WO2017148676A1 - Verfahren und vorrichtung zum ermitteln eines einspritzmodus zum einspritzen eines kraftstoffs in einen brennraum eines zylinders einer brennkraftmaschine - Google Patents

Verfahren und vorrichtung zum ermitteln eines einspritzmodus zum einspritzen eines kraftstoffs in einen brennraum eines zylinders einer brennkraftmaschine Download PDF

Info

Publication number
WO2017148676A1
WO2017148676A1 PCT/EP2017/052882 EP2017052882W WO2017148676A1 WO 2017148676 A1 WO2017148676 A1 WO 2017148676A1 EP 2017052882 W EP2017052882 W EP 2017052882W WO 2017148676 A1 WO2017148676 A1 WO 2017148676A1
Authority
WO
WIPO (PCT)
Prior art keywords
determined
cylinder wall
wall temperature
injection mode
cylinder
Prior art date
Application number
PCT/EP2017/052882
Other languages
English (en)
French (fr)
Inventor
Gerhard Eser
Erwin Achleitner
Florian Kleiner
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Priority to US16/081,363 priority Critical patent/US10626808B2/en
Priority to KR1020187026920A priority patent/KR20180107292A/ko
Priority to CN201780014539.4A priority patent/CN108779733B/zh
Publication of WO2017148676A1 publication Critical patent/WO2017148676A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • F02D35/026Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • F02D2200/022Estimation of engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method for determining an injection mode for injecting a fuel into a combustion chamber of a cylinder of an internal combustion engine.
  • the invention further relates to a device for determining an injection mode for injecting a fuel into a combustion chamber of a cylinder of an internal combustion engine.
  • DE 10 2006 010 094 AI discloses a method for temperature determination in the exhaust system of an internal combustion engine with a control device, wherein based on at least one operating variable, a temperature or a temperature profile of an exhaust gas in the exhaust system is calculated from an energy balance.
  • DE 10 2008 020 933 B4 discloses a method for plausibility check of a temperature measurement in an internal combustion engine.
  • DE 44 33 631 AI discloses a method for forming a signal, with respect to a temperature in the exhaust system of an internal combustion engine. With the method, for example, a signal for the exhaust gas temperature upstream of the catalytic converter can be obtained. forms or a signal for the temperature in the catalyst or a signal for the temperature downstream of the catalyst.
  • DE 10 2007 006 341 A1 discloses a method for controlling an internal combustion engine in motor vehicles with determination of various setting parameters by means of an electronic control device as a function of operating parameters, wherein the setting parameters are formed from a basic value and at least one correction value and a correction value as a function of an estimated combustion chamber wall temperature is determined.
  • the object underlying the invention is to help reduce emissions.
  • the object is solved by the features of the independent claims.
  • Advantageous embodiments are characterized in the subclaims.
  • the invention is characterized by a method for determining an injection mode for injecting a fuel into a combustion chamber of a cylinder of an internal combustion engine.
  • the He ⁇ invention is characterized further by means for determining an injection mode for injecting a fuel into a combustion chamber of a cylinder of an internal combustion engine.
  • a rotational speed of the internal combustion engine is determined.
  • a cylinder wall temperature of the cylinder is determined.
  • the injection mode is determined. Subsequently, the injection mode can be set.
  • the injection mode here denotes the type of injection.
  • Such injection modes are for example a multiple injection or a single injection.
  • the multiple injection is, for example, a double injection or a triple injection.
  • Further injection modes are for example a stratified injection for a compression stroke, a port injection or a direct injection.
  • the injection mode is determined only by parameters such as speed, this parameter is only valid for certain combustion chamber temperatures.
  • the temperature for example, the Abdampf .
  • the injection mode can be determined depending on a coolant temperature.
  • this temperature does not represent the relevant reference in the combustion chamber.
  • modern vehicles have thermal management.
  • the coolant temperature gives only limited information about the temperature in the combustion chamber.
  • a piston head temperature of the cylinder is determined, and depending on the Kol ⁇ benbodentemperatur the injection mode is determined.
  • the piston crown temperature can be determined, for example, by means of a suitable model.
  • a speed threshold value is specified and dependent on a comparison the speed with the speed threshold value of the injection mode Ein ⁇ determined.
  • a first A ⁇ injection mode is selected when the low speed threshold value and selecting a second injection mode when exceeding the speed ⁇ threshold.
  • a cylinder wall temperature threshold value is predetermined, and the injection mode is determined as a function of a comparison of the cylinder wall temperature with the cylinder wall temperature threshold value.
  • a first injection mode is selected, and when the cylinder wall temperature threshold value is exceeded, a second injection mode is selected.
  • Optional can be another cylinder wall Tempe ⁇ raturschwellenagonist used to switch between more than two injection modes.
  • the selection of the first or second injection mode may alternatively or additionally be dependent on other conditions, such as stability conditions and / or hysteresis.
  • the first injection mode is representative of a multiple injection and the second injection mode representative of a Einfa ⁇ chein mousseung.
  • a change from a single injection to a multiple injection, in particular to a double injection is advantageous in order to reduce the emissions.
  • the cylinder wall temperature is determined by means of a predetermined cylinder wall temperature model. As a result, no reference sensor is necessary. By using a cylinder wall temperature model, the real cylinder wall temperature can be simulated very accurately.
  • the cylinder is derwandtemperaturmodell a thermodynamic Temperaturmo ⁇ dell.
  • thermodynamic model that play based at ⁇ on the first law of thermodynamics
  • the real cylinder wall temperature can be modeled very accurately.
  • the determined cylinder wall temperature is representative of a dynamic cycle Cylinder wall temperature, which is determined as a function of a static cylinder wall temperature.
  • the thermal inertia of the cylinder head and the Mo ⁇ torblocks can be taken into account, so that the real cylinder ⁇ wall temperature can be modeled very accurately.
  • the cylinder wall temperature is determined as a function of a determined cylinder pressure, a determined displacement volume of the cylinder, a determined air mass and a determined indexed engine torque.
  • the cylinder wall temperature is determined as a function of a determined exhaust gas temperature. By determining depending on a determined exhaust gas temperature, the cylinder wall temperature can be determined very accurately.
  • the cylinder wall temperature can also be determined free of the exhaust gas temperature, the exhaust gas temperature is therefore not necessary for the determination of the cylinder wall temperature. Thus, no exact modeling of the exhaust gas temperature or an exhaust gas temperature sensor is necessary.
  • the cylinder wall temperature model comprises the modular intermediate variables average gas temperature in the cylinder chamber, indicated mean pressure of the cylinder, heat transfer coefficient in the combustion chamber and static cylinder wall temperature.
  • FIG. 1 shows a flow diagram for determining an injection mode
  • Figure 2 is a diagram for selecting the injection mode
  • FIG. 3 shows a graph with values of determined cylinder wall temperatures.
  • FIG. 1 shows a flow diagram of a program for determining an injection mode.
  • the program can be processed by a control device 50, for example.
  • the control device 50 includes in particular an arithmetic unit, a program and data memory ⁇ , as well as one or more communica ⁇ tion interface.
  • the program and data memory and / or the arithmetic unit and / or the communication ⁇ interfaces can be formed in a unit and / or distributed over several units.
  • the program is stored on the data and program memory of the control device 50 for this purpose.
  • the control device 50 may also be referred to as an apparatus for determining an injection mode for injecting a fuel into a combustion chamber of a cylinder of an internal combustion engine.
  • a step Sl the program is started and, if necessary, variables are initialized.
  • a step S3 a rotational speed N of the internal combustion engine is determined.
  • a cylinder wall temperature ZT of the cylinder is determined.
  • the injection mode is determined as a function of the rotational speed N and the cylinder wall temperature ZT.
  • step S9 the program is terminated and can gege ⁇ appropriate, be started in the step Sl again. Alternatively, the program is continued again in step S3 and not terminated.
  • FIG. 2 shows a diagram of an exemplary determination of the injection mode, that is to say in particular of the step S7.
  • a speed threshold value is specified and when the speed threshold value is undershot, a first injection mode EMI is selected and when the speed is exceeded Speed threshold a second injection EM2 ⁇ selected.
  • a Zylinderwandtemperatur- threshold value is predefined and when falling below the cylinder wall temperature threshold value of the first injection mode EMI is selected and selected on exceeding the cylinder wall Tempe ⁇ raturschwellenwerts the second injection mode EM2.
  • Thresholds are set to select between more than 2 injection modes.
  • the selection of the first or second injection mode EMI, EM2 may alternatively or additionally be dependent on other conditions, such as stability conditions and / or a hysteresis.
  • the first injection mode EMI is representative of a multiple injection and the second injection mode EM2 is representative of a single injection.
  • the multiple injection is, for example, a double injection or a triple injection.
  • the first injection mode EMI or the second injection mode EM2 is a stratified injection for a compression stroke, a port injection, or a direct injection.
  • the cylinder wall temperature ZT is determined, for example, by means of a predetermined cylinder wall temperature model.
  • thermodynamics To determine the cylinder wall temperature model for ⁇ play, the first law of thermodynamics can be turn:
  • this energy balancing can be converted, for example, into a balancing of the heat flows.
  • a calculation model for the stationary case can be derived ⁇ , which consists in principle of three parts.
  • the first part is the determination of the gas-side model parameters.
  • the third part deals with calculations from thermal management. In the second part, these calculations are combined by calculating the wall transitions.
  • the average gas temperature can be in the knowledge of Zylin
  • the inlet temperature must be taken into account.
  • the parameters al and a2 must be determined empirically.
  • the exhaust gas temperature weighted by the parameter a3 can also be included in the equation.
  • the gas temperature can still be corrected by the lambda value, since the burning temperature at lambda values is cooler.
  • the indicated mean pressure is indicated over the indexed
  • the calculation of the heat transfer coefficient a G in the combustion chamber can be determined according to Woschni
  • the speed of the charge movement is approximated in the first approach on the basis of the piston speed.
  • the charge movement by Swirl, Tumble, etc. are taken into account.
  • thermal management of an internal combustion engine is very complex due to a large number of hydraulic control elements (various pumps and switching valves). Thus, it is advantageous to use simplified models or estimates.
  • Kinematic viscosity n is an expression of the internal friction of a fluid.
  • the kinematic viscosity is the quotient of the dynamic viscosity and the density of the liquid.
  • the prism number has a strong temperature dependence and can also be determined as a polynomial winding or with the aid of a characteristic map.
  • the Nusselt number can be determined from the prantl number and the Reynolds number. From the thermal conductivity of the cooling ⁇
  • the static cylinder wall temperature is determined from these intermediate variables
  • the parameter k is determined from the effective thermal mass of the cylinder and the specific heat capacity stands for the dynamic cylinder temperature
  • FIG. 3 shows a graph with values of determined cylinder wall temperatures ZT.
  • the top two lines are representative of the (dynamic) cylinder wall temperature ZT determined by means of the above cylinder wall model and a reference temperature RT determined by means of sensors.
  • the reference temperature RT is here the line with the stronger noise.
  • the third line from the top is representative of the coolant temperature KT.
  • the fourth line from above is representative of the torque M and the fifth line for the rotational speed N.
  • the cylinder wall temperature ZT by using the cylinder wall temperature ZT, an improvement in the emission can be achieved, in particular with regard to the number of particles and particle size, in particular in comparison with a determination as a function of the coolant temperature KT. If the cylinder wall temperature ZT is determined free from the exhaust gas temperature, then no exact modeling of the exhaust gas temperature or an exhaust gas temperature sensor is necessary. An advantage of the cylinder wall temperature model described above resides in the modular physical modeling. Thus, depending on the component, intermediate sizes can be determined. This allows a simple calibration of the cylinder wall temperature ZT, since no multi-dimensional dependencies in maps for the determination of the cylinder wall temperature ZT must be determined.
  • a piston head temperature of the cylinder can be determined and the injection mode can be determined depending on the piston head temperature.
  • the piston bottom temperature may also be similar to the cylinder wall temperature be determined by means of a suitable model.
  • an overall temperature value can thus optionally also be determined as a function of the cylinder wall temperature and the piston head temperature and compared with a temperature threshold value instead of the comparison of the cylinder wall temperature with the cylinder wall temperature threshold value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Zum Ermitteln eines Einspritzmodus zum Einspritzen eines Kraftstoffs in einen Brennraum eines Zylinders einer Brennkraftmaschine wird eine Drehzahl (N) der Brennkraftmaschine ermittelt. Eine Zylinderwandtemperatur (ZT) des Zylinders wird ermittelt. Abhängig von der Drehzahl (N) und der Zylinderwandtemperatur (ZT) wird der Einspritzmodus ermittelt.

Description

Beschreibung
Verfahren und Vorrichtung zum Ermitteln eines Einspritzmodus zum Einspritzen eines Kraftstoffs in einen Brennraum eines Zylinders einer Brennkraftmaschine
Die Erfindung betrifft ein Verfahren zum Ermitteln eines Einspritzmodus zum Einspritzen eines Kraftstoffs in einen Brennraum eines Zylinders einer Brennkraftmaschine. Die Er- findung betrifft des Weiteren eine Vorrichtung zum Ermitteln eines Einspritzmodus zum Einspritzen eines Kraftstoffs in einen Brennraum eines Zylinders einer Brennkraftmaschine.
Bei zunehmender Schärfe an gesetzlichen Anforderungen bezüglich Emission von limitierten Schadstoffen ist es erforderlich, den Kraftstoff exakt zum richtigen Zeitpunkt in der idealen Weise in die Brennkammer einzubringen.
Die DE 10 2006 010 094 AI offenbart ein Verfahren zur Tempe- raturbestimmung im Abgassystem einer Brennkraftmaschine mit einer Steuereinrichtung, wobei ausgehend von mindestens einer Betriebsgröße eine Temperatur bzw. ein Temperaturverlauf eines Abgases im Abgassystem aus einer Energiebilanzierung berechnet wird .
Die DE 10 2008 020 933 B4 offenbart ein Verfahren zur Plau- sibilitätsprüfung einer Temperaturmessung bei einer Brennkraftmaschine . Die DE 44 33 631 AI offenbart ein Verfahren zur Bildung eines Signals, bezüglich einer Temperatur im Abgassystem einer Brennkraftmaschine. Mit dem Verfahren kann beispielsweise ein Signal für die Abgastemperatur stromauf des Katalysators ge- bildet werden oder ein Signal für die Temperatur im Katalysator oder ein Signal für die Temperatur stromab des Katalysators.
Die DE 10 2007 006 341 AI offenbart ein Verfahren zur Steuerung einer Brennkraftmaschine in Kraftfahrzeugen mit Bestimmung von verschiedenen Einstellparametern mittels eines elektronischen Steuergeräts in Abhängigkeit von Betriebsparametern, wobei die Einstellparameter aus einem Grundwert und mindestens einem Korrekturwert gebildet wird und ein Korrekturwert in Abhän- gigkeit von einer geschätzten Brennraumwandtemperatur bestimmt wird .
Die Aufgabe, die der Erfindung zugrunde liegt, ist es dazu beizutragen Emissionen zu vermindern.
Die Aufgabe wird gelöst durch die Merkmale der unabhängigen Patentansprüche. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen gekennzeichnet. Die Erfindung zeichnet sich aus durch ein Verfahren zum Ermitteln eines Einspritzmodus zum Einspritzen eines Kraftstoffs in einen Brennraum eines Zylinders einer Brennkraftmaschine. Die Er¬ findung zeichnet sich des Weiteren aus durch eine Vorrichtung zum Ermitteln eines Einspritzmodus zum Einspritzen eines Kraftstoffs in einen Brennraum eines Zylinders einer Brennkraftmaschine.
Bei dem Verfahren wird eine Drehzahl der Brennkraftmaschine ermittelt. Eine Zylinderwandtemperatur des Zylinders wird ermittelt. Abhängig von der Drehzahl und der Zylinderwand- temperatur wird der Einspritzmodus ermittelt. Anschließend kann der Einspritzmodus eingestellt werden.
Der Einspritzmodus bezeichnet hierbei die Art des Einspritzens. Derartige Einspritzmodi sind beispielsweise eine Mehrfach- einspritzung oder eine Einfacheinspritzung. Die Mehrfacheinspritzung ist beispielsweise eine Zweifacheinspritzung oder eine Dreifacheinspritzung. Weitere Einspritzmodi sind beispielsweise eine geschichtete Einspritzung für einen Kompressionstakt, eine Saugrohreinspritzung oder eine Direkteinspritzung.
Wird der Einspritzmodus nur durch Parameter wie Drehzahl bestimmt, so ist dieser Parameter nur für bestimmte Brennraumtemperaturen gültig. Bei Änderung der Temperatur wird zum Beispiel das Abdampfverhalten des Kraftstoffs verändert und es kommt zu einer unvollständigen Verbrennung. Die Folge ist eine Überschreitung der Partikelgrenzwerte. Alternativ kann der Einspritzmodus abhängig von einer Kühlmitteltemperatur ermittelt werden. Allerdings stellt diese Temperatur nicht die in der Brennkammer relevante Bezugsgröße dar. Insbesondere moderne Fahrzeugen weisen ein Thermomanagement auf. Somit gibt die Kühlmitteltemperatur nur begrenzt Aufschluss über die Temperatur in der Brennkammer. Durch obiges Verfahren kann durch Verwenden der Zylinderwandtemperatur eine Verbesserung in der Emissionierung, insbesondere eine Verminderung der Partikelanzahl und Partikelgröße erreicht werden, insbesondere im Vergleich zu einer Ermittlung abhängig von der Kühlmitteltemperatur.
Gemäß einer optionalen Ausgestaltung wird eine Kolbenbodentemperatur des Zylinders ermittelt und abhängig von der Kol¬ benbodentemperatur wird der Einspritzmodus ermittelt. Die Kolbenbodentemperatur kann beispielsweise mittels eines ge- eigneten Modells ermittelt werden.
Gemäß einer weiteren optionalen Ausgestaltung wird ein Drehzahlschwellenwert vorgegeben und abhängig von einem Vergleich der Drehzahl mit dem Drehzahlschwellenwert wird der Ein¬ spritzmodus ermittelt.
Mittels eines Schwellenwerts ist eine sehr einfache Ermittlung des Einspritzmodus möglich.
Gemäß einer weiteren optionalen Ausgestaltung wird bei Unterschreiten des Drehzahlschwellenwerts ein erster Ein¬ spritzmodus ausgewählt und bei Überschreiten des Drehzahl¬ schwellenwerts ein zweiter Einspritzmodus ausgewählt.
Hierdurch ist es sehr einfach möglich zwischen zwei Einspritzmodi zu wechseln. Optional können noch weitere Drehzahlschwellenwerte verwendet werden um zwischen mehr als zwei Einspritzmodi zu wechseln .
Gemäß einer weiteren optionalen Ausgestaltung wird ein Zylinderwandtemperaturschwellenwert vorgegeben und abhängig von einem Vergleich der Zylinderwandtemperatur mit dem Zylinderwandtemperaturschwellenwert wird der Einspritzmodus ermittelt.
Mittels eines Schwellenwerts ist eine sehr einfache Ermittlung des Einspritzmodus möglich.
Gemäß einer weiteren optionalen Ausgestaltung wird bei Unterschreiten des Zylinderwandtemperaturschwellenwerts ein erster Einspritzmodus ausgewählt und bei Überschreiten des Zylinderwandtemperaturschwellenwerts ein zweiter Einspritz¬ modus ausgewählt.
Hierdurch ist es sehr einfach möglich zwischen zwei Einspritzmodi zu wechseln. Optional können noch weitere Zylinderwandtempe¬ raturschwellenwerte verwendet werden um zwischen mehr als zwei Einspritzmodi zu wechseln. Das Auswählen des ersten oder zweiten Einspritzmodus kann alternativ oder zusätzlich abhängig von weiteren Bedingungen, wie zum Beispiel Stabilitätsbedingungen und/oder einer Hysterese erfolgen .
Gemäß einer weiteren optionalen Ausgestaltung ist der erste Einspritzmodus repräsentativ für eine Mehrfacheinspritzung und der zweite Einspritzmodus repräsentativ ist für eine Einfa¬ cheinspritzung .
Gerade bei einem Lastwechsel ist ein Wechsel von einer Ein¬ facheinspritzung zu einer Mehrfacheinspritzung, insbesondere zu einer Zweifacheinspritzung, vorteilhaft um die Emissionen zu reduzieren .
Gemäß einer weiteren optionalen Ausgestaltung wird die Zylinderwandtemperatur mittels eines vorgegebenen Zylinderwandtemperaturmodells ermittelt. Hierdurch ist kein Referenzsensor notwendig. Durch die Verwendung eines Zylinderwandtemperaturmodells kann die reale Zylinderwandtemperatur sehr exakt nachgebildet werden.
Gemäß einer weiteren optionalen Ausgestaltung ist das Zylin- derwandtemperaturmodell ein thermodynamisches Temperaturmo¬ dell.
Gerade mit einem thermodynamischen Modell, welches bei¬ spielsweise auf dem ersten Hauptsatz der Thermodynamik basiert, kann die reale Zylinderwandtemperatur sehr exakt nachgebildet werden .
Gemäß einer weiteren optionalen Ausgestaltung ist die ermittelte Zylinderwandtemperatur repräsentativ für eine dynamische Zy- linderwandtemperatur, die abhängig von einer statischen Zylinderwandtemperatur ermittelt wird.
Durch die Ermittlung einer dynamischen Zylinderwandtemperatur kann die thermische Trägheit des Zylinderkopfs und des Mo¬ torblocks berücksichtigt werden, so dass die reale Zylinder¬ wandtemperatur sehr exakt nachgebildet werden kann.
Gemäß einer weiteren optionalen Ausgestaltung wird die Zy- linderwandtemperatur abhängig von einem ermittelten Zylinderdruck, einem ermittelten Hubvolumen des Zylinders, einer ermittelten Luftmasse und einem ermittelten indizierten Motormoment ermittelt. Diese Größen, also der Zylinderdruck, das Hubvolumen des Zylinders, die Luftmasse und das indizierte Motormoment, sind sehr einfach durch meist schon vorhandene Sensorik und/oder durch Motordaten ermittelbar, so dass hiermit das Zylinderwandtemperatur sehr einfach und kostengünstig realisiert werden kann.
Gemäß einer weiteren optionalen Ausgestaltung wird die Zylinderwandtemperatur abhängig von einer ermittelten Abgastemperatur ermittelt. Durch die Ermittlung abhängig von einer ermittelten Abgastemperatur kann die Zylinderwandtemperatur sehr exakt bestimmt werden .
Alternativ kann die Zylinderwandtemperatur auch frei von der Abgastemperatur ermittelt werden, die Abgastemperatur ist also für die Bestimmung der Zylinderwandtemperatur nicht notwendig. Es ist somit auch keine exakte Modellierung der Abgastemperatur bzw. ein Abgastemperatursensor notwendig. Gemäß einer weiteren optionalen Ausgestaltung umfasst das Zylinderwandtemperaturmodell die modularen Zwischengrößen mittlere Gastemperatur im Zylinderraum, indizierten Mitteldruck des Zylinders, Wärmeübergangskoeffizient im Brennraum und statische Zylinderwandtemperatur.
Der Vorteil eines solchen Zylinderwandtemperaturmodells liegt in der modularen physikalischen Modellierung. Somit können komponentenabhängig Zwischengrößen bestimmt werden. Dies erlaubt eine einfache Kalibrierung der Zylinderwandtemperatur, da keine mehrdimensionalen Abhängigkeiten in Kennfeldern für die Ermittlung der Zylinderwandtemperatur bestimmt werden müssen.
Ausführungsbeispiele der Erfindung sind im Folgenden anhand der schematischen Zeichnungen näher erläutert. Es zeigen:
Figur 1 ein Ablaufdiagramm zum Ermitteln eines Einspritzmodus,
Figur 2 ein Diagramm zum Auswählen des Einspritzmodus und
Figur 3 ein Graph mit Werten von ermittelten Zylinderwandtemperaturen .
Elemente gleicher Konstruktion oder Funktion sind figuren- übergreifend mit den gleichen Bezugszeichen gekennzeichnet.
Die Figur 1 zeigt ein Ablaufdiagramm eines Programms zum Ermitteln eines Einspritzmodus. Das Programm kann beispielsweise von einer Steuervorrichtung 50 abgearbeitet werden. Die Steuervorrichtung 50 weist hierfür insbesondere eine Recheneinheit, einen Programm- und Daten¬ speicher, sowie beispielsweise eine oder mehrere Kommunika¬ tionsschnittstellen auf. Der Programm- und Datenspeicher und/oder die Recheneinheit und/oder die Kommunikations¬ schnittstellen können in einer Baueinheit und/oder verteilt auf mehrere Baueinheiten ausgebildet sein. Auf dem Daten- und Programmspeicher der Steuervorrichtung 50 ist hierfür insbe- sondere das Programm gespeichert.
Die Steuervorrichtung 50 kann auch als Vorrichtung zum Ermitteln eines Einspritzmodus zum Einspritzen eines Kraftstoffs in einen Brennraum eines Zylinders einer Brennkraftmaschine bezeichnet werden.
In einem Schritt Sl wird das Programm gestartet und es werden gegebenenfalls Variablen initialisiert. In einem Schritt S3 wird eine Drehzahl N der Brennkraftmaschine ermittelt .
In einem Schritt S5 wird eine Zylinderwandtemperatur ZT des Zylinders ermittelt. In einem Schritt S7 wird abhängig von der Drehzahl N und der Zylinderwandtemperatur ZT der Einspritzmodus ermittelt.
In einem Schritt S9 wird das Programm beendet und kann gege¬ benenfalls wieder in dem Schritt Sl gestartet werden. Alternativ wird das Programm wieder in dem Schritt S3 fortgesetzt und nicht beendet .
Figur 2 zeigt ein Diagramm einer beispielhaften Ermittlung des Einspritzmodus, also insbesondere des Schrittes S7.
Beispielsweise wird ein Drehzahlschwellenwert vorgegeben und bei Unterschreiten des Drehzahlschwellenwerts wird ein erster Einspritzmodus EMI ausgewählt und bei Überschreiten des Drehzahlschwellenwerts ein zweiter Einspritzmodus EM2 ausge¬ wählt .
Alternativ oder zusätzlich wird ein Zylinderwandtemperatur- Schwellenwert vorgegeben und bei Unterschreiten des Zylinderwandtemperaturschwellenwerts wird der erste Einspritzmodus EMI ausgewählt und bei Überschreiten des Zylinderwandtempe¬ raturschwellenwerts der zweite Einspritzmodus EM2 ausgewählt. Alternativ oder zusätzlich können jeweils noch weitere
Schwellenwerte vorgegeben werden um zwischen mehr als 2 Einspritzmodi auszuwählen. Das Auswählen des ersten oder zweiten Einspritzmodus EMI, EM2 kann alternativ oder zusätzlich abhängig von weiteren Bedingungen, wie zum Beispiel Stabilitätsbedin- gungen und/oder einer Hysterese erfolgen.
Der erste Einspritzmodus EMI ist beispielsweise repräsentativ für eine Mehrfacheinspritzung und der zweite Einspritzmodus EM2 ist repräsentativ für eine Einfacheinspritzung. Die Mehrfa- cheinspritzung ist beispielsweise eine Zweifacheinspritzung oder eine Dreifacheinspritzung. Alternativ ist der erste Einspritzmodus EMI oder der zweite Einspritzmodus EM2 eine geschichtete Einspritzung für einen Kompressionstakt, eine Saugrohreinspritzung oder eine Direkteinspritzung.
Die Zylinderwandtemperatur ZT wird beispielsweise mittels eines vorgegebenen Zylinderwandtemperaturmodells ermittelt.
Zur Ermittlung des Zylinderwandtemperaturmodells kann bei¬ spielsweise der erste Hauptsatz der Thermodynamik angewende werden :
Figure imgf000012_0002
Die Summe aus der über den Kraftstoff zugeführten Wärme
Figure imgf000012_0003
entspricht dem Wandwärmestrom
Figure imgf000012_0001
der technischen Arbeit
Figure imgf000012_0004
dem über Einlassventile eintretenden Enthalpiestrom
Figure imgf000012_0005
dem entsprechenden über Auslassventile austretenden Enthalpiestrom
Figure imgf000012_0006
und dem Leckagaeenthalpiestrom
Figure imgf000013_0002
Als Vereinfachung kann diese Energiebilanzierung beispielsweise in eine Bilanzierung der Wärmeströme überführt werden. Dabei wird der Zusammenhang zwischen dem konvektiven Wärmestrom an die Zylinderwandtemperatur, der durch die Zylinderwand durch Wärmeleitung transportierten und wiederum durch Konvektion übertragenen Wärmestrom an das Kühlmittel hergestellt:
A
Figure imgf000013_0001
Hierbei werden folgende Abkürzungen verwendet:
Figure imgf000013_0003
Daraus kann ein Berechnungsmodell für den Stationärfall her¬ geleitet werden, welches im Prinzip aus drei Teilen besteht. Der erste Teil ist die Bestimmung der gasseitigen Modellparameter. Der dritte Teil beschäftigt sich mit Berechnungen aus dem Thermomanagement . Im zweiten Teil werden diese Berechnungen durch die Berechnung der Wandübergänge zusammengeführt.
Figure imgf000014_0001
Die mittlere Gastemperatur kann unter Kenntnis des Zylin
Figure imgf000014_0005
derdrucks des Hubvolumens der Luftmasse MAF und der
Figure imgf000014_0007
Figure imgf000014_0006
Gaskonstante R berechnet werden:
Figure imgf000014_0002
Hierbei muss die Einlasstemperatur berücksichtigt werden.
Figure imgf000014_0003
Die Parameter al und a2 müssen empirisch ermittelt werden. Optional kann auch noch die Abgastemperatur gewichtet durch den Parameter a3 in die Gleichung einbezogen werden. Die Gastemperatur kann noch durch den Lambdawert korrigiert werden, da die Brenntemperatur bei Lambdawerten
Figure imgf000014_0009
kühler ist.
Der indizierte Mitteldruck wird über das indizierte
Figure imgf000014_0008
tormoment TQI und dem Hubvolumen V berechnet
Figure imgf000014_0010
Figure imgf000014_0004
Die Berechnung des Wärmeübergangskoeffizienten aG im Brennraum kann nach Woschni bestimmt werden
Figure imgf000015_0002
Die Geschwindigkeit der Ladungsbewegung wird im ersten Ansatz anhand der Kolbengeschwindigkeit approximiert. Als weitere vorteilhafte Ausgestaltung kann auch die Ladungsbewegung durch Swirl, Tumble, etc. berücksichtigt werden.
Das Thermomanagement einer Brennkraftmaschine ist sehr komplex aufgrund einer Vielzahl an hydraulischen Steuerelementen (diverse Pumpen und Schaltventile) . Somit ist es vorteilhaft auf vereinfachte Modelle bzw. Schätzungen zurückzugreifen.
Ein Ansatz ist eine Dimensionsanalyse, beispielsweise durch eine Regressionsanalyse auf Basis des Leven¬ berg-Marquardt-Algorithmus. Aufgrund dieser empirischen Her- angehensweise kann die Kühlmittelgeschwindigkeit und die ki¬ nematische Viskosität geschätzt werden. Diese Abhängigkeit kann als Polynom bzw. als Kennfeld in der Motorsteuerung approximiert werden. Die Reynoltszahl kann anschließend aus dem In
Figure imgf000015_0005
nendurchmesser des Kühlkanals und der Kühlmittelgeschwin-
Figure imgf000015_0004
digkeit sowie der kinematischen Viskosität n berechnet
Figure imgf000015_0003
werden. Die kinematische Viskosität n ist ein Ausdruck für die innere Reibung einer Flüssigkeit. Die kinematische Viskosität ist der Quotient aus der dynamischen Viskosität und der Dichte der Flüssigkeit.
Figure imgf000015_0001
Die Prantlzahl besitzt eine starke Temperaturabhängigkeit und kann auch als eine Polynomentwicklung bzw. mit Hilfe eines Kennfelds bestimmt werden. Aus der Prantlzahl und der Rey- noldtszahl kann die Nusselt-Zahl ermittelt werden. Aus der der Wärmeleitfähigkeit des Kühl¬
Figure imgf000016_0004
mittels λ und des Durchmesses des Kühlkanals D. kann der Wärmeübergangskoeffizient berechnet werden
Figure imgf000016_0005
Figure imgf000016_0003
Als letzter Schritt wird aus diesen Zwischengrößen die statische Zylinderwandtemperatur bestimmt
Figure imgf000016_0008
Figure imgf000016_0001
U stellt hier den Ersatzwärmeleitwert dar
Figure imgf000016_0002
Zur Bestimmung der dynamischen Zylinderwandtemperatur Γ ; muss noch die thermische Trägheit des Zylinderkopfs berücksichtigt werden. Der Parameter k wird dabei aus der wirksamen thermischen Masse des Zylinders und der spezifischen Wärmekapazität er- mittelt
Figure imgf000016_0006
steht hierbei für die dynamische Zylindertemperatur aus
Figure imgf000016_0007
einem vorigen Berechnungszyklus. Figur 3 zeigt einen Graph mit Werten von ermittelten Zylinderwandtemperaturen ZT. Die obersten beiden Linien sind repräsentativ für die mittels des obigen Zylinderwandmodells ermittelte (dynamische) Zylinderwandtemperatur ZT und eine mittels Sensorik ermittelte Referenztemperatur RT . Die Referenztemperatur RT ist hierbei die Linie mit dem stärkeren Rauschen. Die dritte Linie von oben ist repräsentativ für die Kühlmitteltemperatur KT. Die vierte Linie von oben ist repräsentativ für das Drehmoment M und die fünfte Linie für die Drehzahl N.
Wie in Figur 3 zu sehen ist, folgt die dynamische Zylinder¬ wandtemperatur ZT der Referenztemperatur RT im dargestellten Instationärfall , wo hingegen die Kühlmitteltemperatur KT nur sehr langsam absinkt.
Somit kann durch Verwenden der Zylinderwandtemperatur ZT eine Verbesserung in der Emissionierung insbesondere bei der Partikelanzahl und Partikelgröße erreicht werden, insbesondere im Vergleich zu einer Ermittlung abhängig von der Kühlmitteltemperatur KT. Wird die Zylinderwandtemperatur ZT frei von der Abgastemperatur ermittelt, so ist keine exakte Modellierung der Abgastemperatur bzw. ein Abgastemperatursensor notwendig. Ein Vorteil des obig beschriebenen Zylinderwandtemperaturmodells liegt in der modularen physikalischen Modellierung. Somit können komponentenabhängig Zwischengrößen bestimmt werden. Dies erlaubt eine einfache Kalibrierung der Zylinderwandtemperatur ZT, da keine mehrdimensionalen Abhängigkeiten in Kennfeldern für die Ermittlung der Zylinderwandtemperatur ZT bestimmt werden müssen.
Zusätzlich kann eine Kolbenbodentemperatur des Zylinders ermittelt werden und abhängig von der Kolbenbodentemperatur der Einspritzmodus ermittelt werden. Die Kolbenbodentemperatur kann beispielsweise ebenfalls ähnlich wie die Zylinderwandtemperatur mittels eines geeigneten Modells ermittelt werden. Insbesondere kann somit optional auch abhängig von der Zylinderwandtemperatur und der Kolbenbodentemperatur ein Gesamttemperaturwert ermittelt werden und mit einem Temperaturschwellenwert verglichen werden anstelle des Vergleichs der Zylinderwandtemperatur mit dem Zylinderwandtemperaturschwellenwert .
Bezugs zeichenliste
S1-S9 Schritte
50 Steuervorrichtung
EMI erster Einspritzmodus
EM2 zweiter Einspritzmodus
KT Kühlmitteltemperatur
M Drehmoment
N Drehzahl
RT Referenztemperatur
ZT Zylinderwandtemperatur

Claims

Patentansprüche
1. Verfahren zum Ermitteln eines Einspritzmodus zum Einspritzen eines Kraftstoffs in einen Brennraum eines Zylinders einer Brennkraftmaschine, bei dem
- eine Drehzahl (N) der Brennkraftmaschine ermittelt wird,
- eine Zylinderwandtemperatur (ZT) des Zylinders ermittelt wird und
- abhängig von der Drehzahl (N) und der Zylinderwandtemperatur (ZT) der Einspritzmodus ermittelt wird.
2. Verfahren nach Anspruch 1, bei dem
- eine Kolbenbodentemperatur des Zylinders ermittelt wird und abhängig von der Kolbenbodentemperatur der Einspritzmodus ermittelt wird.
3. Verfahren nach Anspruch 1 oder 2, bei dem ein Drehzahlschwellenwert vorgegeben wird und abhängig von einem Vergleich der Drehzahl (N) mit dem Drehzahlschwellenwert der Ein- spritzmodus ermittelt wird.
4. Verfahren nach Anspruch 3, bei dem bei Unterschreiten des Drehzahlschwellenwerts ein erster Einspritzmodus (EMI) aus¬ gewählt wird und bei Überschreiten des Drehzahlschwellenwerts ein zweiter Einspritzmodus (EM2) ausgewählt wird.
5. Verfahren nach einem der vorhergehenden Ansprüche, bei dem ein Zylinderwandtemperaturschwellenwert vorgegeben wird und ab¬ hängig von einem Vergleich der Zylinderwandtemperatur (ZT) mit dem Zylinderwandtemperaturschwellenwert der Einspritzmodus ermittelt wird.
6. Verfahren nach Anspruch 5, bei dem bei Unterschreiten des Zylinderwandtemperaturschwellenwerts ein erster Einspritzmodus (EMI) ausgewählt wird und bei Überschreiten des Zylinderwandtemperaturschwellenwerts ein zweiter Einspritzmodus (EM2) ausgewählt wird.
7. Verfahren nach Anspruch 4 oder 6, bei dem der erste Einspritzmodus (EMI) repräsentativ ist für eine Mehrfacheinspritzung und der zweite Einspritzmodus (EM2) repräsentativ ist für eine Einfacheinspritzung.
8. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Zylinderwandtemperatur (ZT) mittels eines vorgegebenen Zylinderwandtemperaturmodells ermittelt wird.
9. Verfahren nach Anspruch 8, wobei das Zylinderwandtempera¬ turmodell ein thermodynamisches Temperaturmodell ist.
10. Verfahren nach Anspruch 8 oder 9, wobei die ermittelte Zylinderwandtemperatur (ZT) repräsentativ ist für eine dynamische Zylinderwandtemperatur, die abhängig von einer statischen Zylinderwandtemperatur ermittelt wird.
11. Verfahren nach einem der Ansprüche 8 bis 10, bei dem die Zylinderwandtemperatur (ZT) abhängig von einem ermittelten Zylinderdruck, einem ermittelten Hubvolumen des Zylinders, einer ermittelten Luftmasse und einem ermittelten indizierten Motormoment ermittelt wird.
12. Verfahren nach einem der Ansprüche 8 bis 11, bei dem die Zylinderwandtemperatur (ZT) abhängig von einer ermittelten Abgastemperatur ermittelt wird.
13. Verfahren nach einem der Ansprüche 8 bis 12, wobei das Zylinderwandtemperaturmodell die modularen Zwischengrößen mittlere Gastemperatur im Zylinderraum, indizierten Mitteldruck des Zylinders, Wärmeübergangskoeffizient im Brennraum und statische Zylinderwandtemperatur umfasst.
14. Vorrichtung zum Ermitteln eines Einspritzmodus zum Einspritzen eines Kraftstoffs in einen Brennraum eines Zylinders einer Brennkraftmaschine, wobei die Vorrichtung dazu ausgebildet ist, ein Verfahren nach einem der Ansprüche 1 bis 13 auszuführen.
PCT/EP2017/052882 2016-03-02 2017-02-09 Verfahren und vorrichtung zum ermitteln eines einspritzmodus zum einspritzen eines kraftstoffs in einen brennraum eines zylinders einer brennkraftmaschine WO2017148676A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/081,363 US10626808B2 (en) 2016-03-02 2017-02-09 Controlling fuel injection in an internal combustion engine
KR1020187026920A KR20180107292A (ko) 2016-03-02 2017-02-09 내연 엔진의 실린더의 연소 챔버 내로 연료를 분사하기 위한 분사 모드를 결정하는 방법 및 장치
CN201780014539.4A CN108779733B (zh) 2016-03-02 2017-02-09 用于确定将燃料喷射到内燃机气缸的燃烧室中的喷射模式的方法和设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016203433.2A DE102016203433B4 (de) 2016-03-02 2016-03-02 Verfahren und Vorrichtung zum Ermitteln eines Einspritzmodus zum Einspritzen eines Kraftstoffs in einen Brennraum eines Zylinders einer Brennkraftmaschine
DE102016203433.2 2016-03-02

Publications (1)

Publication Number Publication Date
WO2017148676A1 true WO2017148676A1 (de) 2017-09-08

Family

ID=58018091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/052882 WO2017148676A1 (de) 2016-03-02 2017-02-09 Verfahren und vorrichtung zum ermitteln eines einspritzmodus zum einspritzen eines kraftstoffs in einen brennraum eines zylinders einer brennkraftmaschine

Country Status (5)

Country Link
US (1) US10626808B2 (de)
KR (1) KR20180107292A (de)
CN (1) CN108779733B (de)
DE (1) DE102016203433B4 (de)
WO (1) WO2017148676A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10626808B2 (en) 2016-03-02 2020-04-21 Continental Automotive Gmbh Controlling fuel injection in an internal combustion engine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016203436B4 (de) * 2016-03-02 2017-11-30 Continental Automotive Gmbh Verfahren und Vorrichtung zum Ermitteln eines Einspritzzeitpunkts zum Einspritzen eines Kraftstoffs
FR3086336B1 (fr) * 2018-09-24 2020-09-04 Continental Automotive France Procede de commande d'un moteur a combustion interne refroidi par air
JP7196130B2 (ja) * 2020-03-31 2022-12-26 本田技研工業株式会社 内燃機関の制御装置
JP7356407B2 (ja) * 2020-08-11 2023-10-04 日立Astemo株式会社 内燃機関制御装置
CN114109637B (zh) * 2022-01-28 2022-04-22 潍柴动力股份有限公司 一种柴油机的燃烧控制方法、装置和柴油机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913118A (en) * 1988-04-01 1990-04-03 Fuji Jukogyo Kabushiki Kaisha Fuel injection control system for an automotive engine
US8667952B2 (en) * 2010-08-20 2014-03-11 Mazda Motor Corporation Method and device for controlling diesel engine with forced induction system
US20150059691A1 (en) * 2013-09-05 2015-03-05 Caterpillar Inc. System and method for estimating and controlling temperature of engine component

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2990362B2 (ja) * 1988-07-18 1999-12-13 株式会社いすゞセラミックス研究所 断熱エンジンの制御装置
DE4433631B4 (de) 1994-09-21 2004-06-17 Robert Bosch Gmbh Verfahren zur Bildung eines Signals bezüglich einer Temperatur im Abgassystem einer Brennkraftmaschine
US5983630A (en) 1997-07-01 1999-11-16 Toyota Jidosha Kabushiki Kaisha Fuel injecting device for an engine
JP3344299B2 (ja) * 1997-10-24 2002-11-11 トヨタ自動車株式会社 ディーゼルエンジンの燃料噴射制御装置
JP2004353490A (ja) 2003-05-27 2004-12-16 Toyota Motor Corp 内燃機関の制御装置
DE102006010094A1 (de) 2006-03-06 2007-09-13 Robert Bosch Gmbh Verfahren zur Temperaturbestimmung im Abgassystem einer Brennkraftmaschine
DE102007006341B4 (de) 2007-02-08 2018-05-03 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Steuerung einer Brennkraftmaschine in Kraftfahrzeugen
DE102008020933B4 (de) 2008-04-25 2014-07-10 Continental Automotive Gmbh Verfahren zur Plausibilitätsprüfung einer Temperaturmessung bei einer Brennkraftmaschine
JP4884507B2 (ja) * 2009-09-25 2012-02-29 三菱電機株式会社 エンジンの燃料噴射制御装置
CN104411953B (zh) * 2012-06-14 2018-01-23 西港能源有限公司 多燃料系统内燃机中的燃料系统保护
US8989989B2 (en) * 2012-09-13 2015-03-24 GM Global Technology Operations LLC System and method for controlling fuel injection in an engine based on piston temperature
CA2809298C (en) * 2013-03-12 2014-05-13 Westport Power Inc. Fuel injector temperature mitigation
CN104131907A (zh) * 2013-05-03 2014-11-05 博世(中国)投资有限公司 用于二冲程活塞式发动机的熄缸控制方法
JP6052190B2 (ja) 2014-01-20 2016-12-27 マツダ株式会社 ディーゼルエンジンの燃料噴射制御装置
US9695772B2 (en) * 2014-09-24 2017-07-04 GM Global Technology Operations LLC System and method for adjusting fuel injection parameters during transient events to reduce particulate emissions
US20190226419A1 (en) * 2014-10-23 2019-07-25 Xiangjin Zhou Hybrid combustion mode of internal combustion engine and controller thereof, internal combustion engine, and automobile
JP6296045B2 (ja) * 2015-12-08 2018-03-20 トヨタ自動車株式会社 内燃機関の制御装置
JP6288066B2 (ja) * 2015-12-24 2018-03-07 マツダ株式会社 圧縮自己着火式エンジンの燃料噴射制御方法及び燃料噴射制御装置
DE102016203433B4 (de) 2016-03-02 2017-12-07 Continental Automotive Gmbh Verfahren und Vorrichtung zum Ermitteln eines Einspritzmodus zum Einspritzen eines Kraftstoffs in einen Brennraum eines Zylinders einer Brennkraftmaschine
JP6562011B2 (ja) * 2017-02-14 2019-08-21 トヨタ自動車株式会社 燃料噴射制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913118A (en) * 1988-04-01 1990-04-03 Fuji Jukogyo Kabushiki Kaisha Fuel injection control system for an automotive engine
US8667952B2 (en) * 2010-08-20 2014-03-11 Mazda Motor Corporation Method and device for controlling diesel engine with forced induction system
US20150059691A1 (en) * 2013-09-05 2015-03-05 Caterpillar Inc. System and method for estimating and controlling temperature of engine component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10626808B2 (en) 2016-03-02 2020-04-21 Continental Automotive Gmbh Controlling fuel injection in an internal combustion engine

Also Published As

Publication number Publication date
US10626808B2 (en) 2020-04-21
CN108779733B (zh) 2021-08-03
DE102016203433A1 (de) 2017-09-07
US20190063343A1 (en) 2019-02-28
KR20180107292A (ko) 2018-10-01
CN108779733A (zh) 2018-11-09
DE102016203433B4 (de) 2017-12-07

Similar Documents

Publication Publication Date Title
WO2017148676A1 (de) Verfahren und vorrichtung zum ermitteln eines einspritzmodus zum einspritzen eines kraftstoffs in einen brennraum eines zylinders einer brennkraftmaschine
DE68904437T2 (de) Steuerung fuer motor-kraftstoffeinspritzung.
DE102012207895B4 (de) Verfahren zur Bestimmung einer Zylinderluftladung für eine Brennkraftmaschine
DE102007025432B4 (de) Steuervorrichtung für einen Verbrennungsmotor
DE10362028B4 (de) Verfahren zur Bestimmung einer Frischgasmenge
DE102007003245A1 (de) Verfahren zum Entwerfen eines Motorkomponenten-Temperaturschätzers
DE112007001865T5 (de) Verfahren und Vorrichtung zum Schätzen des Abgasdrucks einer Brennkraftmaschine
WO2009074400A2 (de) Verfahren zur bestimmung von adaptierten messwerten und/oder modellparametern zur steuerung des luftpfads von verbrennungsmotoren
AT510912A2 (de) Verfahren zur Emissionsoptimierung von Verbrennungskraftmaschinen
DE102012207890B4 (de) Verfahren zur Bestimmung einer Zylinderluftladung für eine Brennkraftmaschine
DE102007039691A1 (de) Modellierungsverfahren und Steuergerät für einen Verbrennungsmotor
DE102007036689B4 (de) Druckschätzung vor einer Maschinendrossel
WO2014121896A1 (de) Verfahren zur korrektur einer mittels einer brennstoffeinspritzvorrichtung eingespritzen brennstoffmenge im betrieb einer brennkraftmaschine
DE102007050026A1 (de) Verfahren und Vorrichtung zum Überwachen von Steuer- und Regelkreisen in einem Motorsystem
DE102018115208A1 (de) System und Verfahren zur Bewertung des Fahrzeugkraftstoffeinspritzsystems
DE102018120393B4 (de) Systeme und verfahren zur steuerung der kraftstoffzufuhr für einen motor
DE10356713B4 (de) Verfahren zur Regelung bzw. Steuerung einer in einem Kreisprozess arbeitenden Brennkraftmaschine
EP2458185B1 (de) Verfahren zum Betreiben einer Brennkraftmaschine, Steuerelement, Brennkraftmaschine
WO2017148671A1 (de) Verfahren und vorrichtung zum ermitteln eines einspritzzeitpunkts zum einspritzen eines kraftstoffs
DE102005055952A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE102016200782A1 (de) Verfahren und Vorrichtung zum Bestimmen einer Gasführungssystemgröße in einem Motorsystem mit einem Verbrennungsmotor
EP1375881B1 (de) Verfahren zur Bestimmung der Zylinderfüllung einer Brennkraftmaschine mit variabler Ventilhubverstellung, Steuerelement sowie Brennkraftmaschine
DE102008004218A1 (de) Verfahren zur Bestimmung der dynamischen Rußemission
EP3411579A1 (de) Verfahren zum berechnen einer restgasmasse in einem zylinder einer verbrennungskraftmaschine und steuerung
DE10344709B4 (de) Verfahren zur Bestimmung einer Abgasrückführmenge

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187026920

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187026920

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17704725

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17704725

Country of ref document: EP

Kind code of ref document: A1