WO2017150702A1 - 炭素繊維強化プラスチック製造用コロイド溶液、粒子吸着炭素繊維及びその製造方法、炭素繊維強化プラスチック、並びに制御方法 - Google Patents

炭素繊維強化プラスチック製造用コロイド溶液、粒子吸着炭素繊維及びその製造方法、炭素繊維強化プラスチック、並びに制御方法 Download PDF

Info

Publication number
WO2017150702A1
WO2017150702A1 PCT/JP2017/008480 JP2017008480W WO2017150702A1 WO 2017150702 A1 WO2017150702 A1 WO 2017150702A1 JP 2017008480 W JP2017008480 W JP 2017008480W WO 2017150702 A1 WO2017150702 A1 WO 2017150702A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
particles
reinforced plastic
fiber reinforced
adsorbed
Prior art date
Application number
PCT/JP2017/008480
Other languages
English (en)
French (fr)
Inventor
徹也 山本
克匡 上松
寿平 入澤
Original Assignee
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学 filed Critical 国立大学法人名古屋大学
Priority to JP2018503416A priority Critical patent/JP6957034B2/ja
Publication of WO2017150702A1 publication Critical patent/WO2017150702A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/356Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/59Polyamides; Polyimides

Definitions

  • the present invention relates to a colloid solution for producing a carbon fiber reinforced plastic, a particle-adsorbing carbon fiber and a production method thereof, a carbon fiber reinforced plastic, and a control method.
  • thermoplastic resin A material in which a carbon fiber is combined with a thermoplastic resin is expected to be used as a carbon fiber reinforced thermoplastic (CFRTP) for aircraft materials, automobile materials, and the like.
  • CFRTP carbon fiber reinforced thermoplastic
  • Patent Document 1 discloses a method in which a carbon fiber is electrophoresed in a polyetherimide resin emulsion as a cathode electrode, and a cationized polyetherimide resin is electrodeposited on the carbon fiber to coat it.
  • the method described in Patent Document 1 requires the use of a liquid polyetherimide resin dissolved in a solvent, and the solvent remains on the carbon fiber as an impurity. For this reason, when the obtained polyetherimide resin-adsorbed carbon fibers are used for the production of carbon fiber reinforced plastic, there is a possibility that the interfacial adhesiveness with the resin of the base material is inferior or the interfacial adhesiveness becomes unstable. It was.
  • Patent Document 2 charged resin particles are adsorbed on a carbonaceous powder, and electrophoresis is performed using a carbon fiber substrate as an electrode in a solution, and the carbonaceous powder is deposited together with the charged resin particles on the carbon fiber substrate.
  • a method for producing a carbon fiber reinforced carbon composite material is disclosed.
  • the carbon fiber reinforced carbon composite material is coated with carbon particles because the resin adsorbed on the surface of the carbon powder disappears in the sintering process. For this reason, the said carbon fiber reinforced carbon composite material is inferior to interface adhesiveness with resin, and cannot be used suitably for manufacture of a carbon fiber reinforced thermoplastic.
  • the main object of the present invention is to provide a carbon fiber reinforced plastic having improved interfacial adhesion between the carbon fiber and the resin and a colloid solution for producing the carbon fiber reinforced plastic that can be used in the production thereof. To do.
  • the present inventors have performed electrophoresis using carbon fibers as a positive electrode or a negative electrode in a colloidal solution containing resin particles or inorganic particles. It has been found that a large amount of resin particles can be adsorbed to the carbon fiber in a short time, thereby improving the interfacial adhesion with the resin. Based on the above findings, the present inventors have further studied and completed the present invention. That is, the present invention relates to the following colloidal solution for producing carbon fiber reinforced plastic, particle adsorbed carbon fiber, method for producing particle adsorbed carbon fiber, carbon fiber reinforced plastic, adsorbed particle amount control method and interfacial adhesion. Related to sex control method.
  • Item 1 A colloidal solution for producing carbon fiber reinforced plastic, (1) containing resin particles, nonionic surfactant, electrolyte and water, (2) containing resin particles, radical polymerization initiator, and water, or (3) containing solid inorganic particles, electrolyte, and water, Colloidal solution for producing carbon fiber reinforced plastic.
  • Item 2. The colloid solution for producing carbon fiber reinforced plastic according to Item 1, wherein the resin particles are thermoplastic resin particles.
  • Item 3. Item 3.
  • Item 4. Item 4.
  • Item 3. The colloid solution for producing a carbon fiber reinforced plastic according to Item 2, wherein the thermoplastic resin particles are polyamide resin particles.
  • Item 6. Item 6.
  • thermoplastic resin particle is a polymer particle of a monomer containing an amide bond-containing monomer.
  • Item 9. Item 9. The particle-adsorbed carbon fiber according to Item 7 or 8, wherein the thermoplastic resin particles have an average particle size of 0.02 to 0.5 ⁇ m.
  • Item 10. Item 8. The particle-adsorbed carbon fiber according to Item 7, wherein the thermoplastic resin particle is a polyamide-based resin particle.
  • Item 11. Item 11. The particle-adsorbed carbon fiber according to Item 10, wherein the polyamide resin particles are nylon particles.
  • Item 12. A method for producing particle-adsorbed carbon fibers, comprising: Item 7.
  • a production method comprising a step of performing electrophoresis by applying a voltage using a carbon fiber as a positive electrode or a negative electrode in the colloidal solution for producing a carbon fiber-reinforced plastic according to any one of Items 1 to 6.
  • Item 13 Item 12.
  • Item 14. Item 14.
  • a method for controlling the amount of particles adsorbed on the surface of a particle-adsorbing carbon fiber The carbon fiber is controlled by controlling the magnitude of the voltage applied when the carbon fiber is used as a positive electrode or a negative electrode in the colloid solution for producing a carbon fiber reinforced plastic according to any one of Items 1 to 6.
  • a control method for controlling the amount of the particles adsorbed on the surface Item 16.
  • a method for controlling the interfacial adhesion of a carbon fiber to a resin, Item 7. When applying a voltage with a carbon fiber as a positive electrode or a negative electrode in the colloid solution for producing a carbon fiber reinforced plastic according to any one of Items 1 to 6, controlling the magnitude of the voltage to be applied to the carbon fiber.
  • a control method for controlling interfacial adhesion between the carbon fiber and the resin by controlling the amount of the adsorbed particles.
  • (1) containing resin particles, nonionic surfactant, electrolyte and water, (2) containing resin particles, radical polymerization initiator, and water, or (3) inorganic particles By performing electrophoresis using carbon fiber as a positive electrode or a negative electrode in a colloid solution for producing carbon fiber reinforced plastic containing electrolyte and water, a large amount of particles can be adsorbed on carbon fiber in a very short time, Thereby, interface adhesiveness with resin can be improved.
  • the carbon fiber reinforced plastic production colloid solution of the present invention is used to produce particle-adsorbed carbon fibers, the carbon fiber reinforced plastic production colloid solution uses resin particles or solid inorganic particles, and the solvent is water. Therefore, no solvent remains on the carbon fiber surface. For this reason, the obtained particle
  • the colloid solution for producing a carbon fiber reinforced plastic containing resin particles, a nonionic surfactant, an electrolyte, and water contains an electrolyte, an electric current flows during electrophoresis and effectively ( This is advantageous in that the particles can be adsorbed onto the carbon fibers (in a short time). Further, the colloid solution for producing carbon fiber reinforced plastic containing resin particles, radical polymerization initiator, and water is advantageous in terms of cost because it does not contain a surfactant. Since it does not remain as an impurity, the interfacial adhesion with the carbon fiber is improved.
  • the colloid solution for producing carbon fiber reinforced plastic containing solid inorganic particles, electrolyte and water does not contain a surfactant, it is advantageous in terms of cost and when contained in carbon fiber reinforced plastic. Since the inorganic particles remain without melting, an unprecedented high strength carbon fiber reinforced plastic can be obtained.
  • thermoplastic resin particles are adsorbed on the surface of the carbon fiber. For this reason, even when the resin used as the base material of the carbon fiber reinforced plastic is a thermoplastic resin, the interfacial adhesion is excellent. By using the particle-adsorbing carbon fiber having improved interfacial adhesion with the resin in this manner, the carbon fiber and the resin (particularly the thermoplastic resin) can be easily bonded.
  • the method for producing particle-adsorbed carbon fiber of the present invention (1) containing resin particles, nonionic surfactant, electrolyte and water, (2) containing resin particles, radical polymerization initiator, and water. Or (3) carbon fiber in a very short time by performing electrophoresis using carbon fiber as a positive electrode or negative electrode in a colloid solution for producing carbon fiber reinforced plastic containing solid inorganic particles, electrolyte and water. A large amount of particles can be adsorbed on the surface. According to this production method, it is possible to uniformly adsorb thermoplastic resin particles, particularly polyamide-based resin particles such as nylon particles, which have been difficult to adsorb to carbon fibers, to the carbon fiber surface. In addition, when producing particle-adsorbing carbon fibers by electrophoresis operation, the amount of particles adsorbed on the carbon fibers can be controlled by changing the applied voltage, whereby the interfacial adhesion can be controlled.
  • the carbon fiber reinforced plastic of the present invention as described above, particle-adsorbed carbon fibers excellent in interfacial adhesion are contained in the base resin. For this reason, since the particle-adsorbed carbon fiber and the base resin are bonded with high strength, the carbon fiber reinforced plastic has high strength.
  • 3 is a cross-sectional view of a carbon fiber-resin composite of Example 3.
  • the photograph on the left is a photograph when the carbon fiber bundle from which the sizing agent has been removed is impregnated with the resin
  • the photograph on the right is a photograph when the resin-adsorbed carbon fiber bundle obtained in Example 3 is impregnated with the resin.
  • the ratio shown below each photograph is the impregnation rate.
  • 3 is a cross-sectional view of a carbon fiber-resin composite of Example 3.
  • FIG. The photograph on the left is a photograph when the carbon fiber bundle from which the sizing agent has been removed is impregnated with the resin
  • the photograph on the right is a photograph when the resin-adsorbed carbon fiber bundle obtained in Example 3 is impregnated with the resin. .
  • the photograph on the left is a photograph when the carbon fiber bundle from which the sizing agent has been removed is impregnated with the resin
  • the photograph on the right is a photograph when the resin-adsorbed carbon fiber bundle obtained in Example 4 is impregnated with the resin.
  • the ratio shown above each photograph is the impregnation rate.
  • 6 is a cross-sectional view of a carbon fiber-resin composite of Example 4.
  • the photograph on the left is a photograph when the carbon fiber bundle from which the sizing agent has been removed is impregnated with the resin
  • the photograph on the right is a photograph when the resin-adsorbed carbon fiber bundle obtained in Example 4 is impregnated with the resin.
  • the ratio shown above each photograph is the ratio (the ratio of the carbon fiber region) occupied by the cross section of the carbon fiber in the cross-sectional view.
  • Colloid solution for producing carbon fiber reinforced plastic (1-1) Colloid solution for producing carbon fiber reinforced plastic
  • the colloid solution for producing carbon fiber reinforced plastic according to the present invention comprises (1) resin particles, nonionic surfactant, electrolyte and water. (2) containing resin particles, a radical polymerization initiator, and water, or (3) containing solid inorganic particles, an electrolyte, and water.
  • a colloid solution for producing a carbon fiber reinforced plastic can be formed with various particles.
  • the carbon fiber can be positively or negatively charged in water by applying a voltage using the carbon fiber as an electrode (positive electrode or negative electrode). It can be adsorbed on carbon fiber regardless of whether it is positive or negative.
  • the amount of particles adsorbed on the carbon fiber can be controlled by changing the applied voltage in the electrophoresis operation, whereby the interfacial adhesion between the carbon fiber and the resin can be controlled.
  • Colloid solution for producing carbon fiber reinforced plastic containing resin particles, nonionic surfactant, electrolyte and water
  • the first aspect of the colloidal solution for producing carbon fiber reinforced plastic of the present invention is a colloidal solution containing resin particles, a nonionic surfactant, an electrolyte and water.
  • the resin particles are not particularly limited, and various resin particles can be used.
  • electrophoresis is performed using carbon fiber as an electrode in the carbon fiber reinforced plastic production colloidal solution of the present invention, the particles are adsorbed over almost the entire surface of the carbon fiber, Particles penetrate.
  • the particle-adsorbed carbon fiber of the present invention can improve the interfacial adhesion with the same or similar resin as the particle.
  • an acrylic resin such as polymethyl methacrylate (PMMA)
  • PMMA polymethyl methacrylate
  • acrylic resin particles such as polymethyl methacrylate particles, polybutyl acrylate particles, and polyisobutyl acrylate particles as resin particles.
  • nylon resins polyamide resins
  • nylon-6 and nylon-12 as polymer particles, monomer polymer particles containing an amide bond-containing monomer, nylon-6, It is preferable to use nylon resin particles such as nylon-12.
  • thermoplastic resin particles include polymer particles of monomers including amide bond-containing monomers, polyamide resin particles, polyphenylene ether particles, polyoxymethylene particles, polybutylene terephthalate particles, polycarbonate particles, polymethyl methacrylate (PMMA). ) Particles, polystyrene particles, polypropylene particles, polyetherimide particles, polyethersulfone particles, and the like.
  • monomer polymer particles containing amide bond-containing monomers and polyamide resin particles are preferable, and monomer polymer particles containing amide bond-containing monomers are more preferable.
  • the polymer particle of the monomer containing the amide bond-containing monomer is not particularly limited as long as it is a polymer particle of an amide bond-containing monomer or a polymer particle of an amide bond-containing monomer and another monomer.
  • the amide bond-containing monomer is not particularly limited as long as it is a monomer that has an amide bond in the molecule and can be polymerized alone or with another monomer to form a polymer.
  • a monomer having an amide group and an alkenyl group having a double bond at the terminal for example, a vinyl group, an allyl group, etc.
  • the molecular weight of the monomer is, for example, 80 to 200, preferably 80 to 150, more preferably 80 to 100.
  • Specific examples of the amide bond-containing monomer include N-vinylacetamide.
  • amide bond-containing monomers examples include styrene monomer, propylene monomer, methyl methacrylate monomer, vinyl acetate monomer, ethylene monomer, aromatic vinyl monomer, and acrylic monomer.
  • the molar ratio with the amide bond-containing monomer is, for example, 0.2 to 20, preferably 0.5 to 15, more preferably 1 to 8, Preferably, it is 2-5.
  • the polyamide-based resin particles include aliphatic polyamide particles and aromatic polyamide particles.
  • Aliphatic nylon and its copolymer are mentioned as aliphatic polyamide.
  • polycapramide nylon-6
  • polylauryllactam nylon-12
  • polyhexamethylene adipamide nylon-6,6
  • caprolactam / laurylactam copolymer nylon-6 / 12
  • nylon particles examples of the aromatic polyamide include amorphous aromatic polyamide particles such as crystalline aromatic polyamide particles such as polymetaxylene adipamide, and copolymers of hexamethylenediamine-terephthalic acid-hexamethylenediamine-isophthalic acid. It is done.
  • the polyamide resin particles the above nylon particles are particularly preferable.
  • Nylon particles are negatively charged in water. *
  • resin particles may be used alone or in combination of two or more.
  • known or commercially available resin particles can be used, or they may be used after polymerization.
  • the nonionic surfactant is not particularly limited as long as the resin particles can be made into a colloidal shape, and various types can be used. Specifically, ester type surfactants such as glyceryl laurate, glyceryl monostearate, sorbitan fatty acid ester and sucrose fatty acid ester; ether type surfactants such as polyoxyalkylene alkyl ether and polyoxyalkylene alkyl phenyl ether; Ester ether type surfactants such as polyoxyethylene sorbitan fatty acid ester and sorbitan fatty acid ester polyalkylene glycol; alkanolamide type surfactants such as lauric acid diethanolamide and stearic acid diethanolamide; alkyl glycosides such as decyl glycoside and lauryl glycoside, Examples include higher alcohols such as cetanol and stearyl alcohol.
  • ester type surfactants such as glyceryl laurate, glyceryl monostearate, sorbit
  • nonionic surfactants may be used alone or in combination of two or more.
  • a known or commercially available nonionic surfactant can be used.
  • an ester type surfactant particularly a sorbitan fatty acid ester such as sorbitan monolaurate.
  • Electrolyte is added to facilitate electrophoresis of the colloidal solution for producing carbon fiber reinforced plastic.
  • the electrolyte include sodium chloride, potassium chloride, and magnesium chloride.
  • Water is not particularly limited, and various kinds of water such as tap water, industrial water, ion exchange water, deionized water, and pure water can be used. In particular, deionized water and pure water are preferred.
  • a radical polymerization initiator may be further contained. It is preferable to use a cationic polymerization initiator as the radical polymerization initiator.
  • the cationic polymerization initiator (cationic radical polymerization initiator) is not particularly limited, and various types can be used. Specifically, 2,2'-azobis (2-methylpropionamidine) dihydrochloride (V-50), 2,2'-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride (VA-044), 2,2′-azobis [2- (2-imidazolin-2-yl) propane] disulfate dihydrate (VA-046B) and the like. These radical polymerization initiators may be used alone or in combination of two or more. As the radical polymerization initiator, a known or commercially available cationic polymerization initiator can be used.
  • colloidal solution for producing carbon fiber reinforced plastic containing resin particles, radical polymerization initiator, and water
  • the second aspect of the colloidal solution for producing carbon fiber reinforced plastic of the present invention is a colloidal solution containing resin particles, a radical polymerization initiator, and water.
  • Resin particles, water, and radical polymerization initiators that are the same as those in the first embodiment can be used.
  • an electrolyte As the electrolyte, the same electrolyte as in the first embodiment can be used.
  • Colloidal solution for producing carbon fiber reinforced plastic containing solid inorganic particles, electrolyte and water (third aspect)
  • the third aspect of the colloidal solution for producing carbon fiber reinforced plastic of the present invention is a colloidal solution containing solid inorganic particles, an electrolyte and water.
  • the solid inorganic particles are not particularly limited, and various inorganic particles can be employed.
  • examples of the inorganic particles include silica particles, alumina particles, iron oxide particles, titanium oxide particles, and carbon particles.
  • These solid inorganic particles may be used alone or in combination of two or more.
  • known or commercially available inorganic particles can be used as the inorganic particles.
  • Silica particles are negatively (negatively) charged in water.
  • the resin particles or inorganic particles used in the present invention preferably have an average particle diameter of 0.02 to 5 ⁇ m from the viewpoint of facilitating the formation of a colloidal solution for producing a carbon fiber reinforced plastic and facilitating adsorption to carbon fibers. 0.02 to 1 ⁇ m is more preferable, and 0.02 to 0.5 ⁇ m is more preferable.
  • the average particle diameter of the resin particles or inorganic particles can be measured by observation with a scanning electron microscope. When resin particles or inorganic particles having the above average particle diameter are commercially available, commercially available products can be used. Alternatively, commercially available resin products or inorganic particles can be finely pulverized using an appropriate pulverizer to obtain a powder having the above average particle diameter.
  • the composition of each component in the colloid solution for producing the carbon fiber reinforced plastic of the present invention is not particularly limited. From the viewpoint of facilitating preparation of the colloidal solution for producing carbon fiber reinforced plastic of the present invention and facilitating adsorption of resin particles or inorganic particles on the carbon fiber surface, the water content may be excessive.
  • the concentration of the resin particles is 0.1 to 2% by weight (particularly 0.1 to 0.5% by weight), and the concentration of the nonionic surfactant is It is preferable to adjust the concentration to 0.5 to 30 mmol / L (particularly 1 to 10 mmol / L) and the electrolyte concentration to 0.5 to 30 mmol / L (particularly 1 to 10 mmol / L).
  • the concentration of the resin particles is 0.1 to 2% by weight (particularly 0.1 to 0.5% by weight), and the concentration of the radical polymerization initiator is 2 to 100 mmol / L (particularly 2 to 60 mmol / part). L) is preferably adjusted.
  • the concentration of the solid inorganic particles is 0.1 to 2% by weight (particularly 0.1 to 0.5% by weight), and the concentration of the electrolyte is 0.5 to 30 mmol / L (particularly 1 to It is preferable to adjust so that it may become 10 mmol / L).
  • the colloidal solution for producing the carbon fiber reinforced plastic of the present invention has a pH adjusting agent and an antioxidant as necessary within a range not impairing the effects of the present invention (for example, 0 to 5% by weight, particularly 0 to 3% by weight).
  • Additives such as an agent, a viscosity modifier, an antifungal agent, an antifoaming agent, a plasticizer, and a stabilizer can be appropriately added. As these additives, known or commercially available products can be used.
  • the colloidal solution for producing a carbon fiber reinforced plastic is the first embodiment, the resin particles, the nonionic surfactant, the electrolyte and the monomer that forms the resin particles by mixing the resin and water, or the radical polymerization initiator If the colloidal solution for producing a carbon fiber reinforced plastic is the second aspect by mixing water and forming resin particles, and then adding and mixing a non-ionizable surfactant and electrolyte thereto, If the colloidal solution for producing carbon fiber reinforced plastic is the third aspect by mixing the monomer that forms the resin particles, the radical polymerization initiator, and water, the solid inorganic particles, the electrolyte, and water are mixed.
  • the colloid solution for producing the carbon fiber reinforced plastic of the present invention can be obtained. Mixing is preferably performed under stirring.
  • nonionic surfactant As the resin particles or inorganic particles, nonionic surfactant, radical polymerization initiator, electrolyte, and water, those described above can be used.
  • Mixing is usually preferably performed at room temperature and normal pressure with stirring for several seconds to 30 minutes. Stirring and mixing can be performed, for example, using a magnetic stirrer or the like, or by irradiation with ultrasonic waves or microwaves.
  • Particle Adsorbed Carbon Fiber and Method for Producing the Same (2-1) Particle Adsorbed Carbon Fiber
  • resin particles or inorganic particles are adsorbed on the surface of the carbon fiber.
  • the carbon fiber fabric is impregnated with resin particles or inorganic particles.
  • the resin particles in the particle-adsorbed carbon fiber of the present invention are also preferably a thermoplastic resin.
  • the thermoplastic resin (thermoplastic resin particles) of the resin particles is the same as defined in “1. Colloidal solution for producing carbon fiber reinforced plastic”.
  • the base thermoplastic resin include polyamide resins (for example, nylon), polyphenylene ether, polyoxymethylene, polybutylene terephthalate, polycarbonate, methyl methacrylate, styrene, propylene, ether imide, ether sulfone, and the like. Of these, nylon is preferred.
  • carbon fibers examples include PAN (polyacrylonitrile) -based carbon fibers and pitch-based carbon fibers. These carbon fibers may be used alone or in combination of two or more.
  • the form of carbon fiber may be any of continuous long fibers, short fibers cut from continuous long fibers, milled yarns pulverized into powder, bundles, and the like. These can be variously selected according to the use and required characteristics, such as a sheet shape such as a woven fabric, a knitted fabric, and a non-woven fabric.
  • the number of carbon fibers constituting the bundle is not particularly limited, but is preferably 1000 or more, more preferably 1000 to 50000, further preferably 1500 to 40000, and still more preferably 2000 to 30000.
  • the colloid solution for producing the carbon fiber reinforced plastic of the present invention described above it is more efficient for the carbon fiber in the bundle (core) than the bundle composed of such many carbon fibers.
  • the resin particles can be adsorbed.
  • the size of the carbon fiber is not particularly limited, and the average diameter is preferably about 1,000 to 30,000 nm (particularly about 1,000 to 10,000 nm).
  • the average length of the carbon fiber is not particularly limited and can be appropriately set as necessary.
  • the particle-adsorbed carbon fiber of the present invention preferably has resin particles or inorganic particles adsorbed on almost the entire surface of the carbon fiber. More preferably, the resin particles or the inorganic particles penetrate into the carbon fiber fabric. Specifically, it is preferable that resin particles or inorganic particles are adsorbed on 30 to 100%, particularly 60 to 99% of the area of the carbon fiber surface.
  • a sizing agent may be attached to the surface of the carbon fiber.
  • the sizing of the carbon fiber surface is performed in order to improve the adsorptivity of the resin particles or inorganic particles on the carbon fiber surface. It is preferable to remove the agent.
  • the carbon fiber has a hydroxyl group on its surface and is negatively charged.
  • the carbon fiber is positively charged by applying a voltage with the carbon fiber as a positive electrode.
  • the resin particles or inorganic particles can be attracted regardless of whether the resin particles or inorganic particles are charged, and the resin particles or inorganic particles can be adsorbed on the entire surface of the carbon fiber surface. Alternatively, inorganic particles can be permeated.
  • the method for producing the particle-adsorbed carbon fiber of the present invention includes a step of performing electrophoresis using carbon fiber as a positive electrode or a negative electrode in the colloid solution for producing carbon fiber-reinforced plastic.
  • the manufacturing method provided is mentioned.
  • carbon fiber those described above can be used.
  • commercially available carbon fibers often have a sizing agent attached to the surface in order to improve handling properties.
  • the method for removing the sizing agent adhering to the carbon fiber surface is not particularly limited, and can be performed by a conventional method.
  • the sizing agent on the carbon fiber surface can be removed by treatment with acetone, 2-butanone (methyl ethyl ketone), tetrahydrofuran, dichloromethane, dichloroethane or the like.
  • the method of performing electrophoresis using carbon fiber as a positive electrode or a negative electrode in the colloid solution for producing carbon fiber reinforced plastic of the present invention is not particularly limited, and can be performed according to a conventional method.
  • an electrode of platinum, copper, gold, silver, carbon, or the like can be used as the negative electrode.
  • an electrode such as platinum, copper, gold, silver, or carbon can be used as the positive electrode.
  • the temperature of the colloid solution for producing the carbon fiber reinforced plastic is not particularly limited, and is preferably 10 to 30 ° C., for example, and more preferably 10 to 25 ° C.
  • the voltage to be applied is not particularly limited, and is preferably 5 to 50 V, for example, and more preferably 10 to 30 V.
  • the voltage application time is not particularly limited, and for example, 15 seconds to 1 hour is preferable, and 20 seconds to 3 minutes is more preferable.
  • the resin particles can be more efficiently adsorbed to the carbon fiber inside (core) the bundle.
  • Stirring is usually performed using a stirrer, and the number of rotations in this case is not particularly limited, but is, for example, 50 rpm to 500 rpm, preferably 100 to 300 rpm.
  • the particles approaching the surface of the carbon fiber by the electrophoresis operation act on the van der Waals force between the carbon fiber and firmly adsorb to the carbon fiber and stay on the carbon fiber. Therefore, by adopting such a method, it is possible to obtain particle-adsorbed carbon fibers in which a larger amount of resin particles or inorganic particles are uniformly adsorbed in an extremely short time compared to the conventional method. Since there is much quantity of the resin particle or inorganic particle adhering to carbon fiber, interface adhesiveness with resin can be improved more.
  • the particle-adsorbed carbon fiber of the present invention is contained in a base resin.
  • the carbon fiber-reinforced plastic of the present invention has a strong adhesion between the carbon fiber and the base resin. Yes. For this reason, the strength of the carbon fiber reinforced plastic of the present invention is improved.
  • the resin for the base material is not particularly limited, and various resins can be used.
  • the particle-adsorbed carbon fiber of the present invention can particularly improve the interfacial adhesion between the resin particles in the particle-adsorbed carbon fiber of the present invention and the same or similar resin
  • the base resin is the present invention. It is preferable that the resin is the same as or similar to the resin particles in the particle-adsorbed carbon fibers.
  • the resin used as the base material of the carbon fiber reinforced plastic is also preferably a thermoplastic resin.
  • thermoplastic resin examples include polyamide resins (for example, nylon), polyphenylene ether, polyoxymethylene, polybutylene terephthalate, polycarbonate, polymethyl methacrylate (PMMA), polystyrene, polypropylene, polyetherimide, and polyethersulfone. Can be mentioned.
  • the composition of each component is not particularly limited, and can be appropriately set as necessary.
  • the carbon fiber reinforced plastic according to the present invention can be manufactured according to a conventional method, and can be used in various applications such as automobiles, aircraft, sports-related products, and structural materials for manufacturing medical devices.
  • Control Method When producing particle-adsorbing carbon fibers by electrophoresis operation, the amount of particles adsorbed on the carbon fibers can be controlled by changing the applied voltage. It has been clarified that the interfacial shear strength between the carbon fiber reinforced plastic and the amount of adsorbed particles on the carbon fiber increases as the amount of particles adsorbed on the carbon fiber increases (see the following examples). Therefore, the interfacial adhesion can be controlled by changing the applied voltage in the electrophoresis operation to control the amount of particles adsorbed on the carbon fiber.
  • the present invention when applying a voltage by using carbon fiber as a positive electrode or a negative electrode in the colloidal solution for producing the carbon fiber reinforced plastic, the present invention adsorbs the carbon fiber by controlling the magnitude of the applied voltage.
  • a method for controlling the amount of particles is provided.
  • the present invention provides the particles adsorbed on the carbon fiber by controlling the magnitude of the applied voltage when the voltage is applied using the carbon fiber as a positive electrode or a negative electrode in the colloidal solution for producing the carbon fiber reinforced plastic.
  • By controlling the amount a method of controlling the interfacial adhesion between the carbon fiber and the resin is provided.
  • the fragmentation test is a test for evaluating the interfacial shear strength of carbon single fiber. Masatoshi Shiotani and Takahisa Akira, "Evaluation of fiber-matrix interfacial shear strength of fiber reinforced composite material", Surface, vol33, No22 744-762 (1995). Specifically, the test was performed with a microscope (MS-804, manufactured by Moritex Corporation) using a tensile tester (10073B, manufactured by Japan Hightech Corporation). Samples were prepared as follows. A carbon single fiber is sandwiched between two films containing polymethylmethacrylate and hot-pressed at 180 ° C. for 1 minute using a hot press machine (N4003-00, manufactured by NPA System Co., Ltd.). The film was quenched by cooling with water at 25 ° C. Thereafter, the film was cut into strips having a gauge length of 25 mm and a width of 4 mm.
  • the critical fiber length (l c ) can be obtained as follows.
  • the average diameter (D) of the carbon fiber was measured by diffraction of a He—Ne laser beam from the fiber.
  • the tensile strength (f) of the carbon fiber (length: l c ) was evaluated by Weibull analysis using the results of the single fiber tensile test.
  • the tensile test was performed using a tensile tester (SDW-1000SS-E-SL, manufactured by Imada Manufacturing Co., Ltd.). The tester was operated at a gauge length of 25 mm and a crosshead speed of 1 mm / min.
  • Example 1 A colloid solution for producing carbon fiber reinforced plastic was prepared by soap-free emulsion polymerization.
  • the water used for the soap-free emulsion polymerization was purified with a pure water production apparatus (Auto Still WG250, manufactured by Yamato Scientific Co., Ltd.), and then nitrogen gas was blown into water for 20 minutes to remove dissolved oxygen.
  • Methyl methacrylate (MMA, manufactured by Tokyo Chemical Industry Co., Ltd.) was used as a monomer for polymerization.
  • the monomer was selected according to the thermoplastic resin of the film containing polymethyl methacrylate (HBS006, manufactured by Mitsubishi Rayon Co., Ltd.).
  • V-50 2,2′-Azobis (2-methylpropionamidine) dihydrochloride
  • V-50 2,2′-Azobis (2-methylpropionamidine) dihydrochloride
  • the polymerization reaction was performed in a 100 mL screw tube. Distilled water, an initiator and a monomer were placed in the reactor, and the mixture was heated with stirring to conduct a polymerization reaction for 6 hours. Table 2 shows the experimental conditions.
  • Resin particle-adsorbed carbon fiber was produced as follows. About 400 mL of the colloidal solution for producing carbon fiber reinforced plastic prepared above was placed in a plastic container having an internal volume of 500 mL. A platinum electrode was used as the positive electrode and carbon fiber was used as the negative electrode, and the carbon fiber was negatively charged in water by applying a voltage. The voltage was applied for 30 seconds using a DC stabilized power supply (AD-8724D, manufactured by A & D Co., Ltd.), and the applied voltage was changed at 0V, 6.5V, 10V, 20V, or 30V. .
  • AD-8724D DC stabilized power supply
  • each carbon fiber surface was observed with SEM.
  • the carbon fiber treated with acetone in the colloid solution for producing carbon fiber reinforced plastic prepared above is immersed for 24 hours in a state where no voltage is applied (0 V), washed with water, and dried at room temperature. The surface of the carbon fiber was similarly observed.
  • a sample for SEM observation was prepared as follows. Carbon fibers were coated with an osmium thin film by vapor deposition (Osmium plasma coater OPC60A, manufactured by Philgen Co., Ltd.). An SEM image of each carbon fiber surface is shown in FIG.
  • FIG. 1 indicates that the higher the applied voltage, the more resin particles adsorbed on the carbon fiber surface.
  • resin particles of the same level as when carbon fibers are immersed in colloid for 24 hours are adsorbed, so that electrophoresis can be performed in a short time of 30 seconds. It can be seen that a large amount of resin particles can be adsorbed.
  • FIG. 3 shows an SEM image near the center (circle) of the cross section (1) in FIG. 2
  • FIG. 4 shows an SEM image from a to b in the cross section (2).
  • FIG. 5 shows the SEM image of FIG. 4 divided into four parts and enlarged.
  • FIG. 3 shows that resin particles are attached to any carbon fiber by electrophoresis. Further, FIG. 5 shows that the resin particles permeate not only toward the end of the carbon fiber but also inside the fiber fabric.
  • the applied voltage was set to 0 V, 6.5 V, 10 V, 20 V, or 30 V, and the amount of PMMA particles adsorbed to the carbon fiber when the voltage was applied for 30 seconds was calculated.
  • a graph showing the relationship between the applied voltage and the amount of adsorbed particles is shown in FIG. Further, SEM images at applied voltages of 0 V and 30 V are also shown in FIG.
  • the applied voltage was set to 0 V, 6.5 V, 10 V, 20 V, or 30 V, and each carbon fiber obtained by applying the voltage for 30 seconds was subjected to a fragmentation test to calculate the interfacial shear stress.
  • a graph showing the relationship between the amount of adsorbed particles and the interfacial shear stress is shown in FIG.
  • the interfacial shear strength between the acrylic resin and the carbon fiber is improved, and thus the interfacial shear strength can be controlled by controlling the adsorbed particle amount. Recognize. From this, it is considered that the wettability with the resin is improved and the interfacial adhesion is improved by coating the carbon fiber with the resin component.
  • Example 2 Nylon 12 true spherical particles (manufactured by Toray Industries, Inc.) 230 mg, water 75 g, nonionic surfactant (Span20, manufactured by Tokyo Chemical Industry Co., Ltd.), and electrolyte (KCl, Kanto Chemical Co., Ltd.) 50 mg), and ultrasonic irradiation was performed for 30 seconds using an ultrasonic cleaner (US-5KS manufactured by SND Co., Ltd.) to disperse the nylon particles to obtain a colloid solution for producing carbon fiber reinforced plastic.
  • an ultrasonic cleaner US-5KS manufactured by SND Co., Ltd.
  • the distilled water prepared with the pure water manufacturing apparatus Auto still WG250, Yamato Scientific Co., Ltd. was used for water.
  • FIG. 8 shows that nylon particles are adsorbed on the carbon fiber surface by performing electrophoresis at 30 V for 30 seconds. This is because the negatively charged nylon particles are attracted to and adsorbed to the positively charged carbon fibers.
  • FIG. 9 shows an SEM image (upper left) and an enlarged image (lower left) of a carbon fiber subjected to electrophoresis at 30 V for 30 seconds, and an enlarged image (lower right) of a carbon fiber to which nylon powder is adhered (upper right). Indicates.
  • FIG. 9 shows that the nylon particles attached by the electrophoresis operation are better attached than the powder directly attached.
  • a fragmentation test was performed on the carbon fibers obtained by the electrophoresis operation of Example 2 (30 V for 30 seconds), and the carbon fibers treated with acetone to remove the sizing agent for comparison. The result of the fragmentation test is shown in FIG.
  • FIG. 10 shows that by attaching nylon particles to the carbon fiber by electrophoretic operation, the interfacial shear strength is changed from 43.2 MPa to 73.4 MPa, and the interfacial adhesion is improved by about 70%.
  • Example 3 In a screw tube with an internal volume of 100 mL, 15 g of water, 2,3′-azobis (2-methylpropionamidine) dihydrochloride (V-50, Sigma-Aldrich) 2.03 mM, and N-vinylacetamide monomer (NVA, NVA monomer was polymerized by adding 320 mM (made by Showa Denko KK) and stirring at 70 ° C. and 130 rpm for 6 hours. Thereto, 60 g of water was added to make a total amount of 75 g.
  • V-50 2,3′-azobis (2-methylpropionamidine) dihydrochloride
  • NVA N-vinylacetamide monomer
  • the obtained resin-adsorbed carbon fiber bundle or the untreated carbon fiber bundle was treated with acetone to remove the sizing agent, and the sizing agent-removed carbon fiber bundle was impregnated with nylon resin. Specifically, it was performed according to the following steps 1 to 4. 1.
  • the PA6 film was vacuum dried at 80 ° C. for 24 hours. 2.
  • PA6 film was cut out to 10 mm ⁇ 150 mm. 3.
  • the carbon fiber bundle was sandwiched between PA6 films, and the resin was melted by sandwiching at about 0.1 MP for 5 minutes with a hot press machine. 4). Thereafter, a load was applied at 5 MPa for 1 minute.
  • the obtained carbon fiber-resin composite was cut perpendicular to the fiber direction of the carbon fiber, and the cross section was observed with an SEM. SEM observation images are shown in FIG. 11 (high magnification image) and FIG. 12 (low magnification image).
  • the permeation rate is shown in the lower part of FIG.
  • the ratio of the carbon fiber region is shown in the lower part of FIG.
  • the carbon fiber bundle As shown in FIGS. 11 and 12, by using the resin-adsorbed carbon fiber bundle obtained by attaching poly-N-vinylacetamide to the carbon fiber bundle by electrophoresis, the carbon fiber bundle is densely arranged. It was found that the resin can be impregnated efficiently.
  • Example 4 In a screw tube having an internal volume of 100 mL, 15 g of water, 2.03 mM of azobisisobutyronitrile, 320 mM of styrene monomer (Tokyo Kasei), and 1570 mM of N-vinylacetamide monomer (NVA, Showa Denko) were placed at 70 ° C. A polymer of NVA monomer and styrene monomer was prepared by stirring at 130 rpm for 6 hours. Thereto, 60 g of water was added to make a total amount of 75 g.
  • KCl 50 mg was put therein and irradiated with ultrasonic waves for 30 seconds using an ultrasonic cleaner (US-5KS manufactured by SND Corporation) to obtain a colloid solution for producing carbon fiber reinforced plastic.
  • an ultrasonic cleaner US-5KS manufactured by SND Corporation
  • the distilled water prepared with the pure water manufacturing apparatus Auto still WG250, Yamato Scientific Co., Ltd. was used for water.
  • the surface of the single fiber of the sizing agent-removed carbon fiber bundle obtained by treating the obtained resin-adsorbed carbon fiber bundle or the untreated carbon fiber bundle with acetone to remove the sizing agent is the same as in Example 1. And observed. The result is shown in FIG.
  • the obtained resin-adsorbed carbon fiber bundle or the sizing agent-removed carbon fiber bundle was impregnated with a nylon resin. Specifically, it was performed according to the following steps 1 to 4. 1.
  • the PA6 film was vacuum dried at 80 ° C. for 24 hours. 2.
  • PA6 film was cut out to 10 mm ⁇ 150 mm.
  • the carbon fiber bundle was sandwiched between PA6 films, and the resin was melted by sandwiching at about 0.1 MP for 5 minutes with a hot press machine. 4). Thereafter, a load was applied at 5 MPa for 1 minute.
  • the obtained carbon fiber-resin composite was cut perpendicular to the fiber direction of the carbon fiber, and the cross section was observed with an SEM. SEM observation images are shown in FIG. 15 (high magnification image) and FIG. 16 (low magnification image).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Reinforced Plastic Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

炭素繊維と樹脂との界面接着性を向上させた炭素繊維強化プラスチック及びその製造に使用することができる炭素繊維強化プラスチック製造用コロイド溶液を提供する。 炭素繊維強化プラスチック製造用コロイド溶液であって、 (1)樹脂粒子、非イオン性界面活性剤、電解質及び水を含有する、 (2)樹脂粒子、ラジカル重合開始剤、及び水を含有する、又は (3)固体状の無機粒子、電解質及び水を含有する、 炭素繊維強化プラスチック製造用コロイド溶液。

Description

炭素繊維強化プラスチック製造用コロイド溶液、粒子吸着炭素繊維及びその製造方法、炭素繊維強化プラスチック、並びに制御方法
 本発明は、炭素繊維強化プラスチック製造用コロイド溶液、粒子吸着炭素繊維及びその製造方法、炭素繊維強化プラスチック、並びに制御方法に関する。
 熱可塑性樹脂に炭素繊維を複合した材料は、炭素繊維強化熱可塑性プラスチック(CFRTP)として、航空機材料、自動車材料等に用いられることが期待されている。しかしながら、熱可塑性樹脂と炭素繊維との界面接着性には改善の余地があり、熱可塑性樹脂と炭素繊維とを接着させることは非常に困難であった。その理由としては、熱可塑性樹脂を加熱して溶解させても、炭素繊維織物内部に入り込むことができないためと考えられる。
 熱可塑性樹脂と炭素繊維との界面接着性を向上させるための手法としては種々検討がなされている。
 特許文献1には、ポリエーテルイミド樹脂のエマルジョンに炭素繊維をカソード電極として電気泳動し、カチオン化したポリエーテルイミド樹脂を炭素繊維に電着させ被覆する方法が開示されている。しかしながら、特許文献1に記載の方法は、液体状のポリエーテルイミド樹脂を溶媒に溶解させて使用する必要があり、溶媒が不純物として炭素繊維上に残留する。このため、得られたポリエーテルイミド樹脂吸着炭素繊維を炭素繊維強化プラスチックの製造に用いた場合、母材の樹脂との界面接着性に劣るか、又は界面接着性が不安定になるおそれがあった。
 特許文献2には、帯電させた樹脂粒子を炭素質粉末に吸着させ、溶液中で炭素繊維基材を電極とした電気泳動を行い、炭素繊維基材に帯電した樹脂粒子とともに炭素質粉末を析出させる、炭素繊維強化炭素複合材料の製造方法が開示されている。しかしながら、当該炭素繊維強化炭素複合材料は、焼結工程で炭素粉末表面に吸着した樹脂が消失するため、表面は炭素粒子で被覆されている。このため、当該炭素繊維強化炭素複合材料は、樹脂との界面接着性に劣り、炭素繊維強化熱可塑性プラスチックの製造に好適に用いることはできない。
特表2002-521582号公報 特開平5-208868号公報
 このため、本発明は、炭素繊維と樹脂との界面接着性を向上させた炭素繊維強化プラスチック及びその製造に使用することができる炭素繊維強化プラスチック製造用コロイド溶液を提供することを主な目的とする。
 本発明者らは、上記した目的を達成するために鋭意研究を重ねてきた結果、樹脂粒子又は無機粒子を含有するコロイド溶液中で、炭素繊維を正極又は負極として電気泳動を行うことで、極めて短時間の間に炭素繊維に多量の樹脂粒子を吸着させることができ、これにより樹脂との界面接着性を向上させることができることを見出した。本発明者らは、以上の知見をもとにさらに研究を重ね、本発明を完成した。即ち、本発明は、以下の項1~項16に示す炭素繊維強化プラスチック製造用コロイド溶液、粒子吸着炭素繊維、粒子吸着炭素繊維の製造方法、炭素繊維強化プラスチック、吸着粒子量制御方法及び界面接着性制御方法に係る。
項1. 炭素繊維強化プラスチック製造用コロイド溶液であって、
(1)樹脂粒子、非イオン性界面活性剤、電解質及び水を含有する、
(2)樹脂粒子、ラジカル重合開始剤、及び水を含有する、又は
(3)固体状の無機粒子、電解質及び水を含有する、
炭素繊維強化プラスチック製造用コロイド溶液。
項2. 前記樹脂粒子が熱可塑性樹脂粒子である、項1に記載の炭素繊維強化プラスチック製造用コロイド溶液。
項3. 前記熱可塑性樹脂粒子が、アミド結合含有モノマーを含むモノマーの重合体粒子である、項2に記載の炭素繊維強化プラスチック製造用コロイド溶液。
項4. 前記熱可塑性樹脂粒子の平均粒子径が0.02~0.5μmである、項2又は3に記載の炭素繊維強化プラスチック製造用コロイド溶液。
項5. 前記熱可塑性樹脂粒子がポリアミド系樹脂粒子である、項2に記載の炭素繊維強化プラスチック製造用コロイド溶液。
項6. 前記ポリアミド系樹脂粒子がナイロン粒子である、項5に記載の炭素繊維強化プラスチック製造用コロイド溶液。
項7. 炭素繊維の表面に熱可塑性樹脂粒子が吸着している、粒子吸着炭素繊維。
項8. 前記熱可塑性樹脂粒子が、アミド結合含有モノマーを含むモノマーの重合体粒子である、項7に記載の粒子吸着炭素繊維。
項9. 前記熱可塑性樹脂粒子の平均粒子径が0.02~0.5μmである、項7又は8に記載の粒子吸着炭素繊維。
項10. 前記熱可塑性樹脂粒子がポリアミド系樹脂粒子である、項7に記載の粒子吸着炭素繊維。
項11. 前記ポリアミド系樹脂粒子がナイロン粒子である、項10に記載の粒子吸着炭素繊維。
項12. 粒子吸着炭素繊維の製造方法であって、
 項1~6のいずれか1項に記載の炭素繊維強化プラスチック製造用コロイド溶液中で炭素繊維を正極又は負極として電圧を印加して電気泳動を行う工程
を備える、製造方法。
項13. 項7~11のいずれか1項に記載の粒子吸着炭素繊維が母材の樹脂中に含有されている、炭素繊維強化プラスチック。
項14. 前記粒子吸着炭素繊維中の樹脂粒子を構成する樹脂と、前記母材の樹脂とが同一又は類似の樹脂である、項13に記載の炭素繊維強化プラスチック。
項15. 粒子吸着炭素繊維の表面に吸着する粒子の量を制御する方法であって、
 項1~6のいずれか1項に記載の炭素繊維強化プラスチック製造用コロイド溶液中で炭素繊維を正極又は負極として電圧を印加する際に、印加する電圧の大きさを制御することにより前記炭素繊維に吸着する前記粒子の量を制御する、制御方法。
項16. 炭素繊維の樹脂との界面接着性を制御する方法であって、
 項1~6のいずれか1項に記載の炭素繊維強化プラスチック製造用コロイド溶液中で炭素繊維を正極又は負極として電圧を印加する際に、印加する電圧の大きさを制御して前記炭素繊維に吸着する前記粒子の量を制御することにより、前記炭素繊維の樹脂との界面接着性を制御する、制御方法。 
 本発明によれば、(1)樹脂粒子、非イオン性界面活性剤、電解質及び水を含有する、(2)樹脂粒子、ラジカル重合開始剤、及び水を含有する、又は(3)無機粒子、電解質及び水を含有する、炭素繊維強化プラスチック製造用コロイド溶液中に炭素繊維を正極又は負極として電気泳動を行うことで、極めて短時間の間に炭素繊維に多量の粒子を吸着させることができ、これにより樹脂との界面接着性を向上させることができる。また、本発明の炭素繊維強化プラスチック製造用コロイド溶液を用いて粒子吸着炭素繊維を製造した場合、炭素繊維強化プラスチック製造用コロイド溶液は樹脂粒子、又は固体状の無機粒子を用い、かつ溶媒が水であるために、炭素繊維表面上に溶媒が残留しない。このため、得られた粒子吸着炭素繊維は炭素繊維強化プラスチックの母材となる樹脂との界面接着性に優れている。
 ここで、樹脂粒子、非イオン性界面活性剤、電解質及び水を含有する炭素繊維強化プラスチック製造用コロイド溶液は、電解質が含まれているために電気泳動の際に電流が流れ、効果的に(短時間で)炭素繊維に粒子を吸着させることができる点で有利である。また、樹脂粒子、ラジカル重合開始剤、及び水を含有する炭素繊維強化プラスチック製造用コロイド溶液は、界面活性剤を含まないため、コスト面で有利であるとともに、極微量であるが界面活性剤が不純物として残留しないために炭素繊維との界面接着性が向上する。また、固体状の無機粒子、電解質及び水を含有する炭素繊維強化プラスチック製造用コロイド溶液は、界面活性剤を含まないため、コスト面で有利であるとともに、炭素繊維強化プラスチックに含有させた場合に、無機粒子が融解しないで残存するため、従来にない高い強度の炭素繊維強化プラスチックを得ることができる。
 本発明の粒子吸着炭素繊維は、炭素繊維の表面に熱可塑性樹脂粒子が吸着している。このため、炭素繊維強化プラスチックの母材となる樹脂が熱可塑性樹脂である場合にも界面接着性に優れている。このようにして樹脂との界面接着性が向上した粒子吸着炭素繊維を使用することで、炭素繊維と樹脂(特に熱可塑性樹脂)とを容易に接着させることができる。
 本発明の粒子吸着炭素繊維の製造方法によれば、(1)樹脂粒子、非イオン性界面活性剤、電解質及び水を含有する、(2)樹脂粒子、ラジカル重合開始剤、及び水を含有する、又は(3)固体状の無機粒子、電解質及び水を含有する、炭素繊維強化プラスチック製造用コロイド溶液中に炭素繊維を正極又は負極として電気泳動を行うことで、極めて短時間の間に炭素繊維に多量の粒子を吸着させることができる。該製造方法によれば、従来炭素繊維に吸着させることが難しかった熱可塑性樹脂粒子、特にポリアミド系樹脂粒子、例えばナイロン粒子を炭素繊維表面に均一に吸着させることができる。また、電気泳動操作により粒子吸着炭素繊維を製造する際に、印加電圧を変化させることで炭素繊維に吸着する粒子の量を制御することができ、それにより界面接着性を制御することができる。
 本発明の炭素繊維強化プラスチックは、上記のように界面接着性に優れた粒子吸着炭素繊維が母材の樹脂中に含有されている。このため、粒子吸着炭素繊維と母材の樹脂とが高い強度で接着されているため、炭素繊維強化プラスチックは高い強度を有する。
実施例1の炭素繊維強化プラスチック製造用コロイド溶液中で0V、6.5V、10V、20V、又は30Vで30秒間電気泳動した後、又は実施例1の炭素繊維強化プラスチック製造用コロイド溶液中に炭素繊維を24時間浸漬した後の炭素繊維表面のSEM画像である。 実施例1の浸透性評価試料における断面(1)及び断面(2)の模式図である。 断面(1)の中心部付近(丸印)のSEM画像である。 断面(2)のaからbに向かうSEM画像である。 図4のSEM画像をそれぞれ拡大したものである。 実施例1の印加電圧と粒子吸着量との関係を示すグラフ、及び印加電圧0V及び30VのときのSEM画像である。 実施例1の粒子吸着量と界面せん断応力との関係を示すグラフである。 実施例2の炭素繊維強化プラスチック製造用コロイド溶液中で、30Vで30秒間電気泳動した後の炭素繊維表面のSEM画像である。 実施例2の炭素繊維強化プラスチック製造用コロイド溶液中で、30Vで30秒間電気泳動を行った炭素繊維のSEM画像(左上)及びその拡大画像(左下)、及びナイロン粉末を付着させた炭素繊維のSEM画像(右上)その拡大画像(右下)である。 実施例2の電気泳動操作(30Vで30秒間)で得られた炭素繊維、及びアセトンで処理してサイジング剤を除去した炭素繊維のフラグメンテーション試験の結果を示すグラフである。 実施例3の炭素繊維-樹脂複合体の断面図である。左側の写真はサイジング剤除去済み炭素繊維束に樹脂を含浸させた場合の写真であり、右側の写真は実施例3で得られた樹脂吸着炭素繊維束に樹脂を含浸させた場合の写真である。各写真の下方に示される割合は含浸率である。 実施例3の炭素繊維-樹脂複合体の断面図である。左側の写真はサイジング剤除去済み炭素繊維束に樹脂を含浸させた場合の写真であり、右側の写真は実施例3で得られた樹脂吸着炭素繊維束に樹脂を含浸させた場合の写真である。各写真の下方に示される割合は、断面図中、炭素繊維の断面が占める割合(炭素繊維領域の割合)である。 実施例4のSEM画像である。 実施例4の電気泳動操作で得られた炭素繊維(10V、20V、30V)、及びアセトンで処理してサイジング剤を除去した炭素繊維(Fresh)のフラグメンテーション試験の結果を示すグラフである。 実施例4の炭素繊維-樹脂複合体の断面図である。左側の写真はサイジング剤除去済み炭素繊維束に樹脂を含浸させた場合の写真であり、右側の写真は実施例4で得られた樹脂吸着炭素繊維束に樹脂を含浸させた場合の写真である。各写真の上方に示される割合は含浸率である。 実施例4の炭素繊維-樹脂複合体の断面図である。左側の写真はサイジング剤除去済み炭素繊維束に樹脂を含浸させた場合の写真であり、右側の写真は実施例4で得られた樹脂吸着炭素繊維束に樹脂を含浸させた場合の写真である。各写真の上方に示される割合は、断面図中、炭素繊維の断面が占める割合(炭素繊維領域の割合)である。
 1.炭素繊維強化プラスチック製造用コロイド溶液
 (1-1)炭素繊維強化プラスチック製造用コロイド溶液
 本発明の炭素繊維強化プラスチック製造用コロイド溶液は、(1)樹脂粒子、非イオン性界面活性剤、電解質及び水を含有する、(2)樹脂粒子、ラジカル重合開始剤、及び水を含有する、又は(3)固体状の無機粒子、電解質及び水を含有する。このような構成を採用することにより、様々な粒子で炭素繊維強化プラスチック製造用コロイド溶液を形成することができる。本発明の炭素繊維強化プラスチック製造用コロイド溶液中で、炭素繊維を電極(正極又は負極)として電圧を印加することにより、炭素繊維を水中で正又は負に帯電させることができるため、コロイド粒子の正負の帯電にかかわらず、炭素繊維に吸着させることができる。このため、この炭素繊維強化プラスチック製造用コロイド溶液を用いて炭素繊維をいずれかの電極として電気泳動を行うことで、炭素繊維と母材の樹脂との界面接着性を著しく向上させることができる。また、電気泳動操作における印加電圧を変化させることで炭素繊維に吸着する粒子の量を制御することができ、それにより炭素繊維の樹脂との界面接着性を制御することができる。
(1)樹脂粒子、非イオン性界面活性剤、電解質及び水を含有する、炭素繊維強化プラスチック製造用コロイド溶液(第1の態様)
 本発明の炭素繊維強化プラスチック製造用コロイド溶液の第1の態様は、樹脂粒子、非イオン性界面活性剤、電解質及び水を含有するコロイド溶液である。
 樹脂粒子としては、特に制限されず、種々様々な樹脂粒子を採用することができる。なお、本発明の炭素繊維強化プラスチック製造用コロイド溶液中で炭素繊維を電極として電気泳動を行った場合、炭素繊維のほぼ全面にわたって当該粒子が吸着し、好ましくは、炭素繊維織物の内部にまで当該粒子が浸透する。特に、本発明の粒子吸着炭素繊維は、当該粒子と同一又は類似の樹脂との界面接着性を向上させることができる。例えば、ポリメチルメタクリレート(PMMA)等のアクリル樹脂との接着性を向上させたい場合は、樹脂粒子として、ポリメチルメタクリレート粒子、ポリブチルアクリレート粒子、ポリイソブチルアクリレート粒子等のアクリル樹脂粒子を使用することが好ましく、ナイロン-6、ナイロン-12等のナイロン樹脂(ポリアミド系樹脂)との接着性を向上させたい場合は、樹脂粒子として、アミド結合含有モノマーを含むモノマーの重合体粒子、ナイロン-6、ナイロン-12等のナイロン樹脂粒子を使用することが好ましい。
 なお、炭素繊維を用いて炭素繊維強化プラスチックに加工する場合には、従来は炭素繊維と熱可塑性樹脂とを接着させることが困難であったが、本発明の炭素繊維強化プラスチック製造用コロイド溶液中の樹脂粒子を熱可塑性樹脂粒子とすることで、母材の熱可塑性樹脂と炭素繊維との界面接着性を向上させることができる。熱可塑性樹脂粒子として、具体的には、アミド結合含有モノマーを含むモノマーの重合体粒子、ポリアミド系樹脂粒子、ポリフェニレンエーテル粒子、ポリオキシメチレン粒子、ポリブチレンテレフタレート粒子、ポリカーボネート粒子、ポリメチルメタクリレート(PMMA)粒子、ポリスチレン粒子、ポリプロピレン粒子、ポリエーテルイミド粒子、ポリエーテルサルホン粒子等が挙げられる。これらの中で、アミド結合含有モノマーを含むモノマーの重合体粒子、ポリアミド系樹脂粒子が好ましく、アミド結合含有モノマーを含むモノマーの重合体粒子がより好ましい。
 アミド結合含有モノマーを含むモノマーの重合体粒子は、アミド結合含有モノマーの重合体粒子、又はアミド結合含有モノマーと他のモノマーとの重合体粒子である限り、特に制限されない。
 アミド結合含有モノマーとしては、例えば、分子内にアミド結合を有し、単独で重合して、或いは他のモノマーと重合して重合体を形成可能なモノマーである限り特に制限されない。典型的には、アミド基と、末端に二重結合を有するアルケニル基(例えばビニル基、アリル基等)とを分子内に有するモノマーが挙げられる。該モノマーの分子量は、例えば80~200、好ましくは80~150、より好ましくは80~100である。アミド結合含有モノマーの具体例としては、N-ビニルアセトアミドが挙げられる。
 アミド結合含有モノマーを含むモノマーの重合体粒子を形成し得る他のモノマーとしては、特に制限されない。他のモノマーとしては、例えばスチレンモノマー、プロピレンモノマー、メチルメタクリレートモノマー、酢酸ビニルモノマー、エチレンモノマー、芳香族ビニルモノマー、アクリルモノマー等が挙げられる。他のモノマーを用いる場合、アミド結合含有モノマーとのモル比(アミド結合含有モノマー/他のモノマー)は、例えば0.2~20、好ましくは0.5~15、より好ましくは1~8、さらに好ましくは2~5である。
 ポリアミド系樹脂粒子には、脂肪族ポリアミド粒子及び芳香族ポリアミド粒子が含まれる。脂肪族ポリアミドとして、脂肪族ナイロン及びその共重合体が挙げられる。具体的には、ポリカプラミド(ナイロン-6)、ポリラウリルラクタム(ナイロン-12)、ポリヘキサメチレンアジパミド(ナイロン-6,6)、カプロラクタム/ラウリロラクタム共重合体(ナイロン-6/12)等のナイロン粒子が挙げられる。芳香族ポリアミドとして、例えば、ポリメタキシレンアジパミド等の結晶性芳香族ポリアミド粒子、ヘキサメチレンジアミン-テレフタル酸-ヘキサメチレンジアミン-イソフタル酸の共重合体等の非晶性芳香族ポリアミド粒子が挙げられる。ポリアミド系樹脂粒子として、上記のナイロン粒子が特に好ましい。なお、ナイロン粒子は、水中でマイナス(負)に帯電する。 
 これらの樹脂粒子は、単独で用いてもよいし、2種以上を組合せて用いてもよい。また、樹脂粒子は、公知又は市販の樹脂粒子を用いることができるし、重合して用いてもよい。
 非イオン性界面活性剤は、樹脂粒子をコロイド状にできるものであれば特に制限されず、種々様々なものを使用することができる。具体的には、ラウリン酸グリセリン、モノステアリン酸グリセリン、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステル等のエステル型界面活性剤;ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルフェニルエーテル等のエーテル型界面活性剤;ポリオキシエチレンソルビタン脂肪酸エステル、ソルビタン脂肪酸エステルポリアルキレングリコール等のエステルエーテル型界面活性剤;ラウリン酸ジエタノールアミド、ステアリン酸ジエタノールアミド等のアルカノールアミド型界面活性剤;デシルグリコシド、ラウリルグリコシド等のアルキルグリコシド、セタノール、ステアリルアルコール等の高級アルコール等が挙げられる。これら非イオン性界面活性剤は、単独で用いてもよいし、2種以上を組合せて用いてもよい。また、非イオン性界面活性剤は、公知又は市販の非イオン性界面活性剤を使用することができる。樹脂粒子がナイロン粒子である場合には、エステル型界面活性剤、特にソルビタンモノラウレート等のソルビタン脂肪酸エステルを使用することが好ましい。
 電解質は、炭素繊維強化プラスチック製造用コロイド溶液を電気泳動しやすくするために添加される。電解質として、塩化ナトリウム、塩化カリウム、塩化マグネシウム等が挙げられる。炭素繊維強化プラスチック製造用コロイド溶液中に電解質が含まれることで、該コロイド溶液中で電気泳動を行ったときにコロイド粒子の電気泳動移動度が向上し、炭素繊維へのコロイド粒子の吸着量が増加する。
 水としては、特に制限はなく、水道水、工業用水、イオン交換水、脱イオン水、純水等の各種の水を用いることができる。特に脱イオン水及び純水が好ましい。
 第1の態様においては、さらにラジカル重合開始剤を含有していてもよい。ラジカル重合開始剤として、カチオン重合開始剤を使用することが好ましい。カチオン重合開始剤(カチオン性ラジカル重合開始剤)としては、特に制限されず、種々様々なものを使用することができる。具体的には、2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩(V-50)、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩(VA-044),2,2'-アゾビス[2-(2-イミダゾリン-2-イル) プロパン] 二硫酸塩二水和物(VA-046B)等のアゾ化合物が挙げられる。これらラジカル重合開始剤は、単独で用いてもよいし、2種以上を組合せて用いてもよい。また、ラジカル重合開始剤は、公知又は市販のカチオン重合開始剤を使用することができる。
(2)樹脂粒子、ラジカル重合開始剤、及び水を含有する、炭素繊維強化プラスチック製造用コロイド溶液(第2の態様)
 本発明の炭素繊維強化プラスチック製造用コロイド溶液の第2の態様は、樹脂粒子、ラジカル重合開始剤、及び水を含有するコロイド溶液である。
 樹脂粒子、水、及びラジカル重合開始剤としては、上記第1の態様と同様のものを使用することができる。
 第2の態様においては、さらに電解質を含有することが好ましい。電解質としては、上記第1の態様と同様のものを使用することができる。
(3)固体状の無機粒子、電解質及び水を含有する炭素繊維強化プラスチック製造用コロイド溶液(第3の態様)
 本発明の炭素繊維強化プラスチック製造用コロイド溶液の第3の態様は、固体状の無機粒子、電解質及び水を含有するコロイド溶液である。
 固体状の無機粒子としては、特に制限されず、種々様々な無機粒子を採用することができる。無機粒子として、例えば、シリカ粒子、アルミナ粒子、酸化鉄粒子、酸化チタン粒子、炭素粒子等を挙げることができる。固体状の無機粒子を用いた場合には、炭素繊維強化プラスチックに含有させた場合にも融解せずに残留するため、従来にない強度の炭素繊維強化プラスチックを得ることができる。
 これらの固体状の無機粒子は、単独で用いてもよいし、2種以上を組合せて用いてもよい。また、無機粒子は、公知又は市販の無機粒子を用いることができる。
 固体状の無機粒子を用いてコロイド溶液を調製する場合には、界面活性剤を添加する必要はない。なお、シリカ粒子は、水中でマイナス(負)に帯電する。
 本発明で使用する樹脂粒子又は無機粒子は、より炭素繊維強化プラスチック製造用コロイド溶液を形成しやすくするとともに、炭素繊維に吸着しやすくする観点から、平均粒子径は0.02~5μmが好ましく、0.02~1μmがより好ましく、0.02~0.5μmがさらに好ましい。樹脂粒子又は無機粒子の平均粒子径は、走査型電子顕微鏡観察で測定することができる。上記平均粒子径を有する樹脂粒子又は無機粒子が市販されている場合には、市販品を用いることができる。或いは、市販の樹脂製品又は無機粒子を適当な粉砕装置を用いて細かく粉砕し、上記平均粒子径を有する粉末にしてから使用することもできる。
 本発明の炭素繊維強化プラスチック製造用コロイド溶液中の各成分の組成は特に制限されない。本発明の炭素繊維強化プラスチック製造用コロイド溶液を調製しやすくし、炭素繊維表面に樹脂粒子又は無機粒子を吸着しやすくする観点からは、水の含有量は過剰量とすればよい。炭素繊維強化プラスチック製造用コロイド溶液の第1の態様の場合、樹脂粒子の濃度は0.1~2重量%(特に0.1~0.5重量%)、非イオン性界面活性剤の濃度は0.5~30mmol/L(特に1~10mmol/L)、電解質の濃度は0.5~30mmol/L(特に1~10mmol/L)となるように調整することが好ましい。第2の態様の場合、樹脂粒子の濃度は0.1~2重量%(特に0.1~0.5重量%)、ラジカル重合開始剤の濃度は2~100mmol/L(特に2~60mmol/L)となるように調整することが好ましい。第3の態様の場合、固体状の無機粒子の濃度は0.1~2重量%(特に0.1~0.5重量%)、電解質の濃度は0.5~30mmol/L(特に1~10mmol/L)となるように調整することが好ましい。
 本発明の炭素繊維強化プラスチック製造用コロイド溶液には、本発明の効果を損なわない範囲(例えば0~5重量%、特に0~3重量%)において、必要に応じて、pH調整剤、酸化防止剤、粘度調整剤、防かび剤、消泡剤、可塑剤、安定剤等の添加剤を適宜添加することができる。これらの添加剤は、公知又は市販品を使用することができる。
 (1-2)炭素繊維強化プラスチック製造用コロイド溶液の製造方法
 本発明の炭素繊維強化プラスチック製造用コロイド溶液の製造方法としては、樹脂粒子又は無機粒子の炭素繊維強化プラスチック製造用コロイド溶液を製造できる方法であれば制限されない。例えば、炭素繊維強化プラスチック製造用コロイド溶液が第1の態様であれば、樹脂粒子、非イオン性界面活性剤、電解質及び水を混合することにより、或いは樹脂粒子を形成するモノマー、ラジカル重合開始剤、及び水を混合して樹脂粒子を形成してからそこへ非イオン化性界面活性剤及び電解質を添加して混合することにより、炭素繊維強化プラスチック製造用コロイド溶液が第2の態様であれば、樹脂粒子を形成するモノマー、ラジカル重合開始剤、及び水を混合することにより、炭素繊維強化プラスチック製造用コロイド溶液が第3の態様であれば、固体状の無機粒子、電解質及び水を混合することにより、本発明の炭素繊維強化プラスチック製造用コロイド溶液を得ることができる。混合は、攪拌下で行うことが好ましい。
 樹脂粒子又は無機粒子、非イオン性界面活性剤、ラジカル重合開始剤、電解質及び水としては、上記したものを使用することができる。
 混合は、通常、常温常圧下で、数秒間から30分間攪拌しながら行うことが好ましい。攪拌及び混合は、例えば、マグネチックスターラー等を用いて行うこともできるし、超音波又はマイクロウェーブを照射することにより行うこともできる。
 2.粒子吸着炭素繊維及びその製造方法
 (2-1)粒子吸着炭素繊維
 本発明の粒子吸着炭素繊維は、炭素繊維の表面に樹脂粒子又は無機粒子が吸着している。特に好適には、炭素繊維織物の内部に樹脂粒子又は無機粒子が含浸している。
 樹脂粒子又は無機粒子は、上記したものを使用することができる。炭素繊維強化プラスチックに用いられる母材の樹脂が熱可塑性樹脂である場合には、本発明の粒子吸着炭素繊維中の樹脂粒子も熱可塑性樹脂であることが好ましい。樹脂粒子の熱可塑性樹脂(熱可塑性樹脂粒子)については、上述の「1.炭素繊維強化プラスチック製造用コロイド溶液」における定義と同様である。母材の熱可塑性樹脂としては、ポリアミド系樹脂(例えば、ナイロン)、ポリフェニレンエーテル、ポリオキシメチレン、ポリブチレンテレフタレート、ポリカーボネート、メチルメタクリレート、スチレン、プロピレン、エーテルイミド、エーテルサルホン等が挙げられる。これらの中で、ナイロンが好ましい。
 炭素繊維としては、例えば、PAN(ポリアクリロニトリル)系炭素繊維、ピッチ系炭素繊維等が挙げられる。これらの炭素繊維は、単独で用いてもよいし、2種以上を組合せて用いてもよい。
 炭素繊維の形態については、連続長繊維や連続長繊維をカットした短繊維、粉末状に粉砕したミルド糸、束等、いずれでもよい。これらは、織物、編み物、不織布等のシート状等に、用途や必要特性に応じて様々に選択することができる。
 炭素繊維束の場合、該束を構成する炭素繊維の本数は、特に制限されないが、好ましくは1000以上、より好ましくは1000~50000、さらに好ましくは1500~40000、よりさらに好ましくは2000~30000である。上記した本発明の炭素繊維強化プラスチック製造用コロイド溶液を用いることにより、このような多数の炭素繊維から構成される束に対して、束の内部(芯)の炭素繊維に対しても、より効率的に樹脂粒子を吸着させることができる。
 炭素繊維のサイズとしては、特に制限されず、平均直径が1,000~30,000nm程度(特に1,000~10,000nm程度)が好ましい。なお、炭素繊維の平均長は特に制限はなく、必要に応じて適宜設定することができる。
 本発明の粒子吸着炭素繊維は、樹脂との界面接着性をより向上させる観点から、炭素繊維の表面のほぼ全面に樹脂粒子又は無機粒子が吸着していることが好ましく、炭素繊維の表面だけでなく炭素繊維織物の内部に樹脂粒子又は無機粒子が浸透していることがより好ましい。具体的には、炭素繊維表面の面積の30~100%、特に60~99%に樹脂粒子又は無機粒子が吸着していることが好ましい。
 なお、上記したように、炭素繊維表面にはサイジング剤が付着していることがあるが、この場合、炭素繊維表面の樹脂粒子又は無機粒子の吸着性を向上させるために、炭素繊維表面のサイジング剤を除去することが好ましい。
 また、炭素繊維はその表面に水酸基が存在しておりマイナス(-)に帯電しているが、例えば、炭素繊維を正極として電圧を印加することによりプラス(+)に帯電することから、本発明では、樹脂粒子又は無機粒子がいずれに帯電していようとも樹脂粒子を引き付け、炭素繊維表面の全面に樹脂粒子又は無機粒子を吸着することができ、さらに好適には炭素繊維織物内部にまで樹脂粒子又は無機粒子を浸透させることができる。
 (2-2)粒子吸着炭素繊維の製造方法
 本発明の粒子吸着炭素繊維の製造方法としては、前記炭素繊維強化プラスチック製造用コロイド溶液中で、炭素繊維を正極又は負極として電気泳動を行う工程を備える製造方法が挙げられる。
 炭素繊維としては、上記したものを使用することができる。ただし、上記のように、市販の炭素繊維は、ハンドリング性向上等のために、表面にサイジング剤が付着していることが多い。この場合、炭素繊維表面の樹脂粒子又は無機粒子の吸着性を向上させるために、まず、炭素繊維表面のサイジング剤を除去することが好ましい。
 炭素繊維表面に付着しているサイジング剤を除去する方法としては、特に制限されず、常法により行うことができる。例えば、アセトン、2-ブタノン(メチルエチルケトン)、テトラヒドロフラン、ジクロロメタン、ジクロロエタン等で処理することで、炭素繊維表面のサイジング剤を除去することができる。
 本発明の炭素繊維強化プラスチック製造用コロイド溶液中で炭素繊維を正極又は負極として電気泳動を行う方法は特に制限されず、常法にしたがって行うことができる。炭素繊維を正極にする場合には、負極として、白金、銅、金、銀、炭素等の電極を使用することができる。炭素繊維を負極にする場合には、正極として、白金、銅、金、銀、炭素等の電極を使用することができる。炭素繊維強化プラスチック製造用コロイド溶液の温度は特に制限されず、例えば、10~30℃が好ましく、10~25℃がより好ましい。また、印加する電圧は特に制限されず、例えば、5~50Vが好ましく、10~30Vがより好ましい。電圧印加時間は、特に制限されず、例えば、15秒間~1時間が好ましく、20秒間~3分間がより好ましい。
 また、電気泳動は、泳動溶液を撹拌しながら行うことが好ましい。これにより、炭素繊維束を用いても、束の内部(芯)の炭素繊維に対してより効率的に樹脂粒子を吸着させることができる。撹拌は通常は撹拌子を用いて行われ、この場合の回転数は、特に制限されないが、例えば50rpm~500rpm、好ましくは100~300rpmである。
 電気泳動操作により炭素繊維表面に接近した粒子は、炭素繊維との間にファンデルワールス力が働き、強固に炭素繊維に吸着して炭素繊維上に留まることになる。よって、このような方法を採用することにより、従来よりも極めて短時間で、より多量の樹脂粒子又は無機粒子が均一に吸着した粒子吸着炭素繊維を得ることができる。炭素繊維に付着している樹脂粒子又は無機粒子の量が多いことから、樹脂との界面接着性をより向上させることができる。
 3.炭素繊維強化プラスチック
 本発明の炭素繊維強化プラスチックは、本発明の粒子吸着炭素繊維が母材の樹脂中に含有されている。本発明の粒子吸着炭素繊維は、上記のとおり、樹脂との界面接着性を向上させることができるため、本発明の炭素繊維強化プラスチックは、炭素繊維と母材の樹脂とが強固に接着している。このため、本発明の炭素繊維強化プラスチックは強度が向上されている。
 母材の樹脂としては、特に制限されず、種々様々な樹脂を採用することができる。なお、本発明の粒子吸着炭素繊維は、本発明の粒子吸着炭素繊維中の樹脂粒子と同一又は類似の樹脂との界面接着性を特に向上させることができるため、母材の樹脂は、本発明の粒子吸着炭素繊維中の樹脂粒子と同一又は類似の樹脂であることが好ましい。本発明の粒子吸着炭素繊維中の樹脂粒子として熱可塑性樹脂を用いる場合には炭素繊維強化プラスチックの母材として用いる樹脂も熱可塑性樹脂が好ましい。熱可塑性樹脂として、例えば、ポリアミド系樹脂(例えば、ナイロン)、ポリフェニレンエーテル、ポリオキシメチレン、ポリブチレンテレフタレート、ポリカーボネート、ポリメチルメタクリレート(PMMA)、ポリスチレン、ポリプロピレン、ポリエーテルイミドやポリエーテルサルホン等が挙げられる。
 本発明の炭素繊維強化プラスチックにおいて、各成分の組成は特に制限されず、必要に応じて適宜設定することができる。
 この本発明の炭素繊維強化プラスチックは、常法にしたがって製造することができ、自動車、航空機、スポーツ関連製品、医療器具等を製造するための構造材料等、様々な用途において活用することができる。
 4.制御方法
 電気泳動操作により粒子吸着炭素繊維の製造する際に、印加電圧を変化させることで炭素繊維に吸着する粒子の量を制御することができる。炭素繊維への粒子吸着量と炭素繊維強化プラスチックとの界面せん断強度は、炭素繊維に吸着する粒子量が増加するに従い、界面せん断強度が向上することが明らかになった(下記実施例参照)。よって、電気泳動操作における印加電圧を変化させて炭素繊維に吸着する粒子の量を制御することで界面接着性を制御することができる。
 これより、本発明は、前記炭素繊維強化プラスチック製造用コロイド溶液中で炭素繊維を正極又は負極として電圧を印加する際に、印加する電圧の大きさを制御することにより前記炭素繊維に吸着する前記粒子の量を制御する方法を提供する。また、本発明は、前記炭素繊維強化プラスチック製造用コロイド溶液中で炭素繊維を正極又は負極として電圧を印加する際に、印加する電圧の大きさを制御して前記炭素繊維に吸着する前記粒子の量を制御することにより、前記炭素繊維の樹脂との界面接着性を制御する方法を提供する。
 次に本発明における実施例を説明するが、本発明はこれらに限定されるものではない。また、下記実施例において、各種物性の評価は、以下の方法で評価した。
(1)炭素繊維表面の観察
 炭素繊維の形態は、電界放出形走査電子顕微鏡(JSM-7500FA、日本電子株式会社製)で観察した。SEM観察用試料は、以下のように調製した。蒸着(オスミウムプラズマコーターOPC60A、フィルジェン株式会社製)により炭素繊維をオスミウム薄膜でコーティングした。
(2)粒子吸着量の評価
 熱重量測定装置(株式会社島津製作所製、DTG-60AH)を用いて炭素繊維表面上に吸着した粒子量を定量的に測定した。表1に実験条件を示す。粒子が吸着した炭素繊維を加熱することにより、粒子が溶けて炭素繊維だけが残る。この減少した重量を吸着粒子量(m)、残った重量を炭素繊維の絶乾質量(m)とし、炭素繊維の単位表面積あたりの粒子の吸着量M[g/m]を、以下の式(1)で算出した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-M000002
(3)フラグメンテーション試験
 フラグメンテーション試験は、炭素単繊維の界面せん断強度を評価する試験であり、塩谷正俊及び高久明、「繊維強化複合材料の繊維-マトリクス界面せん断強度の評価」、表面、vol33、No22、744-762(1995)の記載に従って行った。具体的には、引張試験機(10073B、ジャパンハイテック株式会社製)を用いて、顕微鏡(MS-804、株式会社モリテックス製)により試験を行った。試料は以下のようにして調製した。炭素単繊維を、ポリメチルメタクリレートを含有するフィルム2枚で挟み、熱プレス機(N4003-00、エヌピーエーシステム株式会社製)を用いて180℃で1分間ホットプレスし、2枚の鋼板の間にフィルムを設置して25℃の水で冷却することでクエンチした。その後、フィルムをゲージ長25mm及び幅4mmの短冊状に切断した。
 試料は、フラグメンテーションプロセスが飽和する引張歪15%まで試験した後、フラグメンテーション炭素繊維の平均長(<L>)を測定した。炭素単繊維のフラグメンテーション試験は、5サンプルで実施した。炭素繊維と樹脂との界面接着(τ)は、以下の式(2)により算出した。
Figure JPOXMLDOC01-appb-M000003
 限界繊維長(l)は、以下のようにして得ることができる。
Figure JPOXMLDOC01-appb-M000004
 炭素繊維の平均直径(D)は、繊維からのHe-Neレーザービームの回折により測定した。炭素繊維(長さ:l)の引張強度(f)は、単繊維の引張試験の結果を用いてWeibull分析により評価した。引張試験は、引張試験機(SDW-1000SS-E-SL、株式会社今田製作所製)を用いて行った。試験機は、ゲージ長25mm、クロスヘッドスピード1mm/minで操作した。
 実施例1
 ソープフリー乳化重合により炭素繊維強化プラスチック製造用コロイド溶液を調製した。ソープフリー乳化重合に使用される水は、純水製造装置(オートスチルWG250、ヤマト科学株式会社製)で精製した後、水中に窒素ガスを20分間吹き込んで溶存酸素を除去したものを用いた。メチルメタクリレート(MMA、東京化成工業株式会社製)を重合用モノマーとして使用した。モノマーは、ポリメチルメタクリレートを含むフィルム(HBS006、三菱レイヨン株式会社製)の熱可塑性樹脂に応じて選択した。2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩(V-50、シグマアルドリッチ社製)は、精製せずにラジカル開始剤として使用した。V-50により、樹脂粒子が正に帯電した。V-50の化学構造を以下に示す。炭素繊維(HTS40、東邦テナックス株式会社製)は、実施例1ではアセトンで処理してサイジング剤を除去した後に使用した。
Figure JPOXMLDOC01-appb-C000005
 重合反応は、100mLのスクリュー管中で行った。該反応器に蒸留水、開始剤及びモノマーを入れ、攪拌しながら加熱し、6時間重合反応を行った。実験条件を表2に示す。
Figure JPOXMLDOC01-appb-T000006
 樹脂粒子吸着炭素繊維は、以下のように製造した。内容量500mLのプラスチック容器に、上で調製した炭素繊維強化プラスチック製造用コロイド溶液約400mLを入れた。正極に白金電極、負極に炭素繊維を用い、電圧を印加させることで、炭素繊維を水中で負に帯電させた。電圧印加は、直流安定化電源(AD-8724D、株式会社エー・アンド・デイ製)を使用して30秒間行い、印加する電圧を0V、6.5V、10V、20V、又は30Vで変化させた。
 各炭素繊維表面をSEMで観察した。なお、比較のため、上で調製した炭素繊維強化プラスチック製造用コロイド溶液中にアセトン処理した炭素繊維を、電圧を印加しない状態(0V)で24時間浸漬し、水で洗浄し、室温で乾燥させた炭素繊維についても、同様に表面の観察を行った。SEM観察用試料は、以下のように調製した。蒸着(オスミウムプラズマコーターOPC60A、フィルジェン株式会社製)により炭素繊維をオスミウム薄膜でコーティングした。各炭素繊維表面のSEM画像を図1に示す。
 図1より、印加する電圧が高くなるほど、炭素繊維表面に吸着する樹脂粒子が多くなることがわかる。また、30Vで30秒間電気泳動を行うことで、コロイド中に炭素繊維を24時間浸漬させた場合と同程度の樹脂粒子が吸着されることから、電気泳動を行うことにより30秒間という短時間で多量の樹脂粒子を吸着させることができることがわかる。
 さらに、30Vで30秒間電気泳動を行った炭素繊維について、粒子の浸透性を観察した。まず、エポキシ系強力接着剤(アラルダイト、ニチバン株式会社製)を用いて、30Vで30秒間電気泳動を行った炭素繊維を埋め込み硬化させた。それをカッターで、図2に示す断面(1)又は断面(2)に切り、SEMで観察した。図2の断面(1)の中心部付近(丸印)のSEM画像を図3に、断面(2)のaからbに向かうSEM画像を図4に示す。さらに、図4のSEM画像を4分割し、それぞれ拡大したものを図5に示す。
 図3より、電気泳動を行うことで、どの炭素繊維にも樹脂粒子が付着していることがわかる。また、図5より、炭素繊維の端の方だけでなく、繊維織物の内部にも樹脂粒子が浸透していることがわかる。
 印加電圧を0V、6.5V、10V、20V、又は30Vとし、それぞれ30秒間電圧印加したときのPMMA粒子の炭素繊維への吸着量を算出した。印加電圧と粒子吸着量との関係を示すグラフを図6に示す。また、印加電圧0V及び30VのときのSEM画像も図6に示す。
 図6のグラフ及びSEM画像より、印加電圧を大きくすることで、より多量の粒子が炭素繊維表面上に吸着することがわかる。印加電圧と電気泳動の速度は比例し、印加電圧が大きくなるにつれて、より多量の粒子が炭素繊維に接近したことで粒子の吸着量が増えると考えられる。これより、電気泳動操作における印加電圧を変化させることで、粒子の吸着量を制御することが可能であるといえる。なお、図6の下側のSEM画像より、印加電圧が0VのときにもPMMA粒子が炭素繊維に吸着しているのが確認できるが、これは炭素繊維が水中で負に帯電しているため、静電相互作用により正に帯電しているPMMA粒子が吸着されたと考えられる。
 印加電圧を0V、6.5V、10V、20V、又は30Vとし、それぞれ30秒間電圧印加して得られた各炭素繊維についてフラグメンテーション試験を行い、界面せん断応力を算出した。粒子吸着量と界面せん断応力との関係を示すグラフを図7に示す。
 図7より、炭素繊維に吸着する粒子量の増加とともに、アクリル樹脂と炭素繊維との間の界面せん断強度が向上し、よって吸着粒子量を制御することで界面せん断強度を制御することができることがわかる。これより、樹脂成分で炭素繊維がコーティングされたことにより樹脂とのぬれ性が良好になり、界面接着性が改善されたと考えられる。
 実施例2
 内容量100mLのスクリュー管に、ナイロン12真球状粒子(東レ株式会社製)230mg、水75g、非イオン性界面活性剤(Span20、東京化成工業株式会社製)、及び電解質(KCl、関東化学株式会社製)50mgを入れ、超音波洗浄機(株式会社エスエヌデイ製US-5KS)を用いて30秒間超音波照射し、ナイロン粒子を分散させて炭素繊維強化プラスチック製造用コロイド溶液を得た。なお、水は、純水製造装置(オートスチルWG250、ヤマト科学株式会社製)で調製した蒸留水を用いた。
 内容量500mLのプラスチック容器に、上で調製した炭素繊維強化プラスチック製造用コロイド溶液約400mLを入れた。正極に炭素繊維、負極に白金電極を用い、電圧を印加させることで、炭素繊維を水中で正に帯電させた。電圧印加は、直流安定化電源(AD-8724D、株式会社エー・アンド・デイ製)を使用して30Vで30秒間行った。電気泳動処理後の炭素繊維の表面を実施例1と同様にして観察した。その結果を図8に示す。
 図8より、30Vで30秒間電気泳動を行うことで、炭素繊維表面にナイロン粒子が吸着することがわかる。これは、正に帯電した炭素繊維に、負に帯電したナイロン粒子が引き付けられ、吸着するからである。
 さらに、比較のために、上記ナイロン粉末を炭素繊維とともにチャック付ポリエチレン袋(ユニパック(登録商標)、120mm×85mm、株式会社生産日本社製)にいれ、数回振って、炭素繊維に直接ナイロン粉末を付着させた。図9に30Vで30秒間電気泳動を行った炭素繊維のSEM画像(左上)及びその拡大画像(左下)、及びナイロン粉末を付着させた炭素繊維のSEM画像(右上)その拡大画像(右下)を示す。
 図9より、電気泳動操作でナイロン粒子を付着させたものの方が、粉末を直接付着させたものより付きがよいことがわかる。
 実施例2の電気泳動操作(30Vで30秒間)で得られた炭素繊維、及び比較のためにアセトンで処理してサイジング剤を除去した炭素繊維についてフラグメンテーション試験を行った。フラグメンテーション試験の結果を図10に示す。
 図10より、炭素繊維に電気泳動操作でナイロン粒子を付着させることで、界面せん断強度が43.2MPaから73.4MPaとなり、約70%界面接着性が向上したことがわかる。
 実施例3
 内容量100mLのスクリュー管に、水15g、2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩(V-50、シグマアルドリッチ社製)2.03mM、及びN-ビニルアセトアミドモノマー(NVA、昭和電工社製)320mMを入れ、70℃、130rpmで6時間撹拌することにより、NVAモノマーを重合させた。そこへ、水60gを投入し全量75gにした。さらに、そこにKCl 50mg、及び非イオン性界面活性剤(Span20、東京化成工業株式会社製) 100mgを入れて、超音波洗浄機(株式会社エスエヌデイ製US-5KS)を用いて30秒間超音波照射し、炭素繊維強化プラスチック製造用コロイド溶液を得た。なお、水は、純水製造装置(オートスチルWG250、ヤマト科学株式会社製)で調製した蒸留水を用いた。
 内容量500mLのプラスチック容器に、上で調製した炭素繊維強化プラスチック製造用コロイド溶液約400mLを入れた。正極に炭素繊維束(東邦テナックス株式会社製、製品番号:HTS40、3k)、負極に白金電極を用い、電圧を印加させることで、炭素繊維を水中で正に帯電させた。電圧印加は、直流安定化電源(AD-8724D、株式会社エー・アンド・デイ製)を使用して30Vで30秒間行った。また、電圧印加中は、溶液を撹拌子により撹拌(200rpm)した。
 得られた樹脂吸着炭素繊維束、又は未処理の炭素繊維束をアセトンで処理してサイジング剤を除去して得られたサイジング剤除去済み炭素繊維束に、ナイロン樹脂を含浸させた。具体的には、下記1~4の工程に従って行った。
1.PA6フィルムを80℃で24時間真空乾燥した。
2.10mm×150mmにPA6フィルムを切り出した。
3.PA6フィルムで炭素繊維束を挟み込み、ホットプレス機によって0.1MP程で5分間挟み樹脂を溶融させた。
4.その後、5MPaで1分間荷重を加えた。
 得られた炭素繊維-樹脂複合体を、炭素繊維の繊維方向に対して垂直に切断し、断面をSEMで観察した。SEM観察像を図11(高倍率像)及び図12(低倍率像)に示す。
 図11に示されるように、炭素繊維-樹脂複合体の断面中には、炭素繊維領域及び樹脂領域に加え、これらのいずれにも該当しない隙間領域が存在する。それぞれの領域の面積に基づいて、樹脂の含浸率(=樹脂領域の面積/樹脂領域の面積+隙間領域の面積)を算出した。含浸透率を図11の下方に示す。また、炭素繊維領域の割合(=炭素繊維領域の割合/全領域)も算出した。炭素繊維領域の割合を図12の下方に示す。
 図11及び12に示されるように、炭素繊維束に電気泳動操作でポリ-N-ビニルアセトアミドを付着させて得られた樹脂吸着炭素繊維束を用いることにより、密に配置された炭素繊維に対して効率的に樹脂を含浸させられることが分かった。
 実施例4
 内容量100mLのスクリュー管に、水15g、アゾビスイソブチロニトリル 2.03mM、スチレンモノマー(東京化成) 320mM、及びN-ビニルアセトアミドモノマー(NVA、昭和電工社製) 1570mMを入れ、70℃、130rpmで6時間撹拌することにより、NVAモノマーとスチレンモノマーとの重合体を作製した。そこへ、水60gを投入し全量75gにした。さらに、そこにKCl 50mgを入れて超音波洗浄機(株式会社エスエヌデイ製US-5KS)を用いて30秒間超音波照射し、炭素繊維強化プラスチック製造用コロイド溶液を得た。なお、水は、純水製造装置(オートスチルWG250、ヤマト科学株式会社製)で調製した蒸留水を用いた。
 内容量500mLのプラスチック容器に、上で調製した炭素繊維強化プラスチック製造用コロイド溶液約400mLを入れた。正極に炭素繊維束[(東邦テナックス株式会社製、製品番号:HTS40、3k)(東邦テナックス株式会社製、製品番号:HTS40、24k)]、負極に白金電極を用い、電圧を印加させることで、炭素繊維を水中で正に帯電させた。電圧印加は、直流安定化電源(AD-8724D、株式会社エー・アンド・デイ製)を使用して10V、20V、又は30Vで30秒間行った。また、電圧印加中は、溶液を撹拌子により撹拌(200rpm)した。
 得られた樹脂吸着炭素繊維束、又は未処理の炭素繊維束をアセトンで処理してサイジング剤を除去して得られたサイジング剤除去済み炭素繊維束の単繊維の表面を、実施例1と同様にして観察した。その結果を図13に示す。
 さらに、得られた樹脂吸着炭素繊維束及びサイジング剤除去済み炭素繊維束の単繊維について、フラグメンテーション試験を行った。フラグメンテーション試験の結果を図14に示す。
 図13及び14より、炭素繊維束に電気泳動操作でポリ-N-ビニルアセトアミドを付着させることで、界面せん断強度が42.7から88.6となり、界面接着性が約2倍になったことがわかる。
 続いて、得られた樹脂吸着炭素繊維束、又はサイジング剤除去済み炭素繊維束に、ナイロン樹脂を含浸させた。具体的には、下記1~4の工程に従って行った。
1.PA6フィルムを80℃で24時間真空乾燥した。
2.10mm×150mmにPA6フィルムを切り出した。
3.PA6フィルムで炭素繊維束を挟み込み、ホットプレス機によって0.1MP程で5分間挟み樹脂を溶融させた。
4.その後、5MPaで1分間荷重を加えた。
 得られた炭素繊維-樹脂複合体を、炭素繊維の繊維方向に対して垂直に切断し、断面をSEMで観察した。SEM観察像を図15(高倍率像)及び図16(低倍率像)に示す。
 実施例2と同様にして含浸透率及び炭素繊維領域の割合を算出した。含浸率を図15の各写真の上方に、炭素繊維領域の割合を図16の上方に示す。
 図15及び16に示されるように、炭素繊維束に電気泳動操作でポリ-N-ビニルアセトアミドを付着させて得られた樹脂吸着炭素繊維束を用いることにより、密に配置された炭素繊維に対して効率的に樹脂を含浸させられることが分かった。

Claims (16)

  1.  炭素繊維強化プラスチック製造用コロイド溶液であって、
    (1)樹脂粒子、非イオン性界面活性剤、電解質及び水を含有する、
    (2)樹脂粒子、ラジカル重合開始剤、及び水を含有する、又は
    (3)固体状の無機粒子、電解質及び水を含有する、
    炭素繊維強化プラスチック製造用コロイド溶液。
  2.  前記樹脂粒子が熱可塑性樹脂粒子である、請求項1に記載の炭素繊維強化プラスチック製造用コロイド溶液。
  3.  前記熱可塑性樹脂粒子が、アミド結合含有モノマーを含むモノマーの重合体粒子である、請求項2に記載の炭素繊維強化プラスチック製造用コロイド溶液。
  4.  前記熱可塑性樹脂粒子の平均粒子径が0.02~0.5μmである、請求項2又は3に記載の炭素繊維強化プラスチック製造用コロイド溶液。
  5.  前記熱可塑性樹脂粒子がポリアミド系樹脂粒子である、請求項2に記載の炭素繊維強化プラスチック製造用コロイド溶液。
  6.  前記ポリアミド系樹脂粒子がナイロン粒子である、請求項5に記載の炭素繊維強化プラスチック製造用コロイド溶液。
  7.  炭素繊維の表面に熱可塑性樹脂粒子が吸着している、粒子吸着炭素繊維。
  8.  前記熱可塑性樹脂粒子が、アミド結合含有モノマーを含むモノマーの重合体粒子である、請求項7に記載の粒子吸着炭素繊維。
  9.  前記熱可塑性樹脂粒子の平均粒子径が0.02~0.5μmである、請求項7又は8に記載の粒子吸着炭素繊維。
  10.  前記熱可塑性樹脂粒子がポリアミド系樹脂粒子である、請求項7に記載の粒子吸着炭素繊維。
  11.  前記ポリアミド系樹脂粒子がナイロン粒子である、請求項10に記載の粒子吸着炭素繊維。
  12.  粒子吸着炭素繊維の製造方法であって、
     請求項1~6のいずれか1項に記載の炭素繊維強化プラスチック製造用コロイド溶液中で炭素繊維を正極又は負極として電圧を印加して電気泳動を行う工程
    を備える、製造方法。
  13.  請求項7~11のいずれか1項に記載の粒子吸着炭素繊維が母材の樹脂中に含有されている、炭素繊維強化プラスチック。
  14.  前記粒子吸着炭素繊維中の樹脂粒子を構成する樹脂と、前記母材の樹脂とが同一又は類似の樹脂である、請求項13に記載の炭素繊維強化プラスチック。
  15.  粒子吸着炭素繊維の表面に吸着する粒子の量を制御する方法であって、
     請求項1~6のいずれか1項に記載の炭素繊維強化プラスチック製造用コロイド溶液中で炭素繊維を正極又は負極として電圧を印加する際に、印加する電圧の大きさを制御することにより前記炭素繊維に吸着する前記粒子の量を制御する、制御方法。
  16.  炭素繊維の樹脂との界面接着性を制御する方法であって、
     請求項1~6のいずれか1項に記載の炭素繊維強化プラスチック製造用コロイド溶液中で炭素繊維を正極又は負極として電圧を印加する際に、印加する電圧の大きさを制御して前記炭素繊維に吸着する前記粒子の量を制御することにより、前記炭素繊維の樹脂との界面接着性を制御する、制御方法。
PCT/JP2017/008480 2016-03-04 2017-03-03 炭素繊維強化プラスチック製造用コロイド溶液、粒子吸着炭素繊維及びその製造方法、炭素繊維強化プラスチック、並びに制御方法 WO2017150702A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018503416A JP6957034B2 (ja) 2016-03-04 2017-03-03 炭素繊維強化プラスチック製造用コロイド溶液、粒子吸着炭素繊維及びその製造方法、炭素繊維強化プラスチック、並びに制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016042601 2016-03-04
JP2016-042601 2016-03-04

Publications (1)

Publication Number Publication Date
WO2017150702A1 true WO2017150702A1 (ja) 2017-09-08

Family

ID=59742986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008480 WO2017150702A1 (ja) 2016-03-04 2017-03-03 炭素繊維強化プラスチック製造用コロイド溶液、粒子吸着炭素繊維及びその製造方法、炭素繊維強化プラスチック、並びに制御方法

Country Status (2)

Country Link
JP (1) JP6957034B2 (ja)
WO (1) WO2017150702A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11731393B2 (en) 2021-04-29 2023-08-22 Toyota Boshoku Kabushiki Kaisha Fiber-reinforced resin material, method for manufacturing same, and fiber-reinforced resin structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923274B1 (ja) * 1970-12-25 1974-06-14
JPS6479235A (en) * 1986-12-20 1989-03-24 Toho Rayon Kk Preparation of carbon fiber reinforced thermoplastic resin product
JP2014172998A (ja) * 2013-03-08 2014-09-22 Teijin Ltd 強化繊維束の製造方法
JP2015178689A (ja) * 2014-03-19 2015-10-08 帝人株式会社 強化繊維束、その製造方法及びそれを用いた複合材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923274B1 (ja) * 1970-12-25 1974-06-14
JPS6479235A (en) * 1986-12-20 1989-03-24 Toho Rayon Kk Preparation of carbon fiber reinforced thermoplastic resin product
JP2014172998A (ja) * 2013-03-08 2014-09-22 Teijin Ltd 強化繊維束の製造方法
JP2015178689A (ja) * 2014-03-19 2015-10-08 帝人株式会社 強化繊維束、その製造方法及びそれを用いた複合材料

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
IVEKOVIC ET AL.: "Electrophoretic (Infiltration) Deposition of Thick Conductive Fiber Preforms", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 162, no. 11, 4 August 2015 (2015-08-04), pages D3049 - D3056, XP055602870 *
LAI ET AL.: "Rapid Fabrication of Cylindrical Colloidal Crystals and Their Inverse Opals", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 157, no. 3, 19 January 2010 (2010-01-19), pages 23 - 27, XP055490709 *
LIU ET AL.: "Structurally colored carbon fibers with controllec optical properties prepared by a fast and continuous electrophoretic deposition method", NANOSCALE, vol. 5, no. 15, 7 August 2013 (2013-08-07), pages 6917 - 6922, XP055602866 *
TETSUYA YAMAMOTO ET AL: "Development of Colloidal Technique for Enhancement of Performance of Carbon Fiber Reinforced Thermoplastic", J. SOC. POWDER TECHNOL., vol. 53, no. 12, 16 January 2017 (2017-01-16), Japan, pages 785 - 790, XP055602875 *
YAMAMOTO ET AL.: "Controlling of the interfacial shear strength between thermoplastic resin and carbon fiber by adsorbing polymer particles on carbon fiber using electrophoresis", COMPOSITES: PART A, vol. 88, 24 May 2016 (2016-05-24), pages 75 - 78, XP029631587, DOI: doi:10.1016/j.compositesa.2016.05.021 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11731393B2 (en) 2021-04-29 2023-08-22 Toyota Boshoku Kabushiki Kaisha Fiber-reinforced resin material, method for manufacturing same, and fiber-reinforced resin structure

Also Published As

Publication number Publication date
JP6957034B2 (ja) 2021-11-02
JPWO2017150702A1 (ja) 2019-01-17

Similar Documents

Publication Publication Date Title
JP6105332B2 (ja) 強化繊維及びそれからなる強化繊維束
TWI495672B (zh) 纖維強化熱塑性樹脂組成物、強化繊維束、及纖維強化熱塑性樹脂組成物之製造方法
JP2593094B2 (ja) ポリマー表面のポリテトラフルオロエチレン被覆
KR20080081001A (ko) 기능화 기판의 제조 방법
Wei et al. Vapor induced phase separation towards anion-/near-infrared-responsive pore channels for switchable anti-fouling membranes
BR112014025720B1 (pt) artigo não tecido enxertado com copolímero e processo para sua preparação
WO2017150702A1 (ja) 炭素繊維強化プラスチック製造用コロイド溶液、粒子吸着炭素繊維及びその製造方法、炭素繊維強化プラスチック、並びに制御方法
Ashjari et al. Synthesis and employment of PEGDA for fabrication of superhydrophilic PVDF/PEGDA electrospun nanofibrous membranes by in-situ visible photopolymerization
Guo et al. Protein valves prepared by click reaction grafting of poly (N-isopropylacrylamide) to electrospun poly (vinyl chloride) fibrous membranes
JP6880764B2 (ja) 有機−無機複合物およびその製造方法
CN108914560A (zh) 一种强力负载银纳米线的薄膜的制备方法及产品
EP2851464A1 (en) Reinforcing carbon fiber bundle, manufacturing process therefor, and composite-manufacturing process using same
JP6617229B2 (ja) 炭素材料用オキサゾリン系分散剤等及びそれらを用いた炭素複合材料
CA2851708C (en) Process for producing polymeric structures that have activated surfaces and activated polymeric structures
CN102489185A (zh) 一种聚偏氟乙烯/交替共聚物共混pH敏感膜及其制备方法
WO2014045981A1 (ja) 強化繊維束及びそれを用いた複合材料
CN114247312B (zh) 具有非对称浸润性的复合纤维膜及其制备方法和在油水分离中的应用
JP6213830B2 (ja) 樹脂複合体の製造方法及び樹脂複合体
JP3820575B2 (ja) カーボンナノチューブを天然繊維へ被覆する方法
CN109929344B (zh) 具有高粘结性的低表面能高分子材料复合结构及其制备方法
JP2018024788A (ja) 炭素材料用接着性向上剤及びそれを用いた複合材料
JP2017082060A (ja) ポリマーコロイド溶液及びそれを用いた分析マーカー、ナノカーボン溶液、樹脂粒子吸着炭素繊維、及び炭素繊維強化プラスチック
Lau et al. Electrophoretic Deposition of Hexagonal Boron Nitride Particles from Low Conductivity Suspension.
US20220297350A1 (en) 3d capillary self-assembly of long aspect ratio particles
JP2006077334A (ja) 熱可塑性樹脂強化用炭素繊維

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018503416

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17760164

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17760164

Country of ref document: EP

Kind code of ref document: A1