WO2017152897A1 - Verfahren und vorrichutng zum herstellen von 3d-formteilen mit baufeldwerkzeugen - Google Patents

Verfahren und vorrichutng zum herstellen von 3d-formteilen mit baufeldwerkzeugen Download PDF

Info

Publication number
WO2017152897A1
WO2017152897A1 PCT/DE2017/000061 DE2017000061W WO2017152897A1 WO 2017152897 A1 WO2017152897 A1 WO 2017152897A1 DE 2017000061 W DE2017000061 W DE 2017000061W WO 2017152897 A1 WO2017152897 A1 WO 2017152897A1
Authority
WO
WIPO (PCT)
Prior art keywords
construction field
tools
layer
powder
construction
Prior art date
Application number
PCT/DE2017/000061
Other languages
English (en)
French (fr)
Inventor
Daniel GÜNTHER
Original Assignee
Voxeljet Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voxeljet Ag filed Critical Voxeljet Ag
Priority to CN201780016148.6A priority Critical patent/CN108712958A/zh
Priority to US16/082,436 priority patent/US11975487B2/en
Priority to EP17718005.6A priority patent/EP3426472A1/de
Publication of WO2017152897A1 publication Critical patent/WO2017152897A1/de
Priority to US18/415,922 priority patent/US20240149527A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/171Processes of additive manufacturing specially adapted for manufacturing multiple 3D objects
    • B29C64/182Processes of additive manufacturing specially adapted for manufacturing multiple 3D objects in parallel batches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Definitions

  • Method and device for the production of 3D molded parts with at least one construction field tool and at least one layer unit also suitable for large-scale production of SD moldings such as foundry cores and molds and other articles that are needed in large quantities.
  • European Patent EP 0 431 924 B1 describes a method for producing three-dimensional objects from computer data.
  • a particulate material is applied in a thin layer on a platform and this selectively printed by means of a print head with a binder material.
  • the particle area printed with the binder sticks and solidifies under the influence of the binder and optionally an additional hardener.
  • the platform is lowered by one layer thickness into a structural cylinder and provided with a new layer of particulate material, which is also printed as described above. These steps are repeated until a certain desired height of the object is reached.
  • the printed and solidified areas create a three-dimensional object.
  • This object made of solidified particulate material is embedded after its completion in loose particulate material and is subsequently freed from it. This is done for example by means of a nipple. What remains are the desired objects, which are then freed of powder deposits, eg by manual brushing or sandblasting.
  • the components are usually present after printing in a building container. This construction container usually represents a cuboid volume. This volume is loaded with a variety of geometries in order to use the machine well.
  • This process can process various particulate materials including, but not limited to, natural biological raw materials, polymeric plastics, metals, ceramics and sands.
  • a binding system e.g. serve a solid in the particulate material. This is dissolved by a solvent ejected from the ink jet printhead. After volatilization of the solvent, the particles stick together at the desired locations. The component can be removed from the remaining loose powder after a certain waiting time. This waiting time is generally long because the solvent is only slowly released from the dissolved material. The components are often weak after unpacking and can be plastically deformed. The volatilization of the solvent creates a certain adhesion to the component, which must be removed after unpacking by hand. The solvent may additionally attack the printhead. In addition, the dissolution process with subsequent reconsolidation causes shrinkage in the component and thus geometry deviations.
  • a solvent can also be loaded with molecules or particles and used. This can reduce the shrinkage. As well The aggressiveness of the solvent can be reduced with the same component strength. However, the solvent must be completely removed before unpacking, and the problem with adhesions is also given here.
  • Another possibility is the use of a system which chemically leads to a solidification of the imprinted liquid and thereby realizes the binding of the particles.
  • the components of the system are kept separate in the system if possible. Only during the printing process does the desired solidification reaction occur.
  • An example of such a system may be a method known as the cold resin process. In this case, an acid-coated sand is brought into contact with furfuryl alcohol. This leads to a chemical reaction that causes the formerly liquid components to become a cross-linked plastic.
  • Printers of the prior art partly have construction containers which can be removed from the installation and are also referred to as job boxes or building containers. These serve as a limitation for the powder and thus stabilize the building process. By changing the construction container, process steps can be parallelized and the plant can thus be utilized well. Likewise, there are systems that print on a platform that can be removed from the system like the construction containers. Also, methods are known in which is printed on a continuous conveyor belt at a certain angle.
  • the components are present in powder at the end and must be fed through further technical measures to further automated processing.
  • the construction container, its size and the large number of producible forms has a limiting effect on the incorporation of the layering process into a production system. It Although there are numerous ideas for automation via robots or handling equipment.
  • the powder cake, the removal of the particulate material and the exact position of the components make a process-reliable and economical unpacking and transfer to processing facilities technically difficult to control.
  • the object of the invention is to reduce or completely avoid the disadvantages of known methods of the prior art.
  • the object of the invention is to provide a method and devices suitable for this purpose, which can achieve or at least partially avoid the production of 3D molded parts in large numbers without the disadvantages of known methods.
  • This object is achieved by a production apparatus having construction field tools that are similar in volume to the article to be produced, using one or more layer units disposed on a traveling axis that print construction field tools can, and the construction field tools in cycles in or out of the printing device in other devices can move.
  • the invention is also a method that utilizes the devices provided by the production device.
  • the invention relates to a build-up production system that is dimensioned for a particular production purpose, operates in a clocked manner, has device parts for receiving products, has redundant height-adjustable layer units, and in subsequent process steps, such as post-curing of the components and automatic removal the entire system are integrated.
  • the invention is a production device according to claim 1, which has construction field tools that are similar in volume to the article to be produced, one or more layer units used, which are arranged on a travel axis and can print the construction field tools, and the construction field tools in or out of the Can move printing device in other devices.
  • a device for producing 3D molded planks which comprises: one or more construction field tools movably arranged and at least one layer unit arranged to be movable.
  • a further advantage is that work steps that are necessary after the assembly of the SD molded part, we can now carry out a heat treatment also automated. It is advantageous that the automatically unpacked component can be done via further funding to the station a heat treatment turn without manual intervention. This makes the manufacturing process faster, more economical and more efficient overall.
  • the invention relates to a device in which the layer unit (s) can be moved in the Z or / and in the X direction. Furthermore, the building site tool or tools can be moved in the X and / or Y direction.
  • the plurality of construction field tools may be arranged in series and interconnected. As a result, a coordinated movement of the individual construction field tools is possible and a series production of components is achieved. There is then a kind of assembly line and the construction field tools can be moved to the layer units out. After the construction of the molded part in a construction field tool or parallel in several construction tools next to each other, in which case also several layer units can be used, the construction tools are preferably clocked procedure and in subsequent construction tools are then printed again moldings. Down in the process chain then further process steps or additional treatment steps can be carried out with the moldings produced. All process steps can be linked together automatically. Preferably, robots are used.
  • construction field tools and layer units can be directed and coordinated controllable. This serves the optimized sequence of a serial process or a series production of components in large numbers.
  • the construction field tools are adapted to the component to be manufactured in such a way that only a small area of unconsolidated powder material has space around the component and the construction field tools essentially have the dimensions of the SD molded parts to be manufactured.
  • the construction field tools will preferably communicate with one another via one or more chains, toothed belts, toothed racks, cable or cables, hydraulic means, and / or they can thereby be moved in a timed manner.
  • the device according to the invention can be coupled with other devices useful for producing the desired molded parts.
  • the device according to the invention is particularly advantageously coupled with further means for further process steps after the 3D part design and / or has means which are suitable for automated removal of the SD molded parts.
  • the apparatus can furthermore be connected via conveying means with further methods or method steps for the treatment of the shaped parts, such as heat steps or other steps of component refinement known to the person skilled in the art.
  • the invention relates to a method for producing 3D molded parts, wherein 3D molded parts are produced by known means for SD printing, characterized in that each 3D molded part is produced in a separate construction field tool by means of a layer unit and the construction field tools be coordinated. All means and device means described above in connection with the device according to the invention can be formulated in the same way accordingly in method steps and find corresponding application here.
  • Figure 1 Representation of a conventional 3D printing process according to the prior art. Presentation cut in oblique view.
  • Figure 2 Schematic representation of the process steps of 3D printing.
  • Figure 3 simplified representation of a water space core for the production of motor vehicle engine cylinder heads.
  • Figure 4 Representation of created with a conventional 3D printer
  • Figure 5 representation of a construction field tool according to the invention.
  • FIG. 6 Illustration of a construction field tool with marks
  • FIG. 7 Representation of the functional relationships of a layer unit.
  • FIG. 8 Illustration of the creation of a layer with the construction field tool.
  • FIG. 9 Representation of the creation of two layers synchronously with two layer units.
  • FIG. 10 Illustration of an extended working space with two construction field tools.
  • FIG. 11 Illustration of a performance-enhanced device.
  • Figure 12 Representation of the exchange of a layer unit during the current process.
  • FIG. 13 Representation of a possible production device with construction field tools which can be moved cyclically with a chain.
  • Figure 14 Representation of a possible production facility with different process stations from the powder to the finished component.
  • layer-building method or “SD-printing method” are all known from the prior art methods that allow the construction of components in three-dimensional shapes and are compatible with the described process components and devices.
  • “Shaped body” or “component” or 3D molded part or 3D component in the sense of the invention are all three-dimensional objects produced by the method according to the invention and / or the device according to the invention, which have a dimensional stability.
  • Construction field is the plane or, more broadly, the locus on which or in which the bed of particulate material grows during the construction process by repeated coating with particulate material .
  • the construction field often passes through a floor, the "building platform”, through walls and an open deck area , the building level, limited.
  • Construction field tool in the sense of the invention means a means or a component of the device according to the invention, with the use of which the result of the processes of coating, printing and working height can be realized, preferably also the process of the powder cake, ie the non-solidified particle material, after the printing process has ended
  • the construction field tool can be equipped with an open bottom and with various features for processing the components in post-printing processes Construction field tool designed so that an edge or a grid on the bottom side prevents that when you open the flap, the manufactured 3D component falls out.
  • the construction field tool may consist of a base plate and laterally raised, rolled, bent or attached sides.
  • the construction field tool then has either no side parts or only very low sides on the other two or one sides, so that the 3D component can be easily removed from it. In this way, a removal or unpacking in automated and / or by Robotor subsequent further processing or the supply in further treatment processes or steps is achieved and facilitated.
  • An exemplary construction field tool is described by the reference numeral 500.
  • the process "printing” refers to the summary of the processes coating, printing and working height adjust and takes place according to the invention in an open or closed process space.
  • a "receiving plane” is understood to be the plane onto which building material is applied. [0016] According to this invention, the receiving plane is above the mark (???) in the tooling field linear movement freely accessible.
  • travelling axis is an axis which carries layer units or which can be created along it, is arranged above the construction field tools and has a travel that is wide in the system compared to the other axes.
  • Travel axis can also indicate the direction in which, for example, a construction field tool can be clocked and moved in coordination with other device parts. Even a print head can be moved on a "travel axis".
  • “spreading out” means any manner in which the particle material is distributed, for example, at the starting position of a coating run, a larger amount of powder may be introduced and spread or coated in the layer volume by a blade or a rotating roller.
  • particulate material or “powder”
  • all flowable materials known for 3D printing can be used, in particular in powder form, as slag or as liquid.
  • These may be, for example, sands, ceramic powders, glass powders, and other powders of inorganic or organic materials such as metal powders, plastics, wood particles, fiber materials, celluloses and / or lactose powders, as well as other types of organic powdered materials.
  • the particulate material is preferably a dry, free-flowing powder, but a cohesive, cut-resistant powder may also be used. This cohesiveness can also result from the addition of a binder material or an auxiliary material.
  • the “excess amount” or “overfeed” is the amount of particulate material that is pushed in the coating travel at the end of the construction field in front of the coater.
  • Coater or “recoater” is the unit by which the particulate material is applied to the construction field.
  • This can consist of a fluid reservoir and a fluid application unit, according to the present invention the fluid application unit comprises a fluid outlet and a "squeegee device.”
  • This squeegee device could be a coater blade, but it could also be any other conceivable one suitable doctor device can be used. Also conceivable, for example, rotating rollers.
  • a “layer unit” in the sense of the invention is a combination of a print head, a coater and a height axis to form a module
  • This module can, when moved with the travel axis over the receiving plane, adjust the operations, coating, printing and working height
  • the "layer unit” comprises a printhead which is arranged between two coater means.
  • the "layer unit” can be moved upwards in the direction of the Z-axis, in each case by one layer thickness, whereby a working process is virtually coated and the binder is selectively applied with the print head behind the newly applied powder material
  • the "layer unit” can be moved in working mode during coating and printing in the X-direction.
  • the "layer unit” may preferably coat in both directions, ie, in the return trip, and selectively print the binder, and may be provided with mobility in any other direction to correct any defective nozzles in the printhead by directional adjustment in the function of the printhead to be able to compensate.
  • the "printhead” typically consists of several components, including the print modules, which are aligned relative to the printhead, and the printhead is oriented relative to the machine, allowing the location of a nozzle to be mapped to the machine coordinate system.
  • Box volume of a component is the volume of the smallest cuboid into which the component can be brought, without a surface of the cuboid being penetrated by the component.
  • “Finishing” refers to cleaning the component of buildup until the desired geometry is free of any buildup and the component can be fed to another manufacturing step in a process chain.
  • Binder jetting - layer construction method is to be understood that layer by layer powder is applied to a construction platform, in each case the cross sections of the component are printed on this powder layer with a liquid binder, the position of the build platform is changed by a layer thickness to the last position and this Repeat steps until the component is ready.
  • “Timed” in the sense of the invention means that the layer unit or layer units each builds a component in a construction field tool and then move the construction field tools depending on their arrangement to the next working position This is then repeated many times in accordance with the device or can take place "endlessly” in a series production or as a kind of conveyor belt.
  • the system according to the invention is closely based on the powder-based 3D printing.
  • the device according to the invention has completely different functional relationships and will be described in more detail below.
  • FIG. 1 shows a 3D printer according to the prior art.
  • the SD printer has the device parts printhead (100), coater (101) and a building platform for the delivery of individual layers (107).
  • the powder cake grows in a building container (104) during the process.
  • the result is a three-dimensional component (113) that can be unpacked from the loose powder surrounding the component.
  • the device according to the invention has a powder coater (101). With this particulate material is applied to a build platform (102) and smoothed ( Figure 2 (a)).
  • the applied Parti kelmaterial may consist of various materials. For example, sand, ceramic powder, metal powder, plastic, wood particles, fiber material, celluloses, lactose powder, etc. may be used. The flow properties of these materials can vary greatly.
  • Various coating techniques allow the layer formation of dry, free-flowing powders, over cohesive, cut-resistant powders, to liquid-based dispersions.
  • the height of the powder layers (107) is determined by the build platform (102). It is lowered after applying a coat. During the next coating process, the resulting volume is filled and the supernatant smoothed. The result is a nearly perfectly parallel and smooth layer of defined height.
  • the layer is printed with a liquid by means of an inkjet printhead (100) (FIG. 1 (105), FIG. 2 (b)).
  • the printed image corresponds to the section through the component in the current height of the device.
  • the drops of liquid (109) strike the particulate matter and the liquid slowly diffuses into the powder.
  • the layer is solidified by the process according to the invention (FIG. 2 (c)).
  • an IR emitter (500) can be guided over the construction field. These may be coupled to the axis of the coating system. During heating, the solvent evaporates. With flammable liquids, the evaporating material is sucked off immediately.
  • the layer units according to the invention are capable, when moved on a travel axis (1000), to produce layers of powder, to print and to change their height position relative to the travel axis (1000). They work as a stand-alone modular printer.
  • the travel axis (1000) shifts the layer units relative to each other and the ends of the travel axis (1000). Below the travel axis (1000), the so-called construction field tools (500) are arranged. These are filled with the help of the layer units with powder and thus also the desired components.
  • the construction field tools (500), in contrast to the usual in the prior art job boxes (104) are designed so that subsequent steps after the 3D printing are taken into account in the execution.
  • the dimensioning corresponds to the component to be produced.
  • the volume of the container preferably does not correspond to 50% of the box volume of a component to be produced. Particularly preferably less than 30% of the component.
  • the design is preferably temperature-stable.
  • the bottom (601, 602) may be opened, for example, to drain powder (603). Marks for recognition by robotic systems are appropriate.
  • All elements are assembled into a 3D production plant. It has different stations that represent different production steps. There is at least one station for actual printing (1301). Preference is given to stations for heating (1400), a pre-unpacking station (1401) and a breaking station (1402) for the acquisition of components in follow-on production.
  • the stations are connected by a chain of construction field tools, which are fed cyclically to the individual stations. The drive of this delivery can be done by a mechanical chain (1300) or other Antriebarten (belts, racks, wheels, linear motors).
  • the production device thus goes from powder and liquid binder to the transfer of finished components to a production interface.
  • An exemplary application of the invention is the mass production of foundry cores in engine construction.
  • the cores for the so-called water space (300) in the cylinder head are very complex. These are often penetrated or framed by additional cores for the inlet branch pipes and the oil space.
  • these cores are manufactured with peripheral tools in core shot machines. Every single core must be free of undercuts.
  • the tool for the complex shapes is extremely expensive. It consists of several slides, which are delivered from different directions in space and thereby define the cavity, which is filled in a further step with the molding material.
  • the device is a 3D printer whose construction volume is slightly more than 8 ⁇ 15 ⁇ 60 cm. This volume can be edited quickly. Likewise, several of these volumes can be processed simultaneously or sequentially in a single device.
  • the volume is defined by a special carrier, the construction field tool (500), which can be made extremely simplified compared to a pressure device with a normal space. In the case of a water jacket core, the construction field tool can be a kind of gutter.
  • the print head (100) and the coater (101) run as a layer unit and produce the desired component.
  • the construction field tool (500) is very small and adapted to the volume of the component. Thus, the device size, in particular the investment level of the task is optimally adapted.
  • the construction field tool is particularly simple and can be easily integrated into a production line. This allows easy integration even when creating such a production device by several companies.
  • An essential basic unit of the device for use in the method according to the invention is the layer unit (FIG. 7, 800). These units are closed modules. These modules are single or multiple.
  • a layer unit consists of the print head (100), a print head offset device (703), preferably two coaters (101) and an axis (701) to adjust the layer unit in height relative to its attachment point.
  • the coaters (101) are preferably arranged laterally, eg to the right and left of the print head (100). If the control makes it necessary, the coaters (101) can each be arranged at different heights above the layer.
  • the coaters (101) of the layer unit (800) are, for example, about 220 mm wide and thus cover the component dimensions (300).
  • the print head (100) with a print width of 180 mm is also wider than the required component.
  • the printhead can be moved about the center line of the component by 10 mm in the example. Thus, it can be prevented that a defective nozzle leads to a defect in the component, which would go through the entire component (300) and render it useless.
  • the offset mechanism (703) must accurately move the print head (100) so that the print image is applied within an acceptable tolerance from one layer to the next.
  • + - ⁇ are an acceptable field of accuracy.
  • the printhead (100) is located slightly higher than the coater (101) so that it can not come in contact with the powder.
  • Technically useful here are about 2.5 mm.
  • a 300 DPI printhead (100) is employed.
  • the distance of the arranged in the direction of the offset axis nozzles is then 84.6 ⁇ .
  • the height of the layer unit (800) above the attachment point (702) can be adjusted as described via an axis (701) which is part of the layer unit. Since very thin layers are required, good resolution and reproducibility are required here. In the example with the water jacket, the layer unit must have a travel distance of approx. 100 mm. The accuracy should exceed + - lOpm.
  • the usual layer thicknesses for the example task are around 300 ⁇ . Likewise, when demand for higher throughput 400 pm, in the demand for higher accuracy and 250 pm usual.
  • the layer units (800) are arranged on an axis (1000).
  • the suspension point (801) is the carriage of this axle. Using this axis, the layer unit can be moved in the spatial direction perpendicular to the offset (703) and height axis (701).
  • This axis (1000) is the longest axis in the device. Their travel measures several meters. In the example, the layer unit (800) can be moved over a length of 4 meters. The travel axis (1000) is technically designed so that it can carry several layer units. These then move one after the other in the side view.
  • this axle (1000) represents a ball guide in combination with a linear motor on the slide.
  • This arrangement makes it possible in a simple manner to use several slides for several layer units. For each slide, a separate energy chain is led to supply the layer units. Through this, data, energy and fluids reach the layer unit (800).
  • the coaters (101) are supplied with powder via static filling mechanisms.
  • the layer units (800) can place the powder (110) and the printing fluid (109) on any, not necessarily flat surfaces.
  • the coaters (101) generate a planar plane with their lower edge when powder flows out and the layer unit (800) is moved simultaneously.
  • a special construction field tool (500) is used as the surface.
  • This construction field tool according to the invention can be carried out particularly easily. It contains no elements defining the precision of the components.
  • a gutter-like arrangement is used as the construction field tool (500).
  • the opening of the channel can be traversed by a layer unit (800).
  • the walls prevent the powder from spreading perpendicular to the working direction of the layer unit. In the lowest layer of the layer unit, no element of the construction field tool is touched.
  • the construction field tool may be equipped with a bottom (601) that allows the loose powder (603) to drain around the component.
  • the component sinks and is picked up by markers (600) applied in the construction tool. In this case, a defined position is reached.
  • the marks on the component (303) must be made so that no buildup interferes with accurate positioning on the construction field tool (500). If processes with strong adhesions are used, other devices such as compressed air nozzles in the area of the marks (303, 600) must be used.
  • the process can be carried out flexibly.
  • a plurality of layer units (800) can be used in parallel and independently of each other on the track (1000). It is also possible to design the travel axis (1000) so long that several construction field tools can be run over by the layer units. Likewise preferred are devices in which a plurality of construction field tools (500) and a plurality of layer units (800) are used in one line.
  • This arrangement can be used to speed up the process.
  • Two layers (107) are laid on each crossing at the same time.
  • two layers (107) can also be laid simultaneously.
  • the layer units (800) are set by their height axes (701) in the correct spatial position. For this purpose, the first layer unit in the direction of travel sits one layer lower than the following unit. On the return trip, this arrangement is reversed.
  • a further increase in performance of the arrangement can be achieved if the layer units are mirrored over the travel axis (1000). This doubles the possible performance in the simultaneous multiple use of existing device parts (see Figure 9).
  • An array with multiple layer units (800) can also be used to perform maintenance (1200) on a unit while the process continues to run. For this purpose a unit is moved to the edge position. A guard (1201) protects against interference with the system. Now the unit (1200) can be manual or be dismantled semi-automatically. With appropriate design, a quick change of the entire layer unit (1200) is possible. The presented unit is hung up and connected to the system again. Due to the height adjustment (701), the layer unit (800) can also be brought back into the process during the processing of a construction field tool.
  • the device according to the invention makes it possible to operate the plant reliably and with high power.
  • the construction field tools (500) can preferably be designed in such a way that a new construction field tool (500) can be moved intermittently into the working area of the layer units (800) after every completed completion of a component. Such movement of the construction units may be accomplished by a chain link arrangement (1300). The construction units themselves run on rails. A really exact positioning is not necessary. Only the free passage of a layer unit (800) through the construction field tools (500) used in this exemplary embodiment is to be ensured.
  • the construction field tool (500) can be connected to other plates on the displacement system. This also allows rapid use of other construction field tool (500).
  • the space in which the actual printing process takes place can be accommodated in a housing (1301).
  • the atmosphere can be easily controlled to keep the printing process stable.
  • dusts coming out of the process room (1301) can not affect the environment.
  • automatically operable flaps and gates allow access to the construction site tools (500).
  • Access flaps (1201) for the layer units (800) are present, which make it possible to move the layer units (800) in the maintenance position.
  • the construction units can be transported via the drive, in the example a chain (1300), to other positions.
  • a position could be an oven (1400) for post curing of the components.
  • cores are to be produced with an inorganic binder system.
  • the aftertreatment takes place at around 200 ° C.
  • the oven (1400) like the room for the printing process (1301), is equipped with automatic gates.
  • the construction field tool (500) adapted to the component (300) the volume to be heated is reduced to the essentials. As a result, a rapid heating can take place and thus the device can be kept short.
  • Another station of this production line is automatic pre-unpacking (1401).
  • a construction field tool (500) which has a bottom (601) which can be switched to powder (602).
  • the loose powder (603) trickles away from the component.
  • This process can be additionally supported by a vibration device.
  • the component (300) drops to the above-described marks (600).
  • Small air nozzles clean the contact surfaces in this area. A part of the contacts is executed as a sphere, a part as a straight surface. This results in a reproducible defined position.
  • the powder (603) draining from the component (300) is collected below the device (604). It can be fed with screw conveyors or belts to a powder recycling device.
  • the pre-packaging station (1401) is preferably also equipped with a housing. Here, especially dusts are kept away from the ambient air. Likewise, there are automatic gates again.
  • the actual unpacking / breaking station (1402) is a robot cell.
  • a robot arm cleans areas with a compressed air jet, where the component (300) is to be gripped afterwards.
  • a second robot arm grips the component (300) here with a pneumatic gripper.
  • the second robot moves the component (300) past the compressed air nozzle of the first robot and thus completely cleans the component of buildup.
  • the cleaning is carried out due to the similarity of the components controlled by a teach-in, without using the exact geometric data of the component (300).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

Ein Verfahren und eine Vorrichtung zum Herstellen von 3D-Formteilen (300) umfassend mehrere Baufeldwerkzeuge (500) verfahrbar angeordnet und mindestens eine Schichteinheit (800) verfahrbar angeordnet.

Description

VERFAHREN UND VORRICHUTNG ZUM HERSTELLEN VON 3D- FORMTEILEN MIT BAUFELDWERKZEUGEN
Beschreibung
Verfahren und Vorrichtung zur Herstellung von 3D-Formteilen mit mindesten einem Baufeldwerkzeug und mindesten einer Schichteinheit, auch geeignet für eine Großserienproduktion von SD- Formteilen wie Gießereikernen und -formen und anderen Artikeln, die in großen Stückzahlen benötigt werden.
In der europäischen Patentschrift EP 0 431 924 Bl wird ein Verfahren zur Herstellung dreidimensionaler Objekte aus Computerdaten beschrieben. Dabei wird ein Partikelmaterial in einer dünnen Schicht auf eine Plattform aufgetragen und dieses selektiv mittels eines Druckkopfes mit einem Bindermaterial bedruckt. Der mit dem Binder bedruckte Partikelbereich verklebt und verfestigt sich unter dem Einfluss des Binders und gegebenenfalls eines zusätzlichen Härters. Anschließend wird die Plattform um eine Schichtdicke in einen Bauzylinder abgesenkt und mit einer neuen Schicht Partikelmaterial versehen, die ebenfalls, wie oben beschrieben, bedruckt wird. Diese Schritte werden wiederholt, bis eine gewisse erwünschte Höhe des Objektes erreicht ist. Aus den bedruckten und verfestigten Bereichen entsteht so ein dreidimensionales Objekt.
Dieses aus verfestigtem Partikelmaterial hergestellte Objekt ist nach seiner Fertigstellung in losem Partikelmaterial eingebettet und wird anschließend davon befreit. Dies erfolgt beispielsweise mittels eines Saugers. Übrig bleiben danach die gewünschten Objekte, die dann von Pulveranhaftungen z.B. durch händisches Abbürsten oder Sandstrahlen befreit werden. Die Bauteile liegen üblicherweise nach dem Drucken in einem Baubehälter vor. Dieser Baubehälter stellt meist ein quaderförmiges Volumen dar. Dieses Volumen wird mit den verschiedensten Geometrien beladen, um die Maschine gut auszulasten.
Das 3D-Drucken auf Basis pulverförmiger Werkstoffe und Eintrag flüssiger Binder ist unter den Schichtbautechniken das schnellste Verfahren.
Mit diesem Verfahren lassen sich verschiedene Partikelmaterialien, dazu zählen - nicht erschöpfend - natürliche biologische Rohstoffe, polymere Kunststoffe, Metalle, Keramiken und Sande, verarbeiten.
Als Bindesystem kann z.B. ein Feststoff im Partikelmaterial dienen. Dieser wird durch ein aus dem Tintenstrahldruckkopf ausgestoßenes Lösemittel in Lösung gebracht. Nach dem Verflüchtigen des Lösemittels haften die Partikel an den gewünschten Stellen zusammen. Das Bauteil kann aus dem restlichen losen Pulver nach einer gewissen Wartezeit entnommen werden. Diese Wartezeit ist im Allgemeinen lang, da das Lösemittel von dem gelöstem Material nur langsam wieder freigegeben wird. Dabei sind oft die Bauteile nach dem Entpacken schwach und können plastisch verformt werden. Die Verflüchtigung des Lösemittels erzeugt eine gewisse Anhaftung am Bauteil, die nach dem Entpacken in Handarbeit entfernt werden muss. Das Lösemittel kann den Druckkopf zusätzlich angreifen. Zudem bedingt der Löseprozess mit anschließendem Wiederverfestigen Schwund im Bauteil und damit Geometrieabweichungen.
Ein Lösemittel kann ebenso mit Molekülen oder Partikeln beladen werden und zum Einsatz kommen. Dadurch kann der Schwund gesenkt werden. Ebenso kann die Aggressivität des Lösemittels bei gleicher Bauteilfestigkeit herabgesetzt werden. Das Lösemittel muss aber vor dem Entpacken vollständig entfernt werden, und die Problematik mit Anhaftungen ist auch hier gegeben.
Eine weitere Möglichkeit ist die Verwendung eines Systems, das chemisch zu einer Verfestigung der eingedruckten Flüssigkeit führt und dadurch die Bindung der Partikel realisiert. Dabei werden die Komponenten des Systems nach Möglichkeit getrennt im System vorgehalten. Erst beim Druckprozess kommt es zu der gewünschten Verfestigungsreaktion. Ein Beispiel für ein solches System kann ein als Kaltharzprozess bekanntes Verfahren sein. Dabei wird ein mit Säure umhüllter Sand mit Furfurylalkohol in Kontakt gebracht. Dadurch kommt es zu einer chemischen Reaktion, die die vormals flüssigen Komponenten in einen vernetzten Kunststoff übergehen lassen.
Drucker des Stands der Technik weisen zum Teil Baubehälter auf, die aus der Anlage entnehmbar sind und auch als Jobbox oder Baubehälter bezeichnet werden. Diese dienen als Begrenzung für das Pulver und stabilisieren so den Bauprozess. Durch das Wechseln des Baubehälters können Prozessschritte parallelisiert werden und die Anlage kann somit gut ausgelastet werden. Ebenso gibt es Anlagen, bei der auf eine Plattform gedruckt wird, die wie die Baubehälter aus der Anlage entnommen werden kann. Auch sind Verfahren bekannt, bei denen auf ein durchgehendes Förderband in einem bestimmten Winkel gedruckt wird.
Bei allen Verfahren liegen die Bauteile am Schluss im Pulver vor und müssen durch weitere technische Maßnahmen einer weiteren automatisierten Bearbeitung zugeführt werden. Dabei wirkt der Baubehälter, dessen Größe und die Vielzahl an produzierbaren Formen einschränkend auf die Eingliederung des Schichtbauprozesses in ein Produktionssystem. Es existieren zwar zahlreiche Ideen zur Automatisierung über Roboter oder Handhabungseinrichtungen. Der Pulverkuchen, das Entfernen des Partikelmaterials und die genaue Lage der Bauteile machen aber ein prozesssicheres und wirtschaftliches Auspacken und ein Übergeben an weiterverarbeitende Einrichtungen technisch schwer beherrschbar.
Bei Schichtbauverfahren des Standes der Technik wird davon ausgegangen, dass möglichst verschiedene Bauteile mit unterschiedlichen Abmessungen produziert werden müssen. Dieses Konzept wird Rapid Prototyping genannt. Nimmt man ein bestimmtes sehr eingeschränktes Bauteilspektrum an, können zielgerichtete Verfahren zur Integration in eine Produktionsanlage implementiert werden. Dieses Konzept wird heute als Additive Manufacturing bezeichnet. Es werden gewöhnlich in einem Bauraum oder einer Jobbox gleiche oder verschiedene Bauteile optimiert angeordnet und im Batch- Verfahren oder in kontinuierlichen 3D-Druckverfahren hergestellt. Hinsichtlich einer Großserienproduktion ergeben sich allerdings verschiedene Nachteile.
Der Erfindung liegt also in einem Aspekt die Aufgabe zugrunde die Nachteile von bekannten Verfahren des Standes der Technik zu vermindern oder ganz zu vermeiden. In einem anderen Aspekt ist Aufgabe der Erfindung ein Verfahren und hierfür geeignete Vorrichtungen bereit zu stellen, die eine Herstellung von 3D-Formteilen in großen Stückzahlen ohne die Nachteile von bekannten Verfahren erreichen kann oder diese zumindest teilweise vermeidet.
Diese Aufgabe wird gelöst durcheine Produktionsvorrichtung, die Baufeldwerkzeuge aufweist, die im Volumen dem zu produzierenden Gegenstand ähnlich sind, ein oder mehrere Schichteinheiten verwendet, die auf einer Verfahrachse angeordnet sind, die Baufeldwerkzeuge bedrucken können, und die die Baufeldwerkzeuge taktweise in oder aus der Druckvorrichtung in weitere Vorrichtungen bewegen kann. Sinngemäß ist die Erfindung ebenfalls ein Verfahren, das die durch die Produktionsvorrichtung bereitgestellten Vorrichtungen nutzt.
In einem Aspekt betrifft die Erfindung ein Schichtbauproduktionssystem, das für einen speziellen Produktionszweck dimensioniert ist, taktartig arbeitet, Vorrichtungsteile zur Aufnahme von Produkten aufweist, redundante in der Höhe einstellbare Schichteinheiten aufweist und bei dem nachfolgende Prozessschritte, wie das Nachhärten der Bauteile und die automatische Entnahme in der Gesamtanlage integriert sind.
Die Erfindung ist eine Produktionseinrichtung nach Anspruch 1, die Baufeldwerkzeuge aufweist, die im Volumen dem zu produzierenden Gegenstand ähnlich sind, ein oder mehrere Schichteinheiten verwendet, die auf einer Verfahrachse angeordnet sind und die Baufeldwerkzeuge bedrucken können, und die die Baufeldwerkzeuge taktweise in oder aus der Druckvorrichtung in weitere Vorrichtungen bewegen kann.
Insbesondere wird die Aufgabe gelöst durch eine Vorrichtung zum Herstellen von 3D-Formtielen, die umfaßt: ein oder mehrere Baufeldwerkzeuge verfahrbar angeordnet und mindestens eine Schichteinheit verfahrbar angeordnet.
Es hat sich gezeigt, dass es mit der erfindungsgemäßen Vorrichtung und dem damit durchführbaren Verfahren möglich wird, das 3D-Druckverfahren zu vereinfache, automatisierten Verfahrensschritten zugänglich zu machen und eine Serienproduktion in mehrheitlich automatisierter oder Robotor- basierter Weise durchführbar zu machen. In bekannten 3D-Druckverfahren werden die herzustellenden Bauteile nach ihrer Form optimiert im Bauraum bzw. auf der Bauplattform angeordnet und indem sie überlagernd angeordnet sind hergestellt. Außerdem handelt es sich um ein relativ großes Volumen, das schwer handhabbar ist und auch als Isolierung wirkt. Beim Entpacken ist große Sorgfalt nötig bzw. ein Ablassen des nicht verfestigten Partikelmaterials würde die hergestellten Bauteile übereinander und ungeordnet zum Liegen kommen lassen.
Mit der erfindungsgemäßen Vorrichtung und dem damit durchführbaren Verfahren wird es nun vorteilhafter Weise möglich, die Entpackung zu automatisieren. Ein einfaches Ablassen des Pulvers über eine Klappe oder in andere automatisierter Wiese durch automatisches Absaugen, Wegblasen oder dergleichen ist jetzt unbedenklich, da nur ein einziges Bauteil pro Baufeldwerkzeug vorliegt. Mit Hilfe des Baufeldwerkzeuges wird es also vorteilhafter Weise möglich hinsichtlich des Entpackvorganges teure und zeitaufwendige Handarbeit einzusparen.
Ein weiterer Vorteil ist, dass Arbeitsschritte, die nach dem Aufbau des SD- Formteils nötig werden wir eine Wärmebehandlung nun auch automatisiert durchgeführt werden kann. Vorteilhaft ist dabei, dass das automatisiert entpackte Bauteil über weitere Fördermittel zu der Station einr Wärmebehandlung wiederum ohne händisches Eingreifen erfolgen kann. Damit wird das Herstellungsverfahren schneller, wirtschaftlicher und gesamtheitlich effizienter.
Sofern eine Wärmebehandlung im Pulverkuchen vorteilhaft ist, konnte dies im Stand der Technik bisher so nicht verwirklicht werden, das der Pulverkuchen isolierend wirkt und damit eine sehr lange oft zu lange Zeit nötig wäre, um das gesamte Volumen des Pulverkuchens auf die gewünschte Temperatur zu bringen. Nunmehr wird es mit der erfindungsgemäßen Vorrichtung und dem damit durchführbaren Verfahren möglich eine Wärmebehandlung auf dem Baufeldwerkzeug durchzuführen. Es handelt sich nur um ein verhältnismäßig kleines Volumen, das in einem vertretbaren Zeitrahmen ganzheitlich auf die erforderliche Temperatur gebracht werden kann und somit direkt im Pulverkuchen durchführbar ist.
In weiteren Ausführungsformen betrifft die Erfindung eine Vorrichtung bei der die Schichteinheit(en) in Z - oder/und in X - Richtung verfahrbar sind. Weiterhin kann das oder die Baufeldwerkzeuge verfahrbar sein in X - oder/und Y - Richtung.
Vorteilhafter Weise können die mehreren Baufeldwerkzeuge in Serie angeordnete sein und miteinander verbunden sein. Dadurch wird eine koordinierte Bewegung der einzelnen Baufeldwerkzeuge möglich und eine Serienproduktion von Bauteilen erreicht. Es liegt dann eine Art Fließband vor und die Baufeldwerkzeuge können zu den Schichteinheiten hin verfahren werden. Nach dem Aufbau des Formteiles in einem Baufeldwerkzeug oder parallel in mehreren Bauwerkzeugen nebeneinander, wobei dann auch mehrere Schichteinheiten zur Anwendung kommen können, werden die Bauwerkzeuge vorzugsweise getaktet verfahren und in nachfolgenden Bauwerkzeugen werden dann wiederrum Formteile gedruckt. Unten in der Prozesskette können dann weitere Verfahrensschritte oder zusätzliche Behandlungsschritte mit den hergestellten Formteilen durchgeführt werden. Alle Verfahrensschritte können automatisiert miteinander verbunden sein. Vorzugsweise werden Robotor eingesetzt.
In der erfindungsgemäßen Vorrichtung können Baufeldwerkzeuge und Schichteinheiten gerichtet und koordiniert steuerbar sein. Dies dient dem optimierten Ablauf eines Serienverfahrens oder einer Serienproduktion von Bauteilen in großen Stückzahlen. In der erfindungsgemäßen Vorrichtung werden die Baufeldwerkzeuge so an das herzustellenden Bauteil angepasst, dass um das Bauteil nur ein kleiner Bereich von nicht verfestigtem Pulvermaterial Raum hat und so die Baufeldwerkzeuge im wesentlichen die Dimensionen der zu fertigenden SD- Formteile aufweisen.
Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Es können zur Kopplung bzw. zum Verbinden der Baufeldwerkzeuge miteinander alle geeigneten Mittel eingesetzt werden, die dem Fachmann allgemein bekannt sind. Vorzugsweise werden die Baufeldwerkzeuge über eine oder mehrere Ketten, Zahnriemen, Zahnstangen, Seilzug oder Seilzüge, hydraulische Mittel miteinander in Verbindung stehen und sie sind dadurch verfahrbar oder/und sie können dadurch getaktet bewegt werden.
Die erfindungsgemäße Vorrichtung kann mit weiteren zur Herstellung der gewünschten Formteile nützlichen Vorrichtungen gekoppelt werden. Besonders vorteilhaft ist die erfindungsgemäße Vorrichtung mit weiteren Mitteln für weitere Prozessschritte nach dem 3D-Fromteilaufbau gekoppelt und/oder weist Mittel auf, die für eine automatisierte Entnahme der SD- Formteile geeignet sind. Die Vorrichtung kann weiterhin über Fördermittel mit weiteren Verfahren oder Verfahrensschritten zur Behandlung der Formteile verbunden sein wie Wärmeschritten oder anderen dem Fachmann bekannten Schritten der Bauteilverfeinerung.
In einem weiteren Aspekt betrifft die Erfindung ein Verfahren zum Herstellen von 3D-Formteilen, wobei 3D-Formteile mit bekannten Mitteln für den SD- Druck hergestellt werden, dadurch gekennzeichnet, dass jedes 3D-Formteil in einem getrennten Baufeldwerkzeug mittels Schichteinheit hergestellt wird und die Baufeldwerkzeuge koordiniert verfahren werden können. Alle oben im Zusammenhang mit der erfindungsgemäße Vorrichtung beschriebenen Mittel und Vorrichtungsmittel können in gleicher Weise entsprechend in Verfahrensschritten formuliert werden und hier entsprechend Anwendung finden.
Kurze Beschreibung der Figuren:
Figur 1: Darstellung eines konventionellen 3D-Druckprozesses gemäß dem Stand der Technik. Darstellung geschnitten im Schrägriss.
Figur 2: Schematische Darstellung der Prozessschritte des 3D-Druckens.
Figur 3: Vereinfachte Darstellung eines Wasserraumkernes für die Herstellung von KFZ-Motorzylinderköpfen.
Figur 4: Darstellung von mit einem konventionellen 3D-Drucker erstellten
Wasserraumkernen in einem konventionellen Baubehälter.
Figur 5: Darstellung eines erfindungsgemäßen Baufeldwerkzeuges.
Figur 6: Darstellung eines Baufeldwerkzeuges mit Marken und
Schieberboden.
Figur 7: Darstellung der funktionellen Zusammenhänge einer Schichteinheit. Figur 8: Darstellung der Erstellung einer Schicht mit dem Baufeldwerkzeug. Figur 9: Darstellung der Erstellung zweier Schichten synchron mit zwei Schichteinheiten.
Figur 10: Darstellung eines verlängerten Arbeitsraumes mit zwei Baufeldwerkzeugen.
Figur 11 : Darstellung einer leistungsgesteigerten Vorrichtung.
Figur 12: Darstellung des Austausches einer Schichteinheit während des laufenden Prozesses.
Figur 13: Darstellung einer möglichen Produktionseinrichtung mit Baufeldwerkzeugen die taktweise mit einer Kette bewegt werden können. Figur 14: Darstellung einer möglichen Produktionseinrichtung mit unterschiedlichen Prozessstationen vom Pulver bis zum fertigen Bauteil. Im Folgenden werden einige Begriffe näher definiert. Andernfalls sind für die verwendeten Begriffe die dem Fachmann bekannten Bedeutungen zu verstehen.
Im Sinne der Erfindung sind „Schichtbauverfahren" bzw. „SD- Druckverfahren" alle aus dem Stand der Technik bekannten Verfahren, die den Aufbau von Bauteilen in dreidimensionalen Formen ermöglichen und mit den beschriebenen Verfahrenskomponenten und Vorrichtungen kompatibel sind.
„Formkörper" oder„Bauteil" oder 3D-Formteil oder 3D-Bauteil im Sinne der Erfindung sind alle mittels des erfindungsgemäßen Verfahrens oder/und der erfindungsgemäßen Vorrichtung hergestellte dreidimensionale Objekte, die eine Formfestigkeit aufweisen.
„Baufeld" ist die Ebene oder in erweitertem Sinn der geometrische Ort, auf dem oder in dem die Partikelmaterialschüttung während des Bauprozesses durch wiederholtes Beschichten mit Partikelmaterial wächst. Häufig wird das Baufeld durch einen Boden, die„Bauplattform", durch Wände und eine offene Deckfläche, die Bauebene, begrenzt.
„Baufeldwerkzeug" bezeichnet im Sinne der Erfindung ein Mittel oder ein Bauteil der erfindungsgemäßen Vorrichtung, mit dessen Einsatz das Ergebnis der Vorgänge Beschichten, Bedrucken und Arbeitshöhe verstellen verwirklichen kann; vorzugsweise auch den Vorgang den Pulverkuchen, d.h. das nicht verfestigte Partikelmaterial, nach erfolgtem Druckvorgang aus ihm heraus zu bewegen. Das Baufeldwerkzeug kann mit einem offenbaren Boden und mit verschiedenen Merkmalen zur Prozessierung der Bauteile in nach dem Drucken folgenden Prozessen ausgestattet sein. Dabei ist das Baufeldwerkzeug so ausgestaltet, dass ein Rand oder ein Gitter an der Bodenseite verhindert, dass beim Öffnen der Klappe das gefertigte 3D- Bauteil herausfällt. In einer Ausgestaltung kann das Baufeldwerkzeug aus einem Bodenblech und seitlich hochgezogenen, umgewalzten, umgebogenen oder angebrachten Seiten bestehen. Dabei weist das Baufeldwerkzeug dann an den anderen zwei oder einer Seiten entweder keine Seitenteile auf oder nur sehr niedrig ausgestaltete Seiten, damit das 3D-Bauteil leicht aus ihm entnommen werden kann. Auf diese Weise wird eine Entnahme oder auch ein Entpacken in automatisierter oder/und mittels Robotor erfolgender weiteren Bearbeitung oder der Zuführung in weitere Behandlungsprozesse oder Arbeitsschritte erreicht und erleichtert. Ein beispielhaftes Baufeldwerkzeug ist mit der Bezugsziffer 500 beschrieben.
Der Prozess „Drucken" bezeichnet die Zusammenfassung der Vorgänge Beschichten, Bedrucken und Arbeitshöhe verstellen und findet erfindungsgemäß in einem offenen oder geschlossenen Prozessraum statt.
Unter einer„Aufnahmeebene" ist gemäß der vorliegenden Beschreibung die Ebene zu verstehen, auf die Baumaterial aufgetragen wird. Gemäß dieser Erfindung befindet sich die Aufnahmeebene oberhalb der Marken (???) im Baufeld Werkzeug. Erfindungsgemäß ist die Aufnahmeebene immer in einer Raumrichtung durch eine lineare Bewegung frei zugänglich.
„Verfahrachse" ist bei einer erfindungsgemäßen Vorrichtung und Verfahren eine Achse, die Schichteinheiten trägt oder die entlang dieser erstellt werden können, über den Baufeldwerkzeugen angeordnet ist und einen gegenüber den anderen Achsen im System weiten Verfahrweg aufweist.„Verfahrachse" kann aber auch die Richtung angeben, in der z.B. ein Baufeldwerkzeug getaktet und in Koordination mit anderen Vorrichtungsteilen bewegt werden kann. Auch ein Druckkopf kann auf einer„Verfahrachse" bewegt werden. „Ausstreichen" bedeutet gemäß der vorliegenden Erfindung jegliche Art und Weise, mit der das Parti kelmaterial verteilt wird. Beispielsweise kann an der Startposition einer Beschichtungsfahrt eine größere Pulvermenge vorgelegt werden und durch eine Klinge oder eine rotierende Walze in das Schichtvolumen verteilt oder ausgestrichen werden.
Als„Partikelmaterial" oder„Pulver" können alle für den 3D-Druck bekannten fließfähigen Materialien verwendet werden, insbesondere in Pulverform, als Schlacke oder als Flüssigkeit. Dies können beispielsweise Sande, Keramikpulver, Glaspulver, und andere Pulver aus anorganischen oder organischen Materialien wie Metallpulver, Kunststoffe, Holzpartikel, Faserwerkstoffe, Cellulosen oder/und Laktosepulver sowie andere Arten von organischen, pulverförmigen Materialien sein. Das Parti kelmaterial ist vorzugsweise ein trocken frei fließendes Pulver, aber auch ein kohäsives schnittfestes Pulver kann verwendet werden. Diese Kohäsivität kann sich auch durch Beimengung eines Bindermaterials oder eines Hilfsmaterials ergeben.
Die „Überschussmenge" oder „Overfeed" ist dabei die Menge an Partikelmaterial, die bei der Beschichtungsfahrt am Ende des Baufeldes vor dem Beschichter hergeschoben wird.
„Beschichter" oder „Recoater" ist die Einheit, mittels derer das Partikelmaterial in bzw. auf das Baufeld aufgebracht wird. Dieser kann aus einem Fluidvorratsbehälter und einer Fluidauftragseinheit bestehen, wobei gemäß der vorliegenden Erfindung die Fluidauftragseinheit einen Fluidauslass und eine „Rakeleinrichtung" umfasst. Diese Rakeleinrichtung könnte eine Beschichterklinge sein. Es könnte aber auch jede andere erdenkliche geeignete Rakeleinrichtung verwendet werden. Denkbar sind beispielsweise auch rotierende Walzen.
Eine„Schichteinheit" im Sinne der Erfindung ist eine Zusammenfassung aus einem Druckkopf, einem Beschichter und einer Höhenachse zu einem Modul. Dieses Modul kann, wenn es mit der Verfahrachse über die Aufnahmeebene verfahren wird, die Operationen, Beschichten, Bedrucken und Arbeitshöhe verstellen, ausführen. Vorzugsweise umfasst die „Schichteinheit" einen Druckkopf, der zwischen zwei Beschichtermitteln angeordnet ist. Die „Schichteinheit" ist in Z-Achse verfahrbar und wird im Laufe des Druckprozesses vorzugsweise nach oben in Richtung Z-Achse jeweils um eine Schichtstärke verfahren. Dabei wird in quasi einem Arbeitsprozess beschichtet und hinter dem neu aufgebrachten Pulvermaterial mit dem Druckkopf selektiv der Binder aufgebracht. Die „Schichteinheit" ist im Arbeitsbetrieb beim Beschichten und Drucken in X-Richtung verfahrbar. Die „Schichteinheit" kann vorzugsweise in beide Richtungen, d.h. bei der Hin- und Zurückfahrt beschichten und selektiv den Binder drucken. Weiterhin kann eine Beweglichkeit oder Verfahrbarkeit in jede weitere Richtung vorgesehen sein, um mögliche defekte Düsen im Druckkopf durch Richtungsanpassung in der Funktion des Druckkopfes ausgleichen zu können.
Der„Druckkopf" setzt sich üblicherweise aus verschiedenen Komponenten zusammen. Unter anderem sind das die Druckmodule. Diese sind relativ zum Druckkopf ausgerichtet. Der Druckkopf ist relativ zur Maschine ausgerichtet. Damit kann die Lage einer Düse dem Maschinenkoordinatensystem zugeordnet werden.
„Boxvolumen" eines Bauteils ist das Volumen des kleinsten Quaders, in das das Bauteil gebracht werden kann, ohne dass eine Fläche des Quaders vom Bauteil durchdrungen wird. „Finishing" bezeichnet das Reinigen des Bauteils von Anhaftungen bis die gewünschte Geometrie frei von jedweden Anhaftungen ist und das Bauteil einem weiteren Fertigungsschritt in einer Prozesskette zugeführt werden kann.
Unter „Binder-Jetting - Schichtbauverfahren" ist zu verstehen, dass schichtweise Pulver auf eine Bauplattform aufgebracht wird, jeweils die Querschnitte des Bauteils auf dieser Pulverschicht mit einem flüssigen Binder bedruckt werden, die Lage der Bauplattform um eine Schichtstärke zur letzten Position geändert wird und diese Schritte solange wiederholt werden, bis das Bauteil fertig ist.
„Getaktet" im Sinne der Erfindung bedeutet, dass die Schichteinheit oder Schichteinheiten jeweils ein Bauteil in einem Baufeld Werkzeug aufbaut und dann die Baufeldwerkzeuge je nach ihrer Anordnung zur nächsten Arbeitsposition weiter verfahren werden. Im Folgenden wird dann durch die Schichteinheit oder Schichteinheiten in weiteren Baufeldwerkzeugen in einem weiteren Arbeitsschritt Bauteile aufgebaut. Dies wird dann entsprechend der Vorrichtung vielfach wiederholt bzw. kann „endlos" erfolgen in einer Serienproduktion oder als Art Fliessband.
Verschiedene Aspekte der Erfindung werden im Folgenden beispielhaft beschrieben ohne dass sie beschränkend verstanden werden sollen.
Das erfindungsgemäße System ist eng an den pulverbasierten 3D-Druck angelehnt. Die erfindungsgemäße Vorrichtung weist gänzlich andere funktionale Zusammenhänge auf und wird im Folgenden näher beschrieben.
Figur 1 gibt eine 3D-Drucker gemäß dem Stand der Technik wieder. Der SD- Drucker weist die Vorrichtungsteile Druckkopf (100), Beschichter (101) und eine Bauplattform zur Zustellung einzelner Schichten (107) auf. Der Pulverkuchen wächst in einem Baubehälter (104) während des Prozesses. Das Ergebnis ist ein dreidimensionales Bauteil (113), das aus dem losen das Bauteil umgebenden Pulver entpackt werden kann.
Die erfindungsgemäße Vorrichtung weist einen Pulverbeschichter (101) auf. Mit diesem wird Partikelmaterial auf eine Bauplattform (102) aufgebracht und geglättet (Figur 2(a)). Das aufgebrachte Parti kelmaterial kann aus verschiedensten Materialien bestehen. Beispielsweise können Sande, Keramikpulver, Metallpulver, Kunststoff, Holzpartikel, Faserwerkstoff, Cellulosen, Lactosepulver usw. verwendet werden. Die Fließeigenschaften dieser Materialien können stark unterschiedlich ausfallen. Verschiedene Beschichtertechniken lassen die Schichtbildung von trockenen frei fließenden Pulvern, über kohäsive schnittfeste Pulver, bis hin zu flüssigkeitsbasierten Dispersionen zu. Die Höhe der Pulverschichten (107) wird durch die Bauplattform (102) bestimmt. Sie wird nach dem Aufbringen einer Schicht abgesenkt. Beim nächsten Beschichtungsvorgang wird das entstandene Volumen verfüllt und der Überstand glattgestrichen. Das Ergebnis ist eine nahezu perfekt parallele und glatte Schicht definierter Höhe.
Nach einem Beschichtungsprozess wird die Schicht mittels eines Tintenstrahldruckkopfes (100) mit einer Flüssigkeit bedruckt (Figur 1 (105), Figur 2(b)). Das Druckbild entspricht dem Schnitt durch das Bauteil in der aktuellen Bauhöhe der Vorrichtung. Die Tropfen der Flüssigkeit (109) treffen auf das Partikelmaterial und die Flüssigkeit diffundiert langsam in das Pulver hinein.
Nach dem Drucken des Binders wird die Schicht nach dem erfindungsgemäßen Verfahren verfestigt (Figur 2(c)). Dazu kann beispielsweise ein IR-Strahler (500) über das Baufeld geführt werden. Diese kann mit der Achse des Beschichtungssystems gekoppelt sein. Während des Heizens verdampft das Lösemittel. Bei feuergefährlichen Flüssigkeiten wird das verdampfende Material sofort abgesaugt.
Die erfindungsgemäßen Schichteinheiten (Figur 7) sind in der Lage, wenn sie an einer Verfahrachse (1000) bewegt werden, Schichten aus Pulver zu erzeugen, zu bedrucken und ihre Höhenlage relativ zur Verfahrachse (1000) zu verändern. Damit arbeiten sie quasi als eigenständige modulare Drucker.
Die Verfahrachse (1000) verschiebt die Schichteinheiten relativ zu einander und den Enden der Verfahrachse (1000). Unterhalb der Verfahrachse (1000) werden die sogenannten Baufeldwerkzeuge (500) angeordnet. Diese werden mit Hilfe der Schichteinheiten mit Pulver und damit auch den gewünschten Bauteilen befüllt.
Die Baufeldwerkzeuge (500) sind im Gegensatz zu den im Stand der Technik üblichen Jobboxen (104) derart ausgeführt, dass nachfolgende Schritte nach dem 3D-Drucken bei der Ausführung berücksichtigt sind. Die Dimensionierung entspricht dem zu produzierenden Bauteil. Das Volumen des Behälters entspricht dabei bevorzugt nicht mehr 50% des Boxvolumens eines zu produzierenden Bauteils. Besonders bevorzugt kleiner 30% des Bauteils. Die Ausführung ist bevorzugt temperaturstabil. Der Boden (601, 602) kann beispielsweise geöffnet werden, um Pulver (603) abzulassen. Marken zur Erkennung durch Robotersysteme sind angebracht.
Alle Elemente werden zu einer 3D-Produktionsanlage zusammengesetzt. Diese weist unterschiedliche Stationen auf, die unterschiedliche Fertigungsschritte repräsentieren, Es gibt mindestens eine Station zum eigentlichen Drucken (1301). Dazu kommen bevorzugt Stationen zum Erwärmen (1400), eine Vorentpackstation (1401) und ein Ausbrechstation (1402) zur Übernahme von Bauteilen in Folgeproduktion. Die Stationen sind über eine Kette von Baufeldwerkzeugen verbunden, die taktweise den einzelnen Stationen zugeführt werden. Der Antrieb dieser Zustellung kann durch eine mechanische Kette (1300) oder andere Antriebarten (Riemen, Zahnstangen, Räder, Linearmotoren) erfolgen.
Die Produktionsvorrichtung geht also von Pulver und flüssigem Binder bis zur Übergabe von fertigen Bauteilen an eine Produktionsschnittstelle.
Ausführungsbeispiel
Eine beispielhafte Anwendung der Erfindung ist die Großserienproduktion von Gießereikernen im Motorenbau. Hierbei sind insbesondere die Kerne für den sogenannten Wasserraum (300) im Zylinderkopf sehr komplex. Diese werden oft von weiteren Kernen für die Einlasszweigrohre und dem Ölraum durchdrungen oder umrahmt.
In der konventionellen Serienproduktion werden diese Kerne (300) mit auswendigen Werkzeugen in Kernschussanlagen hergestellt. Jeder Einzelkern muss hinterschneidungsfrei sein. Das Werkzeug für die komplexen Formen ist äußerst teuer. Es besteht dabei aus mehreren Schiebern, die aus unterschiedlichen Raumrichtungen zugestellt werden und dabei den Hohlraum definieren, der in einem weiteren Schritt mit dem Formstoff gefüllt wird.
Das 3D-Drucken solcher Kerne oder auch Kernpakete ist äußerst attraktiv. Es bietet die Möglichkeit, Montagevorgänge der Kerne zu reduzieren, deren Komplexität weiter zu erhöhen und Weiterentwicklungen in der Form rasch umzusetzen. Kennzeichnend für einen solches Kernpaket ist eine bestimmte geometrische Ausdehnung. Für einen Vierzylindermotor könnten das beispielsweise 8 X 15 X 60 cm sein. Dieser„Formfaktor" bleibt über Jahre der Produktion konstant, auch wenn sich die geometrische Struktur ändert.
Wird die Erfindungsidee auf dieses Beispiel angewandt, stellt die Vorrichtung einen 3D-Drucker dar, dessen Bauvolumen etwas mehr als 8 x 15 x 60 cm beträgt. Dieses Volumen kann schnell bearbeitet werden. Ebenso können in einer einzigen Vorrichtung mehrere dieser Volumen gleichzeitig oder abfolgend bearbeitet werden. Das Volumen wird durch einen speziellen Träger, das Baufeldwerkzeug (500), definiert, der im Vergleich zu einem Druckgerät mit einem normalen Bauraum extrem vereinfacht ausgeführt werden kann. Im Fall eines Wassermantelkernes kann das Baufeldwerkzeug eine Art Rinne darstellen. Durch diese laufen der Druckkopf (100) und der Beschichter (101) als Schichteinheit und erzeugen das gewünschte Bauteil.
Der Baufeldwerkzeug (500) ist sehr klein und dem Volumen des Bauteils angepasst. Damit wird die Vorrichtungsgröße insbesondere die Investitionshöhe der Aufgabe optimal angepasst. Das Baufeldwerkzeug ist besonders einfach und kann so einfach in eine Produktionsstraße integriert werden. Dies ermöglicht eine einfache Integration auch bei der Erstellung einer solchen Produktionsvorrichtung durch mehrere Firmen.
Eine wesentliche Grundeinheit der Vorrichtung zur Verwendung im erfindungsgemäßen Verfahren ist die Schichteinheit (Figur 7, 800). Diese Einheiten stellen geschlossene Module dar. Diese Module sind einfach oder mehrfach vorhanden.
Eine Schichteinheit besteht aus dem Druckkopf (100), einer Druckkopfversatzvorrichtung (703), bevorzugt zwei Beschichtern (101) und einer Achse (701), um die Schichteinheit relativ zu ihrem Anbindungspunkt in der Höhe zu verstellen. Die Beschichter (101) sind bevorzugt seitlich, z.B. rechts und links vom Druckkopf (100), angeordnet. Wenn die Steuerung es notwendig macht, können die Beschichter (101) jeweils unterschiedlich hoch über der Schicht angeordnet sein.
Die Beschichter (101) der Schichteinheit (800) sind beispielsweise ca. 220 mm breit und decken damit die Bauteilabmessungen (300) ab. Der Druckkopf (100) ist mit einer Druckbreite von 180 mm ebenfalls breiter als das geforderte Bauteil.
Der Druckkopf kann um die Mittellinie des Bauteils im Beispiel um jeweils 10 mm verschoben werden. So kann verhindert werden, dass eine defekte Düse zu einer Fehlstelle im Bauteil führt, die durch das gesamte Bauteil (300) geht und es unbrauchbar machen würde.
Der Versatzmechanismus (703) muss den Druckkopf (100) so präzise versetzen, dass das Druckbild innerhalb einer akzeptablen Toleranz von einer Schicht zur nächsten aufgebracht wird. Hier sind +- ΙΟμητι ein akzeptables Genauigkeitsfeld.
Der Druckkopf (100) ist etwas höher als die Beschichter (101) angeordnet, damit er nicht mit dem Pulver in Kontakt kommen kann. Technisch sinnvoll sind hier etwa 2,5 mm.
Damit die beispielhafte Aufgabe, Gießereikerne zu produzieren, ausgeführt werden kann, wird ein 300 DPI Druckkopf (100) eingesetzt. Der Abstand der in Richtung der Versatzachse angeordneten Düsen beträgt dann 84,6 μητι. Die Höhe der Schichteinheit (800) über dem Anbindungspunkt (702) kann wie beschrieben über eine Achse (701) verstellt werden, die Teil der Schichteinheit ist. Da sehr dünne Schichten erforderlich sind, ist hier eine gute Auflösung und Reproduzierbarkeit erforderlich. Im Beispiel mit dem Wassermantel muss die Schichteinheit einen Verfahrweg von ca. 100 mm aufweisen. Die Genauigkeit sollte +- lOpm übersteigen.
Die üblichen Schichtstärken für die Beispielaufgabe betragen rund 300 μητι. Ebenso sind bei Forderung nach höherem Durchsatz 400 pm, bei der Forderung nach höherer Genauigkeit auch 250 pm üblich.
Die Schichteinheiten (800) sind an einer Achse (1000) angeordnet. Der Aufhängungspunkt (801) ist der Schlitten dieser Achse. Mithilfe dieser Achse kann die Schichteinheit in die Raumrichtung jeweils senkrecht zur Versatz (703)- und Höhenachse (701) verfahren werden.
Diese Achse (1000) ist die längste Achse in der Vorrichtung. Ihr Verfahrweg misst mehrere Meter. Im Beispiel kann die Schichteinheit (800) über eine Länge von 4 Metern bewegt werden. Die Verfahrachse (1000) ist technisch so ausgeführt, dass sie mehrere Schichteinheiten tragen kann. Diese bewegen sich dann jeweils in der Seitenansicht hintereinander.
Eine mögliche technische Ausführung dieser Achse (1000) stellt eine Kugelführung in Kombination mit einem Linearmotor am Schlitten dar. Diese Anordnung erlaubt es in einfacher Weise, mehrere Schlitten für mehrere Schichteinheiten einzusetzen. Zu jedem Schlitten wird für die Versorgung der Schichteinheiten eine eigene Energiekette geführt. Durch diese gelangen Daten, Energie und Fluide zur Schichteinheit (800). Die Beschichter (101) werden mit Pulver über statische Befüllmechanismen versorgt. Die Schichteinheiten (800) können das Pulver (110) und die Druckflüssigkeit (109) auf beliebige, nicht zwingend ebene Flächen legen. Die Beschichter (101) generieren dabei mit ihrer Unterkante eine planare Ebene, wenn Pulver ausfließt und die Schichteinheit (800) gleichzeitig bewegt wird.
Erfindungsgemäß wird als Fläche ein spezielles Baufeldwerkzeug (500) verwendet. Dieses Baufeldwerkzeug kann erfindungsgemäß besonders einfach ausgeführt werden. Es enthält keine die Präzision der Bauteile definierenden Elemente.
Im Beispiel wird als Baufeldwerkzeug (500) eine rinnenartige Anordnung benutzt. Die Öffnung der Rinne kann von einer Schichteinheit (800) durchfahren werden. Die Wände verhindern eine Ausbreitung des Pulvers senkrecht zur Arbeitsrichtung der Schichteinheit. In der untersten Lage der Schichteinheit wird kein Element des Baufeldwerkzeuges berührt.
Das Baufeldwerkzeug kann mit einem Boden (601) ausgestattet werden, der es ermöglicht das lose Pulver (603) um das Bauteil abzulassen. Dabei sinkt das Bauteil ab und wird von im Baufeldwerkzeug angebrachten Marken (600) aufgenommen. Dabei wird eine definierte Position erreicht. Die Marken am Bauteil (303) müssen so ausgeführt werden, dass keine Anhaftungen die genaue Positionierung auf dem Baufeldwerkzeug (500) stören. Werden Prozesse mit starken Anhaftungen gefahren, müssen weitere Einrichtungen wie etwa Druckluftdüsen im Bereich der Marken (303, 600) verwendet werden.
Um ausreichende Flexibilität der Vorrichtung zu gewährleisten, können Zwischenteile mitgedruckt werden. Diese garantieren die Lage der Bauteile (300) relativ zum Baufeldwerkzeug (500), ohne dass das gewünschte Bauteil, im Beispiel ein Wasserraumkern (300), Merkmale der Vorrichtung tragen muss.
Durch die erfindungsgemäßen Schichteinheiten (800) kann der Prozess flexibel ausgeführt werden. Beispielsweise können auf der Verfahrachse (1000) mehrere Schichteinheiten (800) parallel und unabhängig voreinander eingesetzt werden. Ebenso ist es möglich die Verfahrachse (1000) so lange auszulegen, dass mehrere Baufeldwerkzeuge von den Schichteinheiten überfahren werden können. Ebenso sind Vorrichtungen bevorzugt, bei denen mehrere Baufeldwerkzeuge (500) und mehrere Schichteinheiten (800) in einer Linie verwendet werden.
Diese Anordnung kann genutzt werden, um den Prozess zu beschleunigen. Dabei werden zwei Schichten (107) pro Überfahrt gleichzeitig aufgelegt. Bei der Rückfahrt der Einheiten (800) können ebenso zwei Schichten (107) gleichzeitig gelegt werden. Die Schichteinheiten (800) werden dazu durch ihre Höhenachsen (701) in die richtige räumliche Lage gesetzt. Hierzu sitzt die in Fahrtrichtung erste Schichteinheit eine Schicht tiefer als die folgende Einheit. Bei der Rückfahrt kehrt sich diese Anordnung um.
Eine weitere Leistungssteigerung der Anordnung kann erzielt werden, wenn die Schichteinheiten über die Verfahrachse (1000) gespiegelt werden. Dies verdoppelt die mögliche Leistung bei der gleichzeitigen Mehrfachnutzung vorhandener Vorrichtungsteile (siehe Figur 9).
Eine Anordnung mit mehreren Schichteinheiten (800) kann ebenso verwendet werden, um Wartungen (1200) an einer Einheit durchzuführen, während der Prozess noch weiter läuft. Hierzu wird eine Einheit in die Randposition verfahren. Eine trennende Schutzeinrichtung (1201) schützt vor dem Eingriff in die Anlage. Jetzt kann die Einheit (1200) händisch oder halbautomatisch demontiert werden. Bei entsprechender Ausführung ist ein schneller Wechsel der gesamten Schichteinheit (1200) möglich. Die vorgestellte Einheit wird eingehängt und wieder mit der Anlage verbunden. Durch die Höhenverstellung (701) kann die Schichteinheit (800) auch während der Bearbeitung eines Baufeldwerkzeuges wieder in den Prozess gebracht werden.
Durch die Redundanz der Schichteinheiten (800) ermöglicht es die erfindungsgemäße Vorrichtung, die Anlage betriebssicher und mit hoher Leistung zu betreiben.
Die Baufeldwerkzeuge (500) können bevorzugt so ausgeführt werden, dass taktweise nach jeder erfolgten Fertigstellung eines Bauteils ein neues Baufeldwerkzeug (500) in den Arbeitsbereich der Schichteinheiten (800) verbracht werden kann. Eine solche Bewegung der Baufeldeinheiten kann durch eine Anordnung mit einer Kette (1300) erreicht werden. Die Baufeldeinheiten selbst laufen auf Schienen. Eine wirklich exakte Positionierung ist nicht notwendig. Lediglich das freie Durchlaufen einer Schichteinheit (800) durch die in dieser beispielhaften Ausführungsform verwendeten Baufeldwerkzeuge (500) ist sicherzustellen. Die Baufeldwerkzeug (500) können mit weiteren Platten am Verschiebesystem verbunden sein. Dies ermöglicht auch eine rasche Verwendung anderer Baufeldwerkzeug (500).
Der Raum, in dem der eigentliche Druckprozess stattfindet, kann in einem Gehäuse (1301) untergebracht sein. In diesem kann auf einfache Weise die Atmosphäre kontrolliert werden, um den Druckprozess stabil zu halten. Ebenso können Stäube, die aus dem Prozessraum (1301) kommen, nicht auf die Umgebung wirken. Jeweils ermöglichen automatisch betätigbare Klappen und Tore den Zutritt der Baufeldwerkzeuge (500). Ebenso sind Zutrittsklappen (1201) für die Schichteinheiten (800) vorhanden, die es ermöglichen, die Schichteinheiten (800) in die Wartungsposition zu verfahren.
Die Baufeldeinheiten können über den Antrieb, im Beispiel eine Kette (1300), an weitere Positionen befördert werden. Der Aufbau einer Produktionsstraße ist somit einfach möglich. Eine solche Position könnte ein Ofen (1400) zur Nachhärtung der Bauteile sein. Im Beispiel sollen Kerne mit einem Anorganischen Bindersystem hergestellt werden. Die Nachbehandlung findet bei rund 200 °C statt. Dazu ist der Ofen (1400), wie der Raum für den Druckprozess (1301), mit automatischen Toren ausgestattet. Hier ist wieder der Grundgedanke der Erfindung entscheidend. Durch das dem Bauteil (300) angepasste Baufeldwerkzeug (500) ist das zu durchheizende Volumen auf das Wesentliche reduziert. Dadurch kann eine schnelle Aufheizung stattfinden und somit die Vorrichtung kurz gehalten werden.
Eine weitere Station dieser Produktionsstraße ist das automatische Vorentpacken (1401). Hier wird ein Baufeldwerkzeug (500) verwendet, das einen Boden (601) aufweist, der für Pulver durchlässig (602) geschaltet werden kann. Dadurch rieselt das lose Pulver (603) vom Bauteil weg. Dieser Vorgang kann zusätzlich durch eine Vibrationsvorrichtung unterstützt werden. Dabei sinkt das Bauteil (300) auf die oben beschriebenen Marken (600) ab. Kleine Luftdüsen reinigen in diesem Bereich die Kontaktflächen. Ein Teil der Kontakte ist als Kugel, ein Teil als gerade Fläche ausgeführt. Somit ergibt sich reproduzierbar eine definierte Lage.
Das vom Bauteil (300) ablaufende Pulver (603) wird unterhalb der Vorrichtung (604) aufgefangen. Es kann mit Förderschnecken oder Bändern einer Pulverwiederaufbereitungsvorrichtung zugeführt werden. Die Vorentpackstation (1401) ist bevorzugt ebenso mit einem Gehäuse ausgestattet. Hier werden besonders Stäube aus der Umgebungsluft ferngehalten. Ebenso gibt es wieder automatische Tore.
Die eigentliche Entpackstation / Ausbrechstation (1402) ist eine Roboterzelle. Ein Roboterarm reinigt mit einem Druckluftstrahl Stellen, an denen im Anschluss das Bauteil (300) gegriffen werden soll. Ein zweiter Roboterarm greift das Bauteil (300) hier mit einem Druckluftgreifer. Der zweite Roboter bewegt das Bauteil (300) an der Druckluftdüse des ersten Roboters vorbei und reinigt somit das Bauteil vollständig von Anhaftungen. Die Reinigung erfolgt aufgrund der Ähnlichkeit der Bauteile gesteuert durch ein Teach-In, ohne die exakten geometrischen Daten des Bauteils (300) zu nutzen. Der Roboter übergibt nach Abschluss des Finishings das fertige Bauteil an ein weiteres System zur Kommissionierung in der Gießerei.
Die folgenden Merkmale gelten sinngemäß für ein Verfahren und eine Vorrichtung nach der Erfindung und können einzeln oder in jedweder Kombination verwirklicht sein :
• Vorrichtung mit mehreren Schichteinheiten
• Vorrichtung mit in der Höhe verfahrbaren Schichteinheiten
• Vorrichtung mit getrennt in der Höhe verfahrbaren Schichteinheiten
• Vorrichtung mit symmetrisch gespiegelten Schichteinheiten
• Vorrichtung mit einem stationären Gestell das von einer Fördereinrichtung für Baufeldwerkzeuge durchdrungen wird
• Vorrichtung, die getaktet stationäre Baufeldwerkzeuge zur Verfügung stellt
• Vorrichtung, bei der auf zwei oder mehrere in Druckrichtung parallel laufende Baufeldwerkzeuge parallel gedruckt werden kann • Vorrichtung, die Baufeldwerkzeuge nutzt, die sich in Druckrichtung erstrecken und ein oder mehrere Produkte längs dieser Richtung aufnehmen kann
• Vorrichtung, bei der in Druckrichtung mehrere hintereinander liegende Baufeldwerkzeuge verwendet werden können
• Vorrichtung mit gegenüber der Druckbreite langem Verfahrweg
• Vorrichtung mit einer zentralen Linearachse zur Aufnahme von Schichteinheiten
• Vorrichtung mit sicherheitstechnisch abtrennbaren Wartungsbereichen für die Schichteinheiten
• Vorrichtung mit zur Höhe der Schichteinheiten einstellbaren Pulvernachfüllvorrichtungen
• Vorrichtung mit Druckkopfreinigungsstationen
• Vorrichtung mit einem taktweise öffnebaren Gehäuse zur Sicherstellung der Prozessatmosphäre
• Vorrichtung mit einer Fördereinrichtung für Baufeldwerkzeuge
• Vorrichtung mit einer endlos Fördereinrichtung für Baufeldwerkzeuge
• Vorrichtung mit einem Kettentrieb zur taktweisen Bewegung von Baufeldwerkzeugen
• Vorrichtung mit einem Zahnriementrieb zur taktweisen Bewegung von Baufeldwerkzeugen
• Vorrichtung mit einem Flach, Keil- oder Rundriementrieb zur taktweisen Bewegung von Baufeldwerkzeugen
• Vorrichtung mit einer Nachbehandlungseinheit zur Nachbehandlung von gedruckten Produkten
• Vorrichtung mit einem Ofen zur Nachbehandlung von gedruckten Produkten
• Vorrichtung mit einer Vakuumkammer zur Nachbehandlung von gedruckten Produkten • Vorrichtung mit einer verschließbaren Kammer zur Nachhärtung durch Einleitung von reaktiven Gasen von gedruckten Produkten
• Vorrichtung mit einer Station zum automatischen Vorentpacken von Bauteilen
• Vorrichtung, die Baufeldwerkzeuge nutzt, die ein Entleeren von losem Pulver erlauben
• Vorrichtung mit einer Fördereinrichtung zur Abförderung von losem Pulver
• Vorrichtung mit integrierten Robotern zur Aufnahme, Reinigung und Weiterleitung von gedruckten Produkten
Bezuaszeichenliste
100 Druckkopf
101 Beschichter
102 Bauplattform
103 Bauteil
104 Baubehälter / Jobbox
105 Druckkopfbahn
106 Beschichterbahn
107 Schichten
108 Bahn der Bauplattform
109 Bindertropfen
110 Pulver zur Verfüllung der Schicht
111 Baufeld
112 Spalt im Beschichter zum Pulveraustritt
113 Pulvervorrat im Beschichter
200 IR-Strahlungsquelle
300 Wasserraumkern
301 Ventilöffnung
302 Kanal zum Motorblock
303 Überhängende Kernmarke
500 Baufeldwerkzeug
501 Pulverkuchen
600 Baufeld werkzeug-Marken
601 Werkzeugboden geschlossen
602 Werkzeugboden offen
603 Abgelaufenes Pulver
604 Pulverauffangsystem / Fördereinrichtung
700 Schichteinheit Rahmen
701 Höhenachse
702 Anbindungspunkt 703 Versatzachse
800 Schichteinheit
801 Anbindung an die Verfahrachse
802 Bewegungsrichtung
803 Schichtzustellung
804 Zu bearbeitende Schicht
1000 Verfahrachse
1200 Schichteinheit zur Wartung
1201 Schutzeinrichtung
1300 Kette
1301 Einhausung Druckeinheit
1400 Ofenstation
1401 Vorentpackstation
1402 Ausbrechstation

Claims

Patentansprüche
1. Vorrichtung zum Herstellen von 3D-Formteilen, dadurch gekennzeichnet, dass sie umfasst: mindestens ein oder mehrere Baufeldwerkzeuge verfahrbar angeordnet und mindestens eine Schichteinheit verfahrbar angeordnet.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Schichteinheit(en) in Z - oder/und in X - Richtung verfahrbar sind.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das oder die Baufeldwerkzeuge verfahrbar sind in X - oder/und Y - Richtung.
4. Vorrichtung nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass die mehreren Baufeldwerkzeuge in Serie angeordnete sind und miteinander verbunden sind.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Baufeldwerkzeuge und Schichteinheit gerichtet koordiniert steuerbar sind.
6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das oder die Baufeldwerkzeuge im wesentlichen die Dimension des zu fertigenden 3D-Formteils aufweisen.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Baufeldwerkzeuge über eine oder mehrere Ketten, Zahnriemen, Zahnstangen, Seilzug oder Seilzüge, hydraulische Mittel miteinander in Verbindung stehen und dadurch verfahrbar sind oder/und getaktet werden können.
8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vorrichtung ausgelegt ist, um taktartig zu arbeiten.
9. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vorrichtung Mittel für Prozessschritte nach dem 3D- Fromteilaufbau aufweist oder/und
die Vorrichtung Mittel für die automatisierte Entnahme der 3D-Formteile aufweist.
10. Verfahren zum Herstellen von 3D-Formteilen, wobei 3D-Formteile mit bekannten Mitteln für den 3D-Druck hergestellt werden, dadurch gekennzeichnet, dass jedes 3D-Formteil in einem getrennten Baufeldwerkzeug mittels Schichteinheit hergestellt wird und vorzugsweise die Baufeldwerkzeuge koordiniert verfahren werden.
PCT/DE2017/000061 2016-03-09 2017-03-08 Verfahren und vorrichutng zum herstellen von 3d-formteilen mit baufeldwerkzeugen WO2017152897A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780016148.6A CN108712958A (zh) 2016-03-09 2017-03-08 用于借助构造区工具制造3d成型件的方法和装置
US16/082,436 US11975487B2 (en) 2016-03-09 2017-03-08 Method and device for producing 3D shaped parts using construction field tools
EP17718005.6A EP3426472A1 (de) 2016-03-09 2017-03-08 Verfahren und vorrichutng zum herstellen von 3d-formteilen mit baufeldwerkzeugen
US18/415,922 US20240149527A1 (en) 2016-03-09 2024-01-18 Method and device for manufacturing 3d molded parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016002777.0A DE102016002777A1 (de) 2016-03-09 2016-03-09 Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Baufeldwerkzeugen
DE102016002777.0 2016-03-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/082,436 A-371-Of-International US11975487B2 (en) 2016-03-09 2017-03-08 Method and device for producing 3D shaped parts using construction field tools
US18/415,922 Continuation US20240149527A1 (en) 2016-03-09 2024-01-18 Method and device for manufacturing 3d molded parts

Publications (1)

Publication Number Publication Date
WO2017152897A1 true WO2017152897A1 (de) 2017-09-14

Family

ID=58548932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2017/000061 WO2017152897A1 (de) 2016-03-09 2017-03-08 Verfahren und vorrichutng zum herstellen von 3d-formteilen mit baufeldwerkzeugen

Country Status (5)

Country Link
US (2) US11975487B2 (de)
EP (1) EP3426472A1 (de)
CN (1) CN108712958A (de)
DE (1) DE102016002777A1 (de)
WO (1) WO2017152897A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018210363A1 (de) * 2018-06-26 2020-01-02 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betrieb einer Anlage zur additiven Herstellung von dreidimensionalen Bauteilen
EP3705267A1 (de) * 2019-03-08 2020-09-09 ExOne GmbH Druckkopf-beschichter-modul für einen 3d-drucker, verwendung des druckkopf-beschichter-moduls und 3d-drucker mit dem druckkopf-beschichter-modul

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007050953A1 (de) 2007-10-23 2009-04-30 Voxeljet Technology Gmbh Vorrichtung zum schichtweisen Aufbau von Modellen
DE102011007957A1 (de) 2011-01-05 2012-07-05 Voxeljet Technology Gmbh Vorrichtung und Verfahren zum Aufbauen eines Schichtenkörpers mit wenigstens einem das Baufeld begrenzenden und hinsichtlich seiner Lage einstellbaren Körper
DE102011111498A1 (de) 2011-08-31 2013-02-28 Voxeljet Technology Gmbh Vorrichtung zum schichtweisen Aufbau von Modellen
DE102012004213A1 (de) 2012-03-06 2013-09-12 Voxeljet Technology Gmbh Verfahren und Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102012010272A1 (de) 2012-05-25 2013-11-28 Voxeljet Technology Gmbh Verfahren zum Herstellen dreidimensionaler Modelle mit speziellen Bauplattformen und Antriebssystemen
DE102013004940A1 (de) 2012-10-15 2014-04-17 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit temperiertem Druckkopf
DE102013003303A1 (de) 2013-02-28 2014-08-28 FluidSolids AG Verfahren zum Herstellen eines Formteils mit einer wasserlöslichen Gussform sowie Materialsystem zu deren Herstellung
DE102013018182A1 (de) 2013-10-30 2015-04-30 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit Bindersystem
DE102015003372A1 (de) 2015-03-17 2016-09-22 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Doppelrecoater
DE102015006363A1 (de) 2015-05-20 2016-12-15 Voxeljet Ag Phenolharzverfahren
DE102015011503A1 (de) 2015-09-09 2017-03-09 Voxeljet Ag Verfahren zum Auftragen von Fluiden
DE102015011790A1 (de) 2015-09-16 2017-03-16 Voxeljet Ag Vorrichtung und Verfahren zum Herstellen dreidimensionaler Formteile
DE102015015353A1 (de) 2015-12-01 2017-06-01 Voxeljet Ag Verfahren und Vorrichtung zur Herstellung von dreidimensionalen Bauteilen mittels Überschussmengensensor
DE102016002777A1 (de) 2016-03-09 2017-09-14 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Baufeldwerkzeugen
EP3296083B1 (de) * 2016-09-20 2020-04-01 LUXeXcel Holding B.V. Verfahren und drucksystem zum drucken einer dreidimensionalen struktur, insbesondere einer optischen komponente
DE102016013610A1 (de) 2016-11-15 2018-05-17 Voxeljet Ag Intregierte Druckkopfwartungsstation für das pulverbettbasierte 3D-Drucken
US10406751B2 (en) 2017-04-14 2019-09-10 Desktop Metal, Inc. Automated de-powdering with level based nesting
DE102017006860A1 (de) 2017-07-21 2019-01-24 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Spektrumswandler
DE102018102753A1 (de) * 2018-02-07 2019-08-08 Exone Gmbh 3d-drucker und generatives fertigungsverfahren
WO2019157127A1 (en) 2018-02-07 2019-08-15 Desktop Metal, Inc. Apparatus and method for additive manufacturing
DE102018006473A1 (de) 2018-08-16 2020-02-20 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen durch Schichtaufbautechnik mittels Verschlussvorrichtung
DE102018129022A1 (de) * 2018-11-19 2020-05-20 AMCM GmbH Radiale Strömung über ein Baufeld
DE102019000796A1 (de) * 2019-02-05 2020-08-06 Voxeljet Ag Wechselbare Prozesseinheit
CN109968664B (zh) * 2019-03-28 2021-10-19 湖南华曙高科技有限责任公司 三维物体制造设备、预热装置和缸体加热机构
CA3145522A1 (en) * 2019-07-14 2021-01-21 Tritone Technologies Ltd. Mold preparation and paste filling
US11951515B2 (en) 2019-08-05 2024-04-09 Desktop Metal, Inc. Techniques for depowdering additively fabricated parts via gas flow and related systems and methods
US11833585B2 (en) 2019-08-12 2023-12-05 Desktop Metal, Inc. Techniques for depowdering additively fabricated parts through vibratory motion and related systems and methods
DE102019007595A1 (de) 2019-11-01 2021-05-06 Voxeljet Ag 3d-druckverfahren und damit hergestelltes formteil unter verwendung von ligninsulfat
US11865615B2 (en) 2019-12-11 2024-01-09 Desktop Metal, Inc. Techniques for depowdering additively fabricated parts and related systems and methods
US11691202B2 (en) * 2020-07-14 2023-07-04 Hitachi, Ltd. Metal 3D printing systems for using sand as supports
GB202011515D0 (en) * 2020-07-24 2020-09-09 Additive Manufacturing Tech Ltd Additive manufacturing
WO2023069090A1 (en) * 2021-10-20 2023-04-27 Hewlett-Packard Development Company, L.P. Three-dimensional printers

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0431924B1 (de) 1989-12-08 1996-01-31 Massachusetts Institute Of Technology Dreidimensionale Drucktechniken
WO2014039378A1 (en) * 2012-09-05 2014-03-13 Aprecia Pharmaceuticals Company Three-dimensional printing system and equipment assembly
WO2015056230A1 (en) * 2013-10-17 2015-04-23 Xjet Ltd. Methods and systems for printing 3d object by inkjet
US20150183166A1 (en) * 2012-09-05 2015-07-02 Aprecia Pharmaceuticals Company Three-dimensional Printing System and Equipment Assembly
US20150290878A1 (en) * 2012-10-31 2015-10-15 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method and apparatus for making tangible products by layerwise manufacturing
WO2015163765A1 (en) * 2014-04-23 2015-10-29 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Apparatus and method for making tangible products by layerwise manufacturing
WO2015167335A1 (en) * 2014-04-30 2015-11-05 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method and production line for making tangible products by layerwise manufacturing

Family Cites Families (300)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1284722A (en) 1968-08-10 1972-08-09 Simon Ratowsky Processing of photographic material
DE2261344C3 (de) 1972-12-15 1979-05-31 Karl Becker Kg Maschinenfabrik, 3525 Oberweser Vorrichtung zum Ablegen von körnigem Saatgut im Erdreich in Verbindung mit Einzelkornsämaschinen
US4247508B1 (en) 1979-12-03 1996-10-01 Dtm Corp Molding process
US4591402A (en) 1981-06-22 1986-05-27 Ltv Aerospace And Defense Company Apparatus and method for manufacturing composite structures
FR2511149A1 (fr) 1981-08-04 1983-02-11 Roussel Uclaf Dispositif et procede de dosage de quantites predeterminees d'au moins un produit
US4711669A (en) 1985-11-05 1987-12-08 American Cyanamid Company Method of manufacturing a bonded particulate article by reacting a hydrolyzed amylaceous product and a heterocyclic compound
DE3221357A1 (de) 1982-06-05 1983-12-08 Plasticonsult GmbH Beratungsgesellschaft für Kunststoff- und Oberflächentechnik, 6360 Friedberg Verfahren zur herstellung von formen und kernen fuer giesszwecke
JPS60180643A (ja) 1984-02-29 1985-09-14 Nissan Motor Co Ltd 鋳物砂用粘結剤に用いる崩壊助剤
US4665492A (en) 1984-07-02 1987-05-12 Masters William E Computer automated manufacturing process and system
US4575330A (en) 1984-08-08 1986-03-11 Uvp, Inc. Apparatus for production of three-dimensional objects by stereolithography
DE3518829A1 (de) * 1985-05-24 1986-11-27 Heliotronic Forschungs- und Entwicklungsgesellschaft für Solarzellen-Grundstoffe mbH, 8263 Burghausen Verfahren zur herstellung von formkoerpern aus siliciumgranulat fuer die erzeugung von siliciumschmelzen
JPS62275734A (ja) 1986-05-26 1987-11-30 Tokieda Naomitsu 立体形成方法
US4752352A (en) 1986-06-06 1988-06-21 Michael Feygin Apparatus and method for forming an integral object from laminations
US4944817A (en) 1986-10-17 1990-07-31 Board Of Regents, The University Of Texas System Multiple material systems for selective beam sintering
US4863538A (en) 1986-10-17 1989-09-05 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering
US5017753A (en) 1986-10-17 1991-05-21 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering
US5155324A (en) 1986-10-17 1992-10-13 Deckard Carl R Method for selective laser sintering with layerwise cross-scanning
US5147587A (en) 1986-10-17 1992-09-15 Board Of Regents, The University Of Texas System Method of producing parts and molds using composite ceramic powders
ATE138293T1 (de) 1986-10-17 1996-06-15 Univ Texas Verfahren und vorrichtung zur herstellung von gesinterten formkörpern durch teilsinterung
US4752498A (en) 1987-03-02 1988-06-21 Fudim Efrem V Method and apparatus for production of three-dimensional objects by photosolidification
US5047182A (en) 1987-11-25 1991-09-10 Ceramics Process Systems Corporation Complex ceramic and metallic shaped by low pressure forming and sublimative drying
IL109511A (en) 1987-12-23 1996-10-16 Cubital Ltd Three-dimensional modelling apparatus
US5772947A (en) 1988-04-18 1998-06-30 3D Systems Inc Stereolithographic curl reduction
CA1337955C (en) 1988-09-26 1996-01-23 Thomas A. Almquist Recoating of stereolithographic layers
WO1990003893A1 (en) 1988-10-05 1990-04-19 Michael Feygin An improved apparatus and method for forming an integral object from laminations
US5637175A (en) 1988-10-05 1997-06-10 Helisys Corporation Apparatus for forming an integral object from laminations
GB2233928B (en) 1989-05-23 1992-12-23 Brother Ind Ltd Apparatus and method for forming three-dimensional article
JP2738017B2 (ja) 1989-05-23 1998-04-08 ブラザー工業株式会社 三次元成形装置
US5248456A (en) 1989-06-12 1993-09-28 3D Systems, Inc. Method and apparatus for cleaning stereolithographically produced objects
US5216616A (en) 1989-06-26 1993-06-01 Masters William E System and method for computer automated manufacture with reduced object shape distortion
US5134569A (en) 1989-06-26 1992-07-28 Masters William E System and method for computer automated manufacturing using fluent material
JPH0336019A (ja) 1989-07-03 1991-02-15 Brother Ind Ltd 三次元成形方法およびその装置
US5053090A (en) 1989-09-05 1991-10-01 Board Of Regents, The University Of Texas System Selective laser sintering with assisted powder handling
AU643700B2 (en) 1989-09-05 1993-11-25 University Of Texas System, The Multiple material systems and assisted powder handling for selective beam sintering
US5284695A (en) 1989-09-05 1994-02-08 Board Of Regents, The University Of Texas System Method of producing high-temperature parts by way of low-temperature sintering
US5182170A (en) 1989-09-05 1993-01-26 Board Of Regents, The University Of Texas System Method of producing parts by selective beam interaction of powder with gas phase reactant
US5156697A (en) 1989-09-05 1992-10-20 Board Of Regents, The University Of Texas System Selective laser sintering of parts by compound formation of precursor powders
US5431967A (en) 1989-09-05 1995-07-11 Board Of Regents, The University Of Texas System Selective laser sintering using nanocomposite materials
DE3930750A1 (de) 1989-09-14 1991-03-28 Krupp Medizintechnik Gusseinbettmasse, einbettmassenmodell, gussform und verfahren zur verhinderung des aufbluehens von einbettmassenmodellen und gussformen aus einer gusseinbettmasse
US5136515A (en) 1989-11-07 1992-08-04 Richard Helinski Method and means for constructing three-dimensional articles by particle deposition
US5387380A (en) 1989-12-08 1995-02-07 Massachusetts Institute Of Technology Three-dimensional printing techniques
DE3942859A1 (de) 1989-12-23 1991-07-04 Basf Ag Verfahren zur herstellung von bauteilen
GB9007199D0 (en) 1990-03-30 1990-05-30 Tioxide Group Plc Preparation of polymeric particles
US5127037A (en) 1990-08-15 1992-06-30 Bynum David K Apparatus for forming a three-dimensional reproduction of an object from laminations
US5126529A (en) 1990-12-03 1992-06-30 Weiss Lee E Method and apparatus for fabrication of three-dimensional articles by thermal spray deposition
DE4102260A1 (de) 1991-01-23 1992-07-30 Artos Med Produkte Vorrichtung zur herstellung beliebig geformter koerper
US5506607A (en) 1991-01-25 1996-04-09 Sanders Prototypes Inc. 3-D model maker
US5740051A (en) 1991-01-25 1998-04-14 Sanders Prototypes, Inc. 3-D model making
US6175422B1 (en) 1991-01-31 2001-01-16 Texas Instruments Incorporated Method and apparatus for the computer-controlled manufacture of three-dimensional objects from computer data
JP3104307B2 (ja) 1991-06-28 2000-10-30 ソニー株式会社 グラビア印刷用版材
US5252264A (en) 1991-11-08 1993-10-12 Dtm Corporation Apparatus and method for producing parts with multi-directional powder delivery
US5269982A (en) 1992-02-12 1993-12-14 Brotz Gregory R Process for manufacturing a shaped product
IT1254974B (it) 1992-06-18 1995-10-11 Bayer Italia Spa Granulati compositi, scorrevoli,idrofobi,un procedimento per la loro preparazione nonche' loro impiego
US5342919A (en) 1992-11-23 1994-08-30 Dtm Corporation Sinterable semi-crystalline powder and near-fully dense article formed therewith
US5352405A (en) 1992-12-18 1994-10-04 Dtm Corporation Thermal control of selective laser sintering via control of the laser scan
DE4300478C2 (de) 1993-01-11 1998-05-20 Eos Electro Optical Syst Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts
US6146567A (en) 1993-02-18 2000-11-14 Massachusetts Institute Of Technology Three dimensional printing methods
DE4305201C1 (de) 1993-02-19 1994-04-07 Eos Electro Optical Syst Verfahren zum Herstellen eines dreidimensionalen Objekts
US5433261A (en) 1993-04-30 1995-07-18 Lanxide Technology Company, Lp Methods for fabricating shapes by use of organometallic, ceramic precursor binders
US5427722A (en) 1993-06-11 1995-06-27 General Motors Corporation Pressure slip casting process for making hollow-shaped ceramics
DE4325573C2 (de) 1993-07-30 1998-09-03 Stephan Herrmann Verfahren zur Erzeugung von Formkörpern durch sukzessiven Aufbau von Pulverschichten sowie Vorichtung zu dessen Durchführung
US5398193B1 (en) 1993-08-20 1997-09-16 Alfredo O Deangelis Method of three-dimensional rapid prototyping through controlled layerwise deposition/extraction and apparatus therefor
US5518680A (en) 1993-10-18 1996-05-21 Massachusetts Institute Of Technology Tissue regeneration matrices by solid free form fabrication techniques
US5490962A (en) 1993-10-18 1996-02-13 Massachusetts Institute Of Technology Preparation of medical devices by solid free-form fabrication methods
US5418112A (en) 1993-11-10 1995-05-23 W. R. Grace & Co.-Conn. Photosensitive compositions useful in three-dimensional part-building and having improved photospeed
DE4400523C2 (de) 1994-01-11 1996-07-11 Eos Electro Optical Syst Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts
US5518060A (en) 1994-01-25 1996-05-21 Brunswick Corporation Method of producing polymeric patterns for use in evaporable foam casting
JP3215881B2 (ja) 1994-05-27 2001-10-09 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ 鋳込み技術に使用される方法
DE4440397C2 (de) 1994-11-11 2001-04-26 Eos Electro Optical Syst Verfahren zum Herstellen von Gußformen
US5503785A (en) 1994-06-02 1996-04-02 Stratasys, Inc. Process of support removal for fused deposition modeling
US6048954A (en) 1994-07-22 2000-04-11 The University Of Texas System Board Of Regents Binder compositions for laser sintering processes
US5639402A (en) 1994-08-08 1997-06-17 Barlow; Joel W. Method for fabricating artificial bone implant green parts
US5616631A (en) 1994-08-17 1997-04-01 Kao Corporation Binder composition for mold making, binder/curing agent composition for mold making, sand composition for mold making, and process of making mold
US5717599A (en) 1994-10-19 1998-02-10 Bpm Technology, Inc. Apparatus and method for dispensing build material to make a three-dimensional article
US5555176A (en) 1994-10-19 1996-09-10 Bpm Technology, Inc. Apparatus and method for making three-dimensional articles using bursts of droplets
US5482659A (en) 1994-12-22 1996-01-09 United Technologies Corporation Method of post processing stereolithographically produced objects
BR9607005A (pt) 1995-02-01 1997-10-28 3D Systems Inc Revestímento rápido de objetos tridimensionais formados em uma base transversal seccional
GB9501987D0 (en) 1995-02-01 1995-03-22 Butterworth Steven Dissolved medium rendered resin (DMRR) processing
US5573721A (en) 1995-02-16 1996-11-12 Hercules Incorporated Use of a support liquid to manufacture three-dimensional objects
DE19511772C2 (de) 1995-03-30 1997-09-04 Eos Electro Optical Syst Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes
DE29506204U1 (de) 1995-04-10 1995-06-01 Eos Gmbh Electro Optical Systems, 82152 Planegg Vorrichtung zum Herstellen eines dreidimensionalen Objektes
DE19514740C1 (de) 1995-04-21 1996-04-11 Eos Electro Optical Syst Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes
DE19515165C2 (de) 1995-04-25 1997-03-06 Eos Electro Optical Syst Vorrichtung zum Herstellen eines Objektes mittels Stereolithographie
DE19528215A1 (de) 1995-08-01 1997-02-06 Thomas Dipl Ing Himmer Verfahren zur Herstellung von dreidimensionalen Modellen und Formen
DE19530295C1 (de) 1995-08-11 1997-01-30 Eos Electro Optical Syst Vorrichtung zur schichtweisen Herstellung eines Objektes mittels Lasersintern
US5837960A (en) 1995-08-14 1998-11-17 The Regents Of The University Of California Laser production of articles from powders
US6305769B1 (en) 1995-09-27 2001-10-23 3D Systems, Inc. Selective deposition modeling system and method
US6270335B2 (en) 1995-09-27 2001-08-07 3D Systems, Inc. Selective deposition modeling method and apparatus for forming three-dimensional objects and supports
CN1202131A (zh) 1995-09-27 1998-12-16 3D系统公司 形成三维物体和支撑的局部沉积成型的方法和设备
US5943235A (en) 1995-09-27 1999-08-24 3D Systems, Inc. Rapid prototyping system and method with support region data processing
US5749041A (en) 1995-10-13 1998-05-05 Dtm Corporation Method of forming three-dimensional articles using thermosetting materials
DE19545167A1 (de) 1995-12-04 1997-06-05 Bayerische Motoren Werke Ag Verfahren zum Herstellen von Bauteilen oder Werkzeugen
US5660621A (en) 1995-12-29 1997-08-26 Massachusetts Institute Of Technology Binder composition for use in three dimensional printing
WO1997030782A1 (fr) 1996-02-20 1997-08-28 Mikuni Corporation Procede de production de materiau granulaire
JP2000506080A (ja) 1996-03-06 2000-05-23 ギルド・アソシエイツ・インコーポレーテツド 三次元構造体の製造法
US5747105A (en) 1996-04-30 1998-05-05 Owens Corning Fiberglas Technology Inc. Traversing nozzle for applying granules to an asphalt coated sheet
US6596224B1 (en) 1996-05-24 2003-07-22 Massachusetts Institute Of Technology Jetting layers of powder and the formation of fine powder beds thereby
GB9611582D0 (en) 1996-06-04 1996-08-07 Thin Film Technology Consultan 3D printing and forming of structures
US5824250A (en) 1996-06-28 1998-10-20 Alliedsignal Inc. Gel cast molding with fugitive molds
US5902441A (en) 1996-09-04 1999-05-11 Z Corporation Method of three dimensional printing
US7332537B2 (en) 1996-09-04 2008-02-19 Z Corporation Three dimensional printing material system and method
US6007318A (en) 1996-12-20 1999-12-28 Z Corporation Method and apparatus for prototyping a three-dimensional object
US6989115B2 (en) 1996-12-20 2006-01-24 Z Corporation Method and apparatus for prototyping a three-dimensional object
US7037382B2 (en) 1996-12-20 2006-05-02 Z Corporation Three-dimensional printer
DE29701279U1 (de) 1997-01-27 1997-05-22 Eos Gmbh Electro Optical Systems, 82152 Planegg Vorrichtung mit einer Prozeßkammer und einem in der Prozeßkammer hin und her bewegbaren Element
US5934343A (en) 1997-03-31 1999-08-10 Therics, Inc Method for dispensing of powders
US5940674A (en) 1997-04-09 1999-08-17 Massachusetts Institute Of Technology Three-dimensional product manufacture using masks
DE19715582B4 (de) 1997-04-15 2009-02-12 Ederer, Ingo, Dr. Verfahren und System zur Erzeugung dreidimensionaler Körper aus Computerdaten
NL1006059C2 (nl) 1997-05-14 1998-11-17 Geest Adrianus F Van Der Werkwijze en inrichting voor het vervaardigen van een vormlichaam.
DE19723892C1 (de) 1997-06-06 1998-09-03 Rainer Hoechsmann Verfahren zum Herstellen von Bauteilen durch Auftragstechnik
DE19727677A1 (de) 1997-06-30 1999-01-07 Huels Chemische Werke Ag Verfahren und Vorrichtung zur Herstellung von dreidimensionalen Objekten
US5989476A (en) 1998-06-12 1999-11-23 3D Systems, Inc. Process of making a molded refractory article
JP3518726B2 (ja) 1998-07-13 2004-04-12 トヨタ自動車株式会社 積層造形方法及び積層造形用レジン被覆砂
DE19846478C5 (de) 1998-10-09 2004-10-14 Eos Gmbh Electro Optical Systems Laser-Sintermaschine
US20030114936A1 (en) 1998-10-12 2003-06-19 Therics, Inc. Complex three-dimensional composite scaffold resistant to delimination
DE19853834A1 (de) 1998-11-21 2000-05-31 Ingo Ederer Verfahren zum Herstellen von Bauteilen durch Auftragstechnik
US6259962B1 (en) 1999-03-01 2001-07-10 Objet Geometries Ltd. Apparatus and method for three dimensional model printing
US6405095B1 (en) 1999-05-25 2002-06-11 Nanotek Instruments, Inc. Rapid prototyping and tooling system
US6165406A (en) 1999-05-27 2000-12-26 Nanotek Instruments, Inc. 3-D color model making apparatus and process
DE19928245B4 (de) 1999-06-21 2006-02-09 Eos Gmbh Electro Optical Systems Einrichtung zum Zuführen von Pulver für eine Lasersintereinrichtung
US6722872B1 (en) 1999-06-23 2004-04-20 Stratasys, Inc. High temperature modeling apparatus
US6658314B1 (en) 1999-10-06 2003-12-02 Objet Geometries Ltd. System and method for three dimensional model printing
DE19948591A1 (de) 1999-10-08 2001-04-19 Generis Gmbh Rapid-Prototyping - Verfahren und - Vorrichtung
WO2001034371A2 (en) 1999-11-05 2001-05-17 Z Corporation Material systems and methods of three-dimensional printing
EP1415792B1 (de) 1999-11-05 2014-04-30 3D Systems Incorporated Verfahren und Zusammenstellungen für dreidimensionales Drucken
GB9927127D0 (en) 1999-11-16 2000-01-12 Univ Warwick A method of manufacturing an item and apparatus for manufacturing an item
DE19957370C2 (de) 1999-11-29 2002-03-07 Carl Johannes Fruth Verfahren und Vorrichtung zum Beschichten eines Substrates
TWI228114B (en) 1999-12-24 2005-02-21 Nat Science Council Method and equipment for making ceramic work piece
DE19963948A1 (de) 1999-12-31 2001-07-26 Zsolt Herbak Verfahren zum Modellbau
US7300619B2 (en) 2000-03-13 2007-11-27 Objet Geometries Ltd. Compositions and methods for use in three dimensional model printing
ES2230086T3 (es) 2000-03-24 2005-05-01 Voxeljet Technology Gmbh Metodo y aparato para fabricar una pieza estructural mediante la tecnica de deposicion multi-capa y moldeo macho fabricado con el metodo.
US20010050031A1 (en) 2000-04-14 2001-12-13 Z Corporation Compositions for three-dimensional printing of solid objects
JP2001334583A (ja) * 2000-05-25 2001-12-04 Minolta Co Ltd 三次元造形装置
DE10026955A1 (de) 2000-05-30 2001-12-13 Daimler Chrysler Ag Materialsystem zur Verwendung beim 3D-Drucken
SE520565C2 (sv) 2000-06-16 2003-07-29 Ivf Industriforskning Och Utve Sätt och apparat vid framställning av föremål genom FFF
US6619882B2 (en) 2000-07-10 2003-09-16 Rh Group Llc Method and apparatus for sealing cracks in roads
US6500378B1 (en) 2000-07-13 2002-12-31 Eom Technologies, L.L.C. Method and apparatus for creating three-dimensional objects by cross-sectional lithography
DE10047615A1 (de) 2000-09-26 2002-04-25 Generis Gmbh Wechselbehälter
DE10047614C2 (de) 2000-09-26 2003-03-27 Generis Gmbh Vorrichtung zum schichtweisen Aufbau von Modellen
DE10049043A1 (de) 2000-10-04 2002-05-02 Generis Gmbh Verfahren zum Entpacken von in ungebundenem Partikelmaterial eingebetteten Formkörpern
DE10053741C1 (de) 2000-10-30 2002-02-21 Concept Laser Gmbh Vorrichtung zum Sintern, Abtragen und/oder Beschriften mittels elektromagnetischer gebündelter Strahlung
US20020111707A1 (en) 2000-12-20 2002-08-15 Zhimin Li Droplet deposition method for rapid formation of 3-D objects from non-cross-linking reactive polymers
US20020090410A1 (en) 2001-01-11 2002-07-11 Shigeaki Tochimoto Powder material removing apparatus and three dimensional modeling system
DE20122639U1 (de) 2001-02-07 2006-11-16 Eos Gmbh Electro Optical Systems Vorrichtung zum Herstellen eines dreidimensionalen Objekts
DE10105504A1 (de) 2001-02-07 2002-08-14 Eos Electro Optical Syst Vorrichtung zur Behandlung von Pulver für eine Vorrichtung zum Herstellen eines dreidimensionalen Objekts, Vorrichtung zum Herstellen eines dreidimensionalen Objekts und Verfahren zum Herstellen eines dreidimensionalen Objekts
US6896839B2 (en) 2001-02-07 2005-05-24 Minolta Co., Ltd. Three-dimensional molding apparatus and three-dimensional molding method
GB0103752D0 (en) 2001-02-15 2001-04-04 Vantico Ltd Three-Dimensional printing
GB0103754D0 (en) 2001-02-15 2001-04-04 Vantico Ltd Three-dimensional structured printing
US6939489B2 (en) 2001-03-23 2005-09-06 Ivoclar Vivadent Ag Desktop process for producing dental products by means of 3-dimensional plotting
DE10117875C1 (de) 2001-04-10 2003-01-30 Generis Gmbh Verfahren, Vorrichtung zum Auftragen von Fluiden sowie Verwendung einer solchen Vorrichtung
US20020155254A1 (en) 2001-04-20 2002-10-24 Mcquate William M. Apparatus and method for placing particles in a pattern onto a substrate
GB0112675D0 (en) 2001-05-24 2001-07-18 Vantico Ltd Three-dimensional structured printing
DE10128664A1 (de) 2001-06-15 2003-01-30 Univ Clausthal Tech Verfahren und Vorrichtung zur Herstellung von keramischen Formförpern
JP2003052804A (ja) 2001-08-09 2003-02-25 Ichiro Ono インプラントの製造方法およびインプラント
US6841116B2 (en) 2001-10-03 2005-01-11 3D Systems, Inc. Selective deposition modeling with curable phase change materials
JP2003136605A (ja) 2001-11-06 2003-05-14 Toshiba Corp 製品の作成方法及びその製品
GB2382798A (en) 2001-12-04 2003-06-11 Qinetiq Ltd Inkjet printer which deposits at least two fluids on a substrate such that the fluids react chemically to form a product thereon
SE523394C2 (sv) 2001-12-13 2004-04-13 Fcubic Ab Anordning och förfarande för upptäckt och kompensering av fel vid skiktvis framställning av en produkt
US6713125B1 (en) 2002-03-13 2004-03-30 3D Systems, Inc. Infiltration of three-dimensional objects formed by solid freeform fabrication
DE10216013B4 (de) 2002-04-11 2006-12-28 Generis Gmbh Verfahren und Vorrichtung zum Auftragen von Fluiden
DE10222167A1 (de) 2002-05-20 2003-12-04 Generis Gmbh Vorrichtung zum Zuführen von Fluiden
DE10224981B4 (de) 2002-06-05 2004-08-19 Generis Gmbh Verfahren zum schichtweisen Aufbau von Modellen
WO2003106148A1 (de) 2002-06-18 2003-12-24 Daimlerchrysler Ag Partikel und verfahren für die herstellung eines dreidimensionalen gegenstandes
WO2003106146A1 (de) 2002-06-18 2003-12-24 Daimlerchrysler Ag Lasersinterverfahren mit erhöhter prozessgenauigkeit und partikel zur verwendung dabei
DE10227224B4 (de) 2002-06-18 2005-11-24 Daimlerchrysler Ag Verwendung eines Granulates zum Herstellen eines Gegenstandes mit einem 3D-Binderdruck-Verfahren
US6986654B2 (en) 2002-07-03 2006-01-17 Therics, Inc. Apparatus, systems and methods for use in three-dimensional printing
DE10235434A1 (de) 2002-08-02 2004-02-12 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Herstellen eins dreidimensionalen Objekts mittels eines generativen Fertigungsverfahrens
US20040038009A1 (en) 2002-08-21 2004-02-26 Leyden Richard Noel Water-based material systems and methods for 3D printing
JP4069245B2 (ja) 2002-08-27 2008-04-02 富田製薬株式会社 造形法
US7087109B2 (en) 2002-09-25 2006-08-08 Z Corporation Three dimensional printing material system and method
US20040112523A1 (en) 2002-10-15 2004-06-17 Crom Elden Wendell Three dimensional printing from two dimensional printing devices
US6742456B1 (en) 2002-11-14 2004-06-01 Hewlett-Packard Development Company, L.P. Rapid prototyping material systems
US7153454B2 (en) 2003-01-21 2006-12-26 University Of Southern California Multi-nozzle assembly for extrusion of wall
US7497977B2 (en) 2003-01-29 2009-03-03 Hewlett-Packard Development Company, L.P. Methods and systems for producing an object through solid freeform fabrication by varying a concentration of ejected material applied to an object layer
JP4629654B2 (ja) 2003-02-18 2011-02-09 ダイムラー・アクチェンゲゼルシャフト 積層造形法による三次元体製造のためのコーティングされた粉末粒子
ATE446396T1 (de) 2003-03-10 2009-11-15 Kuraray Co Binderfasern aus polyvinylalkohol und diese fasern enthaltendes papier und vliesstoff
ES2376237T3 (es) 2003-05-21 2012-03-12 Z Corporation Sistema de material en polvo termopl�?stico para modelos de apariencia a partir de sistemas de impresión en 3d.
JP2007503342A (ja) 2003-05-23 2007-02-22 ズィー コーポレイション 三次元プリント装置及び方法
US7435072B2 (en) 2003-06-02 2008-10-14 Hewlett-Packard Development Company, L.P. Methods and systems for producing an object through solid freeform fabrication
US7807077B2 (en) 2003-06-16 2010-10-05 Voxeljet Technology Gmbh Methods and systems for the manufacture of layered three-dimensional forms
DE10327272A1 (de) 2003-06-17 2005-03-03 Generis Gmbh Verfahren zum schichtweisen Aufbau von Modellen
US20050012247A1 (en) 2003-07-18 2005-01-20 Laura Kramer Systems and methods for using multi-part curable materials
US7120512B2 (en) 2003-08-25 2006-10-10 Hewlett-Packard Development Company, L.P. Method and a system for solid freeform fabricating using non-reactive powder
US20050074511A1 (en) 2003-10-03 2005-04-07 Christopher Oriakhi Solid free-form fabrication of solid three-dimesional objects
US7220380B2 (en) 2003-10-14 2007-05-22 Hewlett-Packard Development Company, L.P. System and method for fabricating a three-dimensional metal object using solid free-form fabrication
US7455805B2 (en) 2003-10-28 2008-11-25 Hewlett-Packard Development Company, L.P. Resin-modified inorganic phosphate cement for solid freeform fabrication
US7348075B2 (en) 2003-10-28 2008-03-25 Hewlett-Packard Development Company, L.P. System and method for fabricating three-dimensional objects using solid free-form fabrication
US7381360B2 (en) 2003-11-03 2008-06-03 Hewlett-Packard Development Company, L.P. Solid free-form fabrication of three-dimensional objects
FR2865960B1 (fr) 2004-02-06 2006-05-05 Nicolas Marsac Procede et machine pour realiser des objets en trois dimensions par depot de couches successives
US7608672B2 (en) 2004-02-12 2009-10-27 Illinois Tool Works Inc. Infiltrant system for rapid prototyping process
DE102004008168B4 (de) 2004-02-19 2015-12-10 Voxeljet Ag Verfahren und Vorrichtung zum Auftragen von Fluiden und Verwendung der Vorrichtung
DE102004014806B4 (de) 2004-03-24 2006-09-14 Daimlerchrysler Ag Rapid-Technologie-Bauteil
US20050280185A1 (en) 2004-04-02 2005-12-22 Z Corporation Methods and apparatus for 3D printing
US7435763B2 (en) 2004-04-02 2008-10-14 Hewlett-Packard Development Company, L.P. Solid freeform compositions, methods of application thereof, and systems for use thereof
DE102004020452A1 (de) 2004-04-27 2005-12-01 Degussa Ag Verfahren zur Herstellung von dreidimensionalen Objekten mittels elektromagnetischer Strahlung und Auftragen eines Absorbers per Inkjet-Verfahren
DE102004025374A1 (de) 2004-05-24 2006-02-09 Technische Universität Berlin Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Artikels
JP4239915B2 (ja) 2004-07-16 2009-03-18 セイコーエプソン株式会社 マイクロレンズの製造方法およびマイクロレンズの製造装置
WO2006020685A2 (en) * 2004-08-11 2006-02-23 Cornell Research Foundation, Inc. Modular fabrication systems and methods
ITMI20050459A1 (it) 2005-03-21 2006-09-22 Montangero & Montangero S R L Dispositivo di movimentazione al suolo di un corpo
ITPI20050031A1 (it) 2005-03-22 2006-09-23 Moreno Chiarugi Metodo e dispositivo per la realizzazione automatica di strutture di edifici in conglomerato
US7357629B2 (en) 2005-03-23 2008-04-15 3D Systems, Inc. Apparatus and method for aligning a removable build chamber within a process chamber
US7790096B2 (en) 2005-03-31 2010-09-07 3D Systems, Inc. Thermal management system for a removable build chamber for use with a laser sintering system
US20080003390A1 (en) 2005-04-27 2008-01-03 Nahoto Hayashi Multi-Layer Structure and Process for Production Thereof
DE102005022308B4 (de) 2005-05-13 2007-03-22 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts mit einem beheizten Beschichter für pulverförmiges Aufbaumaterial
US20060254467A1 (en) 2005-05-13 2006-11-16 Isaac Farr Method for making spray-dried cement particles
US20060257579A1 (en) 2005-05-13 2006-11-16 Isaac Farr Use of a salt of a poly-acid to delay setting in cement slurry
WO2007024856A2 (en) 2005-08-23 2007-03-01 Valspar Sourcing, Inc. Infiltrated articles prepared by laser sintering method and method of manufacturing the same
DE102006040305A1 (de) 2005-09-20 2007-03-29 Daimlerchrysler Ag Verfahren zur Herstellung eines dreidimensionalen Gegenstandes sowie damit hergestellter Gegenstand
JP2009508723A (ja) * 2005-09-20 2009-03-05 ピーティーエス ソフトウェア ビーブイ 三次元物品を構築する装置及び三次元物品を構築する方法
US7296990B2 (en) 2005-10-14 2007-11-20 Hewlett-Packard Development Company, L.P. Systems and methods of solid freeform fabrication with translating powder bins
DE102005056260B4 (de) 2005-11-25 2008-12-18 Prometal Rct Gmbh Verfahren und Vorrichtung zum flächigen Auftragen von fließfähigem Material
US20070126157A1 (en) 2005-12-02 2007-06-07 Z Corporation Apparatus and methods for removing printed articles from a 3-D printer
EP1974838A4 (de) 2005-12-27 2010-11-17 Tomita Pharma Verfahren zur herstellung eines musters
EP2001656B1 (de) 2006-04-06 2014-10-15 3D Systems Incorporated Set zur herstellung dreidimensionaler objekte durch verwendung elektromagnetischer strahlung
KR101436647B1 (ko) * 2006-05-26 2014-09-02 3디 시스템즈 인코오퍼레이티드 3d 프린터 내에서 재료를 처리하기 위한 인쇄 헤드 및 장치 및 방법
DE102006029298B4 (de) 2006-06-23 2008-11-06 Stiftung Caesar Center Of Advanced European Studies And Research Materialsystem für das 3D-Drucken, Verfahren zu seiner Herstellung, Granulat hergestellt aus dem Materialsystem und dessen Verwendung
DE102006030350A1 (de) 2006-06-30 2008-01-03 Voxeljet Technology Gmbh Verfahren zum Aufbauen eines Schichtenkörpers
US20080018018A1 (en) 2006-07-20 2008-01-24 Nielsen Jeffrey A Solid freeform fabrication methods and systems
EP2049289B1 (de) 2006-07-27 2014-04-30 Arcam Ab Verfahren und vorrichtung zur herstellung von dreidimensionalen objekten
DE102006038858A1 (de) 2006-08-20 2008-02-21 Voxeljet Technology Gmbh Selbstaushärtendes Material und Verfahren zum schichtweisen Aufbau von Modellen
DE102006040182A1 (de) 2006-08-26 2008-03-06 Mht Mold & Hotrunner Technology Ag Verfahren zur Herstellung eines mehrschichtigen Vorformlings sowie Düse hierfür
DE202006016477U1 (de) 2006-10-24 2006-12-21 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zum Herstellen eines dreidimensionalen Objektes
DE102006053121B3 (de) 2006-11-10 2007-12-27 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes mittels eines Beschichters für pulverförmiges Aufbaumaterial
DE102006055326A1 (de) 2006-11-23 2008-05-29 Voxeljet Technology Gmbh Vorrichtung und Verfahren zur Förderung von überschüssigem Partikelmaterial beim Aufbau von Modellen
US7905951B2 (en) 2006-12-08 2011-03-15 Z Corporation Three dimensional printing material system and method using peroxide cure
JP5129267B2 (ja) 2007-01-10 2013-01-30 スリーディー システムズ インコーポレーテッド 改良された色、物品性能及び使用の容易さ、を持つ3次元印刷材料システム
JP4869155B2 (ja) 2007-05-30 2012-02-08 株式会社東芝 物品の製造方法
DE102007033434A1 (de) 2007-07-18 2009-01-22 Voxeljet Technology Gmbh Verfahren zum Herstellen dreidimensionaler Bauteile
US20100279007A1 (en) 2007-08-14 2010-11-04 The Penn State Research Foundation 3-D Printing of near net shape products
DE102007040755A1 (de) 2007-08-28 2009-03-05 Jens Jacob Lasersintervorrichtung sowie Verfahren zum Herstellen von dreidimensionalen Objekten durch selektives Lasersintern
ITPI20070108A1 (it) 2007-09-17 2009-03-18 Enrico Dini Metodo perfezionato per la realizzazione automatica di strutture di conglomerato
DE102007047326B4 (de) 2007-10-02 2011-08-25 CL Schutzrechtsverwaltungs GmbH, 96215 Vorrichtung zum Herstellen eines dreidimensionalen Objektes
DE102007049058A1 (de) 2007-10-11 2009-04-16 Voxeljet Technology Gmbh Materialsystem und Verfahren zum Verändern von Eigenschaften eines Kunststoffbauteils
DE102007050679A1 (de) 2007-10-21 2009-04-23 Voxeljet Technology Gmbh Verfahren und Vorrichtung zum Fördern von Partikelmaterial beim schichtweisen Aufbau von Modellen
DE102007050953A1 (de) 2007-10-23 2009-04-30 Voxeljet Technology Gmbh Vorrichtung zum schichtweisen Aufbau von Modellen
JP5146010B2 (ja) 2008-02-28 2013-02-20 東レ株式会社 セラミックス成形体の製造方法およびこれを用いたセラミックス焼結体の製造方法
WO2009145069A1 (ja) 2008-05-26 2009-12-03 ソニー株式会社 造形装置および造形方法
DE102008058378A1 (de) 2008-11-20 2010-05-27 Voxeljet Technology Gmbh Verfahren zum schichtweisen Aufbau von Kunststoffmodellen
US8545209B2 (en) 2009-03-31 2013-10-01 Microjet Technology Co., Ltd. Three-dimensional object forming apparatus and method for forming three-dimensional object
JP5364439B2 (ja) 2009-05-15 2013-12-11 パナソニック株式会社 三次元形状造形物の製造方法
DE102009030113A1 (de) 2009-06-22 2010-12-23 Voxeljet Technology Gmbh Verfahren und Vorrichtung zum Zuführen von Fluiden beim schichtweisen Bauen von Modellen
US20100323301A1 (en) 2009-06-23 2010-12-23 Huey-Ru Tang Lee Method and apparatus for making three-dimensional parts
ES2386602T3 (es) 2009-08-25 2012-08-23 Bego Medical Gmbh Dispositivo y procedimiento para la producción continua generativa
DE102009055966B4 (de) 2009-11-27 2014-05-15 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102009056696B4 (de) 2009-12-02 2011-11-10 Prometal Rct Gmbh Baubox für eine Rapid-Prototyping-Anlage
US8211226B2 (en) 2010-01-15 2012-07-03 Massachusetts Institute Of Technology Cement-based materials system for producing ferrous castings using a three-dimensional printer
DE102010006939A1 (de) 2010-02-04 2011-08-04 Voxeljet Technology GmbH, 86167 Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102010013733A1 (de) 2010-03-31 2011-10-06 Voxeljet Technology Gmbh Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102010013732A1 (de) 2010-03-31 2011-10-06 Voxeljet Technology Gmbh Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102010014969A1 (de) 2010-04-14 2011-10-20 Voxeljet Technology Gmbh Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102010015451A1 (de) 2010-04-17 2011-10-20 Voxeljet Technology Gmbh Verfahren und Vorrichtung zum Herstellen dreidimensionaler Objekte
DE102010027071A1 (de) 2010-07-13 2012-01-19 Voxeljet Technology Gmbh Vorrichtung zum Herstellen dreidimensionaler Modelle mittels Schichtauftragstechnik
US8282380B2 (en) 2010-08-18 2012-10-09 Makerbot Industries Automated 3D build processes
DE102010056346A1 (de) 2010-12-29 2012-07-05 Technische Universität München Verfahren zum schichtweisen Aufbau von Modellen
DE102011007957A1 (de) 2011-01-05 2012-07-05 Voxeljet Technology Gmbh Vorrichtung und Verfahren zum Aufbauen eines Schichtenkörpers mit wenigstens einem das Baufeld begrenzenden und hinsichtlich seiner Lage einstellbaren Körper
CN103702811B (zh) 2011-06-01 2017-03-01 联邦材料研究与测试研究所 一种用于制造成形物体的方法及装置
DE102011105688A1 (de) 2011-06-22 2012-12-27 Hüttenes-Albertus Chemische Werke GmbH Verfahren zum schichtweisen Aufbau von Modellen
DE102011111498A1 (de) * 2011-08-31 2013-02-28 Voxeljet Technology Gmbh Vorrichtung zum schichtweisen Aufbau von Modellen
DE102011053205B4 (de) 2011-09-01 2017-05-24 Exone Gmbh Verfahren zum herstellen eines bauteils in ablagerungstechnik
DE102011119338A1 (de) 2011-11-26 2013-05-29 Voxeljet Technology Gmbh System zum Herstellen dreidimensionaler Modelle
DE102012004213A1 (de) 2012-03-06 2013-09-12 Voxeljet Technology Gmbh Verfahren und Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102012010272A1 (de) 2012-05-25 2013-11-28 Voxeljet Technology Gmbh Verfahren zum Herstellen dreidimensionaler Modelle mit speziellen Bauplattformen und Antriebssystemen
DE102012012363A1 (de) 2012-06-22 2013-12-24 Voxeljet Technology Gmbh Vorrichtung zum Aufbauen eines Schichtenkörpers mit entlang des Austragbehälters bewegbarem Vorrats- oder Befüllbehälter
DE102012106141B4 (de) * 2012-07-09 2018-04-26 Exone Gmbh Verfahren und vorrichtung zum entpacken eines bauteils
US9168697B2 (en) 2012-08-16 2015-10-27 Stratasys, Inc. Additive manufacturing system with extended printing volume, and methods of use thereof
DE102012020000A1 (de) 2012-10-12 2014-04-17 Voxeljet Ag 3D-Mehrstufenverfahren
DE102013004940A1 (de) 2012-10-15 2014-04-17 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit temperiertem Druckkopf
DE102012022859A1 (de) 2012-11-25 2014-05-28 Voxeljet Ag Aufbau eines 3D-Druckgerätes zur Herstellung von Bauteilen
DE102012024266A1 (de) 2012-12-12 2014-06-12 Voxeljet Ag Reinigungsvorrichtung zum Entfernen von an Bauteilen oder Modellen anhaftendem Pulver
DE102013003303A1 (de) 2013-02-28 2014-08-28 FluidSolids AG Verfahren zum Herstellen eines Formteils mit einer wasserlöslichen Gussform sowie Materialsystem zu deren Herstellung
US9403725B2 (en) 2013-03-12 2016-08-02 University Of Southern California Inserting inhibitor to create part boundary isolation during 3D printing
DE102013005855A1 (de) 2013-04-08 2014-10-09 Voxeljet Ag Materialsystem und Verfahren zum Herstellen dreidimensionaler Modelle mit stabilisiertem Binder
JP6257185B2 (ja) * 2013-06-28 2018-01-10 シーメット株式会社 三次元造形装置及び三次元造形物の造形方法
DE102013018182A1 (de) 2013-10-30 2015-04-30 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit Bindersystem
DE102013019716A1 (de) 2013-11-27 2015-05-28 Voxeljet Ag 3D-Druckverfahren mit Schlicker
DE102013018031A1 (de) 2013-12-02 2015-06-03 Voxeljet Ag Wechselbehälter mit verfahrbarer Seitenwand
DE102013020491A1 (de) 2013-12-11 2015-06-11 Voxeljet Ag 3D-Infiltrationsverfahren
DE102013021091A1 (de) 2013-12-18 2015-06-18 Voxeljet Ag 3D-Druckverfahren mit Schnelltrockenschritt
EP2886307A1 (de) 2013-12-20 2015-06-24 Voxeljet AG Vorrichtung, Spezialpapier und Verfahren zum Herstellen von Formteilen
DE102013021891A1 (de) 2013-12-23 2015-06-25 Voxeljet Ag Vorrichtung und Verfahren mit beschleunigter Verfahrensführung für 3D-Druckverfahren
DE102014004692A1 (de) 2014-03-31 2015-10-15 Voxeljet Ag Verfahren und Vorrichtung für den 3D-Druck mit klimatisierter Verfahrensführung
DE102014007584A1 (de) 2014-05-26 2015-11-26 Voxeljet Ag 3D-Umkehrdruckverfahren und Vorrichtung
WO2016019937A1 (de) 2014-08-02 2016-02-11 Voxeljet Ag Verfahren und gussform, insbesondere zur verwendung in kaltgussverfahren
DE102014011544A1 (de) 2014-08-08 2016-02-11 Voxeljet Ag Druckkopf und seine Verwendung
DE102014112450A1 (de) * 2014-08-29 2016-03-03 Exone Gmbh Beschichteranordnung für einen 3D-Drucker
DE102014112446A1 (de) * 2014-08-29 2016-03-03 Exone Gmbh Verfahren und Vorrichtung zum Entpacken eines Bauteils
DE102014014895A1 (de) 2014-10-13 2016-04-14 Voxeljet Ag Verfahren und Vorrichtung zur Herstellung von Bauteilen in einem Schichtbauverfahren
GB201420601D0 (en) * 2014-11-19 2015-01-07 Digital Metal Ab Method and apparatus for manufacturing a series of objects
DE102014018579A1 (de) 2014-12-17 2016-06-23 Voxeljet Ag Verfahren zum Herstellen dreidimensionaler Formteile und Einstellen des Feuchtegehaltes im Baumaterial
DE102015006533A1 (de) 2014-12-22 2016-06-23 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Schichtaufbautechnik
DE102015003372A1 (de) 2015-03-17 2016-09-22 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Doppelrecoater
DE102015107178A1 (de) * 2015-05-07 2016-11-10 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zum Herstellen von dreidimensionalen Objekten durch aufeinanderfolgendes Verfestigen von Schichten sowie ein zugehöriges Verfahren
DE102015006363A1 (de) 2015-05-20 2016-12-15 Voxeljet Ag Phenolharzverfahren
DE102015008860A1 (de) 2015-07-14 2017-01-19 Voxeljet Ag Vorrichtung zum Justieren eines Druckkopfes
DE102015011790A1 (de) 2015-09-16 2017-03-16 Voxeljet Ag Vorrichtung und Verfahren zum Herstellen dreidimensionaler Formteile
US10022912B2 (en) * 2015-11-13 2018-07-17 GM Global Technology Operations LLC Additive manufacturing of a unibody vehicle
DE102015014964A1 (de) 2015-11-20 2017-05-24 Voxeljet Ag Verfahren und Vorrichtung für 3D-Druck mit engem Wellenlängenspektrum
DE102015015353A1 (de) 2015-12-01 2017-06-01 Voxeljet Ag Verfahren und Vorrichtung zur Herstellung von dreidimensionalen Bauteilen mittels Überschussmengensensor
DE102015016464B4 (de) 2015-12-21 2024-04-25 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen
DE102016002777A1 (de) 2016-03-09 2017-09-14 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Baufeldwerkzeugen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0431924B1 (de) 1989-12-08 1996-01-31 Massachusetts Institute Of Technology Dreidimensionale Drucktechniken
WO2014039378A1 (en) * 2012-09-05 2014-03-13 Aprecia Pharmaceuticals Company Three-dimensional printing system and equipment assembly
US20150183166A1 (en) * 2012-09-05 2015-07-02 Aprecia Pharmaceuticals Company Three-dimensional Printing System and Equipment Assembly
US20150290878A1 (en) * 2012-10-31 2015-10-15 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method and apparatus for making tangible products by layerwise manufacturing
WO2015056230A1 (en) * 2013-10-17 2015-04-23 Xjet Ltd. Methods and systems for printing 3d object by inkjet
WO2015163765A1 (en) * 2014-04-23 2015-10-29 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Apparatus and method for making tangible products by layerwise manufacturing
WO2015167335A1 (en) * 2014-04-30 2015-11-05 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method and production line for making tangible products by layerwise manufacturing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018210363A1 (de) * 2018-06-26 2020-01-02 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betrieb einer Anlage zur additiven Herstellung von dreidimensionalen Bauteilen
EP3705267A1 (de) * 2019-03-08 2020-09-09 ExOne GmbH Druckkopf-beschichter-modul für einen 3d-drucker, verwendung des druckkopf-beschichter-moduls und 3d-drucker mit dem druckkopf-beschichter-modul

Also Published As

Publication number Publication date
CN108712958A (zh) 2018-10-26
EP3426472A1 (de) 2019-01-16
US11975487B2 (en) 2024-05-07
US20190084229A1 (en) 2019-03-21
US20240149527A1 (en) 2024-05-09
DE102016002777A1 (de) 2017-09-14

Similar Documents

Publication Publication Date Title
EP3426472A1 (de) Verfahren und vorrichutng zum herstellen von 3d-formteilen mit baufeldwerkzeugen
EP3086919B1 (de) Vorrichtung und verfahren mit beschleunigter verfahrensführung für 3d- druckverfahren
DE102015011790A1 (de) Vorrichtung und Verfahren zum Herstellen dreidimensionaler Formteile
EP2560807B1 (de) Verfahren und vorrichtung zum herstellen dreidimensionaler modelle
EP2750865B1 (de) Vorrichtung und verfahren zum schichtweisen aufbau von modellen
EP2391499B1 (de) Rapid-prototyping-anlage aufweisend eine baubox
EP3352973A1 (de) Anlage zur herstellung von dreidimensionalen objekten
EP3224022B1 (de) Vorrichtung zur ausbildung von volumenkörpern
DE102017001622A1 (de) Verfahren und Vorrichtung für Schichtbauverfahren mit Entpackträger
WO2014079404A1 (de) Aufbau eines 3d-druckgerätes zur herstellung von bauteilen
WO2002026420A1 (de) Vorrichtung zum schichtweisen aufbau von modellen
DE102012010272A1 (de) Verfahren zum Herstellen dreidimensionaler Modelle mit speziellen Bauplattformen und Antriebssystemen
WO2017102875A1 (de) Vorrichtung und verfahren zur kontinuierlichen generativen fertigung von bauteilen
DE102019004122A1 (de) Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen durch Schichtaufbautechnik unter Verwendung einer Kernreinigungsstation
DE102016109941A1 (de) Verfahren und Anlage zur additiven Herstellung eines Objekts
DE102019000256A1 (de) Gleitmittelsprühanlage sowie Gleitmittelauftragsverfahren für die Innenflächenbehandlung von Einführungs- und Montagehilfen in einer Packstation
DE102019127559A1 (de) Faserformanlage zur herstellung von formteilen aus umweltverträglich abbaubarem fasermaterial
EP3370935A1 (de) Verfahren und anlage zum herstellen von rotationsgussprodukten
WO1989005719A1 (en) Process and installation for manufacturing plastic mouldings
CH705721A2 (de) Spritzgiessvorrichtung mit drehbarem Mittelteil.
EP4101981A1 (de) Verfahren zur herstellung von formteilen aus fasermaterial
EP3921140A1 (de) Wechselbare prozesseinheit
EP3986701A1 (de) Anordnung einer 3d-druckvorrichtung
DE202013104095U1 (de) Formpresse zur der Herstellung von Formteilen
DE202017007474U1 (de) Vorrichtung für Schichtbauverfahren mit Entpackträger

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017718005

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017718005

Country of ref document: EP

Effective date: 20181009

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17718005

Country of ref document: EP

Kind code of ref document: A1