WO2003106146A1 - Lasersinterverfahren mit erhöhter prozessgenauigkeit und partikel zur verwendung dabei - Google Patents

Lasersinterverfahren mit erhöhter prozessgenauigkeit und partikel zur verwendung dabei Download PDF

Info

Publication number
WO2003106146A1
WO2003106146A1 PCT/DE2003/002011 DE0302011W WO03106146A1 WO 2003106146 A1 WO2003106146 A1 WO 2003106146A1 DE 0302011 W DE0302011 W DE 0302011W WO 03106146 A1 WO03106146 A1 WO 03106146A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
particle
coating
temperature
core
Prior art date
Application number
PCT/DE2003/002011
Other languages
English (en)
French (fr)
Inventor
Rolf Pfeifer
Jialin Shen
Original Assignee
Daimlerchrysler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10313452A external-priority patent/DE10313452A1/de
Application filed by Daimlerchrysler Ag filed Critical Daimlerchrysler Ag
Priority to EP03759859A priority Critical patent/EP1513670A1/de
Priority to US10/518,699 priority patent/US20060159896A1/en
Priority to JP2004513010A priority patent/JP2005536324A/ja
Publication of WO2003106146A1 publication Critical patent/WO2003106146A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63468Polyamides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/13Auxiliary heating means to preheat the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1052Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding assisted by energy absorption enhanced by the coating or powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24893Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Definitions

  • the invention relates to a selective laser sintering method according to the preamble of claim 7 and particles for use here according to the preamble of claim 1.
  • Such methods and particles are already known from DE 690 31 061 T2.
  • Selective laser sintering is a rapid prototyping process in which a platform that can be lowered into a construction space (construction space floor) carries a particle layer that is heated by a laser beam in selected areas, so that the particles form a first layer merge. The platform is then lowered by about 20 to 300 ⁇ m (depending on particle size and type) into the installation space and a new particle layer is applied. The laser beam again traces its path and fuses the particles of the second layer with one another and the second with the first layer. This gradually creates a multi-layered particle cake and a component in it, for example an injection mold.
  • SLS Selective laser sintering
  • DE 690 31 061 T2 already suggests preheating the particle layers so that the energy beam only has to introduce a small amount of energy in order to bond the particles. At the same time, this measure has the effect that the temperature differences between irradiated and non-irradiated parts of a layer are reduced - even if this is not disclosed in DE 690 31 061 T2.
  • DE 101 08 612 A1 therefore proposes to replace the usual three-dimensional temperature gradient with an approximately one-dimensional one (in the direction of the installation space floor) by means of a segmented installation space jacket heater.
  • the invention is based on the object of specifying a further method and particles for selective laser sintering, in which the temperature within the piled-up particle cake is as homogeneous as possible.
  • Suitable materials are those that have a softening temperature of less than about 70 ° C.
  • softening temperature is not to be interpreted narrowly, but it is clear to the person skilled in the art that this is to be understood as a temperature at which the particles form a bond with adjacent particles. Partial melting may be necessary for this, but softening (below the glass transition temperature), for example in the case of polymers, may also suffice or it is also conceivable that the activation energy for a chemical bond is exceeded.
  • the object is achieved according to the invention with regard to the particles to be created in that they are suitable for use in selective laser sintering (SLS) (that is to say their diameter is less than approximately 300 ⁇ m) and contain them
  • SLS selective laser sintering
  • a core made of at least a first material
  • an at least partial coating of the core with a second material (further components are optional), the second material having a lower softening temperature than the first material, and the softening temperature of the second material being less than approximately 70 ° C.
  • Suitable second materials can be lower alloys
  • Softening temperature used for example, in fuses (see e.g. JP2001143588A), also saturated linear carboxylic acids with chain length> 16 (e.g. hepta-decanoic acid, melting point 60-63 ° C) or polymers in the broadest sense (see following definition and examples ).
  • the softening temperature of the second material of approximately 70 ° C or less enables laser sintering compared to previously used particles at much lower temperatures and thus also a much lower temperature difference between irradiated particles and the usual room temperature in the order of 20 ° C. Tests show that with the lower maximum temperature difference, the temperature homogeneity of the entire installation space is also improved.
  • the use of particles according to the invention enables a significantly higher process speed.
  • the usual SLS devices can still be used (see, for example, DE 102 31 136 AI), but because of the lower softening temperatures, only a significantly lower energy input is required for sintering. With the same laser power, this can be achieved with a higher travel speed of the laser scanner and thus a higher process speed.
  • the sintered component cools to room temperature much faster.
  • the coating can be produced using the customary coating methods for powder particles. The coating is preferably applied in a fluidized bed reactor or a spray dryer.
  • the cores are fluidized (swirled) and the second material is supplied by spraying or atomizing a solution (in a suitable solvent), suspension or dispersion.
  • the second material can also be metered in as a solid in the same way as the powder material and agglomerate with the cores.
  • the particles can be coated individually, or can be built up into granules by means of the second material as a binder phase.
  • the layer thickness of the applied coating can be set, for example, via the concentration of the second material in the sprayed solution / suspension / dispersion, the residence time and the temperature in the reactor or spray dryer. Preferred layer thicknesses are between 0.1 and 10 percent of the mean particle radii.
  • the coating contains a polymer, preferably a thermoplastic polymer.
  • the term polymer should again be interpreted broadly. It is not limited to the typical plastics, but also includes polyolefins (waxes), polyacids and bases, organometallic polymers, polymer blends and polymers in the broadest sense, whose softening temperatures do not exceed 70 ° C. It is advantageous if these are in the solid state at room temperature.
  • the group defined in this way is large enough to to be able to select chemically and / or physically adapted coatings for any core materials.
  • the polarity can be specifically selected or the steric polymer structure.
  • the coating can have further components, for example surfactants to improve the flow properties, adhesion promoter to the core, microsinter particles for a second sintering step and other components.
  • the coating contains a polyvinyl acetal, preferably a polyvinyl butyral (PVB).
  • the softening temperature can be specifically selected based on the degree of acetalization (there are a number of unsuitable polyvinyl acetals and butyrals with softening temperatures above 100 ° C, but also a large number of suitable ones with softening temperatures below 70 ° C.
  • the polyvinyl acetals in most are organic Solvents are insoluble and therefore a component connected in this way is generally very durable.
  • it is suitable for investment casting, in particular of cores, since it can be burned out with almost no residual ash. In general, for investment casting of the SLS components, it is advantageous if the coating at least is low in residual ash.
  • poly (alkylene di- or tri-sulfides) are suitable, for example poly (methylene trisulfide) with softening temperatures between 55 and 70 ° C, poly (ethylene glycols) , in particular pol (ethylene glycol) amines or amides with softening temperatures between 50 and 65 ° C, or copolymers of ethylene and linear alkene (di, tri) - oils with chain length> 8 (e.g. poly (ethylene-co-10-undecen- l-ol), melting point about 66 ° C).
  • the coating is not hygroscopic, preferably hydrophobic. This ensures that the particles absorb little or no water and can therefore be stored for a long time without unintentionally clumping.
  • the core contains at least one element from the material group metal, ceramic, polymer.
  • the terms have to be interpreted broadly again.
  • Metal also includes semi-metals, ceramics also sand and the like, and polymer as defined above. Particles with such cores and the coatings described above enable the SLS production of components with practically any physical, in particular mechanical properties.
  • particles with a polymethacrylate core preferably polymethyl methacrylate
  • PMMA polyvinyl acetal, preferably polyvinyl butyral, coating
  • a polyvinyl acetal, preferably polyvinyl butyral, coating are advantageous since such particles can be burned out almost without residual ash.
  • the core contains at least two parts from the material group metal, ceramic, polymer in loose or solid connection.
  • This can be at least two parts of the same group element or different group elements.
  • the parts can be loosely connected (agglomerate) or solid (coating / alloy / chemical compound, etc.). This further increases the selection options with regard to the physical properties of the SLS component to be manufactured.
  • the SLS method to be created the object is achieved according to the invention in that it has the following steps:
  • - Particles are used that contain at least one material whose softening temperature is less than approximately 70 ° C.
  • the injected radiation energy is dimensioned in such a way that it only leads to softening of the coating and thereby to connection of the irradiated particles without melting the core material. It is also advantageous if at least the particle layer to be irradiated is additionally heated, preferably to a temperature level of approximately 2-3 ° C. below the lowest softening temperature of the particle materials used. As a result, temperature inhomogeneities within and from a layer are further reduced. The laser power to be entered is also further reduced.
  • a segmented installation space heater according to DE 101 08 612 AI can also be used for the highest precision requirements.
  • Figure 1 does not show the particles according to the invention according to a first embodiment to scale. These are used in an otherwise customary laser sintering process for the production of objects.
  • the particles have a core 1 made of a PMMA with a softening temperature of approximately 124 ° C. and a coating 2 made of a PVB with a softening temperature of approximately 66 ° C.
  • the laser beam is guided (power »10 watts (less if the strength is low), feed speed» 5 m / s, laser spot diameter «0.4 mm) in such a way that the radiant energy injected to soften the coating 2 and thereby connect the irradiated ones Particles leads without melting the core material.
  • the particles have ben an average diameter of about 35 microns, the coating has a thickness of about 0.3 to 0.7 microns.
  • the particles are only connected via the surface-softened coatings. There are only slight temperature inhomogeneities, which cause low shrinkage and thus high component accuracy. 2, in which the connected particles 1 are shown hatched.
  • the accuracy is further increased if the particle layers are preheated to around 60 ° C, since then the temperature inhomogeneities will decrease significantly further.
  • the laser power and / or feed rate is adjusted accordingly.
  • the preheating is carried out by means of IR radiation on the surface or, in the case of even higher accuracy requirements, by means of the segmented jacket heating according to DE 101 08 612 AI.
  • 1-component particles made of pure PVB with a softening temperature of approximately 66 ° C. and an average diameter of approximately 80 ⁇ m are used. Particles with average diameters of around 50 - 100 ⁇ m are also suitable.
  • the resulting components have lower mechanical resilience and can mainly be used as models or as so-called lost cores, especially in investment casting applications.
  • particles with metallic and / or ceramic cores and preferably also metallic coatings are used.
  • As loading Layers are particularly suitable for all alloys, in particular non-toxic bismuth-lead-indium alloys with a low melting point, which are known to the person skilled in the art, for example, as fuses according to JP2001143588A, or solder alloys such as the bismuth-lead-tin alloy PAD-165-851 the Stan Rubinstein Assoc. , Foxboro, MA 02035 USA (cf.http: // www.sra-solder. Com / pastesp.htm).
  • the mean diameters are preferably 40-150 ⁇ m, for special accuracy requirements also less, for ceramic particles mostly less than 150 ⁇ m, preferably 15 to 40 ⁇ m, for special requirements also up to 5 ⁇ m.

Abstract

Bei dem Rapid Prototyping Verfahren des Selektiven Lasersinterns treten Temperaturgradienten innerhalb und zwischen den einzelnen Schichten auf, die zu Bauteilverzug führen, der zumindest bei qualitativ hochwertigen Bauteilen nicht tolerierbar ist.Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Selektiven Lasersintern anzugeben, bei welchem die Temperatur innerhalb des aufgeschüteten Partikelkuchens möglichst homogen ist.Dieses Aufgabe wird dadurch gelöst, dass Partikeln verwendet werden, die mindestens ein Material enthalten, dessen Erweichungstemperatur nicht mehr als circa 70° C betragt.

Description

Lasersinterverfahren mit erhöhter Prozessgenauigkeit und Partikel zur Verwendung dabei
Die Erfindung betrifft ein Selektives Lasersinterverfahren gemäß dem Oberbegriff des Patentanspruchs 7 und Partikel zur Verwendung dabei gemäß dem Oberbegriff des Patentanspruchs 1. Derartige Verfahren und Partikel sind bereits aus der DE 690 31 061 T2 bekannt.
Selektives Lasersintern (SLS, Selective Laser Sintering) ist ein Rapid-Prototyping-Verfahren, bei dem eine in einen Bauraum absenkbare Plattform (Bauraumboden) eine Partikelschicht trägt, die durch einen Laserstrahl in ausgewählten Bereichen erhitzt wird, so dass die Partikeln zu einer ersten Schicht verschmelzen. Anschließend wird die Plattform um etwa 20 bis 300 μm (je nach Partikelgröße und -art) nach unten in den Bauraum gesenkt und eine neue Partikelschicht aufgebracht. Der Laserstrahl zeichnet wieder seine Bahn und verschmilzt die Partikeln der zweiten Schicht miteinander sowie die zweite mit der ersten Schicht. Auf diese Weise entsteht nach und nach ein vielschichtiger Partikelkuchen und in ihm ein Bauteil, zum Beispiel eine Spritzgussform.
Innerhalb des Bauraums erfahren bestimmte Bereiche - abhängig von der Geometrie des herzustellenden Bauteils - für einen längeren oder kürzeren Zeitraum eine Erwärmung durch den La- serstrahl während andere gar nicht erwärmt werden. Außerdem wird nur die jeweils oberste Partikelschicht durch den Laser erwärmt, die unteren Schichten geben die aufgenommene Wärme an ihre Umgebung und kühlen ab. Die Folge sind inhomogene Temperaturverteilungen und thermische Spannungen innerhalb des Partikelkuchens, die zu Bauteilverzug führen können.
Bereits in der DE 690 31 061 T2 wird vorgeschlagen, die Partikelschichten vorzuheizen, so dass der Energiestrahl nur noch eine geringe Menge Energie einbringen muss, um die Partikeln zu verbinden. Gleichzeitig bewirkt diese Maßnahme, dass die Temperaturdifferenzen zwischen bestrahlten und nicht bestrahlten Teilen einer Schicht verringert werden - auch wenn dies in der DE 690 31 061 T2 nicht offenbart ist.
Es treten jedoch weiterhin Temperaturgradienten innerhalb und zwischen den einzelnen Schichten auf, wobei insbesondere die erstgenannten zu Bauteilverzug führen, der zumindest bei qualitativ hochwertigen Bauteilen nicht tolerierbar ist.
Als Korrekturmaßnahme wird daher in der DE 101 08 612 AI vorgeschlagen mittels einer segmentierten Bauraummantelheizung den üblichen dreidimensionalen Temperaturgradienten zwangsweise durch einen annähernd eindimensionalen (in Richtung auf den Bauraumboden) zu ersetzen.
Der Erfindung liegt die Aufgabe zugrunde, ein weiteres Verfahren sowie Partikeln zum selektiven Lasersintern anzugeben, bei welchen die Temperatur innerhalb des aufgeschütteten Par- tikelkuchens möglichst homogen ist.
Diese Aufgabe wird gelöst, in dem die absolute Temperaturdifferenz zwischen den bestrahlten Bereichen und deren Endtemperatur, also der Raumtemperatur, durch die Verwendung geeigne- ter Materialen gesenkt wird. Geeignete Materialen sind solche, die eine Erweichungstemperatur von weniger als circa 70°C aufweisen. Dabei ist der Begriff Erweichungstemperatur nicht eng auszulegen, sondern dem Fachmann ist klar, dass darunter eine Temperatur zu verstehen ist, bei der die Partikeln eine Bindung mit angrenzenden Partikeln eingehen. Dazu kann ein teilweises Schmelzen erforderlich sein, aber z.B. bei Polymeren kann auch ein Erweichen (unterhalb der Glasübergangstemperatur) genügen oder es ist auch denkbar, dass die Aktivierungsenergie für eine chemische Bindung überschritten wird.
Die Erfindung ist in Bezug auf die zu verwendenden Partikeln und das zu schaffende Verfahren durch die Merkmale der Pa- tentansprüche 1 und 7 wiedergegeben. Die weiteren Ansprüche enthalten vorteilhafte Ausgestaltungen und Weiterbildungen.
Die Aufgabe wird bezüglich der zu schaffenden Partikeln erfindungsgemäß dadurch gelöst, dass sie zur Verwendung beim Selektiven Laser Sintern (SLS) geeignet sind (also ihr Durchmesser kleiner als circa 300μm ist) und sie enthalten
- einen Kern aus mindestens einem ersten Material
- eine mindestens teilweise Beschichtung des Kerns mit einem zweiten Material, (weitere Komponenten sind optional) wobei das zweite Material eine niedrigere Erweichungstemperatur aufweist als das erste Material, und die Erweichungstemperatur des zweiten Materials weniger als circa 70° C beträgt.
Geeignete zweite Materialien können Legierungen mit niedriger
Erweichungstemperatur sein, die z.B. in Schmelzsicherungen (vgl. z.B. JP2001143588A) verwendet werden, außerdem gesättigte lineare Carbonsäuren mit Kettenlänge > 16 (z.B. Hepta- decansäure, Schmelzpunkt 60-63 °C) oder auch Polymere im weitesten Sinne (vgl. nachfolgende Definition und Beispiele) . Die Erweichungstemperatur des zweiten Materials von circa 70° C oder weniger ermöglicht im Vergleich zu bisher verwendeten Partikeln das Lasersintern bereits bei wesentlich niedrigeren Temperaturen und somit auch eine wesentlich niedrigere Temperaturdifferenz zwischen bestrahlten Partikeln und der üblichen Raumtemperatur in der Größenordnung von 20° C. Versuche zeigen, dass mit der niedrigeren maximalen Temperaturdifferenz auch die Temperaturhomogenität des gesamten Bauraums verbessert wird.
Materialien mit wesentlich höheren Erweichungstemperaturen bedingen größere Temperaturinhomogenitäten und somit geringere Bauteilgenauigkeit, die für Präzisionsanwendungen nicht mehr ausreicht. Materialien mit wesentlich niedrigeren Erwei- chungstemperaturen können nur vergleichsweise aufwendig über längere Zeit gelagert werden, da sichergestellt werden muss, dass sie sich nicht unbeabsichtigt verbinden. Im Sommer sind jedoch Temperaturen von über 30 °C im Schatten und von über 50 °C in der Sonne auch in Deutschland erreichbar und deshalb könnte es zu unbeabsichtigten Materialerweichungen und -Verbindungen kommen. Daher ist es vorteilhaft zweite Materialien mit Erweichungstemperaturen > 30 °C, vorzugsweise größer 50 °C, zu verwenden.
Als weiteren Vorteil ermöglicht die Verwendung erfindungsgemäßer Partikeln eine wesentlich größere Prozessgeschwindigkeit. Die üblichen SLS-Vorrichtungen sind weiter verwendbar (vgl. z.B. DE 102 31 136 AI) aber aufgrund der niedrigeren Erweichungstemperaturen ist zum Sintern nur ein wesentlich niedrigerer Energieeintrag erforderlich. Dieser ist bei gleicher Laserleistung mit höherer Verfahrgeschwindigkeit des Laserscanners und somit höherer Prozessgeschwindigkeit erzielbar. Außerdem kühlt das gesinterte Bauteil wesentlich schneller auf Raumtemperatur ab. Die Herstellung der Beschichtung kann nach den üblichen Be- schichtungsverfahren für Pulverpartikel erfolgen. Bevorzugt wird die Beschichtung in einem Wirbelschichtreaktor oder einem Sprühtrockner aufgebracht.
Im Wirbelschichtreaktor werden die Kerne fluidisiert (verwirbelt) und es erfolgt eine Zufuhr des zweiten Materials durch Einsprühen oder Verdüsen einer Lösung (in einem geeigneten Lösungsmittel) , Suspension oder Dispersion. Ebenso kann das zweite Material aber auch als Feststoff in gleicher Weise wie das Pulvermaterial zudosiert werden und mit den Kernen agglomerieren.
Je nach Verweilzeit des Partikelmaterials in der Beschich- tungsvorrichtung können die Partikeln (eines einzelnen erstem Materials oder eines Materialgemisches) einzeln beschichtet werden, oder mittels des zweiten Materials als Binderphase zu Granulaten aufgebaut werden. Die Schichtdicke der aufgetragenen Beschichtung lässt sich beispielsweise über die Konzent- ration des zweiten Materials in der eingesprühten Lösung /Suspension/Dispersion, die Verweilzeit und die Temperatur im Reaktor, beziehungsweise Sprühtrockner einstellen. Bevorzugte Schichtdicken liegen zwischen 0,1 und 10 Prozent der mittleren Partikelradien.
In einer vorteilhaften Ausführungsform des erfindungsgemäßen Partikels enthält die Beschichtung ein Polymer, vorzugsweise ein thermoplastisches Polymer. Dabei ist der Begriff Polymer wieder weit auszulegen. Er beschränkt sich nicht nur auf die typischen Kunststoffe, sondern umfasst auch Polyolefine (Wachse) , Polysäuren und -Basen, metallorganische Polymere, Polymerblends und Polymere im weitesten Sinne, deren Erweichungstemperaturen nicht über 70 °C liegen. Vorteilhaft ist es, wenn diese bei Raumtemperatur im festen Aggregatzustand vorliegen. Die so definierte Gruppe ist ausreichend groß, um für beliebige Kernmaterialien chemisch und/oder physikalisch angepasste Beschichtungen auswählen zu können. So kann beispielweise die Polarität gezielt ausgewählt werden oder auch die sterische Polymerstruktur. Für spezielle Anforderungen kann die Beschichtung jedoch weitere Komponenten aufweisen, z.B. Tenside zur Verbesserung der Fließeigenschaften, Haftvermittler zum Kern, Mikrosinterpartikeln für einen zweiten Sinterschritt und weitere Bestandteile.
In einer besonders vorteilhaften Ausführungsform des erfindungsgemäßen Partikels enthält die Beschichtung ein Polyviny- lacetal, vorzugsweise ein Polyvinylbutyral (PVB) . Einerseits kann anhand des Acetalisierungsgrades die Erweichungstemperatur gezielt ausgewählt werden (Es gibt eine Reihe ungeeigne- ter Polyvinylacetale und -butyrale mit Erweichungstemperaturen über 100 °C, aber auch eine große Zahl geeigneter mit Erweichungstemperaturen unter 70 °C. Andererseits sind die Polyvinylacetale in den meisten organischen Lösungsmitteln unlöslich und somit ist ein so verbundenes Bauteil grundsätzlich sehr haltbar. Andererseits ist es für den Feinguß, insbesondere von Kernen, geeignet, da es nahezu ohne Restasche ausbrennbar ist. Generell ist es für eine Feingußanwendung der SLS-Bauteile vorteilhaft, wenn die Beschichtung zumindest restaschearm ist.
Weitere geeignete Beschichtungsmaterialen sind in geeigneten Datenbanken wie BEILSTEIN oder GMELIN zu finden: So eignen sich Poly (alkylen-di- oder -tri-sulfide) , z.B. Poly (methylen- trisulfide) mit Erweichungstemperaturen zwischen 55 und 70°C, Poly (ethylenglykole) , insbesondere Pol (ethylenglykol) amine oder -amide mit Erweichungstemperaturen zwischen 50 und 65 °C, oder auch Copolymere aus Ethylen und linearen Alken (di, tri) - ölen mit Kettenlänge > 8 (z.B. Poly (ethylen-co-10-undecen-l- ol) , Schmelzpunkt circa 66°C) . Bei einer weiteren vorteilhaften Ausführungsform des erfindungsgemäßen Partikels ist die Beschichtung nicht hygroskopisch, vorzugsweise hydrophob. Dies gewährleistet, dass die Partikeln nur wenig oder gar kein Wasser aufnehmen und somit über lange Zeit lagerfähig sind ohne unbeabsichtigt zu ver- klumpen .
In einer vorteilhaften Ausführungsform des erfindungsgemäßen Partikels enthält der Kern mindestens ein Element aus der Materialgruppe Metall, Keramik, Polymer. Dabei sind die Begriffe wieder weit auszulegen. Metall umfasst auch Halbmetalle, Keramik auch Sand und Ähnliches, und Polymer gemäß der vorherstehenden Definition. Partikeln mit derartigen Kernen und vorstehend beschriebenen Beschichtungen ermöglichen die SLS- Herstellung von Bauteilen mit praktisch beliebigen physikalischen, insbesondere mechanischen Eigenschaften.
Für Feingußanwendungen sind insbesondere Partikeln mit einem Polymethacrylat-Kern, vorzugsweise Polymethylmethacrylat-
(PMMA) -Kern, und einer Polyvinylacetal-, vorzugsweise Polyvi- nylbutyral-, Beschichtung vorteilhaft, da derartige Partikeln nahezu restaschefrei ausbrennbar sind.
Vorteilhaft ist es auch, wenn der Kern mindestens zwei Teile aus der Materialgruppe Metall, Keramik, Polymer in loser oder fester Verbindung enthält. Dabei kann es sich um mindestens zwei Teile desselben Gruppenelementes oder verschiedener Gruppenelemente handeln. Die Teile können lose verbunden sein (Agglomerat) oder fest (Beschichtung/Legierung/Chemische Verbindung, etc.). Dadurch werden die Auswahlmöglichkeiten hinsichtlich physikalischer Eigenschaften des herzustellenden SLS-Bauteils weiter erhöht. Die Aufgabe wird bezüglich des zu schaffenden SLS-Verfahrens erfindungsgemäß dadurch gelöst, dass es folgende Schritte aufweist :
- Auftragen einer Schicht aus Partikeln auf eine Ziel- fläche,
- Bestrahlen eines ausgewählten Teils der Schicht, entsprechend einem Querschnitt des Gegenstandes, mit einem Energiestrahl, so dass die Partikel im ausgewählten Teil verbunden werden,
- Wiederhohlen der Schritte des Auftragens und des Bestrahlens für eine Mehrzahl von Schichten, so dass die verbunden Teile der benachbarten Schichten sich verbinden, um den Gegenstand zu bilden, wobei
- Partikeln verwendet werden, die mindestens ein Material enthalten, dessen Erweichungstemperatur weniger als circa 70° C beträgt .
Dadurch werden die vorstehend genannten Vorteile hinsichtlich der Homogenität des Temperaturgradienten und der daraus resultierenden Bauteilqualität sowie der Prozeßgeschwindigkeit erzielt. Diese Vorteile treten nicht nur bei erfindungsgemä- ßen Partikeln auf, sondern auch bei Partikeln, die nur aus einem einzigen Material bestehen oder homogen zusammengesetzt sind, solange sie nur mindestens ein Material enthalten, dessen Erweichungstemperatur weniger als circa 70° C beträgt.
Bei erfindungsgemäßen Partikeln ist es insbesondere in Hinsicht auf die Bauteilgenauigkeit vorteilhaft, wenn die eingekoppelte Strahlungsenergie derart bemessen ist, dass sie nur zur Erweichung der Beschichtung und dadurch zur Verbindung der bestrahlten Partikeln führt, ohne dabei das Kernmaterial aufzuschmelzen. Vorteilhaft ist es auch, wenn zumindest die jeweils zu bestrahlende Partikelschicht zusätzlich beheizt wird, vorzugsweise auf ein Temperaturniveau von circa 2-3°C unter der niedrigsten Erweichungstemperatur der verwendeten Partikel- materialien. Dadurch werden Temperaturinhomogenitäten innerhalb einer Schicht und von dieser ausgehend weiter reduziert. Ebenso wird die einzutragende Laserleistung weiter reduziert.
Für höchste Präzisionsanforderungen kann zusätzlich eine seg- mentierte Bauraumheizung gemäß der DE 101 08 612 AI eingesetzt werden.
Mit verbundenen erfindungsgemäßen Partikeln und/oder nach dem erfindungsgemäßen Verfahren hergestellte Gegenstände weisen in Ihrer Ist-Geometrie nur minimale schwindungsbedingte Abweichungen gegenüber ihrer vorgegebenen Soll-Geometrie auf.
Nachfolgend werden anhand der Figuren 1 und 2 sowie mehrerer Ausführungsbeispiele das erfindungsgemäße Partikel und das erfindungsgemäße Verfahren näher erläutert:
Figur 1 zeigt nicht maßstabsgerecht die erfindungsgemäßen Partikeln gemäß einem ersten Ausführungsbeispiel. Diese wer- den in einem ansonsten üblichen Lasersinter-Verfahren zur Herstellung von Gegenständen verwendet. Die Partikeln weisen einen Kern 1 aus einem PMMA mit einer Erweichungstemperatur von circa 124 °C und eine Beschichtung 2 aus einem PVB mit einer Erweichungstemperatur von circa 66°C aufweisen. Der La- serstrahl wird so geführt (Leistung » 10 Watt (bei geringen Festigkeitsanforderungen auch weniger) , Vorschubgeschwindigkeit » 5 m/s, Laserspotdurchmesser « 0,4 mm), dass die eingekoppelte Strahlungsenergie zur Erweichung der Beschichtung 2 und dadurch zur Verbindung der bestrahlten Partikeln führt, ohne dabei das Kernmaterial aufzuschmelzen. Die Partikeln ha- ben einen mittleren Durchmesser von circa 35 μm, wobei die Beschichtung eine Dicke von circa 0,3 bis 0,7 μm aufweist.
Bei einem derartigen Verfahren unter Verwendung dieser Parti- kein erfolgt die Verbindung der Partikeln nur über die oberflächlich erweichten Beschichtungen. Es treten nur geringe Temperaturinhomogenitäten auf, die eine geringe Schwindung und somit hohe Bauteilgenauigkeit bewirken. Vgl. Fig. 2, in welcher die verbundenen Partikeln 1 schraffiert dargestellt sind. Die aus Gründen der besseren Darstellbarkeit verdickten, nicht maßstabsgerechten Beschichtungen wurden in den Verbindungsbereichen gerade soweit oberflächlich erweicht, dass eine Verbindung der Partikeln erfolgte.
Die Genauigkeit wird noch weiter erhöht, wenn die Partikelschichten auf circa 60 °C vorgewärmt werden, da sich dann die Temperaturinhomogenitäten noch deutlich weiter verringern. Die Laserleistung und/oder Vorschubgeschwindigkeit wird entsprechend angepasst. Die Vorwärmung erfolgt mittels einer IR- Bestrahlung der Oberfläche oder bei noch höheren Genauigkeitsanforderungen mittels der segmentierten Mantelheizung gemäß der DE 101 08 612 AI.
Gemäß einem weiteren Ausführungsbeispiel werden 1-kompo- nentige Partikeln aus reinem PVB mit einer Erweichungstemperatur von circa 66°C und einem mittleren Durchmesser von circa 80 μm verwendet. Partikeln mit mittleren Durchmessern von circa 50 - 100 μm sind ebenfalls geeignet. Die dabei entstehenden Bauteile weisen geringere mechanische Belastbarkeit auf und sind vorwiegend als Modelle oder auch als sog. verlorene Kerne insbesondere bei Feingussanwendungen einsetzbar.
Für Anwendungen, die höheren physikalischen, insbesondere mechanischen Anforderungen entsprechen müssen, werden Partikeln mit metallischen und/oder keramischen Kernen und vorzugsweise ebenfalls metallischen Beschichtungen eingesetzt. Als Be- Schichtungen eignen sich dabei vor allen Legierungen, insbesondere ungiftige Wismut-Blei-Indium-Legierungen mit niedrigem Schmelzpunkt, die dem Fachmann z.B. als Schmelzsicherungen gemäß der JP2001143588A bekannt sind oder Löt-Legierungen wie beispielsweise die Wismut-Blei-Zinn Legierung PAD-165-851 der Stan Rubinstein Assoc . , Foxboro, MA 02035 USA (vgl. http: //www. sra-solder. com/pastesp.htm) .
Bei metallischen Partikeln liegen die mittleren Durchmesser vorzugsweise bei 40-150 μm, für besondere Genauigkeitsanforderungen auch darunter, bei keramischen Partikeln meist unter 150 μm, vorzugsweise bei 15 bis 40 μm, für besondere Anforderungen auch bis zu 5 μm.

Claims

Patentansprüche
1. Partikel zur Verwendung beim Selektiven Laser Sintern (SLS) enthaltend - einen Kern 1 aus mindestens einem ersten Material
- eine mindestens teilweise Beschichtung 2 des Kerns 1 mit einem zweiten Material, wobei das zweite Material eine niedrigere Erweichungstemperatur aufweist als das erste Material, d a d u r c h g e k e n n z e i c h n e t , dass die Erweichungstemperatur des zweiten Materials weniger als circa 70° C beträgt.
2. Partikel nach Anspruch 1 d a d u r c h g e k e n n z e i c h n e t , dass die Beschichtung 2 ein Polymer, vorzugsweise ein thermoplastisches Polymer, enthält.
3. Partikel nach Anspruch 2 d a d u r c h g e k e n n z e i c h n e t , dass die Beschichtung 2 ein Polyvinylacetal, vorzugsweise ein Polyvinylbutyral, enthält.
4. Partikel nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Beschichtung 2 nicht hygroskopisch, vorzugsweise hydrophob ist.
5. Partikel nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der Kern 1 mindestens ein Element aus der Materialgruppe Metall, Keramik, Polymer enthält.
6. Partikel nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t , dass der Kern 1 mindestens zwei Teile aus der Materialgruppe Metall, Keramik, Polymer in loser oder fester Verbindung enthält.
7. Verfahren zur Herstellung eines dreidimensionalen Gegenstandes mittels SLS aufweisend folgende Schritte:
- Auftragen einer Schicht aus Partikeln auf eine Ziel- fläche,
- Bestrahlen eines ausgewählten Teils der Schicht, entsprechend einem Querschnitt des Gegenstandes, mit einem Energiestrahl, so dass die Partikel im ausgewählten Teil verbunden werden,
- Wiederhohlen der Schritte des Auftragens und des Bestrahlens für eine Mehrzahl von Schichten, so dass die verbunden Teile der benachbarten Schichten sich verbinden, um den Gegenstand zu bilden, d a d u r c h g e k e n n z e i c h n e t ,
- dass Partikeln verwendet werden, die mindestens ein Material enthalten, dessen Erweichungstemperatur weniger als circa 70° C beträgt .
Verfahren nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t , daß Partikeln nach einem der Ansprüche 1 bis 6 verwendet werden.
9. Verfahren nach einem der Ansprüche 7 oder 8, d a d u r c h g e k e n n z e i c h n e t , dass zumindest die jeweils zu bestrahlende Partikel- schicht zusätzlich beheizt wird, vorzugsweise auf ein
Temperaturniveau von circa 2-3° C unter der niedrigsten Erweichungstemperatur der verwendeten Partikelmaterialien.
10. Gegenstand aus miteinander verbundenen Partikeln, dadurch gekennzeichnet, dass er aus Partikeln nach einem der Ansprüche 1 bis 6 hergestellt wurde und/oder dass er mittels eines Verfahrens nach einem der Ansprüche 7 bis 9 hergestellt wurde.
PCT/DE2003/002011 2002-06-18 2003-06-16 Lasersinterverfahren mit erhöhter prozessgenauigkeit und partikel zur verwendung dabei WO2003106146A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03759859A EP1513670A1 (de) 2002-06-18 2003-06-16 Lasersinterverfahren mit erh hter prozessgenauigkeit und par tikel zur verwendung dabei
US10/518,699 US20060159896A1 (en) 2002-06-18 2003-06-16 Laser sintering method with increased process precision, and particles used for the same
JP2004513010A JP2005536324A (ja) 2002-06-18 2003-06-16 処理精度を増大させたレーザ焼結法、及びその方法に用いられる粒子

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE20220325 2002-06-18
DE20220325.5 2002-06-18
DE10313452A DE10313452A1 (de) 2002-06-18 2003-03-26 Lasersinterverfahren mit erhöhter Prozessgenauigkeit und Partikel zur Verwendung dabei
DE10313452.2 2003-03-26

Publications (1)

Publication Number Publication Date
WO2003106146A1 true WO2003106146A1 (de) 2003-12-24

Family

ID=29737632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/002011 WO2003106146A1 (de) 2002-06-18 2003-06-16 Lasersinterverfahren mit erhöhter prozessgenauigkeit und partikel zur verwendung dabei

Country Status (4)

Country Link
US (1) US20060159896A1 (de)
EP (1) EP1513670A1 (de)
JP (1) JP2005536324A (de)
WO (1) WO2003106146A1 (de)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004073889A1 (de) * 2003-02-18 2004-09-02 Daimlerchrysler Ag Verfahren zur beschichtung von partikeln für generative rapid prototyping prozesse
WO2005070654A1 (de) * 2004-01-23 2005-08-04 Eos Gmbh Electro Optical Systems Schichtaufbauendes verfahren zur herstellung eines dreidimensionalen gegenstandes sowie dafür geeignete materialsysteme
CN1318167C (zh) * 2005-08-09 2007-05-30 南昌航空工业学院 一种基于选区激光烧结的颗粒增强金属基复合材料的近净成形制备方法
WO2007113627A1 (en) * 2006-04-04 2007-10-11 M.A.E. S.P.A. Static mixer and process for manufacturing the same
US7754137B2 (en) * 2005-06-06 2010-07-13 The University Of Liverpool Process for fabricating a composite
US8313087B2 (en) 2004-03-21 2012-11-20 Eos Gmbh Electro Optical Systems Powder for rapid prototyping and associated production method
EP2543701A1 (de) * 2011-07-06 2013-01-09 Evonik Degussa GmbH Pulver enthaltend mit Polymer beschichtete anorganische Partikel
EP2543457A1 (de) * 2011-07-06 2013-01-09 Evonik Degussa GmbH Pulver enthaltend mit Polymer beschichtete Kernpartikel enthaltend Metalle, Metalloxide, Metall- oder Halbmetallnitride
US8710144B2 (en) 2004-03-21 2014-04-29 Eos Gmbh Electro Optical Systems Powder for layerwise manufacturing of objects
WO2017046132A1 (en) 2015-09-14 2017-03-23 Tiger Coatings Gmbh & Co. Kg Use of a thermosetting polymeric powder composition
US9833788B2 (en) 2004-03-21 2017-12-05 Eos Gmbh Electro Optical Systems Powder for layerwise manufacturing of objects
WO2018046739A1 (de) 2016-09-12 2018-03-15 Covestro Deutschland Ag Pulverbasiertes additives fertigungsverfahren bei niedriger temperatur
EP2543696B1 (de) * 2011-07-06 2018-09-12 Evonik Degussa GmbH Pulver enthaltend mit Polymer beschichtete polymere Kernpartikel
EP3375820A1 (de) 2017-03-13 2018-09-19 TIGER Coatings GmbH & Co. KG Verwendung einer wärmehärtbaren kunststoffpulverzusammensetzung
EP3375819A1 (de) 2017-03-13 2018-09-19 TIGER Coatings GmbH & Co. KG Verwendung einer wärmehärtbaren polymerpulverzusammensetzung
CN108752014A (zh) * 2018-05-14 2018-11-06 广东工业大学 一种用于选区激光烧结(sls)/选区激光融化(slm)的粉末及其制备方法和应用
WO2019121277A1 (de) 2017-12-20 2019-06-27 Covestro Deutschland Ag Pulverbasiertes additives fertigungsverfahren
WO2019121274A1 (de) 2017-12-20 2019-06-27 Covestro Deutschland Ag Pulverbasiertes additives fertigungsverfahren

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080153947A1 (en) * 2006-12-21 2008-06-26 Richard Benton Booth Methods and systems for fabricating fire retardant materials
US10226919B2 (en) 2007-07-18 2019-03-12 Voxeljet Ag Articles and structures prepared by three-dimensional printing method
DE102007050953A1 (de) 2007-10-23 2009-04-30 Voxeljet Technology Gmbh Vorrichtung zum schichtweisen Aufbau von Modellen
DE102010006939A1 (de) 2010-02-04 2011-08-04 Voxeljet Technology GmbH, 86167 Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102010013732A1 (de) 2010-03-31 2011-10-06 Voxeljet Technology Gmbh Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102010014969A1 (de) 2010-04-14 2011-10-20 Voxeljet Technology Gmbh Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102010015451A1 (de) 2010-04-17 2011-10-20 Voxeljet Technology Gmbh Verfahren und Vorrichtung zum Herstellen dreidimensionaler Objekte
DE102010056346A1 (de) 2010-12-29 2012-07-05 Technische Universität München Verfahren zum schichtweisen Aufbau von Modellen
DE102011007957A1 (de) 2011-01-05 2012-07-05 Voxeljet Technology Gmbh Vorrichtung und Verfahren zum Aufbauen eines Schichtenkörpers mit wenigstens einem das Baufeld begrenzenden und hinsichtlich seiner Lage einstellbaren Körper
DE102011111498A1 (de) 2011-08-31 2013-02-28 Voxeljet Technology Gmbh Vorrichtung zum schichtweisen Aufbau von Modellen
DE102012004213A1 (de) 2012-03-06 2013-09-12 Voxeljet Technology Gmbh Verfahren und Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102012010272A1 (de) 2012-05-25 2013-11-28 Voxeljet Technology Gmbh Verfahren zum Herstellen dreidimensionaler Modelle mit speziellen Bauplattformen und Antriebssystemen
DE102012012363A1 (de) 2012-06-22 2013-12-24 Voxeljet Technology Gmbh Vorrichtung zum Aufbauen eines Schichtenkörpers mit entlang des Austragbehälters bewegbarem Vorrats- oder Befüllbehälter
DE102012020000A1 (de) 2012-10-12 2014-04-17 Voxeljet Ag 3D-Mehrstufenverfahren
DE102013004940A1 (de) 2012-10-15 2014-04-17 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit temperiertem Druckkopf
DE102012022859A1 (de) 2012-11-25 2014-05-28 Voxeljet Ag Aufbau eines 3D-Druckgerätes zur Herstellung von Bauteilen
DE102013003303A1 (de) 2013-02-28 2014-08-28 FluidSolids AG Verfahren zum Herstellen eines Formteils mit einer wasserlöslichen Gussform sowie Materialsystem zu deren Herstellung
DE102013018182A1 (de) 2013-10-30 2015-04-30 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit Bindersystem
DE102013018031A1 (de) 2013-12-02 2015-06-03 Voxeljet Ag Wechselbehälter mit verfahrbarer Seitenwand
DE102013020491A1 (de) 2013-12-11 2015-06-11 Voxeljet Ag 3D-Infiltrationsverfahren
EP2886307A1 (de) 2013-12-20 2015-06-24 Voxeljet AG Vorrichtung, Spezialpapier und Verfahren zum Herstellen von Formteilen
WO2015106113A1 (en) * 2014-01-09 2015-07-16 United Technologies Corporation Material and processes for additively manufacturing one or more parts
WO2015112365A1 (en) * 2014-01-24 2015-07-30 United Technologies Corporation Powder improvement for additive manufacturing
DE102014004692A1 (de) 2014-03-31 2015-10-15 Voxeljet Ag Verfahren und Vorrichtung für den 3D-Druck mit klimatisierter Verfahrensführung
DE102014007584A1 (de) 2014-05-26 2015-11-26 Voxeljet Ag 3D-Umkehrdruckverfahren und Vorrichtung
EP3174651B1 (de) 2014-08-02 2020-06-17 voxeljet AG Verfahren und gussform, insbesondere zur verwendung in kaltgussverfahren
DE102015006533A1 (de) 2014-12-22 2016-06-23 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Schichtaufbautechnik
DE102015003372A1 (de) 2015-03-17 2016-09-22 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Doppelrecoater
DE102015006363A1 (de) 2015-05-20 2016-12-15 Voxeljet Ag Phenolharzverfahren
DE102015011503A1 (de) 2015-09-09 2017-03-09 Voxeljet Ag Verfahren zum Auftragen von Fluiden
DE102015011790A1 (de) 2015-09-16 2017-03-16 Voxeljet Ag Vorrichtung und Verfahren zum Herstellen dreidimensionaler Formteile
DE102015015353A1 (de) 2015-12-01 2017-06-01 Voxeljet Ag Verfahren und Vorrichtung zur Herstellung von dreidimensionalen Bauteilen mittels Überschussmengensensor
EP3181332A1 (de) * 2015-12-14 2017-06-21 Evonik Degussa GmbH Polymerpulver für powder bed fusion-verfahren
JP6664650B2 (ja) * 2016-01-18 2020-03-13 国立研究開発法人産業技術総合研究所 造形物の製造方法
JP6699824B2 (ja) * 2016-01-18 2020-05-27 国立研究開発法人産業技術総合研究所 造形用粉末
CN108602262B (zh) * 2016-04-11 2021-07-30 惠普发展公司,有限责任合伙企业 颗粒状构建材料
DE102016013610A1 (de) 2016-11-15 2018-05-17 Voxeljet Ag Intregierte Druckkopfwartungsstation für das pulverbettbasierte 3D-Drucken
JP2018130834A (ja) * 2017-02-13 2018-08-23 株式会社ノリタケカンパニーリミテド 積層造形用粉体
JP6907657B2 (ja) * 2017-03-31 2021-07-21 セイコーエプソン株式会社 三次元造形物の製造方法
DE102017006860A1 (de) 2017-07-21 2019-01-24 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Spektrumswandler
DE102019000796A1 (de) 2019-02-05 2020-08-06 Voxeljet Ag Wechselbare Prozesseinheit
DE102019007595A1 (de) 2019-11-01 2021-05-06 Voxeljet Ag 3d-druckverfahren und damit hergestelltes formteil unter verwendung von ligninsulfat

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4944817A (en) * 1986-10-17 1990-07-31 Board Of Regents, The University Of Texas System Multiple material systems for selective beam sintering
US5431967A (en) * 1989-09-05 1995-07-11 Board Of Regents, The University Of Texas System Selective laser sintering using nanocomposite materials
EP0897745A1 (de) * 1996-02-20 1999-02-24 Mikuni Corporation Methode zur herstellung von körnigem material
FR2803243A1 (fr) * 1999-12-30 2001-07-06 Ass Pour Les Transferts De Tec Procede d'obtention d'une piece en materiau polymere, par exemple d'une piece prototype, ayant des caracteristiques ameliorees par exposition a un flux electronique
US6401001B1 (en) * 1999-07-22 2002-06-04 Nanotek Instruments, Inc. Layer manufacturing using deposition of fused droplets

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4732920A (en) * 1981-08-20 1988-03-22 Graham John W High strength particulates
WO2000077778A1 (fr) * 1999-06-14 2000-12-21 Fujitsu Limited Support d'enregistrement magnetique, son procede de fabrication et dispositif a disque magnetique

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4944817A (en) * 1986-10-17 1990-07-31 Board Of Regents, The University Of Texas System Multiple material systems for selective beam sintering
US5431967A (en) * 1989-09-05 1995-07-11 Board Of Regents, The University Of Texas System Selective laser sintering using nanocomposite materials
EP0897745A1 (de) * 1996-02-20 1999-02-24 Mikuni Corporation Methode zur herstellung von körnigem material
US6401001B1 (en) * 1999-07-22 2002-06-04 Nanotek Instruments, Inc. Layer manufacturing using deposition of fused droplets
FR2803243A1 (fr) * 1999-12-30 2001-07-06 Ass Pour Les Transferts De Tec Procede d'obtention d'une piece en materiau polymere, par exemple d'une piece prototype, ayant des caracteristiques ameliorees par exposition a un flux electronique

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006517856A (ja) * 2003-02-18 2006-08-03 ダイムラークライスラー・アクチェンゲゼルシャフト ラピッドプロトタイプ生成プロセス用の粒子コーティング方法
US7611756B2 (en) 2003-02-18 2009-11-03 Daimler Ag Process for coating particles for generative rapid prototyping
WO2004073889A1 (de) * 2003-02-18 2004-09-02 Daimlerchrysler Ag Verfahren zur beschichtung von partikeln für generative rapid prototyping prozesse
WO2005070654A1 (de) * 2004-01-23 2005-08-04 Eos Gmbh Electro Optical Systems Schichtaufbauendes verfahren zur herstellung eines dreidimensionalen gegenstandes sowie dafür geeignete materialsysteme
JP2007518605A (ja) * 2004-01-23 2007-07-12 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ 3次元物体を層状に製造する方法及びその方法に適した材料系
US8313087B2 (en) 2004-03-21 2012-11-20 Eos Gmbh Electro Optical Systems Powder for rapid prototyping and associated production method
US9833788B2 (en) 2004-03-21 2017-12-05 Eos Gmbh Electro Optical Systems Powder for layerwise manufacturing of objects
US8710144B2 (en) 2004-03-21 2014-04-29 Eos Gmbh Electro Optical Systems Powder for layerwise manufacturing of objects
US7754137B2 (en) * 2005-06-06 2010-07-13 The University Of Liverpool Process for fabricating a composite
CN1318167C (zh) * 2005-08-09 2007-05-30 南昌航空工业学院 一种基于选区激光烧结的颗粒增强金属基复合材料的近净成形制备方法
WO2007113627A1 (en) * 2006-04-04 2007-10-11 M.A.E. S.P.A. Static mixer and process for manufacturing the same
US10479733B2 (en) 2011-07-06 2019-11-19 Evonik Degussa Gmbh Powder comprising polymer-coated core particles comprising metals, metal oxides, metal nitrides or semimetal nitrides
EP2543701A1 (de) * 2011-07-06 2013-01-09 Evonik Degussa GmbH Pulver enthaltend mit Polymer beschichtete anorganische Partikel
US9428610B2 (en) 2011-07-06 2016-08-30 Evonik Degussa Gmbh Powder comprising polymer-coated inorganic particles
EP2543457A1 (de) * 2011-07-06 2013-01-09 Evonik Degussa GmbH Pulver enthaltend mit Polymer beschichtete Kernpartikel enthaltend Metalle, Metalloxide, Metall- oder Halbmetallnitride
EP2543696B1 (de) * 2011-07-06 2018-09-12 Evonik Degussa GmbH Pulver enthaltend mit Polymer beschichtete polymere Kernpartikel
WO2017046132A1 (en) 2015-09-14 2017-03-23 Tiger Coatings Gmbh & Co. Kg Use of a thermosetting polymeric powder composition
EP3960429A1 (de) 2015-09-14 2022-03-02 TIGER Coatings GmbH & Co. KG Verwendung einer wärmehärtbaren polymerpulverzusammensetzung
US10780630B2 (en) 2015-09-14 2020-09-22 Tiger Coatings Gmbh & Co. Kg Use of a thermosetting polymeric powder composition
US10926459B2 (en) 2016-09-12 2021-02-23 Covestro Deutschland Ag Powder-based additive manufacturing process at low temperatures
WO2018046739A1 (de) 2016-09-12 2018-03-15 Covestro Deutschland Ag Pulverbasiertes additives fertigungsverfahren bei niedriger temperatur
WO2018167067A1 (en) 2017-03-13 2018-09-20 Tiger Coatings Gmbh & Co. Kg Use of a thermosetting polymeric powder composition
WO2018167065A1 (en) 2017-03-13 2018-09-20 Tiger Coatings Gmbh & Co. Kg Use of a thermosetting polymeric powder composition
EP3757166A1 (de) 2017-03-13 2020-12-30 TIGER Coatings GmbH & Co. KG Verwendung einer wärmehärtbaren kunststoffpulverzusammensetzung
EP3375819A1 (de) 2017-03-13 2018-09-19 TIGER Coatings GmbH & Co. KG Verwendung einer wärmehärtbaren polymerpulverzusammensetzung
US11091660B2 (en) 2017-03-13 2021-08-17 Tiger Coatings Gmbh & Co. Kg Use of a thermosetting polymeric powder composition
EP3375820A1 (de) 2017-03-13 2018-09-19 TIGER Coatings GmbH & Co. KG Verwendung einer wärmehärtbaren kunststoffpulverzusammensetzung
WO2019121277A1 (de) 2017-12-20 2019-06-27 Covestro Deutschland Ag Pulverbasiertes additives fertigungsverfahren
WO2019121274A1 (de) 2017-12-20 2019-06-27 Covestro Deutschland Ag Pulverbasiertes additives fertigungsverfahren
CN108752014A (zh) * 2018-05-14 2018-11-06 广东工业大学 一种用于选区激光烧结(sls)/选区激光融化(slm)的粉末及其制备方法和应用

Also Published As

Publication number Publication date
JP2005536324A (ja) 2005-12-02
EP1513670A1 (de) 2005-03-16
US20060159896A1 (en) 2006-07-20

Similar Documents

Publication Publication Date Title
WO2003106146A1 (de) Lasersinterverfahren mit erhöhter prozessgenauigkeit und partikel zur verwendung dabei
EP2368696B1 (de) Auffrischoptimiertes PA 12-Pulver zur Verwendung in einem generativen Schichtbauverfahren
EP3074208B1 (de) 3d-druckverfahren mit schlicker
WO2005070654A1 (de) Schichtaufbauendes verfahren zur herstellung eines dreidimensionalen gegenstandes sowie dafür geeignete materialsysteme
EP1513671B1 (de) Partikeln und verfahren für die herstellung eines dreidimensionalen gegenstandes
EP1568472B1 (de) Verfahren und Vorrichtung zum Herstellen von Produkten durch Sintern und/oder Schmelzen
EP2794152B1 (de) Verfahren zur fertigung eines kompakten bauteils sowie mit dem verfahren herstellbares bauteil
EP1266878A1 (de) Verfahren und Vorrichtung zur Herstellung von keramischen Formkörpern
EP2200813A2 (de) Materialsystem und verfahren zum verändern von eigenschaften eines kunststoffbauteiles
EP1594679A2 (de) Beschichtete pulverpartikel f r die herstellung von dreidime nsionalen k rpern mittels schichtaufbauender verfahren
WO2007045471A1 (de) SCHICHTWEISES HERSTELLUNGSVERFAHREN MIT KORNGRÖßENBEEINFLUSSUNG
DE102007016656A1 (de) PAEK-Pulver, insbesondere zur Verwendung in einem Verfahren zum schichtweisen Herstellen eines dreidimensionalen Objektes, sowie Verfahren zu dessen Herstellung
DE4410046C1 (de) Verfahren und Material zum Herstellen eines dreidimensionalen Objekts durch Sintern
DE102013224693A1 (de) Verfahren zur beschleunigten Herstellung von Objekten mittels generativer Fertigung
WO2009132782A1 (de) Verfahren zur herstellung von keramischen objekten mittels selektiven laserschmelzens
DE102020204989B3 (de) Verfahren zur additiven Fertigung eines Schaltungsträgers und Schaltungsträger
DE102017103650A1 (de) Verfahren für das selektive laserstrahlhartlöten
EP0314142B1 (de) Verfahren zur Herstellung eines porösen Formkörpers
WO2007063014A2 (de) Verfahren zum herstellen keramischer gusswerkzeuge
DE102018132938A1 (de) Verfahren zur generativen Herstellung wenigstens eines Gegenstands, Verwendung eines Druckkopfs und Kraftfahrzeug
DE10313452A1 (de) Lasersinterverfahren mit erhöhter Prozessgenauigkeit und Partikel zur Verwendung dabei
DE102019133979A1 (de) Verfahren zum Laserauftragschweißen mit granularem Zusatzwerkstoff
DE3926019C2 (de) Verfahren zur Herstellung von dünnwandigen keramischen Kleinstteilen durch Niederdruck-Warmspritzgießen
EP3934830B1 (de) Pulver zum lasersintern und verwendung
EP0189128B1 (de) Verfahren zur Herstellung geformter Artikel aus leitfähigen Thermoplasten und deren Verwendung in der Elektroindustrie

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003759859

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004513010

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2003759859

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006159896

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10518699

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10518699

Country of ref document: US