WO2017148671A1 - Verfahren und vorrichtung zum ermitteln eines einspritzzeitpunkts zum einspritzen eines kraftstoffs - Google Patents
Verfahren und vorrichtung zum ermitteln eines einspritzzeitpunkts zum einspritzen eines kraftstoffs Download PDFInfo
- Publication number
- WO2017148671A1 WO2017148671A1 PCT/EP2017/052863 EP2017052863W WO2017148671A1 WO 2017148671 A1 WO2017148671 A1 WO 2017148671A1 EP 2017052863 W EP2017052863 W EP 2017052863W WO 2017148671 A1 WO2017148671 A1 WO 2017148671A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- determined
- cylinder wall
- wall temperature
- cylinder
- temperature
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/40—Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
- F02D41/401—Controlling injection timing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/02—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
- F02D35/025—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3011—Controlling fuel injection according to or using specific or several modes of combustion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D2041/389—Controlling fuel injection of the high pressure type for injecting directly into the cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/021—Engine temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/10—Parameters related to the engine output, e.g. engine torque or engine speed
- F02D2200/1002—Output torque
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/10—Parameters related to the engine output, e.g. engine torque or engine speed
- F02D2200/101—Engine speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1446—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the invention relates to a method for determining an injection time for injecting a fuel into a combustion chamber of a cylinder of an internal combustion engine.
- the He ⁇ invention further relates to a device for determining a fuel injection timing for injecting a fuel into a combustion chamber of a cylinder of an internal combustion engine.
- DE 10 2006 010 094 AI discloses a method for Tempe ⁇ rule determination in the exhaust system of an internal combustion engine with a control device, starting from at least one operating variable, a temperature or a temperature profile of an exhaust gas in the exhaust system is calculated from an energy balance.
- DE 10 2008 020 933 B4 discloses a method for plausibility check of a temperature measurement in an internal combustion engine.
- DE 44 33 631 AI discloses a method for forming a signal, with respect to a temperature in the exhaust system of a
- a signal for the exhaust gas temperature upstream of the catalyst ge ⁇ forms or a signal for the temperature in the catalyst or a signal for the temperature downstream of the catalyst.
- the DE 10 2007006 341 Al discloses a method for controlling an internal combustion engine in motor vehicles with determination of various setting parameters by means of an electronic control device in dependence on operating parameters, the adjustment parameters is formed from a base value and at least one correction value and a correction value in depen ⁇ dependence of a estimated combustion chamber wall temperature is determined.
- the object underlying the invention is to help reduce emissions.
- the invention is characterized by a method for determining an injection time for injecting a fuel into a combustion chamber of a cylinder of an internal combustion engine.
- the invention is further characterized by a device for determining an injection time for injecting a fuel into a combustion chamber of a cylinder of an internal combustion engine.
- a torque of the internal combustion engine is determined.
- a speed of the internal combustion engine is determined.
- a cylinder wall temperature of the cylinder is determined.
- the injection time is determined.
- the torque can also be referred to as a load torque or as a load.
- the injection time is only determined by parameters such as load and speed, these parameters are only valid for certain combustion chamber temperatures.
- the temperature is changed, for example, the exhaust steam obtained from the fuel is changed and incomplete combustion occurs. The result is an exceedance of the particle limit values.
- the injection timing can be determined depending on a coolant temperature. However, this temperature does not represent the relevant reference in the combustion chamber.
- a piston head temperature of the cylinder is determined, and depending on the Kol ⁇ benbodentemperatur the injection timing is determined.
- the piston crown temperature can be determined, for example by means of a ge ⁇ suitable model.
- a first characteristic map is provided, which is representative of a characteristic map for determining the injection time point, which is provided for an internal combustion engine in a first operating mode.
- a first value of the first characteristic map is determined.
- the first value is weighted depending on the cylinder wall temperature.
- the injection time is determined.
- a second map is provided which is representative of a map for determining the injection timing, which is provided for an internal combustion engine in a second operating mode, which differs from the first operating mode.
- a second value of the second characteristic map is determined.
- the second value is weighted depending on the cylinder wall temperature.
- the injection time is determined. This makes it possible, in particular when using the first and second maps, to be easily selected between two parameter sets, or to be blended from one parameter set into the other parameter set.
- the first map is representative of a map for determining the injection timing, which is provided for an internal combustion engine in a normal operating mode and the second map is representative of a map for determining the injection timing, which is provided for an internal combustion engine at a load change is.
- the cylinder wall temperature is determined by means of a predetermined cylinder wall temperature model.
- the cylinder wall temperature model is a thermodynamic Temperaturmo ⁇ dell.
- thermodynamic model that play based at ⁇ on the first law of thermodynamics
- the real cylinder wall temperature can be modeled very accurately.
- the determined cylinder wall temperature is representative of a dynamic cylinder wall temperature, which is determined as a function of a static cylinder wall temperature.
- the thermal inertia of the cylinder head and the Mo ⁇ torblocks can be taken into account, so that the real cylinder ⁇ wall temperature can be modeled very accurately.
- the cylinder wall temperature is determined as a function of a determined cylinder pressure, a determined displacement volume of the cylinder, a determined air mass and a determined indexed engine torque.
- the cylinder wall temperature is determined as a function of a determined exhaust gas temperature.
- the cylinder wall temperature can be determined very accurately.
- the cylinder wall temperature can also be determined free of the exhaust gas temperature, the exhaust gas temperature is therefore not necessary for the determination of the cylinder wall temperature. Thus, no exact modeling of the exhaust gas temperature or an exhaust gas temperature sensor is necessary.
- the cylinder wall temperature model comprises the modular intermediate variables average gas temperature in the cylinder chamber, indicated mean pressure of the cylinder, heat transfer coefficient in the combustion chamber and static cylinder wall temperature.
- FIG. 1 shows a flow chart for determining an injection time
- FIG. 2 shows a further flowchart for determining a
- Figure 3 is a graph with values of determined cylinder wall temperatures.
- FIG. 1 shows a flowchart of a program for determining an injection time for injecting a
- the program can be processed by a control device 50, for example.
- This is the control device 50 includes in particular an arithmetic unit, a program and data memory ⁇ , as well as one or more communica ⁇ tion interface.
- the program and data memory and / or the arithmetic unit and / or the communication ⁇ interfaces can be formed in a unit and / or distributed over several units.
- the program is stored on the data and program memory of the control device 50 for this purpose.
- the control device 50 can also be referred to as an apparatus for determining the injection time.
- a step Sl the program is started and, if necessary, variables are initialized.
- a torque M of the internal combustion engine is determined.
- a rotational speed N of the internal combustion engine is determined.
- a cylinder wall temperature ZT of the cylinder is determined.
- the injection timing is determined as a function of the cylinder wall temperature ZT, the torque M and the rotational speed N.
- step S the program is completed and can be ge ⁇ optionally re-started in step Sl. Al ⁇ tively, the program is again continued in step S3 and not finished.
- FIG. 2 shows another flow chart for determining a fuel injection timing, and in particular Figure 2 shows a detail ⁇ profiled example of the step S7.
- a first map is provided which is repre sentative ⁇ of a map for determining the injection timing, which is provided for an internal combustion engine in a first mode of operation.
- a first value of the first characteristic map is determined in a step S701.
- the first value is weighted depending on the cylinder wall temperature ZT, for example, by the Cylinder wall temperature ZT is normalized and multiplied by the first value.
- a second map is provided which is representative of a map for determining the injection timing, which is provided for an internal combustion engine in a second operating mode, which differs from the first operating mode.
- a second value of the second characteristic map is determined in a step S705.
- the second value is weighted depending on the cylinder wall temperature ZT, for example, by normalizing the cylinder wall temperature ZT and subtracting it from the value 1 and multiplying the result thereof by the second value.
- the injection instant is determined as a function of the weighted first value and / or as a function of the weighted second value, for example by adding the first value to the second value.
- the cylinder wall temperature is determined, for example, by means of a predetermined cylinder wall temperature model.
- thermodynamics dQ fuel
- this energy balancing can be converted, for example, into a balancing of the heat flows. It will the relationship between the convective heat flow to the cylinder wall temperature, which transported through the cylinder wall by heat conduction and in turn convection transmitted heat flow to the coolant:
- A. CW effective heat flow cross-section of the cylinder wall, lcw mean cylinder wall temperature of the combustion chamber side, mean cylinder wall temperature of the coolant side,
- ⁇ a calculation model for the stationary case can be derived ⁇ , which consists in principle of three parts.
- the first part is the determination of the gas-side model parameters.
- the third part deals with calculations from thermal management. In the second part, these calculations are combined by calculating the wall transitions.
- the average gas temperature T G can be calculated with knowledge of the cylinder pressure P cyl , the stroke volume V of the air mass MAF and the gas constant R:
- the inlet temperature T in must be taken into account.
- the parameters al and a2 must be determined empirically.
- the exhaust gas temperature weighted by the parameter a3 can also be included in the equation.
- the gas temperature can still be corrected by the lambda value, since the firing temperature is cooler at lambda values ⁇ > 1.
- the indicated mean pressure P cyl is calculated via the indicated torque TQI and the displacement V ,.
- the calculation of the heat transfer coefficient a G in the combustion chamber can be determined according to Woschni
- a G 130-5 - P, - T G - v G
- the speed of the charge movement is approximated in the first approach on the basis of the piston speed.
- the charge movement by Swirl, Tumble, etc. are taken into account.
- the coolant velocity and kinematic viscosity can be estimated. This dependence can be approximated as a polynomial or as a characteristic field in the engine control.
- the number of radicals Re t can then be calculated from the inside diameter D. of the cooling channel and the coolant velocity v coolant , as well as the kinematic viscosity n.
- the kinema ⁇ diagram viscosity n is an expression of the internal friction of a liquid.
- the kinematic viscosity is the quotient of the dynamic viscosity and the density of the liquid.
- the prism number has a strong temperature dependence and can also be determined as a polynomial winding or with the aid of a characteristic map.
- the Nusselt number can be determined from the prantl number and the Reynolds number.
- the parameter k is determined from the effective thermal mass of the cylinder and the specific heat capacity he ⁇ averages
- Tcyi oid stands for the dynamic cylinder temperature from a previous calculation cycle.
- FIG. 3 shows a graph with values of determined cylinder wall temperatures ZT.
- the top two lines are representative of the (dynamic) cylinder wall temperature ZT determined by means of the above cylinder wall model and a reference temperature RT determined by means of sensor technology.
- the references rence temperature RT is the line with the stronger noise.
- the third line from the top is representative of the coolant temperature KT.
- the fourth line from above is representative of the torque M and the fifth line for the rotational speed N.
- the injection time is determined only by parameters such as load and speed, so when changing the temperature, for example, the Abdampf the fuel is changed and there is an incomplete combustion, since the parameters load and speed are valid only at certain combustion chamber temperatures. Consequently, the particle limit values may be exceeded.
- the cylinder wall temperature ZT an improvement in the emission can be achieved, in particular with regard to the number of particles and particle size, in particular in comparison with a determination as a function of the coolant temperature KT. If the cylinder wall temperature ZT is determined free from the exhaust gas temperature, then no exact modeling of the exhaust gas temperature or an exhaust gas temperature sensor is necessary.
- An advantage of the cylinder wall temperature model described above resides in the modular physical modeling. Thus, depending on the component, intermediate sizes can be determined.
- a piston head temperature of the cylinder can be determined and determined depending on the piston head temperature of the injection timing.
- the piston bottom temperature can likewise be determined similarly to the cylinder wall temperature by means of a suitable model.
- the first value of the first characteristic map and the second value of the second characteristic field can thus optionally also be weighted as a function of the cylinder wall temperature and the piston bottom temperature.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780014601.XA CN108699993B (zh) | 2016-03-02 | 2017-02-09 | 用于确定喷射燃料的时间点的方法和设备 |
US16/081,326 US20190017462A1 (en) | 2016-03-02 | 2017-02-09 | Fuel Injection Control |
KR1020187026921A KR102117183B1 (ko) | 2016-03-02 | 2017-02-09 | 연료를 분사하는 시점을 결정하는 방법 및 장치 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016203436.7A DE102016203436B4 (de) | 2016-03-02 | 2016-03-02 | Verfahren und Vorrichtung zum Ermitteln eines Einspritzzeitpunkts zum Einspritzen eines Kraftstoffs |
DE102016203436.7 | 2016-03-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017148671A1 true WO2017148671A1 (de) | 2017-09-08 |
Family
ID=58009829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2017/052863 WO2017148671A1 (de) | 2016-03-02 | 2017-02-09 | Verfahren und vorrichtung zum ermitteln eines einspritzzeitpunkts zum einspritzen eines kraftstoffs |
Country Status (5)
Country | Link |
---|---|
US (1) | US20190017462A1 (de) |
KR (1) | KR102117183B1 (de) |
CN (1) | CN108699993B (de) |
DE (1) | DE102016203436B4 (de) |
WO (1) | WO2017148671A1 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115450780A (zh) * | 2022-08-19 | 2022-12-09 | 东风汽车集团股份有限公司 | 用于降低颗粒物排放的控制方法及相关设备 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4433631A1 (de) | 1994-09-21 | 1996-03-28 | Bosch Gmbh Robert | Verfahren zur Bildung eines Signals bezüglich einer Temperatur im Abgassystem einer Brennkraftmaschine |
DE102006010094A1 (de) | 2006-03-06 | 2007-09-13 | Robert Bosch Gmbh | Verfahren zur Temperaturbestimmung im Abgassystem einer Brennkraftmaschine |
DE102007006341A1 (de) | 2007-02-08 | 2008-08-14 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zur Steuerung einer Brennkraftmaschine in Kraftfahrzeugen |
US20140074381A1 (en) * | 2012-09-13 | 2014-03-13 | GM Global Technology Operations LLC | System and method for controlling fuel injection in an engine based on piston temperature |
DE102008020933B4 (de) | 2008-04-25 | 2014-07-10 | Continental Automotive Gmbh | Verfahren zur Plausibilitätsprüfung einer Temperaturmessung bei einer Brennkraftmaschine |
EP2843218A2 (de) * | 2013-08-29 | 2015-03-04 | Kohler Co. | Positionsbasierte Berechnung des Luft/Kraftstoff-Verhältnisses in einem Verbrennungsmotor |
US20150059690A1 (en) * | 2013-09-05 | 2015-03-05 | Caterpillar Inc. | System and method for estimating and controlling temperature of engine component |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01253543A (ja) * | 1988-04-01 | 1989-10-09 | Fuji Heavy Ind Ltd | エンジンの空燃比制御装置 |
JPH06504348A (ja) * | 1991-12-19 | 1994-05-19 | キャタピラー インコーポレイテッド | コンピュータ利用モデルを用いてエンジンを診断する方法 |
DE4444416A1 (de) * | 1994-12-14 | 1996-06-20 | Bosch Gmbh Robert | Verfahren zur Beeinflussung der Kraftstoffzumessung bei einer Brennkraftmaschine |
JP3344299B2 (ja) * | 1997-10-24 | 2002-11-11 | トヨタ自動車株式会社 | ディーゼルエンジンの燃料噴射制御装置 |
DE10042551A1 (de) * | 2000-08-30 | 2002-03-14 | Volkswagen Ag | Verfahren zur Steuerung einer Kraftstoff-Direkteinspritzung |
US7051715B2 (en) * | 2002-12-03 | 2006-05-30 | General Electriccompany | Apparatus and method for suppressing diesel engine emissions |
JP2004239230A (ja) * | 2003-02-10 | 2004-08-26 | Nissan Motor Co Ltd | 内燃機関の燃焼制御装置 |
JP2004353490A (ja) * | 2003-05-27 | 2004-12-16 | Toyota Motor Corp | 内燃機関の制御装置 |
JP2005232990A (ja) * | 2004-02-17 | 2005-09-02 | Toyota Motor Corp | ディーゼルエンジンの燃料噴射制御装置 |
JP4513416B2 (ja) * | 2004-05-13 | 2010-07-28 | 日産自動車株式会社 | 触媒温度ないし触媒近傍のガス温度を推定する装置及びその推定方法 |
JP4616818B2 (ja) * | 2006-11-16 | 2011-01-19 | ヤンマー株式会社 | 内燃機関の制御方法 |
DE102006061659B4 (de) * | 2006-12-27 | 2010-04-08 | Continental Automotive Gmbh | Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine |
US7475671B1 (en) * | 2007-12-21 | 2009-01-13 | Delphi Technologies, Inc. | Method for compensating injection timing during transient response of pre-mixed combustion |
JP5589941B2 (ja) * | 2010-08-20 | 2014-09-17 | マツダ株式会社 | 過給機付ディーゼルエンジンの制御装置及び制御方法 |
KR101160015B1 (ko) * | 2010-11-11 | 2012-06-25 | 주식회사 케피코 | 내연기관 엔진의 배기가스 온도 제어 방법 |
BR112015000026A2 (pt) * | 2012-07-02 | 2017-06-27 | Pinnacle Engines Inc | motor a diesel de relação de compressão variável |
DE102013211661A1 (de) * | 2012-08-03 | 2014-02-06 | Ford Global Technologies, Llc | Verbrennungsmotor mit Direkteinspritzung und reduzierter Feinstaubemission |
EP2924268B1 (de) * | 2012-11-26 | 2017-05-24 | Toyota Jidosha Kabushiki Kaisha | Steuerungsvorrichtung für einen verbrennungsmotor |
US9279380B2 (en) * | 2013-09-05 | 2016-03-08 | Caterpillar Inc. | System and method for estimating and controlling temperature of engine component |
CA2838120C (en) * | 2013-12-23 | 2015-06-23 | Westport Power Inc. | Method and apparatus for fuel injection and dynamic combustion control |
JP6052190B2 (ja) * | 2014-01-20 | 2016-12-27 | マツダ株式会社 | ディーゼルエンジンの燃料噴射制御装置 |
DE102014103145A1 (de) * | 2014-03-10 | 2015-09-10 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Verfahren und Motorsteuergerät zum Betrieb eines Verbrennungsmotors |
WO2015173937A1 (ja) * | 2014-05-15 | 2015-11-19 | 日産自動車株式会社 | 内燃機関の燃料噴射制御装置及び燃料噴射制御方法 |
DE102016203433B4 (de) * | 2016-03-02 | 2017-12-07 | Continental Automotive Gmbh | Verfahren und Vorrichtung zum Ermitteln eines Einspritzmodus zum Einspritzen eines Kraftstoffs in einen Brennraum eines Zylinders einer Brennkraftmaschine |
-
2016
- 2016-03-02 DE DE102016203436.7A patent/DE102016203436B4/de active Active
-
2017
- 2017-02-09 US US16/081,326 patent/US20190017462A1/en not_active Abandoned
- 2017-02-09 KR KR1020187026921A patent/KR102117183B1/ko active IP Right Grant
- 2017-02-09 WO PCT/EP2017/052863 patent/WO2017148671A1/de active Application Filing
- 2017-02-09 CN CN201780014601.XA patent/CN108699993B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4433631A1 (de) | 1994-09-21 | 1996-03-28 | Bosch Gmbh Robert | Verfahren zur Bildung eines Signals bezüglich einer Temperatur im Abgassystem einer Brennkraftmaschine |
DE102006010094A1 (de) | 2006-03-06 | 2007-09-13 | Robert Bosch Gmbh | Verfahren zur Temperaturbestimmung im Abgassystem einer Brennkraftmaschine |
DE102007006341A1 (de) | 2007-02-08 | 2008-08-14 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zur Steuerung einer Brennkraftmaschine in Kraftfahrzeugen |
DE102008020933B4 (de) | 2008-04-25 | 2014-07-10 | Continental Automotive Gmbh | Verfahren zur Plausibilitätsprüfung einer Temperaturmessung bei einer Brennkraftmaschine |
US20140074381A1 (en) * | 2012-09-13 | 2014-03-13 | GM Global Technology Operations LLC | System and method for controlling fuel injection in an engine based on piston temperature |
EP2843218A2 (de) * | 2013-08-29 | 2015-03-04 | Kohler Co. | Positionsbasierte Berechnung des Luft/Kraftstoff-Verhältnisses in einem Verbrennungsmotor |
US20150059690A1 (en) * | 2013-09-05 | 2015-03-05 | Caterpillar Inc. | System and method for estimating and controlling temperature of engine component |
Also Published As
Publication number | Publication date |
---|---|
CN108699993B (zh) | 2022-06-14 |
CN108699993A (zh) | 2018-10-23 |
DE102016203436A1 (de) | 2017-09-07 |
US20190017462A1 (en) | 2019-01-17 |
KR20180110149A (ko) | 2018-10-08 |
DE102016203436B4 (de) | 2017-11-30 |
KR102117183B1 (ko) | 2020-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE68904437T2 (de) | Steuerung fuer motor-kraftstoffeinspritzung. | |
DE102007003245B4 (de) | Verfahren zum Entwerfen eines Motorkomponenten-Temperaturschätzers | |
DE102016203433B4 (de) | Verfahren und Vorrichtung zum Ermitteln eines Einspritzmodus zum Einspritzen eines Kraftstoffs in einen Brennraum eines Zylinders einer Brennkraftmaschine | |
DE102012207895B4 (de) | Verfahren zur Bestimmung einer Zylinderluftladung für eine Brennkraftmaschine | |
DE19740917A1 (de) | Verfahren und Vorrichtung zur Bestimmung der Gastemperatur in einem Verbrennungsmotor | |
WO2009074400A2 (de) | Verfahren zur bestimmung von adaptierten messwerten und/oder modellparametern zur steuerung des luftpfads von verbrennungsmotoren | |
DE102012207890B4 (de) | Verfahren zur Bestimmung einer Zylinderluftladung für eine Brennkraftmaschine | |
DE102013202038B3 (de) | Verfahren zur Korrektur einer mittels einer Brennstoffeinspritzvorrichtung eingespritzten Brennstoffmenge im Betrieb einer Brennkraftmaschine | |
DE102007036689B4 (de) | Druckschätzung vor einer Maschinendrossel | |
DE102012219353B3 (de) | Berechnungs- und Prognoseverfahren von Klopf- und Super-Klopfvorgängen sowie Steuerungseinrichtung für die Steuerung von Brennverfahren in Brennkraftmaschinen, insbesondere in Ottomotoren | |
DE102018120393B4 (de) | Systeme und verfahren zur steuerung der kraftstoffzufuhr für einen motor | |
WO2017148671A1 (de) | Verfahren und vorrichtung zum ermitteln eines einspritzzeitpunkts zum einspritzen eines kraftstoffs | |
DE10356713B4 (de) | Verfahren zur Regelung bzw. Steuerung einer in einem Kreisprozess arbeitenden Brennkraftmaschine | |
DE102010001090A1 (de) | Verfahren zum Betreiben einer Brennkraftmaschine sowie entsprechende Vorrichtung | |
EP3411579A1 (de) | Verfahren zum berechnen einer restgasmasse in einem zylinder einer verbrennungskraftmaschine und steuerung | |
DE102018209080B3 (de) | Verfahren zum Betreiben einer Brennkraftmaschine sowie entsprechende Brennkraftmaschine | |
DE102006010094A1 (de) | Verfahren zur Temperaturbestimmung im Abgassystem einer Brennkraftmaschine | |
DE102007042227A1 (de) | Verfahren zur Bestimmung einer Abgastemperatur einer Brennkraftmaschine | |
EP3181875B1 (de) | Referenzbasiertes saugrohrtemperaturmodell | |
DE102007013460A1 (de) | Verfahren zur Überprüfung eines Luftmassensensors für einen Verbrennungsmotor | |
DE10162970A1 (de) | Verfahren und Vorrichtung zur Bestimmung des Abgasrückführmassenstroms eines Verbrennungsmotors | |
DE102005049535A1 (de) | Verfahren zum Betreiben einer Brennkraftmaschine mit einer Abgasrückführung und Vorrichtung zur Durchführung des Verfahrens | |
EP3794226A1 (de) | Verfahren zur berechnung einer frischluftmasse in einem zylinder und steuerung | |
DE10316753A1 (de) | Verfahren zur Steuerung und/oder Regelung eines Kühlsystems eines Kraftfahrzeugs | |
WO2019219382A1 (de) | Verfahren zur berechnung einer frischluftmasse in einem zylinder und steuerung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20187026921 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020187026921 Country of ref document: KR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17704247 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17704247 Country of ref document: EP Kind code of ref document: A1 |