液部)として働く。中間軸受部12の潤滑とモータ6の冷却とに使用された油は、中間軸受部12側のモータ室20の底部に集まり、排液口66を通じて、モータ室20外に排出される。当該油は、排液路92を通じて液回収部71に回収される。
 回転子6aよりも反ロータ側にあるモータケーシング5の上部には、モータ室20内部へ冷却液としての油を供給するモータ室給液路86(モータ室給油路;以下、給液路86と記載する。)が設けられている。給液路86と通じるモータ室給液口77(モータ室給油口;以下、給液口77と記載する。)が、モータ軸受部13側のモータ室20の上部に形成されている。すなわちモータ軸受部13側の冷却ジャケット8をなすモータケーシング5の上部に、給液口77が形成されている。給液路86及び給液口77は、それぞれ、モータ室給油路及びモータ室給油口として働く。給液口77は、油を固定子6bの巻線に向けて流出させるように開口している。固定子6bの巻線の下方に位置するカバー9上部には、モータ軸受給油孔79が形成されている。モータ軸受給油孔79は、上部に凹状に開口面積を拡げた油受け部を有している。
 給液路86に供給された油は、給液口77を通じてモータ室20内に供給され、固定子6bの巻線を冷却する。固定子6bの巻線の下方へ流れてきた油は、油受け部で集められ、モータ軸受給油孔79を通じて、モータ軸受部13に供給される。モータ軸受部13に供給された油は、モータ軸受部13の潤滑及び冷却に使用される。モータ軸受部13を潤滑及び冷却した油は、モータ室20内に導かれる。
 回転子6aの反ロータ側にあるモータケーシング5の下部には、モータ室20内部から冷却液である油を排出するモータ室排液路93(モータ室排油路;以下、排液路93と記載する。)が設けられている。排液路93と通じるモータ室排液口78(モータ室排油口;以下、排液口78と記載する。)が、モータ軸受部13側のモータ室20の底部に形成されている。すなわちモータ軸受部13側の冷却ジャケット8をなすモータケーシング5の底部に、排液口78が形成されている。反ロータ側の排液路93及び反ロータ側の排液口78は、それぞれ、モータ室排油路及びモータ室排油口(排液部)として働く。モータ軸受部13の潤滑とモータ6の固定子6bの巻線の冷却に使用された油は、モータ軸受部13側のモータ室20の底部に集まり、回転子6aの反ロータ側にある排液部である排液口78を通じて、モータ室20外に排出される。当該油は、排液路93を通じて液回収部71に回収される。
 軸受ケーシング7の上部には、ロータ軸受部11に供給する軸受給液路81(軸受給油路)が設けられている。軸受ケーシング7のロータ軸受部11側の上部には、軸受給液路81と通じるロータ軸受給油口(図示せず)が形成されている。軸受ケーシング7の内部には、ロータ軸受給油口からロータ軸受部11まで延びるロータ軸受給油孔(図示せず)が形成されている。
 軸受給油路81に供給された油は、ロータ軸受給油孔を通じて、ロータ軸受部11に供給される。ロータ軸受部11に供給された油は、ロータ軸受部11の潤滑及び冷却に使用される。ロータ軸受部11を潤滑及び冷却した油は、軸封部14cのオイルシールにより、ロータ室17に向けて流れることが規制される。
 軸受ケーシング7の下部には、ロータ軸受部11から油を排出する軸受排液路91(軸受排油路)が設けられている。軸受ケーシング7の底部には、ロータ軸受部11から軸受排液路91に通じるロータ軸受排液口(ロータ軸受排油口;図示せず)が形成されている。ロータ軸受部11の潤滑及び冷却に使用された油は、ロータ軸受排液口を通じて、軸受ケーシング7外に排出される。当該油は、軸受排液路91を通じて液回収部71に回収される。
 モータケーシング5には、冷却ジャケット8の冷却通路8bに冷却液として油を供給するジャケット給液路84(以下、給液路84と記載する。)が設けられている。モータケーシング5には、給液路84と通じるジャケット給液口67(以下、給液口67と記載する。)が形成されている。給液口67は冷却通路8bと連通している。給液路84に供給された油は、給液口67を通じて、冷却通路8bに供給されて、固定子6bを冷却する。
 モータケーシング5の下部には、冷却ジャケット8から冷却液としての油を排出するジャケット排液路94(ジャケット排油路;以下、排液路94と記載する。)が設けられている。排液路94と通じるジャケット排液口68(以下、排液口68と記載する。)が、モータケーシング5の下部に形成されている。冷却ジャケット8における冷却通路8bの下流側が、排液路90(排油路;以下、排液路90と記載する。)の一部分を構成する排液路94に通じている。排液口68は、冷却通路8bと連通している。冷却通路8bを流れた油は、排液口68を通じて、モータケーシング5外に排出される。当該油は、排液路94を通じて液回収部71に回収される。したがって、軸受部11,12,13を潤滑及び冷却する油を、冷却ジャケット部8aの冷却通路8bに流すことで、モータ6の固定子6bを冷却することにも利用できる。
 図3に示すように、モータ軸給液部材10は、取付フランジ10aと突出部10bとを備え、カバー9の側面の開口部に対して密閉状態で取り付けられている。取付フランジ10aの中央部には、モータ軸給液口69(以下、軸給液口69と記載する。)が形成されている。軸方向に延びる突出部10bの内部には、液導入孔10cが形成されている。液導入孔10cは、軸方向に延びる貫通孔であって、軸給液口69と軸受支持体37の挿通孔37cとを連通している。
 軸受支持体37の中央部には、挿通孔37cが形成されている。挿通孔37cは、モータ軸給液部材10の突出部10bよりも大径であり、僅かな隙間を介して突出部10bを挿通可能なように軸方向に延びる貫通孔である。液導入孔10c及び挿通孔37cは、中心穴33に対して同軸に配置されている。突出部10bの端部が挿通孔37cと軸方向に重なるように、突出部10bの一部分が挿通孔37cの中に挿通されている。図4に示すように、液導入孔10cと挿通孔37cと中心穴33との連通により、モータ軸連通部39の一部分が構成されている。モータ軸給液部材10及び軸受支持体37は、それぞれ、モータ軸31の反ロータ側に設けられて、軸給液路85(以下、給液路85と記載する。)から供給される冷却液として働く油をモータ軸連通部39に供給するための軸給液部として働いている。
 したがって、液導入孔10cと挿通孔37cと中心穴33と複数のフランジ連通孔27aと液ガイド穴21cと複数の液流出穴21dとの連通により、モータ軸連通部39が構成されている。当該構成によれば、給液路85と通じる軸給液口69から給油された油は、モータ軸31の回転子6aの位置する部位の内部に形成された中心穴33の中を流れ、回転子6aをその内側(内部)から周方向に亘って冷却する。中心穴33の中を流れた油は、モータ軸31を内側(モータ内部)から冷却する。なお、回転子6aに沿って軸方向に延設された中心穴33は、挿通孔37cよりも拡径されている。本実施形態では、中心穴33は、軸方向で単位長さ当たりの表面積を挿通孔37cよりも大きく設定しており、挿通孔37cよりも直径で3倍以上に拡径している。これにより、中心穴33の表面積すなわち伝熱面を大きく取ることができ、回転子6aの冷却効果を高めることができる。
 中心穴33の中を流れてモータ6の回転子6aを内側(モータ内部)から周方向に亘って冷却することに使用された油は、モータ軸31の回転により周方向に移動する複数の液流出穴21dの各流出開口21fからロータ側のモータ室20内部に流出する。各流出開口21fから流出した油は、周方向に亘って固定子6bに付着して、モータ室20内部から固定子6bを周方向に亘って冷却する。モータ6の冷却に使用された油は、排液口66を通じて、モータ室20内部からモータ室20外に排出される。当該油は、排液路92を通じて液回収部71に回収される。
 モータ軸冷却部として働く中心穴33内を流通する油によってモータ軸31が冷却され、モータ軸31の冷却により、モータ軸31に密接して固定された回転子6aが周方向に亘って冷却される。それとともに、中心穴33と複数のフランジ連通孔27aと液ガイド穴21cと複数の液流出穴21dを流通した油が、流出開口21fからロータ側のモータ室20内部に周方向に亘って流出することによって、固定子6bが周方向に亘って冷却される。すなわち、モータ軸31内を流通する油によってモータ6の回転子6a及び固定子6bの両方が冷却され、モータ6が内側から冷却される。したがって、スクリュロータ3を回転駆動するモータ6を内側から冷却してモータ6を効果的に冷却できる。
 図1又は図2に示すように、軸受排液路91、排液路92、排液路93及び排液路94が合流して、排液路90が構成される。排液路90は、油を回収する液回収部71に接続されている。液回収部71の下流側には、回収された油を冷却する液冷却器72(油冷却器)が設けられている。液冷却器72の下流側には、液ポンプ73(油ポンプ)が接続されている。給液先(給油先)に油を供給するための給液路80(給油路)が、液ポンプ73(油ポンプ)の下流側に接続されている。給液先(給油先)は、ロータ軸受部11、中間軸受部12,16、モータ軸受部13等である。本実施形態においては、冷却液としての油がモータ室20内、冷却ジャケット8、モータ軸31の中心穴33へも供給されている。そのため、給液路80は、軸受給液路81、中間給液路82、給液路83、給液路84、給液路85及び給液路86に分岐している。各給液路81,82,83,84,85,86は、ロータ軸受給油口(不図示)、中間給液口64、ロータ側の給液口65、給液口67、軸給液口69及び反ロータ側の給液口77のそれぞれに通じている。したがって、油は、圧縮機本体2及びモータ6において潤滑と冷却を必要とする各給液先に供給され、各給液先での潤滑や冷却に使用され、そのあと、油が液回収部71に回収されて液冷却器72で冷却されるプロセスが繰り返される。このように、油は、スクリュ圧縮機1において循環して使用される。
 このように、モータ軸31の中心穴33の中を流れる油と冷却ジャケット8の冷却通路8bの中を流れる油とによって、モータ6の内外からモータ6を効果的に冷却でき、入力電力に対するモータ出力の低下を抑制できる。
 油が冷却液を兼ねることで、液回収部71,101、液冷却器72,102及び液ポンプ73,103を共用でき、冷却液(油)の供給及び排出に係る構成を簡略化できる。
 上述したように、モータケーシング5が、ロータケーシング4の吐出側に取り付けられ、モータ6のモータ軸31がロータケーシング4の吐出側に延在している。ロータケーシング4の吐出側はスクリュロータ3によるガス圧縮で高温になり、雄ロータ軸21及びモータ軸31がより高温になりやすい。雄ロータ軸21及びモータ軸31を油で冷却することにより、雄ロータ軸21及びモータ軸31の温度上昇を抑制できる。
 図1等に示した態様では、軸径の小さな雄ロータ軸21の連結端部24が、軸径の大きなモータ軸31の連結穴32に挿入された状態で、キー41及びキー溝42が嵌合することによって、モータ軸31と雄ロータ軸21とが一体に連結されている。そして、軸径の小さな雄ロータ軸21において、液流出穴21dが設けられている。しかしながら、軸径の大きな雄ロータ軸21に対して軸径の小さなモータ軸31が挿入された状態でキー41及びキー溝42が嵌合することによって、モータ軸31と雄ロータ軸21とが一体に連結された態様であってもよい。この態様では、軸径の小さなモータ軸31において、複数の流出開口21f及び液流出穴21dが設けられる。
(第2実施形態)
 次に、図6を参照しながら、この発明の第2実施形態を説明する。第2実施形態において、上記第1実施形態での構成要素と同じ機能を有する構成要素には同じ符号を付して、重複する説明を省略する。
 第2実施形態に係るスクリュ圧縮機1では、雄ロータ軸21のモータ6側にモータ側端部51を備えて、雄ロータ軸21及びモータ側端部51が一つの軸体すなわち回転軸50から構成されている。モータ側端部51の外周面には、第2実施形態におけるモータ軸31と同様に、回転子6aが取り付けられる。
 雄ロータ軸21のモータ6側が、緩み止めナット23aに対してモータ6側の部分から、モータ軸受部13で支持される軸受支持体37まで延在して、モータ側端部51を構成している。回転子6aが位置する回転軸50の部位であるモータ側端部51の内部には、回転子冷却部として働く冷却穴30が形成されている。冷却穴30は、モータ軸給液部材(軸給液部)10及び軸受支持体37(軸給液部)を通じて供給された冷却液が流通する空洞である。冷却液が冷却穴30を流通することにより、モータ側端部51を冷却する。冷却穴30は、回転軸50の軸方向に延びて、軸受支持体37の端面開口及び複数の液流出穴21dを連通している。モータ軸給液部材10の突出部10bの端部が挿通孔37cと軸方向に重なるように、突出部10bの一部分が軸受支持体37の挿通孔37cの中に挿通されている。そして、液導入孔10cと挿通孔37cと冷却穴30と複数の液流出穴21dとの連通により、モータ軸連通部39が構成されている。
 当該構成によれば、軸給液路85と接続される軸給液口69から供給された冷却液(本実施形態においては油)は、回転軸50のモータ側端部51に形成された冷却穴30の中を流れる。冷却穴30の中を流れた油は、回転軸50のモータ側端部51を冷却し、さらに回転子6aを内側(モータ内部)から周方向に亘って冷却する。
 冷却穴30の中を流れてモータ6の回転子6aを内側から周方向に亘って冷却することに使用された油は、回転軸50の回転により周方向に移動する複数の液流出穴21dの各流出開口21fからロータ側のモータ室20内部に流出する。各流出開口21fから流出した油は、周方向に亘って固定子6bに付着して、モータ室20内部から固定子6bを周方向に亘って冷却する。モータ6の冷却に使用された油は、排液口66を通じて、モータ室20内部からモータ室20外に排出される。当該油は、排液路92を通じて液回収部71に回収される。
 回転子冷却部として働く冷却穴30内を流通する冷却液(油)によって回転軸50のモータ側端部51が冷却され、回転軸50の冷却により、回転軸50に密接して固定された回転子6aが周方向に亘って冷却される。それとともに、冷却穴30と複数の液流出穴21dを流通した油が、流出開口21fからロータ側のモータ室20内部に周方向に亘って流出することによって、固定子6bが周方向に亘って冷却される。すなわち、回転軸50内を流通する油によってモータ6の回転子6a及び固定子6bの両方が冷却され、モータ6が内側(モータ室20内部側)から冷却される。したがって、スクリュロータ3を回転駆動するモータ6を内側から冷却してモータ6を効果的に冷却できる。
(第3実施形態)
 次に、図7を参照しながら、この発明の第3実施形態を説明する。第3実施形態において、上記第1実施形態での構成要素と同じ機能を有する構成要素には同じ符号を付して、重複する説明を省略する。
 第3実施形態に係るスクリュ圧縮機1では、冷却液として、圧縮機本体2及びモータ6における各軸受部11,12,13を潤滑及び冷却するために油を用いる一方、モータ6を冷却するために冷却水を用いることを特徴としている。ここで、モータ6を冷却するための冷却水は、油以外の水性液体であって、例えば水単体、又は、防錆剤及び不凍液等を含有する水溶液である。
 第3実施形態に係るスクリュ圧縮機1は、圧縮機本体2及びモータ6における各軸受部11,12,13を潤滑及び冷却する油を循環するための給液路80(給油路)及び排液路90(排油路)を備えている。それとともに、第3実施形態に係るスクリュ圧縮機1は、モータ6を冷却する冷却水を循環するための給液路120(給水路)及び排液路110(排水路)を備えている。
 給液路80は、液回収部71(油回収部)の下流側の流路であり、液冷却器72(油冷却器)及び液ポンプ73(油ポンプ)の下流側において、軸受給液路81(軸受給油路)、中間給液路82(中間給油路)及びモータ軸受給液路87(モータ軸受給油路)にそれぞれ分岐している。軸受給液路81(軸受給油路)、中間給液路82(中間給油路)及びモータ軸受給液路87(モータ軸受給油路)は、それぞれ、ロータ軸受給液口(ロータ軸受給油口)、中間給液口64(中間給油口)及びモータ軸受給液口(モータ軸受給油口)に通じている。液回収部71の上流側の流路において、軸受排液路91、中間排油路96及びモータ軸受排油路97が合流して、排液路90を形成している。
 給液路120は、液回収部101(水回収部)の下流側の流路である。給液路120は、液冷却器102(水冷却器)及び液ポンプ103(水ポンプ)の下流側において、回転子6aよりもロータ側にあるモータ室給液路123(モータ室給水路)、ジャケット給液路124(ジャケット給水路)、回転子6aよりも反ロータ側にあるモータ室給液路126(モータ室給水路)及び軸給液路125(軸給水路)にそれぞれ分岐している。モータ室給液路123、ジャケット給液路124、モータ室給液路126及び軸給液路125は、それぞれ、モータ室給液口165(モータ室給水口)、ジャケット給液口(不図示;図1で示されるジャケット給液口67に相当する)、モータ室給液口177(モータ室給水口)及び軸給液口69に通じている。排液路110(排水路)は、液回収部101の上流側の流路である。中間排液路112(モータ室排水路)、ジャケット排液路114(ジャケット排水路)及び回転子6aよりも反ロータ側にあるモータ室排液路113(モータ室排水路)が合流して、排液路110を形成している。中間排液路112、ジャケット排液路114及び反ロータ側のモータ室排液路113は、それぞれ、排液口166、ジャケット排液口(不図示;第1実施形態におけるジャケット排液口68に相当する。)及び回転子6aよりも反ロータ側に設けられた排液口178に通じている。
 図8に示すように、液導入孔10cと挿通孔37cと中心穴33と複数のフランジ連通孔27aと液ガイド穴21cと複数の液流出穴21dとの連通により、モータ軸連通部39が構成されている。当該構成によれば、軸給液路125と通じる軸給液口69から供給された冷却水は、モータ軸31に形成された中心穴33の中を流れ、モータ軸31を内側(内部)から冷却する。モータ軸31を内側(内部)から冷却することにより、回転子6aが内側(モータ6内部)から周方向に亘って冷却される。
 中心穴33の中を流れてモータ6の回転子6aを内側(内部)から周方向に亘って冷却することに使用された冷却水は、モータ軸31の回転により周方向に移動する複数の液流出穴21dからロータ側のモータ室20内部に流出する。複数の液流出穴21dから流出した冷却水は、周方向に亘って固定子6bに付着して、モータ室20内部側から固定子6bを周方向に亘って冷却する。モータ6の冷却に使用された冷却水は、排液口66を通じて、モータ室20外に排出される。当該冷却水は、中間排液路112を通じて液回収部101に回収される。
 モータ軸冷却部として働く中心穴33内を流通する冷却水によってモータ軸31が周方向に亘って冷却され、モータ軸31の冷却により、モータ軸31に密接して固定された回転子6aが冷却される。それとともに、中心穴33と複数のフランジ連通孔27aと液ガイド穴21cと複数の液流出穴21dを流通した冷却液が、流出開口21fからロータ側のモータ室20内部に周方向に亘って流出することによって、固定子6bが周方向に亘って冷却される。すなわち、モータ軸31内を流通する冷却水によってモータ6の回転子6a及び固定子6bの両方が冷却され、モータ6が内側から冷却される。したがって、スクリュロータ3を回転駆動するモータ6を内側から冷却してモータ6を効果的に冷却できる。
 それとともに、ジャケット給液路124と通じるジャケット給液口(不図示)から供給された冷却水は、モータケーシング本体5aの内側面に装着された冷却ジャケット8の冷却通路8bの中を流れ、固定子6bを外側から冷却する。
 このように、モータ軸31の中心穴33の中を流れる冷却水と冷却ジャケット8の冷却通路8bの中を流れる冷却水とによって、モータ6の内外からモータ6を効果的に冷却でき、入力電力に対するモータ出力の低下を抑制できる。
 モータ室20内では、モータ6を内側から冷却するための冷却水が存在している。他方、圧縮機本体2及びモータ6では、各軸受部11,12,13を潤滑及び冷却するための油が用いられている。中間軸受部12とモータ室20との間で冷却水及び油が混合することを防止するために、中間軸封部12cが設けられている。また、モータ軸受部13とモータ室20との間で冷却水及び油が混合することを防止するために、モータ側軸封部13cが設けられている。なお、モータ軸給液部材10の突出部10bの一部分を挿通孔37cの中に挿通することで形成される隙間には、シール部材(シールリング)を設けてもよい。このように構成することで、隙間を極僅かな大きさに制限しなくとも油と冷却水とが混合することを防止できる。
 中間軸封部12cは、中間軸受部12のスラスト軸受12bのモータ6側に設けられている。スラスト軸受12bの内輪と中間軸封部12cとの間に介在配置されたスリーブにより、スラスト軸受12bの内輪の位置が雄ロータ軸21に対して固定されている。また、モータ側軸封部13cは、モータ軸受部13のモータ6側に設けられている。モータ軸受部13の内輪とモータ側軸封部13cとの間に介在配置されたスリーブにより、モータ軸受部13の内輪の位置が軸受支持体37に対して固定されている。
 中間軸封部12cは、例えば、オイルシールとしてのビスコシール及び冷却水シールとしてのビスコシールを備えている。スラスト軸受12b側に設けられたビスコシールは、油のモータ室20への流入を防止する。モータ6側に設けられたビスコシールは、冷却水のスラスト軸受12bへの流入を防止する。同様に、モータ側軸封部13cも、例えば、オイルシールとしてのビスコシール及び冷却水シールとしてのビスコシールを備えている。
 したがって、中間軸封部12c及びモータ側軸封部13cにより、油及び冷却水が混合することを防止でき、油及び冷却水が、それぞれ液回収部71及び液回収部101により、別々に回収できる。回収された油は、給液路80及び排液路90を通じて循環して使用される。回収された冷却水は、給液路120及び排液路110を通じて循環して使用される。
 なお、冷却水が水単体であるときは、給液路120及び排液路110を通じて循環して使用することなく、排液路110から排出された水を使い捨てるとともに、新たな水を給液路120から供給する非循環の態様とすることもできる。
 なお、排液路90及び排液路110を1つの排液路に統合して、統合された排液路の下流側において、油の混入した冷却水から油を分離するための油水分離器を配設する態様とすることもできる。この場合、油水分離器で分離された油及び冷却水は、それぞれ、液回収部71(油回収部)及び液回収部101(水回収部)で回収されたあと給液路80及び給液路120を通じて各給油先及び各給水先に供給されることにより、循環して使用される。当該態様によれば、排液路を簡略化することができる。
 なお、第1実施形態で説明したように、スクリュロータ3のロータ軸21及びモータ6のモータ軸31を別体に構成したり、第2実施形態で説明したように、雄ロータ軸21のモータ6側にモータ側端部51を備えて、雄ロータ軸21及びモータ側端部51を一つの軸体である回転軸50から構成してもよい。
 また、上記実施形態では、液回収部71について詳細には説明していないが、液回収部71は、少なくともモータ室20外に排出された油を回収する空間であればよい。例えば、液回収部71は、モータ室20外に別途設置される油タンクで構成してもよく、モータケーシング5と一体構造で構成してもよい。同様に、液回収部101は、少なくともモータ室20外に排出された冷却水を回収する空間であればよい。例えば、液回収部101は、モータ室20外に別途設置される水タンクで構成してもよく、モータケーシング5と一体構造で構成してもよい。
 また、上記第1実施形態及び第3実施形態では、モータ軸31と雄ロータ軸21とを一体的に連結するためのカップリング部材としてキー41を用いているが、カップリング部材として、テーパーリング(シュパンリングとも言われる)を用いることもできる。なお、テーパーリングは、モータ軸31と雄ロータ軸21との間の装着スペースに配置されたリングの周面で発生する摩擦力を利用して、モータ軸31と雄ロータ軸21とを連結する。テーパーリングは、一方の傾斜面を有する楔状のインナーリングと、該一方の傾斜面に係合する他方の傾斜面を有する楔状のアウターリングとを組み合わせた構成である。また、伝達トルクと軸の回転数で所望の仕様を満たすものであれば、カップリング部材の構成は限定されない。
 また、ロータ軸受部11や中間軸受部12やモータ軸受部13の構成及び各軸封部14a,14b,14c,14d,12c,13cの構成は、上記実施形態に限定されるものではない。上述した冷却構造を備えるスクリュ圧縮機1は、例えば、20000rpm程度の高速で回転駆動されるオイルフリー式のものに加えて、冷却油がロータ室17に導入されて3000rpm程度の低速で回転駆動される油冷式のものであってもよい。
 また、中間軸封部12c及びモータ側軸封部13cとして、ビスコシールを例示したが、軸封部における軸の回転数等を考慮して適宜にリップシールを用いるようにしてもよい。
 また、冷却ジャケット8を無くして、モータ6の固定子6bを冷却する冷却液を流すための冷却通路8bをモータケーシング本体5aに形成する構成であってもよい。この場合、固定子6bが、モータケーシング本体5aの内壁面に直に取り付けられる。
 なお、本明細書における「ロータ側のモータ室20、及び、ロータ側の給液口65」等での「ロータ側」とは、基準となる或る位置に対して圧縮機本体2のスクリュロータ3側にあることを意味して、基準となる或る位置に対してモータ6の回転子6a側にあることを意味するのでは無い。
 以上の説明から明らかなように、この発明に係るスクリュ圧縮機1は、スクリュロータ3がロータケーシング4内に収容された圧縮機本体2と、回転子6a及び固定子6bがモータケーシング5のモータ室20内に収容され、回転子6aに固定されたモータ軸31によってスクリュロータ3のロータ軸21を回転駆動するモータ6と、モータ軸31の反ロータ側に設けられて、冷却液を供給するための軸給液部10,37と、モータ軸31内で軸方向に延びる空洞であって、軸給液部10,37を通じて供給された冷却液が空洞内を流通することによりモータ軸31を冷却するモータ軸冷却部33と、モータ軸31のロータ側又はロータ軸21のモータ6側に位置して、モータ軸31又はロータ軸21の外面に形成された流出開口21fから径方向内方に延びてモータ軸冷却部33と流体的に接続される液流出部21dとを備える。
 上記構成によれば、モータ軸冷却部33内を流通する冷却液によってモータ軸31が冷却される。モータ軸31内部からの冷却により、モータ軸31に固定された回転子6aが周方向に亘って冷却される。それとともに、モータ軸31の回転に伴い周方向に移動する流出開口21fから冷却液を流出させることによって、モータ室20内部において固定子6bが周方向に亘って冷却される。したがって、スクリュロータ3を回転駆動するモータ6の回転子6a及び固定子6bをモータ6内部側から周方向に亘って冷却することにより、モータ6を効果的に冷却できる。
 ロータケーシング4の吐出側が、モータケーシング5に接続され、ロータ軸21がモータ軸31に対して同軸で連結され、ロータ軸21のモータ6側に設けられてロータ軸21内で軸方向に延びる空洞であってロータ軸21及びモータ軸31の連結に使用されるロータ軸冷却部21cをさらに備え、当該ロータ軸冷却部21cが、モータ軸冷却部33及び液流出部21dと流体的に接続されている。当該構成によれば、ロータケーシング4の吐出側では、ガス圧縮でロータ軸21が高温になるが、ロータ軸21がロータ軸冷却部21cを備えることにより、ロータ軸21及びモータ軸31の温度上昇を抑制できる。
 また、この発明に係るスクリュ圧縮機1は、スクリュロータ3がロータケーシング4内に収容された圧縮機本体2と、回転子6a及び固定子6bがモータケーシング5のモータ室20内に収容され、回転子6aに固定された回転軸を介してスクリュロータ3を回転駆動するモータ6と、回転軸50のモータ側端部51に設けられて、冷却液を供給するための軸給液部10と、回転子6aの位置する部位の回転軸50内に設けられた空洞であって、軸給液部10を通じて供給された冷却液が空洞内を流通することにより回転子6aを冷却する回転子冷却部30と、回転軸50におけるスクリュロータ3と回転子6aの間に位置して、回転軸50の外面にモータ室20内に開放されるように設けられた流出開口21fを有し、流出開口21fから径方向内方に延びて回転子冷却部30と流体的に接続された液流出部21dとを備える。
 上記構成によれば、回転子6aの位置する部位の回転軸50内に設けられた回転子冷却部30内を流通する冷却液によって回転軸50が周方向に亘って冷却される。回転軸50内部からの冷却により、回転軸50に固定された回転子6aが周方向に亘って冷却される。それとともに、回転軸50の回転に伴い周方向に移動する流出開口21fから回転軸50の周方向に冷却液を流出させることによって、モータ室20の内部において固定子6bが周方向に亘って冷却される。したがって、スクリュロータ3を回転駆動するモータ6の固定子6b及び回転子6aを内部側から周方向に亘って直接的に冷却することにより、モータ6を効果的に冷却できる。
 この発明は、上記特徴に加えて次のような特徴を備えることができる。
 すなわち、スクリュ圧縮機1は、モータ6の冷却に使用される冷却液を冷却する液冷却器72,102と、モータケーシング5に設けられた排液部66,78から排出された冷却液を液冷却器72,102に供給する排液路90,110と、液冷却器72,102で冷却された冷却液を給液先に供給する給液路80,120と、給液路80,120から分岐されて軸給液部10,37に供給する軸給液路85,125とを備える。当該構成によれば、冷却された冷却液を循環して使用できる。
 給液路80,120が、ジャケット給液路84,124に分岐されて、ジャケット給液路84,124がモータ6の固定子6bを冷却する冷却ジャケット8と流体的に接続されており、冷却ジャケット8の下流側で流体的に接続されているジャケット排液路94,114が、排液路90,110に合流している。当該構成によれば、冷却液によって、モータ6の回転子6aとモータ室20内とが冷却されることに加えて、冷却ジャケット8及びモータ6の固定子6bが冷却される。すなわち、モータの固定子及び回転子の両方が冷却される。
 モータ6の冷却に使用された冷却液を貯溜する液回収部71,101が、冷却ジャケット8の下流側に設けられている。当該構成によれば、比較的多くの冷却液を必要とする冷却ジャケット8を用いる場合においてもモータ室20内に冷却液を保持することを要しないので、モータ6の回転子6aによる冷却液の撹拌ロスを低減できる。
 モータ室20の上部には、冷却液をモータ室20内へ供給するモータ室給液口65,77が配設されている。当該構成によれば、モータ室給液口65,77を通じて、冷却液がモータ室20の上部から供給されるので、モータ室20をより効果的に冷却できる。
 冷却液が、モータ6及び圧縮機本体2の少なくともいずれかに設けられた軸受部11,12,13を潤滑する油である。当該構成によれば、油が冷却液を兼ねることで、液回収部71,101、液冷却器72,102及び液ポンプ73,103を共用でき、油(冷却液)の供給及び排出に係る構成を簡略化できる。
  1:スクリュ圧縮機(オイルフリースクリュ圧縮機)
  2:圧縮機本体
  3:スクリュロータ
 3a:雄ロータ
 3b:雌ロータ
  4:ロータケーシング
  5:モータケーシング
 5a:モータケーシング本体
  6:モータ
 6a:回転子
 6b:固定子
 6g:エアギャップ
  7:軸受ケーシング
  8:冷却ジャケット
  9:カバー
 10:モータ軸給液部材(軸給液部)
10c:液導入孔
 11:ロータ軸受部(軸受部)
 12:中間軸受部(軸受部)
12c:中間軸封部
 13:モータ軸受部(軸受部)
13c:モータ側軸封部
14a:中間軸封部
 17:ロータ室
 20:モータ室
 21:雄ロータ軸(ロータ軸)
21c:液ガイド穴(ロータ軸冷却部)
21d:液流出穴(液流出部)
21f:流出開口
 22:雌ロータ軸(ロータ軸)
 26:ネジ穴
 27:締結フランジ
 28:締結ボルト(締結部材)
 30:冷却穴(回転子冷却部)
 31:モータ軸
 33:中心穴(モータ軸冷却部)
 37:軸受支持体(軸給液部)
 39:モータ軸連通部
 41:キー(カップリング部材)
 42:キー溝
 50:回転軸
 51:モータ側端部
 54:中間連通部
 64:中間給液口(中間給油口)
 65:モータ室給液口(モータ室給油口)
 66:モータ室排液口(モータ室排油口;排液部)
 67:ジャケット給液口
 68:ジャケット排液口
 69:モータ軸給液口
 71:液回収部(油回収部)
 72:液冷却器(油冷却器)
 73:液ポンプ(油ポンプ)
 77:モータ室給液口(モータ室給油口)
 78:モータ室排液口(モータ室排油口;排液部)
 80:給液路(給油路)
 81:軸受給液路(軸受給油路)
 82:給液路(給油路)
82a:中間給液孔(中間給油孔)
82b:連通スペース
 83:モータ室給液路(モータ室給油路)
 84:ジャケット給液路
 85:軸給液路
 86:モータ室給液路(モータ室給油路)
 90:排液路(排油路)
 91:軸受排液路(軸受排油路)
 92:モータ室排液路(モータ室排油路)
 93:モータ室排液路(モータ室排油路)
 94:ジャケット排液路(ジャケット排油路;排液路)
 96:中間排油路
101:液回収部(水回収部)
102:液冷却器(水冷却器)
103:液ポンプ(水ポンプ)
110:排液路(排水路)
112:中間排液路(モータ室排水路)
113:モータ室排液路(モータ室排水路)
114:ジャケット排液路(ジャケット排水路)
120:給液路(給水路)
123:モータ室給液路(モータ室給水路)
124:ジャケット給液路(ジャケット給水路)
125:軸給液路(軸給水路)
126:モータ室給液路(モータ室給水路)
165:モータ室給液口(モータ室給水口)
166:モータ室排液口(モータ室排水口;排液部)
177:モータ室給液口(モータ室給水口)
178:モータ室排液口(モータ室排水口;排液部)

Claims (8)

  1.  スクリュロータがロータケーシング内に収容された圧縮機本体と、
     回転子及び固定子がモータケーシングのモータ室内に収容され、前記回転子に固定されたモータ軸によって前記スクリュロータのロータ軸を回転駆動するモータと、
     前記モータ軸の反ロータ側に設けられて、冷却液を供給するための軸給液部と、
     前記モータ軸内で軸方向に延びる空洞であって、前記軸給液部を通じて供給された冷却液が前記空洞内を流通することにより前記モータ軸を冷却するモータ軸冷却部と、
     前記モータ軸のロータ側又は前記ロータ軸のモータ側に位置して、前記モータ軸又は前記ロータ軸の外面に形成された流出開口から径方向内方に延びて前記モータ軸冷却部と流体的に接続される液流出部とを備える、スクリュ圧縮機。
  2.  請求項1に記載のスクリュ圧縮機において、
     前記ロータケーシングの吐出側が、前記モータケーシングに接続され、
     前記ロータ軸が前記モータ軸に対して同軸で連結され、
     前記ロータ軸のモータ側に設けられて前記ロータ軸内で軸方向に延びる空洞であって前記ロータ軸及び前記モータ軸の連結に使用されるロータ軸冷却部をさらに備え、当該ロータ軸冷却部が、前記モータ軸冷却部及び前記液流出部と流体的に接続されている、スクリュ圧縮機。
  3.  スクリュロータがロータケーシング内に収容された圧縮機本体と、
     回転子及び固定子がモータケーシングのモータ室内に収容され、前記回転子に固定された回転軸を介して前記スクリュロータを回転駆動するモータと、
     前記回転軸のモータ側端部に設けられて、冷却液を供給するための軸給液部と、
     前記回転子の位置する部位の前記回転軸内に設けられた空洞であって、前記軸給液部を通じて供給された冷却液が前記空洞内を流通することにより前記回転子を冷却する回転子冷却部と、
     前記回転軸における前記スクリュロータと前記回転子の間に位置して、前記回転軸の外面に前記モータ室内に開放されるように設けられた流出開口を有し、前記流出開口から径方向内方に延びて前記回転子冷却部と流体的に接続された液流出部とを備える、スクリュ圧縮機。
  4.  請求項1から請求項3のいずれか1項に記載のスクリュ圧縮機において、
     前記モータの冷却に使用される冷却液を冷却する液冷却器と、
     前記モータケーシングに設けられた排液部から排出された冷却液を前記液冷却器に供給する排液路と、
     前記液冷却器で冷却された冷却液を給液先に供給する給液路と、
     前記給液路から分岐されて前記軸給液部に供給する軸給液路とを備える、スクリュ圧縮機。
  5.  請求項4に記載のスクリュ圧縮機において、
     前記給液路が、ジャケット給液路に分岐されて、前記ジャケット給液路が前記モータの前記固定子を冷却する冷却ジャケットと流体的に接続されており、
     前記冷却ジャケットの下流側で流体的に接続されているジャケット排液路が、前記排液路に合流している、スクリュ圧縮機。
  6.  請求項5に記載のスクリュ圧縮機において、
     前記モータの冷却に使用された冷却液を貯溜する液回収部が、前記冷却ジャケットの下流側に設けられている、スクリュ圧縮機。
  7.  請求項1から請求項3のいずれか一つに記載のスクリュ圧縮機において、
     前記モータ室の上部には、冷却液を供給するモータ室給液口が配設されている、スクリュ圧縮機。
  8.  請求項1から請求項3のいずれか一つに記載のスクリュ圧縮機において、
     前記冷却液が、前記モータ及び前記圧縮機本体の少なくともいずれかに設けられた軸受部を潤滑する油である、スクリュ圧縮機。
PCT/JP2017/008478 2016-03-08 2017-03-03 スクリュ圧縮機 WO2017154771A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187025567A KR102067054B1 (ko) 2016-03-08 2017-03-03 스크루 압축기
US16/070,855 US11053942B2 (en) 2016-03-08 2017-03-03 Screw compressor
CN201780016026.7A CN108700071B (zh) 2016-03-08 2017-03-03 螺旋压缩机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016044876A JP6982380B2 (ja) 2016-03-08 2016-03-08 スクリュ圧縮機
JP2016-044876 2016-03-08

Publications (1)

Publication Number Publication Date
WO2017154771A1 true WO2017154771A1 (ja) 2017-09-14

Family

ID=59790222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008478 WO2017154771A1 (ja) 2016-03-08 2017-03-03 スクリュ圧縮機

Country Status (6)

Country Link
US (1) US11053942B2 (ja)
JP (1) JP6982380B2 (ja)
KR (1) KR102067054B1 (ja)
CN (1) CN108700071B (ja)
TW (1) TWI666858B (ja)
WO (1) WO2017154771A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019197919A3 (en) * 2018-04-11 2020-03-12 Atlas Copco Airpower, Naamloze Vennootschap Fluid-injected compressor installation

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111963427B (zh) * 2019-05-20 2022-06-14 复盛实业(上海)有限公司 螺旋式压缩机
BE1027496B1 (nl) * 2019-08-12 2021-03-16 Atlas Copco Airpower Nv Compressorinrichting
US20230332602A1 (en) * 2020-09-18 2023-10-19 Hitachi Industrial Equipment Systems Co., Ltd. Liquid feed type gas compressor
IT202000025324A1 (it) * 2020-10-26 2022-04-26 Ind Saleri Italo Spa Gruppo pompa
US11658542B2 (en) 2020-12-23 2023-05-23 Hamilton Sundstrand Corporation Cabin air compressor with liquid cooled jacket

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4968905A (ja) * 1972-11-08 1974-07-04
JPS54154811A (en) * 1978-05-26 1979-12-06 Hitachi Ltd Screw compressor
JPS60255038A (ja) * 1984-05-30 1985-12-16 Hitachi Ltd 密閉形電動圧縮機の電動機冷却方法
JP2000179486A (ja) * 1998-12-14 2000-06-27 Ebara Corp 冷凍機用半密閉スクリュー圧縮機
JP2001227489A (ja) * 2000-02-14 2001-08-24 Kobe Steel Ltd 油冷式スクリュ圧縮機
JP2001520353A (ja) * 1997-10-10 2001-10-30 ライボルト ヴァークウム ゲゼルシャフト ミット ベシュレンクテル ハフツング 複数のロータを備えたねじ型真空ポンプ
JP2005237159A (ja) * 2004-02-23 2005-09-02 Tamagawa Seiki Co Ltd ブラシレスモータ
JP2007192046A (ja) * 2006-01-17 2007-08-02 Kobe Steel Ltd スクリュ圧縮機

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH525392A (de) * 1970-09-08 1972-07-15 Allweiler Ag Stopfbuchsloses Pumpenaggregat
JP3502210B2 (ja) 1995-11-28 2004-03-02 株式会社日平トヤマ ビルトインモータ
DE19745616A1 (de) * 1997-10-10 1999-04-15 Leybold Vakuum Gmbh Gekühlte Schraubenvakuumpumpe
JP2000209815A (ja) 1999-01-12 2000-07-28 Shimadzu Corp 高速回転機器
JP3100580B2 (ja) * 1999-02-05 2000-10-16 核燃料サイクル開発機構 ナトリウム冷却型高速炉の炉心支持装置
JP2001095205A (ja) * 1999-09-20 2001-04-06 Hitachi Ltd 電動機
BE1013944A3 (nl) * 2001-03-06 2003-01-14 Atlas Copco Airpower Nv Watergeinjecteerde schroefcompressor.
JP2004343857A (ja) 2003-05-14 2004-12-02 Kobe Steel Ltd 液冷式モータ
WO2006024818A1 (en) 2004-09-02 2006-03-09 The Boc Group Plc Cooling of pump rotors
GB0419514D0 (en) * 2004-09-02 2004-10-06 Boc Group Plc Cooling of pump rotors
JP2008303781A (ja) * 2007-06-07 2008-12-18 Kobe Steel Ltd スクリュ圧縮機
JP5575379B2 (ja) * 2008-07-25 2014-08-20 東京電力株式会社 圧縮機及び冷凍機
JP5395712B2 (ja) * 2010-03-17 2014-01-22 東京電力株式会社 冷凍機
JP5825361B2 (ja) 2012-02-10 2015-12-02 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置
DE112013000269B4 (de) 2012-02-10 2020-08-20 Aisin Aw Co., Ltd. Hybridantriebsvorrichtung
CN108138771B (zh) * 2015-07-22 2020-09-08 特灵国际有限公司 压缩机轴承壳体排放装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4968905A (ja) * 1972-11-08 1974-07-04
JPS54154811A (en) * 1978-05-26 1979-12-06 Hitachi Ltd Screw compressor
JPS60255038A (ja) * 1984-05-30 1985-12-16 Hitachi Ltd 密閉形電動圧縮機の電動機冷却方法
JP2001520353A (ja) * 1997-10-10 2001-10-30 ライボルト ヴァークウム ゲゼルシャフト ミット ベシュレンクテル ハフツング 複数のロータを備えたねじ型真空ポンプ
JP2000179486A (ja) * 1998-12-14 2000-06-27 Ebara Corp 冷凍機用半密閉スクリュー圧縮機
JP2001227489A (ja) * 2000-02-14 2001-08-24 Kobe Steel Ltd 油冷式スクリュ圧縮機
JP2005237159A (ja) * 2004-02-23 2005-09-02 Tamagawa Seiki Co Ltd ブラシレスモータ
JP2007192046A (ja) * 2006-01-17 2007-08-02 Kobe Steel Ltd スクリュ圧縮機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019197919A3 (en) * 2018-04-11 2020-03-12 Atlas Copco Airpower, Naamloze Vennootschap Fluid-injected compressor installation
US11841015B2 (en) 2018-04-11 2023-12-12 Atlas Copco Airpower, Naamloze Vennootschap Fluid-injected compressor installation

Also Published As

Publication number Publication date
US20190063438A1 (en) 2019-02-28
CN108700071B (zh) 2023-03-24
CN108700071A (zh) 2018-10-23
US11053942B2 (en) 2021-07-06
JP2017160822A (ja) 2017-09-14
TW201743541A (zh) 2017-12-16
TWI666858B (zh) 2019-07-21
JP6982380B2 (ja) 2021-12-17
KR102067054B1 (ko) 2020-01-17
KR20180110044A (ko) 2018-10-08

Similar Documents

Publication Publication Date Title
WO2017154771A1 (ja) スクリュ圧縮機
US10822933B2 (en) Electric submersible pumping unit
JP6476093B2 (ja) スクリュ圧縮機
EP4034766A2 (en) Systems and process for aligning permanent magnet motors in an electrical submersible pump
WO2017056837A1 (ja) スクリュ圧縮機
WO2022164880A1 (en) High speed electric submersible pumps
US6318959B1 (en) Multi-stage rotary vacuum pump used for high temperature gas
IT201900000637A1 (it) Una pompa con un sistema di lubrificazione dei cuscini
CN219124033U (zh) 电机端部结构、电机、电驱系统及动力装置
US11624270B2 (en) Upthrust protection in electric submersible pumps
CN213235205U (zh) 水泵总成及发动机
WO2023074705A1 (ja) 回転電機
WO2022164876A1 (en) Upthrust protection in electric submersible pumps
JPS6011696A (ja) ダウンホ−ルポンプ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187025567

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187025567

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763111

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763111

Country of ref document: EP

Kind code of ref document: A1