WO2017148036A1 - 掩模板修复装置、修复方法及蒸镀系统 - Google Patents

掩模板修复装置、修复方法及蒸镀系统 Download PDF

Info

Publication number
WO2017148036A1
WO2017148036A1 PCT/CN2016/084945 CN2016084945W WO2017148036A1 WO 2017148036 A1 WO2017148036 A1 WO 2017148036A1 CN 2016084945 W CN2016084945 W CN 2016084945W WO 2017148036 A1 WO2017148036 A1 WO 2017148036A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
repairing
laser
moving mechanism
image
Prior art date
Application number
PCT/CN2016/084945
Other languages
English (en)
French (fr)
Inventor
付文悦
崔伟
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/503,374 priority Critical patent/US10443118B2/en
Publication of WO2017148036A1 publication Critical patent/WO2017148036A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Definitions

  • the present invention relates to a process for processing a mask, and more particularly to a mask repair apparatus, a repair method, and an evaporation system.
  • FMM fine metal mask
  • a display panel such as evaporation of a color film layer in an OLED (Organic Light-Emitting Diode) display panel.
  • OLED Organic Light-Emitting Diode
  • FIG. 1 is a schematic diagram showing the principle of realizing a thin film evaporation process.
  • the vapor deposition substrate 12 is placed face to face with the mask 11 in a vacuum evaporation chamber, wherein the vapor deposition substrate 12 is placed on the upper surface of the mask 11, and the evaporation source 14 is located below the mask 11. Since the relative movement of the vapor-deposited substrate 12 and the mask 11 during the vacuum evaporation process may occur, the film formation region is displaced, resulting in poor precision of the formed film.
  • a magnet cover 13 is placed on the vapor-deposited substrate 12, and the magnet cover 13 passes through the magnetic adsorption mask 11 so that the mask 11 and the vapor-deposited substrate 12 are closely adhered to avoid vacuum evaporation.
  • the vapor deposition substrate 12 and the mask plate 11 are relatively moved.
  • the metal mesh is very thin and light.
  • the mask 11 is magnetized by the magnet cover 13, and the metal mesh is liable to be stuck.
  • the mask pattern of the mask 11 is not accurate.
  • the existing method of repairing the mask is that the operator degauss the mask by hand-held degaussing, so that the mask must be taken out from the vacuum evaporation chamber, so that the workload is large.
  • Embodiments of the present invention provide a mask repair apparatus, a repair method, and an evaporation system, by which a mask can be repaired in a vacuum evaporation chamber.
  • a mask repair apparatus comprising:
  • a repair device configured to repair a portion of the mask to be repaired; and a mobile machine And mounted in a region facing the reticle and configured to move the repairing device to a position corresponding to a portion of the reticle to be repaired.
  • the moving mechanism drives the repairing device to move in a plane parallel to the mask.
  • the repairing device includes: a degausser configured to generate a magnetic field for canceling magnetic properties in the mask; and a current controller configured to control the generation of the degaussing device The strength of the magnetic field and the frequency of the magnetic field change.
  • the mask has a substantially rectangular outline and includes adjacent first and second sides; along the first side of the mask, the length of the degausser Greater than or equal to the mask; the moving mechanism is configured to move the prosthetic device in a direction parallel to the second side.
  • the moving mechanism includes a first lead screw that extends through the degaussper parallel to the second side of the mask and is threadedly coupled to the degaussing device. .
  • the moving mechanism further includes a guide bar extending through the degaussper parallel to a second side of the mask, and the first lead screw and The plane defined by the guide bar is parallel to the mask to guide the degausser to move parallel to the mask.
  • a repairing apparatus comprising: an image acquiring apparatus configured to be driven by the moving mechanism in a region facing the mask, and in the mask Moving in parallel planes to acquire an image of the mask; and display device configured to display an image acquired by the image acquisition device.
  • the image capturing device is disposed on the degaussing device and moves with the degaussing device; the moving mechanism is further configured to drive the image capturing device to be perpendicular to The degausser moves in the direction of the moving direction.
  • the repair device further includes: a laser configured to emit laser light to the mask; the moving mechanism configured to drive the laser according to an image displayed by the display device Move to a position corresponding to the portion of the mask to be repaired.
  • the moving mechanism is configured to drive the laser to move to the mask plate according to the display device displaying that the mask has a deposition of vapor deposition material. The location where the plating material is deposited.
  • a repair device according to an embodiment of the present invention, the repair device further comprising laser control
  • the laser controller is configured to control the intensity of the laser light emitted by the laser.
  • the laser is disposed on the degaussing device and moves with the degaussing device; the moving mechanism is further configured to drive the laser in a direction perpendicular to the degaussing device Move in the direction.
  • the moving mechanism further includes: a guiding groove disposed on a surface of the degaussing device facing the mask and in a direction perpendicular to a moving direction of the degausser Extending in a direction; and a second lead screw disposed in the guiding slot, the second lead screw being coupled to the image capturing device and/or the laser.
  • an evaporation system including: a vacuum evaporation chamber; an evaporation source disposed in the evaporation chamber and configured to be disposed in the evaporation chamber And a mask repairing device according to any one of the above embodiments, wherein the repairing device of the mask repairing device is located in the vapor deposition Inside the chamber.
  • a method of repairing a reticle using a reticle repair apparatus comprising the steps of: starting a repair device; and driving the moving mechanism So that the moving mechanism drives the repairing device to move in a region facing the mask.
  • the boot repair device includes: activating the current controller to be driven by the current controller
  • the degausser inputs alternating current, wherein the magnitude of the current input by the current controller to the degausser is constantly changing.
  • the repair method further includes: the image acquisition device acquires the mask plate and the image acquisition device An image of the corresponding portion; the display device receives the image transmitted by the image acquisition device and displays it.
  • the repairing device includes a laser
  • the display device displays that the mask has a deposition of vapor deposition material
  • driving the moving mechanism to cause the moving mechanism to drive
  • the laser is moved to a position where the mask has a deposition of the evaporation material; the laser is activated to emit laser light at the position of the deposited evaporation material.
  • the moving mechanism drives the repairing device to move to the mask to be repaired in the area directly facing the mask
  • the corresponding position of the complex part the repair device repairs the portion to be repaired of the mask.
  • the repair device can be installed in the vacuum evaporation chamber, eliminating the need to remove the mask from the vapor deposition chamber, reducing the amount of repair work.
  • FIG. 1 is a schematic view showing the principle of realizing a thin film evaporation process
  • FIG. 2 is a schematic view of a mask plate and its facing regions, in accordance with an exemplary embodiment of the present invention
  • Figure 3 is a perspective view of a prosthetic device in accordance with a first exemplary embodiment of the present invention.
  • Figure 4 is a perspective view of a repairing device in accordance with a second embodiment of the present invention.
  • Figure 5 is a perspective view of a repairing device in accordance with an embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing the principle of repairing a mask using the repairing device shown in FIG. 5 according to an exemplary embodiment of the present invention
  • FIG. 7 is a flow chart showing the operation of a repair method in accordance with an exemplary embodiment of the present invention.
  • a mask repair apparatus comprising: a repairing device and a moving structure.
  • the repairing device is configured to repair a portion of the mask to be repaired;
  • the moving mechanism is mounted in a region facing the mask and configured to move the repairing device to correspond to a portion of the mask to be repaired s position.
  • the region 11' facing the mask refers to a vertical projection area of the plane of the mask 11.
  • the area 11' facing the mask is located in a plane parallel to the mask and has the same area as the mask 11.
  • the moving mechanism is mounted in a region facing the mask and configured to move the repairing device to a position corresponding to the portion of the mask 11 to be repaired, so that the repairing device is on the mask. Repair the part to be repaired.
  • the moving mechanism drives the repairing device to move in a plane parallel to the mask 11 in the region 11' shown in FIG. 2, so that the repair device and the mask are always kept at the same distance, thereby uniformizing the defects of the mask Sh. repair.
  • the moving mechanism may be a robot or a mechanical robot or the like.
  • the reticle is a metal reticle.
  • the repair of the mask is performed according to the actual defects existing in the mask. For example, if the mask is magnetized to cause a metal mesh bonding defect, repairing the mask means degaussing the mask. If the vapor deposition material is deposited on the mask, repairing the mask means removing the deposited vapor deposition material.
  • Embodiments of the present invention provide a mask repair apparatus including a repair device configured to repair a portion of a mask to be repaired, and a moving mechanism mounted in an area facing the mask and configured to be driven The repair device is moved to a position corresponding to the portion of the mask to be repaired.
  • the repair device can be installed in the vacuum evaporation chamber without removing the mask from the vapor deposition chamber, reducing the amount of repair work.
  • the mask can also be taken out from the vacuum evaporation chamber, and the mask can be repaired by the repair device to reduce the workload of the operator.
  • the repair device 20 includes a degaussing device 21 and a current controller 22 coupled to the degausser.
  • the degaussing device 21 is configured to generate
  • the magnetic field controller 22 is used to control the magnetic field generated by the degaussing device 11 and the frequency of the magnetic field change.
  • the positional relationship between the current controller 22 and the degausser 21 is not limited to the embodiment shown in FIG. 3. In FIG. 3, the case where the current controller 22 is located below the degaussing device 21 will be described as an example.
  • the degausser generates an alternating magnetic field of different frequencies (ie, the frequency of the magnetic field change) and the intensity (ie, the magnitude of the magnetic field) to disturb the magnetic domains aligned inside the mask made of a metal material, thereby making the mask
  • the metal mesh that is stuck due to magnetization is demagnetized and separated.
  • the higher the frequency of change of the magnetic field the greater the strength of the magnetic field and the better the degaussing effect.
  • the current controller is configured to generate an alternating current and output alternating currents of different magnitudes and frequencies, which in turn cause the degaussing to generate alternating magnetic fields of different intensities and frequencies.
  • the magnitude of the magnetic field generated by the degaussing device can be controlled by the current controller without changing the distance between the degaussing device and the reticle.
  • the moving plane of the degausser is parallel to the plane of the mask and the distance is constant.
  • the mask 11 has a generally rectangular outline and includes an adjacent first side 111 (eg, a short side of a rectangle) and a second side 112 (eg, a long side of a rectangle).
  • first side 111 of the reticle 11 the length of the degaussing device 21 is greater than or equal to the reticle 11, that is, the length of the degaussing device 21 in the direction of 101 in FIG. 6 is greater than or equal to the length of the reticle 11.
  • the length of the degaussing 21 is smaller than the reticle 11, i.e., the length of the degaussing 21 in the direction of 102 shown in Fig.
  • the moving mechanism is used to drive the repairing device 20 to move in a direction parallel to the second side 112 (i.e., the direction of 102 shown in FIG. 6), and all of the mask can be demagnetized.
  • the moving mechanism is used to drive the prosthetic device 20 to move in a direction parallel to the first side 111 (i.e., the 101 direction shown in Figure 6) to degauss all of the reticle.
  • the length of the degausser may also be smaller than the length of the mask in the direction of the first side and the second side, and the degausser may be moved in a direction parallel to the first side and the second side. Move to degauss all of the mask.
  • the length of the degausser may be greater than the length of the reticle in a direction parallel to the first side and the second side.
  • the moving mechanism 30 includes a first lead screw 31 that extends parallel to the second side of the mask 11 through the degausser 21 and with the degaussing device.
  • the 21 threads are coupled such that the degaussing 21 is moved in a direction parallel to the second side 112 of the mask 11 by the rotation of the first lead screw to repair the portion of the mask to be repaired.
  • the moving mechanism further includes a guide bar 32 that extends through the degaussing 21 parallel to the second side 112 of the reticle 11, and the first lead screw 31 and the guide bar
  • the plane determined by 32 is parallel to the mask 11 to guide the movement of the degausser 21 parallel to the mask 11.
  • the first lead screw 31 and the guide rod 32 both pass through the degaussing device 21, and the degaussing device 21 is smoothly moved along the guiding rod 32 under the driving of the first lead screw 31, and the moving direction of the degausing device 21 is the second.
  • the direction in which the edge 112 extends i.e., the direction 102 as indicated by 6).
  • the plane defined by the first lead screw 31 and the guide bar 32 is a plane parallel to the mask plate 11.
  • the embodiment of the present invention is characterized in that the moving structure 30 includes two guiding rods 32 , wherein the two guiding rods 32 are respectively located on two sides of the first lead screw 31 .
  • the repairing apparatus 100 includes: an image acquiring device 40 and a display device (not shown) connected to the image acquiring device 40; the image capturing device 40 is configured to The image of the portion of the mask 11 opposite to the image capturing device 40 is acquired in a region facing the mask plate 11 under the driving of the moving mechanism, and in a plane parallel to the mask plate 11, and sent to the display device.
  • the display device is for displaying an image acquired by the image acquisition device 40.
  • the image acquisition device may acquire an image of the mask to be sent to the display device, and the display device may further process and enlarge the image acquired by the image acquisition device to facilitate display. From the image displayed by the display device, it can be determined whether the mask is magnetized to cause a wire bonding defect or a defect in the evaporation of the evaporation material can be determined from the image displayed on the display device, thereby further confirming whether the mask needs to be masked. The template is repaired and which part of the mask is repaired.
  • the image capturing device 30 is disposed on the degaussing device 21, and can be eliminated.
  • the magnet 21 moves.
  • the moving mechanism 30 is also used to drive the image capturing device 40 to move in a direction perpendicular to the moving direction of the degaussing device 21.
  • the direction in which the degaussing device 21 moves is the extending direction of the guiding rod 32, the guiding rod 32 is parallel to the second side 112, and the moving direction of the degaussing device 21 is the extending direction of the second side 112 (ie, the direction 102), that is, the image acquiring device 40 It is movable in a direction parallel to the second side 112.
  • the direction perpendicular to the movement of the degaussing device 21 is the extending direction of the first side 111 (ie, the 101 direction), and the moving mechanism 30 is also used to drive the image acquiring device 40 to move in a direction perpendicular to the moving direction of the degaussing device 21, and the image is acquired.
  • the device 40 can also move in a direction parallel to the first side 111. Then, in the case where the image acquisition device 40 is relatively small, the image acquisition device 40 can acquire the entire image of the reticle by movement in a direction parallel to the first side 111 and/or the second side 112.
  • the image acquisition device may comprise a microscope or a CCD camera
  • the display device may comprise a liquid crystal display.
  • the image acquisition device acquires an image of a portion of the mask corresponding to the microscope each time.
  • the repairing device 20 includes a laser 23 for emitting laser light to the mask 11 and a moving mechanism 30 for driving the laser 23 to move according to the image displayed by the display device.
  • the moving mechanism 30 drives the laser 23 to move in a region parallel to the mask 11 and facing the mask 11, so that the laser 23 can be arbitrarily to the mask 11. The position emits a laser.
  • the repairing device of the embodiment of the present invention includes a laser 23 configured to display the evaporation of the vapor deposition material of the mask 11 according to the display device, and to drive the laser 23 to move to the mask 11 for evaporation.
  • the laser 11 can emit laser light to the deposited evaporation material on the mask plate, thereby evaporating the deposited evaporation material, eliminating deposition defects, and ensuring the mask precision of the mask.
  • the laser light emitted by the laser 21 coincides with the position of the mask image acquired by the image acquisition device 30.
  • the lens of the microscope is a vertical mask to obtain an image at the position of the mask facing the lens.
  • the laser is located on the side of the microscope, and the laser head of the laser can have The angle is inclined so that the laser emitted by the laser head is facing the position of the mask facing the lens.
  • the repair device further includes a laser controller that is also used to control the intensity of the laser light emitted by the laser. Due to the different boiling points of different evaporation materials, in the embodiment of the invention, the laser controller can evaporate different evaporation materials by adjusting the laser intensity.
  • the laser 23 is disposed on the degaussing device 21 and is movable with the degaussing device 21; the moving mechanism 30 It is also used to drive the laser 23 to move in a direction perpendicular to the direction of movement of the degausser 21.
  • the direction in which the degaussing device 21 moves is the extending direction of the guiding rod 32, the guiding rod 32 is parallel to the second side 112, and the moving direction of the degaussing device 21 is parallel to the first
  • the direction of the two sides 112 i.e., the 102 direction
  • the laser 23 can move in a direction parallel to the second side 112.
  • the direction perpendicular to the movement of the degaussing device 21 is the extending direction of the first side 111 (ie, the 101 direction), and the moving mechanism 30 is also used to drive the laser 23 to move in a direction perpendicular to the moving direction of the degaussing device 21, and the laser 23 can also Moving in a direction parallel to the first side 111. Therefore, the laser 23 can be moved in a direction parallel to the first side 111 or the second side 112 to emit laser light to an arbitrary position of the mask 11.
  • the moving mechanism 30 includes: a guiding groove 33 and a second lead screw 34, and the guiding groove 33 is disposed on a surface of the degaussing device 21 facing the mask 11, and Extending in a direction perpendicular to the moving direction of the degaussing device 21, the second lead screw 34 is disposed in the guide groove 33, and the second lead screw 34 is coupled to the image pickup device 40 and/or the laser 23, and moves along the guide groove 33.
  • the guiding groove 33 extends in a direction perpendicular to the moving direction of the degaussing device 21, that is, the guiding groove 33 extends in a direction parallel to the first side 111, then
  • the second lead screw 34 is used to drive the image capturing device 40 and/or the laser 23 to move in a direction parallel to the first side 111 (i.e., in the 101 direction).
  • the second lead screw passes through the image acquiring device and is screwed into the image acquiring device.
  • the moving mechanism is also used to drive the laser to move in a direction perpendicular to the movement of the degaussing device, then the second lead screw passes through the laser and the laser The thread is combined.
  • the second lead screw 34 passes through the image capturing device 40 and the laser. 23 is threadedly coupled to the image acquisition device 40 and the laser 23.
  • a mask repairing device including a repairing device, a moving mechanism, an image acquiring device, and a display device connected to the image acquiring device; wherein the image acquiring device is configured to acquire a mask and an image Acquiring an image of a portion corresponding to the device and transmitting it to the display device; the display device is for displaying an image acquired by the image acquisition device.
  • the repair device includes a laser for moving the laser in a region facing the mask and moving in a plane parallel to the mask.
  • the vapor deposition material may be deposited on the mask, resulting in inaccurate mask patterns.
  • the control device controls the moving structure to move the laser to a position where the evaporation material of the mask is deposited, and causes the laser to deposit the deposited material.
  • the laser is emitted to evaporate the deposited evaporation material to ensure the mask precision of the mask.
  • the moving mechanism can drive the laser to move freely in the area facing the mask and in a plane parallel to the mask, so that the laser can emit laser light to any position of the mask.
  • the specific structure of the mobile structure can be referred to the manner provided by the embodiment of the present invention, and is of course not limited to the specific manner in the embodiment of the present invention.
  • an evaporation system comprising: a vacuum evaporation chamber; an evaporation source disposed in the vacuum evaporation chamber and configured to be disposed in the vapor deposition chamber And a mask plate located above the evaporation source for vapor deposition; and the mask repairing device of any of the above embodiments of the present invention, wherein the repairing device of the mask repairing device is located in the vapor deposition chamber.
  • the mask repairing device further includes an image acquiring device and a display device connected to the image capturing device
  • the image capturing device is located in the vapor deposition chamber
  • the display device may be located outside the vapor deposition chamber so that The staff observed.
  • the mask repairing device located in the vapor deposition chamber can also be moved inside the vapor deposition chamber. For example, during the evaporation process of the mask, the mask repairing device is located at a position before the facing region of the mask. If the mask is to be repaired and repaired, the drive mask repair device is located in the area directly opposite the mask.
  • a dust cover may be disposed in the vapor deposition chamber to seal and protect the mask repair device, thereby preventing deposition of the vapor deposition material on the mask repair device during the vapor deposition of the mask.
  • control of the mask repairing device and the movement of the moving mechanism can be controlled by a control device (not shown) disposed outside the vapor deposition chamber, that is, the operator can pass the control device outside the vapor deposition chamber. Controls the movement and opening of the degausser, laser, and image acquisition device.
  • a method of repairing a mask using any of the repairing devices provided by the embodiments of the present invention comprising the steps of:
  • the repair device is activated; the moving mechanism is driven such that the moving mechanism drives the repairing device to move in a region facing the mask and in a plane parallel to the mask.
  • starting the repairing device specifically includes: starting a current controller to input an alternating current to the degaussing device by the current controller, wherein the current controller is directed to the degaussing device The amount of current input to the alternating current is constantly changing.
  • the higher the frequency of the magnetic field changes the greater the magnetic field strength and the better the degaussing effect.
  • the current of the current controller inputting the alternating current to the degausser gradually increases, and the magnetic field generated by the degausser gradually becomes larger, thereby improving the degaussing effect.
  • the magnitude of the magnetic field generated by the degaussor is controlled by the current controller without changing the distance between the degausser and the reticle.
  • the moving plane of the degaussor is parallel to the plane of the mask and the distance is constant.
  • the current controller can increase the frequency of the magnetic field change of the degaussing device, thereby improving the degaussing effect of the degaussing device to save the degaussing time.
  • the repairing method further includes: the image acquiring device acquiring an image of a portion of the mask opposite to the image capturing device, and transmitting Giving a display device; the display device receives an image sent by the image acquisition device and displays it.
  • the image acquisition device may acquire an image of the mask to send
  • the display device can also process and enlarge the image acquired by the image acquisition device to facilitate display. It can be determined from the image displayed by the display device whether the mask is magnetized to cause wire bonding or whether the deposition of the evaporation material is determined on the mask from the image displayed by the display device, thereby further confirming whether or not the mask needs to be masked. The template is repaired and which part of the mask is repaired.
  • the moving mechanism is driven to cause the moving mechanism to move the laser to a position where the vapor deposition material is deposited on the mask.
  • the laser is activated to emit laser light at the location of the deposited evaporation material.
  • the repair device includes a laser, and the laser can emit laser light to the vapor deposition material deposited on the mask plate, so that the deposited vapor deposition material is evaporated to ensure the mask precision of the mask.
  • the microscope and the reticle are in good focus, and the region within the field of view is a region where the vapor deposition material is deposited, and the image obtained by the microscope shows deposition of the vapor deposition material on the reticle.
  • the laser emits laser light to the evaporation material, and the laser sintering temperature is the evaporation temperature of the evaporation material, thereby causing the evaporation material to evaporate.
  • the observation is performed again with a microscope after the completion of the sintering until the metal mesh has no vapor deposition material.
  • driving the moving mechanism specifically includes driving the first lead screw to rotate to drive the repairing device to move along the guide rod. That is, the first lead screw provides driving power to the repairing device, thereby causing the repairing device to move along the guide bar.
  • driving the moving mechanism further includes: driving the second lead screw to rotate to drive the image capturing device and/or the laser to move along the guiding slot.
  • the second lead screw provides driving power to the image capturing device and/or the laser connected to the second lead screw, thereby causing the image capturing device and/or the laser connected to the second lead screw to move along the guiding groove.
  • the mask repairing device 100 is located directly under the mask 11, repairing Complex methods include:
  • Step 101 Start a current controller and input an alternating current to the degausser. Specifically, at a higher magnetic field change frequency, the current input current of the current controller to the degausser gradually increases, so that the magnetic field of the degausser gradually becomes larger to degauss the mask.
  • Step 102 Drive the first lead screw to rotate to drive the degausser to move in the direction of the guiding rod. That is, the degausser moves in a direction parallel to the second side 112, so that the degausser can completely demagnetize the entire mask.
  • Step 103 The image acquisition device acquires an image of a portion of the mask opposite to the image acquisition device, and sends the image to the display device for display.
  • Step 104 Confirm whether the mask has metal mesh bonding according to the display image.
  • step 104 the display mask in the image displayed by the display device can continue the mask process, that is, the mask has no material deposition, the repair process ends. If the image displayed on the display device still shows metal mesh bonding due to magnetization on the mask, repeat steps 101-104 above until no metal mesh is bonded to the mask.
  • Step 105 confirming whether the mask has deposition of the evaporation material according to the display image.
  • Step 106 Determine, according to the image displayed by the display device, a position where the mask has a deposition of the evaporation material.
  • the position where the mask has a deposition of the evaporation material may be at a position opposite to the image capturing device.
  • Step 107 Driving the moving mechanism to cause the moving structure to drive the laser to move to a position where the corresponding mask has a deposition of the evaporation material.
  • the moving mechanism drives the first lead screw and the second lead screw to rotate so that the laser and the mask have a position where the evaporation material is deposited, so that the laser can emit laser light to the evaporation material.
  • Step 108 Start a laser, and emit a laser to the deposited evaporation material to evaporate the deposited evaporation material.
  • Step 103 The image acquisition device acquires an image of a portion of the mask opposite to the image acquisition device, and sends the image to the display device for display.
  • the above steps 106-108 are repeated until no evaporation material is deposited on the mask.
  • the repair process ends.

Abstract

一种掩模板修复装置、修复方法及蒸镀系统。掩模板修复装置(100),包括:修复器件(20),被构造成对掩模板(11)的待修复部位进行修复;和移动机构(30),安装在与掩模板面对的区域(11')内,并被构造成带动所述修复器件(20)移动到与所述掩模板(11)的待修复部位相对应的位置。修复装置(100)可以安装于真空蒸镀腔室内,无需将掩模板(11)从蒸镀腔室内取出,减少了修复的工作量。

Description

掩模板修复装置、修复方法及蒸镀系统 技术领域
本发明涉及对掩模板的处理工艺,尤其涉及一种掩模板修复装置、修复方法及蒸镀系统。
背景技术
FMM(fine metal mask,高精度掩模板)主要用于显示面板的薄膜蒸镀,例如OLED(Organic Light-Emitting Diode,有机发光二极管)显示面板中彩色膜层的蒸镀。
图1为实现薄膜蒸镀工艺的原理示意图。如图1所示,在真空蒸镀腔室内,将蒸镀基板12与掩模板11面对面地放置,其中,蒸镀基板12位于掩模板11的上面,蒸发源14位于掩模板11的下面。由于在真空蒸镀过程中蒸镀基板12与掩模板11有可能发生相对移动,造成成膜区域偏移,导致形成的薄膜精度差。为此,在蒸镀基板12的上面放置有一块磁铁盖板13,磁铁盖板13通过磁性吸附掩模板11,从而使得掩模板11与蒸镀基板12紧密贴合,避免在真空蒸镀过程中蒸镀基板12与掩模板11发生相对移动。
但由于掩模板11的精度高,其金属网丝很细很轻,在长时间的执行真空蒸镀工艺的情况下,掩模板11受到磁铁盖板13的磁化,金属网丝容易发生粘连,使得掩模板11的掩膜图案不精准。
现有的修复掩模板的方法是作业人员手持消磁器对掩模板进行消磁,从而必须将掩模板从真空蒸镀腔室内取出,从而工作量大。
发明内容
本发明的实施例提供一种掩模板修复装置、修复方法及蒸镀系统,利用该掩模板修复装置可以在真空蒸镀腔室内对掩模板进行修复处理。
根据本发明的一个方面的实施例,提供了一种掩模板修复装置包括:
修复器件,被构造成对掩模板的待修复部位进行修复;和移动机 构,安装在与掩模板面对的区域内,并被构造成带动所述修复器件移动到与所述掩模板的待修复部位相对应的位置。
根据本发明一种实施例的修复装置,所述移动机构带动所述修复器件在与所述掩模板平行的平面内移动。
根据本发明一种实施例的修复装置,所述修复器件包括:消磁器,被构造成产生用于消除掩模板内的磁性的磁场;以及电流控制器,被配置成控制所述消磁器产生的磁场的强度以及磁场变化频率。
根据本发明一种实施例的修复装置,所述掩模板具有大致矩形的轮廓,并包括相邻的第一边和第二边;沿所述掩模板的第一边,所述消磁器的长度大于或等于所述掩模板;所述移动机构被构造成带动所述修复器件沿平行于所述第二边的方向移动。
根据本发明一种实施例的修复装置,所述移动机构包括第一丝杠,所述第一丝杠平行于所述掩模板的第二边穿过所述消磁器延伸并与消磁器螺纹结合。
根据本发明一种实施例的修复装置,所述移动机构还包括导向杆,所述导向杆平行于所述掩模板的第二边穿过所述消磁器延伸,且所述第一丝杠与所述导向杆所确定的平面与所述掩模板平行,以引导消磁器平行于掩模板移动。
根据本发明一种实施例的修复装置,所述修复装置包括:图像获取装置,被构造成在所述移动机构的驱动下在所述掩模板正对的区域内、且在与所述掩模板平行的平面内移动,以获取所述掩模板的图像;以及显示设备,被构造成显示所述图像获取装置所获取的图像。
根据本发明一种实施例的修复装置,所述图像获取装置设置在所述消磁器上,并随着所述消磁器移动;所述移动机构还被构造成带动所述图像获取装置在垂直于所述消磁器移动方向的方向上移动。
根据本发明一种实施例的修复装置,所述修复器件还包括:激光器,被构造成向所述掩模板发射激光;所述移动机构被构造成根据所述显示设备显示的图像驱动所述激光器移动至与所述掩模板的待修复部位相对应的位置处。
根据本发明一种实施例的修复装置,所述移动机构被构造成根据所述显示设备显示所述掩模板有蒸镀材料淤积的情况,带动所述激光器移动至正对所述掩模板有蒸镀材料淤积的位置处。
根据本发明一种实施例的修复装置,所述修复装置还包括激光控 制器,所述激光控制器被构造成控制所述激光器发出的激光强度。
根据本发明一种实施例的修复装置,所述激光器设置在所述消磁器上,并随着所消磁器移动;所述移动机构还构造成带动所述激光器在垂直于所述消磁器移动方向的方向上移动。
根据本发明一种实施例的修复装置,所述移动机构还包括:导向槽,设置在所述消磁器的面对所述掩模板的表面上、并在垂直于所述消磁器的移动方向的方向上延伸;以及第二丝杠,设置在所述导向槽中,所述第二丝杠与图像获取装置和/或激光器连接。
根据本发明另一方面的实施例,提供一种蒸镀系统,包括:真空蒸镀腔室;蒸镀源,设置在所述蒸镀腔室内并被构造成对设置在所述蒸镀腔室内并位于所述蒸镀源上方的掩模板进行蒸镀;;以及如上述实施例中的任一项所述的掩模板修复装置,其中,所述掩模板修复装置的修复器件位于所述蒸镀腔室内。
根据本发明更进一步方面的实施例,提供一种利用如上述实施例中的任一项所述的掩模板修复装置修复掩模板的方法,包括如下步骤:启动修复器件;以及驱动所述移动机构,以使得移动机构带动所述修复器件在掩模板正对的区域内移动。
根据本发明一种实施例的修复方法,在所述修复器件包括消磁器和电流控制器的情况下,所述启动修复器件包括:启动所述电流控制器,以便由所述电流控制器向所述消磁器输入交流电,其中所述电流控制器向所述消磁器输入交流电的电流大小不断变化。
根据本发明一种实施例的修复方法,在所述修复装置还包括图像获取装置以及显示设备的情况下,所述修复方法还包括:图像获取装置获取所述掩模板上与所述图像获取装置相对应的部分的图像;所述显示设备接收所述图像获取装置发送的图像并进行显示。
根据本发明一种实施例的修复方法,在所述修复器件包括激光器的情况下,若所述显示设备显示所述掩模板有蒸镀材料淤积,驱动所述移动机构使得所述移动机构带动所述激光器移动至正对所述掩模板有蒸镀材料淤积的位置处;启动所述激光器,向淤积的蒸镀材料位置处发射激光。
根据本发明实施例的掩模板修复装置、修复方法及蒸镀系统,移动机构带动修复器件在掩模板正对的区域内移动到与掩模板的待修 复部位相对应的位置,修复器件对掩模板的待修复部位进行修复。修复装置可以安装于真空蒸镀腔室内,则无需将掩模板从蒸镀腔室内取出,减少了修复的工作量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实现薄膜蒸镀工艺的原理示意图;
图2为根据本发明的一种示例性实施例的掩模板及其正对区域的示意图;
图3为根据本发明的第一种示例性实施例的修复器件的立体示意图;
图4为根据本发明的第二种实施例的修复器件的立体示意图;
图5为根据本发明的一种实施例的修复装置的立体示意图;
图6为根据本发明的一种示例性实施例利用图5所示的修复装置对掩模板进行修复的原理示意图;以及
图7为根据本发明的一种示例性实施例的修复方法的操作流程图。
附图标记:
11-掩模板;12-蒸镀基板;13-磁铁盖板;14-蒸发源;20-修复器件;21-消磁器;22-电流控制器;30-移动机构;32-第一丝杠;32-导向杆;33-导向槽;34-第二丝杠;40-图像获取装置;100-掩模板修复装置;111-第一边;112-第二边。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
根据本发明总体上的发明构思,提供一种掩模板修复装置,包括:修复器件和移动结构。修复器件被构造成对掩模板的待修复部位进行修复;移动机构安装在与掩模板面对的区域内,并被构造成带动所述修复器件移动到与所述掩模板的待修复部位相对应的位置。
如图2所示,在对掩模板进行蒸镀时,掩模板面对的区域11′是指掩模板11所在平面的垂直投影区域。掩模板面对的区域11′位于与掩模板平行的面内并具有与掩模板11相同的面积。本发明的实施例中,移动机构安装在与掩模板面对的区域内,并被构造成带动修复器件移动到与掩模板11的待修复部位相对应的位置,以使修复器件对掩模板的待修复部位进行修复。例如,移动机构带动修复器件在图2所示的区域11′内在与掩模板11平行的平面内移动,使得修复器件与掩模板之间始终保持相同的距离,从而对掩模板Sh的缺陷进行均匀修复。具体的,移动机构可以是机械手或机械机器人等。掩模板为金属掩模板。
此外,对掩模板进行修复根据掩模板存在的实际缺陷进行。例如,若掩模板由于被磁化而产生金属网丝粘结缺陷,则对掩模板进行修复是指对掩模板进行消磁修复。若掩模板上有蒸镀材料淤积,则对掩模板进行修复是指去除产生淤积的蒸镀材料。
本发明实施例提供一种掩模板修复装置,包括修复器件,被构造成对掩模板的待修复部位进行修复;和移动机构,安装在与掩模板面对的区域内,并被构造成带动所述修复器件移动到与所述掩模板的待修复部位相对应的位置。修复装置可以安装于真空蒸镀腔室内,无需将掩模板从蒸镀腔室内取出,减少了修复的工作量。当然,也可以将掩模板从真空蒸镀腔室内取出,再利用修复装置对掩模板进行修复,以减少作业人员的工作量。
在一种示例性实施例中,如图3所示,修复器件20包括:消磁器21以及与消磁器连接的电流控制器22。消磁器21被构造成产生 用于消除掩模板11内的磁性的磁场,电流控制器22用于控制消磁器21产生的磁场的强度以及磁场变化频率。电流控制器22和消磁器21的位置关系不限于图3所示的实施例,图3中以电流控制器22位于消磁器21的下方为例进行说明。
需要说明的是,消磁器产生不同频率(即磁场变化频率)和强度(即磁场大小)的交变磁场,以打乱由金属材料制成的掩模板内部排列一致的磁畴,从而使得掩模板由于磁化而产生粘连的金属网丝会消磁而分开。一般地,磁场的变化频率越高,磁场强度越大,消磁效果越好。
在本发明实施例的修复器件中,电流控制器用于产生交变电流,并输出不同大小和频率的交变电流,继而使消磁器产生不同强度和频率的交变磁场。这样,可以通过电流控制器控制消磁器产生的磁场大小,无需改变消磁器与掩模板之间的距离。消磁器的移动平面与掩模板所在平面平行且距离不变,通过调整电流控制器调整消磁器的磁场大小,可以对掩模板进行消磁,从而无需较大空间,可以更加方便的将修复装置安装于蒸镀腔室内。
当然,还可以通过电路控制器使得消磁器的磁场变化频率提高,从而消磁器的消磁效果更好,以节省消磁时间。
在一种实施例中,如图6所示,掩模板11具有大致矩形的轮廓,并包括相邻的第一边111(例如矩形的短边)和第二边112(例如矩形的长边);沿掩模板11的第一边111,消磁器21的长度大于或等于掩模板11,即沿图6所示的101方向消磁器21的长度大于等于掩模板11的长度。沿掩模板11的第二边112,消磁器21的长度小于掩模板11,即沿图6所示的102方向消磁器21的长度小于掩模板11的长度。移动机构用于带动修复器件20沿平行于第二边112的方向(即图6所示的102方向)移动,就可以对掩模板的全部进行消磁。在一种可替换的实施例中,移动机构用于带动修复器件20沿平行于第一边111的方向(即图6所示的101方向)移动,从而对掩模板的全部进行消磁。
当然,消磁器的长度也可以是在第一边和第二边的方向上均小于掩模板的长度,则消磁器在平行于第一边和第二边的方向上均可以移 动,以对掩模板的全部进行消磁。或者,消磁器的长度也可以是在平行于第一边和第二边的方向上均大于掩模板的长度。
在一种实施例中,如图5、图6所示,移动机构30包括第一丝杠31,第一丝杠31平行于掩模板11的第二边穿过消磁器21延伸并与消磁器21螺纹结合,从而通过第一丝杠的转动驱动消磁器21在平行于掩模板11的第二边112的方向上移动,以对掩模板的待修复部位进行修复。
在一种示例性实施例中,移动机构还包括导向杆32,所述导向杆32平行于所述掩模板11的第二边112穿过消磁器21延伸,且第一丝杠31与导向杆32所确定的平面与掩模板11平行,以引导消磁器21平行于掩模板11移动。这样,第一丝杠31和导向杆32均穿过消磁器21,消磁器21在第一丝杠31的带动下,沿导向杆32平稳地移动,则消磁器21的移动方向即为第二边112的延伸方向(即如6所示的102方向)。且第一丝杠31与导向杆32所确定的平面即为与掩模板11平行的面。如图5、图6所示,本发明实施例以移动结构30包括两个导向杆32为例,其中,两个导向杆32分别位于第一丝杠31的两侧。
在一种实施例中,如图5、图6所示,修复装置100包括:图像获取装置40以及与图像获取装置40连接的显示设备(图中未示出);图像获取装置40被构造成在移动机构的驱动下在掩模板11正对的区域内、且在与掩模板11平行的平面内移动,以获取掩模板11上与图像获取装置40相对的部分的图像,并发送给显示设备;显示设备用于显示图像获取装置40所获取的图像。
图像获取装置可以获取掩模板的图像以发送给显示设备,显示设备还可以将图像获取装置获取的图像进行处理、放大以方便显示。从显示设备显示的图像中可以确定掩模板是否被磁化而发生金属丝粘结缺陷或者从显示设备显示的图像中可以确定掩模板上是否存在蒸镀材料淤积的缺陷,从而进一步确认是否需要对掩模板进行修复、以及对掩模板的哪个部位进行修复。
在一种实施例中,如图5、图6所示,在修复器件20包括消磁器21的情况下,图像获取装置30设置在消磁器21上,并可随着消 磁器21移动。移动机构30还用于带动图像获取装置40在垂直于消磁器21移动方向的方向上移动。
消磁器21移动的方向即为导向杆32的延伸方向,导向杆32与第二边112平行,消磁器21的移动方向为第二边112的延伸方向(即102方向),即图像获取装置40可以沿与第二边112平行的方向移动。垂直于消磁器21移动的方向即为第一边111的延伸方向(即101方向),移动机构30还用于带动图像获取装置40在垂直于消磁器21移动方向的方向上移动,则图像获取装置40还可以沿平行于第一边111的方向移动。则在图像获取装置40比较小的情况下,图像获取装置40通过在平行于第一边111和/或第二边112的方向上的移动,可以获取掩模板的全部图像。
在本发明实施例中,图像获取装置可以包括显微镜或者CCD摄像头,显示设备可以包括液晶显示器。图像获取装置每次获取与显微镜对应的部分掩模板的图像。
在一种实施例中,如图4、图6所示,修复器件20包括:激光器23,激光器23用于向掩模板11发射激光;移动机构30用于根据显示设备显示的图像驱动激光器23移动至掩模板11的待修复部位相对应的位置处,即移动机构30带动激光器23在与掩模板11平行且与掩模板11正对的区域内移动,以使得激光器23可以向掩模板11的任意位置发射激光。
需要说明的是,掩模板在进行掩膜蒸镀过程中,蒸镀材料有可能淤积在掩模板上,从而造成掩膜图案不精准。本发明实施例的修复器件包括激光器23,所述移动机构被构造成根据所述显示设备显示所述掩模板11有蒸镀材料淤积的情况,带动激光器23移动至正对掩模板11有蒸镀材料淤积的位置处,激光器11可以向掩模板上淤积的蒸镀材料发射激光,从而使得淤积的蒸镀材料蒸发,消除淤积缺陷,保证掩模板的掩膜精度。
在一种实施例中,如图4、图6所示,激光器21发射的激光与图像获取装置30获取的掩模板图像的位置一致。以图像获取装置为显微镜为例,显微镜的镜头垂直掩模板,以获取与镜头正对的掩模板位置处的图像。激光器位于显微镜一侧,激光器的激光头可以是具有 一定倾斜角度,从而激光头发射的激光正对掩模板的与镜头正对的位置。
在一种实施例中,修复装置还包括激光控制器,激光控制器还用于控制激光器发出的激光强度。由于不同蒸镀材料的沸点不同,本发明实施例中,激光控制器可以通过调节激光强度以蒸发不同的蒸镀材料。
在一种实施例中,如图4、图6所示,在修复器件20包括消磁器21的情况下,激光器23设置在消磁器21上,并可随着所消磁器21移动;移动机构30还用于带动激光器23在垂直于消磁器21移动方向的方向上移动。与图像获取装置30设置在消磁器21上的原理相同,消磁器21移动的方向即为导向杆32的延伸方向,导向杆32与第二边112平行,消磁器21的移动方向为平行于第二边112的方向(即102方向),即激光器23可以沿平行于第二边112的方向移动。垂直于消磁器21移动的方向即为第一边111的延伸方向(即101方向),移动机构30还用于带动激光器23在垂直于消磁器21移动方向的方向上移动,则激光器23还可以沿平行于第一边111的方向移动。因此,激光器23可以在平行于第一边111或第二边112的方向上的移动,以向掩模板11的任意位置发射激光。
在一种实施例中,如图5、图6所示,移动机构30包括:导向槽33和第二丝杠34,导向槽33设置在消磁器21的面对掩模板11的表面上、并在垂直于消磁器21移动方向的方向上延伸,第二丝杠34设置在导向槽33中,第二丝杠34与图像获取装置40和/或激光器23连接,并沿导向槽33移动。由于消磁器21的移动方向为平行于第二边112的方向,导向槽33在垂直于消磁器21移动方向的方向上延伸,即导向槽33沿平行于第一边111的方向延伸,则第二丝杠34用于带动图像获取装置40和/或激光器23沿平行于第一边111的方向(即101方向)移动。
需要说明的是,在移动机构还用于带动图像获取装置在垂直于消磁器移动方向的方向上移动的情况下,则第二丝杠穿过图像获取装置并与图像获取装置螺纹结合。在移动机构还用于带动激光器在垂直于消磁器移动的方向上移动的情况下,则第二丝杠穿过激光器并与激光 器螺纹结合。或者,在移动机构还用于带动图像获取装置和激光器在垂直于消磁器移动的方向上移动的情况下,如图4、图6所示,第二丝杠34穿过图像获取装置40和激光器23并与图像获取装置40和激光器23螺纹结合。
此外,本发明实施例中还提供了一种掩模板修复装置,包括修复器件、移动机构、图像获取装置以及与图像获取装置连接的显示设备;其中,图像获取装置用于获取掩模板上与图像获取装置相对应的部分的图像,并发送给显示设备;显示设备用于显示图像获取装置所获取的图像。修复器件包括激光器,移动机构用于带动激光器在掩模板正对的区域内、且在与掩模板平行的面内移动。
掩模板在进行掩膜蒸镀过程中,蒸镀材料有可能淤积在掩模板上,从而造成掩膜图案不精准。若显示设备显示掩模板有蒸镀材料淤积,由控制装置(未示出)控制移动结构带动激光器移动至正对掩模板有蒸镀材料淤积的位置处,并使得激光器向淤积的蒸镀材料位置处发射激光,从而使得淤积的蒸镀材料蒸发,保证掩模板的掩膜精度。
移动机构可以带动激光器在掩模板正对的区域内、且在与掩模板平行的面内任意移动,从而激光器可以向掩模板的任意位置发射激光。移动结构的具体结构可以参照本发明实施例提供的方式,当然也不局限于本发明实施例中的具体方式。
根据本发明另一方面的实施例,提供一种蒸镀系统,包括:真空蒸镀腔室;蒸镀源,设置在位于真空蒸镀腔室内并被构造成对设置在所述蒸镀腔室内并位于蒸镀源上方的掩模板进行蒸镀;以及本发明上述任一实施例的掩模板修复装置,其中,掩模板修复装置的修复器件位于蒸镀腔室内。
需要说明的是,在掩模板修复装置还包括图像获取装置以及与图像获取装置连接的显示设备的情况下,图像获取装置位于蒸镀腔室内,显示设备可以是位于蒸镀腔室的外面,以便工作人员进行观察。
为了保证掩模板的正常蒸镀,位于蒸镀腔室内的掩模板修复装置还可以在蒸镀腔室内移动。例如,在掩模板进行蒸镀的过程中,掩模板修复装置位于掩模板正对区域之前的位置处。若需要对掩模板进行检测修复时,驱动掩模板修复装置位于掩模板正对的区域内。
此外,在蒸镀腔室内还可以设置防尘罩以将掩模板修复装置封闭保护起来,从而在掩模板蒸镀的过程中可以防止蒸镀材料沉积在掩模板修复装置上。
本发明实施例中,控制掩模板修复装置进行修复以及移动机构的移动等均可以由设置在蒸镀腔室外的控制装置(未示出)控制,即操作人员可以在蒸镀腔室外通过控制装置控制消磁器、激光器以及图像获取装置的移动和开启等。
根据本发明进一步方面的实施例,提供一种利用本发明实施例提供的任一的修复装置修复掩模板的方法,包括如下步骤:
启动修复器件;驱动移动机构,以使得移动机构带动修复器件在掩模板正对的区域内、且在与掩模板平行的面内移动。
在一种实施例中,在修复器件包括消磁器和电流控制器的情况下,启动修复器件具体包括:启动电流控制器,以便由电流控制器向消磁器输入交流电,其中电流控制器向消磁器输入交流电的电流大小不断变化。
一般的,磁场的变化频率越高,磁场强度越大,消磁效果越好。具体的,本发明的实施例中,在磁场频率一定的情况下,电流控制器向消磁器输入交流电的电流大小逐渐增大,消磁器产生的磁场逐渐变大,从而提高消磁效果。这样,通过电流控制器控制消磁器产生的磁场大小,无需改变消磁器与掩模板之间的距离。消磁器的移动平面与掩模板所在平面平行且距离不变,通过调整电流控制器调整消磁器的磁场大小,即可以对掩模板进行消磁,从而无需较大空间,可以更加方便的将修复装置安装于蒸镀腔室内。
进一步的,还可以通过电流控制器增加消磁器的磁场变化频率,从而提高消磁器的消磁效果,以节省消磁时间。
在一种实施例中,在修复装置还包括图像获取装置以及与显微镜连接的显示设备的情况下,修复方法还包括:图像获取装置获取掩模板上与图像获取装置相对的部分的图像,并发送给显示设备;显示设备接收图像获取装置发送的图像并进行显示。
本发明的实施例中,图像获取装置可以获取掩模板的图像以发送 给显示设备,显示设备还可以将图像获取装置获取的图像进行处理、放大以方便显示。从显示设备显示的图像中可以确定掩模板是否被磁化而发生金属丝粘结或者从显示设备显示的图像中可以确定掩模板上是否存在蒸镀材料的淤积的现象,从而进一步确认是否需要对掩模板进行修复、以及对掩模板的哪个部位进行修复。
在一种实施例中,在修复器件包括激光器的情况下,若显示设备显示掩模板存在蒸镀材料淤积现象,驱动移动机构使得移动机构带动激光器移动至正对掩模板有蒸镀材料淤积的位置处;启动激光器,向淤积的蒸镀材料位置处发射激光。
掩模板在进行掩膜蒸镀过程中,蒸镀材料有可能淤积在掩模板上,从而造成掩膜图案不精准。本发明实施例提供的修复器件包括激光器,激光器可以向掩模板上淤积的蒸镀材料发射激光,从而使得淤积的蒸镀材料蒸发,保证掩模板的掩膜精度。
具体的,以图像获取装置为显微镜为例,则显微镜与掩模板对好焦,其视野内范围区域为蒸镀材料淤积的区域,则显微镜获取的图像中显示掩模板上有蒸镀材料淤积。则激光器向蒸镀材料发射激光,激光烧结温度为蒸发材料的蒸发温度,从而使得蒸镀材料蒸发。优选的,在进行烧结完毕后再次用显微镜进行观察,直到金属网丝没有蒸镀材料为止。
在一种实施例中,在移动机构包括第一丝杠和导向杆的情况下,驱动移动机构具体包括:驱动第一丝杠旋转,以带动修复器件沿导向杆移动。即第一丝杠向修复器件提供驱动动力,从而使得修复器件沿导向杆移动。
在一种实施例中,在移动机构包括导向槽和第二丝杠的情况下,驱动移动机构还包括:驱动第二丝杠旋转,以带动图像获取装置和/或激光器沿导向槽移动。同理,第二丝杠向连接在第二丝杠上的图像获取装置和/或激光器提供驱动动力,从而使得连接在第二丝杠上的图像获取装置和/或激光器沿导向槽移动。
下面,参照图6所示的实施例,说明本发明实施例的修复装置的修复方法。
如图6所示,掩模板修复装置100位于掩模板11的正下方,修 复方法包括:
步骤101、启动电流控制器,向消磁器输入交流电。具体地,在较高磁场变化频率下,电流控制器向消磁器输入交流电的电流逐渐增大,从而使得消磁器的磁场逐渐变大,以对掩模板进行消磁。
步骤102、驱动第一丝杠旋转,以带动消磁器沿导向杆方向移动。即消磁器沿平行于第二边112的方向移动,从而消磁器可以对整个掩模板进行全面消磁。
步骤103、图像获取装置获取掩模板上与图像获取装置相对的部分的图像,并发送给显示设备进行显示。
步骤104、根据显示图像确认掩模板是否有金属网丝粘结。
若在步骤104中,显示设备所显示的图像中显示掩模板可以继续进行掩膜工艺,即掩模板没有材料淤积,则修复工艺结束。若显示设备显示的图像中显示掩模板上仍有因磁化而导致的金属网丝粘结,则重复上述步骤101-步骤104,直至掩模板上没有金属网丝粘结为止。
步骤105、根据显示图像确认掩模板是否有蒸镀材料淤积.
若显示设备显示的图像中显示掩模板上仍有蒸镀材料淤积则进行以下步骤106-步骤108。
步骤106、根据显示设备显示的图像确定掩模板有蒸镀材料淤积的位置。具体的,掩模板有蒸镀材料淤积的位置可以是与图像获取装置正对的位置处。
步骤107、驱动移动机构使得移动结构带动激光器移动至对应掩模板有蒸镀材料淤积的位置处。
具体的,移动机构驱动第一丝杠和第二丝杠旋转,使得激光器与掩模板有蒸镀材料淤积的位置处,以使得激光器能够向蒸镀材料发射激光。
步骤108、启动激光器,向淤积的蒸镀材料发射激光,以将淤积的蒸镀材料蒸发。
步骤103、图像获取装置获取掩模板上与图像获取装置相对的部分的图像,并发送给显示设备进行显示。
若显示设备显示的图像中显示掩模板上仍有蒸镀材料淤积则重复上述步骤106-步骤108,直至掩模板上没有蒸镀材料淤积为止。
若显示设备显示掩模板可以继续进行掩膜工艺,即掩模板没有材料淤积,则修复工艺结束。
当然,根据掩模板需要修复的缺陷的不同,上述步骤也不局限于上述顺序,本发明实施例仅以上述为例进行说明。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种掩模板修复装置,包括:
    修复器件,被构造成对掩模板的待修复部位进行修复;和
    移动机构,安装在与掩模板面对的区域内,并被构造成带动所述修复器件移动到与所述掩模板的待修复部位相对应的位置。
  2. 根据权利要求1所述的修复装置,其中,所述移动机构带动所述修复器件在与所述掩模板平行的平面内移动。
  3. 根据权利要求1或2所述的修复装置,其中,所述修复器件包括:
    消磁器,被构造成产生用于消除掩模板内的磁性的磁场;以及
    电流控制器,被配置成控制所述消磁器产生的磁场的强度以及磁场变化频率。
  4. 根据权利要求3所述的修复装置,其中,所述掩模板具有大致矩形的轮廓,并包括相邻的第一边和第二边;
    沿所述掩模板的第一边,所述消磁器的长度大于或等于所述掩模板;
    所述移动机构被构造成带动所述修复器件沿平行于所述第二边的方向移动。
  5. 根据权利要求4所述的修复装置,其中,所述移动机构包括第一丝杠,所述第一丝杠平行于所述掩模板的第二边穿过所述消磁器延伸并与消磁器螺纹结合。
  6. 根据权利要求5所述的修复装置,其中,所述移动机构还包括导向杆,所述导向杆平行于所述掩模板的第二边穿过所述消磁器延伸,且所述第一丝杠与所述导向杆所确定的平面与所述掩模板平行,以引导消磁器平行于掩模板移动。
  7. 根据权利要求3-6任一项所述的修复装置,还包括:
    图像获取装置,被构造成在所述移动机构的驱动下在所述掩模板正对的区域内、且在与所述掩模板平行的平面内移动,以获取所述掩模板的图像;以及
    显示设备,被构造成显示所述图像获取装置所获取的图像。
  8. 根据权利要求7所述的修复装置,其中,所述图像获取装置设置在所述消磁器上,并随着所述消磁器移动;
    所述移动机构还构造成带动所述图像获取装置在垂直于所述消磁器移动方向的方向上移动。
  9. 根据权利要求7所述的修复装置,其中,所述修复器件还包括:
    激光器,被构造成向所述掩模板发射激光;
    所述移动机构被构造成根据所述显示设备显示的图像驱动所述激光器移动至与所述掩模板的待修复部位相对应的位置处。
  10. 根据权利要求9所述的修复装置,其中,所述移动机构被构造成根据所述显示设备显示所述掩模板有蒸镀材料淤积的情况,带动所述激光器移动至正对所述掩模板有蒸镀材料淤积的位置处。
  11. 根据权利要求9所述的修复装置,还包括激光控制器,所述激光控制器被构造成控制所述激光器发出的激光强度。
  12. 根据权利要求9所述的修复装置,其中,所述激光器设置在所述消磁器上,并随着所消磁器移动;
    所述移动机构还被构造成带动所述激光器在垂直于所述消磁器移动方向的方向上移动。
  13. 根据权利要求8至12中的任一项所述的修复装置,其中,所述移动机构还包括:
    导向槽,设置在所述消磁器的面对所述掩模板的表面上、并在垂直于所述消磁器的移动方向的方向上延伸;以及
    第二丝杠,设置在所述导向槽中,所述第二丝杠与图像获取装置和/或激光器连接。
  14. 一种蒸镀系统,包括:
    真空蒸镀腔室;
    蒸镀源,设置在所述蒸镀腔室内并被构造成对设置在所述蒸镀腔室内并位于所述蒸镀源上方的掩模板进行蒸镀;以及
    如权利要求1-12中的任一项所述的掩模板修复装置,其中,所述掩模板修复装置的修复器件位于所述蒸镀腔室内。
  15. 一种利用如权利要求1-13中的任一项所述的掩模板修复装置修复掩模板的方法,包括如下步骤:
    启动修复器件;以及
    驱动所述移动机构,以使得移动机构带动所述修复器件在掩模板正对的区域内移动。
  16. 根据权利要求15所述的修复方法,其中,在所述修复器件包括消磁器和电流控制器的情况下,所述启动修复器件的步骤包括:启动所述电流控制器,以便由所述电流控制器向所述消磁器输入交流电,其中所述电流控制器向所述消磁器输入交流电的电流大小不断变化。
  17. 根据权利要求15或16所述的修复方法,其中,在所述修复装置还包括图像获取装置以及显示设备的情况下,所述修复方法还包括:
    图像获取装置获取所述掩模板上与所述图像获取装置相对应的部分的图像;
    所述显示设备接收所述图像获取装置发送的图像并进行显示。
  18. 根据权利要求17所述的修复方法,其中,在所述修复器件包括激光器的情况下,若所述显示设备显示所述掩模板有蒸镀材料淤积,驱动所述移动机构使得所述移动机构带动所述激光器移动至正对所述掩模板有蒸镀材料淤积的位置处;
    启动所述激光器,向淤积的蒸镀材料位置处发射激光。
PCT/CN2016/084945 2016-03-01 2016-06-06 掩模板修复装置、修复方法及蒸镀系统 WO2017148036A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/503,374 US10443118B2 (en) 2016-03-01 2016-06-06 Mask repairing apparatus, method for repairing mask and evaporation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610115452.3A CN105506548B (zh) 2016-03-01 2016-03-01 一种掩膜板修复装置、修复方法及蒸镀系统
CN201610115452.3 2016-03-01

Publications (1)

Publication Number Publication Date
WO2017148036A1 true WO2017148036A1 (zh) 2017-09-08

Family

ID=55714839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084945 WO2017148036A1 (zh) 2016-03-01 2016-06-06 掩模板修复装置、修复方法及蒸镀系统

Country Status (3)

Country Link
US (1) US10443118B2 (zh)
CN (1) CN105506548B (zh)
WO (1) WO2017148036A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114012350A (zh) * 2021-11-11 2022-02-08 云谷(固安)科技有限公司 蒸镀掩膜版维修装置、系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1426118A (zh) * 2001-12-10 2003-06-25 高级网络服务公司 制作电致发光显示器的、使用电磁铁的蒸镀装置及采用此装置的蒸镀方法
CN101106052A (zh) * 2006-06-22 2008-01-16 Lg.菲利浦Lcd株式会社 用于使荫罩消磁的装置和方法
CN103981491A (zh) * 2014-04-30 2014-08-13 京东方科技集团股份有限公司 一种蒸镀装置
CN104004995A (zh) * 2014-06-05 2014-08-27 上海和辉光电有限公司 蒸镀装置、蒸镀设备及蒸镀方法
CN203807547U (zh) * 2014-04-30 2014-09-03 京东方科技集团股份有限公司 一种蒸镀装置
CN104131251A (zh) * 2013-05-02 2014-11-05 上海和辉光电有限公司 电磁蒸镀装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0385475A3 (en) * 1989-03-02 1991-04-03 Asahi Glass Company Ltd. Method of forming a transparent conductive film
JPH08212921A (ja) * 1995-02-06 1996-08-20 Hitachi Ltd シャドウマスク構体の組立装置
TW460599B (en) * 1998-01-14 2001-10-21 Toshiba Corp Method for forming fine wiring pattern
KR100640993B1 (ko) * 2001-02-15 2006-11-06 엘지.필립스 엘시디 주식회사 스퍼터링 장치
US7504182B2 (en) * 2002-09-18 2009-03-17 Fei Company Photolithography mask repair
JP4493926B2 (ja) * 2003-04-25 2010-06-30 株式会社半導体エネルギー研究所 製造装置
JP2006049384A (ja) * 2004-07-30 2006-02-16 Laserfront Technologies Inc ガントリー型xyステージ
JP4384109B2 (ja) * 2005-01-05 2009-12-16 三星モバイルディスプレイ株式會社 蒸着システム用蒸着源の駆動軸及びこれを具備した蒸着システム
CN101192007B (zh) * 2006-11-28 2011-07-06 中芯国际集成电路制造(上海)有限公司 掩膜版、掩膜版的版图设计方法和缺陷修复方法
KR101053450B1 (ko) * 2008-09-26 2011-08-03 참엔지니어링(주) 마스크 리페어 장치 및 방법
KR101086306B1 (ko) * 2009-12-09 2011-11-23 참엔지니어링(주) 마스크 리페어 장치
WO2011151530A1 (fr) * 2010-05-31 2011-12-08 Arcelormittal Investigacion Y Desarrollo, S.L. Procede et dispositif de mesure de l'epaisseur d'une couche de revetement sur une bande en defilement
US20120237682A1 (en) * 2011-03-18 2012-09-20 Applied Materials, Inc. In-situ mask alignment for deposition tools
CN103208455B (zh) * 2013-03-15 2016-02-03 上海华力微电子有限公司 金属硬质掩模结构的修复方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1426118A (zh) * 2001-12-10 2003-06-25 高级网络服务公司 制作电致发光显示器的、使用电磁铁的蒸镀装置及采用此装置的蒸镀方法
CN101106052A (zh) * 2006-06-22 2008-01-16 Lg.菲利浦Lcd株式会社 用于使荫罩消磁的装置和方法
CN104131251A (zh) * 2013-05-02 2014-11-05 上海和辉光电有限公司 电磁蒸镀装置
CN103981491A (zh) * 2014-04-30 2014-08-13 京东方科技集团股份有限公司 一种蒸镀装置
CN203807547U (zh) * 2014-04-30 2014-09-03 京东方科技集团股份有限公司 一种蒸镀装置
CN104004995A (zh) * 2014-06-05 2014-08-27 上海和辉光电有限公司 蒸镀装置、蒸镀设备及蒸镀方法

Also Published As

Publication number Publication date
US20180148821A1 (en) 2018-05-31
CN105506548A (zh) 2016-04-20
US10443118B2 (en) 2019-10-15
CN105506548B (zh) 2018-05-25

Similar Documents

Publication Publication Date Title
JP5517308B2 (ja) マスクの製造方法、マスク及びマスクの製造装置
JP5539154B2 (ja) アライメント方法、アライメント装置、及び有機el素子製造装置
TWI555862B (zh) 蒸鍍遮罩、蒸鍍遮罩的製造方法及薄膜圖案形成方法
JP5556774B2 (ja) 露光装置
TW201206687A (en) Imprinting method and imprinting apparatus, sample shot extraction method, and article manufacturing method using same
JP5299380B2 (ja) 部品実装装置および部品検出方法
WO2017148036A1 (zh) 掩模板修复装置、修复方法及蒸镀系统
JP5299379B2 (ja) 部品実装装置および部品検出方法
JP6144473B2 (ja) 基板作業装置、基板作業方法
JP2012193962A (ja) 薄膜試料作製方法
JP2009194147A (ja) ウエハ露光装置及びウエハ露光方法
JP2014130068A (ja) レジストパターン計測装置、レジストパターン計測方法、及びレジスト現像液の濃度管理方法
JP5501696B2 (ja) 実装装置および実装方法
KR20130098838A (ko) 레이저 가공 장치, 레이저 가공 방법 및 레이저 가공 프로그램을 기록한 컴퓨터가 판독 가능한 기록 매체
JP2012153553A (ja) 被加工物載置固定用テーブルの製造方法
KR102217879B1 (ko) 기판을 프로세싱하기 위한 방법, 진공 프로세싱을 위한 장치, 및 진공 프로세싱 시스템
JP2010106297A (ja) マスクアライメント装置
JP2021061396A (ja) チップ転写方法及びチップ転写装置
KR20050076732A (ko) 미세 패턴 관찰 장치 및 그것을 이용한 미세 패턴 수정 장치
JP2006269952A (ja) 近接露光装置
JP2012209443A (ja) パターン描画装置およびパターン描画方法
CN111903188B (zh) 测量装置及测量方法
JP2008153511A (ja) 部品実装装置
WO2017031785A1 (zh) 透明导电电极的修补装置
JP2023104836A (ja) ワイヤーグリッド偏光子、これを備える偏光光照射装置、露光装置、ワイヤーグリッド偏光子の角度調整方法、検光子、検光子の角度調整方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15503374

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892224

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892224

Country of ref document: EP

Kind code of ref document: A1