WO2017150833A1 - 원심 흡입식 하이브리드 베인 유체기계 - Google Patents
원심 흡입식 하이브리드 베인 유체기계 Download PDFInfo
- Publication number
- WO2017150833A1 WO2017150833A1 PCT/KR2017/001839 KR2017001839W WO2017150833A1 WO 2017150833 A1 WO2017150833 A1 WO 2017150833A1 KR 2017001839 W KR2017001839 W KR 2017001839W WO 2017150833 A1 WO2017150833 A1 WO 2017150833A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cam ring
- fluid
- cylinder
- suction
- vanes
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/0021—Systems for the equilibration of forces acting on the pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C1/00—Rotary-piston machines or engines
- F01C1/30—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F01C1/32—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F01C1/02 and relative reciprocation between the co-operating members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/32—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
- F04C18/324—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the inner member and reciprocating with respect to the outer member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2/00—Rotary-piston machines or pumps
- F04C2/30—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C2/32—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in groups F04C2/02 and relative reciprocation between co-operating members
- F04C2/324—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in groups F04C2/02 and relative reciprocation between co-operating members with vanes hinged to the inner member and reciprocating with respect to the outer member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/02—Lubrication; Lubricant separation
Definitions
- the present invention relates to fluid machines such as compressors, liquid pumps, vacuum pumps, blowers and the like.
- Compressors widely used as compression fluid machines such as automobiles include rotary vane compressors and rotary compressors.
- the dual rotary vane compressor has a configuration in which a compression space is separated as a vane between a cylindrical rotor into which a vane is inserted and a cylinder outside the rotor, and is discharged while the compression space is reduced according to the rotation of the rotor.
- the suction cylinder and the discharge side are pushed to the surface of the roller by a roller which is rotated by being fitted to a circular cylinder, a crankshaft which eccentrically rotates the rotation center periphery therein, and a spring. And a vane for dividing, a suction pipe into which gas is sucked, and a discharge hole blocked by a valve plate made of an elastic material.
- the object of the present invention is to form at least one inlet in the cam ring of the inner constituting the compressor, forming a separate oil passage sealing through oil (sealing) It can be used for the purpose of applying the back pressure of vanes with the effect, increasing the efficiency of the compressor by forming the fluid outlet or the number of vanes as the number of vanes, and by rotating the cam ring eccentrically, the rotational adhesion is improved, the fluid leakage
- the present invention provides a centrifugal suction hybrid vane fluid machine in which torque fluctuations and pulsations are small, and centrifugal force is not applied to the vanes, thereby reducing frictional losses of vanes and sliding parts of the cylinder.
- the rotating shaft 20 rotatably installed by the rotating means;
- a cam ring 30 fixedly fastened to the rotation shaft 20 and accompanied with rotation;
- the cam ring 30 fastened to the rotating shaft 20 is internally formed, but forms a plurality of vane grooves 41 cut toward the internal cam ring 30, and the outer circumference of the cam ring 30 is in contact with at least one place.
- Cylinder 40 is formed around the periphery; Correspondingly inserted into the plurality of vane grooves 41 of the cylinder 40, one end corresponding to the outer periphery of the cam ring 30, the plurality of fluid chamber ( ⁇ ) in the space between the cam ring 30 and the cylinder 40 Vanes 50 defining compartment;
- the fluid chamber ⁇ is coupled to both ends of the cylinder 40 so that the inner periphery of the cylinder 40, the outer periphery of the cam ring 30, and the vanes 50 partitioning the plurality of fluid chambers ⁇ are formed.
- An inlet for allowing fluid to be sucked into the fluid chamber ⁇ is installed at the outer circumference of the cam ring 30, and the inlet port rotates.
- the present invention is easy to form a plurality of fluid chamber, while accommodating the advantages of the rotary vane compressor with low torque fluctuations and pulsation, but because the vane does not apply centrifugal force, the rotary loss of the vane and cylinder is low With all the advantages of the compressor, there is an effect having a relatively higher efficiency than the conventional compressor.
- the present invention does not have a problem that the friction loss of the vanes due to the centrifugal force during the high speed rotation is large, it is possible to rotate at a high speed, there is an advantageous effect in the production of a high-speed small fluid machine with a low manufacturing cost.
- the present invention has a good efficiency because the structure does not generate a suction resistance generated when the fluid is sucked.
- FIG. 1 is an exploded perspective view of an embodiment showing a centrifugal suction hybrid vane fluid machine according to the present invention.
- Figure 2 is an embodiment axial sectional view of a fluid machine according to the present invention.
- FIG. 3 is a cross-sectional view at right angles in one embodiment where the cam ring is concentric with the axis of rotation in a fluid machine according to the present invention
- FIG 4 is a cross-sectional view at right angles in one embodiment in which the cam ring is eccentrically applied to the rotating shaft in the fluid machine according to the present invention.
- FIG. 5 is a perspective view of the cam ring showing the inlet of the cam ring for reducing the suction resistance of the suction fluid and increasing the suction efficiency to the centrifugal force of the suction fluid.
- Figure 6 is a view showing the state of the conventional rotary vane compressor and rotary compressor.
- main bearing 62 first discharge
- the present invention has the following features to achieve the above object.
- the rotating shaft 20 is rotatably installed by a rotating means;
- a cam ring 30 which is fixedly fastened together with the rotation shaft 20 to be rotated together;
- the cam ring 30 fastened to the rotating shaft 20 is internally formed, but forms a plurality of vane grooves 41 cut toward the internal cam ring 30, and the outer circumference of the cam ring 30 is in contact with at least one place.
- Cylinder 40 is formed around the periphery; Correspondingly inserted into the plurality of vane grooves 41 of the cylinder 40, one end corresponding to the outer periphery of the cam ring 30, the plurality of fluid chamber ( ⁇ ) in the space between the cam ring 30 and the cylinder 40 Vanes 50 defining compartment;
- the fluid chamber ⁇ is coupled to both ends of the cylinder 40 so that the inner periphery of the cylinder 40, the outer periphery of the cam ring 30, and the vanes 50 partitioning the plurality of fluid chambers ⁇ are formed.
- An inlet for allowing fluid to be sucked into the fluid chamber ⁇ is installed at the outer circumference of the cam ring 30, and the inlet port rotates.
- the cam ring 30 has one or more final suction holes 31 formed therein, and as the final suction hole 31 is formed on the outer periphery, the fluid sucked by the rotation of the cam ring 30 also rotates. The suction efficiency sucked into the fluid chamber ⁇ is increased by the centrifugal force generated in the rotating fluid.
- a back pressure passage 82 is formed between the main casing 70 and the cylinder 40;
- the oil separated in the oil separation tank 72 is moved along the oil passage 80 to the back pressure passage 82, whereby the oil moved to the back pressure passage 82 lubricates the portion where the vanes 50 are inserted.
- the vane 50 is always pre-set with the outer circumference of the cam ring 30 so that the vane 50 is always in contact with the cam ring 30 while the sealing function is performed so that the fluid does not leak to other parts than the fluid chamber ⁇ .
- a back pressure passage 82 for applying back pressure to push with pressure It is characterized in that the further provided.
- a plurality of initial discharge ports 62 and discharge valves 63 are provided in the main flange 60, respectively, and the initial discharge ports 62 and discharge valves 63 are fluid chambers ⁇ or vanes 50. It is characterized in that the number is formed.
- cam ring 30 is installed concentrically with the rotation shaft 20, or
- the volume of the fluid chamber ⁇ formed at each initial suction opening 11 side is different. As it becomes, the adhesion between the outer periphery of the cam ring 30 and the inner periphery of the cylinder 40 is improved, so that the leakage of the fluid is reduced.
- FIGS. 1 to 5 a centrifugal suction hybrid vane fluid machine according to a preferred embodiment of the present invention will be described in detail with reference to FIGS. 1 to 5.
- the centrifugal suction hybrid vane fluid machine includes a bouquet yis 10, a rotating shaft 20, a cam ring 30, a cylinder 40, a vane 50, a main flange 60, a main casing 70. In doing it,
- the cylinder 40 in contact with the vanes 50 is inserted into the plurality of vane grooves 41, fixed to the side surface of the cylinder 40 and the main casing 70, and a plurality of initial discharge ports 62 are formed.
- Each of the discharge ports 62 has a main flange 60 in which the discharge valve 63 is installed, and a sub flange 64 fixed to the other side of the cylinder 40.
- the outer periphery of the cam ring 30 and the cylinder 40 The fluid chamber (alpha) is formed by the inner periphery, the vane 50, the main flange 60, and the subflange. As the cam ring 30 rotates, the volume of the fluid chamber ⁇ increases and decreases.
- the bouquet casing 10 forms a tubular body with an empty inside together with the main casing 70 to form a single compressor shape.
- the bouquet casing 10 and the main casing 70 correspond to each other, and a rotation shaft 20, a cam ring 30, a cylinder 40, a vane 50, and a main flange 60, which will be described later, are installed therein. It becomes form to say.
- the outer periphery of the bouquet is 10 is formed with the first inlet 11 for the first flow of fluid, the main casing 70 is introduced from the bouquet is 10 after passing through the internal configuration of the final discharge of the fluid
- the discharge port 71 is formed.
- the bouquet yash 10 is provided with a rotor 12 and a stator 13 for rotating the internal rotating shaft 20, respectively, one end of the bouquet yash 10 is a sub-bearing 14, A main bearing 61 is installed in the main flange 60 installed in the main casing 70 so that both ends of the rotating shaft 20 rotated inside the apparatus of the present invention can be fastened.
- the rotation shaft 20 is rotatably installed vertically in the interior of the bouquet casing 10 and the main casing 70 which are fastened to each other.
- the cam ring 30 is integrally installed on the outer circumference of the rotating shaft 20, and is co-rotated with the cam ring 30, and a hole through which the rotating shaft 20 is fitted is formed through the center thereof,
- the final suction port 31 is formed perforated toward the circumference, and the fluid flowing through the initial suction hole 11 of the above-mentioned bouquet is 10 is introduced into the cam ring 30 and then through the initial suction hole 11. It is to be moved from inside to outside.
- At least one suction port (final suction port 31) penetrating the inner circumference and the outer circumference of the cam ring 30 is formed (in the present invention, a plurality is formed to face each other in one embodiment), which is a fluid. Is sucked from the inner circumferential direction of the rotating cam ring 30 to the outer circumferential direction, and when the cam ring 30 is rotated, the sucked fluid also rotates to generate centrifugal force, and the suction fluid increases the suction pressure by the centrifugal force. Inhalation to ( ⁇ ) is more easily made.
- the fluid used as the liquid pump is a liquid, it is also possible to effectively suppress the cavitation problem in the fluid chamber caused by the suction resistance.
- the suction resistance of the fluid lowers the efficiency of all fluids.
- the suction port is easy to make the suction port large as described above, the suction resistance generated when the fluid is sucked into the fluid chamber ⁇ is less likely to occur. Will be.
- the cylinder 40 is a configuration of a ring cross section having a predetermined width and thickness, the cylinder 40 is cut in equal intervals toward the inner circumferential direction to form the vane groove 41 along the inner circumferential direction It has a structure that forms a plurality of grooves, that is, the vane groove (41).
- the cylinder 40 has a structure in which the main flange 60 and the sub flange 64 which will be described later at both ends are fastened by fixing means (bolts, etc., B), respectively, and installed inside the main casing 70.
- the cylinder 40 has a cam ring 30 in which the pin 32 and the rotating shaft 20 are rotated as described above, and the cam ring 30 rotates, and the plurality of final suction openings 31 are rotated as the cam ring 30 rotates.
- the fluid suctioned from the plurality of vanes (50) and vanes (40) between the inner circumference of the cylinder (40) and the outer circumference of the cam ring (30) correspond to each of the vane grooves (41) and are contacted with the cam ring (30). 50 is moved to the fluid chamber ( ⁇ ).
- the number of fluid chambers ⁇ which is a space formed between the vanes 50 and the vanes 50, is also six.
- the vanes 50 are fastened to the plurality of vane grooves 41 formed in the cylinder 40, respectively, and one end of the vane 50 is inserted in a state in which an elastic member (ex; spring, 51) is fastened to the main casing.
- an elastic member ex; spring, 51
- the vane groove 41 is pushed toward the outer circumference of the cam ring 30, so that the plurality of vanes 50 are always of the cam ring 30 It has a structure in contact with the outer circumference.
- the main flange 60 is formed with a main bearing 61 into which one end of the rotation shaft 20 is fitted at the center of one surface on which the cylinder 40 is raised, and along the circumferential surface of one surface on which the main bearing 61 is formed, as described above.
- the first discharge port 62 corresponding to the fluid chamber ⁇ , which is a space between the vanes 50 and the vanes 50, is formed to have a plurality of holes (ex: six).
- the fluid moved to the fluid chamber ⁇ between the vanes 50 and the vanes 50 is the first discharge port communicating with the fluid chamber ⁇ among the plurality of initial discharge ports 62 of the main flange 60. Pass 62.
- the discharge valve 63 is provided separately for each of the first discharge port 62, that is, the initial discharge port 62 and the discharge valve 63 is installed in the main flange and the fluid It is formed by the number of yarns (number of vanes 50).
- the main flange 60, in which the sub flange 64 and the main bearing 61 are inserted into the other end of the cylinder 40, is fixed with the fixing means B, respectively with the respective discharge valves 63. do.
- the present invention can be easily installed with the first discharge port 62 and the discharge valve 63, and there is an initial discharge port 62 and the discharge valve 63 for each fluid chamber ⁇ . Compression (when the pressure compressed in the fluid chamber ⁇ is compressed higher than the final discharge pressure) does not occur, thereby improving the efficiency of the compressor, reducing wear due to an increase in load, and a liquid compression phenomenon (a refrigerant compressor If the refrigerant is sucked into the fluid chamber in a liquefied state, it is a phenomenon that the fluid is compressed in the fluid chamber, which may cause a failure of the compressor.
- the main casing 70 has a cylinder 40 and a main flange 60 installed therein, and the main casing 70 forms a separate space at a lower end of the main flange 60.
- the oil separation tank 72 is formed.
- the fluid passing through the initial discharge port 62 of the main flange 60 is discharged to the outside through the final discharge port 71 after the oil is separated in the oil separation tank 72.
- the fluid chamber ⁇ is formed by the outer periphery of the cam ring 30, the inner periphery of the cylinder 40, the main flange 60, the sub flange 64, and each vane 50.
- the cam ring 30 rotates through the rotation shaft 20, and the volume of the fluid chamber ⁇ increases and decreases.
- the main casing 70 recesses the oil passage 80 in the longitudinal direction from the oil separation tank 72 at the inner circumference, and the oil in the oil separation tank 72 is passed through the oil passage 80.
- the vane 50 serves as a sealing function at the portion into which the vane 50 is inserted so that the fluid does not leak to other parts besides the fluid chamber ⁇ , In order to always be in contact with the cam ring 30, the outer circumferential edge of the cam ring 30, so that the vane 50 can always be pushed back to a predetermined constant pressure.
- the filter 81 is installed, so that the foreign matter of the oil can be filtered and moved, the oil separated in the oil separation tank 72 is the filter 81 and the oil
- the back pressure passage 82 By moving to the back pressure passage 82 through the passage 80, as described above, the back pressure of the vanes 50 is applied to the sliding part (contacting portion) of the vanes 50 together with the friction reduction and sealing functions.
- a small amount of oil branched from the back pressure passage 82 is lubricated to the main bearing 61 through the lubrication passage 83, the oil lubricated to the main bearing 61 is the oil passage 80 of the rotating shaft 20 After being lubricated to the sub-bearings 14 through the fall), a portion is lubricated on the surface where the cam ring 30 and the flange (main flange 60 and sub-flange 64) slide, and some of the final inlet 31 After being sucked into), it is discharged to the oil separation tank 72 through the initial discharge port 62 together with the fluid and circulated in the compressor.
- an oil passage 80 connected to the vane groove 41 is formed between the outer circumference of the cylinder 40 and the main casing 70, and is separated from the oil separation tank 72 of the main casing 70.
- the high pressure oil moves back pressure passage 82 through the oil passage 80 and applies back pressure to the vanes 50, while applying back pressure to the vanes 50, and the sliding part (vane groove of the cylinder 40) 41) and the vane 50, the main flange 60 and the sub-flanges 64 and the vane (50) because the oil is easily made to reduce the friction generated in the sliding portion (contact surface), the clearance of the sliding portion It is to be able to reduce the internal leakage of the fluid (Seal).
- the cam ring 30 in the case of the present invention, in the case of the cam ring 30 that is rotated inside, it can be installed so as to be located on the same axis as the rotation shaft 20, it is installed to be eccentric to the rotation shaft 20 or the cylinder 40
- the cam ring 30 is installed eccentrically with respect to the rotation shaft 20
- the volume of the fluid chambers ⁇ on both sides of the cam ring 30 is changed and the pressure difference between the fluid chambers ⁇ occurs. Since the pressure pushes the cam ring 30 from the high side to the low side, the adhesion between the outer circumference of the cam ring 30 and the inner circumference of the cylinder 40 is improved, so that the leakage of the fluid is reduced, as shown in FIG. 3. Because of this, the pulsation becomes smaller.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
본 발명은 원심 흡입식 하이브리드 베인 유체기계에 관한 것으로서, 보다 상세하게는 압축기의 내부에서 회전되는 캠링에 복수개의 최종흡입구를 내주연에서 외주연으로 관통형성되어, 회전시 유체의 유입이 원활해지도록 하고, 내부에 오일통로를 형성하여 내부 구성들의 실링효과가 더불어 베인의 배압을 가하는 역할을 함으로써, 유체 누설방지와 함께 마찰을 감소시키며, 유체의 최초토출구를 베인 또는 유체실의 개수만큼 형성함으로써 압축기의 효율을 상승시키고, 캠링은 편심설치되어 회전 접촉력이 증가되도록 함으로써, 기존의 압축기의 장점을 모두 가지면서도 압축기의 효율은 상승되는 원심 흡입식 하이브리드 베인 유체기계에 관한 것이다.
Description
본 발명은 압축기, 액체 펌프, 진공펌프, 블로어 등의 유체 기계에 관한 것이다.
자동차등의 압축유체기계로서 널리 사용되는 압축기로는 로타리 베인 압축기 및 로타리 압축기가 있다.
이중 로타리 베인 압축기는 베인이 삽입된 원통형의 로터와 로터외부의 실린더 사이에 베인으로서 분리되는 압축공간을 형성하고, 로터의 회전에 따라서 압축공간이 축소되면서 토출하는 구성을 가지는 것이다.
이러한 로타리 베인 압축기의 경우, 도 6의 (a)와 같이, 복수개의 베인이 설치되어 있기 때문에, 토크변동과 맥동은 작지만, 베인이 회전하기 때문에 회전속도가 빨라질수록 베인의 원심력 또한 커져서 베인과 실린더 사이의 습동부의 하중 및 마찰 손실이 커지며, 특히 고속 회전시에 효율이 낮은 단점이 있었다.
더불어, 로타리 압축기(롤링 피스톤)의 경우에는 원형의 실린더와, 그 내부에서 회전 중심주위를 편심 회전하는 크랭크축에 끼워져서 회전하게 되는 롤러와, 스프링에 의해 롤러의 표면으로 밀려 흡입측과 토출측을 구획하는 베인과, 가스가 흡입되는 흡입관과, 탄성 재질로된 밸브판에 의해 차단되는 토출구멍을 구비하여 구성된다.
하지만, 이러한 기존의 로타리 압축기(롤링 피스톤)는, 도 6의 (b)와 같이, 베인은 회전하지 않고 왕복 운동만 하여 베인에 원심력이 가해지지는 않지만, 1회전당 한번의 압축과정을 거치기 때문에 토크변동과 맥동이 큰 단점이 있었다.
본 발명에서는 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 압축기를 이루는 구성 중 내부의 캠링에 흡입구를 한개 이상 형성하고, 별도의 오일통로를 형성하여 오일을 통해 실링(sealing )효과와 함께 베인의 배압을 가하는 용도로 사용될 수 있도록 하며, 유체 배출구를 유체실 또는 베인의 개수만큼 형성함으로써 압축기의 효율을 상승시키며, 캠링을 편심결합하여 회전되도록 함으로써, 회전밀착성이 좋아져 유체의 누설이 작아지도록 한 것으로, 토크 변동과 맥동이 작고, 베인에 원심력이 가해지지 않게 하여 베인과 실린더의 습동부의 마찰 손실을 줄인 원심 흡입식 하이브리드 베인 유체기계를 제공하는데 있다.
본 발명의 다른 목적 및 장점들은 하기에 설명될 것이며, 본 발명의 실시예에 의해 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타낸 수단 및 조합에 의해 실현될 수 있다.
본 발명에서는 상기와 같은 문제점을 해결하기 위한 수단으로서, 회전 수단에 의해 회전 가능하게 설치된 회전축(20); 상기 회전축(20)에 고정체결되어 동반 회전되는 캠링(30); 상기 회전축(20)에 체결된 캠링(30)이 내설되되, 내설된 캠링(30)을 향해 절개한 베인홈(41)을 다수 형성하며, 캠링(30)의 외주연이 한곳 이상 접촉되어지는 내주연이 형성된 실린더(40); 상기 실린더(40)의 다수 베인홈(41)에 대응 삽입되고, 상기 캠링(30)의 외주연에 일단이 대응접촉 되어 캠링(30)과 실린더(40) 사이의 공간에 다수의 유체실(α)을 구획형성하는 베인(50); 상기 실린더(40)의 양단에 대응 체결되어, 실린더(40)의 내주연과 캠링(30)의 외주연과 다수의 유체실(α)을 구획 형성한 베인(50)과 함께 유체실(α)을 형성하는 주플랜지(60)와 부플랜지(64); 회전축(20), 캠링(30), 실린더(40), 베인(50), 주플랜지(60)를 내설하되, 각각의 유체실(α)에서 배출된 유체가 외부로 토출되도록 하는 주케이싱(70); 을 포함하여 이루어지며; 상기 캠링(30)의 외주연에 유체실(α)로 유체가 흡입될 수 있도록 하는 흡입구가 설치되어, 회전하는 흡입구를 갖는 것을 특징으로 한다.
이상에서 살펴본 바와 같이, 본 발명은 복수의 유체실 형성이 용이하여, 토크 변동과 맥동이 적은 로타리 베인 압축기의 장점을 수용하면서도, 베인에 원심력이 가해지지 않기 때문에 베인과 실린더의 마찰 손실이 적은 로타리 압축기의 장점을 모두 갖추고 있어, 기존의 압축기보다 상대적으로 높은 효율을 가지는 효과가 있다.
또한, 본 발명은 고속회전시의 원심력에 의한 베인의 마찰 손실이 커지는 문제점이 없기 때문에 고속회전이 가능하여, 제작비가 낮은 고속의 크기가 작은 유체기계의 제작에 유리한 효과가 있다.
또한, 본 발명은 유체의 흡입시에 발생하는 흡입 저항이 발생하지 않는 구조이기 때문에 효율이 좋은 효과가 있다.
도 1은 본 발명에 따른 원심 흡입식 하이브리드 베인 유체기계를 나타낸 일실시예의 분해 사시도.
도 2는 본 발명에 따른 유체기계의 일실시예 축방향 단면도.
도 3은 본 발명에 따른 유체기계에서 캠링이 회전축과 동심축을 이루도록 적용된 일실시예의 직각방향 단면도.
도 4는 본 발명에 따른 유체기계에서 캠링이 회전축과 편심되어 적용된 일실시예의 직각방향 단면도.
도 5는 흡입 유체의 흡입 저항을 줄이고 흡입 유체의 원심력에 흡입 효율을 높이기 위한 캠링의 흡입구를 보여주는 캠링의 사시도.
도 6은 종래의 로타리 베인 압축기와 로타리 압축기의 모습을 나타낸 도면.
<도면의 주요부분에 대한 부호의 표시>
10: 부케이싱 11: 최초흡입구
12: 로터 13: 스테터
14: 부베어링 20: 회전축
30: 캠링 31: 최종흡입구
32: 핀 40: 실린더
41: 베인홈 50: 베인
51: 탄성부재 60: 주플랜지
61: 주베어링 62: 최초토출구
63: 토출밸브 64: 부플랜지
70: 주케이싱 71: 최종토출구
72: 오일분리탱크 80, 84: 오일통로
81: 필터 82: 배압통로
83: 급유통로
B: 고정수단 α: 유체실
본 발명의 여러 실시예들을 상세히 설명하기 전에, 다음의 상세한 설명에 기재되거나 도면에 도시된 구성요소들의 구성 및 배열들의 상세로 그 응용이 제한되는 것이 아니다. 본 발명은 다른 실시예들로 구현되고 실시될 수 있고 다양한 방법으로 수행될 수 있다. 또, 장치 또는 요소 방향(예를 들어 "전(front)", "후(back)", "위(up)", "아래(down)", "상(top)", "하(bottom)", "좌(left)", "우(right)", "횡(lateral)")등과 같은 용어들에 관하여 본원에 사용된 표현 및 술어는 단지 본 발명의 설명을 단순화하기 위해 사용되고, 관련된 장치 또는 요소가 단순히 특정 방향을 가져야 함을 나타내거나 의미하지 않는다. 또한, "제 1(first)", "제 2(second)"와 같은 용어는 설명을 위해 본원 및 첨부 청구항들에 사용되고 상대적인 중요성 또는 취지를 나타내거나 의미하는 것을 의도하지 않는다.
본 발명은 상기의 목적을 달성하기 위해 아래의 특징을 갖는다.
*이하 첨부된 도면을 참조로 본 발명의 바람직한 실시예를 상세히 설명하도록 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
*따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.
본 발명에 따른 일실시예를 살펴보면, 회전 수단에 의해 회전 가능하게 설치된 회전축(20); 상기 회전축(20)의 고정체결되어 동반 회전되는 캠링(30); 상기 회전축(20)에 체결된 캠링(30)이 내설되되, 내설된 캠링(30)을 향해 절개한 베인홈(41)을 다수 형성하며, 캠링(30)의 외주연이 한곳 이상 접촉되어지는 내주연이 형성된 실린더(40); 상기 실린더(40)의 다수 베인홈(41)에 대응 삽입되고, 상기 캠링(30)의 외주연에 일단이 대응접촉 되어 캠링(30)과 실린더(40) 사이의 공간에 다수의 유체실(α)을 구획형성하는 베인(50); 상기 실린더(40)의 양단에 대응 체결되어, 실린더(40)의 내주연과 캠링(30)의 외주연과 다수의 유체실(α)을 구획 형성한 베인(50)과 함께 유체실(α)을 형성하는 주플랜지(60)와 부플랜지(64); 회전축(20), 캠링(30), 실린더(40), 베인(50), 주플랜지(60)를 내설하되, 각각의 유체실(α)에서 배출된 유체가 외부로 토출되도록 하는 주케이싱(70); 을 포함하여 이루어지며; 상기 캠링(30)의 외주연에 유체실(α)로 유체가 흡입될 수 있도록 하는 흡입구가 설치되어, 회전하는 흡입구를 갖는 것을 특징으로 한다.
또한, 상기 캠링(30)은 최종흡입구(31)가 한개 이상 천공형성되며, 최종흡입구(31)가 외주연에 천공 형성됨에 따라, 캠링(30)의 회전에 의해, 흡입되어지는 유체도 회전하며, 회전하는 유체에 발생되는 원심력에 의해, 유체실(α)로 흡입되는 흡입 효율이 상승되는 것을 특징으로 한다.
또한, 상기 주케이싱(70)과 실린더(40) 사이에 배압통로(82)가 형성되어; 오일분리탱크(72)에서 분리된 오일이 오일통로(80)를 따라 배압통로(82)로 이동함으로써, 배압통로(82)로 이동된 오일이 베인(50)이 삽입된 부위에 윤활 기능을 하고, 유체가 유체실(α) 외의 다른부분으로 누설되지 않도록 실링 기능을 하면서, 베인(50)이 캠링(30)에 항시 접촉되도록, 캠링(30) 외주연으로 베인(50)을 항상 사전설정된 일정압력으로 푸싱할 수 있도록 배압을 가하는 배압통로(82); 가 더 구비되는 것을 특징으로 한다.
또한, 상기 주플랜지(60)에 다수의 최초토출구(62)와, 각각 토출밸브(63)가 설치되며, 상기 최초토출구(62)와 토출밸브(63)는 유체실(α) 또는 베인(50)의 개수만큼 형성되는 것을 특징으로 한다.
또한, 상기 캠링(30)은 상기 회전축(20)과 동심중심축으로 설치되거나, 또는
상기 회전축(20)에 편심되어 설치됨으로서, 캠링(30)에 복수개의 최초흡입구(11)가 대향되어 형성되어 있는 경우, 각 최초흡입구(11)측에 형성되는 유체실(α)의 용적이 상이해짐에 따라, 캠링(30)의 외주연과 실린더(40) 내주연의 밀착성이 좋아져 유체의 누설이 작아지도록 하는 것을 특징으로 한다.
이하, 도 1 내지 도 5를 참조하여 본 발명의 바람직한 실시예에 따른 원심 흡입식 하이브리드 베인 유체기계를 상세히 설명하도록 한다.
본 발명에 따른 원심 흡입식 하이브리드 베인 유체기계는 부케이싱(10), 회전축(20), 캠링(30), 실린더(40), 베인(50), 주플랜지(60), 주케이싱(70)을 포함하는 것으로,
회전축(20)과, 회전축(20)에 고정되어 회전하는 캠링(30)과, 캠링(30)의 외주연에 접촉하는 복수의 베인(50)과, 캠링(30)의 외주연과 1개소 이상 접촉하며 복수의 베인홈(41)에 베인(50)이 삽입되는 실린더(40)와, 실린더(40)의 옆면과 주케이싱(70) 안에 고정되며 복수의 최초토출구(62)가 형성되며, 최초토출구(62)마다 토출밸브(63)가 설치되는 주플랜지(60)와, 실린더(40)의 다른 옆면에 고정되는 부플랜지(64)를 갖는 것으로, 캠링(30)의 외주연과 실린더(40)의 내주연과, 베인(50)과, 주플랜지(60)와, 부플렌지에 의해 유체실(α)이 형성된다. 캠링(30)이 회전하면서 유체실(α)의 용적이 증감한다.
상기 부케이싱(10)은 주케이싱(70)과 함께 내부가 비어있는 관체를 이루면서, 하나의 압축기 형상을 만든다.
이러한 부케이싱(10)과 주케이싱(70)은 상호간 대응체결되고, 내부에 후술될 회전축(20), 캠링(30), 실린더(40), 베인(50), 주플랜지(60) 등이 내설하는 형태가 된다.
상기 부케이싱(10)의 외주연에는 유체가 최초로 유입되는 최초흡입구(11)가 형성되어 있고, 주케이싱(70)에는 부케이싱(10)으로부터 유입되어 내부의 구성을 거친후 유체를 토출시키는 최종토출구(71)가 형성되어 있다.
더불어, 이러한 부케이싱(10)은 내부의 회전축(20)을 회전시키기 위한 로터(12)와 스테터(13)가 각각 설치되어 있으며, 부케이싱(10)의 일단에는 부베어링(14)이, 주케이싱(70)의 내부에 설치되는 주플렌지(60)에는 주베어링(61)이 설치되어, 본 발명의 장치 내부에서 회전되는 회전축(20)의 양단이 체결될 수 있도록 한다.
상기 회전축(20)은 전술된 바와 같이, 상호간 체결되는 부케이싱(10) 및 주케이싱(70)의 내부에 수직으로 회전가능하게 설치되는 것이다.
상기 캠링(30)은 회전축(20)의 외주연에 일체로 설치되어, 캠링(30)과 함께 동반회전되는 것으로서, 회전축(20)이 끼워지기 위한 홀이 중앙을 관통형성하고, 내주연에서 외주연을 향해 최종흡입구(31)가 천공형성되어, 전술된 부케이싱(10)의 최초흡입구(11)를 통해 유입되는 유체가 이러한 캠링(30)의 내측으로 유입된 후 최초흡입구(11)를 통해 내부에서 외부로 이동되는 형태가 되도록 한다.
이렇듯, 본 발명에서는 캠링(30)의 내주연과 외주연을 관통하는 흡입구(최종흡입구(31))를 한개 이상 형성하도록(본 발명에서는 일실시예로 상호간 대향시켜 복수개 형성 됨)하는데, 이는 유체가 회전하는 캠링(30)의 내주연 방향에서 외주연 방향으로 흡입되고, 캠링(30)이 회전하면 흡입되는 유체 또한 회전하여 원심력이 발생되면서, 흡입되는 유체는 원심력만큼 흡입 압력이 높아지기 때문에 유체실(α)로의 흡입이 더욱 쉽게 이루어지는 구조를 가지게 되는 것이다. 또한, 액체 펌프와 같이 사용되어지는 유체가 액체의 경우, 흡입 저항으로 인해 발생하는 유체실내의 케비테이션 문제도 효과적으로 억제 할 수 있다.
유체의 흡입 저항은 모든 유체기의 효율을 저하시키는데, 본 발명에서는 흡입구를 상기와 같이 크게 만들기 쉬운 구조이기 때문에, 유체가 유체실(α)로 흡입될때 발생하는 흡입 저항이 발생하기 어려운 구조를 가지게 되는 것이다.
상기 실린더(40)는 소정의 폭과 두께를 가지는 링 단면의 구성으로, 이러한 실린더(40)는 내주연방향을 따라 베인홈(41)을 형성하기 위해, 내주연방향 향해 등간격으로 절개되는 절개홈, 즉 베인홈(41)을 다수개 형성하는 구조를 가지도록 한다.
물론, 이러한 실린더(40)는 양단에 후술될 주플랜지(60)와 부플랜지(64)가 각각 고정수단(볼트 등, B)에 의해 체결되어 주케이싱(70) 내부에 설치되는 구조를 가진다.
또한, 이러한 구조의 실린더(40) 내부에는 전술된 바와 같이 핀(32)과 회전축(20)이 끼워져 회전되는 캠링(30)이 내설되는 것이며, 캠링(30)이 회전하면서 복수개의 최종흡입구(31)에서 흡입되는 유체는 실린더(40) 내주연과 캠링(30)의 외주연 사이에서, 베인홈(41) 각각에 대응되며 끼워져 캠링(30)에 접촉되어지는 다수의 베인(50)과 베인(50) 사이의 유체실(α)로 이동하게 되는 것이다.
상기 실린더(40)에 형성된 베인홈(41)이 6개인 경우, 각각의 베인홈(41)에 대응되며 끼워지는 베인(50) 또한 6개가 되고, 이로써, 베인(50)이 실린더(40)의 내주연측으로 돌출되며 캠링(30)의 외주연에 접촉됨에 따라, 베인(50)과 베인(50)사이에 형성되는 공간인 유체실(α)의 개수도 6개가 되는 것이다.
상기 베인(50)은 전술된 바와 같이, 실린더(40)에 형성된 다수의 베인홈(41)에 각각 체결되되, 일단에는 탄성부재(ex; 스프링, 51)가 체결된 상태로 삽입되어, 주케이싱(70)의 내주연에 고정된 탄성부재(51)의 탄성력에 의해, 베인홈(41) 내에서 캠링(30) 외주연을 향해 푸싱되어, 다수개의 베인(50)이 항시 캠링(30)의 외주연에 접촉되어 있는 구조를 가진다.
상기 주플랜지(60)는 실린더(40)가 올려지는 일면 중앙에 회전축(20) 일단이 끼워지는 주베어링(61)이 형성되어 있고, 주베어링(61)이 형성된 일면 원주면을 따라, 전술된 베인(50)과 베인(50) 사이의 공간인 유체실(α)에 대응되는 최초토출구(62)가 다수(ex: 6개) 천공형성되어 있도록 한다.
이에, 베인(50)과 베인(50) 사이의 유체실(α)로 이동한 유체는, 주플랜지(60)의 다수의 최초토출구(62) 중 해당 유체실(α)과 연통되어 있는 최초토출구(62)를 통과하게 된다.
물론, 주플랜지(60)의 타면에는 최초토출구(62)마다 토출밸브(63)가 개별적으로 설치되지는 것으로, 다시말해, 최초토출구(62)와 토출밸브(63)는 주플렌지에 설치되며 유체실(α)의 개수(베인(50)의 개수)만큼 형성이 되는 것이다. (실린더(40)의 한쪽 끝단쪽에 부플랜지(64)와 다른쪽 끝단에 주베어링(61)이 삽입된 주플랜지(60)가 각각의 토출밸브(63)와 함께 각각 고정수단(B)으로 고정된다.)
이러한 본 발명의 구조에 의해, 본 발명은 최초토출구(62)와 토출밸브(63)의 설치가 용이하며, 각유체실(α)마다 최초토출구(62)와 토출밸브(63)가 있기 때문에 과압축(유체실(α)에서 압축되는 압력이 최종 토출 압력보다 높게 압축되는 경우) 현상이 발생하지 않아 압축기의 효율을 향상시키며, 부하 증가에 따른 마모를 저감할 수 있고, 액압축 현상(냉매 압축기에서 냉매가 액화된 상태로 유체실로 흡입되는 경우 유체실에서 액체를 압축시키려고 하는 현상으로, 압축기의 고장 원인이 될수 있다.)도 방지 할 수 있게 되는 것이다.
상기 주케이싱(70)은 전술된 바와 같이 실린더(40)와 주플랜지(60)가 내설되어지는 것으로, 이러한 주케이싱(70)은 주플랜지(60)의 설치된 하단부에 별도의 공간을 형성하여, 오일분리탱크(72)를 형성하게 된다.
이로써, 주플랜지(60)의 최초토출구(62)를 통과하게 된 유체는 이러한 오일분리탱크(72) 내에서 오일이 분리된 후, 최종토출구(71)를 통해 외부로 토출되는 것이다.
(다시말해, 캠링(30)의 외주연, 실린더(40)의 내주연, 주플랜지(60), 부플랜지(64), 각각의 베인(50)에 의해 형성되는 것이 유체실(α)인데, 로터(12)가 회전하면 회전축(20)을 통해 캠링(30)이 회전하고 유체실(α)의 용적이 증감하게 된다.
즉, 유체실(α)의 용적이 증가하면 최초흡입구(11)를 통해 흡입된 유체가 부플랜지(64)와 회전축(20) 사이의 빈공간을 지나 캠링(30)의 안쪽을 통해 캠링(30)에 뚫려있는 최종흡입구(31)를 통해 유체실(α) 안으로 흡입되어지고, 흡입되어진 유체는 유체실(α)의 용적이 감소함에 따라 압축(또는 승압)되어지며, 압축되어진 유체는 최초토출구(62)와 토출밸브(63)(역류방지밸브)를 통해 오일분리탱크(72)에 보내지고 오일이 분리되어 최종토출구(71)를 통해 본 발명의 유체기계 밖으로 토출되어지는 것이다.)
더불어, 주케이싱(70)에는 내주연에 오일분리탱크(72)에서부터 길이방향으로 오일통로(80)를 함몰형성하는데, 이러한 오일통로(80)를 통해 오일분리탱크(72)의 오일이 실린더(40)와 주케이싱(70) 사이를 이동하도록 함으로써, 베인(50)이 삽입된 부위에 실링(sealing)기능을 하여 유체가 유체실(α) 외의 다른부분으로 누설되지 않도록 하면서, 베인(50)이 캠링(30)에 항시 접촉되도록, 캠링(30) 외주연으로 베인(50)을 항상 사전설정된 일정압력으로 푸싱할 수 있도록 배압을 가하는 기능을 할수 있도록 한다.
물론, 이러한 오일분리탱크(72)의 일단에는 필터(81)가 설치되어, 오일의 이물질이 여과된 후 이동될 수 있도록 하며, 오일분리탱크(72)에서 분리된 오일은 필터(81)와 오일통로(80)를 통해 배압통로(82)로 이동하여 상기와 같이, 베인(50)의 습동부(접촉부)에 마찰 감소 및 실링기능과 함께 베인(50)의 배압을 걸게 된다.
또한, 배압통로(82)에서 분기된 소량의 오일은 급유통로(83)를 통해 주베어링(61)에 급유되며, 주베어링(61)에 급유된 오일은 회전축(20)의 오일통로(80)를 통해 부베어링(14)에 급유된후 낙하하여 일부는 캠링(30)과 플랜지(주플랜지(60)와 부플랜지(64))가 습동하는면에 급유되며, 또 일부는 최종흡입구(31)로 흡입된후 유체와 함께 최초토출구(62)를 통해 오일분리탱크(72)로 토출되어 압축기 내에서 순환하게 된다.
다시 설명하면, 실린더(40)의 외주연과 주케이싱(70) 사이에 베인홈(41)과 연결된 오일통로(80)가 형성되며, 주케이싱(70)의 오일분리탱크(72)에서 분리된 고압의 오일이 오일통로(80)를 통해 배압통로(82) 이동하며 베인(50)에 배압을 가하는 것으로, 베인(50)에 배압을 가함과 동시에, 습동부(실린더(40)의 베인홈(41)과 베인(50), 주플랜지(60) 및 부플랜지(64)와 베인(50))에 급유가 쉽게 이루어지기 때문에 습동부(접촉면)에서 발생하는 마찰을 줄일 수 있으며, 습동부의 틈새를 씰(Seal)하여 유체의 내부 누설을 줄일 수 있게 되는 것이다.
더불어, 본 발명의 경우, 내부에서 회전되는 상기 캠링(30)의 경우, 회전축(20)과 동일축선상에 위치되도록 설치될 수 있는 것에 반해, 회전축(20) 또는 실린더(40)에 편심되도록 설치할 수도 있는데, 캠링(30)이 회전축(20)에 대해 편심되어 설치되면 캠링(30)의 중심선을 기준으로 양쪽의 유체실(α)의 용적이 달라지고 양쪽 유체실(α)의 압력차가 발생하여 압력이 높은쪽에서 낮은쪽으로 캠링(30)을 밀어주기 때문에 캠링(30)의 외주연과 실린더(40) 내주연의 밀착성이 좋아져 유체의 누설이 작아지며, 도 3과 같이 토출이 쌍으로 동시에 이루어지지 않기 때문에 맥동이 더욱 작아지는 효과를 가지게 된다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변경이 가능함은 물론이다.
Claims (5)
- 회전 수단에 의해 회전 가능하게 설치된 회전축(20);상기 회전축(20)에 고정체결되어 동반 회전되는 캠링(30);상기 회전축(20)에 체결된 캠링(30)이 내설되되, 내설된 캠링(30)을 향해 절개한 베인홈(41)을 다수 형성하며, 캠링(30)의 외주연이 한곳 이상 접촉되어지는 내주연이 형성된 실린더(40);상기 실린더(40)의 다수 베인홈(41)에 대응 삽입되고, 상기 캠링(30)의 외주연에 일단이 대응접촉 되어 캠링(30)과 실린더(40) 사이의 공간에 다수의 유체실(α)을 구획형성하는 베인(50);상기 실린더(40)의 양단에 대응 체결되어, 실린더(40)의 내주연과 캠링(30)의 외주연과 다수의 유체실(α)을 구획 형성한 베인(50)과 함께 유체실(α)을 형성하는 주플랜지(60)와 부플랜지(64);회전축(20), 캠링(30), 실린더(40), 베인(50), 주플랜지(60)를 내설하되, 각각의 유체실(α)에서 배출된 유체가 외부로 토출되도록 하는 주케이싱(70);을 포함하여 이루어지며;상기 캠링(30)의 외주연에 유체실(α)로 유체가 흡입될 수 있도록 하는 흡입구가 설치되어, 회전하는 흡입구를 갖는 것을 특징으로 하는 원심 흡입식 하이브리드 베인 유체기계.
- 제 1항에 있어서,상기 캠링(30)은최종흡입구(31)가 한개 이상 천공형성되며,최종흡입구(31)가 외주연에 천공 형성됨에 따라, 캠링(30)의 회전에 의해, 흡입되어지는 유체도 회전하며, 회전하는 유체에 발생되는 원심력에 의해, 유체실(α)로 흡입되는 흡입 효율이 상승되는 것을 특징으로 하는 원심 흡입식 하이브리드 베인 유체기계.
- 제 1항에 있어서,상기 주케이싱(70)과 실린더(40) 사이에 배압통로(82)가 형성되어;오일분리탱크(72)에서 분리된 오일이 오일통로(80)를 따라 배압통로(82)로 이동함으로써,배압통로(82)로 이동된 오일이 베인(50)이 삽입된 부위에 윤활 기능을 하고, 유체가 유체실(α) 외의 다른부분으로 누설되지 않도록 실링 기능을 하면서, 베인(50)이 캠링(30)에 항시 접촉되도록, 캠링(30) 외주연으로 베인(50)을 항상 사전설정된 일정압력으로 푸싱할 수 있도록 배압을 가하는 배압통로(82);가 더 구비되는 것을 특징으로 하는 원심 흡입식 하이브리드 베인 유체기계.
- 제 1항에 있어서,상기 주플랜지(60)에 다수의 최초토출구(62)와, 각각 토출밸브(63)가 설치되며,상기 최초토출구(62)와 토출밸브(63)는 유체실(α) 또는 베인(50)의 개수만큼 형성되는 것을 특징으로 하는 원심 흡입식 하이브리드 베인 유체기계.
- 제 1항에 있어서,상기 캠링(30)은상기 회전축(20)과 동심중심축으로 설치되거나, 또는상기 회전축(20)에 편심되어 설치됨으로서, 캠링(30)에 복수개의 최초흡입구(11)가 대향되어 형성되어 있는 경우, 각 최초흡입구(11)측에 형성되는 유체실(α)의 용적이 상이해짐에 따라, 캠링(30)의 외주연과 실린더(40) 내주연의 밀착성이 좋아져 유체의 누설이 작아지도록 하는 것을 특징으로 하는 원심 흡입식 하이브리드 베인 유체기계.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/079,973 US10876529B2 (en) | 2016-03-04 | 2017-02-20 | Centrifugal suction-type hybrid vane fluid machine |
CN201780012920.7A CN108700072B (zh) | 2016-03-04 | 2017-02-20 | 离心吸入式混合叶片流体机械 |
JP2018544073A JP2019507280A (ja) | 2016-03-04 | 2017-02-20 | 遠心吸入式ハイブリッドベーン流体機械 |
DE112017001153.1T DE112017001153T5 (de) | 2016-03-04 | 2017-02-20 | Kreiselansaugströmungsmaschine mit Hybridschiebern |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160026096A KR101697148B1 (ko) | 2016-03-04 | 2016-03-04 | 원심 흡입식 하이브리드 베인 유체기계 |
KR10-2016-0026096 | 2016-03-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017150833A1 true WO2017150833A1 (ko) | 2017-09-08 |
Family
ID=57990518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/001839 WO2017150833A1 (ko) | 2016-03-04 | 2017-02-20 | 원심 흡입식 하이브리드 베인 유체기계 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10876529B2 (ko) |
JP (1) | JP2019507280A (ko) |
KR (1) | KR101697148B1 (ko) |
CN (1) | CN108700072B (ko) |
DE (1) | DE112017001153T5 (ko) |
WO (1) | WO2017150833A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60164690A (ja) * | 1984-02-06 | 1985-08-27 | Atsugi Motor Parts Co Ltd | ベ−ン型回転圧縮機 |
KR900004609B1 (ko) * | 1987-09-22 | 1990-06-30 | 지이제루 기기 가부시기 가이샤 | 베인형 압축기 |
JPH08219032A (ja) * | 1995-02-08 | 1996-08-27 | Kayseven Co Ltd | ベーンポンプ、ベーンモータ及び流量計 |
JPH10306783A (ja) * | 1997-05-09 | 1998-11-17 | Honda Motor Co Ltd | 平衡型ベーンポンプ構造 |
KR20060051788A (ko) * | 2004-09-30 | 2006-05-19 | 산요덴키가부시키가이샤 | 압축기 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4354809A (en) * | 1980-03-03 | 1982-10-19 | Chandler Evans Inc. | Fixed displacement vane pump with undervane pumping |
DK151493C (da) * | 1984-12-21 | 1988-05-30 | Knud Simonsen | Roterende fluidumfortraengningsmaskine med kredsende arbejdskamre af periodisk varierende rumfang |
US4815945A (en) * | 1987-07-31 | 1989-03-28 | Diesel Kiki Co., Ltd. | Variable capacity vane compressor |
JPH0275521A (ja) | 1988-09-10 | 1990-03-15 | Oumi Doriyoukou Kk | 移動搬送路用製品種別識別装置 |
DE9207087U1 (de) * | 1992-05-26 | 1992-11-26 | Kuechler, Jürgen, Dr., 3556 Weimar | Rotationskolbenmaschine |
JPH06368U (ja) | 1992-06-03 | 1994-01-11 | ヤマトミシン製造株式会社 | ミシンのペダルスイッチ |
JPH06164690A (ja) * | 1992-11-26 | 1994-06-10 | Fujitsu Ltd | 送受話器分離型電話機 |
JP3370413B2 (ja) | 1993-12-30 | 2003-01-27 | 株式会社タチエス | 自動縫製装置 |
CN2608724Y (zh) * | 2003-01-10 | 2004-03-31 | 郭松林 | 平衡式凸轮转子泵 |
JP2004275781A (ja) | 2004-05-31 | 2004-10-07 | Juki Corp | ボビン交換装置及び下糸自動供給装置 |
JP2011132868A (ja) * | 2009-12-24 | 2011-07-07 | Kyb Co Ltd | ベーンポンプ |
KR101148729B1 (ko) | 2011-02-23 | 2012-05-21 | 조훈식 | 자동봉제 정보입력이 가능한 봉제기 |
JP6083929B2 (ja) * | 2012-01-18 | 2017-02-22 | ソーラテック コーポレイション | 遠心式ポンプ装置 |
KR101634445B1 (ko) | 2014-09-03 | 2016-06-29 | 한국항공대학교산학협력단 | 제함기용 박스 이송장치 |
-
2016
- 2016-03-04 KR KR1020160026096A patent/KR101697148B1/ko active IP Right Grant
-
2017
- 2017-02-20 DE DE112017001153.1T patent/DE112017001153T5/de not_active Withdrawn
- 2017-02-20 US US16/079,973 patent/US10876529B2/en active Active
- 2017-02-20 JP JP2018544073A patent/JP2019507280A/ja active Pending
- 2017-02-20 CN CN201780012920.7A patent/CN108700072B/zh not_active Expired - Fee Related
- 2017-02-20 WO PCT/KR2017/001839 patent/WO2017150833A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60164690A (ja) * | 1984-02-06 | 1985-08-27 | Atsugi Motor Parts Co Ltd | ベ−ン型回転圧縮機 |
KR900004609B1 (ko) * | 1987-09-22 | 1990-06-30 | 지이제루 기기 가부시기 가이샤 | 베인형 압축기 |
JPH08219032A (ja) * | 1995-02-08 | 1996-08-27 | Kayseven Co Ltd | ベーンポンプ、ベーンモータ及び流量計 |
JPH10306783A (ja) * | 1997-05-09 | 1998-11-17 | Honda Motor Co Ltd | 平衡型ベーンポンプ構造 |
KR20060051788A (ko) * | 2004-09-30 | 2006-05-19 | 산요덴키가부시키가이샤 | 압축기 |
Also Published As
Publication number | Publication date |
---|---|
US10876529B2 (en) | 2020-12-29 |
US20190063435A1 (en) | 2019-02-28 |
CN108700072A (zh) | 2018-10-23 |
KR101697148B1 (ko) | 2017-01-17 |
CN108700072B (zh) | 2019-11-29 |
JP2019507280A (ja) | 2019-03-14 |
DE112017001153T5 (de) | 2018-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100898950B1 (ko) | 베인 펌프 | |
WO2012128499A2 (en) | Scroll compressor | |
CN2861559Y (zh) | 卧式旋转压缩机 | |
CN109595161B (zh) | 压缩机 | |
KR101362790B1 (ko) | 진공펌프 및 진공펌프용 베인로터 | |
US6190149B1 (en) | Vacuum pump oil distribution system with integral oil pump | |
EP4361443A1 (en) | Axially flexible compressor | |
US3438570A (en) | Two stage vacuum pump | |
WO2017150833A1 (ko) | 원심 흡입식 하이브리드 베인 유체기계 | |
CN107906003B (zh) | 一种低速自封闭滑片压缩机 | |
JPH0826865B2 (ja) | 2シリンダロータリ圧縮機 | |
KR20070077432A (ko) | 압축기의 오일 분리 구조 | |
WO2019022415A1 (ko) | 로터리 압축기 | |
KR100186875B1 (ko) | 회전베인형 유체압기기 | |
WO2018194224A1 (ko) | 단흡입 양토출 전동 베인 펌프 | |
CN105683577A (zh) | 涡旋型流体设备 | |
CN202326260U (zh) | 转子泵以及包括转子泵的旋转机械 | |
KR0128367B1 (ko) | 횡형 회전식 압축기 | |
CN113757111A (zh) | 一种内啮合齿轮泵 | |
KR0137413B1 (ko) | 횡형 로터리식 압축기 | |
WO2016200055A1 (ko) | 베인펌프 | |
WO2014168381A1 (ko) | 압축기 | |
JPH0544640A (ja) | 斜板式圧縮機 | |
CN118327967B (zh) | 压缩机气体轴承结构和具有其的压缩机 | |
CN215521261U (zh) | 旋转式压缩机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018544073 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17760237 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17760237 Country of ref document: EP Kind code of ref document: A1 |